WO2015149379A1 - 用于液晶面板的单层双轴补偿架构及液晶显示装置 - Google Patents

用于液晶面板的单层双轴补偿架构及液晶显示装置 Download PDF

Info

Publication number
WO2015149379A1
WO2015149379A1 PCT/CN2014/075146 CN2014075146W WO2015149379A1 WO 2015149379 A1 WO2015149379 A1 WO 2015149379A1 CN 2014075146 W CN2014075146 W CN 2014075146W WO 2015149379 A1 WO2015149379 A1 WO 2015149379A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
protective film
compensation
crystal display
Prior art date
Application number
PCT/CN2014/075146
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/358,321 priority Critical patent/US20150293406A1/en
Publication of WO2015149379A1 publication Critical patent/WO2015149379A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a single-layer dual-axis compensation architecture for a liquid crystal panel and a liquid crystal display device.
  • a liquid crystal display is a flat and ultra-thin display device composed of a certain number of color or black and white pixels placed in front of a light source or a reflecting surface. LCD monitors have low power consumption, high image quality, small size, and light weight, so they are favored by everyone and become the mainstream of displays. At present, liquid crystal displays are mainly Thin Film Transistor (TFT) liquid crystal displays.
  • TFT Thin Film Transistor
  • the linear liquid crystal for producing a liquid crystal display panel is a material having a birefringence ⁇ ⁇ .
  • the light passes through the liquid crystal molecules, it can be divided into ordinary light and ordinary light, if the light is oblique.
  • the liquid crystal molecules are incident, two refracted rays are generated.
  • the birefringence ⁇ ⁇ ⁇ (3 - ⁇ , ne represents the refractive index of the liquid crystal molecules for ordinary rays, and no represents the refractive index of the liquid crystal molecules for extraordinary rays. After the liquid crystal is sandwiched between the upper and lower glass, the phase retardation occurs.
  • the light characteristics of the liquid crystal cell are usually measured by the phase delay A n X d, also called the optical path difference, and ⁇ ⁇ is Birefringence, d is the thickness of the liquid crystal cell, and the difference in phase retardation of the liquid crystal cell at different viewing angles is the origin of the viewing angle problem.
  • the phase retardation of the good optical compensation film can cancel out the phase delay of the linear liquid crystal, which can increase The viewing angle of the wide liquid crystal panel.
  • the compensation principle of the optical compensation film is generally to repair the phase difference generated by the liquid crystal at different viewing angles.
  • the birefringence property of the liquid crystal molecules is compensated for by the symmetry.
  • the compensation by the optical compensation film can effectively reduce the light leakage of the dark state picture, and can greatly improve the contrast of the picture within a certain viewing angle.
  • the optical compensation film is used for its functional purpose. Classification can be divided into simple A phase difference film, a chromatic aberration compensation film, a viewing angle expansion film, and the like which change the phase.
  • the use of an optical compensation film can reduce the amount of light leakage in the dark state of the liquid crystal display, and can greatly improve the contrast, chromaticity and overcome some gray scale inversion problems in a certain viewing angle.
  • the main parameters for measuring the characteristics of the optical compensation film include the in-plane compensation value Ro in the plane direction, the thickness compensation value Rth in the thickness direction, the refractive index N, and the film thickness D, which satisfy the following relationship:
  • Nx is the refractive index along the slow axis (the axis with the largest refractive index, that is, the direction of vibration where the light has a slower propagation velocity) in the plane of the film
  • Ny is the fast axis along the plane of the film (with the smallest refractive index)
  • Nz is the refractive index in the plane of the film (perpendicular to Nx and Ny).
  • the optical compensation film used is different for different liquid crystal display modes, that is, different liquid crystal cell types, and the Ro and Rth values are also adjusted to appropriate values. Most of the optical compensation films used in the large-size LCD TVs are for the VA (Vertical Alignment) display mode.
  • the early use of Koni Ca (Konica) N-TAC has been developed to form the 0PTES company. Zeonor, Fujitsu's F-TAC series, Nitto Denko's X-plate, etc.
  • FIG. 1 is a dark state full-view brightness contour distribution diagram of a liquid crystal panel compensated by a conventional single-layer biaxial compensation film
  • FIG. 2 is compensated by the single-layer double-axis compensation film. Contrast contour map of the entire viewing angle of the rear liquid crystal panel.
  • the liquid crystal optical path difference ⁇ ⁇ ⁇ (1 is 296.5 nm
  • the in-plane compensation value Ro of the single-layer biaxial compensation film is 72 nm
  • the thickness compensation value Rth of the single-layer biaxial compensation film is 240 nm. See Fig. 1 and Fig.
  • the present invention provides a liquid crystal panel.
  • the single-layer dual-axis compensation architecture can effectively reduce the dark state light leakage problem of the liquid crystal panel and increase the contrast and sharpness of the large viewing angle by appropriately setting the compensation value.
