WO2015151502A1 - 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン - Google Patents

粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン Download PDF

Info

Publication number
WO2015151502A1
WO2015151502A1 PCT/JP2015/001835 JP2015001835W WO2015151502A1 WO 2015151502 A1 WO2015151502 A1 WO 2015151502A1 JP 2015001835 W JP2015001835 W JP 2015001835W WO 2015151502 A1 WO2015151502 A1 WO 2015151502A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection sensor
particle
light receiving
particle detection
Prior art date
Application number
PCT/JP2015/001835
Other languages
English (en)
French (fr)
Inventor
辻 幸司
渡部 祥文
修 赤坂
弘貴 松浪
福島 博司
貴司 中川
吉祥 永谷
圭子 川人
友洋 中谷
雄一 稲葉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014078774A external-priority patent/JP2015200547A/ja
Priority claimed from JP2014169907A external-priority patent/JP2016045093A/ja
Priority claimed from JP2014169906A external-priority patent/JP2015200629A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015151502A1 publication Critical patent/WO2015151502A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning
    • G01N2201/0642Light traps; baffles

Definitions

  • the present invention relates to a particle detection sensor and a device having a particle detection sensor, such as a dust sensor, a smoke detector, an air cleaner, a ventilation fan, or an air conditioner. More specifically, the present invention relates to a light-scattering particle detection sensor that detects particles (aerosol) floating in the atmosphere using scattered light of the particles, and an apparatus such as an air purifier using the same.
  • a particle detection sensor such as a dust sensor, a smoke detector, an air cleaner, a ventilation fan, or an air conditioner. More specifically, the present invention relates to a light-scattering particle detection sensor that detects particles (aerosol) floating in the atmosphere using scattered light of the particles, and an apparatus such as an air purifier using the same.
  • the light scattering particle detection sensor is a photoelectric sensor including a light projecting element and a light receiving element, takes in a gas to be measured, irradiates the light of the light projecting element, and is contained in the gas by the scattered light. It detects the presence or absence of particles. For example, particles such as dust, pollen, and smoke floating in the atmosphere can be detected.
  • the method using the heater resistance has a low flow rate and cannot accurately detect fine particles having a small particle size.
  • the present invention has been made in view of such problems, and provides a particle detection sensor or the like that can detect fine particles with high accuracy even in a heating method in which an air flow is generated by a heating device such as a heater resistor. Is the first purpose.
  • particles are detected by introducing gas containing particles such as dust, pollen, smoke, etc., so that the particles adhere to the inside of the particle detection sensor and the detection accuracy decreases. There is a case.
  • This invention is made in view of such a subject, and makes it the 2nd objective to provide the particle
  • Patent Documents 2 and 3 a technique for promoting introduction of air into the sensor by a heater is known (for example, Patent Documents 2 and 3).
  • a shielding plate is further provided inside the housing in order to shield direct light from the air inlet and the air outlet.
  • a maze is provided in the particle flow path so that external light does not directly enter from the air inlet and the air outlet.
  • the present invention has been made in view of such problems, and a third object thereof is to provide a particle detection sensor or the like that can improve the detection accuracy of particles.
  • one aspect of the first particle detection sensor includes a light projecting element and a light receiving element, and light scattered from the light projecting element by particles in a detection region.
  • a particle detection sensor for detecting particles contained in a gas by receiving light by the light receiving element, a heating device for heating the gas, and a reflection for reflecting the scattered light and guiding the scattered light to the light receiving element And having a body.
  • one aspect of the second particle detection sensor is a housing, a light projecting element disposed in the housing, and a housing in the housing. And a light receiving element that receives scattered light of the light projecting element due to particles in the detection region, and a space that is provided in the housing and that includes the detection region and flows through the atmosphere including particles.
  • a particle channel that is a region, a light receiving region that is provided in the housing and is a space region for guiding the scattered light to the light receiving element, and a connection portion between the particle channel and the light receiving region
  • a first protective plate having translucency.
  • an aspect of a third particle detection sensor is a light-receiving element and receives light scattered from the light-projecting element by particles in a detection region.
  • the scattered light has a shape that suppresses reflection of the scattered light to the detection region.
  • fine particles can be detected with high accuracy even with a heating method in which an air flow is generated by a heating device such as a heater resistor.
  • the second particle detection sensor it is possible to suppress the adhesion of particles inside the particle detection sensor, and thus it is possible to suppress a decrease in detection accuracy.
  • stray light can be suppressed, so that the particle detection accuracy can be improved.
  • FIG. 1A is a top view of the particle detection sensor according to Embodiment 1
  • FIG. 1B is a front view of the particle detection sensor
  • FIG. 1C is a view of the particle detection sensor.
  • FIG. 1D is a bottom view
  • FIG. 1D is a cross-sectional view of the particle detection sensor taken along line AA in FIG.
  • FIG. 2A is a cross-sectional view for explaining the operation of the particle detection sensor when there is no particle in the gas.
  • FIG. 2B is a cross-sectional view for explaining the operation of the particle detection sensor when there are particles having a small particle diameter in the gas.
  • FIG. 2C is a cross-sectional view for explaining the operation of the particle detection sensor when particles having a large particle diameter are present in the gas.
  • FIG. 1A is a top view of the particle detection sensor according to Embodiment 1
  • FIG. 1B is a front view of the particle detection sensor
  • FIG. 1C is a view of the particle detection sensor.
  • FIG. 3 is a cross-sectional view of the particle detection sensor of Comparative Example 1.
  • FIG. 4 is a cross-sectional view of the particle detection sensor according to the first embodiment.
  • FIG. 5 is a diagram for explaining the positional relationship among the reflector, the light receiving element, and the detection region in the particle detection sensor according to the first embodiment.
  • 6 (a) is a top view of the particle detection sensor according to Embodiment 2
  • FIG. 6 (b) is a front view of the particle detection sensor
  • FIG. 6 (c) is the particle detection sensor.
  • FIG. 6D is a bottom view
  • FIG. 6D is a cross-sectional view of the particle detection sensor taken along line AA in FIG. FIG.
  • FIG. 7 is a diagram for explaining a positional relationship among a reflector, a light projecting element, a light receiving element, and a detection region in the particle detection sensor according to the second embodiment.
  • FIG. 8A is an enlarged cross-sectional view showing a configuration around a first light shield in the particle detection sensor according to Embodiment 2.
  • FIG. 8B is an enlarged cross-sectional view illustrating a configuration around a second light shielding body in the particle detection sensor according to Embodiment 2.
  • FIG. 9 is a diagram for explaining an optical path of light emitted from the light projecting element in the particle detection sensor according to Embodiment 2 and traveling toward the detection region.
  • 10A is a top view of the particle detection sensor according to Embodiment 3, FIG.
  • FIG. 10B is a front view of the particle detection sensor
  • FIG. 10C is the particle detection sensor
  • FIG. 10D is a bottom view
  • FIG. 10D is a cross-sectional view of the particle detection sensor taken along line AA in FIG.
  • FIG. 11A is a cross-sectional view of the particle detection sensor of Comparative Example 2.
  • FIG. 11B is an enlarged cross-sectional view of a main part of the particle detection sensor showing a state when the inside of the particle detection sensor of Comparative Example 2 shown in FIG. 11A is cleaned.
  • FIG. 12 is a cross-sectional view illustrating a configuration of a particle detection sensor according to Modification 1 of Embodiment 3.
  • FIG. 10B is a front view of the particle detection sensor
  • FIG. 10C is the particle detection sensor.
  • FIG. 10D is a bottom view
  • FIG. 10D is a cross-sectional view of the particle detection sensor taken along line AA in FIG.
  • FIG. 11A is a cross-sectional view of
  • FIG. 13 is a cross-sectional view illustrating a configuration of a particle detection sensor according to Modification 2 of Embodiment 3.
  • FIG. 14 is a cross-sectional view illustrating a configuration of a particle detection sensor according to Modification 3 of Embodiment 3.
  • 15A is a top view of a particle detection sensor according to Modification 4 of Embodiment 3
  • FIG. 15B is a front view of the particle detection sensor
  • FIG. FIG. 15D is a bottom view of the particle detection sensor
  • FIG. 15D is a cross-sectional view of the particle detection sensor taken along line AA in FIG.
  • FIG. 16A is a perspective view illustrating a state when cleaning (maintenance) of the inside of the housing of the particle detection sensor according to the fourth modification of the third embodiment.
  • FIG. 16A is a perspective view illustrating a state when cleaning (maintenance) of the inside of the housing of the particle detection sensor according to the fourth modification of the third embodiment.
  • FIG. 16B is a cross-sectional view illustrating a state when cleaning (maintenance) of the inside of the housing of the particle detection sensor according to Modification 4 of Embodiment 3.
  • FIG. 17 is a cross-sectional view illustrating a schematic configuration of the particle detection sensor according to the first modification.
  • FIG. 18 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to another embodiment of the first modification.
  • FIG. 19 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 2.
  • FIG. 20 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 3.
  • FIG. 21 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 4.
  • FIG. 20 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 3.
  • FIG. 22 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to another embodiment of the fourth modification.
  • FIG. 23 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 5.
  • FIG. 24 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor according to Modification 6.
  • 25A is a top view of the particle detection sensor according to the modified example 7
  • FIG. 25B is a front view of the particle detection sensor
  • FIG. 25C is a bottom surface of the particle detection sensor.
  • FIG. 25D is a cross-sectional view of the particle detection sensor taken along line BB in FIG.
  • FIG. 26 is an external view of a smoke detector including a particle detection sensor.
  • FIG. 27 is an external view of an air cleaner provided with a particle detection sensor.
  • FIG. 28 is an external view of a ventilation fan provided with a particle detection sensor.
  • FIG. 29 is an external view of an air conditioner including a particle detection
  • FIG. 1 is a diagram illustrating a configuration of a particle detection sensor 1 according to Embodiment 1, wherein (a) is a top view, (b) is a front view, (c) is a bottom view, and (d) is (a). It is sectional drawing in the AA of FIG. In the present embodiment, the direction from the air discharge hole 36 to the air introduction hole 35 in FIG. 1D is the vertically downward direction (the direction of gravity).
  • the particle detection sensor 1 is a photoelectric sensor including a light projecting element 10 and a light receiving element 20, and the light from the light projecting element 10 due to particles in a detection region (light diffusion part) DA.
  • the scattered light is received by the light receiving element 20 to detect particles contained in the gas.
  • the particle detection sensor 1 further includes a housing (case) 30, a reflector 40 having a reflecting surface, and a heating device 50 that heats gas.
  • the reflector 40 and the heating device 50 are disposed in the housing 30.
  • the light projecting element 10 is a light source (light emitting unit) that emits light of a predetermined wavelength, and is, for example, a solid light emitting element such as an LED or a semiconductor laser.
  • a light emitting element that emits infrared light, blue light, green light, red light, or ultraviolet light can be used. In this case, you may comprise so that the mixed wave of 2 wavelengths or more may be emitted.
  • the light emission control system of the light projecting element 10 is not particularly limited, and the light emitted from the light projecting element 10 can be continuous light or pulsed light by DC driving. Moreover, the magnitude
  • the light receiving element 20 is a light receiving unit that receives light, and is an element (photodetector) that receives light and converts it into an electric signal, such as a photodiode, a photo IC diode, a phototransistor, or a high electron multiplier. .
  • the light projecting element 10 and the light receiving element 20 are arranged in a housing 30.
  • the housing 30 is configured to hold the light projecting element 10 and the light receiving element 20.
  • the light projecting element 10 and the light receiving element 20 are disposed in the housing 30 so that their optical axes intersect.
  • the forward scattered light can be easily obtained by matching the optical axis of the light projecting element 10 and the optical axis of the light receiving element 20, but the optical axes of the light projecting element 10 and the light receiving element 20 are simply changed. If they are just matched, the light receiving element 20 will receive direct light from the light projecting element 10 in addition to the forward scattered light, and the particle detection accuracy will be reduced.
  • the optical axes of the light projecting element 10 and the light receiving element 20 are crossed.
  • the angle formed by the optical axis of the light projecting element 10 and the optical axis of the light receiving element 20 is 60 degrees (120 degrees).
  • the outer shape of the housing 30 is, for example, a flat rectangular parallelepiped.
  • the housing 30 is composed of two members, a first housing portion 30a (lid portion) and a second housing portion 30b.
  • a plurality of lead wires 11, 21, and 51 are exposed from the second housing portion 30b.
  • the lead wires 11, 21, and 51 are electrically connected to the light projecting element 10, the light receiving element 20, and the heating device 50, respectively.
  • a light projecting region 31 which is a space region in which light from the light projecting element 10 is projected, and scattered light generated when the light from the light projecting device 10 hits particles in the detection region DA is guided to the light receiving device 20.
  • a light receiving region 32 diffuseused light introducing portion
  • a particle flow path 33 that is a space region through which a gas (such as the atmosphere) containing particles flows, and a trap portion 34 are provided.
  • Each of the light projecting area 31, the light receiving area 32, the particle flow path 33 and the trap part 34 is a space area in the housing 30.
  • the light projection area 31 is a spatial area from the light projecting element 10 to the detection area DA.
  • the light receiving area 32 is a spatial area from the detection area DA to the light receiving element 20.
  • each of the light projecting region 31, the light receiving region 32, and the trap portion 34 has a substantially cylindrical shape or a substantially rectangular tube shape that is surrounded by the inner surface (inner wall) of the housing 30.
  • the bottomed cylindrical space region has an opening at a connection portion with the particle channel 33.
  • each of the light projecting region 31, the light receiving region 32, and the trap portion 34 has an opening that opens toward the particle channel 33, and is connected to the particle channel 33 at each opening.
  • each opening of the light projecting area 31, the light receiving area 32, and the trap part 34 opens toward the detection area DA.
  • the particle channel 33 is a region through which air (gas) containing particles flows.
  • the particle flow path 33 is a gas passage region through which the gas introduced into the housing 30 passes, and is a space region surrounded by the inner surface (inner wall) of the housing 30. That is, the particle flow path 33 is a space area including the detection area DA, and the space area in the housing 30 until the air introduced from the air introduction hole 35 is discharged from the air discharge hole 36 through the detection area DA. It is.
  • the particle flow path 33 is a cylindrical space region having a substantially cylindrical shape or a substantially rectangular tube shape, and includes the entire detection region DA.
  • the particle flow path 33 is a straight flow path from the air introduction hole 35 toward the air discharge hole 36, and is connected to the light projecting area 31, the light receiving area 32, and the trap part 34 in the middle of the flow path. .
  • the inner surface (wall surface) of the housing 30 in the light projecting region 31, the light receiving region 32, the particle flow path 33, and the trap part 34 is preferably black in order to absorb stray light.
  • the housing 30 is a black resin molded product, and the exposed part has at least a black surface inside.
  • the inner surface of the housing 30 may be configured to absorb stray light by performing a surface treatment such as embossing.
  • the detection area DA is an aerosol detection area (aerosol measurement unit) that is an area for detecting particles (aerosol) contained in the gas to be measured.
  • the detection area DA is set so as to exist in the particle flow path 33, and in the present embodiment, the light projection area 31 and the light reception area 32 overlap with the particle flow path 33.
  • the detection area DA is an area including an intersection where the optical axis of the light projecting element 10 and the optical axis of the light receiving element 20 intersect.
  • the gas to be measured is guided from the atmosphere introduction hole 35 to the detection area DA through the particle flow path 33.
  • the detection area DA is, for example, ⁇ 2 mm.
  • the trap part 34 reflects that the light that has passed through the detection area DA without hitting the particles in the detection area DA out of the light from the light projecting element 10 is reflected and scattered in the housing 30 and received by the light receiving element 20. It has a structure to prevent.
  • the trap unit 34 has an optical trap structure, and has a light absorption structure that prevents light once entering the trap unit 34 from exiting the trap unit 34.
  • the inner surface of the housing 30 in the trap portion 34 is provided with a plurality of black protrusions for multiple reflection and absorption of light.
  • the trap part 34 may have a labyrinth structure.
  • the trap portion 34 (light trap structure) is provided at a position facing the light projecting element 10. Specifically, the opening of the trap portion 34 faces the opening of the light projecting region 31.
  • the trap portion 34 is provided only at a position facing the light projecting element 10, but may be provided at a position facing both the light projecting element 10 and the light receiving element 20. However, it may be provided only at a position facing the light receiving element 20. However, when the trap portion 34 is provided only at a position facing the light receiving element 20, it is possible to provide a means such as making the trap portion 34 a through hole so that the light that has once entered the trap portion 34 does not return. Good.
  • the housing 30 is provided with an air introduction hole 35 for introducing air into the particle flow path 33 and an air discharge hole (atmospheric discharge hole) 36 for discharging air from the particle flow path 33. Yes.
  • the atmosphere introduction hole 35 is an atmosphere supply port (atmosphere inlet) for supplying a gas such as the atmosphere existing outside the particle detection sensor 1 to the inside of the particle detection sensor 1 (particle flow path 33).
  • 30 is the atmospheric inlet.
  • the air discharge hole 36 is an air exhaust port (atmosphere outlet) for discharging the air inside the particle detection sensor 1 (particle flow path 33) to the outside of the particle detection sensor 1. Is the exit.
  • the air introduction hole 35 is connected to one of the particle flow paths 33, and the air discharge hole 36 is connected to the other of the particle flow paths 33. Thereby, the atmosphere containing the particles (the gas to be measured) is introduced into the casing 30 from the atmosphere introduction hole 35 and flows into the detection area DA through the particle flow path 33, and from the atmosphere discharge hole 36 to the casing 30. Discharged outside.
  • the air introduction hole 35 has a larger opening area than the air discharge hole 36 in order to efficiently introduce and exhaust gas into the housing 30.
  • the light projecting area 31 is provided with a light projecting lens (light emitting lens) 31a.
  • the light projecting lens 31a is disposed in front of the light projecting element 10, and is configured to advance light (projected beam) emitted from the light projecting element 10 toward the detection area DA. That is, the light emitted from the light projecting element 10 reaches the detection area DA via the light projecting lens 31a.
  • the light projection lens 31a is, for example, a transparent resin lens or a glass lens.
  • the light projecting lens 31a may be a collimating lens that collimates the light emitted from the light projecting element 10 toward the detection area DA, or the light that collects the light emitted from the light projecting element 10 on the detection area DA.
  • a lens may be used, a lens that increases the light intensity of the light projecting element 10 in the detection area DA may be used as the light projecting lens 31a.
  • the intensity of the scattered light varies depending on the location in the detection area DA even if the particles have the same particle size.
  • a lens that makes the light intensity distribution of the element 10 uniform in the entire detection area DA may be used.
  • the light of the light projecting element 10 is used as the light projecting area 31. It is preferable to use a lens that directly reaches the detection area DA without being reflected by the wall surface of the housing 30 in FIG.
  • the light projection lens 31a may not be provided.
  • the light emission area 31 is provided with a light emission stop portion 31b.
  • the light emission diaphragm 31b narrows the light of the light projecting element 10 after passing through the light projecting lens 31a to shield unnecessary light and reduce the condensed diameter.
  • the light emission diaphragm 31b is made of resin or the like, and is formed in a predetermined shape on the inner wall of the light projecting region 31.
  • the light emission diaphragm 31b is composed of a plurality of optical diaphragms each having a circular or polygonal opening (slit).
  • the light emission stop portion 31 b (optical stop) is formed so as to protrude from the inner wall of the light projecting region 31.
  • the light emission diaphragm 31b (optical diaphragm) is made of resin or the like, and may be integrally formed with the housing 30 or may be separate from the housing 30.
  • the reflector 40 (reflecting plate) is a reflecting member that reflects scattered light of the light projecting element 10 by particles in the detection area DA and guides the scattered light to the light receiving element 20.
  • the reflector 40 reflects the scattered light of the particles and collects it on the light receiving element 20. More specifically, the reflector 40 reflects the scattered light of the particles toward the light receiving element 20.
  • the reflector 40 is provided in the light receiving region 32 in the present embodiment.
  • the reflector 40 is a condensing mirror provided along the inner surface of the housing 30 in the light receiving region 32, and the inner surface which is a reflecting surface is a curved surface.
  • the inner surface of the reflector 40 is a part of rotation surface of a spheroid. That is, the reflector 40 is an elliptical mirror in which the shape of the inner surface (reflecting surface) forms a part of the spheroid, and the cross-sectional shape of the inner surface of the reflector 40 is a part of the ellipse.
  • the inner surface of the reflector 40 is mainly a smooth surface or a mirror surface having regular reflection characteristics, but is not limited thereto.
  • the reflector 40 has an opening that opens toward the particle channel 33. Specifically, the opening of the reflector 40 opens toward the detection area DA. In the present embodiment, the opening of the reflector 40 substantially coincides with the opening of the light receiving region 32. That is, the reflector 40 is provided up to the vicinity of the opening of the light receiving region 32.
  • the base member itself may be made of a reflective material such as metal so that the surface of the base member itself becomes a reflective surface, or a reflective film that becomes a reflective surface on the surface of a resin or metal base member May be formed.
  • a metal reflection film such as aluminum, gold, silver or copper, a mirror reflection film, a dielectric multilayer film, or the like can be used.
  • the reflective film a film having a low absorptance and a high reflectance is preferable.
  • an MgF film, a SiO 2 film, a SiO film, an AlN film, an alumina film, an enhanced reflection film, or the like is used.
  • the heating device 50 is a heater that heats the atmosphere.
  • the heating device 50 functions as an airflow generation device that generates an airflow for promoting the flow of gas flowing in the particle flow path 33. That is, the atmosphere including particles can be easily introduced into the detection area DA by heating the atmosphere with the heating device 50.
  • the heating device 50 is, for example, a heater resistor that can be obtained at low cost.
  • the heating device 50 is disposed in the particle channel 33. That is, the heating device 50 heats the gas in the particle channel 33.
  • the heating device 50 is disposed in the vicinity of the air introduction hole 35.
  • the heating device 50 is disposed vertically below the detection area DA.
  • the heating device 50 is a heater resistor
  • the heater resistor when a voltage is applied to the heater resistor, the heater resistor generates heat, the atmosphere around the heater resistor is heated, the density is reduced, and the vertical direction is opposite to gravity. Moving. That is, when the gas in the particle channel 33 is heated by the heating device 50, an upward airflow (upward airflow) can be generated.
  • the gas (atmosphere) to be measured can be easily drawn into the housing 30 (particle channel 33). Compared with the case where 50 is not provided, more particles can be taken into the particle detection sensor 1. Therefore, since the number of particles per unit volume in the detection area DA included in the particle flow path 33 can be increased, the sensitivity can be increased.
  • the gas can pass through the particle flow path 33 between the air introduction hole 35 and the air discharge hole 36. That is, even when the heating device 50 is not operating, it is possible to detect particles contained in the gas.
  • FIGS. 2A, 2B, and 2C show the operation of the particle detection sensor 1 when there is no particle in the gas, when there is a particle with a small particle size in the gas, and when there is a particle with a large particle size in the gas, respectively. It is sectional drawing for demonstrating.
  • the size (particle size) of the particle can be determined based on the size of the signal received by the light receiving element 20, that is, the light intensity of the scattered light from the particle.
  • each output of the signal detected by the light receiving element 20 that is, each peak of the light intensity of the scattered light by the particles corresponds to each of the particles, so that the particle detection sensor 1.
  • the number (amount) of particles in the gas introduced into the gas can also be calculated.
  • FIG. 3 is a cross-sectional view of the particle detection sensor 100 of Comparative Example 1
  • FIG. 4 is a cross-sectional view of the particle detection sensor 1 according to the first embodiment.
  • the light receiving region 32 is not provided with a reflector, and a light receiving lens (condensing lens) 140 is provided.
  • a light receiving lens condensing lens
  • restrictions by the light receiving lens 140 increase, and for example, it is necessary to make the optical axis of the light receiving lens 140 coincide with the optical axis of the light receiving element 20.
  • the shape of the light receiving lens 140 has a small degree of freedom that can be changed due to its function, and is, for example, symmetrical with respect to the lens optical axis. For these reasons, as shown in FIG. 3, when the light receiving lens 140 is used, the expected angle to the light receiving lens 140 with reference to the detection area DA is reduced.
  • the light collected by the lens cannot take light of 180 ° or more, and it cannot take scattered light from various directions. Furthermore, since the focal point of the lens is the detection area DA, the detection area DA is small.
  • the light receiving sensitivity of the scattered light is low.
  • particles having a small particle diameter such as PM2.5 (microparticulate matter) are also present in the particles floating in the gas.
  • the particle detection sensor is required to have an accuracy capable of detecting particles having a particle size of 0.3 ⁇ m or less, for example.
  • a fan may be provided. That is, it is conceivable to improve the detection accuracy of fine particles having a small particle size by increasing the amount of particles entering the particle detection sensor per unit time by increasing the flow of particles by a fan.
  • a heating device such as a heater resistor that is low-cost and space-saving.
  • the particle detection sensor 1 in the present embodiment includes a reflector 40 for reflecting scattered light from particles in the detection area DA and guiding the scattered light to the light receiving element 20 as shown in FIG. Have.
  • the reflector 40 has a greater degree of design freedom than the lens, and thus can be shaped so that more scattered light can be guided to the light receiving element 20.
  • the opening of the reflector 40 can be extended to the limit of the opening of the light receiving region 32, and the expected angle to the reflector 40 based on the detection region DA can be increased. .
  • the shape of the reflector 40 can be determined without making the prospective angle symmetric with respect to the optical axis of the reflector 40 (the optical axis of the light receiving element 20), the shape of the reflector 40 can be freely changed. Can do.
  • the solid angle for collecting scattered light can be increased as compared with the comparative example 1 shown in FIG. 3, so that the light receiving sensitivity of the scattered light can be increased.
  • the detection area DA can be enlarged.
  • the particles easily pass through the detection area DA.
  • the probability of particles passing through the detection area DA is small in Comparative Example 1 shown in FIG. 3, but in the present embodiment shown in FIG. Probability is greatly improved, and light receiving sensitivity is also increased. Therefore, fine particles having a small particle diameter can be detected with high accuracy.
  • grain detection sensor 1 which concerns on this Embodiment is provided with the reflector 40, compared with the case where a lens is provided in the light reception area
  • a highly accurate particle detection sensor can be realized while being low-cost and small.
  • the inner surface of the reflector 40 forms a part of the rotational surface of the spheroid. Therefore, most of the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20, so that the sensitivity can be further increased.
  • FIG. 5 is a diagram for explaining the positional relationship among the reflector 40, the light receiving element 20, and the detection area DA in the particle detection sensor 1 according to the first embodiment.
  • the reflector 40 in the present embodiment has an inner surface that forms part of the rotational surface of the spheroid, and the cross-sectional shape of the inner surface of the reflector 40 is part of the ellipse. Yes.
  • the reflector 40 is arranged such that one of the two focal points F1 and F2 (first focal point) in the ellipse constituting the spheroid exists in the detection area DA.
  • the light receiving element 20 is disposed in the vicinity of the other focal point F2 (second focal point) of the ellipse.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections (one or several times). That is, attenuation of light due to multiple reflection can be avoided. Therefore, since the light receiving efficiency in the light receiving element 20 can be increased, the sensitivity can be further increased.
  • the light receiving efficiency of the light receiving element 20 can be increased, a small detector or the like can be used as the light receiving element 20. That is, it is not necessary to use a photodetector having a particularly large light receiving surface as the light receiving element 20.
  • a heater system that introduces the atmosphere by heating the heater is employed, so that a simple and low-cost sensor can be realized.
  • FIG. 6A and 6B are diagrams showing the configuration of the particle detection sensor 2 according to Embodiment 2, wherein FIG. 6A is a top view, FIG. 6B is a front view, FIG. 6C is a bottom view, and FIG. It is sectional drawing in the AA of FIG. Also in this embodiment, the direction from the air discharge hole 36 to the air introduction hole 35 in FIG.
  • the particle detection sensor 2 in the present embodiment is a photoelectric sensor that includes a light projecting element 10 and a light receiving element 20 in the same manner as the particle detection sensor 1 in the first embodiment.
  • the light contained in the atmosphere is detected by receiving the scattered light of the light from the light projecting element 10 by the particles in the region (light scattering part) DA by the light receiving element 20.
  • the particle detection sensor 2 further includes a housing 30, and a reflector 40, a heating device 50, a first light shielding body 61, a second light shielding body 62, and a light projection diaphragm disposed in the housing 30.
  • the optical axes of the light projecting element 10 and the light receiving element 20 are crossed.
  • the angle formed by the optical axis of the light projecting element 10 and the optical axis of the light receiving element 20. Is 120 degrees (60 degrees).
  • the housing 30 includes a light projecting region 31, a light receiving region 32, a particle channel 33, a light projecting trap unit 34a (first trap unit), and a light receiving trap unit 34b (second trap). Part).
  • Each of the light projecting area 31, the light receiving area 32, the particle flow path 33, the light projecting trap section 34a, and the light receiving trap section 34b is a space area surrounded by the inner surface (inner wall) of the housing 30. 33 has an opening at the connection portion. Each opening part of the light projection area
  • the inner surface (wall surface) of the housing 30 in the light projecting region 31, the light receiving region 32, the particle flow path 33, the light projecting trap unit 34a, and the light receiving trap unit 34b may be black in order to absorb stray light.
  • the inner surface of the housing 30 can be made a black surface by making the housing 30 a black resin molded product.
  • the light projection area 31 is provided with a light projection diaphragm section (light emission diaphragm section) 71.
  • the light projection aperture 71 (first aperture) narrows the light after passing through the light projection lens 31a to shield unnecessary light and reduce the light collection diameter. By providing the light projection aperture 71, stray light can be prevented, and the particle detection accuracy can be improved.
