WO2015149301A1 - 传输信号的方法和装置 - Google Patents

传输信号的方法和装置 Download PDF

Info

Publication number
WO2015149301A1
WO2015149301A1 PCT/CN2014/074632 CN2014074632W WO2015149301A1 WO 2015149301 A1 WO2015149301 A1 WO 2015149301A1 CN 2014074632 W CN2014074632 W CN 2014074632W WO 2015149301 A1 WO2015149301 A1 WO 2015149301A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
training sequence
short training
polynomial
sequence
Prior art date
Application number
PCT/CN2014/074632
Other languages
English (en)
French (fr)
Inventor
杨洋
唐小虎
刘亚林
朱俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480077528.7A priority Critical patent/CN106465308B/zh
Priority to EP14888189.9A priority patent/EP3116271B1/en
Priority to PCT/CN2014/074632 priority patent/WO2015149301A1/zh
Publication of WO2015149301A1 publication Critical patent/WO2015149301A1/zh
Priority to US15/280,016 priority patent/US10187242B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • H04L27/2663Coarse synchronisation, e.g. by correlation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • H04L27/2694Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver adaptive design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications technology and, more particularly, to a method and apparatus for transmitting signals. Background technique
  • a mixed format (MF, Mixed Format) preamble (hereinafter referred to as a preamble) is defined starting from 802.11 ⁇ .
  • the traditional part of the preamble consists of the same traditional fields as 802.11a.
  • Figure 1 shows the structure of an existing preamble.
  • the traditional part of the preamble contains three fields, namely: Legacy-Short Training Field (L-STF), Traditional Long Training Field (L-LTF, Legacy-Long Training Field) Fields and legacy signaling (L-SIG, Legacy-Signal) fields, where L-STF fields are used for frame start detection, automatic gain control (AGC) settings, initial frequency offset estimation, and initial time synchronization
  • L-LTF is used for more accurate frequency offset estimation and time synchronization, and is also used to generate channel estimation for receiving and balancing L-SIG;
  • L-SIG field is mainly used to carry data rate information and data length information, so that The receiving end device can determine the length of the data carried in the same frame as the preamble according to the data rate information and the data length information, and can determine the appropriate time to remain idle.
  • the short training sequence carried by the L-STF field from the transmitting end includes a subsequence of a plurality of repeating structures, and thus has strong autocorrelation.
  • initial time synchronization can be performed by using the falling edge of the obtained autocorrelation value by performing autocorrelation processing (or autocorrelation operation) on the received signal (including the short training sequence).
  • the received signal may be cross-correlated with the locally known short training sequence (or autocorrelation operation). Since the short training sequence has good autocorrelation properties, multiple peaks can be obtained by cross-correlation processing, and, as described above, by the autocorrelation processing, a falling edge can be obtained, thereby combining the last peak with the falling edge. , you can judge the starting position of the L-STF field.
  • the above processing is computationally intensive and computationally complex, and rapid initial time synchronization cannot be achieved. Summary of the invention
  • the present invention provides a method and apparatus for transmitting signals that enable fast initial time synchronization.
  • a first aspect provides a method for transmitting a signal, the method comprising: generating, by a source device, an initial short training sequence, where the initial short training sequence includes M sub-sequences b, each sub-sequence b including N transmission samples; The number of received samples used by the receiving device for correlation processing; generating a symbol sequence according to the number of received samples, the symbol sequence is represented as J, and generating a target according to the symbol sequence and the initial short training sequence a short training sequence, the target short training sequence is represented as W, so that only one of the processing results obtained by the receiving end device performing autocorrelation processing on the target short training sequence according to a preset rule is greater than a preset target threshold.
  • the peak signal is sent to the receiving device, where the short training sequence field field of the target signal carries a short training sequence symbol, and the short training sequence symbol is used to indicate the target training sequence.
  • the generating a sequence of symbols according to the number of received samples includes: determining a polynomial according to the number of received samples
  • the target polynomial is determined ;; + l+;) +... + ;) ⁇ 2;; — ', where, /. a predetermined integer; let the target polynomial be equal to ⁇ , such that the non-target polynomial is not equal to ⁇ , to generate a target equation group, the non-target polynomial is a formula other than the target polynomial in the polynomial; To generate a sequence of symbols.
  • the determining the target polynomial comprises: determining the target according to the number of sub-sequences for the automatic gain control AGC in the target training sequence Polynomial to satisfy: l 0 ⁇ n.
  • the symbol sequence is ⁇ 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b, b ⁇ .
  • a method for transmitting a signal comprising: determining a number of received samples; and when receiving a signal, performing autocorrelation processing on the signal according to a preset rule according to the number of received samples
  • the signal includes a target signal from the source device, and the short training sequence field of the target signal carries a short training sequence symbol, where the short training sequence symbol is used to indicate a target training sequence, where the target sequence is After the initial short training sequence is generated, according to the symbol sequence and the initial short training sequence, the symbol sequence is generated by the transmitting device according to the number of received sampling points, so that only the processing result obtained by the autocorrelation processing is A peak value greater than a preset target threshold occurs; a position of the peak is determined, and an initial time synchronization for the target signal is made based on the position of the peak.
  • the auto-correlation processing of the target signal according to the preset rule according to the number of the sample points includes: performing the target signal according to the following formula Autocorrelation processing,
  • N is the number of transmitted samples included in the subsequence, and represents the sampled value of the received signal.
  • the number of received samples is 2N.p, and d indicates the initial received sample point used by the correlation process. .
  • determining the peak position comprises: determining a location of the peak value according to the target threshold.
  • the symbol sequence is generated by the sending end device solving a target equation group, where the target equation group is a plurality of The target polynomial in the equation is equal to ⁇ /?
  • the non-target polynomial in the polynomial not equal to ⁇ /?, where the polynomial is ⁇ , ⁇ ⁇ , + ⁇ ) + ⁇ , +1 ⁇ - + ⁇ , +2 ⁇ , iG[0,M-2p] , the number of received samples is 2N.p , JL 4 ⁇ 2 ⁇ , and the target polynomial is a lo -a lo+p +a lo+1 .a lo+ p + - + a lo+p _ 1 .a lo+2p _ 1 , where Z Q is a preset integer, and the non-target polynomial is an equation other than the target polynomial in the polynomial.
  • the target polynomial is determined by the sending end device according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence. , where ⁇ ⁇ > ⁇ .
  • the symbol sequence is ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b, b ⁇ .
  • the initial time synchronization for the target signal according to the location of the peak includes: determining the location of the peak as the target short training The Z Q ⁇ N + 1 point in the sequence.
  • an apparatus for transmitting a signal comprising: an initial short training sequence generating unit, configured to generate an initial short training sequence, the initial short training sequence comprising M subsequences, each subsequence comprising N transmissions a determining unit, configured to determine a number of received sampling points used by the receiving end device for performing related processing; a target short training sequence generating unit, configured to generate a symbol sequence according to the number of received sampling points, the symbol sequence being represented as And generating a target short training sequence according to the symbol sequence and the initial short training sequence, the target short training sequence being represented as ⁇ , a, b, ..., ⁇ , ..., a K _ x b), And causing the receiving end device to generate a peak value greater than a preset target threshold value in the processing result obtained by performing correlation processing on the target short training sequence according to the preset rule; the sending unit, configured to send the target to the receiving end device Signal, where, in the The short training sequence field of the marker signal
  • the target short training sequence generating unit is specifically configured to determine a polynomial aa i+p +a M .a M+p + according to the number of received samples - + a i + p _ l .a iW, ⁇ [0, ⁇ ⁇ 2 ⁇ ], wherein the number of received samples to preclude 2N ⁇ ⁇ , and 4 ⁇ 2 ⁇ ⁇ ; determining a target polynomial 3 ⁇ 4 ⁇ a lo + p + ⁇ 1 ⁇ + ⁇ + p +- + ⁇ , where Z.
  • the target short training sequence generating unit is specifically configured to use the number of sub-sequences b for the automatic gain control AGC according to the target training sequence. n, determine the target polynomial to satisfy: l 0 ⁇ n.
  • the symbol sequence is ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b, b).
  • a fourth aspect provides a device for transmitting a signal, the device comprising: a determining unit, configured to determine a number of received samples; a receiving unit, configured to receive a signal; and an autocorrelation processing unit, configured to receive a sample according to the The number, based on a preset rule, performs autocorrelation processing on the signal, where the signal includes a target signal from a transmitting device, and the short training sequence field of the target signal carries a short training sequence symbol, and the short training sequence symbol is used for Instructing the target training sequence, the target sequence is generated by the transmitting device according to the symbol sequence and the initial short training sequence after generating the initial short training sequence, and the symbol sequence is generated by the transmitting device according to the number of received samples.
  • the determining unit is further operative to determine the position of the peak and to perform an initial time synchronization for the target signal based on the position of the peak.
  • the autocorrelation processing unit is configured to perform autocorrelation processing on the target signal according to the following formula,
  • N is the number of transmitted samples included in the subsequence
  • r is the sample value of the received signal.
  • the number of received samples is 2N.p
  • d indicates the initial reception used by the correlation process. point.
  • the determining unit is specifically configured to determine a location of the peak according to the target threshold, where the peak is greater than the target threshold.
  • the symbol sequence is generated by the sending end device solving a target equation group, where the target polynomial is equal to a target polynomial in the polynomial ⁇ p and the non-target polynomial in the polynomial is not equal to ⁇ P, where the polynomial is ⁇ , ⁇ ⁇ , + ⁇ ) + ⁇ , +1 ⁇ ⁇ , +- + 2 ⁇ , i G[ , M-2p] , the number of received samples is 2N.p , JL 4 ⁇ 2 ⁇ , and the target polynomial is a lo -a lo+p +a lo+1 .a lo+ p + - + a lo+p _ 1 .a lo+2p _ 1 , where Z Q is a preset integer, and the non-target polynomial is an equation other than the target polynomial in the polynomial.
  • the target polynomial is determined by the sending end device according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence. , where ⁇ ⁇ > ⁇ .
  • the symbol sequence is ⁇ 1, 1, 1 , -1, 1, 1, 1, 1, -1, 1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b, b ⁇ .
  • the determining unit is specifically configured to determine that the location of the peak is the Z Q ⁇ N + 1 point in the target short training sequence. .
  • the method and apparatus for transmitting a signal determines a target short training sequence that needs to be sent to a receiving end device according to the number of received sampling points used by the receiving end device for performing related processing, so that the receiving end device is according to the preset
  • the processing result obtained by the correlation processing on the target short training sequence only has a peak larger than the preset target threshold, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving a fast initial Time synchronization.
  • Fig. 1 is a schematic diagram showing the structure of a preamble in the prior art.
  • FIG. 2 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present invention.
  • Figure 3 is a simulation diagram of the relationship between a decision variable and ⁇ / in an embodiment of the present invention.
  • 4 is a simulation diagram of the relationship between mean square error and signal to noise ratio, in accordance with an embodiment of the present invention.
  • Figure 5 is a simulation diagram of the relationship between relative error and signal to noise ratio, in accordance with an embodiment of the present invention.
  • Figure 6 is a simulation diagram of the relationship between decision variables and d in another embodiment of the present invention.
  • 7 is a simulation diagram of a relationship between a mean square error and a signal to noise ratio according to another embodiment of the present invention.
  • Figure 8 is a simulation diagram of the relationship between relative error and signal to noise ratio according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method of transmitting a signal according to another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting a signal according to another embodiment of the present invention. detailed description
  • the technical solution of the present invention can be applied to various communication systems that need to notify the data rate and data length of data transmitted by the communication peer end through a preamble, for example, a wireless local area network (WLAN) system, Wi-Fi (Wireless Fidelity) system, etc.
  • WLAN wireless local area network
  • Wi-Fi Wireless Fidelity
  • the sending end may be a user station (STA, Station) in the WLAN, and the user station may also be called a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user.
  • the STA can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), with wireless A handheld device of a local area network (eg, Wi-Fi) communication function, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the sending end may also be an access point (AP, Access Point) in the WLAN, and the access point may be used to communicate with the access terminal through the wireless local area network, and transmit the data of the access terminal to the network side, or Data from the network side is transmitted to the access terminal.
  • AP Access Point
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a CD (Compact Disk), a DVD (Digital Versatile Disk) Etc.), smart cards and flash memory devices (1", EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.
  • various storage media described herein May represent one or more devices and/or other machine readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 2 is a schematic flowchart of a method 100 for transmitting a signal according to an embodiment of the present invention, as shown in FIG. 2. As shown in FIG. 2, the method 100 includes:
  • the source device generates an initial short training sequence, where the initial short training sequence includes M sub-sequences, and the sub-sequence includes N sending samples.
  • S120 Determine a number of received sampling points used by the receiving end device for autocorrelation processing.
  • S130 Generate a symbol sequence according to the number of received sampling points, where the symbol sequence is represented as
  • the target short training sequence is expressed as ⁇ , ⁇ , . . . , ⁇ , ⁇ ,.