  • a single-layer dual-axis compensation structure for a liquid crystal panel comprising a first protective film, a first polarizing film, a biaxial compensation film, a liquid crystal panel, a second protective film, a second polarizing film, and a third layer which are sequentially laminated a protective film, wherein the liquid crystal panel is provided with a liquid crystal layer including a plurality of liquid crystal molecules, and the liquid crystal layer is folded
  • the incident rate anisotropy is ⁇ , the thickness is d, and the pretilt angle of the liquid crystal molecules is ⁇
  • the in-plane compensation value of the biaxial compensation film is Rol
  • the thickness compensation value is Rth1
  • the thickness compensation value of the second protective film is Rth2, where:
  • Y2 -0.00869X (Rthl) 2 +2.7425 xRthl -80.4. Among them, 290nm ⁇ Anxd ⁇ 303 ⁇ . Among them, Yl takes the value of 17.7 and Y2 takes the value of 67.9. 2 ⁇
  • the second protective film thickness compensation value Rth2 is 47. 2nm.
  • the material of the first polarizing film and the second polarizing film is polyvinyl alcohol.
  • the materials of the first protective film, the second protective film and the third protective film are all cellulose triacetate.
  • the angle between the light absorption axis of the first polarizing film and the slow axis of the biaxial compensation film is 90°.
  • the liquid crystal panel is a liquid crystal panel in a vertical alignment mode.
  • a liquid crystal display device including a liquid crystal display panel and a backlight module.
  • the liquid crystal display panel is disposed opposite to the backlight module, and the backlight module provides a display light source to the liquid crystal display.
  • a panel for causing the liquid crystal display panel to display an image wherein the liquid crystal display panel employs a liquid crystal panel having a single-layer dual-axis compensation architecture as described above.
  • FIG. 1 is a brightness profile view of a dark state full-view angle of a liquid crystal panel compensated by a conventional single-layer biaxial compensation film.
  • 2 is a contour view distribution of a full viewing angle of the liquid crystal panel shown in FIG. 1.
  • FIG. 3 is an exemplary illustration of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 4 is an exemplary illustration of a single layer dual axis compensation architecture provided by an embodiment of the present invention.
  • 5 is a graph showing a trend of a dark state light leakage with a compensation value when the liquid crystal optical path difference is 287.3 nm in the liquid crystal display device of the present embodiment.
  • FIG. 6 is a graph showing a trend of a dark state light leakage with a compensation value when the liquid crystal optical path difference is 290 nm in the liquid crystal display device according to the embodiment.
  • FIG. 7 is a graph showing a trend of a dark state light leakage with a compensation value when the liquid crystal optical path difference is 303 nm in the liquid crystal display device according to the embodiment.
  • FIG. 8 is a graph showing a trend of a dark state light leakage with a compensation value when the liquid crystal optical path difference is 305.7 nm in the liquid crystal display device of the present embodiment.
  • FIG. 9 is a diagram showing a brightness state distribution of a dark state full-view angle of a liquid crystal panel after compensation in a specific embodiment.
  • FIG. Fig. 10 is a view showing a contour distribution of a full viewing angle and the like of the liquid crystal panel shown in Fig. 9.
  • FIG. 11 is a brightness profile view of a dark state full-view angle of the compensated liquid crystal panel in another embodiment.
  • FIG. Fig. 12 is a view showing a contour distribution of a full viewing angle and the like of the liquid crystal panel shown in Fig. 11.
  • FIG. 13 is a diagram showing a brightness state distribution of a dark state full-view angle of a compensated liquid crystal panel in another embodiment.
  • FIG. Fig. 14 is a view showing a contour view of a full-view angle of the liquid crystal panel shown in Fig. 13; DETAILED DESCRIPTION OF THE INVENTION
  • the liquid crystal display device includes a liquid crystal display panel 100 and a back In the optical module 200, the liquid crystal display panel 100 is disposed opposite to the backlight module 200, and the backlight module 200 provides a display light source to the liquid crystal display panel 100, so that the liquid crystal display panel 100 displays an image, wherein
  • the liquid crystal display panel 100 is a liquid crystal panel compensated by a single-layer dual-axis compensation architecture.
  • the foregoing single-layer dual-axis compensation architecture is as shown in FIG. 4, and the compensation architecture includes a first protective film laminated in order from bottom to top (of course, from the reverse order, that is, from top to bottom). 14.
  • the liquid crystal panel 10 is a Vertical Alignment Cell (VA Cell)
  • the first polarizing film 11 and the second polarizing film 12 are made of polyvinyl alcohol (PVA), and the first polarized light.
  • the angle between the absorption axis of the film 11 and the slow axis of the biaxial compensation film is set to 90 °, and the materials of the first protective film 14, the second protective film 15 and the third protective film 16 are all triacetyl cellulose (Triacetyl Cellulose, TAC), one of the functions of the TAC protective films 14, 15, 16 is to protect the PVA polarizing films 11, 12, improve the mechanical properties of the PVA polarizing films 11, 12, and prevent the PVA polarizing films 11, 12 from retracting.
