WO2015151642A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2015151642A1
WO2015151642A1 PCT/JP2015/054861 JP2015054861W WO2015151642A1 WO 2015151642 A1 WO2015151642 A1 WO 2015151642A1 JP 2015054861 W JP2015054861 W JP 2015054861W WO 2015151642 A1 WO2015151642 A1 WO 2015151642A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt layer
angle
tire
cord
steel
Prior art date
Application number
PCT/JP2015/054861
Other languages
French (fr)
Japanese (ja)
Inventor
厚 大貫
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2015151642A1 publication Critical patent/WO2015151642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0057Reinforcements comprising preshaped elements, e.g. undulated or zig-zag filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2083Density in width direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • D07B1/0653Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires in the core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2016Strands characterised by their cross-sectional shape
    • D07B2201/2018Strands characterised by their cross-sectional shape oval
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2029Open winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2051Cores characterised by a value or range of the dimension given

Definitions

  • the present invention relates to a tire, and more particularly, to a tire related to an improved tread reinforcement structure.
  • tires particularly heavy-duty tires used in heavy-duty vehicles such as trucks and buses, are provided with a plurality of belt layers for suppressing diameter growth due to internal pressure and for protecting the tread portion.
  • an object of the present invention is to provide a tire that achieves both weight reduction and high durability by establishing a technology capable of ensuring a sufficient diameter growth prevention effect even when the amount of steel used in the belt layer is reduced. There is to do.
  • the high-angle belt layer increases the tire circumferential rigidity by preventing the crossing belt layer from contracting in the tire width direction (Poisson deformation).
  • the present inventor made the maximum diameter of the cord of the high-angle belt layer to be not less than a predetermined value and made the cord interval of the high-angle belt layer 150% of the cord interval of the crossing belt layer.
  • the rubberized layers of steel cords extending at an angle of 10 ° to 30 ° with respect to the tire equatorial plane are arranged so that the cord directions cross each other at least between some layers.
  • a tire comprising: a cross belt layer of layers or more; and a high-angle belt layer made of a rubberized layer of a steel cord extending inclined at an angle of 5 ° or more larger than the cross belt layer,
  • the maximum diameter of the steel cord of the high angle belt layer is 0.8 mm or more, and the mass of the steel cord per unit area included in the high angle belt layer is the steel cord per unit area included in the crossing belt layer.
  • the distance between adjacent steel cords in the cross section perpendicular to the longitudinal direction of the steel cord of the high-angle belt layer is the distance between the adjacent steel cords in the cross section orthogonal to the longitudinal direction of the steel cord of the crossing belt layer. It is characterized by being 150% or less.
  • the circumscribed circular shape of the steel cord in a cross section perpendicular to the longitudinal direction of the steel cord of the high-angle belt layer is preferably flat.
  • the present invention even when the amount of steel used for the belt layer is reduced, it is possible to establish a technology capable of ensuring a sufficient diameter growth prevention effect, and realize a tire that achieves both weight reduction and high durability. It became possible to do.
  • FIG. 1 is a cross-sectional view in the width direction showing one structural example of the tire of the present invention.
  • the illustrated tire 10 includes a pair of bead cores 11, a pair of side wall portions 12 connected to the bead portion 11, and a tread portion 13 straddling the both side wall portions 12.
  • a carcass ply 2 that extends in a toroidal shape across 1 is used as a skeleton.
  • the high-angle belt layer 3 and the crossing belt layer 4 are disposed on the outer side in the tire radial direction of the crown portion of the carcass ply 2.
  • the crossing belt layer 4 is composed of two or more rubberized layers of steel cords extending at an angle of 10 ° to 30 ° with respect to the tire equatorial plane, and can be provided in two to four layers, for example. In the example shown, it is provided with three layers.
  • the crossing belt layer 4 is arranged so that the cord directions intersect each other at least between some layers.
  • the high-angle belt layer 3 is composed of a rubberized layer of steel cord extending at an angle larger than the crossing belt layer 4 by 5 ° or more, for example, 40 ° to 80 ° with respect to the tire equatorial plane.
  • the maximum diameter of the steel cord of the high-angle belt layer 3 needs to be 0.8 mm or more, preferably 0.8 to 1.2 mm, more preferably 0.8 to 1. 0.0 mm. If the maximum diameter of the steel cord of the high-angle belt layer 3 is less than 0.8 mm, the cord is too thin to obtain a distortion suppressing effect. However, if the maximum diameter of the steel cord of the high-angle belt layer 3 is too large, the number of driving must be reduced in order to reduce the steel amount, and the required cord interval may not be obtained. Further, the thickness of the high-angle belt layer 3 itself is increased, so that the amount of rubber used is increased and the light weight effect may not be exhibited.
  • the maximum diameter of the steel cord means the cord diameter in the case of a normal round cord in which the circumscribed circle shape of the cord in a cross section orthogonal to the longitudinal direction of the cord is a circle, and similarly, the circumscribed circle shape is In the case of a flat cord that is flat, it means the major axis.
  • the interval between the steel cords of the high-angle belt layer 3 needs to be 150% or less of the interval between the steel cords of the crossing belt layer 4, preferably 50 to 150%, More preferably, it is 50 to 120%.
  • the desired effect of the present invention can be obtained.
