WO2015149542A1 - 汽车应急启动电源 - Google Patents

汽车应急启动电源 Download PDF

Info

Publication number
WO2015149542A1
WO2015149542A1 PCT/CN2014/094164 CN2014094164W WO2015149542A1 WO 2015149542 A1 WO2015149542 A1 WO 2015149542A1 CN 2014094164 W CN2014094164 W CN 2014094164W WO 2015149542 A1 WO2015149542 A1 WO 2015149542A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
start power
relay
emergency start
vehicle according
Prior art date
Application number
PCT/CN2014/094164
Other languages
English (en)
French (fr)
Inventor
卢圣凯
Original Assignee
苏州新逸喆电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410135567.XA external-priority patent/CN104979856A/zh
Priority claimed from CN201410135566.5A external-priority patent/CN104979855A/zh
Priority claimed from CN201410135568.4A external-priority patent/CN104979857B/zh
Application filed by 苏州新逸喆电子科技有限公司 filed Critical 苏州新逸喆电子科技有限公司
Publication of WO2015149542A1 publication Critical patent/WO2015149542A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery

Definitions

  • This application requires the application date to be April 04, 2014, the application number is 201410135566.5, and the invention name is “Automobile Emergency Start Power Supply for Diesel Engines”; the application date is April 04, 2014, and the application number is 201410135567.X.
  • the invention name is “12V automobile emergency starting power supply with ternary lithium battery”; the application date is April 4, 2014, the application number is 201410135568.4, and the Chinese patent application titled “a 12V automobile emergency starting power supply” is preferred. The entire contents are hereby incorporated by reference.
  • the invention relates to an electrical device used in the field of automobiles, in particular to an emergency starting power source for automobiles.
  • the car emergency start power source is used for vehicle start-up under extreme conditions, such as low temperature start-up.
  • a large current is supplied in a short time to start the car.
  • the instantaneous blocking current can reach more than 1500A, which is a typical short-time high-current discharge.
  • the object of the present invention is to provide an emergency start power source for a vehicle, which ensures the safety of a multi-component lithium battery.
  • the present invention provides an emergency power supply for a vehicle, which includes:
  • a battery module comprising a plurality of multi-component lithium batteries
  • a load end which is connected in series with the battery module, and the load end is configured to receive a voltage of the battery module and output to the outside;
  • circuit breaker protection module including a first stage circuit breaker and a second stage circuit breaker connected in series between the battery module and the load end, the first stage circuit breaker including a relay, the The secondary circuit breaker includes a plurality of the thermistors connected in parallel, the circuit breaker protection module further includes a plurality of heating resistors disposed adjacent to each of the thermistors, and the plurality of heating resistors are connected in parallel;
  • a control device for controlling a relay for controlling a plurality of heating resistors for controlling a plurality of heating resistors.
  • the control device when the voltage of the load terminal is higher than the voltage of the battery module, the control device turns off the first-stage open circuit protection module; when the first-stage open circuit protection module fails The control device turns on the heating resistor and disconnects the second-stage circuit breaker protection module.
  • the relay is an electromagnetic relay
  • the thermistor is a PTC thermistor
  • control device includes a single chip, the first output end of the single chip is electrically connected to a constant current source, the constant current source is electrically connected to the relay, and the second end of the single chip The output is electrically connected to a plurality of parallel generating resistors.
  • the automobile emergency starting power source further includes a detecting device, and the detecting device includes a first feedback unit connected between the constant current source and the single chip microcomputer, and is connected to the load end and the A second feedback unit between the microcontrollers.
  • a signal conversion device is further disposed between the second feedback unit and the single chip microcomputer.
  • the battery module includes a plurality of lithium battery packs connected in series with each other, each lithium battery pack including one or more ternary lithium batteries connected in parallel with each other.
  • the heat generating resistor has a one-to-one correspondence with the thermistor, and the corresponding heat generating resistor is thermally coupled to the thermistor, and the corresponding heat generating resistor and the heat generating resistor are The thermistor is in close proximity.
  • the battery module can output a direct current having a voltage of 12V or 24V to the outside.
  • a vehicle emergency starting power supply includes: a battery module including a plurality of multi-component lithium batteries;
  • a load end which is connected in series with the battery module, and the load end is configured to receive a voltage of the battery module and output to the outside;
  • Control device for controlling relays and current bypass protection devices.
  • control device turns off the relay when the voltage at the load terminal is higher than the voltage of the battery module.
  • the relay is an electromagnetic relay.
  • control device includes a single chip, and the first output end of the single chip is electrically connected to a constant current source, and the constant current source is electrically connected to the relay.
  • the automobile emergency starting power source further includes a detecting device, and the detecting device includes a first feedback unit connected between the constant current source and the single chip microcomputer, and is connected to the load end and the A second feedback unit between the microcontrollers.
  • a signal conversion device is further disposed between the second feedback unit and the single chip microcomputer.
  • a short circuit protection device is further connected in series between the battery module and the load end.
  • the automotive emergency starting power source further includes a current bypass protection device disposed between the battery module and the load terminal and electrically coupled to the control device.
  • the battery module can output a direct current having a voltage of 12V or 24V to the outside.
  • the invention has the beneficial effects that the invention can solve the technical problem that the emergency start power supply of the automobile can not be produced by using the multi-component lithium battery in the prior art, and can prevent the reverse charging of the multi-component lithium battery, over-current discharge and overheating of the battery, and ensure the system. Security.
  • FIG. 1 is a schematic structural view of a vehicle emergency starting power supply in a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a battery module of an emergency start power source of a vehicle according to a first embodiment of the present invention.
  • FIG. 3 is still another schematic structural diagram of a battery module of a vehicle emergency starting power supply according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a vehicle emergency starting power supply in a second embodiment of the present invention.
  • Fig. 5 is a structural schematic view showing a vehicle emergency starting power source in a third embodiment of the present invention.
  • the ternary lithium battery is not used to make an emergency start power supply, because the ternary lithium battery does not match the voltage of the 12V automobile start lead acid battery.
  • the automotive internal electrical appliance has a nominal voltage of 12V and a voltage range of 7.2V to 14.4V. It should not be greater than 14.4V, otherwise it will easily cause the car to burn out; at the same time, it must not be less than 7.2V, otherwise the car will not start.
  • the 14.4V charging voltage can overcharge the three strings of ternary lithium battery packs, causing the battery to overheat and even cause safety problems caused by combustion.
  • the starting voltage must be greater than 7.2V.
  • the diode with a large current of 0.6V forward conduction voltage is very expensive. Therefore, it is difficult to meet the requirements of 12V automotive applications whether it is a three-string ternary lithium battery pack.
  • the characteristics of the ternary lithium battery are prone to overheating during overvoltage charging and high current discharge, and the ternary lithium battery is smaller in volume than the conventional lead acid battery, and has a smaller heat capacity, which is more prone to high temperature accidents, and may be severe in severe cases. Fires, causing property and personnel losses.