  • the liquid crystal panel 10 is provided with a liquid crystal layer including a plurality of liquid crystal molecules having a refractive index anisotropy of ⁇ , a thickness d, and a liquid crystal molecule having a pretilt angle of zero.
  • the in-plane compensation value of the biaxial compensation film 13 is represented by Rol
  • the thickness compensation value is represented by Rth1
  • the thickness compensation value of the second protective film 15 is represented by Rth2.
  • the purpose is to effectively reduce the dark light leakage problem of the liquid crystal panel by appropriately setting the compensation values of the biaxial compensation film 13 and the second protective film 15, and to increase the contrast and sharpness of the large viewing angle. .
  • the following settings were made: 1. Liquid crystal layer setting:
  • the pretilt angle ⁇ is 85 ° ⁇ ⁇ ⁇ 90 °;
  • the four quadrant liquid crystal tilt angles are 45°, 135°, 225° and 315°, respectively;
  • the optical path difference Anxd is 287.3 nm ⁇ ⁇ ⁇ 305.7 nm.
  • Light source Blue-yellow garnet light emitting diode (Blue-YAG LED) spectrum
  • FIG. 5 is a dark state of the liquid crystal display device of the present embodiment when the liquid crystal optical path difference is 287.3 nm and the pretilt angle 89 is 89°.
  • FIG. 6 is a trend diagram of a dark state light leakage with a compensation value when the liquid crystal optical path difference is 290 nm and the pretilt angle ⁇ is 89° in the liquid crystal display device of the present embodiment;
  • the liquid crystal display device has a liquid crystal optical path difference of 305.7 nm
  • the liquid crystal display device of the present embodiment has a liquid crystal optical path difference of 305.7 nm
  • the liquid crystal display device has a liquid crystal optical path difference of 305. 7 nm
  • the trend of the dark state light leakage with the pretilt angle 89 of 89° varies with the compensation value.
  • the corresponding compensation values of the biaxial compensation film 13 and the second protective film 15 are respectively: 45 nm ⁇ ol ⁇ 84 nm; 152 nm ⁇ thl ⁇ 280 nm; Yl nm ⁇ th2 ⁇ Y2 nm ;
  • the thickness D is changed to change the compensation value
  • the refractive index N is changed to change the compensation value
  • FIG. 9 is a dark state full-view and other brightness contour distribution diagram of the compensated liquid crystal panel in a specific embodiment
  • FIG. 10 is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • FIG. 11 is a dark state full-view and other brightness contour distribution diagram of the liquid crystal panel after compensation in a specific embodiment
  • FIG. 12 is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • FIG. 13 is a dark state full-view and other brightness contour distribution diagram of the liquid crystal panel after compensation in a specific embodiment
  • FIG. 14 is a full-view equal-contrast contour of the compensated liquid crystal panel in the embodiment. Distribution.
  • optical path difference Anxd 296.5 nm
  • pretilt angle ⁇ 89°
  • Ro 72 nm
  • Rthl 240 nm
  • Rth2 17.7 nm. Comparing FIG. 13 with FIG. 1, it can be directly observed that the dark state light leakage of the liquid crystal panel compensated by the compensation architecture of the present embodiment is far lower than the dark state light leakage after compensation of the existing single-layer dual-axis compensation film. 14 and FIG. 2, it can be directly observed that the liquid crystal panel compensated by the compensation architecture of the embodiment has a full-view contrast distribution which is better than the full-view contrast distribution compensated by the existing single-layer biaxial compensation film.
  • the results (intuitive comparison by the dark state light leakage distribution simulation map and the full-view contrast distribution simulation map) are not to be construed as limiting the protection scheme of the present invention. It has been proved that the values of these parameters are in the following ranges.
  • the present invention by appropriately setting the compensation values of the single-layer biaxial compensation film and the second protective film, the dark state light leakage problem of the liquid crystal panel can be effectively reduced, and the contrast and sharpness of the large viewing angle can be increased.
  • the compensation is achieved by combining the single-layer double-axis compensation film and the second protective film, which can solve the problem of compensation by using the single-layer double-axis compensation film alone, and the invention is different from the compensation method using the double-layer dual-axis compensation film. reduce manufacturing cost.
  • the terms “including”, “comprising” or “comprising” or “comprising” or “comprising” are intended to encompass a non-exclusive inclusion, such that a process, method, article, or device that includes a plurality of elements includes not only those elements but also Other elements, or elements that are inherent to such a process, method, item, or device.
  • An element defined by the phrase “comprising a " does not exclude the presence of additional elements in the process, method, item, or device that comprises the element.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示装置,包含了采用单层双轴补偿架构进行补偿的液晶显示面板。单层双轴补偿架构,包括依次叠层设置的第一保护膜(14)、第一偏光膜(11)、双轴补偿膜(13)、液晶面板(10)、第二保护膜(15)、第二偏光膜(12)以及第三保护膜(16),其中,液晶面板(10)设置有包括多个液晶分子的液晶层,液晶层的折射率各向异性为Δn,厚度为d,液晶分子的预倾角为θ;双轴补偿膜(13)面内补偿值为Ro1,厚度补偿值为Rth1;第二保护膜(15)的厚度补偿值为Rth2,其中:287.3nm≤Δn×d≤305.7nm;85°≤θ<90°;45nm≤Ro1≤84nm;152nm≤Rth1≤280nm;Y1nm≤Rth2≤Y2nm;Y1=0.009107×(Rth1) 2 -4.67862×Rth1+599.4;Y2=-0.00869×(Rth1) 2+2.7425×Rth1-80.4。能够有效地降低液晶面板的暗态漏光问题,增加大视角的对比度和清晰度。