  • the light projection aperture 71 is composed of a plurality of optical apertures each having a circular or polygonal opening (slit).
  • the light projection diaphragm 71 (optical diaphragm) is formed so as to protrude from the inner wall of the light projection area 31.
  • the light projection aperture 71 (optical aperture) is made of resin or the like, and may be integrally formed with the housing 30 or may be separate from the housing 30.
  • an end (end surface) of the aperture of the optical diaphragm in the light projection diaphragm 71 forms an acute angle with two straight lines in a cross section including the optical axis of the optical diaphragm, and includes a surface including one of the two straight lines ( Flat surface or curved surface) is a reflecting surface that reflects incident light in a direction other than the detection area DA.
  • the light projecting trap unit 34a and the light receiving trap unit 34b have an optical trap structure, and light that has once entered the light projecting trap unit 34a and the light receiving trap unit 34b is transmitted from the light projecting trap unit 34a and the light receiving trap unit 34b. It has a light absorption structure that does not go out.
  • the light projecting trap unit 34a and the light receiving trap unit 34b for example, absorb and multi-reflect light that has entered the light projecting trap unit 34a and the light receiving trap unit 34b. By providing the light projecting trap part 34a and the light receiving trap part 34b, stray light in the housing 30 can be absorbed. Thereby, the detection accuracy of particles can be improved.
  • the light projecting trap part 34a and the light receiving trap part 34b may have a labyrinth structure.
  • the light projecting trap part 34a receives and reflects and scatters light that has passed through the detection area DA without hitting the particles in the detection area DA out of the light emitted from the light projecting element 10. It has a structure that prevents the element 20 from receiving light.
  • the light projecting trap part 34a is provided at a position facing the light projecting element 10 across the detection area DA.
  • the projection trap part 34a is provided with a projection opposite diaphragm part 72 (second diaphragm part). That is, the light projection opposite diaphragm portion 72 is provided on the opposite side of the light projecting element 10 with the detection area DA interposed therebetween. By providing the light projection opposite stop portion 72, stray light can be prevented and particle detection accuracy can be improved.
  • the light projection opposite stop 72 includes a plurality of optical stops each having an opening (slit) such as a circle or a polygon.
  • the light projection opposite diaphragm portion 72 (optical diaphragm) is formed so as to protrude from the inner wall of the light projection trap portion 34a.
  • the light projection opposite diaphragm portion 72 (optical diaphragm) is made of resin or the like, and may be integrally formed with the housing 30 or may be separate from the housing 30.
  • the end (end face) of the aperture of the optical stop in the light projection opposite stop portion 72 forms an acute angle by two planes, and one surface of the two planes transmits incident light other than the detection area DA. It is a reflective surface that reflects in the direction. That is, the end (end surface) of the aperture of the optical aperture in the light projection opposite aperture section 72 forms an acute angle with two straight lines in a cross section including the optical axis of the optical aperture, and includes one of the two straight lines. (Plane or curved surface) is a reflecting surface that reflects incident light in a direction other than the detection area DA. Thereby, since stray light can be prevented, the detection accuracy of particles can be improved.
  • a curved surface that guides light to the side opposite to the detection area DA side is formed on the back side of the light projection opposite diaphragm portion 72 in the light projection trap portion 34a.
  • the light receiving trap part 34b reflects and scatters the light traveling on the opposite side to the light receiving element 20 (light receiving area 32) among the scattered light of the particles in the detection area DA and receives it by the light receiving element 20. It has a structure which prevents it being done.
  • the light receiving trap part 34b is provided at a position facing the light receiving element 20 across the detection area DA.
  • the light receiving trap portion 34b is provided with a light receiving opposite stop portion 73 (third stop portion).
  • the light receiving opposite diaphragm portion 73 is provided on the opposite side of the light receiving element 20 with the detection area DA interposed therebetween.
  • the light reception counter diaphragm section 73 is composed of a plurality of optical diaphragms each having an opening (slit) such as a circle or a polygon.
  • the light receiving opposite stop portion 73 (optical stop) is formed so as to protrude from the inner wall of the light receiving trap portion 34b.
  • the light receiving opposite diaphragm 73 (optical diaphragm) is made of resin or the like, and may be integrally formed with the housing 30 or may be separate from the housing 30.
  • the end (end surface) of the aperture of the optical diaphragm in the opposite light receiving diaphragm 73 forms an acute angle with two straight lines in a cross section including the optical axis of the optical diaphragm, and includes a surface including one of the two straight lines (
  • a curved surface or a flat surface is a reflecting surface that reflects incident light in a direction other than the detection area DA.
  • a curved surface that guides light to the side opposite to the detection area DA side is formed on the back side of the light receiving opposite diaphragm portion 73 in the light receiving trap portion 34b.
  • the reflector 40 is disposed in the light receiving region 32.
  • the scattered light of the particles in the detection area DA is guided to the light receiving element 20 by the reflector 40.
  • the end of the reflector 40 on the opening side is in contact with the first protective plate 81.
  • FIG. 7 is a diagram showing a positional relationship among the reflector 40, the light projecting element 10, the light receiving element 20, and the detection area DA in the particle detection sensor 2 according to the second embodiment.
  • the reflector 40 in the present embodiment is also an elliptical mirror, and is constituted by a spheroid.
  • the reflector 40 has one focal point F1 (first focal point) of the two focal points F1 and F2 in the ellipse constituting the spheroid in the detection area DA.
  • the other focal point F2 (second focal point) is arranged in the vicinity of the light receiving element 20. That is, the light receiving element 20 is disposed in the vicinity of the focal point F2 in the ellipse.
  • the focal point F1 correspond to the detection area DA and the focal point F2 correspond to the light receiving element 20
  • the scattered light generated by the particles in the detection area DA is received with a small number of reflections (one or several times).
  • the light can enter the element 20. That is, attenuation of light due to multiple reflection can be avoided. Therefore, the light receiving efficiency in the light receiving element 20 can be increased.
  • the light from the light projection element 10 may be condensed on the focus F1 by the light projection lens 31a. That is, the condensing point of the light emitted from the light projecting lens 31a coincides with the focal point F1.
  • the focal point of the light projection lens 31a may be made coincident with the focal point F1 of the reflector 40 (elliptical mirror).
  • the light projecting lens 31a is a collimating lens, the light emitted from the light projecting lens 31a may be condensed at the focal point F1 by the light projecting diaphragm 71.
  • the condensing point of the light emitted from the light projecting lens 31a coincide with the elliptical focus F1 of the reflector 40, the light density can be increased, and the scattered light of the particles in the detection area DA. Becomes larger. Therefore, the particle detection accuracy can be improved.
  • the second protective plate 82 is disposed between the detection area DA and the light receiving element 20, the focus of the reflector 40 is taken into consideration in consideration of the refractive index of the second protective plate 82.
  • the detection area DA and the light receiving element 20 may be disposed at the positions.
  • the heating device 50 is disposed between the first light shield 61 and the air introduction hole 35 and is disposed so as to cover the air introduction hole 35. ing.
  • the air introduction hole 35, the heating device 50, the first light shield 61, the detection area DA, the second light shield 62, and the air discharge hole 36 are arranged so as to exist on the same straight line. Yes.
  • the first light shielding body 61 and the second light shielding body 62 shield at least one of light emitted from the heating device 50 (heater light) and light entering from the outside of the particle detection sensor 2 (external light).
  • the light heater light emitted from the heating device 50 includes visible light and infrared light.
  • the first light shielding body 61 and the second light shielding body 62 are integrally formed with the housing 30 using the same material as the housing 30, but may be separate from the housing 30.
  • FIG. 8A is an enlarged cross-sectional view showing the configuration around the first light shield 61 in the particle detection sensor 2 according to Embodiment 2
  • FIG. 8B shows the configuration around the second light shield 62 in the particle detection sensor 2. It is an expanded sectional view shown.
  • the first light shield 61 is a heater light shield that shields the heater light, and is disposed between the heating device 50 and the detection area DA.
  • the first light shield 61 in the present embodiment is also an entrance outside light shield that shields light (external light) that enters the inside of the particle detection sensor 2 from the outside through the atmosphere introduction hole 35.
  • the first light shield 61 is constituted by a first light shield wall 61a and a second light shield wall 61b.
  • the first light shielding wall 61a and the second light shielding wall 61b are arranged side by side in the direction from the heating device 50 toward the detection area DA.
  • the detection accuracy of the particles can be improved by shielding the heater light and the outside light.
  • the first light shielding wall 61a is arranged to face the heating device 50.
  • the second light shielding wall 61b is formed in a substantially box shape so as to surround the first light shielding wall 61a and the side portion of the heating device 50 and to cover a part of the surface of the first light shielding wall 61a on the detection area DA side.
  • the second light shielding wall 61b has an opening provided at a position facing the detection area DA.
  • the first light shielding wall 61a is provided so as to cover the opening of the second light shielding wall 61b.
  • the first light shielding wall 61a and the second light shielding wall 61b are provided so that the air introduced into the particle detection sensor 2 can be guided to the detection area DA.
  • the particles introduced into the housing 30 from the air introduction hole 35 are caused to flow on both sides of the heating device 50 and the first light shield wall 61a and the second light shield wall 61b. It goes to the detection area DA through the opening of the second light shielding wall 61b through the space between the inner surface and the two. That is, the particle flow path 33 in the first light shielding body 61 is once branched into two near the inlet of the air introduction hole 35 and merged again into one on the surface of the first light shielding wall 61a on the detection area DA side. It has become. Thereby, the atmosphere introduced into the particle detection sensor 2 can be properly guided to the detection area DA while suppressing the heater light and the outside light from entering the detection area DA.
  • the second light blocking body 62 is an outlet that blocks light (external light) that enters the particle detection sensor 2 from the outside through the air discharge hole 36. It is an external light shield. Thus, by blocking external light, the particle detection accuracy can be improved.
  • the second light shielding body 62 has a plurality of shielding walls arranged side by side in the direction from the detection area DA toward the air discharge hole 36.
  • the plurality of shields are configured so that the air inside the particle detection sensor 2 can be discharged from the air discharge hole 36.
  • the second light shield 62 in the present embodiment is configured by a first light shield wall 62a, a second light shield wall 62b, and a third light shield wall 62c.
  • the first light shielding wall 62 a is disposed so as to face the air discharge hole 36 and cover the air discharge hole 36.
  • the second light shielding wall 62b is formed so as to surround the side portion of the first light shielding wall 62a.
  • the third light shielding wall 62 c is a side wall of the reflector 40.
  • the third light shielding wall 62c is a side wall of the light receiving region 32 where the reflector 40 is disposed.
  • the first light shielding wall 62a, the second light shielding wall 62b, and the third light shielding wall 62c are configured so that the air inside the particle detection sensor 2 can be discharged from the air discharge hole 36.
  • the atmosphere can be exhausted from the particle detection sensor 2 while suppressing stray light and external light from entering the detection area DA.
  • the scattered light from the particles in the detection area DA has reached the first light shield 61 and the second light shield 62.
  • the scattered light is prevented from being reflected on the detection area DA.
  • the first light shield 61 and the second light shield 62 have reflection surfaces that reflect the scattered light of the particles in the detection area DA in directions other than the detection area DA.
  • the surface of the first light shielding wall 61a on the detection area DA side guides the scattered light to the air introduction hole 35 when the scattered light from the detection area DA is incident. It has become a shape.
  • the surface on the detection area DA side of the first light shielding wall 61a is a reflection surface that reflects the scattered light so as to guide it to the air introduction hole 35.
  • the detection area DA It is a curved surface which forms a convex shape toward. That is, the surface of the first light shielding wall 61a on the detection area DA side has a shape that gradually falls vertically downward from the portion (center) facing the second light shielding wall 61b in all directions. Thereby, since stray light can be prevented from entering the detection area DA, the particle detection accuracy can be further improved.
  • the surface of the first light shielding wall 61a on the heating device 50 side (in this embodiment, also the surface of the first light shielding wall 61a on the air introduction hole 35 side) is the heater light from the heating device 50 and the air introduction hole.
  • the external light entering the inside of the housing 30 via the 35 is guided to the air introduction hole 35.
  • the surface on the heating device 50 side of the first light shielding wall 61a is a reflective surface that reflects the heater light and the outside light so as to guide the air to the atmosphere introduction hole 35. It is a curved surface that forms a convex shape. That is, the surface of the first light shielding wall 61a on the heating device 50 side has a shape that gradually falls downward vertically from the center in all directions. Thereby, since unnecessary light can enter the detection area DA, the particle detection accuracy can be further improved.
  • the surface on the detection area DA side of the first light shielding wall 62a has a shape that guides the scattered light to the air discharge hole 36 when the scattered light from the detection area DA is incident. ing.
  • the surface on the detection area DA side of the first light shielding wall 62a is a reflection surface that reflects the scattered light so as to guide it to the air discharge hole 36.
  • the detection area DA It is a curved surface which forms a convex shape toward. That is, the surface of the first light shielding wall 62a on the detection area DA side has a shape that gradually rises vertically upward from the center in all directions. Thereby, since stray light can be prevented from entering the detection area DA, the particle detection accuracy can be further improved.
  • the surface of the first light shielding wall 62a on the atmosphere discharge hole 36 side has a shape that guides external light entering the inside of the housing 30 through the atmosphere discharge hole 36 to the atmosphere discharge hole 36.
  • the surface on the atmosphere discharge hole 36 side of the first light shielding wall 62a is a reflection surface that reflects external light so as to guide it to the atmosphere discharge hole 36, and in the present embodiment, toward the detection area DA. It is a curved surface having a convex shape. That is, the surface of the first light shielding wall 62a on the atmosphere exhaust hole 36 side has a shape that gradually rises vertically upward from the center in all directions. Thereby, since unnecessary light can enter the detection area DA, the particle detection accuracy can be further improved.
  • the first protective plate 81 is a protective member for preventing particles from entering the light projecting region 31.
  • the second protective plate 82 is a protective member for preventing particles from entering the light receiving region 32.
  • Each of the first protective plate 81 and the second protective plate 82 is formed in the housing 30 while particles floating in the atmosphere (dust, pollen, smoke, PM2.5, etc.) are in operation and non-operation of the particle detection sensor 2. When entering, the particles are prevented from entering each of the light projecting region 31 and the light receiving region 32.
  • the first protective plate 81 is disposed so as to cover an opening (an opening of the light projecting region 31) that becomes a connection portion with the particle flow path 33 in the light projecting region 31.
  • the second protective plate 82 is disposed so as to cover an opening (an opening of the light receiving region 32) serving as a connection portion between the light receiving region 32 and the particle flow path 33. More specifically, the second protective plate 82 covers the opening end surface of the reflector 40.
  • the first protective plate 81 and the second protective plate 82 are flat transparent plates having a uniform thickness, and are made of, for example, glass or a transparent resin such as polycarbonate or acrylic.
  • the first protective plate 81 and the second protective plate 82 are transparent plates having a refractive index of 1.5 or less and a thickness of 200 ⁇ m or less.
  • the total transmittance of the first protective plate 81 and the second protective plate 82 is, for example, 99% or more if the Fresnel reflection is ignored.
  • the surface of the second protective plate 82 is preferably a smooth surface so that the scattered light of the particles is not scattered on the surface of the second protective plate 82. Thereby, the position shift of the optical path of the scattered light by the 2nd protection board 82 can be made small.
  • the particle detection sensor 2 in the present embodiment configured as described above detects particles by the same operation as the particle detection sensor 1 in the first embodiment. Can do.
  • the particle detection sensor 2 in the present embodiment includes the reflector 40 as in the particle detection sensor 1 in the first embodiment.
  • the light receiving sensitivity can be increased as compared with the case where a lens is provided in the light receiving region 32. Therefore, even in a heating type particle detection sensor using the heating device 50, not only can the particle contained in the gas be dust, pollen, or smoke, but also PM2.5. Even fine particles having a small particle diameter such as (microparticulate matter) can be distinguished. Thus, even with the particle detection sensor 2 according to the present embodiment, a highly accurate particle detection sensor can be realized while being low-cost and small.
  • the particle detection sensor 2 in the present embodiment includes a light shielding body that shields at least one of the heater light emitted from the heating device 50 and the external light entering the inside from the outside of the particle detection sensor 1.
  • the light shielding body has a shape that suppresses reflection of the scattered light to the detection area DA when the scattered light of the particles in the detection area DA reaches the light shielding body.
  • the particle detection sensor 2 includes a first light shield 61 that shields heater light emitted from the heating device 50 (heater) and external light entering the particle detection sensor 2 from the air introduction hole 35;
  • a second light shielding body 62 that shields external light entering the inside of the particle detection sensor 2 from the air discharge hole 36 is provided.
  • first light shielding body 61 and the second light shielding body 62 have a shape that suppresses the scattered light of the particles in the detection area DA from being reflected by the first light shielding body 61 and the second light shielding body 62 toward the detection area DA. It has become.
  • the scattered light from the detection area DA when the scattered light from the detection area DA is incident on the surface on the detection area DA side of the first light shielding body 61 (first light shielding wall 61a), the scattered light enters the air introduction hole 35. It has a shape that leads.
  • the surface on the detection area DA side of the first light shield 61 (first light shield wall 61 a) is a reflective surface that reflects the scattered light so as to guide it to the air introduction hole 35.
  • the surface of the second light shielding body 62 (first light shielding wall 62a) on the detection area DA side has a shape that guides the scattered light to the air introduction hole 35 when the scattered light from the detection area DA is incident. It has become.
  • the surface on the detection area DA side of the second light shielding body 62 (first light shielding wall 62 a) is a reflecting surface that reflects the scattered light so as to guide it to the air discharge hole 36.
  • the surface on the heating device 50 side (the surface on the atmosphere introduction hole 35 side) of the first light shielding body 61 (first light shielding wall 61a) guides the heater light and the external light to the atmosphere introduction hole 35. It has a shape like this.
  • the surface on the heating device 50 side of the first light shielding body 61 (first light shielding wall 61 a) is a reflecting surface that reflects the heater light and the external light so as to guide the air to the atmosphere introduction hole 35.
  • the surface of the second light shielding body 62 (first light shielding wall 62 a) on the atmosphere discharge hole 36 side is shaped to guide external light to the atmosphere discharge hole 36.
  • the surface of the second light shielding body 62 (first light shielding wall 62 a) on the atmosphere discharge hole 36 side is a reflection surface that reflects external light so as to guide it to the atmosphere discharge hole 36.
  • the first light shield 61 includes a second light shield wall 61b having an opening facing the detection area DA, and a first light shield wall 61a covering the opening of the second light shield wall 61b.
  • the first light shielding wall 61a and the second light shielding wall 61b are arranged so as to be aligned in the direction from the heating device 50 toward the detection area DA, and the atmosphere introduced into the particle detection sensor 1 is detected in the detection area DA. It is provided so that it can be led to.
  • the atmosphere introduced into the particle detection sensor 1 can be properly guided to the detection area DA while suppressing the heater light and external light from entering the detection area DA.
  • the second light shielding body 62 has a plurality of shielding walls (first light shielding wall 62a, second light shielding wall 62b, 3 light shielding walls 62c), and the plurality of shields are configured so that the air inside the particle detection sensor 1 can be discharged from the air discharge hole 36.
  • the atmosphere can be properly discharged from the particle detection sensor 1 while suppressing external light and stray light from entering the detection area DA.
  • the reflector 40 (light receiving region 32) is provided so as to extend into the particle flow path 33, and the reflector 40 (light receiving region 32). Is present between the air discharge hole 36 and the first light shielding wall 62a of the second light shielding body 62 and the detection area DA. That is, a part of the reflector 40 (light receiving area 32) is positioned vertically above the detection area DA. The opening of the reflector 40 (light receiving region 32) is covered with a second protective plate 82.
  • the atmosphere containing the particles introduced into the particle detection sensor 2 collides with the second protection plate 82 and temporarily stays in the vicinity of the second protection plate 82.
  • the detection area DA is set so as to be positioned in the vicinity of the second protective plate 82, the atmosphere containing particles once stays in the detection area DA. Therefore, even when air containing different particles is introduced, the speed can be made constant in the vicinity of the detection area DA, so that the particle detection accuracy can be further improved.
  • FIG. 5 is a diagram for explaining the optical path.
  • a virtual line 71L that connects the tips of the openings of the plurality of optical apertures in the light projection aperture section 71, and light emitted from the light projecting element 10 and traveling toward the detection area DA.
  • the light line is designed so that the contour line (line) 10L is substantially parallel.
  • the virtual line 71L and the contour line 10L of the light emitted from the light projecting element 10 and refracted by the light projecting lens 31a are substantially parallel.
  • the light emitted from the light projecting element 10 and refracted by the light projecting lens 31a passes through the inside of the virtual space region formed by connecting the tips of the openings of the plurality of optical diaphragms in the light projecting diaphragm section 71, and the detection area. Proceed to DA.
  • the light lines are designed to be substantially parallel.
  • the imaginary line 72L and the outline 10L of the light emitted from the light projecting element 10 and entering the light projecting trap part 34a through the detection area DA are substantially parallel. That is, the light that enters the light projecting trap part 34a so as to be emitted from the light projecting element 10 and once converged in the detection area DA by the light projecting lens 31a and then diverge is a plurality of light in the light projecting opposite aperture part 72.
  • the light passes through the inside of a virtual space region formed by connecting the tips of the openings of the optical diaphragms and enters the depth of the light projection trap part 34a.
  • the plurality of optical stops in the light receiving opposite stop portion 73 may have the same configuration with respect to the scattered light of the particles in the detection area DA.
  • a light outline (line) 10L emitted from the light projecting element 10 toward the detection area DA and a virtual line 40L connecting the end face of the reflector 40 are approximately. Parallel.
  • the sensitivity can be improved, so that the particle detection accuracy can be further improved.
  • FIG. 10A and 10B are diagrams showing the configuration of the particle detection sensor 3 according to Embodiment 3, wherein FIG. 10A is a top view, FIG. 10B is a front view, FIG. 10C is a bottom view, and FIG. It is sectional drawing in the AA of FIG. Also in this embodiment, the direction from the air discharge hole 36 to the air introduction hole 35 in FIG.
  • the particle detection sensor 3 in the present embodiment further includes a first protective plate 91 having translucency with respect to the particle detection sensor 1 in the first embodiment.
  • the first protection plate 91 is disposed in the housing 30. Specifically, the first protective plate 91 is disposed at a connection portion between the particle flow path 33 and the light receiving region 32.
  • the first protective plate 91 is a protective member for preventing particles from entering the light receiving region 32.
  • the first protective plate 91 is used when particles floating in the atmosphere (dust, pollen, smoke, PM2.5, etc.) enter the housing 30 during operation and non-operation of the particle detection sensor 3. The particles are prevented from entering the light receiving region 32.
  • the first protective plate 91 covers an opening (an opening of the light receiving region 32) that is a connection portion with the particle flow path 33 of the light receiving region 32. Is arranged. That is, the first protective plate 91 is disposed so as to cover the light receiving region 32. By covering the opening of the light receiving area 32 with the first protective plate 91, the light receiving area 32 becomes a closed space area and prevents particles such as dust, pollen, and smoke from entering the light receiving area 32 from outside the light receiving area 32. it can.
  • the major axis of the ellipse (the optical axis of the reflector 40) and the light of the light receiving element 20 constituting the reflector 40 composed of the main surface of the first protective plate 91 and the rotation surface of the spheroid.
  • the axis forms a right angle.
  • the normal to the main surface of the first protective plate 91 is parallel to the major axis of the ellipse that constitutes the reflector 40 and the optical axis of the light receiving element 20.
  • the first protective plate 91 configured as described above is, for example, a transparent plate made of glass or a transparent resin such as polycarbonate or acrylic.
  • the total transmittance of the first protective plate 91 is, for example, 99% or more if the Fresnel reflection is ignored.
  • a flat plate having a uniform thickness is used as the first protective plate 91. That is, as the first protective plate 91, a flat plate having a constant thickness in the entire region is used.
  • the first protective plate 91 may not be a flat plate with a uniform thickness.
  • the first protective plate 91 In order to attach the first protective plate 91 to the light receiving region 32, the first protective plate 91 has a thin peripheral portion. Or part of the peripheral edge may be cut out.
  • the shape of the first protective plate 91 in plan view may be a shape that covers the opening of the light receiving region 32.
  • the first protective plate 91 may be a circle.
  • a plate-like transparent plate may be used.
  • the first protective plate 91 is configured not to scatter the scattered light of the particles. That is, the surface of the first protective plate 91 is a smooth surface on both the main surface on the detection area DA side and the main surface on the light receiving element 20 side so that light is not scattered by the first protective plate 91.
  • the first protective plate 91 a flat plate having a refractive index of 1.5 or less and a thickness of 200 ⁇ m or less may be used. Thereby, the position shift of the optical path of the scattered light by the 1st protection board 91 can be made small.
  • the surface of the first protective plate 91 since the adhering matter adhering to the surface of the first protective plate 91 may be removed by rubbing with a cleaning tool such as a cotton swab, the surface of the first protective plate 91 has wear resistance. Good. Therefore, the surface of the first protective plate 91 may be subjected to surface treatment or surface coating treatment for improving wear resistance.
  • the particle detection sensor 3 in the present embodiment configured as described above detects particles by the same operation as the particle detection sensor 1 in the first embodiment. Can do.
  • FIG. 11A is a cross-sectional view of the particle detection sensor 100A of Comparative Example 2
  • FIG. 11B shows the state of cleaning the particle detection sensor 100A of Comparative Example 2 shown in FIG. 11A. It is a principal part expanded sectional view.
  • particles are detected by introducing gas containing particles such as dust, pollen and smoke floating in the atmosphere, so the particles adhere to the inside of the particle detection sensor.
  • the detection accuracy may decrease.
  • detection errors also increase. For example, it may be detected that the particles are present even though the particles should not exist, and an erroneous determination may be made.
  • a particle detection sensor 100A having a structure for removing deposits attached inside is considered.
  • the particle detection sensor 100A of Comparative Example 2 is disposed in the light projecting element 110 and the light receiving element 120, the housing 130 that holds the light projecting element 110 and the light receiving element 120, and the light projecting area 131.
  • the lens 131a and the lens 132a disposed in the light receiving region 132 are provided.
  • region which is an area
  • a cleaning tool 200 such as a cotton swab is introduced from the through-hole 170, and the inner wall of the housing 30 constituting the airflow passage region. Remove deposits that adhere to the surface.
  • the particle detection sensor 100A of Comparative Example 2 since particles enter the light receiving region 132, the particles adhere to the lens 132a as adhering matter. Since the lens 132a collects the scattered light of the particles on the light receiving element 120, if the particles adhere to the lens 132a, the lens function of the lens 132a is affected, the light receiving sensitivity is lowered, and the detection accuracy is lowered.
  • the lens 132a is disposed in a deep part of the light receiving region 132, if particles adhere to the lens 132a, it is difficult to wipe off the deposit with a cleaning tool introduced from the through hole 170 as shown in FIG. 11B. That is, although the deposits in the vicinity of the through-hole 170 can be easily wiped off, it is difficult to wipe off deposits that are present away from the through-hole 170. Furthermore, as shown in FIG. 11B, since the peripheral portion of the light receiving region 132 has an intricate structure and has many corner portions, a blind spot is formed by the corner portions, and it is difficult to wipe off the deposits present around the corner portions. It has become.
  • a reflecting plate (elliptical mirror or the like) having a rotating surface such as a spheroid instead of a lens is disposed in the light receiving region.
  • a through-hole in the housing and introducing the cleaning tool like the particle detection sensor 100A of No. 2 it is difficult to clean the entire inner surface (reflecting surface) of the reflecting plate.
  • a first protective plate 91 having translucency is disposed at a connection portion between the particle flow path 33 and the light receiving region 32. ing.
  • the first protective plate 91 is disposed so as to cover the opening of the light receiving region 32 (the opening serving as a connection portion with the particle channel 33).
  • a reflector 40 is provided between the first protective plate 91 and the light receiving element 20 to reflect the scattered light of the particles and guide the scattered light to the light receiving element 20.
  • the inner surface of the reflector 40 is a part of the rotation surface of the spheroid and is an elliptical mirror.
  • the main surface of the first protective plate 91 is perpendicular to the major axis of the ellipsoid of the spheroid constituting the inner surface of the reflector 40.
  • the scattered light of the particles in the detection area DA can be efficiently transmitted through the first protective plate 91, so that the light receiving sensitivity can be prevented from being lowered by arranging the first protective plate 91.
  • the width of the particle flow path 33 and the width of the detection area DA may be matched.
  • FIG. 12 is a cross-sectional view showing a configuration of a particle detection sensor 3A according to Modification 1 of Embodiment 3.
  • the arrangement of the first protective plate 91 is different between the particle detection sensor 3A in the present modification and the particle detection sensor 3 in the third embodiment.