  • the cord interval of the high-angle belt layer 3 is too small, the stress applied to the rubber between the cords of the high-angle belt layer 3 is increased, causing belt edge separation in the high-angle belt layer 3 and reducing the durability. There is.
  • the interval between the steel cords of each layer means the interval between adjacent steel cords in a cross section perpendicular to the longitudinal direction of the steel cord of each layer, and is substantially sandwiched between adjacent steel cords. This means the thickness of the rubber measured in the cord arrangement direction. Specifically, the distance between the steel cords in each layer is evaluated by dissecting the product tire and measuring the distance between the steel cords for a section cut in a direction perpendicular to the longitudinal direction of the steel cord for each layer. can do.
  • a steel cord having a large cord diameter is used, or the interval between cords is set narrowly in a range of 150% or less of the intersecting belt layer 4, that is, the number of driving is somewhat compared with the intersecting belt 4.
  • the specific value of the distance between the steel cords of the high-angle belt layer 3 and the crossing belt layer 4 is not particularly limited, and is appropriately set according to the tire size and the like according to a conventional method. Can do.
  • the mass of the steel cord per unit area included in the high-angle belt layer 3 needs to be 80% or less of the mass of the steel cord per unit area included in the crossing belt layer 4, Preferably it is 50 to 80%, more preferably 60 to 80%.
  • the tire weight can be effectively reduced.
  • the present invention even if the amount of steel contained in the high-angle belt layer 3 is reduced to the above range, a sufficient diameter growth preventing effect can be obtained by the combination with the cord diameter and cord spacing conditions of the steel cord.
  • the tire can be secured and has high durability.
  • the specific mass of the steel cord per unit area included in the high-angle belt layer 3 and the crossing belt layer 4 is not particularly limited.
  • the amount of steel is controlled by appropriately selecting the steel cord structure (wire diameter, number of filaments, etc.) and the number of drivings used for each layer within the range satisfying the conditions related to the cord diameter and cord spacing. Can do.
  • the specific structure of the steel cord used for each layer is not particularly limited, and can be appropriately selected according to a conventional method as long as the desired physical property value is obtained for each layer.
  • a flat cord in which a circumscribed circle shape of the steel cord in a cross section perpendicular to the cord longitudinal direction is flat.
  • the distance between cords can be reduced without increasing the steel amount of the high-angle belt layer 3, and the effect of suppressing the movement of the crossing belt layer 4 can be enhanced.
  • the flat cord that can be used in the present invention include, for example, a cord having a 1 + 6, 2 + 2 structure, etc., in which a core filament is two-dimensionally shaped into a flat shape.
  • the high-angle belt layer 3 and the crossing belt layer 4 are stacked in this order from the inner side in the tire radial direction.
  • the high-angle belt layer 3 and the crossing belt layer 4 are arranged. The order is not limited to this.
  • the relationship between the cord diameter of the high-angle belt layer 3, the cord interval between the high-angle belt layer 3 and the crossing belt layer 4, and the steel amount may be any as long as the above conditions are satisfied.
  • the desired effect of the present invention can be obtained.
  • the tire structure other than the high-angle belt layer 3 and the crossing belt layer 4 and the material of each component are not particularly limited, and can be appropriately selected from conventionally known ones.
  • the carcass ply 2 is made of a steel cord covered with rubber and needs to be arranged in at least one piece, but may be arranged in two or more pieces. Both ends of the carcass ply 2 in the tire width direction are usually folded and locked around the bead core 1 from the inside to the outside of the tire as illustrated.
  • a tread pattern is appropriately formed on the surface of the tread portion 13, and an inner liner (not shown) is formed in the innermost layer.
  • an inner liner (not shown) is formed in the innermost layer.
  • an inert gas such as nitrogen can be used as the gas filled in the tire.
  • the tire of the present invention is particularly suitable as a heavy duty pneumatic tire applied to heavy duty vehicles such as trucks and buses.
  • Heavy duty tires of each of the examples and comparative examples were manufactured at a tire size of 11R22.5.
  • a belt layer and a left 20 ° belt layer were disposed.
  • Steel cords having cord structures shown in the following table were used for the high-angle belt layer and the crossing belt layer, respectively. Further, the same steel cord as that of the crossing belt layer was used for the belt layer.
  • the maximum diameter of the steel cord of the high-angle belt layer, the ratio of the steel cord mass between the high-angle belt layer and the crossing belt layer, and the cord interval are prescribed, and thereby the tire It was confirmed that both weight reduction and the effect of suppressing diameter growth can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Ropes Or Cables (AREA)

Abstract

Provided is a tire achieving both tire weight reduction and high durability on the basis of a technology established to ensure a sufficient diameter-growth preventing effect even when the amount of steel used in a belt layer is decreased. This tire is provided with: an intersecting belt layer (4) comprising two or more layers; and a high-angle belt layer (3) comprising a rubberized layer of steel cords extending at an angle greater than an angle of the intersecting belt layer by 5º or more. The steel cords of the high-angle belt layer have the maximum diameter of 0.8 mm or more. The mass of the steel cords per unit area included in the high-angle belt layer is 80% or less of the mass of steel cords per unit area included in the intersecting belt layer. The interval of the adjacent steel cords of the high-angle belt layer in a cross section orthogonal to the longitudinal direction of the steel cords thereof is 150% or less of the interval of the adjacent steel cords of the intersecting belt layer in a cross section orthogonal to the longitudinal direction of the steel cords thereof.