  • the device only appears a peak larger than the preset target threshold in the processing result obtained by autocorrelation processing the target short training sequence according to a preset rule;
  • S140 Send a target signal to the receiving end device, where the short training sequence field of the target signal carries a short training sequence symbol, where the short training sequence symbol is used to indicate the target training sequence.
  • Equation 1 when the transmitting device needs to transmit data to the receiving device, it is required to generate an initial short training sequence based on Equation 1, for example.
  • the existing communication system provides 64 subcarriers, and the serial number can be -32 to
  • subcarriers with sequence numbers -26 to 26 may be used ( Or, the sample points on the subcarriers, and according to Equation 1, the sample points with the serial number -26 to 26 (hereinafter, for convenience of distinction, called the transmission sample points) are assigned, and the serial number is -32 to -27 and 27 to 31 position complement 0, thereby generating the time domain sequence including the repetition of the same subsequence 4 times by the above-mentioned frequency domain copy IFFT and normalization processing, and recording the subsequence as the time domain sequence is represented as b, b, b, b), wherein one subsequence includes 16 transmission samples.
  • IFFT inverse fast Fourier transform
  • a cyclic prefix of one subsequence is added to generate a sequence of transmitted symmetry samples (OFDM, Orthogonal Frequency Division Multiplexing) symbol length (80 points) (b, b, b, b,b), since the short training sequence is used for AGC setting and initial frequency offset estimation, etc., in addition to synchronization frame start detection and initial time synchronization, etc., the sequence can be (b, b, b, b, b) repeats, and generates an initial short training sequence (b, b, b, b, b, b, b, b, b, b, b with 10 subsequences ⁇ ij ).
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method for generating the initial short training sequence enumerated above is merely an exemplary description, and the present invention is not limited thereto, for example, the number of sub-sequences included in the initial short training sequence, and the transmission of the sub-sequences included.
  • the number of the sample points can be arbitrarily changed, and the present invention is not particularly limited.
  • the transmitting device may determine the number of received samples used by the receiving device when performing autocorrelation processing (or autocorrelation operation) on the received signal, where the "received sample number” refers to The number of sample points used in the autocorrelation processing of the sample points in the received signal.
  • the sample points in the signals received by the receiving end are referred to as "receiving sample points”.
  • the method and process for performing related processing on the received signal by the receiving end are described in detail. It should be noted that, in the embodiment of the present invention, in order to find a peak value, the receiving end device may need to perform multiple correlation processing on the received signal according to the receiving sequence of the received sample points, and sequentially obtain multiple receiving sample points. The corresponding processing value is the same as the number of received samples for each autocorrelation process.
  • the autocorrelation process may also be referred to as an autocorrelation operation, and may refer to an autocorrelation operation performed on the input data (here, the sampled value of the received signal) by a preset algorithm rule.
  • the process of processing values Subsequently, in conjunction with the processing of the receiving device, a detailed description is given.
  • the specific value of the number of received samples may be preset and stored in the transmitting end and the receiving end by a management personnel or a supplier, or may be negotiated and determined by the transmitting end and the receiving end device, and The specific value of the number of received samples may be set once and may be used by default for each transmission, or may be periodically changed, and the present invention is not particularly limited.
  • the transmitting device may determine the symbol sequence according to the number of the received sampling points determined in S120, and generate the required to be carried in the L-STF field according to the symbol sequence and the initial short training sequence generated in S110. And send the target short training sequence to the receiving device.
  • generating a sequence of symbols according to the number of received samples including:
  • the target polynomial be equal to ⁇ ; ⁇ , let the non-target polynomial not equal to ⁇ p, to generate a target equation, the non-target polynomial is the formula of the polynomial other than the target polynomial;
  • the target equations are solved to generate a sequence of symbols.
  • the symbol sequence may be used to determine the symbol of the initial short training sequence generated as described above, and therefore, in the embodiment of the present invention, the number of elements included in the symbol sequence and the initial segment The number of subsequences included in the training sequence is the same. If the number of received samples is 2N-p, the value of p can be determined, and then according to the polynomial ara i+p +a M -a M+p +- + a i+ p _ x -a i+2p _ ⁇ e[0,M- 2p].
  • the value of p may be determined according to the number of received samples determined in S120, for example, may be predetermined by the values of M and N above, to satisfy 4 ⁇ 2p ⁇ M,
  • the invention is not particularly limited.
  • the range of p can be any integer from 2 to 5.
  • a target polynomial can be determined from polynomials (a) ⁇ (g), and the target polynomial is equal to gentry, and the remaining other formulas (ie, non-target polynomials) are not equal to ⁇ , thereby forming a target equation group, whereby by solving the target equation group, the specific value of the above ⁇ 9 can be determined, and further, the symbol sequence can be determined
  • the target polynomial may be arbitrarily selected from the polynomials (a) to (g), and the present invention is not particularly limited.
  • the target polynomial can be expressed as ⁇ +P + 3 ⁇ 4 +1 ⁇ + X + P + ⁇ + + ⁇ - ⁇ ⁇ + 2 P -X, the ⁇ ) can Pre-set, and the position in the symbol sequence, or the position in the target short training sequence, may correspond to the position of the peak obtained by the receiving device for autocorrelation processing of the received signal (subsequently, combined) Receiving end
  • the processing of the device will be described in detail in the corresponding relationship. Therefore, the / device can be set in accordance with the desired position where the peak appears. .
  • the determination target polynomial includes:
  • the target short training sequence generated by the symbol sequence and the initial short training sequence may be used for the AGC estimation, and in the embodiment of the present invention, the AGC estimation performed by the receiving device may be Between time synchronization and frame start detection, or the sub-sequence of the target short training sequence used by the AGC estimation, the position of the target short training sequence may be located in the sub-sequence for time synchronization and frame start detection in the target short training Before the position of the sequence, for example, in the embodiment of the present invention, the number of sub-sequences of the target short training sequence estimated by the AGC is n, and the number of sub-sequences in the target short training sequence a 0 b ⁇ a can be used.
  • n _, b performs the AGC estimation, therefore, in order to ensure the progress of time synchronization and frame start detection, it is desirable that the above-mentioned peak position appears in the sub-sequence ⁇ ⁇ in the target short training sequence (specifically, the sub-sequence ⁇ ⁇ After the included sample is transmitted, thus, in the embodiment of the present invention, when Q Q is set, Z Q ⁇ w can be made. It should be noted that, in general, the number of sub-sequences of the target short training sequence for AGC estimation may be 4. Therefore, in the embodiment of the invention, Z Q ⁇ 4 is preferred.
  • the symbol sequence ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇ can be generated, and further, the target training order ⁇ b, b, b, -b, b, b can be obtained.
  • the last 5 elements in the symbol sequence are repetitions of the first 5 elements. Therefore, when the symbol sequence or the target short training sequence is actually generated, only the first 5 children are generated. By repeating the sequence and repeating the five sub-sequences, the symbol sequence or the target short training sequence can be generated, which can further improve the processing efficiency.
  • each polynomial can be expressed as:
  • the transmitting device may carry the short training sequence symbol indicating the target short training sequence to the target signal (specifically, the target) that needs to be transmitted to the receiving device.
  • the target signal specifically, the target
  • a short training sequence field field in the physical layer of the signal and The target signal is sent to the receiving device.
  • the short training sequence symbol may be that the transmitting end device performs, for example, digital-to-analog conversion processing, up-conversion processing, and filtering processing on the target short training sequence as described above.
  • the signal received by the receiving device (specifically, the sampled value of the received signal may be a complex number including the real part and the imaginary part) is r, wherein the signal/"including noise And the target signal from the transmitting device, in the embodiment of the present invention, the target short training sequence determined as described above may be used to cause the receiving device to complete initial time synchronization of the target signal.
  • the receiving device may define the following decision variable RW) and perform initial time synchronization according to the R(d).
  • the receiving device can perform autocorrelation processing on a plurality of received samples in sequence based on the following Equation 2 to obtain a plurality of processed values.
  • ⁇ / represents the initial receiving sample point used when performing the autocorrelation processing (or OR, the autocorrelation operation).
  • the starting value of the d is 1, and thereafter, each time In the autocorrelation process, d is incremented by 1, that is, the processing value obtained in the first correlation processing is the processing value R(l) corresponding to the first receiving sampling point, and the processing value obtained in the second correlation processing. For the second received sample point corresponding to the processing value? (2), and so on, until the peak is found.
  • Vl + Np represents the autocorrelation function of 2 ⁇ ⁇ ⁇ points from the reception of the sample point d. d+Np- ⁇
  • ⁇ lr represents the energy value of the first N. p points in the 2N . p points.
  • ⁇ 1/1, 1 2 represents the energy value of the 2; 7 points, after N. p points.
  • ⁇ 1/1, 1 2 represents the energy value of the 2; 7 points, after N. p points.
  • the target polynomial + ⁇ + 3 ⁇ 4 +1 ⁇ ⁇ + ⁇ + ⁇ ⁇ ⁇ W ⁇ determined by the transmitting device, and the non-target polynomial is not equal to ⁇ , the existence can be ensured
  • the target threshold may be predetermined by the receiving device according to a method such as pre-experiment or simulation.
  • the target threshold value and R(d) can be used to first rise and then fall, and the following operations are performed to find the peak value. position.
  • delay may be performed according to system parameters (for example, bandwidth, modulation and coding scheme (MCS), channel model, data length, number of antennas, equalization, frequency offset, etc.)
  • MCS modulation and coding scheme
  • channel model data length
  • number of antennas equalization
  • frequency offset etc.
  • the target threshold value under different system parameters ⁇ can be selected according to the currently used system parameters.
  • Table 1 below lists an example of the correspondence between system parameters and target thresholds.
  • the specific process for the receiving device to determine the peak value is:
  • the peak position (or the received sample point corresponding to the peak value) is taken as the Z Q ⁇ N + 1 sample point in the target short training sequence, and the initial time synchronization is completed.
  • the timing point of the initial time synchronization (the receiving sample point corresponding to the peak position)
  • it may be appropriately adjusted, for example, the reception of the preset number (for example, two) is retracted.
  • the sample point is such that the timing point falls within the range of the cyclic prefix of one OFDM symbol.
  • the initial time synchronization can be completed only by finding the peak position, and the autocorrelation and cross-correlation operation of the entire short training sequence are required in the prior art to obtain the falling edge of the platform and complete the initial.
  • Time synchronization obviously, the processing complexity of the embodiment of the present invention is lower.
  • the method for determining the peak position by the receiving end device enumerated above is only an exemplary description, and the present invention is not limited thereto.
  • the received target points obtained by the calculation may be directly applied without applying the above-mentioned target threshold value.
  • the processed values of the corresponding related processing are compared to determine the peak position.
  • the generated symbol sequence generated by the transmitting device is ⁇ i, u, -i, U, U, -U ⁇
  • the target short training sequence ⁇ 'J is ⁇ b,b,b -b,b,b,b,b,b -b,b ⁇
  • the specific process for the receiving device to determine the peak position is:
  • the receiving end device since the receiving end device performs calculation in the order of receiving the sample points, the receiving end device does not actually care about the specific value of ⁇ / and does not need to obtain it.
  • the specific simulation results In the actual application, as long as it can ensure that the transmitting device can distinguish d calculated each time, it can be arbitrarily assigned.
  • the repeated description will be omitted for the same or similar cases.
  • the decision variable simulation plot with the relationship of ⁇ /.
  • Fig. 4 is a simulation diagram showing the relationship between the mean square error and the signal-to-noise ratio under the same conditions as those of Fig. 3.
  • Fig. 5 is a simulation diagram showing the relationship between the relative error and the signal-to-noise ratio under the same conditions as those in Fig. 3.
  • the mean square error and the relative error change are small. , the initial time synchronization is more accurate.
  • the R(d) value corresponding to the partial receiving sample point shown in Table 4 is obtained by simulation. It should be noted that, in the above simulation, in order to be close to reality, at the receiving end, 500 noise sampling points are added before the target short training sequence, so the actual peak appearing position should be all sampling points (including noise ⁇ The 629th point in the sample and target short sample training sequence.
  • the specific process for the receiving device to determine the peak position is:
  • the deviation of 128 sample points in the sequence is 1, which is more accurate.
  • Fig. 7 is a simulation diagram showing the relationship between the mean square error and the signal-to-noise ratio under the same conditions as those in Fig. 6.
  • Fig. 8 is a simulation diagram showing the relationship between the relative error and the signal-to-noise ratio under the same conditions as those in Fig. 6.
  • the mean square error and the relative error change are small. , the initial time synchronization is more accurate.
  • the target short training sequence that needs to be sent to the receiving end device is determined according to the number of received sampling points used when the receiving end device performs related processing, so that the receiving end device is in accordance with the preset rule. Only a peak value greater than the preset target threshold is present in the processing result obtained by performing the correlation processing on the target short training sequence, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving fast initial time synchronization. .