Description

用于液晶面板的单层双轴补偿架构及液晶显示装置 技术领域 本发明涉及液晶显示技术领域,尤其涉及一种用于液晶面板的单层双轴补 偿架构以及液晶显示装置。
背景技术 液晶显示器(Liquid Crystal Display, LCD), 为平面超薄的显示设备, 它由 一定数量的彩色或黑白像素组成, 放置于光书源或者反射面前方。 液晶显示器功 耗很低, 并且具有高画质、 体积小、 重量轻的特点, 因此倍受大家青睐, 成为 显示器的主流。 目前液晶显示器是以薄膜晶体管 (Thin Film Transistor, TFT ) 液晶显示器为主。
随着 TFT-LCD 的面积越来越大, 其观察角度不断增大, 画面的对比度不断 降低, 画面的清晰度下降, 这是液晶层中液晶分子的双折射率随观察角度变化 发生改变的结果。 对于普通的液晶显示屏来说, 当从某个角度观看普通的液晶 显示屏时, 将发现它的亮度急遽的损失 (变暗) 及变色。 传统的液晶显示器通 常只有 90 度的视角, 也就是左 / 右两边各 45 度。 制作液晶显示面板的线状液 晶是一种具有双折射率 Δ η 的物质, 当光线通过液晶分子后, 可分成寻常光线 ( ordinary ray ) 与非常光线 ( extraordinary ray ) 两道光, 如果光线是斜向 入射液晶分子, 便会产生两道折射光线, 双折射率 Δ η=η(3-ηο, ne 表示液晶分 子对寻常光线的折射率, no 表示液晶分子对非常光线的折射率。 因此当光线经 过上下两片玻璃所夹住的液晶后, 光线就会产生相位延迟 (phase retardation) 的现象。 液晶盒的光线特性通常用相位延迟 A n X d来衡量, 也称为光程差, Δ η 为双折射率, d 为液晶盒的厚度, 液晶盒不同视角下相位延迟的不同是其产生 视角问题的由来。 良好的光学补偿膜的相位延迟可以跟线状液晶的相位延迟互 相抵消, 就可以增广液晶面板的可视角度。 光学补偿膜的补偿原理一般是将液 晶在不同视角产生的相位差进行修正, 让液晶分子的双折射性质得到对称性的 补偿。 采用光学补偿膜进行补偿, 可以有效降低暗态画面的漏光, 在一定视角 内能大幅度提高画面的对比度。 光学补偿膜从其功能目的来区分则可分为单纯 改变相位的位相差膜、 色差补偿膜及视角扩大膜等。 使用光学补偿膜能降低液 晶显示器暗态时的漏光量, 并且在一定视角内能大幅提高影像之对比、 色度与 克服部分灰阶反转问题。 衡量光学补偿膜特性的主要参数包括在平面方向上的 面内补偿值 Ro, 在厚度方向上的厚度补偿值 Rth, 折射率 N, 以及膜厚度 D, 满足 如下关系式:
Ro= (Nx-Ny ) X D;
Rth= [ (Nx+Ny) /2-Nz] X D;
其中, Nx是膜平面内沿着慢轴 (具有最大折射率的轴, 也就是光线具有较 慢传播速率的振动方向) 的折射率, Ny 是膜平面内沿着快轴 (具有最小折射率 的轴, 也就是光波具有较快传播速率的振动方向, 垂直于 Nx) 的折射率, Nz 是 膜平面方向的折射率 (垂直于 Nx 和 Ny) 。
针对不同的液晶显示模式, 也即不同的液晶盒类型, 使用的光学补偿膜也 不同, 而且 Ro和 Rth值也需调节为合适的值。 现有大尺寸液晶电视使用的光学补 偿膜大多是针对 VA (垂直配向) 显示模式, 早期使用的有 KoniCa ( 柯尼卡) 公 司的 N-TAC, 后来不断发展形成 0PTES (奥普士) 公司的 Zeonor, 富士通的 F-TAC 系列, 日东电工的 X-plate 等。
参阅图 1和图 2, 图 1是经现有的一种单层双轴补偿膜补偿后的液晶面板的暗 态全视角等亮度轮廓分布图, 图 2是经该单层双轴补偿膜补偿后的液晶面板的全 视角等对比度轮廓分布图。 其中, 液晶光程差 Δ ηΧ(1为 296.5nm, 单层双轴补偿 膜的面内补偿值 Ro为 72nm, 单层双轴补偿膜的厚度补偿值 Rth为 240nm。 由图 1与 图 2可见, 在上述条件下, 经现有的补偿膜补偿后, 在部分区域仍然存在严重漏 光, 视角可视范围较小。 发明内容 鉴于现有技术存在的不足, 本发明提供了一种用于液晶面板的单层双轴补 偿架构, 通过合理的设置补偿值, 能够有效地降低液晶面板的暗态漏光问题, 增加大视角的对比度和清晰度。 为了实现上述目的, 本发明采用了如下的技术方案: 一种用于液晶面板的单层双轴补偿架构, 包括依次叠层设置的第一保护膜、 第一偏光膜、 双轴补偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第三保护 膜, 其中, 所述液晶面板设置有包括多个液晶分子的液晶层, 所述液晶层的折 射率各向异性为 Δη, 厚度为 d, 液晶分子的预倾角为 Θ; 所述双轴补偿膜面内补 偿值为 Rol, 厚度补偿值为 Rthl ; 所述第二保护膜的厚度补偿值为 Rth2, 其中:
287.3nm < Δη ά < 305.7匪;
85°< θ < 90°;
45nm < ol < 84nm;
152nm < thl < 280nm;
Yl nm < th2 < Y2 nm;
Υ1=0.009107χ (Rthl ) 2 -4.67862x thl + 599.4;