Description

タイヤtire
 本発明はタイヤに関し、詳しくは、トレッド部の補強構造の改良に係るタイヤに関する。 The present invention relates to a tire, and more particularly, to a tire related to an improved tread reinforcement structure.
 一般に、タイヤ、特に、トラックやバス等の重荷重車両に使用される重荷重用タイヤは、内圧による径成長を抑制するため、および、トレッド部の保護のために、複数枚のベルト層が配置された構造を有している。 In general, tires, particularly heavy-duty tires used in heavy-duty vehicles such as trucks and buses, are provided with a plurality of belt layers for suppressing diameter growth due to internal pressure and for protecting the tread portion. Have a structure.
 トレッド部の補強構造に係る従来技術としては、例えば、2層の交錯ベルト層を、コードがタイヤ赤道面に対し10~30°の傾斜角度で互いに逆向きに交差するよう配置するとともに、さらに、交錯ベルト層のコード角度よりも5°以上高角度となるコード角度で、高角度ベルト層を配置する技術が知られている(特許文献1参照)。このような積層ベルト構造においては、交錯ベルト層に対しタイヤ周方向に引張りが加わった際に、高角度ベルト層のコードにより交錯ベルト層のコードの動きを抑制して、交錯ベルト層のタイヤ幅方向の収縮を抑えることで、ベルトの周方向剛性を向上し、径成長を抑制する効果を得ることができる。 As a related art related to the reinforcing structure of the tread portion, for example, two crossing belt layers are arranged so that the cords intersect with each other at an inclination angle of 10 to 30 ° with respect to the tire equator plane, A technique is known in which a high-angle belt layer is arranged at a cord angle that is at least 5 ° higher than the cord angle of the crossing belt layer (see Patent Document 1). In such a laminated belt structure, when tension is applied to the crossing belt layer in the tire circumferential direction, the cord movement of the crossing belt layer is suppressed by the cord of the high-angle belt layer, so that the tire width of the crossing belt layer is reduced. By suppressing the shrinkage in the direction, the circumferential rigidity of the belt can be improved and the effect of suppressing the diameter growth can be obtained.
特開平8-244407号公報JP-A-8-244407
 近年、環境に対する負荷低減の要請が高まっており、タイヤ軽量化の観点から、タイヤの構成材料の使用量の削減についても重要な課題となってきている。よって、ベルト構造の改良においても、タイヤ軽量化の要請と両立できることが重要となる。しかしながら、上記特許文献1に記載の技術は、近年の軽量化の要請を十分満足できるものではなかった。 In recent years, there has been an increasing demand for environmental load reduction, and from the viewpoint of weight reduction of tires, reduction of the amount of tire constituent materials has become an important issue. Therefore, it is important that the improvement of the belt structure is compatible with the demand for weight reduction of the tire. However, the technique described in Patent Document 1 cannot sufficiently satisfy recent demands for weight reduction.
 また、高角度ベルト層に使用するスチール量を交錯ベルト層よりも少なくすることでタイヤの軽量化を図ることも考えられるが、スチール量の減少によりタイヤが径成長しやすくなる。したがって、タイヤを軽量化しつつ、径成長を防止し、タイヤ耐久性を向上させる必要があった。 Also, it is conceivable to reduce the weight of the tire by reducing the amount of steel used for the high-angle belt layer than that of the crossing belt layer, but the tire tends to grow in diameter due to the decrease in the amount of steel. Therefore, it is necessary to prevent the diameter growth and improve the tire durability while reducing the weight of the tire.
 そこで本発明の目的は、ベルト層に使用するスチール量を減らした場合でも十分な径成長の防止効果を確保できる技術を確立することで、タイヤ軽量化と高い耐久性とを両立したタイヤを提供することにある。 Accordingly, an object of the present invention is to provide a tire that achieves both weight reduction and high durability by establishing a technology capable of ensuring a sufficient diameter growth prevention effect even when the amount of steel used in the belt layer is reduced. There is to do.
 高角度ベルト層は、交錯ベルト層のタイヤ幅方向の収縮(ポアソン変形)を妨げることにより、タイヤ周方向剛性を高めている。本発明者は、この点に着目して鋭意検討した結果、高角度ベルト層のコードの最大径を所定値以上とするとともに、高角度ベルト層のコード間隔を交錯ベルト層のコード間隔の150%以下に狭く規定することで、高角度ベルト層のスチール量を少なくした場合でも交錯ベルト層の収縮の抑制効果が得られることを見出して、本発明を完成するに至った。 The high-angle belt layer increases the tire circumferential rigidity by preventing the crossing belt layer from contracting in the tire width direction (Poisson deformation). As a result of intensive investigations focusing on this point, the present inventor made the maximum diameter of the cord of the high-angle belt layer to be not less than a predetermined value and made the cord interval of the high-angle belt layer 150% of the cord interval of the crossing belt layer. By narrowly defining the following, it has been found that even when the steel amount of the high-angle belt layer is reduced, the effect of suppressing the shrinkage of the crossing belt layer can be obtained, and the present invention has been completed.