  • an automobile emergency starting power supply which comprises a battery module 1, a load terminal 2, a circuit breaker protection module and a control device 5.
  • the battery module 1 is used to output direct current to the outside. According to the automotive standard agreement, the battery module 1 can output a direct current of 12V or 24V. Specifically, referring to FIG. 1, the battery module 1 may include three lithium battery packs 11 connected in series with each other, and each lithium battery pack 11 includes two ternary lithium batteries 12 connected in parallel with each other. After the nominal 12V car starts, the generator will charge the battery and the charging voltage can reach 14.4V.
  • the battery module 1 may include six or seven lithium battery packs 11 connected in series with each other, and each lithium battery pack 11 includes two ternary lithium batteries 12 connected in parallel with each other. After the nominal 24V car starts, the generator will charge the battery and the charging voltage can reach 28.8V.
  • the load terminal 2 is connected in series with the battery module 1.
  • the load terminal 2 is for receiving the voltage of the battery module 1 and outputting it to the outside.
  • the load terminal 2 may be connected with a battery, an electric motor or the like to start the vehicle.
  • the circuit breaker protection module includes a first stage circuit breaker and a second stage circuit breaker 4 connected in series between the battery module 1 and the load terminal 2, and the first stage circuit breaker may include a relay 3,
  • the second stage circuit breaker 4 may include a plurality of thermistors 41 connected in parallel, and the second stage circuit breaker 4 further includes a plurality of heating resistors 42 adjacent to each of the thermistors 41.
  • the heating resistor 42 has a one-to-one correspondence with the thermistor 41, and the corresponding heating resistor 42 and the thermistor 41 can be thermally coupled through a bonding or medium to achieve thermal coupling, and corresponding heating The resistor 42 is in close proximity to the thermistor 41.
  • the control device 5 is used to control the heating resistor 42 and the relay 3, that is, the control device 5 can drive the heating resistor 42 to be turned on or off, and the control can drive the relay 3 in the first-stage circuit breaker to be turned on or off to make The car emergency start power is turned on or off.
  • the control device 5 is preferably a single chip microcomputer.
  • the control device 5 drives the heating resistor 42 to open to ensure that the thermistor 41 is normally turned on, and drives the first-stage open circuit protection module to be turned on, so that the relay 3 in the first-stage open-circuit protection module is connected. through.
  • the control device 5 drives the relay 3 in the first-stage open circuit protection module to be turned off. Once the first stage circuit breaker protection module fails, the control device 5 drives the heat generating resistor 42 to conduct so that the heat generating resistor 42 emits heat to the thermistor 41 adjacent thereto and causes the thermistor 41 to be turned off.
  • the thermistor 41 can be a PTC thermistor 41.
  • PTC Positive Temperature Coefficient Abbreviation, which means a positive temperature coefficient, generally refers to a semiconductor material or component with a large positive temperature coefficient.
  • the PTC thermistor 41 is a typical temperature-sensitive semiconductor resistor. When a certain temperature (Curie temperature) is exceeded, its resistance value increases stepwise with increasing temperature.
  • the heating resistor 42 also referred to as a heating resistor, refers to an electronic component, such as a resistance wire, which can utilize the Joule effect of current flowing through the conductor to generate thermal energy outward.
  • the control device 5 includes a single chip microcomputer 51.
  • the first output end 511 of the single chip microcomputer 51 is electrically connected to a constant current source 52.
  • the constant current source 52 is electrically connected to the relay 3, and the The two output terminals 512 are electrically connected to a plurality of parallel generating resistors.
  • the control device 5 can control the relay 3 by controlling the constant current source 52, that is, by opening and closing the constant current source 52.
  • the vehicle emergency start power source may also include a detection device that includes a first feedback unit 62.
  • the first feedback unit 62 is connected between the constant current source 52 and the single chip microcomputer 51 for monitoring the first circuit breaker protection module.
  • the second feedback unit 61 is connected between the load terminal 2 and the single chip microcomputer 51 for monitoring the voltage of the load terminal 2.
  • a signal conversion device 53 is further disposed between the second feedback unit 61 and the single chip microcomputer 51 for converting the voltage value fed back by the second feedback unit 61 into a signal that can be recognized by the single chip
  • control device 5 includes a main control circuit 513, a detection device, a signal conversion device 53, a first output terminal 511, and a second output terminal 512.
  • the second feedback unit 61 detects whether there is a difference between the voltage of the load terminal 2 and the threshold voltage, and if there is a difference, the analog signal can be output to the signal conversion device 53.
  • the signal conversion device 53 converts the analog signal into a digital signal. That is, the high level and the low level are used to respectively indicate that the voltage of the load terminal 2 is greater than the threshold voltage and the voltage of the load terminal 2 is less than the threshold voltage. If the load terminal voltage is greater than the threshold voltage, the high-level digital signal outputted by the signal conversion device 53 is transmitted to the interrupt system of the main control circuit 513. For example, the interrupt port of the MCU, the MCU sends an interrupt signal to trigger the interrupt program to start in real time.
  • the interrupt program can control the output of the high-level signal of the single-chip output port, and the high-level signal outputted by the single-chip microcomputer turns on the triode in the first output end 511.
  • the base of the triode in the relay control circuit 515 ie, the constant current source 52
  • the triode (constant current source 52) in the relay control circuit 515 is turned on.
  • the L, C circuit is charged, the control relay 3 is turned off, and the first stage protection circuit is turned on.
  • the first feedback unit 62 can detect whether the relay control voltage is normal and feed back to the single chip microcomputer.
  • the single chip detects that the relay control voltage is abnormal, it outputs a high level signal to turn on the transistor in the second output terminal 512.
  • the base of the triode of the heating resistor control circuit 514 can be turned on under the action of the voltage dividing resistors R22 and R23, so that the triode in the heating resistor control circuit 514 is turned on.
  • the current generated by the generator in the load terminal 2 acts on the heating resistor 42 through the triode of the heating resistor control circuit 514, so that the heating resistor 42 generates heat.
  • the impedance of the thermistor 41 is increased until it is close to the open state, thereby opening the second-stage open circuit protection.
  • the working principle of the emergency start power supply of the automobile in the invention is as follows: the control device 5 controls the second-stage open circuit protection module to be turned on in the unpowered state, and the control device 5 controls the first-stage open circuit protection module. It is turned on in the charged state.
  • the control device 5 maintains the connection of the first-stage open circuit protection module and the second-stage open circuit protection module.
  • the vehicle emergency starting power source detects that the voltage of the load terminal 2 is higher than the voltage of the battery module 1, the control module controls the first-stage circuit breaker protection module to be disconnected in the charged state. If the first-stage open circuit protection module fails, the control module then controls the second-stage open circuit protection module so that it is disconnected in an unpowered state.
  • the car generator may generate a charging voltage higher than that of the battery module 1.