  • FIG. 9 is a schematic flow chart of a method 200 for transmitting a signal according to an embodiment of the present invention, as shown in FIG. 9. As shown in FIG. 9, the method 200 includes:
  • S220 When receiving the signal, perform autocorrelation processing on the signal according to the preset rule according to the preset number of samples, where the signal includes a target signal from the transmitting device, and the short training sequence domain of the target signal Carrying a short training sequence symbol, the short training sequence symbol is used to indicate a target training sequence, and the target sequence is generated by the transmitting end device according to the symbol sequence and the initial short training sequence after generating the initial short training sequence, the symbol sequence
  • the transmitting end device generates, according to the number of received sample points, such that only a peak value greater than a preset target threshold value appears in the processing result obtained by the correlation processing;
  • the receiving device can determine the number of received samples used in performing correlation processing (or correlation operation) on the received signal, wherein the "received sample”
  • the number of points refers to the number of sample points used in the correlation (including autocorrelation and cross-correlation) processing of the sample points in the received signal.
  • the signal received by the receiving end is included.
  • the sample points are referred to as "receiving sample points.” Further, the method and process for performing correlation processing on the received signals by the receiving end are described in detail.
  • the receiving end device may need to perform multiple correlation processing on the received signal according to the receiving order of the received sample points, and sequentially obtain processing values corresponding to the plurality of receiving sampling points, and the receiving used by each autocorrelation processing.
  • the number of samples is the same.
  • the specific value of the number of received samples may be preset and stored in the transmitting end and the receiving end by a management personnel or a supplier, or may be negotiated and determined by the transmitting end and the receiving end device, and The specific value of the number of received samples may be set once and may be used by default for each transmission, or may be periodically changed, and the present invention is not particularly limited.
  • the receiving end device can receive a signal, which includes a target signal from the transmitting end device, and below, the generating process of the target signal by the transmitting end device is explained.
  • the transmitting device When the transmitting device needs to transmit data to the receiving device, it is required to generate an initial short training sequence based on Equation 1, for example.
  • the existing communication system provides 64 subcarriers, and the serial number thereof may be -32 to 31.
  • the transmitting device performs, for example, frequency domain copying, fast inverse Fourier transform, and return.
  • the subcarriers with the serial number -26 to 26 can be used, and the sample points with the serial numbers of -26 to 26 are according to the formula 1 (hereinafter, in order to facilitate the distinction) , called the transmission sample point assignment, and complements 0 in the sequence numbers -32 to -27 and 27 to 31, thereby generating the repetition of the same subsequence 4 times by the above-mentioned frequency domain copy IFFT and normalization processing.
  • the time domain sequence, the subsequence ⁇ "J is recorded as, then the time domain sequence is represented as (b, b, b, b), wherein one subsequence includes 16 transmission samples. Thereafter, one sub is added
  • the cyclic prefix of the sequence generates a sequence (b, b, b, b, b) of the number of transmitted samples including one OFDM (Orthogonal Frequency Division Multiplexing) symbol length (80 points)
  • Short training sequence is used in addition to In addition to the synchronization outer frame start detection and initial time synchronization, it is also used for AGC setting and initial frequency offset estimation, etc., so the sequence (b, b, b, b, b) can be repeated to generate 10 subsequences.
  • the initial short training sequence ⁇ ' j ( b, b, b, b, b, b, b, b, b, b, b, b, b).
  • the method for generating the initial short training sequence enumerated above is merely an exemplary description, and the present invention is not limited thereto, for example, the number of sub-sequences included in the initial short training sequence, and the transmission of the sub-sequences included.
  • the number of the sample points can be arbitrarily changed, and the present invention is not particularly limited.
  • the transmitting device can determine the number of received samples used by the receiving device when performing autocorrelation processing (or autocorrelation operation) on the received signal.
  • the specific value of the number of received samples may be preset and stored in the transmitting end and the receiving end by a management personnel or a supplier, or may be negotiated and determined by the transmitting end and the receiving end device, and The specific value of the number of received samples may be set once and may be used by default for each transmission, or may be periodically changed, and the present invention is not particularly limited.
  • the transmitting end device may determine the symbol sequence according to the number of the received sampling points determined as described above, and generate the required to be carried in the L-STF field and send to the receiving end according to the symbol sequence and the generated initial short training sequence.
  • the target short training sequence of the device may be determined according to the number of the received sampling points determined as described above, and generate the required to be carried in the L-STF field and send to the receiving end according to the symbol sequence and the generated initial short training sequence.
  • the symbol sequence is generated by the sending end device solving a target equation group, where the target equation group is generated by making the target polynomial in the polynomial equal to the sp and making the non-target polynomial in the polynomial not equal to ⁇ p. , where the polynomial is ⁇ ⁇ ,. + ⁇ ) + ⁇ ⁇ ⁇ ⁇ ⁇ + ⁇ ) + ⁇ + ⁇ ,. + ⁇ ) — !
  • the target polynomial is a lo -a lo+p +a lo+1 .a lo+ p + - + a lo+p _ 1 .a lo+2p _ 1 , where Z Q is a preset integer, and the non-target polynomial is an equation other than the target polynomial in the polynomial.
  • the symbol sequence may be used to determine the symbol of the initial short training sequence generated as described above. Therefore, in the embodiment of the present invention, the number of elements included in the symbol sequence and the initial segment training sequence are included. The number of subsequences is the same. If the number of received samples is 2N.p, you can determine; The value, which in turn can be based on the polynomial ⁇ ,.
  • the value of p may be determined by the determined number of received samples, for example, may be predetermined by the values of M and N above, to satisfy 4 ⁇ 2 ⁇ ⁇ ⁇ ,
  • the invention is not particularly limited.
  • the range of p can be any integer from 2 to 5.
  • the transmitting device can determine a target polynomial from polynomials (a) ⁇ (g), and make the target polynomial equal to ⁇ ; 7 , and make the remaining other formulas (ie, non-target polynomials) not equal to ⁇ p, Thereby, a target equation group is constructed, whereby by solving the target equation group, the specific value of the above ⁇ 3 ⁇ 4 can be determined, and further, the symbol sequence ⁇ can be determined.
  • the target polynomial may be arbitrarily selected from the polynomials (a) to (g), and the present invention is not particularly limited.
  • the target polynomial can be expressed as ⁇ +P + 3 ⁇ 4 +1 ⁇ + X + P + ⁇ + + ⁇ - ⁇ ⁇ + 2 P -X, the ⁇ ) can Pre-set, and the position in the symbol sequence, or the position in the target short training sequence, may correspond to the position of the peak obtained by the receiving device for autocorrelation processing of the received signal (subsequently, combined) The processing of the receiving device and the corresponding relationship are described in detail), so that the / device can be set according to the desired position where the peak appears. .
  • the target polynomial is determined by the source device according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence, where 1 0 > ⁇ .
  • the target short training sequence generated by the symbol sequence and the initial short training sequence may be used for AGC estimation, and, in the embodiment of the present invention, the AGC estimation performed by the receiving end device may be detected in time synchronization and frame start.
  • the sub-sequence of the target short training sequence used by the AGC estimation may be located at a position of the target short training sequence before the sub-sequence for time synchronization and frame start detection is located before the position of the target short training sequence, for example,
  • the AGC estimation may be performed by using the sub-sequences a 0 b ⁇ a n _, b in the target short training sequence.
  • the above peak position appears after the subsequence ⁇ ⁇ in the target short training sequence (specifically, the transmission sample included in the subsequence ⁇ ⁇ )
  • Z Q ⁇ M can be made.
  • the number of subsequences of the target short training sequence for AGC estimation may be 4. Therefore, in the embodiment of the invention, Z 0 ⁇ 4 is preferred.
  • the symbol sequence ⁇ 1,1,1,-1,1,1,1,-1,1 ⁇ can be generated, and further, the target training sequence j' j ⁇ b,b,b,-b can be obtained.
  • the last 5 elements in the symbol sequence are repetitions of the first 5 elements. Therefore, when the symbol sequence or the target short training sequence is actually generated, only the first 5 sub-sequences are generated, and the 5 sub-sequences are repeated. Then, the symbol sequence or the target short training sequence can be generated, which can further improve the processing efficiency.
  • each polynomial can be expressed as: ⁇ ⁇ ⁇ ⁇ 4 + ⁇ 2 ⁇ ⁇ 5 + ⁇ 3 ⁇ 6
  • the transmitting device may carry the short training sequence symbol indicating the target short training sequence to the target signal that needs to be transmitted to the receiving device (specifically, the physical of the target signal) a short training sequence field field in the layer) and send the target signal Send it to the receiving device.
  • the short training sequence symbol may be that the transmitting end device performs, for example, digital-to-analog conversion processing, up-conversion processing, and filtering processing on the target short training sequence as described above.
  • a signal received by the receiving device (specifically, a sample value of the received signal, the sample value is a complex number including a real part and an imaginary part), wherein the signal r includes
  • the target short training sequence determined as described above may be used to cause the receiving device to complete initial time synchronization of the target signal.
  • the self-correlation processing of the target signal is performed according to the preset rule according to the number of the sample points, including:
  • N is the number of transmitted samples included in the subsequence
  • r is a sample value of the received signal
  • the number of received samples is 2N.
  • p, d indicates the initial reception used by the correlation process point.
  • the receiving device can define the following decision variable and perform initial time synchronization according to the R(d).
  • the receiving device can perform autocorrelation processing (or autocorrelation operation) on the plurality of received samples sequentially based on the following Equation 2. And get multiple processing values.
  • ⁇ / represents the initial receiving sample point used in performing the correlation processing.
  • the starting value is 1, and thereafter, each time the related processing is performed, 1 is added in sequence, that is, the first The processing value obtained in one correlation processing is the processing value R(l) corresponding to the first receiving sampling point, and the second The processing value obtained in the secondary correlation processing is the processing value R(2) corresponding to the second receiving sampling point, and so on, until the peak is found.
  • t Vl + Np represents the autocorrelation function of 2N-P points rising from the received sample point d.
  • ⁇ IrJ 2 represents the energy value of the first Np points among the 2N.p points. £ 1/;, 1 2 represents the energy value of the last Np points in the 2N.p points.
  • RW Cauchy's inequality
  • the receiving end device can determine the target threshold ⁇ according to a preliminary experiment or simulation.
  • determining the peak location comprises:
  • the peak position is determined according to the target threshold, wherein the peak is greater than the target threshold. Specifically, due to the vicinity of the peak, when ⁇ ⁇ /. When ⁇ , the value increases, the value of R(d) has an upward trend, and, when ⁇ >/. When the value is increased, the value is decreased. Therefore, in the embodiment of the present invention, the receiving device can use the target threshold and the first rise and fall properties near the peak, and perform the following operations to find the peak value. position.
  • delay may be performed according to system parameters (for example, bandwidth, modulation and coding scheme (MCS), channel model, data length, number of antennas, equalization, frequency offset, etc.)
  • MCS modulation and coding scheme
  • channel model
  • Table 1 above lists an example of the correspondence between system parameters and target thresholds.
  • the process of determining the peak value at the receiving end device is:
  • the receiving end device can use the peak position (or the received sampling point corresponding to the peak) as the Z Q ⁇ N + 1 sampling point in the target short training sequence, thereby completing the initial time synchronization. That is, the initial time synchronization for the target signal based on the peak position includes: determining that the peak position is the Z Q ⁇ N + 1 points in the target short training sequence.
  • the manner in which the receiving end device enumerated according to the peak position performs initial time synchronization on the target signal is merely an exemplary description, and the present invention is not limited thereto, for example, affected by noise, and obtains initial time synchronization.
  • the timing point the received sample point corresponding to the peak position
  • it can be adjusted appropriately, for example, by rewinding the preset number (for example, two) of the received sample points, so that the timing point falls on the cyclic prefix of one OFDM symbol In the range.
  • the peak position may be determined as the + 1 + ⁇ points in the target short training sequence, wherein ⁇ may be positive or negative, and may be preset according to, for example, a noise situation or the like.
  • the initial time synchronization can be completed only by finding the peak position, and the autocorrelation and cross-correlation operation of the entire short training sequence are required in the prior art to obtain the falling edge of the platform and complete the initial.
  • Time synchronization obviously, the processing complexity of the embodiment of the present invention is lower.
  • the method for determining the peak position by the receiving end device enumerated above is only an exemplary description, and the present invention is not limited thereto.
  • the received target points obtained by the calculation may be directly applied without applying the above-mentioned target threshold value.
  • the processed values of the corresponding related processing are compared to determine the peak position.
  • the generated symbol sequence generated by the transmitting device is ⁇ 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1 ⁇
  • the specific process for the receiving device to determine the peak position is:
  • the receiving end device since the receiving end device performs calculation in the order of receiving the sample points, the receiving end device does not actually care about the specific value of ⁇ / and does not need to obtain, here, in order to facilitate the reader's understanding, combined with the specific simulation results In the actual application, as long as it can ensure that the transmitting device can distinguish d calculated each time, it can be arbitrarily assigned. Hereinafter, the repeated description will be omitted for the same or similar cases.
  • the simulation of the relationship between the decision variable ⁇ and ⁇ / As shown in FIG.
  • Fig. 4 is a simulation diagram showing the relationship between the mean square error and the signal-to-noise ratio under the same conditions as those of Fig. 3.