 すなわち、本発明は、タイヤ赤道面に対し10°~30°の角度で傾斜して延びるスチールコードのゴム引き層を、少なくとも一部の層間で、コード方向が互いに交差するよう配置してなる2層以上の交錯ベルト層と、該交錯ベルト層より5°以上大きな角度で傾斜して延びるスチールコードのゴム引き層からなる高角度ベルト層と、を備えるタイヤであって、
 前記高角度ベルト層のスチールコードの最大径が0.8mm以上であり、該高角度ベルト層に含まれる単位面積あたりのスチールコードの質量が、前記交錯ベルト層に含まれる単位面積あたりのスチールコードの質量の80%以下であり、かつ、
 前記高角度ベルト層のスチールコードの長手方向に直交する断面における隣接する該スチールコード間の間隔が、前記交錯ベルト層のスチールコードの長手方向に直交する断面における隣接する該スチールコード間の間隔の150%以下であることを特徴とするものである。
That is, according to the present invention, the rubberized layers of steel cords extending at an angle of 10 ° to 30 ° with respect to the tire equatorial plane are arranged so that the cord directions cross each other at least between some layers. A tire comprising: a cross belt layer of layers or more; and a high-angle belt layer made of a rubberized layer of a steel cord extending inclined at an angle of 5 ° or more larger than the cross belt layer,
The maximum diameter of the steel cord of the high angle belt layer is 0.8 mm or more, and the mass of the steel cord per unit area included in the high angle belt layer is the steel cord per unit area included in the crossing belt layer. 80% or less of the mass of
The distance between adjacent steel cords in the cross section perpendicular to the longitudinal direction of the steel cord of the high-angle belt layer is the distance between the adjacent steel cords in the cross section orthogonal to the longitudinal direction of the steel cord of the crossing belt layer. It is characterized by being 150% or less.
 本発明においては、前記高角度ベルト層のスチールコードの長手方向に直交する断面における該スチールコードの外接円形状が、扁平であることが好ましい。 In the present invention, the circumscribed circular shape of the steel cord in a cross section perpendicular to the longitudinal direction of the steel cord of the high-angle belt layer is preferably flat.
 本発明によれば、ベルト層に使用するスチール量を減らした場合でも十分な径成長の防止効果を確保できる技術を確立することができ、タイヤ軽量化と高い耐久性とを両立したタイヤを実現することが可能となった。 According to the present invention, even when the amount of steel used for the belt layer is reduced, it is possible to establish a technology capable of ensuring a sufficient diameter growth prevention effect, and realize a tire that achieves both weight reduction and high durability. It became possible to do.
本発明のタイヤの一構成例を示す幅方向断面図である。It is a width direction sectional view showing an example of 1 composition of a tire of the present invention. 実施例で使用したスチールコードの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the steel cord used in the Example.
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。
 図1は、本発明のタイヤの一構成例を示す幅方向断面図である。図示するタイヤ10は、一対のビード部11と、それに連なる一対のサイドウォール部12と、両サイドウォール部12間に跨るトレッド部13とからなり、ビード部11内にそれぞれ埋設された一対のビードコア1間にまたがってトロイド状に延在するカーカスプライ2を骨格とする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view in the width direction showing one structural example of the tire of the present invention. The illustrated tire 10 includes a pair of bead cores 11, a pair of side wall portions 12 connected to the bead portion 11, and a tread portion 13 straddling the both side wall portions 12. A carcass ply 2 that extends in a toroidal shape across 1 is used as a skeleton.
 本発明においては、カーカスプライ2のクラウン部のタイヤ半径方向外側に、高角度ベルト層3と、交錯ベルト層4とが配置されている。このうち交錯ベルト層4は、タイヤ赤道面に対し10°~30°の角度で傾斜して延びるスチールコードのゴム引き層の2層以上からなり、例えば、2~4層で設けることができ、図示する例では3層で設けられている。交錯ベルト層4は、少なくとも一部の層間で、コード方向が互いに交差するよう配置されている。一方、高角度ベルト層3は、交錯ベルト層4より5°以上大きな角度、例えば、タイヤ赤道面に対し40°~80°で傾斜して延びるスチールコードのゴム引き層からなる。 In the present invention, the high-angle belt layer 3 and the crossing belt layer 4 are disposed on the outer side in the tire radial direction of the crown portion of the carcass ply 2. Of these, the crossing belt layer 4 is composed of two or more rubberized layers of steel cords extending at an angle of 10 ° to 30 ° with respect to the tire equatorial plane, and can be provided in two to four layers, for example. In the example shown, it is provided with three layers. The crossing belt layer 4 is arranged so that the cord directions intersect each other at least between some layers. On the other hand, the high-angle belt layer 3 is composed of a rubberized layer of steel cord extending at an angle larger than the crossing belt layer 4 by 5 ° or more, for example, 40 ° to 80 ° with respect to the tire equatorial plane.