  • the first-stage open circuit protection module in the 12V automobile emergency starting power supply of the present invention should be able to disconnect the automobile generator from the battery module 1 to avoid reverse over-voltage charging of the battery module 1.
  • the PTC resistor in the 12V car emergency start power supply is also scrapped and cannot be used again, so that the reverse of the first-stage circuit breaker protection module or the second circuit breaker protection module does not occur. Overvoltage charging. Therefore, the work of the 12V automobile emergency starting power supply of the invention is safe and reliable.
  • the relay and the PTC thermistor can disconnect the charging voltage in a timely and reliable manner.
  • the PTC thermistor can realize the short circuit protection function.
  • the present embodiment is different from the first embodiment in that a current bypass protection device and a short circuit protection device are disposed between the battery module 1 and the load terminal 2.
  • This embodiment discloses a 12V automobile emergency starting power supply using a ternary lithium battery, which includes a battery module 1, a load terminal 2, a relay 3, and a control device 5.
  • the battery module 1 is used to output direct current to the outside. According to the automotive standard agreement, the battery module 1 can output a direct current of 12V to the outside.
  • 12V cars are generally small cars such as passenger cars.
  • the battery module 1 may include three lithium battery packs 11 connected in series with each other, and each lithium battery pack 11 includes two ternary lithium batteries 12 connected in parallel with each other. Charge the battery and the charging voltage can reach 14.4V.
  • the load terminal 2 is connected in series with the battery module 1.
  • the load terminal 2 is for receiving the voltage of the battery module 1 and outputting it to the outside.
  • the load terminal 2 may be connected with a battery, an electric motor or the like to start the vehicle.
  • a relay 3 is connected in series between the battery module 1 and the load terminal 2.
  • the control device 5 is used to control the relay 3, which can drive the relay 3 to open or close to turn the 12V car emergency start power on or off.
  • the control device 5 drives the relay to turn on, so that the car starts the power supply.
  • the control device 5 drives the relay 3 to open.
  • the control device 5 includes a single chip microcomputer 51.
  • the first output end 511 of the single chip microcomputer 51 is electrically connected to a constant current source 52, and the constant current source 52 is electrically connected to the relay 3.
  • the control device 5 can control the relay 3 by controlling the constant current source 52, that is, by opening and closing the constant current source 52.
  • the 12V automotive emergency start power supply may also include a detection device that includes a first feedback unit 42.
  • the first feedback unit 42 is connected between the constant current source 52 and the single chip microcomputer 51 for monitoring the first circuit breaker protection module.
  • the second feedback unit 41 is connected between the load terminal 2 and the single chip microcomputer 51 for monitoring the voltage of the load terminal 2.
  • a signal conversion device 53 is further provided for converting the voltage value fed back by the second feedback unit 41 into a signal that can be recognized by the single chip microcomputer 51.
  • a short circuit protection device 6 is further connected in series between the battery module 1 and the load terminal 2.
  • the short circuit protection device 6 is a fuse and can function as a short circuit protection.
  • the 12V automobile emergency starting power source further includes a current bypass protection device 7 disposed between the battery module 1 and the load terminal 2 and electrically connected to the control device 5.
  • the current bypass protection device 7 can include a thyristor transistor and a plurality of parallel resistors controlled by the control device 5 and electrically coupled to the second output 512 of the control device 5. Once the relay 3 fails to short circuit, the current bypass protection device 7 will consume most of the current generated by the automobile generator, which can reduce the safety risk caused by the reverse charging of the battery module 1 by the automobile generator, and effectively improve the safe use. Probability.
  • the control device 5 includes a main control circuit 513, a short circuit protection device 6, a detection device, and a signal conversion device 53, a first output 511, a second output 512, a current bypass protection circuit 516, The relay control circuit 515, wherein the detecting means comprises a second feedback unit 61 and a first feedback unit 62.
  • the fuse in the short circuit protection device 6 short-circuits the battery module 1 When the load terminal 2 is short-circuited, the battery module 1 is equivalent to being short-circuited, the current is instantaneously increased, and the fuse is blown to protect the battery module 1 from being short-circuited.
  • the second feedback unit 61 detects whether there is a difference between the voltage of the load terminal 2 and the threshold voltage, and if there is a difference, the analog signal can be output to the signal conversion device 53.
  • the signal conversion device 53 converts the analog signal into a digital signal. That is, the high level and the low level are used to respectively characterize that the load terminal voltage is greater than the threshold voltage and the load terminal voltage is less than the threshold voltage. If the load terminal voltage is greater than the threshold voltage, the high-level digital signal converted and output by the signal conversion device 53 is transmitted to the interrupt system of the main control circuit 513. For example, the interrupt port of the MCU, the MCU sends an interrupt signal to trigger the interrupt program to start in real time.
  • the interrupt program can control the output of the high-level signal of the single-chip output port, and the high-level signal outputted by the single-chip microcomputer turns on the triode in the first output end 511.
  • the base of the triode in the relay control circuit 515 ie, the constant current source 52
  • the triode (constant current source 52) in the relay control circuit 515 is turned on.
  • the L, C circuit is charged, the control relay 3 is turned off, and the first stage protection circuit is turned on.
  • the first feedback unit 62 can detect whether the relay control voltage is normal and feed back to the single chip microcomputer.
  • the single chip detects that the relay control voltage is abnormal, a high level signal is output to turn on the transistor in the second output terminal 512.
  • the base of the current bypass protection circuit 516 can be turned on under the action of the voltage dividing resistors R22 and R23, so that the current bypass protection circuit 516 is turned on.
  • the current bypass protection circuit 516 and the battery module 1 are connected in parallel, and the impedance of the current bypass protection circuit 516 is relatively smaller than that of the battery module 1.
  • the current generated by the generator in the load terminal 2 is mainly consumed by the current bypass protection circuit 516, thereby achieving the second-stage open circuit protection.
  • this embodiment is similar to the second embodiment, and is different from the third embodiment in that the present embodiment discloses a vehicle emergency starting power source for a diesel engine.
  • diesel engines are used in heavy trucks, off-road vehicles, and the like.
  • the starting voltage of the diesel engine is 24V.
  • the single-cell large-rate ternary lithium battery has a nominal voltage of 3.6V, and the voltage after charging is 4.2V.
  • the seven-string ternary lithium battery pack will use the seven-string battery for a long time, and the battery voltage will be higher than the other battery voltage.
  • the 30.2V charging voltage severely charges the battery overvoltage, causing the battery to overheat and even cause combustion.
  • the battery module 1 in this embodiment can output a direct current having a voltage of 24V to the outside.
  • the battery module 1 may include seven lithium battery packs 11 connected in series with each other, and each of the lithium battery packs 11 includes one or more ternary lithium batteries 12 connected in parallel with each other.
  • the load terminal 2 is connected in series with the battery module 1.
  • the load terminal 2 is for receiving the voltage of the battery module 1 and outputting it to the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种汽车应急启动电源,包括电池组模块(1);负载端(2);断路保护模块,其包括串接在电池组模块与负载端之间的第一级断路保护器和第二级断路保护器(4),第一级断路保护器包括继电器(3),第二级断路保护器包括多个并联的热敏电阻(41),断路保护模块还包括多个临近于每个热敏电阻设置的发热电阻(42),多个发热电阻相并联;控制装置(5),用于对继电器和多个发热电阻进行控制。该汽车应急启动电源可防止多元复合锂电池反向充电、过电流放电和电池过热,以保证***安全。