  • the first protective plate 91 according to the third embodiment is arranged so that its main surface is perpendicular to the major axis of the ellipse that constitutes the reflector 40.
  • the first protective plate 91 in the modified example is disposed so that the normal line of the main surface thereof is inclined with respect to the major axis of the ellipse constituting the reflector 40.
  • the first protective plate 91 is arranged at the connection portion between the particle flow path 33 and the light receiving region 32, similarly to the particle detection sensor 3 in the third embodiment. Therefore, it is possible to suppress the adhesion of particles in the light receiving region 32 both during the operation of the particle detection sensor 3A and during the manufacturing process of the particle detection sensor 3A. Therefore, a decrease in detection accuracy can be suppressed.
  • the first protective plate 91 is disposed so as to cover the opening of the light receiving region 32, it is possible to further suppress the adhesion of particles in the light receiving region 32.
  • the light receiving area 32 by sealing the light receiving area 32 with the first protective plate 91, it is possible to prevent air and moisture from entering the light receiving area 32. Thereby, since corrosion of the reflective surface of the reflector 40 can be prevented, the long-term reliability of the light receiving sensitivity and detection accuracy can be further improved.
  • the normal line of the main surface of the first protective plate 91 is inclined with respect to the major axis of the ellipse that constitutes the spheroid of the reflector 40.
  • the opening part of the reflector 40 can be extended to the limit of the opening part of the light-receiving region 32, a large number of reflection surfaces of the reflector 40 can be obtained, and thus the light-receiving sensitivity of the scattered light of the particles in the reflector 40 is easy. Can be high. Therefore, a particle detection sensor that can detect particles with high sensitivity can be realized.
  • FIG. 13 is a cross-sectional view showing a configuration of a particle detection sensor 3B according to Modification 2 of Embodiment 3.
  • the arrangement of the first protective plate 91 is different between the particle detection sensor 3B in the present modification and the particle detection sensor 3 in the third embodiment.
  • the first protective plate 91 in the third embodiment is disposed only in the connection portion between the particle flow path 33 and the light receiving region 32, whereas the first protective plate 91 in the present modification is a particle It is arranged not only at the connection part between the flow path 33 and the light receiving region 32 but also at the connection part between the particle flow path 33 and the trap part 34. Specifically, the first protective plate 91 in the present modification covers both the opening of the light receiving region 32 and the opening of the trap portion 34.
  • the first protective plate 91 constitutes a part of the particle flow path 33. Specifically, the surface of the first protective plate 91 is a wall surface of the particle channel 33.
  • the first protective plate 91 is disposed at the connection portion between the particle flow path 33 and the light receiving region 32 and at the connection portion between the particle flow path 33 and the light receiving region 32.
  • the reflecting surface of the reflector 40 it is possible to prevent the reflecting surface of the reflector 40 from becoming dirty due to the adhesion of particles, so that the reflectance of the reflecting surface of the reflector 40 does not change, and the long-term reliability of light receiving sensitivity and detection accuracy is improved. Can be made. Moreover, since the reflectance of the trap part 34 does not change by the reflector 40, the direct light from the light projecting element 10 that passes through the detection area DA when hitting the particles is reflected inside the housing 30 and received as stray light. It can also suppress entering into the element 20. FIG. Therefore, the long-term reliability of the light receiving sensitivity and detection accuracy can be further improved.
  • the trap portion 34 is not contaminated by the adhesion of particles, so that the reliability as a sensor is improved and the yield is improved.
  • FIG. 14 is a cross-sectional view illustrating a configuration of a particle detection sensor 3C according to Modification 3 of Embodiment 3.
  • the particle detection sensor 3 ⁇ / b> C in the present modification has a configuration in which a second protection plate 92 is further arranged in the particle detection sensor 3 ⁇ / b> B in the modification 2 described above.
  • the particle detection sensor 3 ⁇ / b> C includes a first protection plate 91 disposed so as to cover the light receiving region 32 and the opening of the trap portion 34, the light projecting region 31, and the particle flow path 33. And a second protection plate 92 disposed in the connection portion.
  • the second protective plate 92 is disposed so as to face the first protective plate 91. That is, the second protection plate 92 and the first protection plate 91 are arranged in parallel.
  • the second protective plate 92 is a protective member for preventing particles from entering the light projecting region 31.
  • the second protective plate 92 is disposed so as to cover an opening (an opening of the light projecting region 31) serving as a connection portion between the light projecting region 31 and the particle flow path 33.
  • the second protective plate 92 is disposed so as to cover the light projecting region 31, and the light projecting region 31 is closed by covering the opening of the light projecting region 31 with the second protective plate 92. It becomes.
  • the second protective plate 92 and the first protective plate 91 constitute a part of the particle flow path 33.
  • the surfaces of the first protective plate 91 and the second protective plate 92 are wall surfaces of the particle flow path 33
  • the particles introduced into the particle flow path 33 are the first protective plate 91 and the second protective plate. Passes between the plates 92.
  • the second protective plate 92 is a transparent plate made of, for example, glass or transparent resin, and the total transmittance is, for example, 99% or more if the Fresnel reflection is ignored. Further, a flat plate having a uniform thickness is used as the second protective plate 92. Note that the second protective plate 92 may not be a flat plate having a uniform thickness. Like the first protective plate 91, the peripheral portion is thin or a part of the peripheral portion is notched for mounting. It may be.
  • the shape of the second protective plate 92 in plan view may be a shape that covers the opening of the light projecting region 31.
  • the second protective plate 92 serves as the second protective plate 92.
  • a disc-shaped transparent plate may be used.
  • the second protective plate 92 is also configured not to scatter the scattered light of the particles. That is, the surface of the second protective plate 92 is a smooth surface on both the main surface on the detection area DA side and the main surface on the light projecting element 10 side so that light is not scattered by the second protective plate 92.
  • the surface of the second protective plate 92 has wear resistance. Good. Therefore, the surface of the second protective plate 92 is preferably subjected to surface treatment or surface coating treatment for improving wear resistance.
  • the first protective plate 91 is disposed at the connection portion between the particle flow path 33 and the light receiving region 32 and at the connection portion between the particle flow path 33 and the light receiving region 32. Therefore, the same effect as that of the second modification of the third embodiment can be obtained.
  • a second protective plate 92 is disposed at the connection portion between the light projecting region 31 and the particle flow path 33.
  • the light projection lens 31a can be arrange
  • the space formed by the first protective plate 91 and the second protective plate 92 may form a part of the particle flow path 33 and coincide with the width of the detection area DA.
  • the space between the first protective plate 91 and the second protective plate 92 is configured to be a part of the particle flow path 33, and the distance between the first protective plate 91 and the second protective plate 92 is set.
  • the width of the particle flow path 33 is preferably matched with the width of the detection area DA.
  • FIG. 15 is a cross-sectional view illustrating a configuration of a particle detection sensor 3D according to Modification 4 of Embodiment 3, where (a) is a top view, (b) is a front view, (c) is a bottom view, and (d). ) Is a sectional view taken along line AA in FIG.
  • the particle detection sensor 3D in the present modification is the same as the particle detection sensor 3C in the third modification of the third embodiment, and the housing 30 further includes the first protection plate 91 and the first protection plate 91. 2 It has the cleaning tool introduction hole 37 into which the cleaning tool for removing the deposit
  • the cleaning tool introduction hole 37 is a through hole provided in the first housing portion 30a.
  • the cleaning tool introduction hole 37 is configured such that the cleaning tool can be inserted from the horizontal direction of the main surfaces of the first protection plate 91 and the second protection plate 92.
  • the cleaning tool introduction hole 37 is provided so as to open the main surface horizontal direction of the first protective plate 91 and the second protective plate 92, and more specifically, the first housing portion 30a.
  • the first protection plate 91 and the second protection plate 92 are provided so as to open portions facing each other. That is, the cleaning tool introduction hole 37 opens a part of the particle flow path 33.
  • the cleaning tool introduction hole 37 is provided in a long shape along the direction in which the air flows in the particle flow path 33 (flow path direction).
  • the cleaning tool introduction hole 37 is blocked by the lid 38.
  • the lid 38 is detachably fitted in the cleaning tool introduction hole 37. Therefore, when cleaning the inside of the housing 30 such as the first protection plate 91 and the second protection plate 92, the lid 38 is removed to open the cleaning tool introduction hole 37, and a cleaning tool such as a cotton swab is removed from the cleaning tool introduction hole 37. Insert and clean the inside of the housing 30.
  • the particle detection sensor 3 ⁇ / b> D by using the cleaning tool introduction hole 37, it is possible to perform maintenance for removing adhered substances such as particles adhered in the housing 30. For example, deposits attached to the surfaces of the first protection plate 91 and the second protection plate 92, the wall surface of the particle flow path 33, or other wall surfaces in the housing 30 can be removed.
  • FIGS. 16A and 16B show a state when the inside of the housing of the particle detection sensor 3D according to the present modification is cleaned (maintenance).
  • the cleaning tool introduction hole 37 is provided at a position facing the first protection plate 91 and the second protection plate 92, so that it is inserted from the cleaning tool introduction hole 37.
  • the cleaning tool 200 can easily remove deposits attached to the surfaces of the first protection plate 91 and the second protection plate 92.
  • the cleaning tool introduction hole 37 is configured so that the cleaning tool 200 can be inserted from the horizontal direction of the main surface of the first protection plate 91 and the second protection plate 92. Accordingly, when the cleaning tool 200 such as a cotton swab is inserted into the cleaning tool introduction hole 37, the cleaning tool 200 can be inserted from the horizontal direction of the main surfaces of the first protection plate 91 and the second protection plate 92.
  • the cleaning tool 200 is rubbed against the surfaces of the first protection plate 91 and the second protection plate 92 by the cleaning tool 200 inserted into the cleaning tool introduction hole 37.
  • the cleaning tool 200 By moving the cleaning tool 200 back and forth along the direction perpendicular to the insertion direction of the cleaning tool 200, the deposits on the surfaces of the first protection plate 91 and the second protection plate 92 can be wiped off.
  • the moving direction of the cleaning tool 200 when scraping off the deposits on the first protection plate 91 and the second protection plate 92 is not limited to the direction perpendicular to the insertion direction of the cleaning tool 200. It may be a direction or the like.
  • the cleaning tool introduction hole 37 is provided at a position where the main surface horizontal direction of the first protection plate 91 and the second protection plate 92 is opened. Thereby, the cleaning tool 200 can be easily inserted into the housing 30 from the horizontal direction of the main surfaces of the first protection plate 91 and the second protection plate 92 via the cleaning tool introduction hole 37.
  • the cleaning tool introduction hole 37 is provided in a long shape along the direction in which the air flows in the particle flow path 33.
  • the cleaning tool 200 inserted into the cleaning tool introduction hole 37 is moved back and forth along the flow path direction of the particle flow path 33, thereby adhering substances on the main surfaces of the first protection plate 91 and the second protection plate 92. Can be easily wiped off.
  • the cleaning tool introduction hole 37 is closed by a lid 38 that is detachably attached to the cleaning tool introduction hole 37.
  • this modification can also be applied to the third embodiment and its modifications 1 to 3.
  • the cleaning tool 200 is inserted into the cleaning tool introduction hole 37 in order to remove deposits attached to the surface of the first protective plate 91.
  • FIG. 17 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor 1A according to the first modification.
  • the particle detection sensor 1A according to the present modification is similar to the particle detection sensor 1 according to the first embodiment, in which the light projecting element 10, the light projecting lens 31a, the light receiving element 20, the reflector 40A, and the heating are performed. And a device (not shown).
  • the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting particles contained in the gas.
  • the reflector 40A in the present modification has an inner surface that forms part of the rotational surface of the spheroid, similar to the reflector 40 in the first embodiment. Further, two through holes 41a and 41b are provided on the side of the reflector 40A.
  • the flow path direction of the particle flow path 33 in which the detection area DA exists is a direction perpendicular to the paper surface, and a heating device such as a heater resistor is installed in the particle flow path 33.
  • the light projecting element 10 and the light projecting lens 31a are arranged so as to face the through hole 41a, and the optical axis of the light projecting element 10 and the light projecting lens 31a and the central axes of the two through holes 41a and 41b are arranged. Match.
  • the light emitted from the light projecting element 10 passes through the through hole 41a and is projected onto the detection area DA set in the inner part of the reflector 40A.
  • light that travels straight without hitting particles out of the light from the light projecting element 10 passes through the through hole 41 b and goes out of the reflector 40 ⁇ / b> A, and therefore does not enter the light receiving element 20.
  • the particle detection sensor 1 ⁇ / b> A includes the reflector 40 ⁇ / b> A that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in gas with high accuracy.
  • the reflector 40A uses a portion of the spheroid excluding the portion where the two through holes 41a and 41b and the light receiving element 20 are provided as a reflecting surface.
  • the reflector 40A is arranged so that one focus of the ellipse exists in the detection area DA, and the light receiving element 20 is arranged in the vicinity of the other focus of the ellipse.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections, a more accurate particle detection sensor can be realized.
  • the light receiving efficiency can be increased by arranging the light receiving element 20 in the vicinity of the focal point of the ellipse, a small photodetector or the like can be used as the light receiving element 20.
  • the two through holes 41a and 41b are provided so that the central axes of the through holes 41a and 41b are orthogonal to the major axis of the ellipse.
  • the particle detection sensor 1A ′ shown in FIG. As described above, the central axes of the through holes 41a and 41b of the reflector 40A ′ may be provided so as to intersect with the long axis of the ellipse at an angle.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of a particle detection sensor 1B according to Modification 2.
  • the particle detection sensor 1B in the present modification is similar to the particle detection sensor 1 in the first embodiment described above, with the light projecting element 10, the light projecting lens 31a, the light receiving element 20, the reflector 40B, and the heating. And a device (not shown).
  • the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting particles contained in the gas.
  • the reflector 40B in the present modification has an inner surface that forms part of the rotational surface of the spheroid, similar to the reflector 40 in the first embodiment.
  • the reflector 40B is arranged so that one of the focal points of the ellipse exists in the detection area DA, and the light receiving element 20 is arranged in the vicinity of the other focal point of the ellipse.
  • the optical axis of the light projecting element 10, the optical axis of the light receiving element 20, and the rotation axis (optical axis) of the reflector 40B are the same.
  • a through hole 42 is provided at the end of the major axis of the spheroid. The light emitted from the light projecting element 10 passes through the through hole 42 and is projected onto the detection area DA.
  • a shielding plate 60 is disposed between the light projecting element 10 and the light receiving element 20.
  • the shielding plate 60 is a shielding plate configured to absorb or cut light directly incident on the light receiving element 20 from the light projecting element 10.
  • the flow direction of the particle flow path 33 in which the detection area DA is present is the direction perpendicular to the paper surface, and the particle flow path 33 is provided with a heating device such as a heater resistor.
  • the particle detection sensor 1B includes the reflector 40B that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in the gas with high accuracy.
  • the reflector 40B uses a portion of the spheroid excluding the portion where the one through hole 42 and the light receiving element 20 are provided as a reflecting surface.
  • the reflector 40B is arranged so that one focus of the ellipse exists in the detection area DA, and the light receiving element 20 is In the vicinity of the other focus of the ellipse.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections, a more sensitive particle detection sensor can be realized.
  • the light receiving efficiency can be increased by arranging the light receiving element 20 in the vicinity of the focal point of the ellipse, a small photodetector or the like can be used as the light receiving element 20.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of a particle detection sensor 1C according to Modification 3.
  • the particle detection sensor 1C according to the present modification is similar to the particle detection sensor 1 according to the first embodiment described above, with the light projecting element 10, the light projecting lens 31a, the light receiving element 20, the reflector 40C, and the heating. And a device (not shown).
  • the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting particles contained in the gas.
  • the reflector 40C in the present modification reflects scattered light caused by particles in the detection area DA and guides it to the light receiving element 20.
  • the reflector 40C has a rotating surface of a spheroid. And part of the rotating surface of the parabola.
  • the reflector 40C is arranged so that the parabolic focus F exists in the detection area DA, and the light receiving element 20 is positioned on the side opposite to the apex of the parabola across the parabolic focus F. Is arranged. That is, in the present modification, the optical axis of the light projecting element 10, the optical axis of the light receiving element 20, and the rotation axis (optical axis) of the reflector 40C are the same.
  • the reflector 40C is provided with a through-hole 43 at the top of the rotating parabola.
  • the light emitted from the light projecting element 10 passes through the through hole 43 and is projected onto the detection area DA set in the inner part of the reflector 40C.
  • a shielding plate 60 is disposed between the light projecting element 10 and the light receiving element 20.
  • the flow direction of the particle flow path 33 in which the detection area DA is present is the direction perpendicular to the paper surface, and the particle flow path 33 is provided with a heating device such as a heater resistor.
  • the particle detection sensor 1 ⁇ / b> C in the present modification includes the reflector 40 ⁇ / b> C that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in the gas with high accuracy.
  • the inner surface of the reflector 40C forms a part of the rotation surface of the rotating parabola, and the reflector 40 is arranged so that the focal point F of the parabola exists in the detection area DA,
  • the light receiving element 20 is disposed so as to be located on the opposite side of the apex of the parabola across the parabolic focus F.
  • the light from the light projecting element 10 strikes and scatters the particles in the detection area DA, and the scattered light is reflected by the reflector 40C and becomes parallel light. Incident. Accordingly, a large amount of scattered light generated by the particles in the detection area DA can be obtained, and the scattered light can be incident on the light receiving element 20 with a small number of reflections, so that a highly sensitive particle detection sensor can be realized.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections, a more sensitive particle detection sensor can be realized.
  • the light receiving surface of the light receiving element 20 is enlarged or the lens that covers the light receiving surface of the light receiving element 20 is enlarged to produce parallel light. It is preferable that most of the light can be received by the light receiving element 20.
  • FIG. 21 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor 1D according to Modification 4.
  • the particle detection sensor 1D in the present modification example is similar to the particle detection sensor 1C in the modification example 3, and the light projecting element 10, the light projecting lens 31a, the light receiving element 20, the reflector 40D, and the heating device ( (Not shown), and the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting particles contained in the gas.
  • the reflector 40D in the present modification reflects light scattered by particles in the detection area DA and guides it to the light receiving element 20, and the inner surface forms part of the rotation surface of the paraboloid as in the third modification. Yes. Further, two through holes 44a and 44b are provided on the side of the reflector 40D.
  • the light projecting element 10 and the light projecting lens 31a are arranged so as to face the through hole 44a, and the optical axis of the light projecting element 10 and the light projecting lens 31a and the central axes of the two through holes 44a and 44b are arranged. Match.
  • the light emitted from the light projecting element 10 passes through the through hole 44a and is projected onto the detection area DA set in the inner part of the reflector 40D. Further, light that travels straight without hitting the particles out of the light from the light projecting element 10 passes through the through hole 44b and goes out of the reflector 40D, and therefore does not enter the light receiving element 20.
  • the reflector 40D is arranged so that the parabolic focus F exists in the detection area DA, and the light receiving element 20 is located on the opposite side of the parabola from the top of the parabola. Is arranged.
  • the flow direction of the particle flow path 33 in which the detection area DA is present is the direction perpendicular to the paper surface, and the particle flow path 33 is provided with a heating device such as a heater resistor.
  • the particle detection sensor 1D includes the reflector 40D that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in the gas with high accuracy.
  • the reflector 40D formed of the rotation surface of the rotating parabola is arranged so that the focal point F of the parabola exists in the detection area DA, and the light receiving element 20 is It is arranged so as to be located on the side opposite to the apex of the parabola across the focal point F of the parabola.
  • the scattered light of the particles in the detection area DA is reflected by the reflector 40D and becomes parallel light and enters the light receiving element 20, so that the scattered light generated by the particles in the detection area DA is reduced.
  • a large amount can be obtained, and the scattered light can be incident on the light receiving element 20 with a small number of reflections. Therefore, a highly sensitive particle detection sensor can be realized.
  • the light receiving surface of the light receiving element 20 is increased or the lens covering the light receiving surface of the light receiving element 20 is increased to generate parallel light. It is preferable that most of the light can be received by the light receiving element 20. Or you may arrange
  • FIG. 23 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor 1E according to Modification 5.
  • the particle detection sensor 1E in the present modification is similar to the particle detection sensor 1 in the first embodiment, in which the light projecting element 10, the light receiving element 20, the reflector 40, and a heating device (not shown).
  • the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting the particles contained in the gas.
  • the reflector 40 formed of the rotation surface of the spheroid is arranged so that one focal point of the ellipse exists in the detection area DA, and also receives light.
  • the element 20 is disposed in the vicinity of the other focus of the ellipse.
  • grain detection sensor 1E in this modification is further provided with the auxiliary reflector 40E.
  • the auxiliary reflector 40E reflects the scattered light that does not go to the reflector 40 out of the scattered light from the particles in the detection area DA toward the reflector 40.
  • the auxiliary reflector 40E is, for example, a reflection mirror having a concave curved surface with a predetermined shape.
  • the flow direction of the particle flow path 33 in which the detection area DA is present is the direction perpendicular to the paper surface, and the particle flow path 33 is provided with a heating device such as a heater resistor.
  • the particle detection sensor 1E includes the reflector 40 that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20 as in the first embodiment. Yes.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in the gas with high accuracy.
  • the auxiliary reflector 40E since the auxiliary reflector 40E is provided, the scattered light that does not go to the reflector 40 among the scattered light from the particles in the detection area DA can be reflected toward the reflector 40.
  • the reflector 40 is arranged so that one focus of the ellipse exists in the detection area DA, and the light receiving element 20 is In the vicinity of the other focus of the ellipse.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections, a more sensitive particle detection sensor can be realized.
  • the light receiving efficiency can be increased by arranging the light receiving element 20 in the vicinity of the focal point of the ellipse, a small photodetector or the like can be used as the light receiving element 20.
  • FIG. 24 is a cross-sectional view illustrating a schematic configuration of a particle detection sensor 1F according to Modification 6.
  • the particle detection sensor 1F is similar to the particle detection sensor 1 according to the first embodiment, and includes a light projecting element 10, a light receiving element 20, a reflector 40F, and a heating device (not shown).
  • the light receiving element 20 receives the scattered light of the light of the light projecting element 10 due to the particles in the detection area DA, thereby detecting the particles contained in the gas.
  • the flow channel direction of the particle flow channel (not shown) in which the detection area DA exists is the direction perpendicular to the paper surface.
  • the reflector 40F in the present modification reflects light scattered by particles in the knowledge area DA and guides it to the light receiving element 20, and is an assembly of a plurality of micromirrors each having a curved surface or a flat surface.
  • the inner surface of the reflector 40F has a shape that forms a part of the rotation surface of a substantially parabolic paraboloid as a whole. That is, instead of a reflector having a smooth curved surface as in the first embodiment, a reflector 40F in which each inner surface is configured by a plurality of minute mirrors having a curved surface or a flat surface may be used.
  • the flow direction of the particle flow path 33 in which the detection area DA is present is the direction perpendicular to the paper surface, and the particle flow path 33 is provided with a heating device such as a heater resistor.
  • the reflector 40F that reflects the scattered light of the particles in the detection area DA and guides the scattered light to the light receiving element 20 is provided as in the first embodiment. Yes.
  • a heating type particle detection sensor using a heating device can detect particles with a small particle size contained in the gas with high accuracy.
  • the inner surface of the reflector 40F forms a part of the rotation surface of the substantially spheroid, and the reflector 40F is arranged so that one focus of the ellipse exists in the detection area DA.
  • the light receiving element 20 is disposed in the vicinity of the other focal point of the ellipse.
  • the scattered light generated by the particles in the detection area DA can be incident on the light receiving element 20 with a small number of reflections, a highly sensitive particle detection sensor can be realized.
  • the light receiving efficiency can be increased by arranging the light receiving element 20 in the vicinity of the focal point of the ellipse, a small photodetector or the like can be used as the light receiving element 20.
  • the flow direction of the particle flow channel 33 (the direction in which the gas to be measured flows) is the vertical direction (vertical direction) on the paper surface, but may be the vertical direction on the paper surface. That is, in the first to third embodiments, the flow path axis of the particle flow path 33 is set to exist on a plane through which each optical axis of the light projecting element 10 and the light receiving element 20 passes, but is orthogonal to the plane. You may set to do.
  • the air introduction hole 35 and the air discharge hole 36 are provided on the upper surface and the bottom surface of the casing 30 in the vertical direction.
  • the present invention is not limited to this.
  • the air introduction hole 35 and the air discharge hole 36 may be provided on the main surface of the housing 30 (the first housing portion 30a in FIG. 25).
  • a light shield 63 may be provided as shown in FIG. Similar to the first light shielding body 61 and the second light shielding body 62, the light shielding body 63 shields at least one of the light from the heating device 50 and the outside light, and the scattered light of the particles in the detection area DA When the light reaches the light shield 63, the scattered light is prevented from being reflected on the detection area DA.
  • the structure of the 1st light shielding body 61 and the 2nd light shielding body 62 can be applied to the light shielding body 63 suitably.
  • the inner surface of the reflector is a part of the surface of the spheroid or parabola, but the present invention is not limited to this. It can be.
  • the conic curve may be selected from an ellipse, a parabola and a hyperbola instead of a circle. That is, the inner surface of the reflector is preferably a part of a spheroid, rotating parabola, or rotating hyperbolic curved surface (rotating surface) rather than a spherical curved surface (spherical surface).
  • the inner surface of the reflector is spherical
  • diffuse reflection is used like an integrating sphere
  • scattered light is reflected (multiple reflection) and attenuated many times, so that light does not enter the light receiving element 20 so much.
  • a sphere only about 1/100 is received compared to the case of a spheroid.
  • a reflector is disposed in the light receiving region 32.
  • a lens may be disposed in the light receiving region 32 instead of the reflector.
  • a condensing lens that collects the scattered light of particles in the detection area DA on the light receiving element 20 may be disposed in the light receiving area 32.
  • the first light shield 61 is configured to shield both the heater light and the outside light, but may be configured to shield only one of them.
  • the first light shield 61 is a heater light shield that shields only the heater light
  • an entrance external light shield that shields the external light from the air introduction hole 35 may be additionally provided.
  • a heater light shield that shields the heater light may be additionally provided.
  • the cleaning tool introduction hole 37 is provided separately from the air introduction hole 35 and the air discharge hole 36 (that is, the cleaning tool introduction hole 37 is a hole dedicated for cleaning).
  • the air introduction hole 35 and the air discharge hole 36 may be used as the cleaning tool introduction hole.
  • a cleaning tool may be inserted from the air introduction hole 35 and the air discharge hole 36 to remove the deposits on the surfaces of the first protection plate 91 and the second protection plate 92.
  • the particle detection sensor in the first to third embodiments can be used for various devices.
  • the particle detection sensor by mounting the particle detection sensor on the dust sensor, it can be realized as a dust sensor including the particle detection sensor.
  • the dust sensor detects dust particles with the built-in particle detection sensor, the dust sensor notifies the detection of dust by sound or light or displays the dust on the display unit.
  • the particle detection sensor in the first to third embodiments can be realized as a smoke detector as shown in FIG. 26 by mounting the particle detection sensor on the smoke detector.
  • the smoke detector detects smoke particles with the built-in particle detection sensor, the smoke detector notifies the detection of smoke by sound or light or displays the smoke on the display unit.
  • the particle detection sensor or the dust sensor in the first to third embodiments is mounted on an air purifier, a ventilation fan, or an air conditioner, so that an air purifier as shown in FIG. 27, a ventilation fan as shown in FIG. It can be realized as an air conditioner as shown in FIG.
  • the air purifier, the ventilation fan, or the air conditioner may detect that dust is detected by the built-in particle detection sensor, and may simply display that the dust is detected on the display unit or activate the fan.
  • the fan may be controlled such as changing the rotation speed.
  • the particle detection sensor 3D including the cleaning tool introduction hole 37 is built in the outer casing of the device.
  • the user can insert the cleaning tool 200 such as a cotton swab into the housing 30 and easily clean the first protective plate 91 and the second protective plate 92 in the cleaning tool introduction hole 37 in the outer casing of the device.
  • a through hole may be provided in the facing portion.
  • the medium containing particles is the atmosphere (air), but the present invention can also be applied to a medium other than the atmosphere (liquid such as water).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 投光素子(10)と受光素子(20)とを備え、検知領域(DA)における粒子による投光素子(10)の光の散乱光を受光素子(20)で受光することにより気体中に含まれる粒子を検出する粒子検出センサ(1)であって、気体を加熱する加熱装置(50)と、散乱光を反射して当該散乱光を受光素子(20)に導く反射体(40)とを有する。