 本発明においては、高角度ベルト層3のスチールコードの最大径が、0.8mm以上であることが必要であり、好適には0.8~1.2mm、より好適には0.8~1.0mmである。高角度ベルト層3のスチールコードの最大径が0.8mm未満であると、コードが細すぎて歪抑制効果が得られなくなる。但し、高角度ベルト層3のスチールコードの最大径が大きすぎると、スチール量を低減するためには打込み数を削減しなければならなくなって、要求するコード間隔が得られなくなるおそれがあり、また、高角度ベルト層3自体の厚さが大きくなって、ゴムの使用量が増え、軽量効果を発揮できなくなるおそれもある。ここで、スチールコードの最大径とは、コード長手方向に直交する断面におけるコードの外接円形状が円形である通常の丸コードの場合は、そのコード径を意味し、同様に、外接円形状が扁平である扁平コードの場合は、その長径を意味する。 In the present invention, the maximum diameter of the steel cord of the high-angle belt layer 3 needs to be 0.8 mm or more, preferably 0.8 to 1.2 mm, more preferably 0.8 to 1. 0.0 mm. If the maximum diameter of the steel cord of the high-angle belt layer 3 is less than 0.8 mm, the cord is too thin to obtain a distortion suppressing effect. However, if the maximum diameter of the steel cord of the high-angle belt layer 3 is too large, the number of driving must be reduced in order to reduce the steel amount, and the required cord interval may not be obtained. Further, the thickness of the high-angle belt layer 3 itself is increased, so that the amount of rubber used is increased and the light weight effect may not be exhibited. Here, the maximum diameter of the steel cord means the cord diameter in the case of a normal round cord in which the circumscribed circle shape of the cord in a cross section orthogonal to the longitudinal direction of the cord is a circle, and similarly, the circumscribed circle shape is In the case of a flat cord that is flat, it means the major axis.
 また、本発明においては、高角度ベルト層3のスチールコード間の間隔が、交錯ベルト層4のスチールコード間の間隔の150%以下であることが必要であり、好適には50~150%、より好適には50~120%である。高角度ベルト層3のコード間隔を交錯ベルト層4対比で150%以下とすることで、本発明の所期の効果を得ることができる。但し、高角度ベルト層3のコード間隔が小さすぎると、高角度ベルト層3のコード間ゴムにかかる応力が大きくなって、高角度ベルト層3においてベルトエッヂセパレーションを引き起こし、耐久性が低下するおそれがある。ここで、各層のスチールコード間の間隔とは、各層のスチールコードの長手方向に直交する断面における隣接するスチールコード間の間隔を意味し、実質的には、隣接するスチールコード同士の間に挟まれるゴムの、コード配列方向に測った厚みを意味する。具体的には、各層のスチールコード間の間隔は、製品タイヤを解剖して、各層ごとにスチールコードの長手方向に直交する方向に切断した断面について、スチールコード間の間隔を測定することにより評価することができる。 In the present invention, the interval between the steel cords of the high-angle belt layer 3 needs to be 150% or less of the interval between the steel cords of the crossing belt layer 4, preferably 50 to 150%, More preferably, it is 50 to 120%. By making the cord interval of the high-angle belt layer 3 150% or less in comparison with the crossing belt layer 4, the desired effect of the present invention can be obtained. However, if the cord interval of the high-angle belt layer 3 is too small, the stress applied to the rubber between the cords of the high-angle belt layer 3 is increased, causing belt edge separation in the high-angle belt layer 3 and reducing the durability. There is. Here, the interval between the steel cords of each layer means the interval between adjacent steel cords in a cross section perpendicular to the longitudinal direction of the steel cord of each layer, and is substantially sandwiched between adjacent steel cords. This means the thickness of the rubber measured in the cord arrangement direction. Specifically, the distance between the steel cords in each layer is evaluated by dissecting the product tire and measuring the distance between the steel cords for a section cut in a direction perpendicular to the longitudinal direction of the steel cord for each layer. can do.
 高角度ベルト層3について、コード径の大きいスチールコードを用いるか、または、コード間の間隔を交錯ベルト層4の150%以下の範囲で狭く設定し、すなわち、交錯ベルト4対比で打込み数をある程度多く確保したことで、高角度ベルト層3に使用するスチール量を減らして軽量化を図った場合でも、交錯ベルト層4のコードの動きを抑制する効果を補うことができ、結果として、径成長の防止効果を確保することができるものとなった。すなわち、高角度ベルト層3に使用するスチール量が一定であっても、コード間隔が狭ければ、ベルト層がタイヤ内圧による入力を受けた際におけるコード間のゴムの歪みは抑制されるので、高角度ベルト層3の変形は小さくなる。これにより、交錯ベルト層4の動きを抑制する効果が高くなって、タイヤ内圧による径成長を防止する効果を得ることができるものと考えられる。 For the high-angle belt layer 3, a steel cord having a large cord diameter is used, or the interval between cords is set narrowly in a range of 150% or less of the intersecting belt layer 4, that is, the number of driving is somewhat compared with the intersecting belt 4. By securing a large amount, even if the amount of steel used for the high-angle belt layer 3 is reduced to reduce the weight, the effect of suppressing the movement of the cords of the crossing belt layer 4 can be compensated, and as a result, the diameter growth It became possible to ensure the prevention effect. That is, even if the steel amount used for the high-angle belt layer 3 is constant, if the cord interval is narrow, the distortion of the rubber between the cords when the belt layer receives input due to the tire internal pressure is suppressed, The deformation of the high-angle belt layer 3 is reduced. Thereby, it is considered that the effect of suppressing the movement of the crossing belt layer 4 is enhanced, and the effect of preventing the diameter growth due to the tire internal pressure can be obtained.