  • FIG. 5 is a simulation diagram of the relationship between the relative error and the signal-to-noise ratio under the same conditions as in Fig. 3. As shown in FIG. 4 and FIG. 5, when the signal-to-noise ratio value is increased, when the target short training sequence generated by the method for transmitting signals according to the embodiment of the present invention performs corresponding initial time synchronization, the mean square error and the relative error change are small. , the initial time synchronization is more accurate.
  • the transmitting device At the transmitting end: as described in the above S110 to S140, under the above parameters, the transmitting device generates ⁇ ; generates the symbol sequence ⁇ 'j is ⁇ 1, 1, 1, - 1, 1, 1, 1, 1, - 1, 1 , 1, 1, 1 ⁇ , target short 1
  • the deviation of 128 sample points in the sequence is 1, which is more accurate.
  • Fig. 7 is a simulation diagram showing the relationship between the mean square error and the signal-to-noise ratio under the same conditions as those in Fig. 6.
  • FIG. 8 is a simulation diagram of the relationship between the relative error and the signal-to-noise ratio under the same conditions as in Fig. 6. As shown in FIG. 7 and FIG. 8 , when the signal-to-noise ratio value is increased, when the target short training sequence generated by the method for transmitting signals according to the embodiment of the present invention performs corresponding initial time synchronization, the mean square error and the relative error change are small. , the initial time synchronization is more accurate.
  • a target short training sequence that needs to be sent to a receiving end device is determined according to the number of received sampling points used when the receiving end device performs related processing, And causing the receiving end device to generate a peak value greater than a preset target threshold value in the processing result obtained by performing correlation processing on the target short training sequence according to the preset rule, so that the receiving end device can perform initializing according to the position of the peak value.
  • Time synchronization enables fast initial time synchronization.
  • FIG. 10 shows an apparatus 300 for transmitting signals according to an embodiment of the present invention. As shown in FIG. 10, the apparatus 300 includes:
  • the initial short training sequence generating unit 310 is configured to generate an initial short training sequence, where the initial short training sequence includes M sub-sequences b, and the sub-sequence b includes N sending samples;
  • a determining unit 320 configured to determine a number of received samples used by the receiving end device for autocorrelation processing
  • the target short training sequence generating unit 330 is configured to generate a symbol sequence according to the number of received samples, and the symbol sequence is represented as ⁇ . And according to the symbol sequence and the initial short training sequence J "J , generating a target short training sequence J "J , the target short training sequence is expressed as ⁇ a 0 b, a, b, ..., ai b,. .., a K _, b ⁇ , so that the receiving end device only has a peak value greater than a preset target threshold value in the processing result obtained by performing correlation processing on the target short training sequence according to a preset rule;
  • a sending unit configured to send a target signal to the receiving end device, where the short training sequence field of the target signal carries a short training sequence symbol, where the short training sequence symbol is used to indicate the target training sequence.
  • the target short training sequence generating unit 330 is specifically configured to determine, according to the number of received samples, a polynomial ⁇ + ⁇ +...+ ⁇ + ⁇ , i G[0, M-2 P ] , wherein the number of the received sample points is, and 4 ⁇ 2p ⁇ M;
  • the target polynomial be equal to ⁇ ; ⁇ , let the non-target polynomial not equal to ⁇ p, to generate a target equation, the non-target polynomial is the formula of the polynomial other than the target polynomial;
  • the target equations are solved to generate a sequence of symbols.
  • the target short training sequence generating unit 330 is specifically configured to determine the target polynomial according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence to satisfy:
  • the target equations are:
  • the symbol sequence ⁇ ' J is ⁇ 1, U - 1, UU - U ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b , b ⁇ .
  • the device 300 for transmitting data may correspond to the transmitting device in the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 300 for transmitting data are respectively The corresponding process of the method 100 in FIG. 2 is implemented. For brevity, no further details are provided herein.
  • the apparatus for transmitting a signal determines the target short training sequence that needs to be sent to the receiving end device according to the number of received sampling points used when the receiving end device performs related processing, so that the receiving end device is in accordance with the preset rule. Only a peak value greater than the preset target threshold is present in the processing result obtained by performing the correlation processing on the target short training sequence, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving fast initial time synchronization. .
  • FIG 11 shows an apparatus 400 for transmitting signals in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • a determining unit 410 configured to determine the number of received sample points
  • a receiving unit 420 configured to receive a signal
  • the auto-correlation processing unit 430 is configured to perform autocorrelation processing on the signal according to the preset rule according to the preset number of samples, where the signal includes a target signal from the transmitting device, and the short training sequence domain of the target signal Carrying a short training sequence symbol, the short training sequence symbol is used to indicate a target training sequence, and the target sequence is generated by the transmitting end device according to the symbol sequence and the initial short training sequence after generating the initial short training sequence, the symbol sequence
  • the transmitting end device generates, according to the number of received sampling points, that only a peak value greater than a preset target threshold value appears in the processing result obtained by the autocorrelation processing;
  • the determining unit 410 is further configured to determine a position of the peak, and perform initial time synchronization for the target signal according to the position of the peak.
  • the autocorrelation processing unit 430 is specifically configured to perform autocorrelation processing on the target signal according to the following formula.
  • the determining unit 410 is specifically configured to determine the peak position according to a preset target threshold.
  • the symbol sequence is generated by the sending end device solving a target equation group, wherein the target equation group is generated by making the target polynomial in the polynomial equal to ⁇ and making the non-target polynomial in the polynomial not equal to ⁇ .
  • the polynomial is ⁇ , ⁇ ⁇ ⁇ + ⁇ + ⁇ ⁇ + ⁇ ⁇ ⁇ + ⁇ + ⁇ + ⁇ + ⁇ ⁇ + ⁇ _ ⁇ ⁇ ⁇ +2 ⁇ _ , iG[0,M-2p]
  • the number of received samples is 2N.p, and 4 ⁇ 2 ⁇
  • the target polynomial is a lo -a lo+p +a lo+1 .a lo+ p + - + a lo+p _ 1 .a Lo+2p _ 1 , where Z Q is a preset integer, and the non-target polynomial is an equation other than the target polynomial in the polynomial.
  • the target polynomial is determined by the sending end device according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence, where 1 0 > ⁇ .
  • the symbol sequence is ⁇ 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b , b, b, b, -b, b).
  • the determining unit 410 is specifically configured to determine that the location of the peak is the +1th point in the short training sequence.
  • the apparatus 400 for transmitting data may correspond to a receiving end device in the method of the embodiment of the present invention, and each unit in the apparatus 400 for transmitting data is a module and the above
  • the operations and/or functions of the method 200 are respectively implemented in order to implement the corresponding process of the method 200 in FIG. 9.
  • no further details are provided herein.
  • the apparatus for transmitting a signal determines the target short training sequence that needs to be sent to the receiving end device according to the number of received sampling points used when the receiving end device performs related processing, so that the receiving end device is in accordance with the preset rule. Only a peak value greater than the preset target threshold is present in the processing result obtained by performing the correlation processing on the target short training sequence, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving fast initial time synchronization. .
  • FIG. 12 shows a device 500 for transmitting signals according to an embodiment of the present invention. As shown in FIG. 12, the device 500 includes:
  • processor 520 connected to the bus 510;
  • a memory 530 connected to the bus 510;
  • a transmitter 540 connected to the bus 510;
  • the processor 520 calls, by using the bus 510, a program stored in the memory 530, for generating an initial short training sequence, where the initial short training sequence includes M sub-sequences b, and the sub-sequence b includes N transmissions.
  • a target short training sequence is generated, and the target short training sequence is expressed as So that the receiving end device only has a peak value greater than a preset target threshold value in the processing result obtained by performing autocorrelation processing on the target short training sequence according to a preset rule;
  • the transmitter 540 is controlled to transmit a target signal to the receiving device, wherein the short training sequence field field of the target signal carries a short training sequence symbol, and the short training sequence symbol is used to indicate the target training sequence.
  • the processor 520 is specifically configured to determine a polynomial according to the number of received samples. i [ , M - 2p] , wherein the number of received samples is 2N ' p , and 4 ⁇ 2p ⁇ M;
  • the target polynomial be equal to ⁇ ; ⁇ , let the non-target polynomial not equal to ⁇ p, to generate a target equation, the non-target polynomial is the formula of the polynomial other than the target polynomial;
  • the target equations are solved to generate a sequence of symbols.
  • the processor 520 is specifically configured to determine the target polynomial according to the number n of sub-sequences b for the automatic gain control AGC in the target training sequence, so as to satisfy: l 0 ⁇ n .
  • the symbol sequence ⁇ ' J is ⁇ 1, U - 1, UU - U ⁇
  • the target training sequence is b, b, b, -b, b, b, b, b, -b , b,.
  • the processing unit may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and signals to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the device for transmitting signals may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting signals are coupled together by a bus system, wherein the bus system includes a signal bus. In addition, it includes a power bus, a control bus, and a status signal bus.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the above method in combination with the hardware.
  • the processor may be a central processing unit (Central)
  • CPU Central Processing Unit
  • the processor can also be other general-purpose processors, Word signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • DSP Word signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion or by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 500 for transmitting signals may correspond to the transmitting device in the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 500 for transmitting the signal are respectively
  • the corresponding process of the method 100 in FIG. 2 is implemented.
  • no further details are provided herein.
  • the device for transmitting a signal determines the target short training sequence that needs to be sent to the receiving end device according to the number of received sampling points used when the receiving end device performs related processing, so that the receiving end device is in accordance with the preset rule. Only a peak value greater than the preset target threshold is present in the processing result obtained by performing the correlation processing on the target short training sequence, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving fast initial time synchronization. .
  • FIG. 13 shows an apparatus 600 for transmitting signals according to an embodiment of the present invention. As shown in FIG. 13, the apparatus 600 includes:
  • processor 620 connected to the bus 610;
  • a memory 630 connected to the bus 610;
  • a receiver 640 connected to the bus 610;
  • the processor 620 by using the bus 610, invokes a program stored in the memory 630 for determining the number of received samples;
  • the receiver 640 When the receiver 640 receives the signal, according to the number of received samples, the signal is subjected to autocorrelation processing based on a preset rule, wherein the signal includes a target signal from the transmitting device, and the short training of the target signal
  • the sequence domain carries a short training sequence symbol, where the short training sequence symbol is used to indicate a target training sequence, where the target device is after the initial short training sequence is generated by the transmitting device.
  • the peak value of the threshold
  • the position of the peak is determined, and an initial time synchronization for the target signal is made based on the position of the peak.
  • the processor 620 is specifically configured to perform related processing on the target signal according to the following formula.
  • the processor 620 is specifically configured to determine the peak position according to a preset target threshold, where the peak is greater than the target threshold.
  • the symbol sequence is generated by the sending end device solving a target equation group, wherein the target equation group is generated by making the target polynomial in the polynomial equal to ⁇ and making the non-target polynomial in the polynomial not equal to ⁇ . , where the polynomial is ⁇ ,.
  • the target polynomial is a lo -a lo+p +a lo+1 .a lo+ p + - + a lo+p _ 1 .a lo +2p _ 1 , where Z Q is a preset integer, and the non-target polynomial is an equation other than the target polynomial in the polynomial.
  • the target polynomial is determined by the sending end device according to the number w of sub-sequences for the automatic gain control AGC in the target training sequence, where 1 0 > ⁇ .
  • the symbol sequence is ⁇ 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1 ⁇
  • the target training sequence is ⁇ b, b, b, -b, b, b, b, b, -b, b).
  • the processor 620 is specifically configured to determine that the location of the peak is the Z Q . N + 1 points in the target short training sequence.
  • the processing unit may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and signals to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the device for transmitting signals may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting signals are coupled together by a bus system, wherein the bus system includes a signal bus. In addition, it includes a power bus, a control bus, and a status signal bus.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the above method in combination with the hardware.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), dedicated Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion or by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the device 600 for transmitting signals may correspond to a receiving end device in the method of the embodiment of the present invention, and each unit in the device 600 transmitting the signal is a module and the above
  • the operations and/or functions of the method 200 are respectively implemented in order to implement the corresponding process of the method 200 in FIG. 9.
  • no further details are provided herein.
  • the device for transmitting a signal determines the target short training sequence that needs to be sent to the receiving end device according to the number of received sampling points used when the receiving end device performs related processing, so that the receiving end device is in accordance with the preset rule. Only a peak value greater than the preset target threshold is present in the processing result obtained by performing the correlation processing on the target short training sequence, so that the receiving device can perform initial time synchronization according to the position of the peak, thereby achieving fast initial time synchronization. .