Description

粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
 本発明は、粒子検出センサ、及び、粒子検出センサを備えた、ダストセンサ、煙感知器、空気清浄機、換気扇又はエアコン等の機器に関する。より具体的には、大気中に浮遊する粒子(エアロゾル)を当該粒子の散乱光によって検知する光散乱式粒子検出センサ及びこれを用いた空気清浄機等の機器に関する。
 光散乱式粒子検出センサは、投光素子と受光素子とを備える光電式センサであり、測定対象の気体を取り込んで投光素子の光を当該気体に照射し、その散乱光によって気体に含まれる粒子の有無を検出するものである。例えば、大気中に浮遊するホコリ・花粉・煙等の粒子を検出することができる。
 この種の光散乱式粒子検出センサとして、迷光の発生を低減するために、投光素子又は受光素子と対向する位置に光トラップが設けられたものが知られている(例えば特許文献1参照)。
特開平11-248629号公報 実開平4-113058号公報 特開平8-201263号公報
 近年、より粒径の小さい微粒子を検出するために粒子検出センサのさらなる高精度化が要望されており、例えば、ファンによって気流を発生させて粒子検出センサ内に沢山の粒子を取り込むことで高精度化することが考えられている。
 しかしながら、ファンを設けると、粒子検出センサ全体のコストが高くなったり粒子検出センサが大型化したりする。このため、低コストのヒータ抵抗(抵抗加熱)によって気流を発生させることが考えられる。
 しかしながら、ヒータ抵抗を用いた方法では、流速が遅く、粒径の小さな微粒子を精度良く検出することができない。
 本発明は、このような課題に鑑みてなされたものであり、ヒータ抵抗等の加熱装置によって気流を発生させる加熱方式であっても、微粒子を高精度で検出できる粒子検出センサ等を提供することを第1の目的とする。
 また、光散乱式粒子検出センサでは、ホコリ・花粉・煙等の粒子を含む気体を内部に導入することによって粒子を検出するため、当該粒子が粒子検出センサの内部に付着して検出精度が低下する場合がある。
 本発明は、このような課題に鑑みてなされたものであり、内部に粒子が付着することを抑制できる粒子検出センサ等を提供することを第2の目的とする。
 また、光散乱式粒子検出センサとして、ヒータによってセンサ内部への大気の導入を促進する技術が知られている(例えば特許文献2、3)。特許文献2に記載された浮遊物検出装置では、さらに、吸気口や排気口からの直射光を遮蔽するために、筐体の内部に遮蔽板を設けている。また、特許文献3に記載された煙検出装置では、空気導入口や空気排出口から外部の光が直接侵入しないように、粒子の流路に迷路を設けている。
 光散乱式粒子検出センサにおいては、検知領域(光散乱部)に進入する迷光を抑制することで粒子の検出精度のさらなる向上が要望されている。
 本発明は、このような課題に鑑みてなされたものであり、粒子の検出精度を向上させることができる粒子検出センサ等を提供することを第3の目的とする。
 上記第1の目的を達成するために、本発明に係る第1の粒子検出センサの一態様は、投光素子と受光素子とを備え、検知領域における粒子による前記投光素子の光の散乱光を前記受光素子で受光することにより気体中に含まれる粒子を検出する粒子検出センサであって、気体を加熱する加熱装置と、前記散乱光を反射して当該散乱光を前記受光素子に導く反射体とを有することを特徴とする。
 また、上記第2の目的を達成するために、本発明に係る第2の粒子検出センサの一態様は、筐体と、前記筐体内に配置された投光素子と、前記筐体内に配置され、かつ、検知領域における粒子による前記投光素子の光の散乱光を受光する受光素子と、前記筐体内に設けられ、かつ、前記検知領域を含む空間領域であって粒子を含む大気が流れる空間領域である粒子流路と、前記筐体内に設けられ、かつ、前記散乱光を前記受光素子に導くための空間領域である受光領域と、前記粒子流路と前記受光領域との接続部分に配置され、かつ、透光性を有する第1保護板とを備えることを特徴とする。
 また、上記第3の目的を達成するために、本発明に係る第3の粒子検出センサの一態様は、投光素子と、検知領域における粒子による前記投光素子からの光の散乱光を受光する受光素子と、大気を加熱するヒータと、前記ヒータから放出されるヒータ光及び外光の少なくとも一方を遮光する遮光体とを備え、前記遮光体は、前記散乱光が当該遮光体に到達した場合に、当該散乱光が前記検知領域に反射することを抑制する形状を有することを特徴とする。
 第1の粒子検出センサの一態様によれば、ヒータ抵抗等の加熱装置によって気流を発生させる加熱方式であっても、微粒子を高精度で検出できる。
 第2の粒子検出センサの一態様によれば、粒子検出センサの内部に粒子が付着することを抑制できるので、検出精度の低下を抑制できる。
 第3の粒子検出センサの一態様によれば、迷光を抑制できるので、粒子の検出精度を向上させることができる。
図1の(a)は、実施の形態1に係る粒子検出センサの上面図、図1の(b)は、同粒子検出センサの正面図、図1の(c)は、同粒子検出センサの下面図、図1の(d)は、図1の(a)のA-A線における同粒子検出センサの断面図である。 図2Aは、気体中に粒子が存在しない場合における粒子検出センサの動作を説明するための断面図である。 図2Bは、気体中に粒径の小さい粒子が存在する場合における粒子検出センサの動作を説明するための断面図である。 図2Cは、気体中に粒径の大きい粒子が存在する場合における粒子検出センサの動作を説明するための断面図である。 図3は、比較例1の粒子検出センサの断面図である。 図4は、実施の形態1に係る粒子検出センサの断面図である。 図5は、実施の形態1に係る粒子検出センサにおける反射体と受光素子と検知領域との位置関係を説明するための図である。 図6の(a)は、実施の形態2に係る粒子検出センサの上面図、図6の(b)は、同粒子検出センサの正面図、図6の(c)は、同粒子検出センサの下面図、図6の(d)は、図6の(a)のA-A線における同粒子検出センサの断面図である。 図7は、実施の形態2に係る粒子検出センサにおける反射体と投光素子と受光素子と検知領域との位置関係を説明するための図である。 図8Aは、実施の形態2に係る粒子検出センサにおける第1遮光体周辺の構成を示す拡大断面図である。 図8Bは、実施の形態2に係る粒子検出センサにおける第2遮光体周辺の構成を示す拡大断面図である。 図9は、実施の形態2に係る粒子検出センサにおける投光素子から出射して検知領域に向かう光の光路を説明するための図である。 図10の(a)は、実施の形態3に係る粒子検出センサの上面図、図10の(b)は、同粒子検出センサの正面図、図10の(c)は、同粒子検出センサの下面図、図10の(d)は、図10の(a)のA-A線における同粒子検出センサの断面図である。 図11Aは、比較例2の粒子検出センサの断面図である。 図11Bは、図11Aに示す比較例2の粒子検出センサの内部を清掃するときの様子を示す同粒子検出センサの要部拡大断面図である。 図12は、実施の形態3の変形例1に係る粒子検出センサの構成を示す断面図である。 図13は、実施の形態3の変形例2に係る粒子検出センサの構成を示す断面図である。 図14は、実施の形態3の変形例3に係る粒子検出センサの構成を示す断面図である。 図15の(a)は、実施の形態3の変形例4に係る粒子検出センサの上面図、図15の(b)は、同粒子検出センサの正面図、図15の(c)は、同粒子検出センサの下面図、図15の(d)は、図15の(a)のA-A線における同粒子検出センサの断面図である。 図16Aは、実施の形態3の変形例4に係る粒子検出センサの筐体内を清掃(メンテナンス)するときの様子を示す斜視図である。 図16Bは、実施の形態3の変形例4に係る粒子検出センサの筐体内を清掃(メンテナンス)するときの様子を示す断面図である。 図17は、変形例1に係る粒子検出センサの概略構成を示す断面図である。 図18は、変形例1の他の形態に係る粒子検出センサの概略構成を示す断面図である。 図19は、変形例2に係る粒子検出センサの概略構成を示す断面図である。 図20は、変形例3に係る粒子検出センサの概略構成を示す断面図である。 図21は、変形例4に係る粒子検出センサの概略構成を示す断面図である。 図22は、変形例4の他の形態に係る粒子検出センサの概略構成を示す断面図である。 図23は、変形例5に係る粒子検出センサの概略構成を示す断面図である。 図24は、変形例6に係る粒子検出センサの概略構成を示す断面図である。 図25の(a)は、変形例7に係る粒子検出センサの上面図、図25の(b)は、同粒子検出センサの正面図、図25の(c)は、同粒子検出センサの下面図、図25の(d)は、図25の(b)のB-B線における同粒子検出センサの断面図である。 図26は、粒子検出センサを備える煙感知器の外観図である。 図27は、粒子検出センサを備える空気清浄機の外観図である。 図28は、粒子検出センサを備える換気扇の外観図である。 図29は、粒子検出センサを備えるエアコンの外観図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 まず、実施の形態1に係る粒子検出センサ1の構成について、図1を用いて説明する。図1は、実施の形態1に係る粒子検出センサ1の構成を示す図であり、(a)は上面図、(b)は正面図、(c)は下面図、(d)は(a)のA-A線における断面図である。なお、本実施の形態では、図1(d)における大気排出孔36から大気導入孔35に向かう方向を鉛直下方(重力方向)としている。
 図1に示すように、粒子検出センサ1は、投光素子10と受光素子20とを備える光電式センサであって、検知領域(光拡散部)DAにおける粒子による投光素子10からの光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出するものである。
 本実施の形態における粒子検出センサ1は、さらに、筐体(ケース)30と、反射面を有する反射体40と、気体を加熱する加熱装置50とを有する。反射体40及び加熱装置50は、筐体30内に配置される。
 投光素子10は、所定の波長の光を発する光源(発光部)であり、例えば、LEDや半導体レーザ等の固体発光素子である。投光素子10としては、赤外光、青色光、緑色光、赤色光又は紫外光を発する発光素子を用いることができる。この場合、2波長以上の混合波を発するように構成してもよい。
 なお、投光素子10の発光波長が短いほど、粒径の小さな粒子を検出しやすくなる。また、投光素子10の発光制御方式は特に限定されるものではなく、投光素子10から出射する光は、DC駆動による連続光又はパルス光等とすることができる。また、投光素子10の出力の大きさは、時間的に変化していてもよい。
 受光素子20は、光を受ける受光部であり、例えば、フォトダイオード、フォトICダイオード、フォトトランジスタ、又は、高電子倍増管等、光を受けて電気信号に変換する素子(光検出器)である。
 図1(d)に示すように、投光素子10及び受光素子20は、筐体30内に配置される。筐体30は、投光素子10及び受光素子20を保持するように構成されている。本実施の形態において、投光素子10及び受光素子20は、それぞれの光軸を交差させる形で筐体30内に配置されている。
 受光素子20での受光感度を大きくするには、検知領域DAの粒子の散乱光のうち前方散乱光を多く取得するとよい。この場合、投光素子10の光軸と受光素子20の光軸とを一致させることによって前方散乱光を容易に取得することができるが、単に投光素子10と受光素子20との光軸を一致させただけでは、受光素子20には前方散乱光以外に投光素子10からの直接光が入射してしまうことになり、粒子の検出精度が低下してしまう。
 このため、本実施の形態では、投光素子10及び受光素子20の各々の光軸を交差させている。一例として、投光素子10の光軸と受光素子20の光軸とのなす角は60度(120度)である。
 このように、投光素子10及び受光素子20の各々の光軸を交差させることによって、投光素子10からの直接光の影響を受けることなく、前方散乱光に近い部分の側方散乱光を取得できるので、粒子の検出精度の低下を抑制できる。
 図1の(a)~(c)に示すように、筐体30の外形は、一例として扁平直方体である。筐体30は、第1筐体部30a(蓋部)と第2筐体部30bとの2つの部材によって構成されている。第2筐体部30bからは、複数のリード線11、21及び51が露出している。リード線11、21及び51は、それぞれ、投光素子10、受光素子20及び加熱装置50と電気的に接続されている。
 筐体30には、投光素子10の光が投光される空間領域である投光領域31と、検知領域DAにおいて投光素子10の光が粒子に当たって発生した散乱光を受光素子20に導くための空間領域である受光領域32(拡散光導入部)と、粒子を含む気体(大気等)が流れる空間領域である粒子流路33と、トラップ部34とが設けられている。
 投光領域31、受光領域32、粒子流路33及びトラップ部34の各々は、筐体30における空間領域である。投光領域31は、投光素子10から検知領域DAまでの空間領域である。受光領域32は、検知領域DAから受光素子20までの空間領域である。
 例えば、図1(d)に示すように、投光領域31、受光領域32及びトラップ部34の各々は、周囲が筐体30の内面(内壁)で囲まれた略円筒状又は略角筒状の有底筒状の空間領域であり、粒子流路33との接続部分に開口部を有している。つまり、投光領域31、受光領域32及びトラップ部34の各々は、各開口部が粒子流路33に向かって開口しており、各開口部において粒子流路33と接続されている。本実施の形態において、投光領域31、受光領域32及びトラップ部34の各々の開口部は、検知領域DAに向かって開口している。
 粒子流路33は、粒子を含む大気(気体)が流れる領域である。具体的には、粒子流路33は、筐体30内に導入された気体が通過する気体通過領域であり、周囲が筐体30の内面(内壁)で囲まれた空間領域である。つまり、粒子流路33は、検知領域DAを含む空間領域であり、大気導入孔35から導入した大気が検知領域DAを通って大気排出孔36から排出されるまでの筐体30内の空間領域である。
 本実施の形態において、粒子流路33は、略円筒状又は略角筒状の筒状空間領域であり、検知領域DA全体を含んでいる。また、粒子流路33は、大気導入孔35から大気排出孔36に向かって真っ直ぐな流路となっており、その途中で、投光領域31、受光領域32及びトラップ部34と接続されている。
 また、投光領域31、受光領域32、粒子流路33及びトラップ部34における筐体30の内面(壁面)は、迷光を吸収させるために黒色であるとよい。例えば、筐体30を黒色の樹脂成型品であり、内部に露出部分は少なくとも黒色表面となっている。また、筐体30の内面にシボ加工などの表面処理を行うことによって迷光を吸収させるように構成されていてもよい。
 検知領域DAは、測定対象の気体に含まれる粒子(エアロゾル)を検知するための領域であるエアロゾル検知領域(エアロゾル測定部)である。検知領域DAは、粒子流路33内に存在するように設定されており、本実施の形態では、投光領域31と受光領域32とが粒子流路33で重なる領域である。具体的には、検知領域DAは、投光素子10の光軸と受光素子20の光軸とが交差する交点を含む領域である。測定対象の気体は、大気導入孔35から粒子流路33を通って検知領域DAに導かれる。検知領域DAは、例えばφ2mmである。
 トラップ部34は、投光素子10の光のうち検知領域DAで粒子に当たらずに検知領域DAを通過した光が筐体30内で反射及び散乱して受光素子20で受光されてしまうことを防止する構造を有する。具体的に、トラップ部34は、光トラップ構造を有し、トラップ部34の内部に一旦進入した光がトラップ部34から出て行かないような光吸収構造を有する。例えば、トラップ部34における筐体30の内面には、多重反射させて光を吸収させるための複数の黒色突起が設けられる。なお、トラップ部34は、ラビリンス構造であってもよい。
 本実施の形態において、トラップ部34(光トラップ構造)は、投光素子10と対向する位置に設けられている。具体的には、トラップ部34の開口部が投光領域31の開口部に対向している。なお、本実施の形態において、トラップ部34は、投光素子10と対向する位置にのみ設けられているが、投光素子10及び受光素子20の両方と対向する位置に設けられていてもよいし、受光素子20と対向する位置にのみ設けられていてもよい。但し、受光素子20と対向する位置にのみトラップ部34を設ける場合、トラップ部34の内部に一旦進入した光が戻って行かないように、トラップ部34を貫通孔にする等の手段を設けるとよい。
 また、筐体30には、粒子流路33に大気を導入するための大気導入孔35と、粒子流路33から大気を排出するための大気排出孔(大気放出孔)36とが設けられている。
 大気導入孔35は、粒子検出センサ1の外部に存在する大気等の気体を粒子検出センサ1の内部(粒子流路33)に供給するための大気供給口(大気流入口)であり、筐体30における大気の入口である。
 一方、大気排出孔36は、粒子検出センサ1の内部(粒子流路33)の大気を粒子検出センサ1の外部に排出するための大気排気口(大気流出口)であり、筐体30における大気の出口である。
 大気導入孔35は、粒子流路33の一方に繋がっており、大気排出孔36は、粒子流路33の他方に繋がっている。これにより、粒子を含む大気(測定対象の気体)は、大気導入孔35から筐体30内に導入されて粒子流路33を通って検知領域DAに流入され、大気排出孔36から筐体30外に排出される。本実施の形態では、効率良く筐体30内に気体を導入して排気するために、大気導入孔35の方が大気排出孔36よりも開口面積が大きくなっている。
 また、本実施の形態において、投光領域31には、投光レンズ(発光レンズ)31aが設けられている。投光レンズ31aは、投光素子10の前方に配置されており、投光素子10から出射する光(投光ビーム)を検知領域DAに向けて進行させるように構成されている。つまり、投光素子10から出射する光は投光レンズ31aを介して検知領域DAに到達する。投光レンズ31aは、例えば、透明樹脂レンズ又はガラスレンズである。
 投光レンズ31aは、投光素子10から出射する光を検知領域DAに向けてコリメートさせるコリメートレンズであってもよいし、投光素子10から出射する光を検知領域DAに集光させる集光レンズであってもよいが、投光レンズ31aとしては、検知領域DAにおいて投光素子10の光強度を大きくするようなレンズを用いるとよい。また、検知領域DA内の場所によって光強度が異なると、同じ粒径の粒子であっても検知領域DA内の場所によって散乱光の強度が異なってしまうので、投光レンズ31aとしては、投光素子10の光の強度分布が検知領域DA全体で均一になるようなレンズを用いるとよい。さらに、投光素子10の光が筐体30の壁面に反射すると無用な反射光及び散乱光が発生することになるので、投光レンズ31aとしては、投光素子10の光が投光領域31における筐体30の壁面に反射することなく直接検知領域DAに到達するようなレンズを用いるとよい。なお、投光レンズ31aは、設けなくてもよい。
 また、本実施の形態において、投光領域31には発光絞り部31bが設けられている。発光絞り部31bは、投光レンズ31aを通過した後の投光素子10の光を絞って不要な光を遮蔽して集光径を小さくする。発光絞り部31bは、樹脂等からなり、投光領域31の内壁に所定の形状で形成されている。発光絞り部31bは、各々が円形や多角形などの開口(スリット)を有する複数の光学絞りからなる。本実施の形態において、発光絞り部31b(光学絞り)は、投光領域31の内壁から突出するように形成されている。発光絞り部31b(光学絞り)は、樹脂等からなり、筐体30と一体成型されていてもよいし、筐体30と別体であってもよい。
 反射体40(反射板)は、検知領域DAにおける粒子による投光素子10の光の散乱光を反射して当該散乱光を受光素子20に導く反射部材である。本実施の形態において、反射体40は、粒子の散乱光を反射して受光素子20に集光させている。より具体的には、反射体40は、粒子の散乱光を受光素子20に向けて反射している。
 図1(d)に示すように、本実施の形態では、反射体40は、受光領域32に設けられている。具体的には、反射体40は、受光領域32における筐体30の内面に沿って設けられた集光ミラーであり、反射面である内面が曲面となっている。図1(d)に示すように、反射体40の内面は、回転楕円体の回転面の一部である。つまり、反射体40は、内面(反射面)の形状が回転楕円面の一部の形状をなす楕円ミラーであり、反射体40の内面の断面形状は楕円の一部である。反射体40の内面は、主に正反射特性をもつ平滑面あるいは鏡面であるが、これに限るものではない。
 また、反射体40は、粒子流路33に向かって開口する開口部を有する。具体的には、反射体40の開口部は、検知領域DAに向かって開口している。本実施の形態において、反射体40の開口部は、受光領域32の開口部と略一致している。つまり、反射体40は、受光領域32の開口部近傍まで設けられている。
 反射体40としては、ベース部材の表面そのものが反射面となるようにベース部材そのものを金属等の反射材料で構成してもよいし、樹脂や金属のベース部材の表面に反射面となる反射膜を形成してもよい。
 反射膜としては、アルミニウム、金、銀や銅等の金属反射膜、鏡面反射膜、又は、誘電体多層膜等を用いることができる。反射膜としては、吸収率が小さく、高い反射率を有するものがよい。また、反射膜として、蒸着等で形成したアルミニウム膜の表面に当該アルミニウム膜よりも薄い薄膜を積層したものを用いてもよい。アルミニウム膜に積層する薄膜としては、例えば、MgF膜、SiO膜、SiO膜、AlN膜、アルミナ膜、又は、増反射膜等が用いられる。このように、アルミニウム膜にこれらの薄膜を積層することによって、アルミニウム膜の劣化(腐食等)を抑制したり光増幅による光学特性を向上させたりすることができる。
 加熱装置50は、大気を加熱するヒータである。加熱装置50は、粒子流路33内に流れる気体の流れを促進させるための気流を発生させる気流発生装置として機能する。つまり、加熱装置50によって大気を加熱することで、粒子を含む大気を検知領域DAに導入しやすくできる。加熱装置50は、例えば、低コストで入手可能なヒータ抵抗等である。
 図1(d)に示すように、本実施の形態において、加熱装置50は、粒子流路33内に配置されている。つまり、加熱装置50は、粒子流路33内の気体を加熱する。なお、加熱装置50は、大気導入孔35の近傍に配置されている。
 また、加熱装置50は、検知領域DAの鉛直下方に配置されている。これにより、加熱装置50がヒータ抵抗である場合、ヒータ抵抗に電圧を印加するとヒータ抵抗が発熱してヒータ抵抗の周囲の大気が加熱されて密度が小さくなり、重力とは逆方向の鉛直方向に移動する。つまり、加熱装置50によって粒子流路33内の気体を加熱すると、上方向の気流(上昇気流)を発生させることができる。
 このように、加熱装置50によって粒子流路33内の気体を加熱することによって、筐体30(粒子流路33)内に測定対象の気体(大気)を容易に引き込むことができるので、加熱装置50を設けない場合と比べて、粒子検出センサ1内に多くの粒子を取り込むことができる。したがって、粒子流路33に含まれる検知領域DAにおける単位体積あたりの粒子数を多くすることができるので、感度を高くすることができる。
 なお、加熱装置50が動作していない状態でも、大気導入孔35と大気排出孔36との間において気体は粒子流路33内を通過することができる。つまり、加熱装置50が動作していない場合でも、気体中に含まれる粒子を検出することは可能である。
 次に、本実施の形態における粒子検出センサ1の動作について、図2A、図2B及び図2Cを用いて説明する。図2A~図2Cは、それぞれ、気体中に粒子が存在しない場合、気体中に粒径の小さい粒子が存在する場合及び気体中に粒径の大きい粒子が存在する場合における粒子検出センサ1の動作を説明するための断面図である。
 加熱装置50を動作させて粒子流路33に気流を発生させると、大気導入孔35から粒子検出センサ1内に気体が引き込まれ、当該気体は、粒子流路33を経由して検知領域DAに導かれる。
 この場合、図2Aに示すように、粒子検出センサ1内に導入された気体に粒子(エアロゾル)が存在しない場合、つまり、検知領域DAに粒子が流入しない場合は、投光素子10から出射した光は検知領域DAを通過してそのまま直進するので、粒子による散乱光が発生しない。したがって、この場合、基本的には受光素子20の反応がないので、粒子検出センサ1内に導入された気体中に粒子が存在しないことが分かる。
 なお、この場合、検知領域DAを通過して直進した光が筐体30の中で反射して迷光となって受光素子20に入射する場合があるが、受光素子20で検出される光強度は、検知領域DAに粒子が存在する場合と比べて小さい。したがって、粒子検出センサ1内に導入された大気中に粒子が存在しないことが分かる。また、本実施の形態では、トラップ部34が設けられているので、検知領域DAを通過して直進した光は、トラップ部34で減衰吸収される。これにより、検知領域DAを通過して直進した光が迷光となって受光素子20に入射することを抑制できる。
 また、図2Bに示すように、粒子検出センサ1内に導入した気体に粒径の小さい粒子(エアロゾル)P1が存在する場合、つまり、検知領域DAに粒径の小さい粒子P1が流入した場合は、投光素子10の光は検知領域DAに存在する粒子P1に当たって散乱し、当該散乱光は直接又は反射体40で反射して受光素子20に入射する。受光素子20に光が入射すると所定の信号の出力があるので、粒子検出センサ1内に導入された気体中に粒子が存在することが分かる。
 この場合、受光素子20によって検出される散乱光の光強度は比較的に小さいので、粒子検出センサ1内に導入した気体中には粒径の小さい粒子が存在することが分かる。
 また、図2Cに示すように、粒子検出センサ1内に導入した気体に粒径の大きい粒子(エアロゾル)P2が存在する場合、つまり、検知領域DAに粒径の大きい粒子P2が流入した場合も、投光素子10の光は検知領域DAに存在する粒子P2に当たって散乱し、当該散乱光は直接又は反射体40で反射して受光素子20に入射する。受光素子20に光が入射すると所定の信号の出力があるので、この場合も、粒子検出センサ1内に導入された気体中に粒子が存在することが分かる。
 この場合、受光素子20によって検出される散乱光の光強度は比較的に大きいので、粒子検出センサ1内に導入した気体中には粒径の大きい粒子P2が存在することが分かる。
 このように、粒子による散乱光によって粒子検出センサ1内に導入された気体に粒子が含まれるか否か(粒子の有無)を検知することができる。つまり、気体中の粒子を検出することができる。
 また、受光素子20で受光した信号の大きさ、つまり、粒子による散乱光の光強度の大きさによって、粒子の大きさ(粒径)を判別することができる。
 さらに、受光素子20で検出される信号の出力の1つ1つ、つまり、粒子による散乱光の光強度のピーク1つ1つは、粒子の1つ1つに対応するので、粒子検出センサ1内に導入された気体の中の粒子の個数(量)も算出することができる。