 なお、本発明において、高角度ベルト層3および交錯ベルト層4のスチールコード間の間隔の具体的な値については、特に制限はなく、常法に従い、タイヤサイズ等に応じて、適宜設定することができる。 In the present invention, the specific value of the distance between the steel cords of the high-angle belt layer 3 and the crossing belt layer 4 is not particularly limited, and is appropriately set according to the tire size and the like according to a conventional method. Can do.
 本発明においては、高角度ベルト層3に含まれる単位面積あたりのスチールコードの質量を、交錯ベルト層4に含まれる単位面積あたりのスチールコードの質量の80%以下とすることが必要であり、好適には50~80%、より好適には60~80%とする。高角度ベルト層3に含まれるスチール量を上記範囲まで減らしたことで、効果的にタイヤ軽量化を図ることが可能となった。一方、本発明においては、高角度ベルト層3に含まれるスチール量を上記範囲程度まで減らしても、上記スチールコードのコード径およびコード間隔の条件との組合せにより、十分な径成長の防止効果を確保することができ、高い耐久性を有するタイヤとすることができる。 In the present invention, the mass of the steel cord per unit area included in the high-angle belt layer 3 needs to be 80% or less of the mass of the steel cord per unit area included in the crossing belt layer 4, Preferably it is 50 to 80%, more preferably 60 to 80%. By reducing the amount of steel contained in the high-angle belt layer 3 to the above range, the tire weight can be effectively reduced. On the other hand, in the present invention, even if the amount of steel contained in the high-angle belt layer 3 is reduced to the above range, a sufficient diameter growth preventing effect can be obtained by the combination with the cord diameter and cord spacing conditions of the steel cord. The tire can be secured and has high durability.
 本発明において、高角度ベルト層3および交錯ベルト層4に含まれる単位面積あたりのスチールコードの具体的な質量については特に制限はない。スチール量の制御は、各層について使用するスチールコードの構造(フィラメントの線径や本数等)や打込み数を、上記コード径およびコード間隔に係る条件を満足する範囲で、適宜選定することにより行うことができる。 In the present invention, the specific mass of the steel cord per unit area included in the high-angle belt layer 3 and the crossing belt layer 4 is not particularly limited. The amount of steel is controlled by appropriately selecting the steel cord structure (wire diameter, number of filaments, etc.) and the number of drivings used for each layer within the range satisfying the conditions related to the cord diameter and cord spacing. Can do.
 本発明において、各層に使用するスチールコードの具体的な構造については、特に制限はなく、各層について目的の物性値が得られる範囲で、常法に従い適宜選定することができる。特には、高角度ベルト層3については、そのコード長手方向に直交する断面におけるスチールコードの外接円形状が扁平である、扁平コードを使用することが好ましい。これにより、高角度ベルト層3のスチール量を増加させることなく、コード間距離を減らすことができ、交錯ベルト層4の動きの抑制効果を高めることができる。本発明で使用できる扁平コードとしては、例えば、コアフィラメントに2次元的に型付けを施して扁平形状とした、例えば、1+6,2+2構造のコードなどが挙げられる。 In the present invention, the specific structure of the steel cord used for each layer is not particularly limited, and can be appropriately selected according to a conventional method as long as the desired physical property value is obtained for each layer. In particular, for the high-angle belt layer 3, it is preferable to use a flat cord in which a circumscribed circle shape of the steel cord in a cross section perpendicular to the cord longitudinal direction is flat. Thereby, the distance between cords can be reduced without increasing the steel amount of the high-angle belt layer 3, and the effect of suppressing the movement of the crossing belt layer 4 can be enhanced. Examples of the flat cord that can be used in the present invention include, for example, a cord having a 1 + 6, 2 + 2 structure, etc., in which a core filament is two-dimensionally shaped into a flat shape.
 なお、図示する例では、高角度ベルト層3および交錯ベルト層4は、この順に、タイヤ半径方向内側から積層配置されているが、本発明において、高角度ベルト層3および交錯ベルト層4の配置の順序は、これには限定されない。 In the illustrated example, the high-angle belt layer 3 and the crossing belt layer 4 are stacked in this order from the inner side in the tire radial direction. However, in the present invention, the high-angle belt layer 3 and the crossing belt layer 4 are arranged. The order is not limited to this.