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place. Or it can be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种传输信号的方法和装置,能够实现快速的初始时间同步。该方法包括:发送端设备生成初始短训练序列,该初始短训练序列包括M个子序列b,该子序列b包括N个发送采样点;确定接收端设备进行自相关处理时使用的接收采样点数量;根据该接收采样点数量,生成符号序列,该符号序列表示为{a 0,a 1,…,a i,…,a K-1},并根据该符号序列和该初始短训练序列,生成目标短训练序列,该目标短训练序列表示为 {a 0b,a 1b,…,a ib,…,a K-1b},以使该接收端设备在根据预设规则对该目标短训练序列进行自相关处理而得到的处理结果中仅出现一个大于预设的目标阈值的峰值;向该接收端设备发送目标信号,其中,在该目标信号的短训练序列域字段携带有短训练序列符号,该短训练序列符号用于指示该目标训练序列。

Description

传输信号的方法和装置 技术领域
本发明涉及通信技术领域,并且更具体地,涉及传输信号的方法和装置。 背景技术
随着半导体技术的发展和 802.11标准对无线局域网络(WLAN, Wireless Local Area Networks )的标准化使得 WLAN技术的成本大大降低, 其应用也 日益广泛。 目前, 802.11标准的版本已从 802.11a/b演进到 802.11g、 802.11η 以及 802.11ac, 802.1 lac了前导部分的 STF进行了粗时间同步估计。 为了保 证不同 802.11标准版本的产品之间的后向兼容性与互操作性, 从 802.11η开 始, 定义了混合格式(MF, Mixed Format )前导码(以下, 简称前导码)。 前导码的传统部分是由与 802.11a相同的传统字段组成。
图 1示出了现有的前导码的结构。 如图 1所示, 前导码的传统部分包含 三个字段, 即: 传统短训练域(L-STF, Legacy-Short Training Field )字段, 传统长训练域 ( L-LTF , Legacy-Long Training Field ) 字段以及传统信令 ( L-SIG, Legacy-Signal ) 字段, 其中, L-STF 字段用于帧起始检测、 自动 增益控制 (AGC, Auto Gain Control )设置、 初始频率偏移估计以及初始时 间同步; L-LTF用于更精确的频率偏移估计和时间同步, 也用来为接收及匀 衡 L-SIG生成信道估计; L-SIG字段主要用于承载数据速率信息及数据长度 信息, 以使接收端设备能够根据该数据速率信息及数据长度信息, 确定与该 前导码承载于同一帧的数据的长度, 进而能够确定保持空闲的适当时间。
其中,来自发送端的 L-STF字段所承载的短训练序列包括多个重复结构 的子序列, 因此具有较强的自相关性。 从而, 在接收端, 能够通过对接收的 信号 (包括该短训练序列)进行自相关处理(或者说, 自相关运算), 利用 所得到的自相关值的下降沿来进行初始时间同步。
另外, 为了增强算法的鲁棒性, 除了上面提到的自相关处理, 还可以将 接收的信号与本地已知的短训练序列做互相关处理(或者说, 自相关运算)。 由于短训练序列具有良好的自相关性质, 通过互相关处理, 可以得到多个峰 值, 并且, 如上所述, 通过自相关处理, 可以得到一个下降沿, 从而将最后 一个峰值和该下降沿相结合, 便可以判断 L-STF字段的起始位置。 但是, 上述处理的计算量较大, 计算复杂度较高, 无法实现快速的初始 时间同步。 发明内容
本发明提供一种传输信号的方法和装置, 能够实现快速的初始时间同 步。
第一方面, 提供了一种传输信号的方法, 该方法包括: 发送端设备生成 初始短训练序列,该初始短训练序列包括 M个子序列 b,每个子序列 b包括 N 个发送釆样点; 确定接收端设备进行相关处理时使用的接收釆样点数量; 根 据该接收釆样点数量, 生成符号序列, 该符号序列表示为 J, 并才艮据该符号序列和该初始短训练序列, 生成目标短训练序列, 该目标短训 练序列表示为 W, 以使该接收端设备在根据预设规则对该 目标短训练序列进行自相关处理而得到的处理结果中仅出现一个大于预设 的目标阔值的峰值; 向该接收端设备发送目标信号, 其中, 在该目标信号的 短训练序列域字段携带有短训练序列符号, 该短训练序列符号用于指示该目 标训练序列。
结合第一方面, 在第一方面的第一种实现方式中, 该根据该接收釆样点 数量, 生成符号序列, 包括: 根据该接收釆样点数量, 确定多项式
«, • ^ +^ • ^ +- + ^ • ^2,-! ' i iO,M-2p] , 其中, 该接收釆样点数量为 2N-p , 且 4≤2p≤M ; 确定目标多项式 ;;+ l+;)+... + ;)2;;— ', 其中, /。为预设整数; 令该目标多项式等于 ±ρ, 令非目标多项式不等于 ±ρ, 以生成目标方程组, 该非目标多项式是该多项式中除该目标多项式以外的 式; 求解该目标方程组, 以生成符号序列。
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 该 确定目标多项式, 包括: 根据该目标训练序列中用于自动增益控制 AGC的 子序列 的数量^ 确定该目标多项式, 以满足: l0≥n。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, =10, ρ = 2 , /0 = 4 , 以及该目标方程组为: aQ-a2 + αλ- a3≠ ±2
αλ· a + α2· a4≠ ±2
α2·α43· a5≠ ±2
a3 · a5 + a4 · a6≠ ±2 o
α4·α6+ a5 ·αΊ -±2
a5 · 7 + · ≠ ±2
α6·α +αΊ · a9≠ ±2
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 该 符 号 序 列 为 {1,1,1,-1,1,1,1,1,-1,1} , 以 及 , 该 目 标训 练 序 列 为 {b, b, b, -b, b, b, b, b, -b, b}。
第二方面, 提供了一种传输信号的方法, 该方法包括: 确定接收釆样点 数量; 当接收到信号时, 根据该接收釆样点数量, 基于预设规则, 对该信号 进行自相关处理, 其中, 该信号包括来自发送端设备的目标信号, 该目标信 号的短训练序列域携带有短训练序列符号, 该短训练序列符号用于指示目标 训练序列, 该目标序列是该发送端设备在生成初始短训练序列后, 根据符号 序列和该初始短训练序列生成的,该符号序列该发送端设备根据该接收釆样 点数量生成的, 以使经该自相关处理而得到的处理结果中仅出现一个大于预 设的目标阔值的峰值; 确定该峰值的位置, 并根据该峰值的位置进行针对该 目标信号的初始时间同步。
结合第二方面,在第二方面的第一种实现方式中,该根据该釆样点数量, 基于预设规则, 对该目标信号进行自相关处理, 包括: 根据以下公式, 对该 目标信号进行自相关处理,
Figure imgf000005_0001
其中, N为该子序列 包括的发送釆样点的数量, 表示接收到的信号 的釆样值,该接收釆样点数量为 2N.p, d表示该相关处理使用的起始接收釆 样点。
结合第二方面及其上述实现方式, 在第二方面的第二种实现方式中, 该 确定该峰值位置包括: 根据该目标阔值, 确定该峰值的位置。
结合第二方面及其上述实现方式, 在第二方面的第三种实现方式中, 该 符号序列是该发送端设备求解目标方程组而生成的, 该目标方程组是令多项 式中的目标多项式等于 ±/?且令该多项式中的非目标多项式不等于 ±/?而生成 的, 其中, 该多项式为 ΩΩ,+ί)+Ω,+1· — + · ,+2^, iG[0,M-2p] , 该接 收釆样 点 数 量 为 2N.p , JL 4≤2ρ≤Μ , 该 目 标 多 项 式 为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 该非目标多项式 是该多项式中除该目标多项式以外的式。
结合第二方面及其上述实现方式, 在第二方面的第四种实现方式中, 该 目标多项式是该发送端设备根据该目标训练序列中用于自动增益控制 AGC 的子序列 的数量 w确定的, 其中, Ιΰ > η
结合第二方面及其上述实现方式, 在第二方面的第五种实现方式中, =10, ρ = 2 , /0 = 4 , 以及该目标方程组为:
Figure imgf000006_0001
结合第二方面及其上述实现方式, 在第二方面的第六种实现方式中, 该 符 号 序 列 为 {1,1,1,-1,1,1,1,1,-1,1} , 以 及 , 该 目 标训 练 序 列 为 {b, b, b, -b, b, b, b, b, -b, b}。
结合第二方面及其上述实现方式, 在第二方面的第七种实现方式中, 该 根据该峰值的位置进行针对该目标信号的初始时间同步, 包括: 确定该峰值 的位置为该目标短训练序列中的第 ZQ · N + 1个点。
第三方面, 提供了一种传输信号的装置, 该装置包括: 初始短训练序列 生成单元,用于生成初始短训练序列,该初始短训练序列包括 M个子序列 , 每个子序列 包括 N个发送釆样点; 确定单元, 用于确定接收端设备进行相 关处理时使用的接收釆样点数量; 目标短训练序列生成单元, 用于根据该接 收釆样点数量, 生成符号序列, 该符号序列表示为 并根 据该符号序列和该初始短训练序列, 生成目标短训练序列, 该目标短训练序 列表示为 {Ω , a,b, ... , αρ, ... , aK_xb), 以使该接收端设备在根据预设规则对该目标 短训练序列进行相关处理而得到的处理结果中仅出现一个大于预设的目标 阔值的峰值; 发送单元, 用于向该接收端设备发送目标信号, 其中, 在该目 标信号的短训练序列域携带有短训练序列符号, 该短训练序列符号用于指示 该目标训练序列。
结合第三方面, 在第三方面的第一种实现方式中, 该目标短训练序列生 成单元具体用 于根据该接收釆样点数量 , 确 定 多 项 式 a ai+p+aM.aM+p + - + ai+p_l.aiW , ϊ [0,Μ~2ρ] , 其中, 该接收釆样点数量为 2N · ρ, 且 4≤ 2ρ≤ Μ; 确定目标多项式 ¾· alo+p + α1ΰ+ · + p +- + · , 其中, Z。为预设整数; 令该目标多项式等于 令非目标多项式不等于 ±p, 以生成目标方程组, 该非目标多项式是该多项式中除该目标多项式以外的 式; 求解该目标方程组, 以生成符号序列。
结合第三方面及其上述实现方式, 在第三方面的第二种实现方式中, 该 目标短训练序列生成单元具体用于根据该目标训练序列中用于自动增益控 制 AGC的子序列 b的数量 n, 确定该目标多项式, 以满足: l0≥n。
结合第三方面及其上述实现方式, 在第三方面的第三种实现方式中, =10, p = 2 , /0 = 4 , 以及该目标方程组为:
Figure imgf000007_0001
结合第三方面及其上述实现方式, 在第三方面的第四种实现方式中, 该 符 号 序 列 为 {1,1,1,-1,1,1,1,1,-1,1} , 以 及 , 该 目 标训 练 序 列 为 {b, b, b, -b, b, b, b, b, -b, b)。
第四方面, 提供了一种传输信号的装置, 该装置包括: 确定单元, 用于 确定接收釆样点数量; 接收单元, 用于接收信号; 自相关处理单元, 用于根 据该接收釆样点数量, 基于预设规则, 对该信号进行自相关处理, 其中, 该 信号包括来自发送端设备的目标信号, 该目标信号的短训练序列域携带有短 训练序列符号, 该短训练序列符号用于指示目标训练序列, 该目标序列是该 发送端设备在生成初始短训练序列后,根据符号序列和该初始短训练序列生 成的, 该符号序列该发送端设备根据该接收釆样点数量生成的, 以使经该自 相关处理而得到的处理结果中仅出现一个大于预设的目标阔值的峰值; 该确 定单元还用于确定该峰值的位置, 并根据该峰值的位置进行针对该目标信号 的初始时间同步。
结合第四方面, 在第四方面的第一种实现方式中, 该自相关处理单元具 体用于根据以下公式, 对该目标信号进行自相关处理,
Figure imgf000008_0001
其中, N为该子序列 包括的发送釆样点的数量, r表示接收到的信号 的釆样值,该接收釆样点数量为 2N.p, d表示该相关处理使用的起始接收釆 样点。
结合第四方面及其上述实现方式, 在第四方面的第二种实现方式中, 该 确定单元具体用于根据该目标阔值, 确定该峰值的位置, 其中, 该峰值大于 该目标阔值。
结合第四方面及其上述实现方式, 在第四方面的第三种实现方式中, 该 符号序列是该发送端设备求解目标方程组而生成的, 该目标方程组是令多项 式中的目标多项式等于 ±p且令该多项式中的非目标多项式不等于士 P而生成 的, 其中, 该多项式为 Ω, · Ω,+Ί) +Ω,+1 · Ω, +— + 2^, i G[ ,M-2p] , 该接 收釆样 点 数 量 为 2N.p , JL 4≤2ρ≤Μ , 该 目 标 多 项 式 为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 该非目标多项式 是该多项式中除该目标多项式以外的式。