Description

汽车应急启动电源
本申请要求了申请日为2014年04月04日,申请号为201410135566.5,发明名称为“柴油发动机用的汽车应急启动电源”;申请日为2014年04月04日,申请号为201410135567.X,发明名称为“采用三元锂电池的12V汽车应急启动电源”;申请日为2014年04月04日,申请号为201410135568.4,发明名称为“一种12V汽车应急启动电源”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及一种应用在汽车领域中的电器装置,尤其涉及一种汽车应急启动电源。
【背景技术】
汽车应急启动电源用于在极端条件下的汽车启动,例如低温启动。在短时间内提供大电流,从而启动汽车。在极端条件下,瞬间堵转电流可达1500A以上,属于典型的短时间大电流放电情况。
市场上汽车应急启动电源(Jump-starter)产品多年来绝大多数是用铅酸电池制造的。然而,铅酸电池在制造、使用、回收过程中可能会造成严重的环境污染;且应急启动电源属于低温环境下使用的非常用设备,闲置时间长,铅酸电池中的铅容易发生氧化,造成电池无法正常工作。现有技术中也有使用大倍率磷酸铁锂电池制造的汽车应急启动电源,然而大倍率磷酸铁锂电池价格太高,市场接受程度低。
【发明内容】
本发明的目的在于提供一种汽车应急启动电源,其保证多元复合锂电池的安全。
为实现上述发明目的,本发明提供一种汽车应急启动电源,其包括:
电池组模块,其包括多个多元复合锂电池;
负载端,其与所述电池组模块相串接,所述负载端用于接收所述电池组模块的电压并向外输出;
断路保护模块,其包括串接在所述电池组模块与所述负载端之间的第一级断路保护器和第二级断路保护器,所述第一级断路保护器包括继电器,所述第二级断路保护器包括多个并联的热敏电阻,所述断路保护模块还包括多个临近于每个热敏电阻设置的发热电阻,多个发热电阻相并联;
控制装置,所述控制装置用于对继电器进行控制、用于对多个发热电阻进行控制。
作为本发明的进一步改进,当所述负载端的电压高于所述电池组模块的电压时,所述控制装置关断所述第一级断路保护模块;当所述第一级断路保护模块失效时,所述控制装置接通所述发热电阻并使得第二级断路保护模块断开。
作为本发明的进一步改进,所述继电器为电磁继电器,所述热敏电阻为PTC热敏电阻。
作为本发明的进一步改进,所述控制装置包括单片机,所述单片机的第一输出端与一恒流源相电连,所述恒流源与所述继电器相电连,所述单片机的第二输出端与多个并联的发电阻相电连。
作为本发明的进一步改进,所述汽车应急启动电源还包括检测装置,所述检测装置包括连接在所述恒流源与所述单片机之间的第一反馈单元,连接在所述负载端与所述单片机之间的第二反馈单元。
作为本发明的进一步改进,在所述第二反馈单元与所述单片机之间还设置有信号转换装置。
作为本发明的进一步改进,所述电池组模块包括多个相互串联的锂电池组,每个锂电池组包括一个或多个相互并联的三元锂电池。
作为本发明的进一步改进,所述发热电阻与所述热敏电阻相一一对应,且相对应的所述发热电阻与所述热敏电阻相热耦合,且相对应的所述发热电阻与所述热敏电阻相紧邻。
作为本发明的进一步改进,所述电池组模块可以向外输出电压为12V或24V的直流电。
本发明又一实施例的汽车应急启动电源,其包括:电池组模块,其包括多个多元复合锂电池;
负载端,其与所述电池组模块相串接,所述负载端用于接收所述电池组模块的电压并向外输出;
继电器,其串接在所述电池组模块与所述负载端之间;
控制装置,用于对继电器和电流旁路保护装置进行控制。
作为本发明的进一步改进,当所述负载端的电压高于所述电池组模块的电压时,所述控制装置关断所述继电器。
作为本发明的进一步改进,所述继电器为电磁继电器。
作为本发明的进一步改进,所述控制装置包括单片机,所述单片机的第一输出端与一恒流源相电连,所述恒流源与所述继电器相电连。
作为本发明的进一步改进,所述汽车应急启动电源还包括检测装置,所述检测装置包括连接在所述恒流源与所述单片机之间的第一反馈单元,连接在所述负载端与所述单片机之间的第二反馈单元。
作为本发明的进一步改进,在所述第二反馈单元与所述单片机之间还设置有信号转换装置。
作为本发明的进一步改进,在所述电池组模块与所述负载端之间还串接有短路保护装置。
作为本发明的进一步改进,所述汽车应急启动电源还包括设置在所述电池组模块与所述负载端之间且与所述控制装置相电联的电流旁路保护装置。
作为本发明的进一步改进,所述电池组模块可以向外输出电压为12V或24V的直流电。
本发明的有益效果在于,本发明可解决现有技术中无法用多元复合锂电池制作汽车应急启动电源的技术问题,可实现防止多元复合锂电池反向充电,过电流放电和电池过热,保证***的安全。
【附图说明】
图1为本发明第一实施例中汽车应急启动电源的结构示意图。
图2为本发明第一实施例中汽车应急启动电源的电池组模块的一结构示意图。
图3为本发明第一实施例中汽车应急启动电源的电池组模块的又一结构示意图。
图4是本发明第二实施例中汽车应急启动电源的结构示意图。
图5是本发明第三实施例中汽车应急启动电源的结构示意图。
【具体实施方式】
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
在现有技术中没有采用三元锂电池制作应急启动电源,这是因为三元锂电池与12V汽车启动铅酸电瓶电压不匹配。汽车内用电器标称电压为12V,电压范围为7.2V至14.4V。不得大于14.4V,否则容易造成汽车用电器烧毁;同时不得小于7.2V,否则无法启动汽车。
为了防止给三串三元锂电池组过压充电,在放电回路中一般串联有单向导通的二极管。这是因为如果采用三串三元锂电池组做12V汽车应急启动电源时,三元锂电池标称电压为3.6V,充满后的电压为4.2V,因此三串三元锂电池组的充电电压必须小于等于4.2V×3=12.6V。但是12V汽车启动后发电机将给电瓶充电,发电机给三串三元锂电池组的充电电压可以达到14.4V。如果没有设置二极管,14.4V充电电压可以给三串三元锂电池组过压充电,造成电池过热,甚至引发燃烧带来安全问题。可是12V汽车启动时启动电压又必须大于7.2V,应急启动电源大电流供电时(1)二极管0.6V电压,(2)开关0.5V电压,(3)保险丝0.5V电压,(4)一对导线及夹子1.1V电压,7.2V+0.6V+0.5V+0.5V+1.1V=9.9V。而公知的三串三元锂电池组中单节电池大倍率脉冲放电的中后期电压都小于9.9V/3=3.3V,输出到一对夹子的电压小于7.2V,因此其在中后期无法启动汽车。并且大电流0.6V正向导通电压的二极管价格很高。因此无论是采取三串三元锂电池组都难以符合12V汽车应用的要求。另外,三元锂电池的特性是在过压充电、大电流放电时,容易发生过热,且三元锂电池相比传统铅酸电池体积较小,热容量小,更容易发生高温事故,严重时可能引发火灾,造成财产和人员损失。