 本発明のタイヤにおいては、高角度ベルト層3のコード径、高角度ベルト層3と交錯ベルト層4とのコード間隔およびスチール量の関係について、上記条件を満足するものであればよく、これにより、本発明の所期の効果を得ることができる。本発明においては、高角度ベルト層3および交錯ベルト層4以外のタイヤ構造や各構成部材の材質等については、特に制限されず、従来公知のもののうちから適宜選定することが可能である。 In the tire of the present invention, the relationship between the cord diameter of the high-angle belt layer 3, the cord interval between the high-angle belt layer 3 and the crossing belt layer 4, and the steel amount may be any as long as the above conditions are satisfied. The desired effect of the present invention can be obtained. In the present invention, the tire structure other than the high-angle belt layer 3 and the crossing belt layer 4 and the material of each component are not particularly limited, and can be appropriately selected from conventionally known ones.
 例えば、カーカスプライ2は、スチールコードをゴム被覆してなり、少なくとも1枚で配置することが必要であるが、2枚以上で配置してもよい。カーカスプライ2のタイヤ幅方向の両端部は、通常は図示するように、ビードコア1の周りに、タイヤ内側から外側に向かい折り返して係止される。 For example, the carcass ply 2 is made of a steel cord covered with rubber and needs to be arranged in at least one piece, but may be arranged in two or more pieces. Both ends of the carcass ply 2 in the tire width direction are usually folded and locked around the bead core 1 from the inside to the outside of the tire as illustrated.
 また、図示するタイヤにおいて、トレッド部13の表面には適宜トレッドパターンが形成されており、最内層にはインナーライナー(図示せず)が形成されている。さらに、タイヤ内に充填する気体としては、通常のまたは酸素分圧を変えた空気、もしくは窒素等の不活性ガスを用いることができる。本発明のタイヤは、特に、トラック、バス等の重荷重車両に適用される重荷重用空気入りタイヤとして好適である。 In the illustrated tire, a tread pattern is appropriately formed on the surface of the tread portion 13, and an inner liner (not shown) is formed in the innermost layer. Further, as the gas filled in the tire, normal or air having a changed oxygen partial pressure, or an inert gas such as nitrogen can be used. The tire of the present invention is particularly suitable as a heavy duty pneumatic tire applied to heavy duty vehicles such as trucks and buses.
 以下、本発明を、実施例を用いてより詳細に説明する。
 タイヤサイズ11R22.5にて、各実施例および比較例の重荷重用タイヤを作製した。カーカスプライのクラウン部タイヤ半径方向外側には、内層側から順次、タイヤ赤道面に対し、右50°のコード角度の1層の高角度ベルト層、右20°、左20°の2層の交錯ベルト層、および、左20°のベルト層を配置した。高角度ベルト層および交錯ベルト層には、それぞれ下記の表中に示すコード構造のスチールコードを用いた。また、ベルト層には、交錯ベルト層と同様のスチールコードを用いた。
Hereinafter, the present invention will be described in more detail with reference to examples.
Heavy duty tires of each of the examples and comparative examples were manufactured at a tire size of 11R22.5. On the outer side of the carcass ply crown in the tire radial direction, from the inner layer side, one high-angle belt layer with a cord angle of 50 ° to the right and two layers of 20 ° to the left and 20 ° to the left with respect to the tire equatorial plane. A belt layer and a left 20 ° belt layer were disposed. Steel cords having cord structures shown in the following table were used for the high-angle belt layer and the crossing belt layer, respectively. Further, the same steel cord as that of the crossing belt layer was used for the belt layer.
<走行後における径成長の評価>
 得られた各供試タイヤに内圧900kPaを充填し、ドラム試験機にて速度60km/hで50,000km走行させた後のタイヤの周長を測定した。各タイヤについて、ドラム走行前の内圧100kPa充填時における周長から何%伸びたかを算出し、従来例を100とする指数で示した。数値が小さいほど、走行後の形成長が小さく、良好である。
<Evaluation of diameter growth after running>
Each of the obtained test tires was filled with an internal pressure of 900 kPa, and the circumference of the tire after running at 50,000 km at a speed of 60 km / h was measured with a drum testing machine. For each tire, the percentage of elongation was calculated from the circumference when the internal pressure before running the drum was 100 kPa, and the index was shown as an index of 100 for the conventional example. The smaller the numerical value, the smaller the formation length after running and the better.
 これらの結果を、下記の表中に示す。 These results are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
*1)コアフィラメントに2次元的に型付けを施して扁平形状にした扁平コード。
Figure JPOXMLDOC01-appb-T000002
* 1) A flat cord in which the core filament is two-dimensionally shaped into a flat shape.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表中の結果から分かるように、高角度ベルト層のスチールコードの最大径、並びに、高角度ベルト層と交錯ベルト層とのスチールコード質量の比およびコード間隔を所定に規定することにより、タイヤ軽量化と径成長の抑制効果とを両立できることが確かめられた。 As can be seen from the results in the above table, the maximum diameter of the steel cord of the high-angle belt layer, the ratio of the steel cord mass between the high-angle belt layer and the crossing belt layer, and the cord interval are prescribed, and thereby the tire It was confirmed that both weight reduction and the effect of suppressing diameter growth can be achieved.
1 ビードコア
2 カーカスプライ
3 高角度ベルト層
4 交錯ベルト層
10 タイヤ
11 ビード部
12 サイドウォール部
13 トレッド部
 