Y2= -0.00869X (Rthl ) 2 +2.7425 xRthl -80.4。 其中, 290nm≤Anxd≤303匪。 其中, Yl取值为 17.7, Y2取值为 67.9。 其中, 所述第二保护膜的厚度补偿值 Rth2的取值为 47. 2nm。 其中, 所述第一偏光膜和第二偏光膜的材料为聚乙烯醇。 其中, 所述第一保护膜、 第二保护膜以及第三保护膜的材料均为三醋酸纤 维素。 其中, 所述第一偏光膜的吸光轴与所述双轴补偿膜的慢轴的夹角为 90° 。 其中, 所述液晶面板为垂直配向模式的液晶面板。 本发明的另一方面是提供一种液晶显示装置, 包括液晶显示面板及背光模 组, 所述液晶显示面板与所述背光模组相对设置, 所述背光模组提供显示光源 给所述液晶显示面板, 以使所述液晶显示面板显示影像, 其中, 所述液晶显示 面板采用具有如上所述的单层双轴补偿架构的液晶面板。 相比于现有技术, 本发明中, 通过合理的设置单层双轴补偿膜以及第二保 护膜的补偿值, 能够有效地降低液晶面板的暗态漏光问题, 增加大视角的对比 度和清晰度。 采用单层双轴补偿膜和第二保护膜结合进行补偿, 既能解决了单 纯采用单层双轴补偿膜补偿存在的问题, 而相对于采用双层双轴补偿膜的补偿 方式, 本发明则降低生产成本。 附图说明 图 1 是经现有的一种单层双轴补偿膜补偿后的液晶面板的暗态全视角等亮 度轮廓分布图。 图 2是如图 1所示的液晶面板的全视角等对比度轮廓分布。 图 3是本发明实施例提供的液晶显示装置的示例性图示。 图 4是本发明实施例提供的单层双轴补偿架构的示例性图示。 图 5是本实施例提供的液晶显示装置在液晶光程差为 287. 3nm时的暗态漏 光随补偿值变化趋势图。 图 6是本实施例提供的液晶显示装置在液晶光程差为 290nm时的暗态漏光 随补偿值变化趋势图。 图 7是本实施例提供的液晶显示装置在液晶光程差为 303nm时的暗态漏光 随补偿值变化趋势图。 图 8是本实施例提供的液晶显示装置在液晶光程差为 305. 7nm时的暗态漏 光随补偿值变化趋势图。 图 9是一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分布图。 图 10是如图 9所示的液晶面板的全视角等对比度轮廓分布图。 图 11是另一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分布 图。 图 12是如图 11所示的液晶面板的全视角等对比度轮廓分布图。 图 13是另一具体实施例中补偿后的液晶面板的暗态全视角等亮度轮廓分布 图。 图 14是如图 13所示的液晶面板的全视角等对比度轮廓分布图。 具体实施方式 为了使本发明的目的、 技术方案以及优点更加清楚明白, 下面将结合附图 用实施例对本发明做进一步说明。 如图 3所示, 本实施例提供的液晶显示装置, 包括液晶显示面板 100及背 光模组 200, 所述液晶显示面板 100与所述背光模组 200相对设置, 所述背光模 组 200提供显示光源给所述液晶显示面板 100,以使所述液晶显示面板 100显示 影像, 其中, 所述液晶显示面板 100为采用了单层双轴补偿架构进行补偿的液 晶面板。 具体地,前述的单层双轴补偿架构如图 4所示,该补偿架构包括由下而上(当 然从相反的顺序, 即由上而下也是可以的) 依次叠层设置的第一保护膜 14、 第 一偏光膜 11、 双轴 (Biaxial ) 补偿膜 13、 液晶面板 10、 第二保护膜 15、 第二偏 光膜 12以及第三保护膜 16。 其中, 所述液晶面板 10为垂直配向模式的液晶盒 ( Vertical Alignment Cell, VA Cell ) , 第一偏光膜 11和第二偏光膜 12的材料为 聚乙烯醇 (Polyvinyl alcohol, PVA) ,第一偏光膜 11的吸光轴与双轴补偿膜的慢 轴的夹角设置为 90 ° , 第一保护膜 14、 第二保护膜 15以及第三保护膜 16的材料 均为三醋酸纤维素 (Triacetyl Cellulose, TAC), TAC保护膜 14、 15、 16的作用之 一是用于保护 PVA 偏光膜 11、 12, 提升 PVA 偏光膜 11、 12的机械性能, 防止 PVA 偏光膜 11、 12回缩。 液晶面板 10设置有包括多个液晶分子的液晶层, 所述液晶 层的折射率各向异性为 Δη, 厚度为 d, 液晶分子的预倾角 (Pritilt angle )为0。 在以上的补偿架构中, 双轴补偿膜 13的面内补偿值采用 Rol表示, 其厚度补偿值 采用 Rthl表示, 第二保护膜 15的厚度补偿值采用 Rth2表示。 在以上的架构中, 其目的是通过合理的设置双轴补偿膜 13以及第二保护膜 15的补偿值, 达到有效地降低液晶面板的暗态漏光问题, 增加大视角的对比度 和清晰度的目的。 在模拟的过程中, 进行了如下设定: 一、 液晶层设定:
1、 预倾角 Θ为 85°≤θ < 90°;
2、 四个象限液晶倾角分别为 45°、 135°、 225°以及 315°;
3、 光程差 Anxd为 287.3nm < Δηχά < 305.7nm。 二、 背光源设定:
1、 光源: 蓝光-钇铝石榴石发光二极管 (Blue-YAG LED) 光谱;
2、 光源中央亮度定义为 100尼特 (nit ) 3、 光源分布为朗伯分布 (Lambert ' s distribution) 参阅图 5-8, 图 5是本实施例的液晶显示装置在液晶光程差为 287. 3nm, 预 倾角 Θ为 89°时的暗态漏光随补偿值变化趋势图; 图 6是本实施例的液晶显示装 置在液晶光程差为 290nm, 预倾角 Θ为 89°时的暗态漏光随补偿值变化趋势图; 图 7是本实施例的液晶显示装置在液晶光程差为 303nm, 预倾角 Θ为 89°时的暗 态漏光随补偿值变化趋势图; 图 8是本实施例的液晶显示装置在液晶光程差为 305. 7nm, 预倾角 Θ为 89°时的暗态漏光随补偿值变化趋势图。 由此, 按照相同 的方式, 在不同的预倾角下搭配不同的补偿值进行模拟, 可获得在 287.3nm < △nxd≤305.7nm, 85°< θ < 90°的范围内, 暗态漏光小于 0. 2nit 时, 双轴补偿 膜 13和第二保护膜 15的对应补偿值的范围分别为: 45nm < ol < 84nm; 152nm < thl < 280nm; Yl nm < th2 < Y2 nm; 其中,