 次に、本実施の形態における粒子検出センサ1の作用効果について、比較例1の粒子検出センサ100と比較しながら、図3及び図4を用いて説明する。図3は、比較例1の粒子検出センサ100の断面図であり、図4は、実施の形態1に係る粒子検出センサ1の断面図である。
 図3に示すように、比較例1の粒子検出センサ100では、受光領域32に反射体が設けられておらず、受光レンズ(集光レンズ)140が設けられている。これにより、受光レンズ140による制約が大きくなり、例えば、受光レンズ140の光軸と受光素子20の光軸とを一致させる必要がある。また、受光レンズ140の形状も、その機能から変更できる自由度が小さく、例えば、レンズ光軸に対して対称形状となっている。これらのことから、図3に示すように、受光レンズ140を用いた場合では、検知領域DAを基準とする受光レンズ140への見込み角が小さくなる。
 しかも、レンズによる集光では、そもそも原理的に180°以上の光を取ることができず、また、様々な方向からの散乱光も取ることができない。さらに、レンズの焦点が検知領域DAとなるので、検知領域DAは小さい。
 したがって、受光レンズ140のみで散乱光を集光する比較例1の粒子検出センサ100では、散乱光の受光感度が低い。
 特に、気体中に浮遊する粒子には、PM2.5(微小粒子状物質)等の粒径の小さな微粒子も存在する。このような微粒子を検出するには、粒子検出センサとしては、例えば粒径が0.3μm以下の粒子を検出できる精度が要求される。
 粒子検出センサの粒子検出精度を向上させるには、例えば、ファンを設けることが考えられる。つまり、ファンによって粒子の流れを速くし、単位時間当たりに粒子検出センサ内に入る粒子の量を増やすことで、粒径の小さな微粒子の検出精度を向上させることが考えられる。
 しかしながら、ファンを設けると、粒子検出センサ全体のコストが高くなったり粒子検出センサが大型化したりする。
 一方、ファンを設けるのではなく、低コストかつ省スペースであるヒータ抵抗等の加熱装置を設けることによって気流を発生させることも考えられる。
 しかしながら、加熱装置の場合では、ファンの場合と比べて流速が遅く、それほど検出精度を高くすることができない。このため、PM2.5等の粒径の小さな微粒子を精度よく検出することができない。
 これに対して、本実施の形態における粒子検出センサ1は、図4に示すように、検知領域DAにおける粒子による散乱光を反射して当該散乱光を受光素子20に導くための反射体40を有している。
 これにより、レンズの場合と比べて、検知領域DAの粒子によって発生する散乱光を、より多く受光素子20に入射させることが可能となる。つまり、反射体40は、レンズと比べて設計自由度が大きいので、より多くの散乱光を受光素子20に導けるように形状を決めることができる。
 例えば、図4に示すように、反射体40の開口部を受光領域32の開口部のぎりぎりまで延ばすことができ、検知領域DAを基準とする反射体40への見込み角を大きくすることができる。また、反射体40の光軸(受光素子20の光軸)に対して見込み角を対称にすることなく反射体40の形状を決めることもできるので、反射体40の形状を自由に変更することができる。
 このように、本実施の形態における粒子検出センサ1では、図3に示す比較例1と比べて、散乱光を集める立体角を大きくすることができるので散乱光の受光感度を高くすることが可能となり、検知領域DAを大きくすることができる。
 このため、気流がゆっくりであっても、粒子は検出領域DAを通過しやすくなる。特に、粒径の小さな粒子の場合、図3に示す比較例1では、検出領域DAを通過する粒子の確率は小さいが、図4に示す本実施の形態では、検出領域DAを通過する粒子の確率が格段に向上し、受光感度も高くなる。したがって、粒径の小さな微粒子を精度よく検出することができる。
 以上、本実施の形態に係る粒子検出センサ1は、反射体40を備えているので、受光領域32にレンズを設ける場合と比べて受光感度を高くすることができる。これにより、ヒータ抵抗等の加熱装置50によって生じさせることのできる程度の気流であったとしても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。したがって、加熱装置50を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒子が、ホコリであるか、花粉であるか、煙であるかを判別できるだけではなく、PM2.5(微小粒子状物質)のように粒径の小さな微粒子までも判別することができる。
 このように、本実施の形態に係る粒子検出センサ1によれば、低コストかつ小型でありながら、高精度の粒子検出センサを実現することができる。
 さらに、本実施の形態では、反射体40の内面が回転楕円体の回転面の一部をなしている。これにより、検知領域DAの粒子によって発生する散乱光の多くを受光素子20に入射させることができるので、感度を一層高くすることができる。
 ここで、反射体40について、当該反射体40と受光素子20と検知領域DAとの位置関係及びその作用効果について、図5を用いて詳細に説明する。図5は、実施の形態1に係る粒子検出センサ1における反射体40と受光素子20と検知領域DAとの位置関係を説明するための図である。
 図5に示すように、本実施の形態における反射体40は、内面が回転楕円体の回転面の一部をなしており、反射体40の内面の断面形状は、楕円の一部となっている。そして、反射体40は、回転楕円体を構成する楕円における2つの焦点F1及びF2のうちの一方の焦点F1(第1の焦点)が検知領域DA内に存在するように配置されている。また、受光素子20は、当該楕円における他方の焦点F2(第2の焦点)近傍に配置されている。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数(1回又は数回)で受光素子20に入射させることができる。つまり、多重反射による光の減衰を回避できる。したがって、受光素子20における受光効率を高めることができるので、感度を一層高くすることができる。
 さらに、受光素子20における受光効率を高くできることから、受光素子20として小型の検出器等を用いることができる。つまり、受光素子20として、特段受光面の大きい光検出器を用いる必要がない。
 しかも、本実施の形態における粒子検出センサ1によれば、ヒータ加熱により大気を導入するヒータ方式が採用されているので、簡単で低コストのセンサを実現できる。
 (実施の形態2)
 次に、実施の形態2に係る粒子検出センサ2の構成について、図6を用いて説明する。図6は、実施の形態2に係る粒子検出センサ2の構成を示す図であり、(a)は上面図、(b)は正面図、(c)は下面図、(d)は(a)のA-A線における断面図である。なお、本実施の形態でも、図6(d)における大気排出孔36から大気導入孔35に向かう方向を鉛直下方(重力方向)としている。
 図6に示すように、本実施の形態における粒子検出センサ2は、実施の形態1における粒子検出センサ1と同様に、投光素子10と受光素子20とを備える光電式センサであって、検知領域(光散乱部)DAにおける粒子による投光素子10からの光の散乱光を受光素子20で受光することにより大気中に含まれる粒子を検出するものである。
 本実施の形態における粒子検出センサ2は、さらに、筐体30と、筐体30内に配置された、反射体40、加熱装置50、第1遮光体61、第2遮光体62、投光絞り部71、投光反対絞り部72、受光反対絞り部73、第1保護板81及び第2保護板82とを備える。
 本実施の形態でも、投光素子10及び受光素子20の各々の光軸を交差させているが、本実施の形態では、投光素子10の光軸と受光素子20の光軸とのなす角は120度(60度)にしている。
 本実施の形態において、筐体30には、投光領域31と、受光領域32と、粒子流路33と、投光トラップ部34a(第1トラップ部)と、受光トラップ部34b(第2トラップ部)とが設けられている。
 投光領域31、受光領域32、粒子流路33、投光トラップ部34a及び受光トラップ部34bの各々は、周囲が筐体30の内面(内壁)で囲まれた空間領域であり、粒子流路33との接続部分に開口部を有している。投光領域31、受光領域32、投光トラップ部34a及び受光トラップ部34bの各々の開口部は、検知領域DAに向かって開口している。
 投光領域31、受光領域32、粒子流路33、投光トラップ部34a及び受光トラップ部34bにおける筐体30の内面(壁面)は、迷光を吸収させるために黒色であるとよい。例えば、筐体30を黒色の樹脂成型品にすることで、筐体30の内面を黒色面にすることができる。
 本実施の形態において、投光領域31には、投光絞り部(発光絞り部)71が設けられている。投光絞り部71(第1絞り部)は、投光レンズ31aを通過した後の光を絞って不要な光を遮蔽して集光径を小さくする。投光絞り部71を設けることによって迷光を防ぐことができ、粒子の検出精度を向上させることができる。
 投光絞り部71は、各々が円形や多角形などの開口(スリット)を有する複数の光学絞りからなる。本実施の形態において、投光絞り部71(光学絞り)は、投光領域31の内壁から突出するように形成されている。投光絞り部71(光学絞り)は、樹脂等からなり、筐体30と一体成型されていてもよいし、筐体30と別体であってもよい。
 また、投光絞り部71における光学絞りの開口の端部(端面)は、当該光学絞りの光軸を含む断面において2つの直線によって鋭角をなしており、当該2つの直線の一方を含む面(平面又は曲面等)は、入射する光を検知領域DA以外の方向に反射させる反射面である。これにより、迷光を防ぐことができるので、粒子の検出精度を向上させることができる。
 投光トラップ部34a及び受光トラップ部34bは、光トラップ構造を有しており、投光トラップ部34a及び受光トラップ部34bの内部に一旦進入した光が投光トラップ部34a及び受光トラップ部34bから出て行かないような光吸収構造を有する。投光トラップ部34a及び受光トラップ部34bは、例えば、投光トラップ部34a及び受光トラップ部34bの内部に進入した光を多重反射させて吸収する。投光トラップ部34a及び受光トラップ部34bを設けることによって、筐体30内の迷光を吸収することができる。これにより、粒子の検出精度を向上させることができる。なお、投光トラップ部34a及び受光トラップ部34bは、ラビリンス構造であってもよい。
 具体的には、投光トラップ部34aは、投光素子10から出射する光のうち検知領域DAで粒子に当たらずに検知領域DAを通過した光が筐体30内で反射及び散乱して受光素子20で受光されてしまうことを防止する構造を有する。投光トラップ部34aは、検知領域DAを挟んで投光素子10と対向する位置に設けられている。
 投光トラップ部34aには、投光反対絞り部72(第2絞り部)が設けられている。つまり、投光反対絞り部72は、検知領域DAを挟んで投光素子10の反対側に設けられている。投光反対絞り部72を設けることによって迷光を防ぐことができ、粒子の検出精度を向上させることができる。
 投光反対絞り部72は、各々が円形や多角形などの開口(スリット)を有する複数の光学絞りからなる。本実施の形態において、投光反対絞り部72(光学絞り)は、投光トラップ部34aの内壁から突出するように形成されている。投光反対絞り部72(光学絞り)は、樹脂等からなり、筐体30と一体成型されていてもよいし、筐体30と別体であってもよい。
 また、投光反対絞り部72における光学絞りの開口の端部(端面)は、2つの平面によって鋭角をなしており、当該2つの平面の一方の面は、入射する光を検知領域DA以外の方向に反射させる反射面である。つまり、投光反対絞り部72における光学絞りの開口の端部(端面)は、当該光学絞りの光軸を含む断面において2つの直線によって鋭角をなしており、当該2つの直線の一方を含む面(平面又は曲面等)は、入射する光を検知領域DA以外の方向に反射させる反射面である。これにより、迷光を防ぐことができるので、粒子の検出精度を向上させることができる。
 本実施の形態において、投光トラップ部34aにおける投光反対絞り部72の奥側には、光を検知領域DA側とは反対側に導く曲面が形成されている。これにより、投光トラップ部34aの内部に一旦進入した光を、投光トラップ部34aから出て行きにくくすることができる。この結果、迷光を防ぐことができるので、粒子の検出精度を向上させることができる。
 一方、受光トラップ部34bは、検知領域DAにおける粒子の散乱光のうち受光素子20(受光領域32)とは反対側に進行する光が筐体30内で反射及び散乱して受光素子20で受光されてしまうことを防止する構造を有する。受光トラップ部34bは、検知領域DAを挟んで受光素子20と対向する位置に設けられている。
 受光トラップ部34bには、受光反対絞り部73(第3絞り部)が設けられている。つまり、受光反対絞り部73は、検知領域DAを挟んで受光素子20の反対側に設けられている。受光反対絞り部73を設けることによって迷光を防ぐことができ、粒子の検出精度を向上させることができる。
 受光反対絞り部73は、投光反対絞り部72と同様に、各々が円形や多角形などの開口(スリット)を有する複数の光学絞りからなる。本実施の形態において、受光反対絞り部73(光学絞り)は、受光トラップ部34bの内壁から突出するように形成されている。受光反対絞り部73(光学絞り)は、樹脂等からなり、筐体30と一体成型されていてもよいし、筐体30と別体であってもよい。
 また、受光反対絞り部73における光学絞りの開口の端部(端面)は、当該光学絞りの光軸を含む断面において2つの直線によって鋭角をなしており、当該2つの直線の一方を含む面(曲面又は平面等)は、入射する光を検知領域DA以外の方向に反射させる反射面である。これにより、迷光を防ぐことができるので、粒子の検出精度を向上させることができる。
 本実施の形態において、受光トラップ部34bにおける受光反対絞り部73の奥側には、光を検知領域DA側とは反対側に導く曲面が形成されている。これにより、受光トラップ部34bの内部に一旦進入した光を、受光トラップ部34bから出て行きにくくすることができる。この結果、迷光を防ぐことができるので、粒子の検出精度を向上させることができる。
 本実施の形態でも、受光領域32には反射体40が配置されている。反射体40によって、検知領域DAにおける粒子の散乱光が受光素子20に導かれる。なお、本実施の形態では、反射体40の開口部側の端部が第1保護板81に接触している。
 ここで、本実施の形態における粒子検出センサ2において、反射体40と投光素子10と受光素子20と検知領域DAとの位置関係及びその光学作用について、図7を用いて詳細に説明する。図7は、実施の形態2に係る粒子検出センサ2における反射体40と投光素子10と受光素子20と検知領域DAとの位置関係を示す図である。
 図7に示すように、本実施の形態における反射体40も、楕円ミラーとなっており、回転楕円体によって構成されている。また、実施の形態1と同様に、反射体40は、当該回転楕円体を構成する楕円における2つの焦点F1及びF2のうちの一方の焦点F1(第1の焦点)が検知領域DA内に存在するように、かつ、他方の焦点F2(第2の焦点)が受光素子20の近傍に存在するように配置されている。つまり、受光素子20は、当該楕円における焦点F2の近傍に配置されている。
 このように、焦点F1を検知領域DAに対応させるとともに焦点F2を受光素子20に対応させることによって、検知領域DAの粒子によって発生する散乱光を、少ない反射回数(1回又は数回)で受光素子20に入射させることができる。つまり、多重反射による光の減衰を回避できる。したがって、受光素子20における受光効率を高めることができる。
 そして、図7に示すように、本実施の形態では、投光素子10からの光が投光レンズ31aによって焦点F1に集光するように設定されている。つまり、投光レンズ31aから出射する光の集光点は、焦点F1に一致している。例えば、投光レンズ31aが凸レンズ等の集光レンズである場合は、投光レンズ31aの焦点を反射体40(楕円ミラー)の焦点F1に一致させればよい。また、投光レンズ31aがコリメートレンズである場合は、投光レンズ31aから出射する光を投光絞り部71によって焦点F1に集光させればよい。
 このように、投光レンズ31aから出射する光の集光点を、反射体40の楕円の焦点F1に一致させることによって、光の密度が大きくとることができ、検知領域DAにおける粒子の散乱光が大きくなる。したがって、粒子の検出精度を向上させることができる。
 なお、本実施の形態では、検知領域DAと受光素子20との間に第2保護板82が配置されているので、第2保護板82の屈折率を考慮した上で、反射体40の焦点位置に検知領域DAと受光素子20とを配置するとよい。
 図6(d)に戻り、本実施の形態において、加熱装置50は、第1遮光体61と大気導入孔35との間に配置されており、かつ、大気導入孔35を覆うように配置されている。また、大気導入孔35と、加熱装置50と、第1遮光体61と、検知領域DAと、第2遮光体62と、大気排出孔36とは、同一直線上に存在するように配置されている。
 第1遮光体61及び第2遮光体62は、加熱装置50から放出される光(ヒータ光)及び当該粒子検出センサ2の外部から内部に進入する光(外光)の少なくとも一方を遮光する。加熱装置50から放出される光ヒータ光には、可視光及び赤外光が含まれる。第1遮光体61及び第2遮光体62は、筐体30と同一材料によって筐体30と一体成型されているが、筐体30と別体でもよい。
 ここで、図6(d)を参照しながら図8A及び図8Bを用いて第1遮光体61及び第2遮光体62を詳細に説明する。図8Aは、実施の形態2に係る粒子検出センサ2における第1遮光体61周辺の構成を示す拡大断面図であり、図8Bは、同粒子検出センサ2における第2遮光体62周辺の構成を示す拡大断面図である。
 図6(d)及び図8Aに示すように、第1遮光体61は、ヒータ光を遮蔽するヒータ光遮蔽体であり、加熱装置50と検知領域DAとの間に配置されている。本実施の形態における第1遮光体61は、さらに、大気導入孔35を介して当該粒子検出センサ2の外部から内部に進入する光(外光)も遮蔽する入口外光遮蔽体でもある。
 本実施の形態において、第1遮光体61は、第1遮光壁61aと第2遮光壁61bとによって構成されている。第1遮光壁61aと第2遮光壁61bは、加熱装置50から検知領域DAに向かう方向に並んで配置されている。このようにヒータ光及び外光を遮光することによって、粒子の検出精度を向上させることができる。
 第1遮光壁61aは、加熱装置50に対向するように配置されている。第2遮光壁61bは、第1遮光壁61a及び加熱装置50の側部を囲むように、かつ、第1遮光壁61aの検知領域DA側の面の一部を覆うように略箱状に形成されている。また、第2遮光壁61bは、検知領域DAに対向する位置に設けられた開口を有する。第1遮光壁61aは、第2遮光壁61bの開口を覆うように設けられている。なお、第1遮光壁61a及び第2遮光壁61bは、粒子検出センサ2内に導入した大気を検知領域DAに導くことができるように設けられている。
 第1遮光体61をこのように構成することにより、大気導入孔35から筐体30に導入された粒子は、加熱装置50及び第1遮光壁61aの各々の両側部と第2遮光壁61bの内側面との2つの間を通って第2遮光壁61bの開口を介して検知領域DAに進むことになる。つまり、第1遮光体61における粒子流路33は、大気導入孔35の入口付近で一旦2つに分岐されて第1遮光壁61aの検知領域DA側の面で再び1つに合流する流路となっている。これにより、ヒータ光や外光が検知領域DAに進入することを抑制しつつ、粒子検出センサ2内に導入した大気を検知領域DAにきちんと導くことができる。
 また、第2遮光体62は、図6(d)及び図8Bに示すように、大気排出孔36を介して当該粒子検出センサ2の外部から内部に進入する光(外光)を遮光する出口外光遮蔽体である。このように外光を遮光することによって、粒子の検出精度を向上させることができる。
 第2遮光体62は、検知領域DAから大気排出孔36に向かう方向に並んで配置された複数の遮蔽壁を有する。この複数の遮蔽体は、粒子検出センサ2の内部の大気を大気排出孔36から排出できるように構成されている。
 本実施の形態における第2遮光体62は、第1遮光壁62aと第2遮光壁62bと第3遮光壁62cとによって構成されている。第1遮光壁62aは、大気排出孔36に対向するように、かつ、大気排出孔36を覆うように配置されている。第2遮光壁62bは、第1遮光壁62aの側部を囲むように形成されている。本実施の形態において、第3遮光壁62cは、反射体40の側壁である。具体的には、第3遮光壁62cは、反射体40が配置される受光領域32の側壁である。第1遮光壁62a、第2遮光壁62b及び第3遮光壁62cは、粒子検出センサ2の内部の大気を大気排出孔36から排出できるように構成されている。
 第2遮光体62をこのように構成することにより、迷光や外光が検知領域DAに進入することを抑制しつつ、粒子検出センサ2から大気をきちんと排出することができる。
 また、図6(d)に示すように、第1遮光体61及び第2遮光体62はいずれも、検知領域DAの粒子による散乱光が第1遮光体61及び第2遮光体62に到達した場合に、当該散乱光が検知領域DAに反射することを抑制する形状となっている。例えば、第1遮光体61及び第2遮光体62は、検知領域DAにおける粒子の散乱光を検知領域DA以外の方向に反射させる反射面を有する。これにより、ヒータ光及び外光を遮光しつつ、検知領域DAに不要な光が進入することを抑制できるので、粒子の検出精度を一層向上させることができる。
 本実施の形態において、第1遮光体61では、第1遮光壁61aの検知領域DA側の面が、検知領域DAからの散乱光が入射したときに当該散乱光を大気導入孔35に導くような形状となっている。具体的には、第1遮光壁61aの検知領域DA側の面は、当該散乱光を大気導入孔35に導くように反射する反射面であり、例えば、図8Aに示すように、検知領域DAに向かって凸状をなす湾曲面である。つまり、第1遮光壁61aの検知領域DA側の面は、第2遮光壁61bに対向する部分(中央)から全方位に向かって鉛直下方に漸次落ち込む形状となっている。これにより、検知領域DAに迷光が進入することを抑制できるので、粒子の検出精度を一層向上させることができる。
 また、第1遮光壁61aの加熱装置50側の面(本実施の形態では、第1遮光壁61aの大気導入孔35側の面でもある)は、加熱装置50からのヒータ光及び大気導入孔35を介して筐体30の内部に進入する外光を大気導入孔35に導くような形状となっている。具体的には、第1遮光壁61aの加熱装置50側の面は、ヒータ光及び外光を大気導入孔35に導くように反射する反射面であり、本実施の形態では、検知領域DAに向かって凸状をなす湾曲面である。つまり、第1遮光壁61aの加熱装置50側の面は、中央から全方位に向かって鉛直下方に漸次落ち込む形状となっている。これにより、検知領域DAに不要な光が進入することを抑制できるので、粒子の検出精度をさらに向上させることができる。
 一方、第2遮光体62では、第1遮光壁62aの検知領域DA側の面が、検知領域DAからの散乱光が入射したときに当該散乱光を大気排出孔36に導くような形状となっている。具体的には、第1遮光壁62aの検知領域DA側の面は、当該散乱光を大気排出孔36に導くように反射する反射面であり、例えば、図8Bに示すように、検知領域DAに向かって凸状をなす湾曲面である。つまり、第1遮光壁62aの検知領域DA側の面は、中央から全方位に向かって鉛直上方に漸次せり上がる形状となっている。これにより、検知領域DAに迷光が進入することを抑制できるので、粒子の検出精度を一層向上させることができる。
 また、第1遮光壁62aの大気排出孔36側の面は、大気排出孔36を介して筐体30の内部に進入する外光を大気排出孔36に導くような形状となっている。具体的には、第1遮光壁62aの大気排出孔36側の面は、外光を大気排出孔36に導くように反射する反射面であり、本実施の形態では、検知領域DAに向かって凸状をなす湾曲面である。つまり、第1遮光壁62aの大気排出孔36側の面は、中央から全方位に向かって鉛直上方に漸次せり上がる形状となっている。これにより、検知領域DAに不要な光が進入することを抑制できるので、粒子の検出精度をさらに向上させることができる。
 図6(d)に戻り、第1保護板81は、粒子が投光領域31に入り込まないようにするための保護部材である。また、第2保護板82は、粒子が受光領域32に入り込まないようにするための保護部材である。第1保護板81及び第2保護板82の各々は、大気中に浮遊する粒子(ホコリ・花粉・煙・PM2.5等)が粒子検出センサ2の動作中及び非動作中に筐体30内に入ってきた場合に、当該粒子が投光領域31及び受光領域32の各々に入り込まないようにする。
 図6(d)に示すように、第1保護板81は、投光領域31の粒子流路33との接続部分となる開口部(投光領域31の開口部)を覆うように配置されている。同様に、第2保護板82は、受光領域32の粒子流路33との接続部分となる開口部(受光領域32の開口部)を覆うように配置されている。より具体的に、第2保護板82は、反射体40の開口端面を覆っている。投光領域31及び受光領域32の開口部を第1保護板81及び第2保護板82で覆うことによって、投光領域31及び受光領域32が閉じた空間領域となり、投光領域31及び受光領域32の内部にホコリ・花粉・煙等の粒子が入り込むことを防止できる。
 第1保護板81及び第2保護板82は、厚みが一様の平板状の透明板であり、例えば、ガラス、又は、ポリカーボネートやアクリル等の透明樹脂によって構成されている。一例として、第1保護板81及び第2保護板82は、屈折率が1.5以下で、厚みが200μm以下の透明板である。第1保護板81及び第2保護板82の全透過率は、フレネル反射を無視すれば、例えば99%以上である。
 なお、第2保護板82の表面で粒子の散乱光が散乱しないように、第2保護板82の表面は平滑面であるとよい。これにより、第2保護板82による散乱光の光路の位置ずれを小さくできる。
 このように構成される本実施の形態における粒子検出センサ2は、図2A、図2B及び図2Cで説明したように、実施の形態1における粒子検出センサ1と同様の動作によって粒子を検出することができる。
 以上、本実施の形態における粒子検出センサ2は、実施の形態1における粒子検出センサ1と同様に、反射体40を備えている。
 これにより、受光領域32にレンズを設ける場合と比べて受光感度を高くすることができる。したがって、加熱装置50を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒子が、ホコリであるか、花粉であるか、煙であるかを判別できるだけではなく、PM2.5(微小粒子状物質)のように粒径の小さな微粒子までも判別することができる。このように、本実施の形態に係る粒子検出センサ2でも、低コストかつ小型でありながら、高精度の粒子検出センサを実現することができる。
 また、本実施の形態における粒子検出センサ2では、加熱装置50から放出されるヒータ光及び粒子検出センサ1の外部から内部に進入する外光の少なくとも一方を遮光する遮光体を備えており、当該遮光体は、検知領域DAにおける粒子の散乱光が当該遮光体に到達した場合に、当該散乱光が検知領域DAに反射することを抑制する形状となっている。