第一实施例,
参图1至图3所示,其公开了一种汽车应急启动电源,它包括电池组模块1、负载端2、断路保护模块、控制装置5。
电池组模块1用于向外输出直流电。根据汽车标准协定,电池组模块1可以向外输出电压为12V或者24V的直流电。具体的,参照图1所示,电池组模块1可以包括三个相互串联的锂电池组11,每个锂电池组11包括两个相互并联的三元锂电池12。标称12V汽车启动后发电机将给电瓶充电,充电电压可以达到14.4V。而采用本发明汽车应急启动电源中的电池组模块1的充电电压必须小于等于4.2V×3=12.6V,以防止给电池组模块1反向过压充电。参照图2和图3所示,电池组模块1可以包括六个或七个相互串联的锂电池组11,每个锂电池组11包括两个相互并联的三元锂电池12。标称24V汽车启动后发电机将给电瓶充电,充电电压可以达到28.8V。而采用本发明汽车应急启动电源中的电池组模块1的充电电压必须小于等于4.2V×6=25.2V或4.2V×7=29.4V,以防止给电池组模块1反向过压充电。
负载端2与电池组模块1相串接。负载端2用于接收所述电池组模块1的电压并向外输出。在本实施例中,负载端2可以连接有电瓶、电动机等以启动汽车。断路保护模块包括串接在所述电池组模块1与所述负载端2之间的第一级断路保护器和第二级断路保护器4,第一级断路保护器可以包括继电器3,所述第二级断路保护器4可以包括多个并联的热敏电阻41,第二级断路保护器4还包括多个临近于每个热敏电阻41的发热电阻42。优选地,所述发热电阻42与所述热敏电阻41相一一对应,且相对应的发热电阻42与热敏电阻41可以通过贴合或介质传热以实现热耦合,且相对应的发热电阻42与热敏电阻41相紧邻。控制装置5用于对发热电阻42和继电器3进行控制,即控制装置5可以驱使发热电阻42导通或断开,控制可以驱使第一级断路保护器中的继电器3吸合或断开以使得汽车应急启动电源打开或断开。控制装置5优选为单片机。
当汽车应急启动电源启动时,控制装置5驱使发热电阻42断开以保证热敏电阻41正常导通,并驱使第一级断路保护模块接通即使得第一级断路保护模块中的继电器3接通。
当负载端2的电压高于电池组模块1的电压时,控制装置5驱使第一级断路保护模块中的继电器3断开。一旦第一级断路保护模块失效,控制装置5驱使发热电阻42导通,以使得发热电阻42向邻近其的热敏电阻41发出热量并促使热敏电阻41断开。
热敏电阻41可以为PTC热敏电阻41。PTC是Positive Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。PTC热敏电阻41是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。发热电阻42,又称加热电阻,在现有技术中是指可以利用电流流过导体的焦耳效应能向外产生的热能的电子元件,例如电阻丝等。
所述控制装置5包括单片机51,所述单片机51的第一输出端511与一恒流源52相电连,所述恒流源52与所述继电器3相电连,所述单片机51的第二输出端512与多个并联的发电阻相电连。控制装置5可以通过对恒流源52进行控制,即通过对恒流源52的开闭实现对继电器3的控制。汽车应急启动电源还可以包括检测装置,所述检测装置包括第一反馈单元62。第一反馈单元62连接在恒流源52与所述单片机51之间,用于对第一断路保护模块进行监控。第二反馈单元61连接在所述负载端2与所述单片机51之间,用于对负载端2的电压进行监控。在所述第二反馈单元61与所述单片机51之间还设置有信号转换装置53,用于将第二反馈单元61反馈的电压值转换成单片机51能够识别的信号。
具体地,控制装置5包括主控电路513, 检测装置, 信号转换装置53, 第一输出端511,第二输出端512, 发热电阻控制电路514, 继电器控制电路515,其中检测装置包括第二反馈单元61和第一反馈单元62。
第二反馈单元61检测负载端2电压与门限电压是否存在差值,若存在差值,即可向信号转换装置53输出模拟信号, 信号转换装置53将此模拟信号转换成数字信号, 即用高电平和低电平来分别表征负载端2的电压大于门限电压和负载端2的电压小于门限电压两种状态。若负载端电压大于门限电压,经信号转换装置53转换后输出的高电平数字信号传输到主控电路513的中断***, 例如:单片机的中断口,单片机发出中断信号触发中断程序实时启动, 中断程序可以控制单片机输出口输出高电平信号,单片机输出的高电平信号使第一输出端511中的三极管导通, 第一输出端511中的三极管导通后可以使继电器控制电路515中的三极管(即恒流源52)的基极在分压电阻R2、R3的作用下获得开启电压, 从而使继电器控制电路515中的三极管(恒流源52)导通, 给L,C电路充电,控制继电器3断开,开启第一级保护电路。第一反馈单元62可以检测继电器控制电压是否正常并反馈给单片机, 若单片机检测到继电器控制电压异常时,即输出高电平信号使第二输出端512中的三极管导通, 第二输出端512中的三极管导通后可以使发热电阻控制电路514三极管的基极在分压电阻R22、R23的作用下获得开启电压,从而使发热电阻控制电路514中的三极管导通, 这样负载端2中发电机机产生的电流经过发热电阻控制电路514的三极管作用在发热电阻42上, 使发热电阻42发热, 从而使热敏电阻41的阻抗变大直至接近断路状态从而开启第二级断路保护。
本发明中的汽车应急启动电源工作原理如下:启动时控制装置5对第二级断路保护模块进行控制使得其在不带电的状态下接通,控制装置5再对第一级断路保护模块进行控制使得其在带电的状态下接通。当汽车应急启动电源处于正常工作时,控制装置5维持第一级断路保护模块和第二级断路保护模块的接通。当汽车应急启动电源检测到负载端2的电压高于电池组模块1的电压时,控制模块对第一级断路保护模块进行控制使得其在带电的状态下断开。假使第一级断路保护模块失效,则控制模块再对第二级断路保护模块进行控制使得其在不带电的状态下断开。
以12V汽车应急启动电源为例,当大电流供电时:(1)继电器0.5V电压,(2)PTC热敏电阻0.5V电压(同时做由温度控制的二级保护开关),(3)一对导线及夹子1.1V电压,7.2V+0.5V+0.5V+1.1V=9.3V。而公知的三元锂电池组中单节电池大倍率脉冲放电的中前期电压都大于9.3V/3=3.1V,因此本发明中的汽车应急电源具有较好的稳定性。