Υ1=0.009107χ (Rthl ) 2 -4.67862x thl + 599.4; Y2= -0.00869X (Rthl ) 2 +2.7425 xRthl -80.4。 由于补偿膜的补偿值 Ro、 Rth, 折射率 N以及厚度 D具有如下关系: o= (Nx-Ny) D; th=[ (Nx+Ny) /2-Nz] xD; 因此可以通过以下三种方法来改变补偿值:
1、 在现行双轴补偿膜 13和第二保护膜 15折射率 N不变的基础上, 改变厚 度 D来改变补偿值;
2、 在现行双轴补偿膜 13和第二保护膜 15厚度 D不变的基础上, 改变折射 率 N来改变补偿值;
3、在保证双轴补偿膜 13和第二保护膜 15的厚度补偿值 Rth范围的基础上, 同时改变厚度 D和折射率 N来改变补偿值。 下面选择一些具体的补偿值并测试相应的补偿结果, 进一步具体说明本发 明的技术方案所取得的技术效果。 参阅图 9和图 10, 图 9是一具体实施例中补偿后的液晶面板的暗态全视角等 亮度轮廓分布图, 图 10是本具体实施例中补偿后的液晶面板的全视角等对比度 轮廓分布图。 图 9和图 10的设定条件为: 光程差 An><d=296.5nm, 预倾角 θ= 89°, Ro=72nm, Rthl=240nm, Rth2=67.9nm。 对比图 9与图 1, 可以直接观察到, 经本 实施例的补偿架构补偿后的液晶面板, 其暗态漏光远远低于现有的单层双轴补 偿膜补偿后的暗态漏光。 对比图 10与图 2, 可以直接观察到, 经本实施例的补偿 架构补偿后的液晶面板, 其全视角对比度分布也优于现有单层双轴补偿膜补偿 后的全视角对比度分布。 参阅图 11和图 12, 图 11是一具体实施例中补偿后的液晶面板的暗态全视角 等亮度轮廓分布图, 图 12是本具体实施例中补偿后的液晶面板的全视角等对比 度轮廓分布图。图 11和图 12的设定条件为:光程差 Anxd=296.5nm,预倾角 θ= 89°, Ro=72nm, Rthl=240nm, Rth2=47.2nm。 对比图 11与图 1, 可以直接观察到, 经 本实施例的补偿架构补偿后的液晶面板, 其暗态漏光远远低于现有的单层双轴 补偿膜补偿后的暗态漏光。 对比图 12与图 2, 可以直接观察到, 经本实施例的补 偿架构补偿后的液晶面板, 其全视角对比度分布也优于现有单层双轴补偿膜补 偿后的全视角对比度分布。 参阅图 13和图 14, 图 13是一具体实施例中补偿后的液晶面板的暗态全视 角等亮度轮廓分布图, 图 14是本具体实施例中补偿后的液晶面板的全视角等对 比度轮廓分布图。 图 13和图 14的设定条件为: 光程差 Anxd=296.5nm, 预倾角 θ= 89°, Ro=72nm, Rthl=240nm, Rth2=17.7nm。 对比图 13与图 1, 可以直接 观察到, 经本实施例的补偿架构补偿后的液晶面板, 其暗态漏光远远低于现有 的单层双轴补偿膜补偿后的暗态漏光。 对比图 14与图 2, 可以直接观察到, 经 本实施例的补偿架构补偿后的液晶面板, 其全视角对比度分布也优于现有单层 双轴补偿膜补偿后的全视角对比度分布。 以上的 3个具体的实施例中, 其中的光程差 Δηχ(1、 预倾角 Θ以、 Ro、 thl 仅列举了一个数值, 即光程差 Anxd=296.5nm, 预倾角 θ= 89°, Ro=72nm, Rthl=240nm, 相对于现有技术的方案 (效果如图 1和图 2 ) 仅仅通过改变 Rth2的 取值来调整补偿架构的补偿值, 这样是为了更好的和现有技术得到的结果 (通 过暗态漏光分布模拟图和全视角对比度分布模拟图进行直观的比较)进行比较, 在此不应理解为对本发明保护方案的限制。 经过实践证明, 当这些参数的取值 在以下范围内时, SP : 287.3nm < Δη ά < 305.7nm; 85°< θ < 89。; 45nm < ol < 84nm; 152nm < Rthl < 280nm; Yl nm < th2 < Y2 nm; Yl=0.009107x (Rthl ) 2 -4.67862x thl + 599.4; Y2= -0.00869χ (Rthl ) 2 +2.7425x thl -80.4, 都可以达 到与上述具体例子相同或近似的技术效果。 综上所述, 本发明中, 通过合理的设置单层双轴补偿膜以及第二保护膜的补 偿值, 能够有效的降低液晶面板的暗态漏光问题, 增加大视角的对比度和清晰 度。 采用单层双轴补偿膜和第二保护膜结合进行补偿, 既能解决了单纯采用单 层双轴补偿膜补偿存在的问题, 而相对于采用双层双轴补偿膜的补偿方式, 本 发明则降低生产成本。 需要说明的是, 在本文中, 诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括"、 "包 含"或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系列要素 的过程、 方法、 物品或者设备不仅包括那些要素, 而且还包括没有明确列出的 其他要素, 或者是还包括为这种过程、 方法、 物品或者设备所固有的要素。 在 没有更多限制的情况下, 由语句 "包括一个…… " 限定的要素, 并不排除在包 括所述要素的过程、 方法、 物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本申请原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本申请的保护范围。