结合第四方面及其上述实现方式, 在第四方面的第四种实现方式中, 该 目标多项式是该发送端设备根据该目标训练序列中用于自动增益控制 AGC 的子序列 的数量 w确定的, 其中, Ιΰ > η
结合第四方面及其上述实现方式, 在第四方面的第五种实现方式中, =10, ρ = 2 , /0 = 4 , 以及该目标方程组为:
"0 a2 + αλ a3 ≠±2
~ 1 ~ a4 ≠±2
a4 +a3 - a ≠±2
< α3 a + a4 ≠±2。
α4 a6 + a αΊ =±2
Figure imgf000008_0002
L a 6, ~ 1 ~^, a9 ≠±2 结合第四方面及其上述实现方式, 在第四方面的第六种实现方式中, 该 符 号 序 列 为 {1, 1,1, -1,1, 1,1, 1, -1, 1} , 以 及 , 该 目 标训 练 序 列 为 {b, b, b, -b, b, b, b, b, -b, b}。
结合第四方面及其上述实现方式, 在第四方面的第七种实现方式中, 该 确定单元具体用于确定该峰值的位置为该目标短训练序列中的第 ZQ · N + 1个 点。
根据本发明实施例的传输信号的方法和装置,通过根据接收端设备进行 相关处理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训 练序列,使接收端设备在根据预设规则对该目标短训练序列进行相关处理而 得到的处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设 备能够根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同 步。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是表示现有技术中前导码的结构的示意图。
图 2是^ =艮据本发明一实施例的传输信号的方法的示意性流程图。
图 3是 居本发明一实施例的判决变量 与 ^ /的关系的仿真图。 图 4是根据本发明一实施例的均方误差与信噪比的关系的仿真图。 图 5是根据本发明一实施例的相对误差与信噪比的关系的仿真图。 图 6是 居本发明另一实施例的判决变量 与 d的关系的仿真图。 图 7是根据本发明另一实施例的均方误差与信噪比的关系的仿真图。 图 8是根据本发明另一实施例的相对误差与信噪比的关系的仿真图。 图 9是根据本发明另一实施例的传输信号的方法的示意性流程图。 图 10是根据本发明一实施例的传输信号的装置的示意性框图。
图 11是根据本发明另一实施例的传输信号的装置的示意性框图。
图 12是根据本发明一实施例的传输信号的设备的示意性结构图。
图 13是根据本发明另一实施例的传输信号的设备的示意性结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案,可以应用于各种需要通过前导码来通知通信对端所 传输的数据的数据速率以及数据长度等信息的通信***, 例如, 无线局域网 ( WLAN, Wireless Local Area Network ) ***、 无线保真 ( Wi-Fi, Wireless Fidelity ) ***等。
相对应的, 发送端可以是 WLAN中用户站点 ( STA, Station ), 该用户 站点也可以称为***、 用户单元、 接入终端、 移动站、 移动台、 远方站、 远 程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理、 用户装置 或 UE ( User Equipment, 用户设备)。 该 STA可以是蜂窝电话、 无绳电话、 SIP ( Session Initiation Protocol, 会话启动十办议 )电话、 WLL ( Wireless Local Loop, 无线本地环路)站、 PDA ( Personal Digital Assistant, 个人数字处理)、 具有无线局域网 (例如 Wi-Fi )通信功能的手持设备、 计算设备或连接到无 线调制解调器的其它处理设备。
另夕卜, 发送端也可以是 WLAN中接入点 (AP, Access Point ), 接入点 可用于与接入终端通过无线局域网进行通信, 并将接入终端的数据传输至网 络侧, 或将来自网络侧的数据传输至接入终端。
以下, 为了便于理解和说明, 作为示例而非限定, 以将本发明的传输信 号的方法和装置在 Wi-Fi***中的执行过程和动作进行说明。
此外, 本发明的各个方面或特征可以实现成方法、 装置或使用标准编程 和 /或工程技术的制品。本申请中使用的术语 "制品 "涵盖可从任何计算机可读 器件、 载体或介质访问的计算机程序。 例如, 计算机可读介质可以包括, 但 不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如, CD ( Compact Disk, 压缩盘)、 DVD ( Digital Versatile Disk, 数字通用盘)等), 智能卡和 闪存器件 ( 1"列 口, EPROM ( Erasable Programmable Read-Only Memory, 可 擦写可编程只读存储器)、 卡、 棒或钥匙驱动器等)。 另外, 本文描述的各种 存储介质可代表用于存储信息的一个或多个设备和 /或其它机器可读介质。术 语"机器可读介质 "可包括但不限于, 无线信道和能够存储、 包含和 /或承载指 令和 /或数据的各种其它介质。
图 2示出了从发送端设备角度描述的本发明一实施例的传输信号的方法 100的示意性流程图, 如图 2所示, 该方法 100包括:
S110,发送端设备生成初始短训练序列, 该初始短训练序列包括 M个子 序列 该子序列 包括 N个发送釆样点;
S120, 确定接收端设备进行自相关处理时使用的接收釆样点数量; S130 , 根据该接收釆样点数量, 生成符号序列, 该符号序列表示为
J, 并才艮据该符号序列和该初始短训练序列, 生成目标短训 练序列, 该目标短训练序列表示为 {Ω^, Ω^, . . . , Ω,Α,. 以使该接收端设备 在根据预设规则对该目标短训练序列进行自相关处理而得到的处理结果中 仅出现一个大于预设的目标阔值的峰值;
S140, 向该接收端设备发送目标信号, 其中, 在该目标信号的短训练序 列域携带有短训练序列符号, 该短训练序列符号用于指示该目标训练序列。
具体地说, 在 S110, 发送端设备当需要向接收端设备发送数据时, 需要 例如, 可以基于以下式 1生成初始短训练序列。
S_2626 = VT72 x { 0,0,1 + j',0,0,0,-1 - j',0,0,0,l + j,
0,0,0,-1 - j',0, 0,0,-1 - j',0,0,0,l + j, ο,ο,ο, 式 1
0, 0,0,0,-1 - j, 0,0,0,-1 - j, 0, 0,0,1 + j, 0, 0, 0,
1 + j',0,0,0,l + j',0,0,0,l+ j',0,0 }
具体地说, 现有的通信***提供了 64 个子载波, 其序号可以为 -32 至
31, 在本发明实施例中, 在进行例如, 频域复制、 快速傅里叶逆变换(IFFT, Inverse Fast Fourier Transform ) 以及归一化处理时, 可以使用序号为 -26至 26的子载波(或者说, 子载波上的釆样点 ), 并根据式 1为序号为 -26至 26 的釆样点 (以下, 为了便于区分, 称为发送釆样点)赋值, 并在序号为 -32 至 -27以及 27至 31位置补 0, 从而经过上述频域复制 IFFT以及归一化处理 而生成包含同一个子序列的重复 4次的时域序列, 将该子序列记为 则该 时域序列表示为 b,b,b,b ), 其中, 一个子序列包括 16个发送釆样点。 其后, 增加一个子序列 的循环前缀而生成包括的发送釆样点数量为一个正交频分 复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符号长度(80 点)的序列 ( b, b, b, b,b ), 由于短训练序列除了用于同步外帧起始检测和初始 时间同步外, 还用于 AGC设置和初始频率偏移估计等, 因此可以将该序列 ( b,b,b,b,b ) 重复, 而生成具有 10 个子序歹 ij 的初始短训练序列 ( b,b,b,b,b,b,b,b,b,b 。
需要说明的是, 以上列举的初始短训练序列的生成方法仅为示例性说 明,本发明并不限定于此,例如,该初始短训练序列的包括的子序列的数量, 以及子序列包括的发送釆样点的数量可以任意变更, 本发明并未特别限定。
在以下说明中, 为了便于理解, 以初始短训练序列包括 10个子序列 , 即 M = 10, 子序列 包括 16个发送釆样点, 即 N = 16为例, 进行说明。
在 S120, 发送端设备可以确定接收端设备在对接收到的信号进行自相 关处理(或者说, 自相关运算)时使用的接收釆样点数量, 其中, 该 "接收 釆样点数量"是指在对接收到的信号中的釆样点进行自相关处理时使用的釆 样点的数量, 以下, 为了便于区分, 将接收端接收到的信号中的釆样点称为 "接收釆样点"。 并且, 随后对接收端对接收到的信号进行相关处理的方法 和过程进行详细说明。 需要说明的是, 在本发明实施例中, 为了找寻峰值, 接收端设备可能需要按照接收釆样点的接收顺序,对接收到的信号进行多次 相关处理, 并依次得到多个接收釆样点所对应的处理值, 每次自相关处理使 用的接收釆样点数量相同。
另外, 在本发明实施例中, 自相关处理也可以称为自相关运算, 可以指 通过预设的算法规则对输入的数据(这里, 是接收的信号的釆样值)进行自 相关运算而得到处理值的过程。 随后, 结合接收端设备的处理, 进行详细说 明
在本发明实施例中,该接收釆样点数量的具体值可以由管理人员或供应 商等预先设置并存储在发送端和接收端中,也可以由发送端和接收端设备协 商确定, 并且, 该接收釆样点数量的具体值可以是一次性设置从而在每次传 输是均默认使用, 也可以是周期性变更, 本发明并未特别限定。
在 S130, 发送端设备可以根据在 S120中确定的该接收釆样点数量, 确 定符号序列, 并才艮据该符号序列和在 S110中生成的初始短训练序列, 生成 需要承载于 L-STF字段并发送给接收端设备的目标短训练序列。
下面, 首先对该符号序列的生成方法进行说明。
可选地, 该根据该接收釆样点数量, 生成符号序列, 包括:
根据该接收釆样点数量, 确定多项式 · αι+ρ + αΜ · aM+p +… + αι+ρ_ · αι+2ρ_, i G [0, M - 2p] , 其中, 该接收釆样点数量为 2N . p, 且 4≤2ρ≤Μ ; 确定目标多项式 α1ο · alo+p + α1ο+ · α1ο++ρ +… + · , 其中, ZQ为预设整 数;
令该目标多项式等于士; ^, 令非目标多项式不等于 ±p, 以生成目标方程 组, 该非目标多项式是该多项式中除该目标多项式以外的式;
求解该目标方程组, 以生成符号序列。
具体地说, 在本发明实施例中, 该符号序列可以用于确定如上所述生成 的初始短训练序列的符号, 因此, 在本发明实施例中, 该符号序列包括的元 素的数量与初始段训练序列包括的子序列的数量相同,设接收釆样点数量为 2N-p , 则 可 以 确 定 p 的 值 , 进 而 可 以 根 据 多 项 式 arai+p+aM-aM+p+- + ai+p_x-ai+2p_^ e[0,M- 2p]。 并且, 在本发明实施例中, p 的取值可以根据在 S120中确定的接收釆样点数量而确定,例如,可以上述 M 和 N的取值而预先确定, 以满足 4≤2p≤M, 本发明并未特别限定。 例如, 在 M=10, N = 16的情况下, p的取值范围可以是 2~5中的任意整数。
例如, 当 p = 2时, 可以得到如下所示的多项式(a) ~ (g):
α3. α5 + α4·α6
α4·α6+ α5. αΊ
^, ~ I ~ 其后, 可以从多项式(a) ~ (g) 中确定一个目标多项式, 并令该目标 多项式等于士 Ρ, 并令剩余的其他式(即, 非目标多项式) 不等于 ±ρ, 从而 构成目标方程组, 从而, 通过求解该目标方程组, 能够确定上述 ~Ω9的具 体值, 进而, 能够确定该符号序列
另外, 在本发明实施例中, 上述目标多项式可以从多项式(a) ~ (g) 中任意选取, 本发明并未特别限定。
需要说明的是, 在本发明实施例中, 该目标多项式可以表示为 · +P + ¾+1 · +X+P +■■■ + -Χ · +2P-X, 该^)可以预先设定, 并且, ¾在符号序 列中的位置, 或者说, 在目标短训练序列中的位置, 可以与接收端设备 对接收信号进行自相关处理而得到的峰值的位置相对应(随后, 结合接收端 设备的处理, 对该对应关系进行详细说明), 从而, 能够在发送端设备中, 根据所期望的上述峰值出现的位置, 设定该 /。。
例如, 该确定目标多项式, 包括:
动增益控制 AGC的子序列 b的数量 w
Figure imgf000014_0001