汽车在启动后,汽车发电机可能会产生高于电池组模块1的充电电压。此时,本发明中的12V汽车应急启动电源中的第一级断路保护模块应当能够将汽车发电机与电池组模块1断开,避免给电池组模块1反向过压充电。一旦第一级断路保护模块失效后,该12V汽车应急启动电源中的PTC电阻也报废无法再次使用,这样就不会出现因为第一级断路保护模块或第二断路保护模块的失灵而造成反向过压充电。因而,采用本发明12V汽车应急启动电源的工作安全可靠。当12V汽车启动后发电机给电池组模块1充电时,继电器和PTC热敏电阻(由温度控制的二级保护开关)可以及时可靠地断开充电电压。同时PTC热敏电阻可以实现短路保护功能。
实施例2
参图4所示,本实施例与第一实施例的不同之处在于:在所述电池组模块1与所述负载端2之间设置电流旁路保护装置和短路保护装置。
本实施例公开了一种采用三元锂电池的12V汽车应急启动电源,它包括电池组模块1、负载端2、继电器3、控制装置5。
电池组模块1用于向外输出直流电。根据汽车标准协定,电池组模块1可以向外输出电压为12V的直流电。12V汽车一般为小客车等小型汽车。具体的,参照图4所示,电池组模块1可以包括三个相互串联的锂电池组11,每个锂电池组11包括两个相互并联的三元锂电池12。12V汽车启动后发电机将给电瓶充电,充电电压可以达到14.4V。而采用本发明12V汽车应急启动电源中的电池组模块1的充电电压必须小于等于4.2V×3=12.6V,以防止给电池组模块1反向过压充电。负载端2与电池组模块1相串接。负载端2用于接收所述电池组模块1的电压并向外输出。在本实施例中,负载端2可以连接有电瓶、电动机等以启动汽车。继电器3串接在所述电池组模块1与负载端2之间。控制装置5用于对继电器3进行控制,控制装置5可以驱使继电器3吸合或断开以使得12V汽车应急启动电源打开或断开。
当12V汽车应急启动电源启动时,控制装置5驱使继电器接通即使得汽车启动电源导通。当负载端2的电压高于电池组模块1的电压时,控制装置5驱使继电器3断开。
控制装置5包括单片机51,所述单片机51的第一输出端511与一恒流源52相电连,恒流源52与继电器3相电连。控制装置5可以通过对恒流源52进行控制,即通过对恒流源52的开闭实现对继电器3的控制。12V汽车应急启动电源还可以包括检测装置,检测装置包括第一反馈单元42。第一反馈单元42连接在恒流源52与所述单片机51之间,用于对第一断路保护模块进行监控。第二反馈单元41连接在所述负载端2与所述单片机51之间,用于对负载端2的电压进行监控。在所述第二反馈单元41与所述单片机51之间还设置有信号转换装置53,用于将第二反馈单元41反馈的电压值转换成单片机51能够识别的信号。
采用本发明中的12V汽车应急启动电源当大电流供电时:(1)继电器开关0.5V电压,(2)保险丝0.5V电压,(3)一对导线及夹子1.1V电压,7.2V+0.5V+0.5V+1.1V=9.3V。而公知的三元锂电池组中单节电池大倍率脉冲放电的中前期电压都大于9.3V/3=3.1V,因此本发明中的汽车应急电源具有较好的稳定性。
进一步的,在所述电池组模块1与所述负载端2之间还串接有短路保护装置6,优选地,短路保护装置6为保险丝,能够起到短路保护的作用。
进一步的,所述12V汽车应急启动电源还包括设置在所述电池组模块1与所述负载端2之间且与所述控制装置5相电连的电流旁路保护装置7。电流旁路保护装置7可以包括受控制装置5控制且与控制装置5的第二输出端512相电连的晶闸三极管和多个并联的电阻。一旦继电器3失效短路时,电流旁路保护装置7将消耗大部分汽车发电机发出的电流,可以减少汽车发电机对电池组模块1反向过充电所带来的安全风险,有效地提高安全使用概率。
具体地,控制装置5包括主控电路513, 短路保护装置6, 检测装置, 信号转换装置53, 第一输出端511,第二输出端512, 电流旁路保护电路516, 继电器控制电路515,其中检测装置包括第二反馈单元61和第一反馈单元62。短路保护装置6中的保险丝对电池组模块1进行短路保护, 当负载端2出现短路时,电池组模块1相当于被短接, 电流瞬时变大, 保险丝融断, 保护电池组模块1被短路放电.
第二反馈单元61检测负载端2电压与门限电压是否存在差值,若存在差值,即可向信号转换装置53输出模拟信号, 信号转换装置53将此模拟信号转换成数字信号, 即用高电平和低电平来分别表征负载端电压大于门限电压和负载端电压小于门限电压两种状态。若负载端电压大于门限电压,经信号转换装置53转换输出的高电平数字信号传输到主控电路513的中断***, 例如:单片机的中断口,单片机发出中断信号触发中断程序实时启动, 中断程序可以控制单片机输出口输出高电平信号,单片机输出的高电平信号使第一输出端511中的三极管导通, 第一输出端511中的三极管导通后可以使继电器控制电路515中的三极管(即恒流源52)的基极在分压电阻R2、R3的作用下获得开启电压, 从而使继电器控制电路515中的三极管(恒流源52)导通, 给L,C电路充电,控制继电器3断开,开启第一级保护电路。第一反馈单元62可以检测继电器控制电压是否正常并反馈给单片机, 若单片机检测到继电器控制电压异常时,输出高电平信号使第二输出端512中的三极管导通, 第二输出端512中的三极管导通后可以使电流旁路保护电路516三极管的基极在分压电阻R22、R23的作用下获得开启电压,从而使电流旁路保护电路516三极管导通, 这样电流旁路保护电路516和电池组模块1实现并连, 电流旁路保护电路516的阻抗相对与电池组模块1较小, 这样,负载端2中发电机产生的电流会主要消耗在电流旁路保护电路516上, 从而实现第二级断路保护。
实施例3
参图5所示,本实施例与第二实施例相似,,相对第三实施例,不同之处在于:本实施例公开了一种柴油发动机用的汽车应急启动电源。一般而言,重型卡车、越野车等采用柴油发动机。而柴油发动机的启动电压的标准为24V。24V汽车启动后发电机发电电压小于等于14.4V+14.4V*5% = 30.2V。单节大倍率三元锂电池标称电压为3.6V,充满后的电压为4.2V,七串三元锂电池组充电电压必须小于等于4.2V×7=29.4V。七串三元锂电池组长期使用七串电池一定会不均衡,某一节电池电压会比其它节电池电压高。30.2V充电电压严重地给该节电池过压充电,造成电池过热,甚至引发燃烧。本实施例中的电池组模块1可以向外输出电压为24V的直流电。具体的,参照图5所示,电池组模块1可以包括七个相互串联的锂电池组11,每个锂电池组11包括一个或多个相互并联的三元锂电池12。负载端2与电池组模块1相串接。负载端2用于接收所述电池组模块1的电压并向外输出。
最后应说明的是,以上实施例仅用以描述本发明的技术方案而不是对本技术方法进行限制,本发明在应用上可以延伸为其他的修改、变化、应用和实施例,并且因此认为所有这样的修改、变化、应用、实施例都在本发明的精神和教导范围内。