Claims

权 利 要 求 书
1、 一种用于液晶面板的单层双轴补偿架构, 包括依次叠层设置的第一保护 膜、 第一偏光膜、 双轴补偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第三 保护膜, 其中, 所述液晶面板设置有包括多个液晶分子的液晶层, 所述液晶层 的折射率各向异性为 Δη, 厚度为 d, 液晶分子的预倾角为 Θ; 所述双轴补偿膜面 内补偿值为 Rol, 厚度补偿值为 Rthl; 所述第二保护膜的厚度补偿值为 Rth2, 其 中:
Figure imgf000011_0001
85°<θ < 90°
45nm < ol < 84nm;
152nm< thl <280nm;
Yl nm< th2< Y2nm;
Υ1=0.009107χ (Rthl) 2 -4.67862x thl + 599.4
Y2= -0.00869X (Rthl) 2 +2.7425 xRthl -80.4
2、根据权利要求 1所述的单层双轴补偿架构,其中, 290nm<Anxd<303nmo
3、 根据权利要求 1所述的单层双轴补偿架构, 其中, Y1取值为 17.7 Y2取 值为 67.9
4、 根据权利要求 1所述的单层双轴补偿架构, 其中, 所述第二保护膜的厚 度补偿值 Rth2的取值为 47.2nm
5、 根据权利要求 1所述的单层双轴补偿架构, 其中, 所述第一偏光膜和第 二偏光膜的材料为聚乙烯醇。
6、 根据权利要求 4所述的单层双轴补偿架构, 其中, 所述第一保护膜、 第 二保护膜以及第三保护膜的材料均为三醋酸纤维素。
7、 根据权利要求 5所述的单层双轴补偿架构, 其中, 所述第一保护膜、 第 二保护膜以及第三保护膜的材料均为三醋酸纤维素。
8、 根据权利要求 5所述的单层双轴补偿架构, 其中, 所述第一偏光膜的吸 光轴与所述双轴补偿膜的慢轴的夹角为 90 °
9、 根据权利要求 7所述的单层双轴补偿架构, 其中, 所述液晶面板为垂直 配向模式的液晶面板。
10、 根据权利要求 8所述的单层双轴补偿架构, 其中, 所述液晶面板为垂直 配向模式的液晶面板。
11、 一种液晶显示装置, 包括液晶显示面板及背光模组, 所述液晶显示面 板与所述背光模组相对设置, 所述背光模组提供显示光源给所述液晶显示面板, 以使所述液晶显示面板显示影像, 其中, 所述液晶显示面板采用单层双轴补偿 架构进行补偿, 所述单层双轴补偿架构包括依次叠层设置的第一保护膜、 第一 偏光膜、 双轴补偿膜、 液晶面板、 第二保护膜、 第二偏光膜以及第三保护膜, 其中, 所述液晶面板设置有包括多个液晶分子的液晶层, 所述液晶层的折射率 各向异性为 Δη, 厚度为 d, 液晶分子的预倾角为 Θ; 所述双轴补偿膜面内补偿值 为 Rol, 厚度补偿值为 Rthl ; 所述第二保护膜的厚度补偿值为 Rth2, 其中:
Figure imgf000012_0001
85°< θ < 90°
45nm < ol < 84nm;
152nm < thl < 280nm;
Yl nm < th2 < Y2 nm;
Υ1=0.009107χ (Rthl ) 2 -4.67862x thl + 599.4
Y2= -0.00869X (Rthl ) 2 +2.7425 xRthl -80.4
12、 根据权利要求 11所述的液晶显示装置, 其中, 290nm≤Anxd≤303nm
13、 根据权利要求 11所述的液晶显示装置, 其中, Y1取值为 17.7 Y2取值 为 67.9
14、 根据权利要求 11所述的液晶显示装置, 其中, 所述第二保护膜的厚度 补偿值 Rth2的取值为 47. 2nm
15、 根据权利要求 11所述的液晶显示装置, 其中, 所述第一偏光膜和第二 偏光膜的材料为聚乙烯醇。
16、 根据权利要求 14所述的液晶显示装置, 其中, 所述第一保护膜、 第二 保护膜以及第三保护膜的材料均为三醋酸纤维素。
17、 根据权利要求 15所述的液晶显示装置, 其中, 所述第一保护膜、 第二 保护膜以及第三保护膜的材料均为三醋酸纤维素。
18、 根据权利要求 15所述的液晶显示装置, 其中, 所述第一偏光膜的吸光 轴与所述双轴补偿膜的慢轴的夹角为 90° 。
19、 根据权利要求 17所述的液晶显示装置, 其中, 所述液晶面板为垂直配 向模式的液晶面板。
20、 根据权利要求 18所述的液晶显示装置, 其中, 所述液晶面板为垂直配 向模式的液晶面板。
PCT/CN2014/075146 2014-04-04 2014-04-11 用于液晶面板的单层双轴补偿架构及液晶显示装置 WO2015149379A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,321 US20150293406A1 (en) 2014-04-04 2014-04-11 Single-Layered Biaxial Compensation Structure For Liquid Crystal Panels And The Liquid Crystal Displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410136951.1A CN103869534B (zh) 2014-04-04 2014-04-04 用于液晶面板的单层双轴补偿架构及液晶显示装置
CN201410136951.1 2014-04-04