具体地说, 在本发明实施例中, 由符号序列和初始短训练序列生成的目 标短训练序列可以被用于 AGC估计, 并且, 在本发明实施例中, 接收端设 备进行的 AGC估计可以在时间同步和帧起始检测之间,或者说,该 AGC估 计使用的目标短训练序列的子序列在目标短训练序列的位置可以位于用于 时间同步和帧起始检测的子序列在目标短训练序列的位置之前, 例如, 在本 发明实施例中, 设该 AGC估计的目标短训练序列的子序列的数量为 n, 贝 'J, 可以使用目标短训练序列中的子序列 a0b ~ an_,b进行该 AGC估计, 因此, 为 了确保时间同步和帧起始检测的进行, 希望上述峰值位置出现在目标短训练 序列中的子序列 αη (具体地说,是子序列 αη 所包括的发送釆样点)之后, 从而, 在本发明实施例中, 在设定 ZQ时, 可以使 ZQ≥w。 需要说明的是, 通常 情况下, 用于 AGC估计的目标短训练序列的子序列的数量可以为 4。 因此 在本发明实施例中, 优选 ZQ≥ 4。
如上所述, 不失一般性, 设 M = 10, p = 2 , /0 = 4 , 则该目标方程组可以 为:
Figure imgf000014_0002
从而, 通过求解该方程组可以求出 Ω。 ~ α9的具体值, 其中的一组解为:
Figure imgf000015_0001
从而, 可以生成符号序列 {1,1,1,-1,1,1,1,1,-1,1}, 进而, 可以获得目标训练 序^ b,b,b,-b,b,b,b,b,-b,b 可以看出, 该符号序列中的后 5个元素是前 5个 元素的重复, 因此, 在实际生成该符号序列或目标短训练序列时, 仅生成前 5个子序列, 并将该 5个子序列重复, 则可以生成该符号序列或目标短训练 序列, 能够进一步提高处理的效率。
应理解, 以上列举的符号序列或者说 Ω。~ Ω9的具体值仅为示例性说明, 本发明并未限定于此, 在求解上述目标方程组后, 能够得到多组解, 使用任 意一组解均能够达到本发明的目标, 可以任意选择使用。
另外, 以上列举的各参数的具体值仅为示例性说明, 本发明并不限定于 此, 例如, 当; ? = 3时, 各多项式可以表示为:
α^ - α + αλ· α4 + α2· α5
αλ ·α42· α5 -\-α3 ·α6
α2. α5 -\-α3·α6 -\-α4·αΊ
α3·α6 -\-α4·αΊ -\- α5. α
α4·αΊ -\- α5 ·α -\-α6·α9
对应的, 设 Μ =10, ρ 3 , /。 = 4, 则该目标方程组可以为:
Figure imgf000015_0002
在如上所述生成目标短训练序列后, 在 S140, 发送端设备可以将用于 指示该目标短训练序列的短训练序列符号承载于需要发送给接收端设备的 目标信号(具体地说, 是目标信号的物理层中)的短训练序列域字段, 并将 该目标信号发送给接收端设备。
需要说明的是, 作为示例而非限定, 在本发明实施例中, 短训练序列符 号可以是发送端设备对如上所述的目标短训练序列进行例如, 数模转换处 理、 上变频处理、 滤波处理等而生成的模拟信号的符号。
另外, 以上列举的 M、 N、 p和 ZQ的取值仅为示例性说明, 本发明并不 限定于此, 在满足使多项式 Ω,. · ai+p + αΜ · aM+p +■■■ + ai+p_x · ai+2p_x, e [0, M - 2p]成 立的条件下, 可以任意设定。
下面, 对接收端设备在接收到信号(包括如上所述生成的目标信号中的 目标段训练序列)后, 进行帧起始检测的过程进行详细说明。
具体地说, 设接收端设备接收到的信号(具体地说, 是接收到的信号的 釆样值, 可以是一个复数, 包括实部和虚部)为 r, 其中, 该信号 /"包括噪声 和来自发送端设备的目标信号, 在本发明实施例中, 如上所述确定的目标短 训练序列可以用于使接收端设备完成对目标信号的初始时间同步。
在本发明实施例中, 接收端设备可以定义如下判决变量 RW), 并根据该 R(d)进行初始时间同步。
如上所述, 在如上所述确定的接收釆样点数量表示为 时, 接收端 设备可以基于以下式 2依次对多个接收釆样点进行自相关处理而得到多个处 理值。
Figure imgf000016_0001
其中, ^ /表示进行一次自相关处理(或者说或, 自相关运算) 时使用的 起始接收釆样点, 在本发明实施例中, 该 d的起始值为 1, 其后, 每次自相 关处理时, d依次加 1, 即, 第一次相关处理时获得的处理值为第一个接收 釆样点所对应的处理值 R(l), 第二次相关处理时获得的处理值为第二个接收 釆样点所对应的处理值 ?(2), 依次类推, 直到找到峰值。
d+Np-\
其中, Vl+Np表示从接收釆样点 d开始的 2Ν · ρ个点的自相关函数。 d+Np-\
∑ lr 表示该 2N . p个点中, 前 N . p个点的能量值。
d+Np-\
∑ 1/1, 12表示该2 ;7个点中, 后 N . p个点的能量值。 在忽略噪声的情形下, 由柯西不等式可知: 当且仅当存在某个复数 , 使得对任意的 d≤ ≤d + Np_l, 都有/ =^ 成立时, 达到峰值。
在本发明 实施例中 , 由于发送端设备确定的 目 标多 项式 · + ¾+1 · ^ + ··· + · W = ±Ρ, 并使非目标多项式不等于 ±Ρ, 能够 确保存在复数 Α以及唯一正整数 /。, 其中, d =l0-N + l , 使得对任意的 6?≤ " _1都有/ = 1/ 成立。
从而, 能够确保接收端设备通过上述相关处理得到的 仅存在一个大 于预设的目标阔值 的峰值。 需要说明的是, 在本发明实施例中, 该目标阔 值 可以是接收端设备根据预先实验或仿真等方式而预先确定的。
由于在 的峰值附近, 当^≤/。^时, 随 的取值增大, 的值有上 升趋势, 并且, 当 >/。 时, 随 的取值增大, 取值有下降趋势, 因此, 在本发明实施例中可以利用该目标阔值 以及 R(d)在峰值附近先升后降性 质, 执行以下操作, 来找到峰值位置。
在本发明实施例中, 可以根据***参数(例如, 带宽、 调制与编码方案 (MCS, Modulation and Coding Scheme )、 信道模型、 数据长度、 天线数、 均衡、 频偏等)进行时延, 从而获得不同***参数下的目标阔值^ 从而, 在实际的信号接收过程中, 可以根据当前使用的***参数, 选择相对应的目 标阔值^。
以下表 1列举了***参数与目标阔值 的对应关系的一例。
表 1
Figure imgf000017_0001
接收端设备确定峰值的具体过程为:
1. 根据当前使用的***参数, 确定目标阔值。 2. 按上述式 2, 按接收釆样点的排列顺序, 依次计算各接收釆样点所对 应的 值, 直至出现 d。, 使得 RW。)> , 此时, 记录 U 0, R RW。)。
3. 令 =U1, 计算 R( )。
4.确定 与 R 的关系,如果 RW) > R ,则更新 Jmax和 R ,使 x = dx 和 ?max =R(A), 返回第 3步; 如果 R(A)<Rmax否则进行第 5步。
5. 将峰值位置 (或者说, 峰值所对应的接收釆样点)作为目标短训练 序列中的第 ZQ · N + 1个釆样点, 进而完成初始时间同步。
需要说明的是, 受噪声的影响, 在得到初始时间同步的定时点(峰值位 置所对应的接收釆样点)之后, 可适当调整, 例如, 回退预设数量(例如, 两个) 的接收釆样点, 使得定时点落在一个 OFDM符号的循环前缀的范围 内。
根据本发明实施例的方法, 仅需找到峰值位置便能够完成初始时间同 步, 而现有技术中需要完成对整个短训练序列的自相关和互相关运算才能够 得到上述平台的下降沿进而完成初始时间同步, 显然, 本发明实施例的处理 本复杂度更低。
应理解, 以上列举的接收端设备确定峰值位置的方法仅为示例性说明, 本发明并不限定于此, 例如, 也可以不适用上述目标阔值^ 而直接对计算 获得的各个接收釆样点所对应的相关处理的处理值进行比较,从而确定峰值 位置。
下面, 不失一般性, 在***带宽为 20MHz M=10 N = 6 使用目标 短训练序列中的四个子序列进行 AGC处理(即, ί0 =4 )、接收釆样点数量为 2N.p = 64的情况下, 结合仿真结果, 对本发明的传输信号方法的效果进行说 明。
在发送端: 如上述 S110至 S140所述, 上述参数条件下, 发送端设备生 成的 生成符号序 列 为 {i,u,-i,U,U,-U} 、 目 标短训 练序 歹' J 为 {b,b,b -b,b,b,b,b -b,b} , 由于发送端设备设置的 Z =4, 因此, 按照发送端设备 的设置,接收端设备进行相关处理而得到的峰值位置应当出现在目标短训练 序列中的第 4 X 16+ 1=65个点。
在接收端: 在使用以下表 2所示***参数的情况下, 通过仿真获得表 3 所示的部分接收釆样点所对应的 R(d)值。
需要说明的是, 在进行上述仿真时, 为了接近实际, 在接收端, 在目标 短训练序列之前增加了 500个噪声釆样点, 所以实际峰值出现的位置应该是 所有釆样点(包括噪声釆样点和目标短训练序列中的接收釆样点)中的第 565 个点。
表 2
Figure imgf000019_0001
表 3
Figure imgf000019_0002
接收端设备确定峰值位置的具体过程为:
1. 根据表 2所示的***参数, 确定目标阔值 为 0.6
2. 按上述式 2, 例如, 可以从第一个接收釆样点开始, 计算 RW), 直至 出现^, 使得 R( )> , 此时, 记录 d =d =562 R =RW = 0.6193
需要说明的是, 由于接收端设备是按接收釆样点的顺序进行计算, 因此 接收端设备实际上不关心 ί /的具体值,也无需获取,这里为了便于读者理解, 结合具体的仿真结果示出, 实际应用中, 只要能够确保发送端设备能够区分 每次计算的 d即可, 可以任意赋值, 以下, 对相同或相似情况省略重复说明。
3. 令 H +1 = 563, 计算 R( ) = 0.6611
4. 确定 与 Rmax的关系, 由于 RW)>Rmax, 因此更新 a oRmax, 使
=d, = 563 , =^) = 0.6611
5. 令 d2 = +1 = 564, 计算 2) = 0.8051
6. 确定 RW2)与 Rmax的关系, 由于 RW2)>Rmax, 因此更新 隱和 Rmax, 使 =d2 = 564 , Rmax =R(J2) = 0.80510 7. 令 d3 =d +1 = 565, 计算 RW3) = 0.7791
8. 确定 ^?(^)与^的关系, 由于 RW3)<Rmax, 因此确定峰值为此时的 R =0.8051
9. 将峰值位置 (或者说峰值所对应的接收釆样点)作为目标短训练序 列中的第 ZQ.N + 1 = 65个釆样点, 进而完成初始时间同步。
如上所述确定的理论定时点 (即, 目标短训练序列中的第 ZQ.N + 1 = 65个 釆样点)与真实定时点(峰值位置实际对应的釆样点, 即, 目标短训练序列 中的 64个釆样点 )偏差为 1, 较为准确。
图 3是在***带宽为 20MHz M = 10 N = 16、 使用目标短训练序列中 的四个子序列进行 AGC处理(即, ZQ = 4 )、 接收釆样点数量为 2N.p = 64的 情况下, 以及表 2所示***参数条件下,判决变量 ( 与^ /的关系的仿真图。
如图 3所示,在接收端设备对各接收釆样点进行上述相关处理而得到的 判决变量 中,仅存在一个明显的峰值,并且该峰值的实际位置(或者说, 峰值所对应的实际的接收釆样点)与根据发送端设备的设置(具体地说, 是 发送端对 ZQ的设置) 而确定的峰值的理论位置 (或者说, 峰值所对应的理论 的接收釆样点) 的偏差较小, 因此, 能够获得较好的初步时间同步效果。
图 4是在与图 3相同的条件下的均方误差与信噪比的关系的仿真图。 图 5是在与图 3相同的条件下的相对误差与信噪比的关系的仿真图。 如图 4和 图 5所示, 当信噪比值增加时, 利用本发明实施例的传输信号的方法生成的 目标短训练序列做相应的初始时间同步时, 均方误差、 相对误差变化较小, 初始时间同步时较为准确。
下面, 不失一般性, 在***带宽为 20MHz M = 12 N = 16 ZQ = 8、 接 收釆样点数量为 2N.p = 64的情况下, 结合仿真结果, 对本发明的传输信号方 法的效果进行说明。
在发送端: 如上述 S110至 S140所述, 上述参数条件下, 发送端设备生 成^;生成符号序歹 'j为 {1, 1, 1,-1, 1, 1, 1,-1, 1, 1,1,1} 、 目 标短 iJlj 东序歹']为 {b, b, b,-b,b, b, b,-b,b,b,b,b} , 由于发送端设备设置的/。 = 8, 因此, 按照发送 端设备的设置,接收端设备进行相关处理而得到的峰值位置应当出现在目标 短训练序列中的第 8 X 16 + 1=129个点。
在接收端: 在使用上述表 2所示***参数的情况下, 通过仿真获得表 4 所示的部分接收釆样点所对应的 R(d)值。 需要说明的是, 在进行上述仿真时, 为了接近实际, 在接收端, 在目标 短训练序列之前增加了 500个噪声釆样点, 所以实际峰值出现的位置应该是 所有釆样点(包括噪声釆样点和目标短训练序列中的接收釆样点)中的第 629 个点。
表 4
Figure imgf000021_0001
接收端设备确定峰值位置的具体过程为:
1. 根据表 2所示的***参数, 确定目标阔值 为 0.6