DESCRIPTION OF SYMBOLS 1 Bead core 2 Carcass ply 3 High angle belt layer 4 Crossing belt layer 10 Tire 11 Bead part 12 Side wall part 13 Tread part

Claims (2)

  1.  タイヤ赤道面に対し10°~30°の角度で傾斜して延びるスチールコードのゴム引き層を、少なくとも一部の層間で、コード方向が互いに交差するよう配置してなる2層以上の交錯ベルト層と、該交錯ベルト層より5°以上大きな角度で傾斜して延びるスチールコードのゴム引き層からなる高角度ベルト層と、を備えるタイヤであって、
     前記高角度ベルト層のスチールコードの最大径が0.8mm以上であり、該高角度ベルト層に含まれる単位面積あたりのスチールコードの質量が、前記交錯ベルト層に含まれる単位面積あたりのスチールコードの質量の80%以下であり、かつ、
     前記高角度ベルト層のスチールコードの長手方向に直交する断面における隣接する該スチールコード間の間隔が、前記交錯ベルト層のスチールコードの長手方向に直交する断面における隣接する該スチールコード間の間隔の150%以下であることを特徴とするタイヤ。
    Two or more crossing belt layers in which rubberized layers of steel cords extending at an angle of 10 ° to 30 ° with respect to the tire equatorial plane are arranged so that the cord directions intersect each other at least between some layers. And a high-angle belt layer comprising a rubberized layer of steel cord extending at an angle of 5 ° or more larger than the crossing belt layer,
    The maximum diameter of the steel cord of the high angle belt layer is 0.8 mm or more, and the mass of the steel cord per unit area included in the high angle belt layer is the steel cord per unit area included in the crossing belt layer. 80% or less of the mass of
    The distance between adjacent steel cords in the cross section perpendicular to the longitudinal direction of the steel cord of the high-angle belt layer is the distance between the adjacent steel cords in the cross section orthogonal to the longitudinal direction of the steel cord of the crossing belt layer. A tire characterized by being 150% or less.
  2.  前記高角度ベルト層のスチールコードの長手方向に直交する断面における該スチールコードの外接円形状が、扁平である請求項1記載のタイヤ。
     
    The tire according to claim 1, wherein a circumscribed circle shape of the steel cord in a cross section perpendicular to a longitudinal direction of the steel cord of the high-angle belt layer is flat.
PCT/JP2015/054861 2014-04-02 2015-02-20 Tire WO2015151642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014075897A JP6352666B2 (en) 2014-04-02 2014-04-02 tire
JP2014-075897 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015151642A1 true WO2015151642A1 (en) 2015-10-08

Family

ID=54239978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054861 WO2015151642A1 (en) 2014-04-02 2015-02-20 Tire

Country Status (2)

Country Link
JP (1) JP6352666B2 (en)
WO (1) WO2015151642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019199198A (en) * 2018-05-17 2019-11-21 株式会社ブリヂストン Pneumatic tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244407A (en) * 1995-03-07 1996-09-24 Sumitomo Rubber Ind Ltd Radial tire for heavy load
JP2010173362A (en) * 2009-01-27 2010-08-12 Bridgestone Corp Pneumatic tire
JP2012107353A (en) * 2010-11-16 2012-06-07 Toyo Tire & Rubber Co Ltd Rubber reinforcement steel cord and pneumatic radial tire
JP2012171366A (en) * 2011-02-17 2012-09-10 Bridgestone Corp Pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08244407A (en) * 1995-03-07 1996-09-24 Sumitomo Rubber Ind Ltd Radial tire for heavy load
JP2010173362A (en) * 2009-01-27 2010-08-12 Bridgestone Corp Pneumatic tire
JP2012107353A (en) * 2010-11-16 2012-06-07 Toyo Tire & Rubber Co Ltd Rubber reinforcement steel cord and pneumatic radial tire
JP2012171366A (en) * 2011-02-17 2012-09-10 Bridgestone Corp Pneumatic tire

Also Published As

Publication number Publication date
JP2015196471A (en) 2015-11-09
JP6352666B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US11305583B2 (en) Pneumatic tire
JP4570526B2 (en) Heavy duty pneumatic tire
JP5587739B2 (en) Pneumatic tire
JP6217168B2 (en) Pneumatic tire
JP6964398B2 (en) Lighter aircraft tires
WO2015159633A1 (en) Tire
WO2016024391A1 (en) Pneumatic tire
JP6352666B2 (en) tire
JP5852031B2 (en) Pneumatic tire
JP2009173150A (en) Radial tire
JP5584053B2 (en) Pneumatic tire
JP6450111B2 (en) Pneumatic tire
JP6654105B2 (en) Heavy duty pneumatic tires
JP2010100263A (en) Pneumatic tire
JP2011105100A (en) Pneumatic tire
JP6294210B2 (en) Pneumatic tire
JP5470216B2 (en) Pneumatic tire
JP5376636B2 (en) Pneumatic tire
JP2015196472A (en) tire
JP2009061997A (en) Pneumatic radial tire
JP2000264014A (en) Radial tire for heavy load
JP2011143858A (en) Pneumatic radial tire
JP2008254687A (en) Pneumatic radial tire for heavy load
JP6081310B2 (en) Aircraft radial tire
JP2006248325A (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772774

Country of ref document: EP

Kind code of ref document: A1