 具体的には、粒子検出センサ2は、加熱装置50(ヒータ)から放出されるヒータ光及び大気導入孔35から粒子検出センサ2の内部に進入する外光を遮光する第1遮光体61と、大気排出孔36から粒子検出センサ2の内部に進入する外光を遮光する第2遮光体62とを備えている。
 これにより、ヒータ光及び外光を遮光することができるので、粒子の検出精度を向上させることができる。
 しかも、第1遮光体61及び第2遮光体62は、検知領域DAにおける粒子の散乱光が第1遮光体61及び第2遮光体62で反射して検知領域DAに向かうことを抑制する形状となっている。
 これにより、ヒータ光及び外光を遮光しつつ、検知領域DAに不要な散乱光(迷光)が進入することを抑制できるので、粒子の検出精度を一層向上させることができる。したがって、低コストでありながら、検出精度に優れたセンサを実現することができる。
 また、本実施の形態において、第1遮光体61(第1遮光壁61a)の検知領域DA側の面が、検知領域DAからの散乱光が入射したときに当該散乱光を大気導入孔35に導くような形状となっている。具体的には、第1遮光体61(第1遮光壁61a)の検知領域DA側の面は、当該散乱光を大気導入孔35に導くように反射する反射面である。
 これにより、検知領域DAに迷光が進入することを一層抑制できるので、粒子の検出精度を一層向上させることができる。
 同様に、第2遮光体62(第1遮光壁62a)の検知領域DA側の面が、検知領域DAからの散乱光が入射したときに当該散乱光を大気導入孔35に導くような形状となっている。具体的には、第2遮光体62(第1遮光壁62a)の検知領域DA側の面は、当該散乱光を大気排出孔36に導くように反射する反射面である。
 これにより、検知領域DAに迷光が進入することを一層抑制できるので、粒子の検出精度を一層向上させることができる。
 また、本実施の形態において、第1遮光体61(第1遮光壁61a)の加熱装置50側の面(大気導入孔35側の面)は、ヒータ光及び外光を大気導入孔35に導くような形状となっている。具体的には、第1遮光体61(第1遮光壁61a)の加熱装置50側の面は、ヒータ光及び外光を大気導入孔35に導くように反射する反射面である。
 これにより、検知領域DAに不要な光が進入することを一層抑制できるので、粒子の検出精度を一層向上させることができる。
 同様に、第2遮光体62(第1遮光壁62a)の大気排出孔36側の面は、外光を大気排出孔36に導くような形状となっている。具体的には、第2遮光体62(第1遮光壁62a)の大気排出孔36側の面は、外光を大気排出孔36に導くように反射する反射面である。
 これにより、検知領域DAに不要な光が進入することを一層抑制できるので、粒子の検出精度を一層向上させることができる。
 また、本実施の形態において、第1遮光体61は、検知領域DAに対向する開口を有する第2遮光壁61bと、第2遮光壁61bの開口を覆う第1遮光壁61aとからなる。また、第1遮光壁61aと第2遮光壁61bとは、加熱装置50から検知領域DAに向かう方向に並ぶように配置されており、かつ、粒子検出センサ1内に導入した大気を検知領域DAに導くことができるように設けられている。
 これにより、ヒータ光や外光が検知領域DAに進入することを抑制しつつ、粒子検出センサ1内に導入した大気を検知領域DAにきちんと導くことができる。
 また、本実施の形態において、第2遮光体62は、検知領域DAから大気排出孔36に向かう方向に並んで配置された複数の遮蔽壁(第1遮光壁62a、第2遮光壁62b、第3遮光壁62c)を有しており、かつ、これらの複数の遮蔽体は、粒子検出センサ1の内部の大気を大気排出孔36から排出できるように構成されている。
 これにより、外光や迷光が検知領域DAに進入することを抑制しつつ、粒子検出センサ1から大気をきちんと排出することができる。
 また、図6(d)に示すように、本実施の形態において、反射体40(受光領域32)は、粒子流路33内に伸びるように設けられており、反射体40(受光領域32)の一部が大気排出孔36及び第2遮光体62の第1遮光壁62aと検知領域DAとの間に存在している。つまり、反射体40(受光領域32)の一部が検知領域DAの鉛直上方に位置している。また、反射体40(受光領域32)の開口部は第2保護板82で覆われている。
 これにより、粒子検出センサ2(筐体30)内に導入された粒子を含む大気は、第2保護板82にぶつかって第2保護板82付近で一旦滞留することになる。本実施の形態では、検知領域DAが第2保護板82付近に位置するように設定されているので、粒子を含む大気は、検知領域DAにおいて一旦滞留することになる。したがって、異なる粒子を含む大気を導入する場合であっても、検知領域DA付近で一定の速度にすることができるので、粒子の検出精度を一層向上させることができる。
 ここで、図9を用いて、本実施の形態に係る粒子検出センサにおける投光素子10から出射して検知領域DAに向かう光の光路について説明する。図5は、その光路を説明するための図である。
 図9に示すように、本実施の形態では、投光絞り部71における複数の光学絞りの各々の開口の先端を結ぶ仮想線71Lと、投光素子10から出射して検知領域DAに向かう光の輪郭線(ライン)10Lとが略平行となるように、光のラインが設計されている。具体的には、仮想線71Lと、投光素子10から出射して投光レンズ31aによって屈折する光の輪郭線10Lとが略平行である。つまり、投光素子10から出射して投光レンズ31aによって屈折する光は、投光絞り部71における複数の光学絞りの各々の開口の先端を結んでできる仮想空間領域の内側を通って検知領域DAに進行する。
 これにより、設計外の光を確実に封じ込めることができるので、投光領域31において迷光が発生することを抑制できる。したがって、粒子の検出精度を一層向上させることができる。
 また、投光反対絞り部72における複数の光学絞りの各々の開口の先端を結ぶ仮想線72Lと、投光素子10から出射して検知領域DAを通過する光の輪郭線(ライン)10Lとが略平行となるように、光のラインが設計されている。具体的には、仮想線72Lと、投光素子10から出射して検知領域DAを通って投光トラップ部34a内に進入する光の輪郭線10Lとが略平行である。つまり、投光素子10から出射して投光レンズ31aによって一旦検知領域DAで集光してから発散するように投光トラップ部34a内に進入する光は、投光反対絞り部72における複数の光学絞りの各々の開口の先端を結んでできる仮想空間領域の内側を通って投光トラップ部34aの奥に進入する。
 これにより、設計外の光を確実に封じ込めることができるので、投光トラップ部34aにおいて迷光が発生することを抑制できる。したがって、粒子の検出精度を一層向上させることができる。
 なお、受光反対絞り部73における複数の光学絞りについても、検知領域DAにおける粒子の散乱光に対して同様の構成にしてもよい。
 また、同図に示すように、本実施の形態では、投光素子10から出射して検知領域DAに向かう光の輪郭線(ライン)10Lと反射体40の端面を結ぶ仮想線40Lとが略平行である。
 これにより、感度を向上させることができるので、粒子の検出精度を一層向上させることができる。
 (実施の形態3)
 次に、実施の形態3に係る粒子検出センサ3の構成について、図10を用いて説明する。図10は、実施の形態3に係る粒子検出センサ3の構成を示す図であり、(a)は上面図、(b)は正面図、(c)は下面図、(d)は(a)のA-A線における断面図である。なお、本実施の形態でも、図10(d)における大気排出孔36から大気導入孔35に向かう方向を鉛直下方(重力方向)としている。
 図10に示すように、本実施の形態における粒子検出センサ3は、実施の形態1における粒子検出センサ1に対して、さらに、透光性を有する第1保護板91を有する。第1保護板91は、筐体30内に配置されている。具体的に、第1保護板91は、粒子流路33と受光領域32との接続部分に配置されている。
 第1保護板91は、粒子が受光領域32に入り込まないようにするための保護部材である。例えば、第1保護板91は、大気中に浮遊する粒子(ホコリ・花粉・煙・PM2.5等)が粒子検出センサ3の動作中及び非動作中に筐体30内に入ってきた場合に、当該粒子が受光領域32に入り込まないようにする。
 図10(d)に示すように、本実施の形態において、第1保護板91は、受光領域32の粒子流路33との接続部分となる開口部(受光領域32の開口部)を覆うように配置されている。つまり、第1保護板91は受光領域32に蓋をするように配置されている。受光領域32の開口部が第1保護板91で覆われることによって受光領域32は閉じた空間領域となり、受光領域32外から受光領域32内にホコリ・花粉・煙等の粒子が入り込むことを防止できる。
 また、本実施の形態において、第1保護板91の主面と、回転楕円体の回転面からなる反射体40を構成する楕円の長軸(反射体40の光軸)及び受光素子20の光軸とは、直角をなしている。言い換えると、第1保護板91の主面との法線は、反射体40を構成する楕円の長軸及び受光素子20の光軸と平行となっている。
 このように構成される第1保護板91は、例えば、ガラス、又は、ポリカーボネートやアクリル等の透明樹脂によって構成された透明板である。第1保護板91の全透過率は、フレネル反射を無視すれば、例えば99%以上である。また、第1保護板91としては、厚みが一様の平板を用いている。つまり、第1保護板91として、全領域において板厚が一定の平板を用いている。なお、第1保護板91は厚みが一様の平板でなくてもよく、第1保護板91を受光領域32に取り付ける等するために、第1保護板91は、周縁部分が肉薄となっていたり周縁部分の一部が切り欠かれていたりしてもよい。
 第1保護板91の平面視形状は、受光領域32の開口部を覆う形状であればよく、例えば、受光領域32の開口部の形状が円形である場合は、第1保護板91としては円板状の透明板を用いればよい。
 また、第1保護板91は、粒子の散乱光を散乱させないように構成されている。つまり、第1保護板91で光が散乱しないように、第1保護板91の表面は、検知領域DA側の主面も受光素子20側の主面も平滑面である。
 第1保護板91としては、屈折率が1.5以下で、厚みが200μm以下の平板を用いるとよい。これにより、第1保護板91による散乱光の光路の位置ずれを小さくすることができる。
 なお、後述するように、第1保護板91の表面に付着した付着物を綿棒等の清掃具で擦って除去することもあるので、第1保護板91の表面は、耐摩耗性を有するとよい。したがって、第1保護板91の表面には、耐摩耗性を向上させるための表面処理又は表面コート処理等が施されているとよい。
 このように構成される本実施の形態における粒子検出センサ3は、図2A、図2B及び図2Cで説明したように、実施の形態1における粒子検出センサ1と同様の動作によって粒子を検出することができる。
 次に、本実施の形態における粒子検出センサ3の作用効果について、図11A及び図11Bに示す比較例2の粒子検出センサ100Aと比較して説明する。図11Aは、比較例2の粒子検出センサ100Aの断面図であり、図11Bは、図11Aに示す比較例2の粒子検出センサ100Aの内部を清掃するときの様子を示す同粒子検出センサ100Aの要部拡大断面図である。
 光散乱式粒子検出センサでは、大気中に浮遊するホコリ・花粉・煙等の粒子を含む気体を内部に導入することによって粒子を検出するため、当該粒子が粒子検出センサの内部に付着物として付着して、検出精度が低下する場合がある。特に、長期にわたる使用によって付着物が内部に蓄積すると、検出誤差も大きくなる。例えば、粒子が存在しないはずなのに粒子が存在するものとして検知し、誤った判定をする場合がある。
 そこで、図11Aに示すように、内部に付着した付着物を除去する構造を有する粒子検出センサ100Aが考えられている。
 図11Aに示すように、比較例2の粒子検出センサ100Aは、投光素子110及び受光素子120と、投光素子110及び受光素子120を保持する筐体130と、投光領域131に配置されたレンズ131aと、受光領域132に配置されたレンズ132aとを備える。そして、粒子検出センサ100Aでは、内部を清掃できるように、筐体130に、検知対象の粒子を含む気体が流れる領域である気流通過領域に清掃具を導入するための貫通孔170が設けられている。
 比較例2の粒子検出センサ100Aにおいて、内部の清掃を行う場合、図11Bに示すように、貫通孔170から綿棒等の清掃具200を導入して、気流通過領域を構成する筐体30の内壁等に付着した付着物を除去する。
 しかしながら、比較例2の粒子検出センサ100Aの構造では、受光領域132内に粒子が入り込んでしまうので、レンズ132aに粒子が付着物として付着する。レンズ132aは、粒子の散乱光を受光素子120に集光させるので、レンズ132aに粒子が付着するとレンズ132aのレンズ作用に影響を与えて受光感度が低下し、検出精度が低下する。
 また、レンズ132aが受光領域132の奥まった箇所に配置されているので、レンズ132aに粒子が付着すると、図11Bに示すように貫通孔170から導入した清掃具では付着物を拭き取りにくい。つまり、貫通孔170の近傍部分の付着物は容易に拭き取ることができるものの、貫通孔170から離れた箇所に存在する付着物については拭き取ることが難しい。さらに、図11Bに示すように、受光領域132の周辺部分は入り組んだ構造となっており角部分も多いので、当該角部分によって死角ができ、角部周辺に存在する付着物を拭き取ることが難しくなっている。
 このように、比較例2の粒子検出センサ100Aでは、受光領域132内に付着した粒子によって検出精度が低下するという問題がある。
 ところで、受光感度を向上させるために、受光領域に、レンズではなく、回転楕円体等の回転面を反射面とする反射板(楕円ミラー等)を配置することも考えられているが、比較例2の粒子検出センサ100Aのように、筐体に貫通孔を設けて清掃具を導入する方法では、反射板の内面(反射面)の全面を清掃することが難しい。
 このため、受光領域に反射板が配置された構成の粒子検出センサでは、反射板の内面に付着物が付着すると、受光素子に受光される粒子の散乱光の量(受光量)が大きく変わってしまう。この結果、検出精度が大きく低下してセンサとしての信頼性が悪くなる。
 そこで、本実施の形態における粒子検出センサ3では、図10(d)に示すように、粒子流路33と受光領域32との接続部分に、透光性を有する第1保護板91が配置されている。
 これにより、ホコリ・花粉・煙等の粒子が受光領域32の内部に入り込むことを抑制できるので、受光領域32内にホコリ・花粉・煙等の粒子が付着物として付着することを抑制できる。したがって、受光領域32に付着物が付着することによって検出精度が低下することを抑制できる。
 また、本実施の形態において、第1保護板91は、受光領域32の開口部(粒子流路33との接続部分となる開口部)を覆うように配置されている。
 これにより、粒子が受光領域32の内部に入り込むことを遮断できるので、受光領域32内に粒子が付着することを回避できる。さらに、一旦、受光領域32を第1保護板91で覆った後は、その後の粒子検出センサ3の製造工程中においても受光領域32に粒子等が入り込むことを遮断できるので、初期時の動作不良も防止できる。
 また、本実施の形態において、第1保護板91と受光素子20との間に、粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40が設けられている。例えば、反射体40の内面は、回転楕円体の回転面の一部であり、楕円ミラーである。
 これにより、粒子の付着によって反射体40の反射面が汚れることを抑制できる。つまり、反射体40の反射面に粒子等の付着物が蓄積されない。したがって、反射体40の反射面の反射率が長期にわたって変化しないので、受光感度及び検出精度の長期信頼性を向上させることができる。
 さらに、第1保護板91によって受光領域32を密閉することによって、受光領域32に空気や水分が入り込むことも遮断できる。これにより、反射体40の反射面が腐食することを防止できるので、受光感度及び検出精度の長期信頼性を一層向上させることができる。
 また、本実施の形態において、第1保護板91の主面は、反射体40の内面を構成する回転楕円体の楕円の長軸に対して直角である。
 これにより、検知領域DAにおける粒子の散乱光を効率良く第1保護板91を透過させることができるので、第1保護板91を配置したことで受光感度が低下することをなくすことができる。
 また、本実施の形態において、粒子流路33の幅と検知領域DAの幅とを一致させるとよい。
 これにより、粒子検知センサ3内に導入される粒子を含んだ気体の全てが検知領域DAを通過することになるので、取り込まれた気体中に含まれる粒子を全て検出することができる。したがって、粒子の検出確率が向上し、検出精度を向上させることができる。
 (実施の形態3の変形例1)
 次に、実施の形態3の変形例1に係る粒子検出センサ3Aについて、図12を用いて説明する。図12は、実施の形態3の変形例1に係る粒子検出センサ3Aの構成を示す断面図である。
 図12に示すように、本変形例における粒子検出センサ3Aと上記実施の形態3における粒子検出センサ3とは、第1保護板91の配置が異なる。
 具体的には、上記実施の形態3における第1保護板91は、その主面が反射体40を構成する楕円の長軸に対して直角となるように配置されていたのに対して、本変形例における第1保護板91は、その主面の法線が反射体40を構成する楕円の長軸に対して傾斜するように配置されている。
 以上、本変形例における粒子検出センサ3Aによれば、実施の形態3における粒子検出センサ3と同様に、粒子流路33と受光領域32との接続部分に第1保護板91が配置されているので、粒子検出センサ3Aの動作中においても粒子検出センサ3Aの製造工程中においても、受光領域32内に粒子が付着することを抑制できる。したがって、検出精度の低下を抑制できる。
 また、本変形例でも、第1保護板91が受光領域32の開口部を覆うように配置されているので、受光領域32内に粒子が付着することを一層抑制できる。
 また、本変形例でも、粒子の付着によって反射体40の反射面が汚れることを抑制できるので、反射体40の反射面の反射率が変化せず、受光感度及び検出精度の長期信頼性を向上させることができる。
 さらに、第1保護板91によって受光領域32を密閉することによって、受光領域32に空気や水分が入り込むことを遮断することができる。これにより、反射体40の反射面の腐食を防止できるので、受光感度及び検出精度の長期信頼性を一層向上させることができる。
 また、本変形例では、第1保護板91の主面の法線が、反射体40の回転楕円体を構成する楕円の長軸に対して傾斜している。
 これにより、反射体40の開口部を受光領域32の開口部のぎりぎりまで延ばしたりして反射体40の反射面を多く取ることができるので、反射体40における粒子の散乱光の受光感度を容易に高くすることができる。したがって、高感度で粒子の検出を行うことができる粒子検出センサを実現できる。
 (実施の形態3の変形例2)
 次に、実施の形態3の変形例2に係る粒子検出センサ3Bについて、図13を用いて説明する。図13は、実施の形態3の変形例2に係る粒子検出センサ3Bの構成を示す断面図である。
 図13に示すように、本変形例における粒子検出センサ3Bと上記実施の形態3における粒子検出センサ3とは、第1保護板91の配置が異なる。
 すなわち、上記実施の形態3における第1保護板91は、粒子流路33と受光領域32との接続部分のみに配置されていたのに対して、本変形例における第1保護板91は、粒子流路33と受光領域32との接続部分だけではなく粒子流路33とトラップ部34との接続部分にも配置されている。具体的には、本変形例における第1保護板91は、受光領域32の開口部とトラップ部34の開口部との両方を覆っている。
 また、第1保護板91は、粒子流路33の一部を構成している。具体的には、第1保護板91の表面は粒子流路33の壁面となっている。
 以上、本変形例における粒子検出センサ3Bによれば、粒子流路33と受光領域32との接続部分及び粒子流路33と受光領域32との接続部分に第1保護板91が配置されている。
 これにより、大気中に浮遊する粒子が受光領域32だけではなくもトラップ部34にも入り込まないようにすることができるので、粒子検出センサ3Bの動作中においても粒子検出センサ3Bの製造工程中においても、受光領域32内及びトラップ部34内に粒子が付着することを抑制できる。したがって、検出精度の低下を抑制できる。
 また、本変形例でも、粒子の付着によって反射体40の反射面が汚れることを抑制できるので、反射体40の反射面の反射率が変化せず、受光感度及び検出精度の長期信頼性を向上させることができる。しかも、反射体40によってトラップ部34の反射率も変わらないので、粒子に当たらすに検知領域DAを通過する投光素子10からの直接光が筐体30内部で反射して迷光となって受光素子20に入射することも抑制できる。したがって、受光感度及び検出精度の長期信頼性を一層向上させることができる。
 この場合、第1保護板91によって受光領域32及びトラップ部34を密閉することによって、受光領域32及びトラップ部34に空気や水分が入り込むことを遮断することができる。これにより、反射体40の反射面の腐食とトラップ部34の劣化とを防止できるので、受光感度及び検出精度の長期信頼性を一層向上させることができる。
 また、本変形例では、粒子の付着によってトラップ部34内も汚れないので、センサとしての信頼性が向上するとともに歩留まりが向上する。
 (実施の形態3の変形例3)
 次に、実施の形態3の変形例3に係る粒子検出センサ3Cについて、図14を用いて説明する。図14は、実施の形態3の変形例3に係る粒子検出センサ3Cの構成を示す断面図である。
 図14に示すように、本変形例における粒子検出センサ3Cは、上記変形例2における粒子検出センサ3Bにおいて、さらに、第2保護板92が配置された構成となっている。
 具体的には、本変形例における粒子検出センサ3Cは、受光領域32及びトラップ部34の開口部を覆うように配置された第1保護板91と、投光領域31と粒子流路33との接続部分に配置された第2保護板92とを有する。
 本変形例において、第2保護板92は、第1保護板91と対面するように配置されている。つまり、第2保護板92と第1保護板91とは、平行に配置されている。
 第2保護板92は、投光領域31に粒子が入り込まないようにするための保護部材である。具体的には、第2保護板92は、投光領域31の粒子流路33との接続部分となる開口部(投光領域31の開口部)を覆うように配置されている。つまり、第2保護板92は投光領域31に蓋をするように配置されており、投光領域31の開口部が第2保護板92で覆われることによって投光領域31は閉じた空間領域となる。
 また、第2保護板92は、第1保護板91ともに、粒子流路33の一部を構成している。具体的には、第1保護板91及び第2保護板92の表面は粒子流路33の壁面となっており、粒子流路33に導入された粒子は、第1保護板91及び第2保護板92の間を通過する。
 第2保護板92は、第1保護板91と同様に、例えばガラスや透明樹脂によって構成された透明板であって、全透過率はフレネル反射を無視すれば例えば99%以上である。また、第2保護板92としては、厚みが一様の平板を用いている。なお、第2保護板92は、厚みが一様の平板でなくてもよく、第1保護板91と同様に、取付上、周縁部分が肉薄となっていたり周縁部分の一部が切り欠かれていたりしてもよい。
 第2保護板92の平面視形状は、投光領域31の開口部を覆う形状であればよく、例えば、投光領域31の開口部の形状が円形である場合は、第2保護板92としては円板状の透明板を用いればよい。
 また、第2保護板92も、粒子の散乱光を散乱させないように構成されている。つまり、第2保護板92で光が散乱しないように、第2保護板92の表面は、検知領域DA側の主面も投光素子10側の主面も平滑面である。
 なお、後述するように、第2保護板92の表面に付着した付着物を綿棒等の清掃具で擦って除去することもあるので、第2保護板92の表面は、耐摩耗性を有するとよい。したがって、第2保護板92の表面には、耐摩耗性を向上させるための表面処理又は表面コート処理等が施されているとよい。
 以上、本変形例における粒子検出センサ3Cによれば、粒子流路33と受光領域32との接続部分及び粒子流路33と受光領域32との接続部分に第1保護板91が配置されているので、実施の形態3の変形例2と同様の効果が得られる。
 さらに、本変形例では、投光領域31と粒子流路33との接続部分に第2保護板92が配置されている。
 これにより、大気中に浮遊する粒子が投光領域31にも入り込まないようにすることができ、投光領域31内に粒子が付着することを抑制できるとともに、投光レンズ31a及び発光絞り部31bに粒子が付着することも抑制できる。したがって、投光素子10からの出射光を安定させることができるので、センサとしての信頼性が向上する。
 また、投光領域31が第2保護板92で覆われているので、投光レンズ31aを投光領域31の奥まった位置に配置することができ、投光レンズ31aの設計の自由度が高まる。つまり、メンテナンスの際に投光レンズ31aに付着した粒子等を拭き取りやすくするためだけに、投光レンズ31aを粒子流路33に近い位置に配置する必要がない。
 また、第1保護板91と第2保護板92とで形成される空間は、粒子流路33の一部を形成し、且つ、検知領域DAの幅と一致するとよい。例えば、第1保護板91と第2保護板92とで挟まれる空間が粒子流路33の一部となるように構成し、且つ、第1保護板91と第2保護板92との間隔を粒子流路33の幅に一致させるとともに検知領域DAの幅に一致させるとよい。
 これにより、粒子検知センサ3C内に導入される粒子を含んだ気体の全てが、検知領域DAの幅と一致した粒子流路33を通過するので、取り込まれた気体中に含まれる粒子を全て検出することができる。したがって、粒子の検出確率が向上し、検出精度を向上させることができる。
 (実施の形態3の変形例4)
 次に、実施の形態3の変形例4に係る粒子検出センサ3Dについて、図15を用いて説明する。図15は、実施の形態3の変形例4に係る粒子検出センサ3Dの構成を示す断面図であり、(a)は上面図、(b)は正面図、(c)は下面図、(d)は(a)のA-A線における断面図である。
 図15(b)に示すように、本変形例における粒子検出センサ3Dは、上記実施の形態3の変形例3における粒子検出センサ3Cにおいて、さらに、筐体30は、第1保護板91及び第2保護板92の表面に付着した付着物を除去するための清掃具が導入される清掃具導入孔37と、清掃具導入孔37を閉じる蓋38とを有する。
 具体的には、清掃具導入孔37は、第1筐体部30aに設けられた貫通孔である。清掃具導入孔37は、清掃具を第1保護板91及び第2保護板92の主面水平方向から挿入できるように構成されている。本変形例において、清掃具導入孔37は、第1保護板91及び第2保護板92の主面水平方向を開放するように設けられており、より具体的には、第1筐体部30aの第1保護板91及び第2保護板92に対向する部分を開口するように設けられている。つまり、清掃具導入孔37は、粒子流路33の一部を開口している。さらに、清掃具導入孔37は、大気が粒子流路33内を流れる方向(流路方向)に沿って長尺状に設けられている。