Claims (18)

  1. 一种汽车应急启动电源,其包括:
    电池组模块,其包括多个多元复合锂电池;
    负载端,其与所述电池组模块相串接,所述负载端用于接收所述电池组模块的电压并向外输出;
    其特征在于:所述汽车应急启动电源还包括:
    断路保护模块,其包括串接在所述电池组模块与所述负载端之间的第一级断路保护器和第二级断路保护器,所述第一级断路保护器包括继电器,所述第二级断路保护器包括多个并联的热敏电阻,所述断路保护模块还包括多个临近于每个热敏电阻设置的发热电阻,多个发热电阻相并联;
    控制装置,所述控制装置用于对继电器进行控制、用于对多个发热电阻进行控制。
  2. 根据权利要求1所述的汽车应急启动电源,其特征在于,当所述负载端的电压高于所述电池组模块的电压时,所述控制装置关断所述第一级断路保护模块;当所述第一级断路保护模块失效时,所述控制装置接通所述发热电阻并使得第二级断路保护模块断开。
  3. 根据权利要求1所述的汽车应急启动电源,其特征在于,所述继电器为电磁继电器,所述热敏电阻为PTC热敏电阻。
  4. 根据权利要求1所述的汽车应急启动电源,其特征在于,所述控制装置包括单片机,所述单片机的第一输出端与一恒流源相电连,所述恒流源与所述继电器相电连,所述单片机的第二输出端与多个并联的发电阻相电连。
  5. 根据权利要求4所述的汽车应急启动电源,其特征在于,所述汽车应急启动电源还包括检测装置,所述检测装置包括连接在所述恒流源与所述单片机之间的第一反馈单元,连接在所述负载端与所述单片机之间的第二反馈单元。
  6. 根据权利要求5所述的汽车应急启动电源,其特征在于,在所述第二反馈单元与所述单片机之间还设置有信号转换装置。
  7. 根据权利要求1所述的汽车应急启动电源,其特征在于,所述电池组模块包括多个相互串联的锂电池组,每个锂电池组包括一个或多个相互并联的三元锂电池。
  8. 根据权利要求1所述的汽车应急启动电源,其特征在于,所述发热电阻与所述热敏电阻相一一对应,且相对应的所述发热电阻与所述热敏电阻相热耦合,且相对应的所述发热电阻与所述热敏电阻相紧邻。
  9. 根据权利要求1所述的汽车应急启动电源,其特征在于,所述电池组模块可以向外输出电压为12V或24V的直流电。
  10. 一种汽车应急启动电源,其特征在于,包括:
    电池组模块,其包括多个多元复合锂电池;
    负载端,其与所述电池组模块相串接,所述负载端用于接收所述电池组模块的电压并向外输出;
    继电器,其串接在所述电池组模块与所述负载端之间;
    控制装置,用于对继电器和电流旁路保护装置进行控制。
  11. 根据权利要求10所述的汽车应急启动电源,其特征在于,当所述负载端的电压高于所述电池组模块的电压时,所述控制装置关断所述继电器。
  12. 根据权利要求10所述的汽车应急启动电源,其特征在于,所述继电器为电磁继电器。
  13. 根据权利要求10所述的汽车应急启动电源,其特征在于,所述控制装置包括单片机,所述单片机的第一输出端与一恒流源相电连,所述恒流源与所述继电器相电连。
  14. 根据权利要求13所述的汽车应急启动电源,其特征在于,所述汽车应急启动电源还包括检测装置,所述检测装置包括连接在所述恒流源与所述单片机之间的第一反馈单元,连接在所述负载端与所述单片机之间的第二反馈单元。
  15. 根据权利要求14所述的汽车应急启动电源,其特征在于,在所述第二反馈单元与所述单片机之间还设置有信号转换装置。
  16. 根据权利要求10所述的汽车应急启动电源,其特征在于,在所述电池组模块与所述负载端之间还串接有短路保护装置。
  17. 根据权利要求10所述的汽车应急启动电源,其特征在于,所述汽车应急启动电源还包括设置在所述电池组模块与所述负载端之间且与所述控制装置相电联的电流旁路保护装置。
  18. 根据权利要求10所述的汽车应急启动电源,其特征在于,所述电池组模块可以向外输出电压为12V或24V的直流电。
PCT/CN2014/094164 2014-04-04 2014-12-18 汽车应急启动电源 WO2015149542A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410135566.5 2014-04-04
CN201410135567.XA CN104979856A (zh) 2014-04-04 2014-04-04 采用三元锂电池的12v汽车应急启动电源
CN201410135566.5A CN104979855A (zh) 2014-04-04 2014-04-04 柴油发动机用的汽车应急启动电源
CN201410135568.4A CN104979857B (zh) 2014-04-04 2014-04-04 一种12v汽车应急启动电源
CN201410135568.4 2014-04-04
CN201410135567.X 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015149542A1 true WO2015149542A1 (zh) 2015-10-08