Publications (1)

Publication Number Publication Date
WO2015149379A1 true WO2015149379A1 (zh) 2015-10-08

Family

ID=50908240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075146 WO2015149379A1 (zh) 2014-04-04 2014-04-11 用于液晶面板的单层双轴补偿架构及液晶显示装置

Country Status (3)

Country Link
US (1) US20150293406A1 (zh)
CN (1) CN103869534B (zh)
WO (1) WO2015149379A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN105353563A (zh) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
JP7033283B2 (ja) * 2018-02-21 2022-03-10 スタンレー電気株式会社 液晶表示装置
CN113219724A (zh) * 2021-04-26 2021-08-06 北海惠科光电技术有限公司 一种液晶显示器及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497256A (en) * 1993-09-14 1996-03-05 Sharp Kabushiki Kaisha Normally black mode liquid crystal display apparatus having liquid crystal cell of the first minimum design
JP2000039610A (ja) * 1998-07-15 2000-02-08 Internatl Business Mach Corp <Ibm> 液晶表示装置
CN102798922A (zh) * 2012-08-22 2012-11-28 深圳市华星光电技术有限公司 光学补偿结构及显示装置
CN102879954A (zh) * 2012-10-10 2013-01-16 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8189151B2 (en) * 2005-05-13 2012-05-29 Sharp Kabushiki Kaisha Liquid crystal display device
US7812901B2 (en) * 2006-05-29 2010-10-12 Nitto Denko Corporation Liquid crystal panel and liquid crystal display apparatus
JP2008260921A (ja) * 2007-03-20 2008-10-30 Fujifilm Corp セルロースエステルフィルム、及びその製造方法
JP5479179B2 (ja) * 2009-11-30 2014-04-23 富士フイルム株式会社 液晶表示装置
CN102798923B (zh) * 2012-08-23 2014-12-24 深圳市华星光电技术有限公司 光学补偿结构及显示装置
CN102866537B (zh) * 2012-09-03 2016-03-30 深圳市华星光电技术有限公司 液晶显示器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497256A (en) * 1993-09-14 1996-03-05 Sharp Kabushiki Kaisha Normally black mode liquid crystal display apparatus having liquid crystal cell of the first minimum design
JP2000039610A (ja) * 1998-07-15 2000-02-08 Internatl Business Mach Corp <Ibm> 液晶表示装置
CN102798922A (zh) * 2012-08-22 2012-11-28 深圳市华星光电技术有限公司 光学补偿结构及显示装置
CN102879954A (zh) * 2012-10-10 2013-01-16 深圳市华星光电技术有限公司 Va显示模式补偿架构及va显示模式液晶显示装置

Also Published As

Publication number Publication date
CN103869534B (zh) 2016-08-17
CN103869534A (zh) 2014-06-18
US20150293406A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP3926072B2 (ja) 液晶表示装置
WO2016066133A1 (zh) 光学补偿膜及其制作方法、偏光片、液晶显示面板、显示装置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
US20140340619A1 (en) Display device
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
US8913217B2 (en) Liquid crystal display device
WO2016070450A1 (zh) 液晶面板补偿架构及液晶显示装置
TW201348823A (zh) 液晶顯示裝置
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2014056246A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2010001920A1 (ja) 液晶表示装置
WO2016101339A1 (zh) 液晶显示器
WO2013111867A1 (ja) 液晶表示装置
CN111201483A (zh) 液晶显示装置
TWI391727B (zh) 液晶顯示器
WO2014107886A1 (zh) 用于液晶面板的补偿***及液晶显示装置
WO2016065660A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2016101338A1 (zh) 液晶显示器
CN108287423B (zh) 一种曲面液晶显示屏
CN102798922B (zh) 光学补偿结构及显示装置
US20160124264A1 (en) Compensation structure for liquid crystal panels and the liquid crystal displays
US20150286099A1 (en) Compensation Architecture of Liquid Crystal Panel and Liquid Crystal Display Device
US20150286083A1 (en) Dual-layered biaxial compensation structure for liquid crystal panels and the liquid crystal displays

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14358321

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888006

Country of ref document: EP

Kind code of ref document: A1