 第1保護板91及び第2保護板92を清掃する以外(粒子検出センサ3Dが動作中)は、清掃具導入孔37は蓋38によって塞がれている。蓋38は、清掃具導入孔37に着脱可能に嵌め込まれている。したがって、第1保護板91及び第2保護板92等の筐体30内を清掃する場合、蓋38を取り外して清掃具導入孔37を開放し、清掃具導入孔37から綿棒等の清掃具を挿入して筐体30内の清掃を行う。
 以上、本変形例に係る粒子検出センサ3Dによれば、清掃具導入孔37を利用することによって、筐体30内に付着した粒子等の付着物を除去するためのメンテナンスを行うことができる。例えば、第1保護板91及び第2保護板92の表面や粒子流路33の壁面、あるいは、その他の筐体30内の壁面に付着した付着物を除去することができる。
 この場合、図16A及び図16Bに示すように、清掃具導入孔37から綿棒等の清掃具200を導入して、第1保護板91及び第2保護板92の表面(粒子流路33側の面)を清掃具200で擦る等することによって第1保護板91及び第2保護板92の表面に付着した付着物を拭き取ることができる。図16A及び図16Bは、本変形例に係る粒子検出センサ3Dの筐体内を清掃(メンテナンス)するときの様子を示している。
 また、図15に示すように、本変形例では、清掃具導入孔37が第1保護板91及び第2保護板92と対向する位置に設けられているので、清掃具導入孔37から挿入した清掃具200によって第1保護板91及び第2保護板92の表面に付着した付着物を容易に除去することができる。
 また、本変形例において、清掃具導入孔37は、清掃具200を第1保護板91及び第2保護板92の主面水平方向から挿入できるように構成されている。これにより、清掃具導入孔37に綿棒等の清掃具200を挿入する際、第1保護板91及び第2保護板92の主面水平方向から清掃具200を挿入することができる。
 そして、図16A及び図16Bに示すように、例えば、清掃具導入孔37に挿入した清掃具200によって第1保護板91及び第2保護板92の表面を擦るようにして、当該清掃具200を清掃具200の挿入方向に垂直な方向に沿って前後に動かすことで、第1保護板91及び第2保護板92の表面の付着物を拭き取ることができる。なお、第1保護板91及び第2保護板92の付着物を擦り取る際の清掃具200の移動方向は、清掃具200の挿入方向に垂直な方向に限るものではなく、清掃具200の挿入方向等であってもよい。
 また、本変形例において、清掃具導入孔37は、第1保護板91及び第2保護板92の主面水平方向を開放する位置に設けられている。これにより、清掃具200を、清掃具導入孔37を介して第1保護板91及び第2保護板92の主面水平方向から筐体30内に容易に挿入することができる。
 また、本変形例において、清掃具導入孔37は、大気が粒子流路33内を流れる方向に沿って長尺状に設けられている。これにより、清掃具導入孔37に挿入した清掃具200を粒子流路33の流路方向に沿って前後に動かすことによって、第1保護板91及び第2保護板92の主面の付着物を容易に拭き取ることができる。
 また、本変形例において、清掃具導入孔37は、当該清掃具導入孔37に着脱可能に取り付けられた蓋38によって塞がれている。これにより、第1保護板91及び第2保護板92を清掃するときだけ蓋38を外せばよく、清掃するとき以外は清掃具導入孔37を蓋38で閉じることができる。したがって、粒子検出センサ3D本来のセンサ機能に影響を与えることなく、清掃(メンテナンス)を行うことができる。
 なお、本変形例は、実施の形態3及びその変形例1~3にも適用することができる。この場合、第1保護板91の表面に付着した付着物を除去するために、清掃具導入孔37には清掃具200が挿入される。
 (変形例)
 以下、本発明の変形例に係る粒子検出センサについて、図面を参照しながら説明する。なお、以下に説明する変形例では、主要な構成のみを図示しており、筐体等のその他の構成は、各変形例の態様に応じて適宜変更できるので、図示していない。
 (変形例1)
 図17は、変形例1に係る粒子検出センサ1Aの概略構成を示す断面図である。
 図17に示すように、本変形例における粒子検出センサ1Aは、上記実施の形態1における粒子検出センサ1と同様に、投光素子10と投光レンズ31aと受光素子20と反射体40Aと加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。
 本変形例における反射体40Aは、上記実施の形態1における反射体40と同様に、内面が回転楕円体の回転面の一部をなしている。さらに、反射体40Aの側部には、2つの貫通孔41a及び41bが設けられている。
 本変形例において、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 また、投光素子10及び投光レンズ31aは、貫通孔41aと対向するように配置されており、投光素子10及び投光レンズ31aの光軸と2つの貫通孔41a及び41bの中心軸とが一致している。投光素子10から出射する光は、貫通孔41aを通過して反射体40Aの内方部分に設定された検知領域DAに投光される。また、投光素子10の光のうち粒子に当たらずに直進する光は、貫通孔41bを通過して反射体40Aの外部に抜けるので、受光素子20に入射しない。
 以上、本変形例における粒子検出センサ1Aによれば、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40Aを備えている。
 これにより、上記実施の形態と同様に、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 しかも、本変形例では、上記実施の形態と比べて、回転楕円体の回転面の多くの部分を反射体40Aの反射面として利用している。具体的には、反射体40Aは、回転楕円体のうち2つの貫通孔41a及び41bと受光素子20とを設けた箇所を除いた部分を反射面として利用している。
 これにより、検知領域DAにおける粒子の散乱光を多く取ることができるので、実施の形態1よりも高精度の粒子検出センサを実現できる。
 また、本変形例における粒子検出センサ1Aでも、上記実施の形態1と同様に、反射体40Aは、楕円の一方の焦点が検知領域DA内に存在するように配置されており、また、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数で受光素子20に入射させることができるので、さらに高精度の粒子検出センサを実現できる。しかも、受光素子20を楕円の焦点の近傍に配置することによって受光効率を高くできるので、受光素子20として小型の光検出器等を用いることができる。
 なお、図17では、2つの貫通孔41a及び41bは、当該貫通孔41a及び41bの中心軸が楕円の長軸と直交するように設けられているが、図18に示される粒子検出センサ1A’のように、反射体40A’の貫通孔41a及び41bの中心軸が楕円の長軸と傾斜して交差するように設けられていてもよい。
 (変形例2)
 図19は、変形例2に係る粒子検出センサ1Bの概略構成を示す断面図である。
 図19に示すように、本変形例における粒子検出センサ1Bは、上記実施の形態1における粒子検出センサ1と同様に、投光素子10と投光レンズ31aと受光素子20と反射体40Bと加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。
 本変形例における反射体40Bは、上記実施の形態1における反射体40と同様に、内面が回転楕円体の回転面の一部をなしている。また、反射体40Bは、楕円の一方の焦点が検知領域DA内に存在するように配置されており、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 本変形例では、上記実施の形態1と異なり、投光素子10の光軸と、受光素子20の光軸と、反射体40Bの回転軸(光軸)とが一致している。また、反射体40Bにおいて、回転楕円体の長軸の端部には貫通孔42が設けられている。投光素子10から出射する光は、貫通孔42を通過して検知領域DAに投光される。
 さらに、本変形例では、投光素子10と受光素子20との間に遮蔽板60が配置されている。遮蔽板60は、投光素子10から直接受光素子20に入射する光を吸収又はカットするように構成された遮光板である。これにより、投光素子10と受光素子20との光軸が一致していても、投光素子10の光のうち粒子に当たらずに受光素子20に向かって直進する光が遮蔽板60で遮蔽されるので、粒子の検出誤認を回避できる。
 なお、本変形例でも、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 以上、本変形例における粒子検出センサ1Bによれば、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40Bを備えている。
 これにより、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 さらに、本変形例では、上記実施の形態1と比べて、回転楕円体の回転面の多くの部分を反射体40Bの反射面として利用している。具体的には、反射体40Bは、回転楕円体のうち1つの貫通孔42と受光素子20とを設けた箇所を除いた部分を反射面として利用している。
 これにより、検知領域DAにおける粒子の散乱光を多く取ることができるので、実施の形態1よりも高精度の粒子検出センサを実現できる。本変形例では、変形例1よりも回転楕円体の回転面を利用する部分が多く、反射面の面積が大きい。したがって、高感度の粒子検出センサを実現できる。
 また、本変形例における粒子検出センサ1Bでも、上記実施の形態1と同様に、反射体40Bは、楕円の一方の焦点が検知領域DA内に存在するように配置されており、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数で受光素子20に入射させることができるので、さらに高感度の粒子検出センサを実現できる。しかも、受光素子20を楕円の焦点の近傍に配置することによって受光効率を高くできるので、受光素子20として小型の光検出器等を用いることができる。
 (変形例3)
 図20は、変形例3に係る粒子検出センサ1Cの概略構成を示す断面図である。
 図20に示すように、本変形例における粒子検出センサ1Cは、上記実施の形態1における粒子検出センサ1と同様に、投光素子10と投光レンズ31aと受光素子20と反射体40Cと加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。
 本変形例における反射体40Cは、検知領域DAにおける粒子による散乱光を反射して受光素子20に導くものであるが、上記実施の形態1の反射体40と異なり、回転楕円体の回転面ではなく、回転放物線の回転面の一部をなしている。
 本変形例において、反射体40Cは、放物線の焦点Fが検知領域DA内に存在するように配置されており、受光素子20は、放物線の焦点Fを挟んで放物線の頂点とは反対側の位置に配置されている。つまり、本変形例では、投光素子10の光軸と、受光素子20の光軸と、反射体40Cの回転軸(光軸)とが一致している。
 反射体40Cは、回転放物線の頂部に貫通孔43が設けられている。投光素子10から出射する光は、貫通孔43を通過して反射体40Cの内方部分に設定された検知領域DAに投光される。
 さらに、本変形例では、投光素子10と受光素子20との間に遮蔽板60が配置されている。これにより、投光素子10と受光素子20との光軸が一致していても、投光素子10の光のうち粒子に当たらずに受光素子20に直進する光が遮蔽板60で遮蔽されるので、粒子の検出誤認を回避できる。
 なお、本変形例でも、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 以上、本変形例における粒子検出センサ1Cによれば、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40Cを備えている。
 これにより、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 また、本変形例では、反射体40Cの内面が回転放物線の回転面の一部をなしており、反射体40は、放物線の焦点Fが検知領域DA内に存在するように配置されており、受光素子20は、放物線の焦点Fを挟んで放物線の頂点とは反対側に位置するように配置されている。
 この構成により、検知領域DAに粒子が存在する場合、投光素子10の光は検知領域DAの粒子に当たって散乱し、当該散乱光は反射体40Cで反射して平行光となって受光素子20に入射する。これにより、検知領域DAの粒子によって発生する散乱光を多く取ることができるとともに、当該散乱光を少ない反射回数で受光素子20に入射させることができるので、高感度の粒子検出センサを実現できる。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数で受光素子20に入射させることができるので、さらに高感度の粒子検出センサを実現できる。
 なお、本変形例では、反射体40Cで反射した光が平行光となって広がるので、受光素子20の受光面を大きくするか、受光素子20の受光面を覆うレンズを大きくして、平行光の多くを受光素子20で受光できるように構成するとよい。
 (変形例4)
 図21は、変形例4に係る粒子検出センサ1Dの概略構成を示す断面図である。
 図21に示すように、本変形例における粒子検出センサ1Dは、変形例3における粒子検出センサ1Cと同様に、投光素子10と投光レンズ31aと受光素子20と反射体40Dと加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。
 本変形例における反射体40Dは、検知領域DAにおける粒子による散乱光を反射して受光素子20に導くものであり、変形例3と同様に、内面が回転放物線の回転面の一部をなしている。さらに、反射体40Dの側部には、2つの貫通孔44a及び44bが設けられている。
 また、投光素子10及び投光レンズ31aは、貫通孔44aと対向するように配置されており、投光素子10及び投光レンズ31aの光軸と2つの貫通孔44a及び44bの中心軸とが一致している。投光素子10から出射する光は、貫通孔44aを通過して反射体40Dの内方部分に設定された検知領域DAに投光される。また、投光素子10の光のうち粒子に当たらずに直進する光は、貫通孔44bを通過して反射体40Dの外部に抜けるので、受光素子20に入射しない。
 本変形例でも、反射体40Dは、放物線の焦点Fが検知領域DA内に存在するように配置されており、受光素子20は、放物線の焦点Fを挟んで放物線の頂点とは反対側の位置に配置されている。
 なお、本変形例でも、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 以上、本変形例における粒子検出センサ1Dによれば、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40Dを備えている。
 これにより、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 また、本変形例では、変形例3と同様に、回転放物線の回転面からなる反射体40Dは、放物線の焦点Fが検知領域DA内に存在するように配置されており、受光素子20は、放物線の焦点Fを挟んで放物線の頂点とは反対側に位置するように配置されている。
 これにより、変形例3と同様に、検知領域DAにおける粒子の散乱光は反射体40Dで反射して平行光となって受光素子20に入射するので、検知領域DAの粒子によって発生する散乱光を多く取ることができるとともに、当該散乱光を少ない反射回数で受光素子20に入射させることができる。したがって、高感度の粒子検出センサを実現できる。
 なお、本変形例でも、反射体40Dで反射した光が平行光となって広がるので、受光素子20の受光面を大きくするか、受光素子20の受光面を覆うレンズを大きくして、平行光の多くを受光素子20で受光できるように構成するとよい。あるいは、図22に示される粒子検出センサ1D’のように、受光素子20の手前に集光レンズ70を配置してもよい。
 (変形例5)
 図23は、変形例5に係る粒子検出センサ1Eの概略構成を示す断面図である。
 図23に示すように、本変形例における粒子検出センサ1Eは、上記実施の形態1における粒子検出センサ1と同様に、投光素子10と受光素子20と反射体40と加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。
 本変形例でも、上記実施の形態1と同様に、回転楕円体の回転面からなる反射体40は、楕円の一方の焦点が検知領域DA内に存在するように配置されており、また、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 そして、本変形例における粒子検出センサ1Eは、さらに、補助反射体40Eを備える。補助反射体40Eは、検知領域DAにおける粒子による散乱光のうち反射体40に向かわない散乱光を反射体40に向けて反射する。補助反射体40Eは、例えば、所定形状の凹曲面を有する反射ミラーである。
 なお、本変形例でも、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 以上、本変形例における粒子検出センサ1Eによれば、上記実施の形態1と同様に、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40を備えている。
 これにより、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 さらに、本変形例では、補助反射体40Eを備えているので、検知領域DAにおける粒子による散乱光のうち反射体40に向かわない散乱光を反射体40に向けて反射させることができる。
 これにより、検知領域DAにおける粒子の散乱光を多く取ることができるので、高感度の粒子検出センサを実現できる。
 また、本変形例における粒子検出センサ1Eでは、上記実施の形態1と同様に、反射体40は、楕円の一方の焦点が検知領域DA内に存在するように配置されており、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数で受光素子20に入射させることができるので、さらに高感度の粒子検出センサを実現できる。しかも、受光素子20を楕円の焦点の近傍に配置することによって受光効率を高くできるので、受光素子20として小型の光検出器等を用いることができる。
 (変形例6)
 図24は、変形例6に係る粒子検出センサ1Fの概略構成を示す断面図である。
 図24に示すように、本変形例における粒子検出センサ1Fは、上記実施の形態1における粒子検出センサ1と同様に、投光素子10と受光素子20と反射体40Fと加熱装置(不図示)とを備えており、検知領域DAにおける粒子による投光素子10の光の散乱光を受光素子20で受光することにより気体中に含まれる粒子を検出する。本変形例でも、検知領域DAが存在する粒子流路(不図示)の流路方向は、紙面垂直方向である。
 本変形例における反射体40Fは、知領域DAにおける粒子による散乱光を反射して受光素子20に導くものであり、各々が曲面又は平面を有する複数の微小ミラーの集合体である。反射体40Fの内面は、全体として略回転放物線の回転面の一部をなすような形状である。つまり、上記実施の形態1のように連続する滑らかな曲面からなる反射体ではなく、各々の内面が曲面状又は平面状の複数の微小ミラーによって構成された反射体40Fを用いてもよい。
 なお、本変形例でも、検知領域DAが存在する粒子流路33の流路方向は紙面垂直方向であり、粒子流路33にはヒータ抵抗等の加熱装置が設置されている。
 以上、本変形例における粒子検出センサ1Fによれば、上記実施の形態1と同様に、検知領域DAにおける粒子の散乱光を反射して当該散乱光を受光素子20に導く反射体40Fを備えている。
 これにより、加熱装置(不図示)を用いた加熱方式の粒子検出センサであっても、気体中に含まれる粒径の小さな粒子を高精度で検出することができる。
 また、本変形例でも、反射体40Fの内面が略回転楕円体の回転面の一部をなしており、反射体40Fは、楕円の一方の焦点が検知領域DA内に存在するように配置されており、受光素子20は、楕円の他方の焦点の近傍に配置されている。
 これにより、検知領域DAの粒子によって発生する散乱光を、少ない反射回数で受光素子20に入射させることができるので、高感度の粒子検出センサを実現できる。しかも、受光素子20を楕円の焦点の近傍に配置することによって受光効率を高くできるので、受光素子20として小型の光検出器等を用いることができる。
 (その他変形例等)
 以上、本発明に係る粒子検出センサについて、実施の形態及び変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
 例えば、上記実施の形態1~3において、粒子流路33の流路方向(測定対象の気体が流れる方向)は、紙面上下方向(鉛直方向)としているが、紙面垂直方向としてもよい。つまり、上記実施の形態1~3では、粒子流路33の流路軸は、投光素子10及び受光素子20の各光軸が通る平面上に存在するように設定したが、当該平面と直交するように設定してもよい。
 また、上記実施の形態1~3において、大気導入孔35及び大気排出孔36は、鉛直方向における筐体30の上面及び底面に設けたが、これに限るものではない。図25に示す粒子検出センサ1Gのように、筐体30(図25では第1筐体部30a)の主面に大気導入孔35及び大気排出孔36を設けてもよい。
 この場合、図25に示すように、遮光体63を設けてもよい。遮光体63は、第1遮光体61及び第2遮光体62と同様に、加熱装置50からの光及び外光の少なくとも一方を遮光するものであり、かつ、検知領域DAにおける粒子の散乱光が当該遮光体63に到達した場合に、当該散乱光が検知領域DAに反射することを抑制する形状となっている。なお、遮光体63には、第1遮光体61及び第2遮光体62の構成を適宜適用することができる。
 また、上記実施の形態1~3において、反射体の内面は、回転楕円体又は回転放物線の表面の一部としたが、これに限るものではなく、円錐曲線の回転体の回転面の一部とすることができる。この場合、円錐曲線としては、円ではなく、楕円、放物線及び双曲線の中から選ぶとよい。つまり、反射体の内面は、球体の曲面(球面)よりも、回転楕円体や回転放物線、回転双曲線の曲面(回転面)の一部にするとよい。反射体の内面が球面である場合、積分球のように拡散反射を利用すると、散乱光が何回も反射(多重反射)して減衰して、受光素子20に光があまり入らなくなる。例えば、回転楕円体の場合と比べて、球体の場合は、1/100程度しか受光しなくなる。
 また、上記実施の形態1~3において、受光領域32には反射体を配置したが、受光領域32には、反射体に代えてレンズを配置してもよい。例えば、受光領域32に、検知領域DAにおける粒子の散乱光を受光素子20に集光させる集光レンズを配置してもよい。
 また、上記実施の形態2において、第1遮光体61は、ヒータ光及び外光の両方を遮光するとしたが、いずれか一方のみを遮光するように構成してもよい。この場合、第1遮光体61がヒータ光のみを遮蔽するヒータ光遮蔽体である場合、さらに、大気導入孔35からの外光を遮蔽する入口外光遮蔽体を別途設けてもよい。あるいは、第1遮光体61が大気導入孔35からの外光のみを遮蔽する入口外光遮蔽体である場合、さらに、ヒータ光を遮蔽するヒータ光遮蔽体を別途設けてもよい。
 また、上記実施の形態3において、清掃具導入孔37は、大気導入孔35及び大気排出孔36とは別に設けられていた(つまり、清掃具導入孔37は清掃専用の孔であった)が、大気導入孔35及び大気排出孔36を清掃具導入孔として用いてもよい。この場合、清掃具を大気導入孔35及び大気排出孔36から挿入して第1保護板91や第2保護板92の表面の付着物を取り除いてもよい。
 また、上記実施の形態1~3における粒子検出センサは、様々な機器に利用することができる。例えば、粒子検出センサをダストセンサに搭載することで、粒子検出センサを備えるダストセンサとして実現することができる。この場合、ダストセンサは、内蔵する粒子検出センサによってホコリの粒子を検知した場合、ホコリを検知したことを音や光によって報知したり表示部に表示したりする。
 また、上記実施の形態1~3における粒子検出センサは、当該粒子検出センサを煙感知器に搭載することで、図26に示すような煙感知器として実現することもできる。この場合、煙感知器は、内蔵する粒子検出センサによって煙の粒子を検知した場合、煙を検知したことを音や光によって報知したり表示部に表示したりする。
 また、上記実施の形態1~3における粒子検出センサ又は上記ダストセンサは、空気清浄機、換気扇又はエアコンに搭載することで、図27に示すような空気清浄機、図28に示すような換気扇又は図29に示すようなエアコンとして実現することができる。この場合、空気清浄機、換気扇又はエアコンは、内蔵する粒子検出センサによってホコリの粒子を検知した場合、単にホコリを検知したことを表示部に表示してもよいし、ファンを起動したりファンの回転速度を変更したり等のファンの制御を行ったりしてもよい。
 また、これらの機器において、実施の形態3の変形例4のように清掃具導入孔37を備える粒子検出センサ3Dを用いる場合、粒子検出センサ3Dは機器の外郭筐体に内蔵されることになるが、ユーザが綿棒等の清掃具200を筐体30内に挿入して第1保護板91や第2保護板92を容易に清掃できるように、機器の外郭筐体における清掃具導入孔37に対向する部分には貫通孔が設けられていてもよい。これにより、当該貫通孔から清掃具導入孔37に向かって清掃具200を挿入できるので、第1保護板91及び第2保護板92の清掃を容易に行うことができる。
 なお、上記の各実施の形態及び変形例おいて、粒子を含む媒体は、大気(空気)としたが、本発明は、大気以外の媒体(水等の液体)にも適用することができる。
 その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1、1A、1A’、1B、1C、1D、1D’、1E、1F、1G、2、3、3A、3B、3C、3D 粒子検出センサ
 10 投光素子
 11、21、51 リード線
 20 受光素子
 30 筐体
 30a 第1筐体部
 30b 第2筐体部
 31 投光領域
 32 受光領域
 33 粒子流路
 34 トラップ部
 34a 投光トラップ部
 34b 受光トラップ部
 35 大気導入孔
 36 大気排出孔
 37 清掃具導入孔
 38 蓋
 40、40A、40B、40C、40D、40F 反射体
 40E 補助反射体
 41a、41b、42、43、44a、44b 貫通孔
 50 加熱装置
 60 遮蔽板
 61 第1遮光体(遮光体)
 61a 第1遮光壁
 61b 第2遮光壁
 62 第2遮光体(遮光体)
 62a 第1遮光壁
 62b 第2遮光壁
 62c 第3遮光壁
 63 遮光体
 70 集光レンズ
 71 投光絞り部
 72 投光反対絞り部
 73 受光反対絞り部
 81 第1保護板
 82 第2保護板
 91 第1保護板
 92 第2保護板
 200 清掃具