Family

ID=54239369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094164 WO2015149542A1 (zh) 2014-04-04 2014-12-18 汽车应急启动电源

Country Status (1)

Country Link
WO (1) WO2015149542A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958139A (zh) * 2016-06-30 2016-09-21 深圳市华思旭科技有限公司 一种应急电源的管理***和方法
CN107732873A (zh) * 2017-11-09 2018-02-23 厦门芯阳科技股份有限公司 一种防止bldc电机被带动运转发电的保护电路及方法
CN108462220A (zh) * 2018-02-01 2018-08-28 深圳市艾丽声电子有限公司 多重保护柴油机启动电源及保护方法
CN109347172A (zh) * 2018-11-22 2019-02-15 浙江安伴汽车安全急救技术股份有限公司 一种车辆便携式启动电源
CN109677343A (zh) * 2019-03-08 2019-04-26 苏旭瑜 一种串联型汽车启动备用电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091297A (zh) * 2005-05-10 2007-12-19 松下电器产业株式会社 保护电路以及电池组件
CN103151822A (zh) * 2013-03-29 2013-06-12 山东润峰集团新能源科技有限公司 微型多功能汽车应急启动移动电源
CN203056650U (zh) * 2013-01-30 2013-07-10 杭州阳光工具有限公司 一种磷酸铁锂电池应急电源
CN203522242U (zh) * 2013-09-17 2014-04-02 深圳市格威特光电科技有限公司 便携式汽车点火应急电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101091297A (zh) * 2005-05-10 2007-12-19 松下电器产业株式会社 保护电路以及电池组件
CN203056650U (zh) * 2013-01-30 2013-07-10 杭州阳光工具有限公司 一种磷酸铁锂电池应急电源
CN103151822A (zh) * 2013-03-29 2013-06-12 山东润峰集团新能源科技有限公司 微型多功能汽车应急启动移动电源
CN203522242U (zh) * 2013-09-17 2014-04-02 深圳市格威特光电科技有限公司 便携式汽车点火应急电源

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958139A (zh) * 2016-06-30 2016-09-21 深圳市华思旭科技有限公司 一种应急电源的管理***和方法
CN107732873A (zh) * 2017-11-09 2018-02-23 厦门芯阳科技股份有限公司 一种防止bldc电机被带动运转发电的保护电路及方法
CN107732873B (zh) * 2017-11-09 2024-03-22 厦门芯阳科技股份有限公司 一种防止bldc电机被带动运转发电的保护电路及方法
CN108462220A (zh) * 2018-02-01 2018-08-28 深圳市艾丽声电子有限公司 多重保护柴油机启动电源及保护方法
CN109347172A (zh) * 2018-11-22 2019-02-15 浙江安伴汽车安全急救技术股份有限公司 一种车辆便携式启动电源
CN109347172B (zh) * 2018-11-22 2023-10-27 浙江安伴汽车安全急救技术股份有限公司 一种车辆便携式启动电源
CN109677343A (zh) * 2019-03-08 2019-04-26 苏旭瑜 一种串联型汽车启动备用电源

Similar Documents

Publication Publication Date Title
WO2015149542A1 (zh) 汽车应急启动电源
US20160059712A1 (en) Battery pack and hybrid vehicle including the battery pack
EP2942852A1 (en) Emergency power source
CN112009246A (zh) 一种汽车辅助电源管理***及控制方法
WO2023179272A1 (zh) 高压配电箱、高压配电***及电动车辆
CN104908600A (zh) 一种电动车电池组的安全控制***
CN211790810U (zh) 充电***、充电器、电池组及可移动平台
CN204011518U (zh) 一种具有过热保护的电动车电瓶盒
CN205489485U (zh) 一种具有温控、短路和过充保护的太阳能充电电源
CN2935589Y (zh) 一种用于汽车交直流电源供应装置
CN203562788U (zh) 一种三元锂电池汽车应急启动电源
CN104979857B (zh) 一种12v汽车应急启动电源
CN214337618U (zh) 一种双电池电源***
CN213215776U (zh) 一种婴童吹风机控制电路
CN210603647U (zh) 一种电池超温报警电路
CN203883508U (zh) 采用三元锂电池的12v汽车应急启动电源
CN203883509U (zh) 一种12v汽车应急启动电源
CN107331906A (zh) 一种锂电池高温防护结构及锂电池
CN104979856A (zh) 采用三元锂电池的12v汽车应急启动电源
CN203883507U (zh) 柴油发动机用的汽车应急启动电源
CN113013945A (zh) 一种锂电池电动车充电器dc电压输出保护电路
CN208723604U (zh) 具有分级使用功能的电池管理***
CN206430191U (zh) 一种电子火柴点火装置
CN201174604Y (zh) 充放电控制装置
CN105946585B (zh) 一种车辆电源管理***及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888436

Country of ref document: EP

Kind code of ref document: A1