Claims (32)

  1.  投光素子と受光素子とを備え、検知領域における粒子による前記投光素子の光の散乱光を前記受光素子で受光することにより気体中に含まれる粒子を検出する粒子検出センサであって、
     気体を加熱する加熱装置と、
     前記散乱光を反射して当該散乱光を前記受光素子に導く反射体とを有する
     粒子検出センサ。
  2.  前記反射体は、前記散乱光を前記受光素子に集光させる
     請求項1に記載の粒子検出センサ。
  3.  前記反射体は、前記散乱光を前記受光素子に向けて反射する
     請求項1又は2に記載の粒子検出センサ。
  4.  前記反射体の内面は、曲面である
     請求項1~3のいずれか1項に記載の粒子検出センサ。
  5.  前記反射体の内面は、楕円の回転体の回転面の一部であり、
     前記反射体は、前記楕円における一方の焦点が前記検知領域内に存在するように配置されており、
     前記受光素子は、前記楕円における他方の焦点近傍に配置される
     請求項1~3のいずれか1項に記載の粒子検出センサ。
  6.  さらに、前記投光素子の前方に配置された投光レンズを有し、
     前記投光レンズから出射する光の集光点は、前記楕円の前記一方の焦点と一致している
     請求項5に記載の粒子検出センサ。
  7.  前記反射体の内面は、放物線の回転体の回転面の一部であり、
     前記反射体は、前記放物線の焦点が前記検知領域内に存在するように配置されており、
     前記受光素子は、前記放物線の焦点を挟んで前記放物線の頂点とは反対側の位置に配置される
     請求項1~3のいずれか1項に記載の粒子検出センサ。
  8.  前記反射体は、前記散乱光を前記受光素子に導くための空間領域である受光領域に配置されている
     請求項1~7のいずれか1項に記載の粒子検出センサ。
  9.  前記検知領域を含む空間領域であって粒子を含む気体が流れる空間領域である粒子流路を有し、
     前記受光領域は、前記粒子流路に向かって開口する開口部を有し、
     前記反射体は、前記粒子流路に向かって開口する開口部を有し、
     前記受光領域の前記開口部と前記反射体の前記開口部とは略一致する
     請求項8に記載の粒子検出センサ。
  10.  さらに、前記投光素子の光が投光される空間領域である投光領域に設けられた投光絞り部を有する
     請求項1~9のいずれか1項に記載の粒子検出センサ。
  11.  前記投光絞り部は、開口を有する光学絞りであり、
     前記光学絞りの開口の端部は、当該光学絞りの光軸を含む断面において2つの直線によって鋭角をなし、
     前記2つの直線の一方を含む面は、入射する光を前記検知領域以外の方向に反射させる反射面である
     請求項10に記載の粒子検出センサ。
  12.  前記投光絞り部は、各々が開口を有する複数の光学絞りからなり、
     当該複数の光学絞りの各々の開口の先端を結ぶ仮想線と、前記投光素子から出射して前記検知領域に向かう光の輪郭線とが略平行である
     請求項10又は11に記載の粒子検出センサ。
  13.  さらに、前記検知領域を挟んで前記投光素子の反対側に設けられた投光反対絞り部を有する
     請求項1~12のいずれか1項に記載の粒子検出センサ。
  14.  前記投光反対絞り部は、開口を有する光学絞りであり、
     前記光学絞りの開口の端部は、当該光学絞りの光軸を含む断面において2つの直線によって鋭角をなし、
     前記2つの直線の一方を含む面は、入射する光を前記検知領域以外の方向に反射させる反射面である
     請求項13に記載の粒子検出センサ。
  15.  前記投光反対絞り部は、各々が開口を有する複数の光学絞りからなり、
     当該複数の光学絞りの各々の開口の先端を結ぶ仮想線と、前記投光素子から出射して前記検知領域を通過する光の輪郭線とが略平行である
     請求項13又は14に記載の粒子検出センサ。
  16.  さらに、前記検知領域を通過した前記投光素子の光を吸収する投光トラップ部を有し、
     前記投光反対絞り部は、前記投光トラップ部に設けられている
     請求項13~15のいずれか1項に記載の粒子検出センサ。
  17.  さらに、前記検知領域を挟んで前記受光素子の反対側に設けられた受光反対絞り部を有する
     請求項1~16のいずれか1項に記載の粒子検出センサ。
  18.  さらに、前記受光素子とは反対側に進行する光を吸収する受光トラップ部を有し、
     前記受光反対絞り部は、前記受光トラップ部に設けられている
     請求項17に記載の粒子検出センサ。
  19.  前記投光素子から出射して前記検知領域に向かう光の輪郭線と前記反射体の端面を結ぶ仮想線とが略平行である
     請求項1~18のいずれか1項に記載の粒子検出センサ。
  20.  さらに、
     前記投光素子及び前記受光素子が配置された筐体と、
     前記筐体内に設けられ、かつ、前記検知領域を含む空間領域であって粒子を含む大気が流れる空間領域である粒子流路と、
     前記筐体内に設けられ、かつ、前記散乱光を前記受光素子に導くための空間領域である受光領域と、
     前記粒子流路と前記受光領域との接続部分に配置され、かつ、透光性を有する第1保護板とを備える
     請求項1に記載の粒子検出センサ。
  21.  前記受光領域は、前記粒子流路との接続部分に開口部を有し、
     前記第1保護板は、前記受光領域の前記開口部を覆うように配置されている
     請求項20に記載の粒子検出センサ。
  22.  前記反射体は、前記第1保護板と前記受光素子との間に設けられている
     請求項20又は21に記載の粒子検出センサ。
  23.  前記第1保護板は、さらに、前記粒子流路と光トラップ構造を有するトラップ部との接続部分にも配置されている
     請求項20~22のいずれか1項に記載の粒子検出センサ。
  24.  前記筐体には、前記第1保護板に付着した付着物を除去するための清掃具が導入される清掃具導入孔が設けられている
     請求項20~23のいずれか1項に記載の粒子検出センサ。
  25.  さらに、前記投光素子の光が投光される空間領域である投光領域と前記粒子流路との接続部分に配置された第2保護板を有する
     請求項20~24のいずれか1項に記載の粒子検出センサ。
  26.  前記第1保護板と前記第2保護板とで形成される空間は、前記粒子流路の一部を形成し、且つ、前記検知領域の幅と一致する
     請求項25に記載の粒子検出センサ。
  27.  さらに、前記加熱装置から放出されるヒータ光及び外光の少なくとも一方を遮光する遮光体とを備え、
     前記遮光体は、前記散乱光が当該遮光体に到達した場合に、当該散乱光が前記検知領域に反射することを抑制する形状を有する
     請求項1に記載の粒子検出センサ。
  28.  請求項1~27のいずれか1項に記載の粒子検出センサを搭載している
     ダストセンサ。
  29.  請求項1~27のいずれか1項に記載の粒子検出センサを搭載している
     煙感知器。
  30.  請求項1~27のいずれか1項に記載の粒子検出センサ、又は、請求項28に記載のダストセンサを搭載している
     空気清浄機。
  31.  請求項1~27のいずれか1項に記載の粒子検出センサ、又は、請求項28に記載のダストセンサを搭載している
     換気扇。
  32.  請求項1~27のいずれか1項に記載の粒子検出センサ、又は、請求項28に記載のダストセンサを搭載している
     エアコン。
PCT/JP2015/001835 2014-04-03 2015-03-30 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン WO2015151502A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-077290 2014-04-03
JP2014077290 2014-04-03
JP2014-078774 2014-04-07
JP2014078774A JP2015200547A (ja) 2014-04-07 2014-04-07 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機及び換気扇
JP2014-169906 2014-08-22
JP2014169907A JP2016045093A (ja) 2014-08-22 2014-08-22 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP2014169906A JP2015200629A (ja) 2014-04-03 2014-08-22 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP2014-169907 2014-08-22

Publications (1)

Publication Number Publication Date
WO2015151502A1 true WO2015151502A1 (ja) 2015-10-08

Family

ID=54239847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001835 WO2015151502A1 (ja) 2014-04-03 2015-03-30 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン

Country Status (1)

Country Link
WO (1) WO2015151502A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018032802A1 (zh) * 2016-08-16 2018-02-22 广东美的制冷设备有限公司 一种粉尘传感器
CN108291862A (zh) * 2016-01-29 2018-07-17 松下知识产权经营株式会社 颗粒检测传感器、尘埃传感器、烟感测器、空调装置、和颗粒检测方法
WO2019156632A1 (en) * 2018-02-08 2019-08-15 Agency For Science, Technology And Research Particulate matter sensor module using compound parabolic/elliptical collector
JP2019197022A (ja) * 2018-05-11 2019-11-14 三菱電機株式会社 粒子検出装置
JP2020041906A (ja) * 2018-09-11 2020-03-19 オムロン株式会社 粒子センサおよび電子機器
CN111141647A (zh) * 2019-12-31 2020-05-12 众旺达(宁夏)技术咨询有限公司 一种环境监理用空气粉尘监测方法
US11062586B2 (en) 2017-06-05 2021-07-13 Carrier Corporation Method of monitoring health of protective cover of detection device
CN114486790A (zh) * 2020-10-28 2022-05-13 旭化成微电子株式会社 气体检测装置
US11474018B2 (en) 2019-12-05 2022-10-18 Carrier Corporation Fluorescence enhanced LIDAR based particulate detector
US11506586B2 (en) 2020-08-17 2022-11-22 Carrier Corporation Photoelectric smoke sensor tube
WO2024057637A1 (ja) * 2022-09-13 2024-03-21 富士フイルム株式会社 検査装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335395Y2 (ja) * 1980-02-29 1988-09-20
JPH0137689B2 (ja) * 1985-02-22 1989-08-09 Hitachi Seisakusho Kk
JPH03127990U (ja) * 1990-04-03 1991-12-24
JPH08201263A (ja) * 1995-01-31 1996-08-09 Dengen Autom Kk 煙検出装置
JPH08233736A (ja) * 1995-02-27 1996-09-13 Nohmi Bosai Ltd 微粒子検出センサ
JP2010040008A (ja) * 2008-08-08 2010-02-18 Panasonic Electric Works Co Ltd 煙感知器
JP2010539498A (ja) * 2007-09-20 2010-12-16 パーキンエルマー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー 検出器用放射線ガイド、散乱放射線検出器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335395Y2 (ja) * 1980-02-29 1988-09-20
JPH0137689B2 (ja) * 1985-02-22 1989-08-09 Hitachi Seisakusho Kk
JPH03127990U (ja) * 1990-04-03 1991-12-24
JPH08201263A (ja) * 1995-01-31 1996-08-09 Dengen Autom Kk 煙検出装置
JPH08233736A (ja) * 1995-02-27 1996-09-13 Nohmi Bosai Ltd 微粒子検出センサ
JP2010539498A (ja) * 2007-09-20 2010-12-16 パーキンエルマー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー 検出器用放射線ガイド、散乱放射線検出器
JP2010040008A (ja) * 2008-08-08 2010-02-18 Panasonic Electric Works Co Ltd 煙感知器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291862B (zh) * 2016-01-29 2020-11-06 松下知识产权经营株式会社 颗粒检测传感器、尘埃传感器、烟感测器、空调装置、和颗粒检测方法
CN108291862A (zh) * 2016-01-29 2018-07-17 松下知识产权经营株式会社 颗粒检测传感器、尘埃传感器、烟感测器、空调装置、和颗粒检测方法
WO2018032802A1 (zh) * 2016-08-16 2018-02-22 广东美的制冷设备有限公司 一种粉尘传感器
US11062586B2 (en) 2017-06-05 2021-07-13 Carrier Corporation Method of monitoring health of protective cover of detection device
WO2019156632A1 (en) * 2018-02-08 2019-08-15 Agency For Science, Technology And Research Particulate matter sensor module using compound parabolic/elliptical collector
JP2019197022A (ja) * 2018-05-11 2019-11-14 三菱電機株式会社 粒子検出装置
JP7003835B2 (ja) 2018-05-11 2022-02-10 三菱電機株式会社 粒子検出装置
JP2020041906A (ja) * 2018-09-11 2020-03-19 オムロン株式会社 粒子センサおよび電子機器
WO2020054690A1 (ja) * 2018-09-11 2020-03-19 オムロン株式会社 粒子センサおよび電子機器
JP7110852B2 (ja) 2018-09-11 2022-08-02 オムロン株式会社 粒子センサおよび電子機器
US11474018B2 (en) 2019-12-05 2022-10-18 Carrier Corporation Fluorescence enhanced LIDAR based particulate detector
CN111141647A (zh) * 2019-12-31 2020-05-12 众旺达(宁夏)技术咨询有限公司 一种环境监理用空气粉尘监测方法
US11506586B2 (en) 2020-08-17 2022-11-22 Carrier Corporation Photoelectric smoke sensor tube
CN114486790A (zh) * 2020-10-28 2022-05-13 旭化成微电子株式会社 气体检测装置
CN114486790B (zh) * 2020-10-28 2023-10-20 旭化成微电子株式会社 气体检测装置
US11921030B2 (en) 2020-10-28 2024-03-05 Asahi Kasei Microdevices Corporation Gas detection apparatus
WO2024057637A1 (ja) * 2022-09-13 2024-03-21 富士フイルム株式会社 検査装置

Similar Documents

Publication Publication Date Title
WO2015151502A1 (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP2015200547A (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機及び換気扇
JP6688966B2 (ja) 粒子検出センサ
JP5915921B1 (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP5667079B2 (ja) 粒径及び蛍光の同時検出のための小型検出器
JP6620983B2 (ja) 粒子検出センサ
JP6455470B2 (ja) 粒子センサ、及びそれを備えた電子機器
JP2017116287A (ja) 粒子検出センサ
KR101574435B1 (ko) 미세먼지 및 미생물 검출 장치
KR20120074558A (ko) 미세입자 검출장치
KR101878094B1 (ko) 이종의 반사경이 결합된 미세 먼지 및 미생물 검출 장치
JP2016090350A (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP2018141679A (ja) 粉塵センサ
JP2000235000A (ja) 光散乱式粒子検知センサ
JP2016045093A (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
KR101919103B1 (ko) 반사경을 구비하지 않는 광학식 미생물 검출 장치
JP2015200629A (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP6252908B2 (ja) 粒子検出センサ
KR102258809B1 (ko) 미세 먼지 및 미생물 검출 장치
JP2016090349A (ja) 粒子検出センサ、ダストセンサ、煙感知器、空気清浄機、換気扇及びエアコン
JP6127280B1 (ja) 粒子検出センサ
KR20160103285A (ko) 미세 먼지 및 미생물 검출 장치
JPH08263767A (ja) 微粒子検出センサ
KR20180121110A (ko) 입자 센싱 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772958

Country of ref document: EP

Kind code of ref document: A1