2. 按上述式 2, 例如, 可以从第一个接收釆样点开始, 计算 RW), 直至 出现^ ( =626)使得 RW。)>^,此时,记录 U = 626 R =R( ) = 0.6549 需要说明的是, 由于接收端设备是按接收釆样点的顺序进行计算, 因此 接收端设备实际上不关心 ^ /的具体值,也无需获取,这里为了便于读者理解, 结合具体的仿真结果示出, 实际应用中, 只要能够确保发送端设备能够区分 每次计算的 d即可, 可以任意赋值, 以下, 对相同或相似情况省略重复说明。
3. 令 H +1 = 627, 计算 ?( ) = 0.6856
4. 确定 与 Rmax的关系, 由于 RW)>Rmax, 因此更新 a oRmax, 使 =d, = 627和 R = Rid, ) = 0.6856
5. 令 =d +1 = 628, 计算 ?W2) = 0.8109
6. 确定 RW2)与 R 关系, 由于 RW2)>R 则更新 和^? 使 =d2 = 628和 R R(d2) = 0.8109
7. 令^ = +1 = 629, 计算 R(¾) = 0.8059
8. 确定 ^^)与^的关系, 由于 RW3)<Rmax, 因此确定峰值为此时的 R =0.8051
9. 将峰值位置 (或者说峰值所对应的接收釆样点)作为目标短训练序 列中的第 ZQ · N + 1 = 129个釆样点, 进而完成初始时间同步。
如上所述确定的理论定时点(即, 目标短训练序列中的第 ZQ.N + 1 = 129个 釆样点)与真实定时点(峰值位置实际对应的釆样点, 即, 目标短训练序列 中的 128个釆样点)偏差为 1, 较为准确。
图 6是在***带宽为 20MHz M = 12 N = 16 ZQ = 8、 接收釆样点数量 为 2N.p = 64的情况下, 以及表 2所示***参数条件下, 判决变量 ^?(^与^ /的 关系的仿真图。
如图 3所示,在接收端设备对各接收釆样点进行上述相关处理而得到的 判决变量 中, 仅存在一个明显的大于目标阔值的峰值, 并且该峰值的实 际位置(或者说, 峰值所对应的实际的接收釆样点)与根据发送端设备的设 置 (具体地说, 是发送端对 ZQ的设置) 而确定的峰值的理论位置 (或者说, 峰值所对应的理论的接收釆样点)的偏差较小, 因此, 能够获得较好的初步 时间同步效果。
图 7是在与图 6相同的条件下的均方误差与信噪比的关系的仿真图。 图 8是在与图 6相同的条件下的相对误差与信噪比的关系的仿真图。 如图 7和 图 8所示, 当信噪比值增加时, 利用本发明实施例的传输信号的方法生成的 目标短训练序列做相应的初始时间同步时, 均方误差、 相对误差变化较小, 初始时间同步时较为准确。
根据本发明实施例的传输信号的方法,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
图 9示出了从接收端设备角度描述的本发明一实施例的传输信号的方法 200的示意性流程图, 如图 9所示, 该方法 200包括:
S210, 确定接收釆样点数量;
S220, 当接收到信号时, 根据该接收釆样点数量, 基于预设规则, 对该 信号进行自相关处理, 其中, 该信号包括来自发送端设备的目标信号, 该目 标信号的短训练序列域携带有短训练序列符号, 该短训练序列符号用于指示 目标训练序列, 该目标序列是该发送端设备在生成初始短训练序列后, 根据 符号序列和该初始短训练序列生成的, 该符号序列该发送端设备根据该接收 釆样点数量生成的, 以使经该相关处理而得到的处理结果中仅出现一个大于 预设的目标阔值的峰值;
S230, 确定该峰值的位置, 并根据该峰值的位置进行针对该目标信号的 初始时间同步。
具体地说, 在 S210, 接收端设备可以确定在对接收到的信号进行相关 处理(或者说, 相关运算)时使用的接收釆样点数量, 其中, 该 "接收釆样 点数量"是指在对接收到的信号中的釆样点进行相关(包括自相关和互相关) 处理时使用的釆样点的数量, 以下, 为了便于区分, 将接收端接收到的信号 中的釆样点称为 "接收釆样点"。 并且, 随后对接收端对接收到的信号进行 相关处理的方法和过程进行详细说明。 需要说明的是, 在本发明实施例中, 为了找寻峰值, 接收端设备可能需要按照接收釆样点的接收顺序, 对接收到 的信号进行多次相关处理, 并依次得到多个接收釆样点所对应的处理值, 每 次自相关处理使用的接收釆样点数量相同。
在本发明实施例中,该接收釆样点数量的具体值可以由管理人员或供应 商等预先设置并存储在发送端和接收端中,也可以由发送端和接收端设备协 商确定, 并且, 该接收釆样点数量的具体值可以是一次性设置从而在每次传 输是均默认使用, 也可以是周期性变更, 本发明并未特别限定。
在 S220, 接收端设备可以接收信号, 该信号包括来自发送端设备的目 标信号, 下面, 对发送端设备对该目标信号的生成过程进行说明。
发送端设备当需要向接收端设备发送数据时, 需要例如, 可以基于上述 式 1生成初始短训练序列。
具体地说, 现有的通信***提供了 64个子载波, 其序号可以为 -32 至 31, 在本发明实施例中, 发送端设备在进行例如, 频域复制、 快速傅里叶逆 变换以及归一化处理时, 可以使用序号为 -26至 26的子载波(或者说, 子载 波上的釆样点 ), 并根据式 1为序号为 -26至 26的釆样点 (以下, 为了便于 区分, 称为发送釆样点)赋值, 并在序号为 -32至 -27以及 27至 31位置补 0, 从而经过上述频域复制 IFFT以及归一化处理而生成包含同一个子序列的重 复 4次的时域序列, 将该子序歹 "J记为 , 则该时域序列表示为 ( b,b,b,b ), 其 中, 一个子序列包括 16个发送釆样点。 其后, 增加一个子序列 的循环前缀 而生成包括的发送釆样点数量为一个正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing )符号长度 ( 80点) 的序列 ( b,b, b, b, b ), 由 于短训练序列除了用于同步外帧起始检测和初始时间同步外, 还用于 AGC 设置和初始频率偏移估计等, 因此可以将该序列 ( b, b,b,b,b )重复, 而生成 具有 10个子序列 的初始短训练序歹' j ( b, b, b, b,b,b,b,b,b,b )。
需要说明的是, 以上列举的初始短训练序列的生成方法仅为示例性说 明,本发明并不限定于此,例如,该初始短训练序列的包括的子序列的数量, 以及子序列包括的发送釆样点的数量可以任意变更, 本发明并未特别限定。 在以下说明中, 为了便于理解, 以初始短训练序列包括 10个子序列 , 即 M=10, 子序列 包括 16个发送釆样点, 即 N = 16为例, 进行说明。
其后,发送端设备可以确定接收端设备在对接收到的信号进行自相关处 理(或者说, 自相关运算) 时使用的接收釆样点数量。 在本发明实施例中, 该接收釆样点数量的具体值可以由管理人员或供应商等预先设置并存储在 发送端和接收端中, 也可以由发送端和接收端设备协商确定, 并且, 该接收 釆样点数量的具体值可以是一次性设置从而在每次传输是均默认使用,也可 以是周期性变更, 本发明并未特别限定。
从而, 发送端设备可以根据如上所述确定的该接收釆样点数量, 确定符 号序列, 并根据该符号序列和所生成的初始短训练序列, 生成需要承载于 L-STF字段并发送给接收端设备的目标短训练序列。
下面, 首先对该符号序列的生成方法进行说明。
可选地, 该符号序列是该发送端设备求解目标方程组而生成的, 该目标 方程组是令多项式中的目标多项式等于士 p且令该多项式中的非目标多项式 不等于 ±p而生成的, 其中, 该多项式为 ί Ω,.+Ί)Μ · ΩΜ+Ί) +〜 + Ω,.+Ί)— !, i G[0,M-2p] , 该接收釆样点数量为 2N.p, 且 4≤2ρ≤Μ, 该目标多项式为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 该非目标多项式 是该多项式中除该目标多项式以外的式。
在本发明实施例中,该符号序列可以用于确定如上所述生成的初始短训 练序列的符号, 因此, 在本发明实施例中, 该符号序列包括的元素的数量与 初始段训练序列包括的子序列的数量相同, 设接收釆样点数量为 2N.p, 则 可以确定;?的值, 进而可以根据多项式 Ω,. · ai+p + αΜ · aM+p +■■■ + ai+p_x · ai+2p_x, i G[0,M-2p]o 并且, 在本发明实施例中, p的取值可以 居所确定的接收釆 样点数量而确定, 例如, 可以上述 M和 N的取值而预先确定, 以满足 4≤2ρ≤Μ , 本发明并未特别限定。 例如, 在 M=10, N = 16的情况下, p的 取值范围可以是 2~5中的任意整数。
例如, 当 p = 2时, 可以得到上述多项式(a) ~ (g)。
其后, 发送端设备可以从多项式(a) ~ (g) 中确定一个目标多项式, 并令该目标多项式等于±7, 并令剩余的其他式 (即, 非目标多项式) 不等 于 ±p, 从而构成目标方程组, 从而, 通过求解该目标方程组, 能够确定上 述 ~¾的具体值, 进而, 能够确定该符号序列 {Ω。 另外, 在本发明实施例中, 上述目标多项式可以从多项式(a ) ~ ( g ) 中任意选取, 本发明并未特别限定。
需要说明的是, 在本发明实施例中, 该目标多项式可以表示为 · +P + ¾+1 · +X+P +■■■ + -Χ · +2P-X, 该^)可以预先设定, 并且, ¾在符号序 列中的位置, 或者说, 在目标短训练序列中的位置, 可以与接收端设备 对接收信号进行自相关处理而得到的峰值的位置相对应(随后, 结合接收端 设备的处理, 对该对应关系进行详细说明), 从而, 能够在发送端设备中, 根据所期望的上述峰值出现的位置, 设定该 /。。
可选地,该目标多项式是该发送端设备根据该目标训练序列中用于自动 增益控制 AGC的子序列 的数量 w确定的, 其中, 10 > η 。
具体地说, 由符号序列和初始短训练序列生成的目标短训练序列可以被 用于 AGC估计, 并且, 在本发明实施例中, 接收端设备进行的 AGC估计可 以在时间同步和帧起始检测之间, 或者说, 该 AGC估计使用的目标短训练 序列的子序列在目标短训练序列的位置可以位于用于时间同步和帧起始检 测的子序列在目标短训练序列的位置之前, 例如, 在本发明实施例中, 设该 AGC估计的目标短训练序列的子序列的数量为 n, 则, 可以使用目标短训练 序列中的子序列 a0b ~ an_,b进行该 AGC估计, 因此, 为了确保时间同步和帧 起始检测的进行, 希望上述峰值位置出现在目标短训练序列中的子序列 αη (具体地说, 是子序列 αη 所包括的发送釆样点)之后, 从而, 在本发明实 施例中, 在设定 ZQ时, 可以使 ZQ≥M。 需要说明的是, 通常情况下, 用于 AGC 估计的目标短训练序列的子序列的数量可以为 4。 因此在本发明实施例中, 优选 Z0≥4。
如上所述, 不失一般性, 设 M = 10, p = 2 , /0 = 4 , 则该目标方程组可以 为:
Figure imgf000025_0001
从而, 通过求解该方程组可以求出 Ω。 ~ α9的具体值, 其中的一组解为: ao = l
flj = 1
= 1
a3 = -1
a4 = 1
a5 = 1
Ω6 = 1
αΊ = 1
¾ = -!
a9 = 1
从而, 可以生成符号序列 {1,1,1,-1,1,1,1,1,-1,1}, 进而, 可以获得目标训练 序歹' j {b,b,b,-b,b,b,b,b,-b,b}。 可以看出, 该符号序列中的后 5个元素是前 5个 元素的重复, 因此, 在实际生成该符号序列或目标短训练序列时, 仅生成前 5个子序列, 并将该 5个子序列重复, 则可以生成该符号序列或目标短训练 序列, 能够进一步提高处理的效率。
应理解, 以上列举的符号序列或者说 的具体值仅为示例性说明, 本发明并未限定于此, 在求解上述目标方程组后, 能够得到多组解, 使用任 意一组解均能够达到本发明的目标, 可以任意选择使用。
另外, 以上列举的各参数的具体值仅为示例性说明, 本发明并不限定于 此, 例如, 当; ? = 3时, 各多项式可以表示为: αλ·α42· α53·α6
α3· α64·αΊ + α5. α8
ii^4 ^, ~ I ~ ~ I ~
对应的, 设 Μ =10, ρ二 3 , ZQ = 4, 则该目标方程组可以为:
Figure imgf000026_0001
在如上所述生成目标短训练序列后,发送端设备可以将用于指示该目标 短训练序列的短训练序列符号承载于需要发送给接收端设备的目标信号(具 体地说, 是目标信号的物理层中)的短训练序列域字段, 并将该目标信号发 送给接收端设备。
需要说明的是, 作为示例而非限定, 在本发明实施例中, 短训练序列符 号可以是发送端设备对如上所述的目标短训练序列进行例如, 数模转换处 理、 上变频处理、 滤波处理等而生成的模拟信号的符号。
另外, 以上列举的 M、 N、 p和 ZQ的取值仅为示例性说明, 本发明并不 限定于此, 在满足使多项式 α,. · ai+p + αΜ · aM+p +■■■ + ai+p_x · ai+2p_x, z' e [0, M _ 2p]成 立的条件下, 可以任意设定。
返回 S220, 设接收端设备接收到的信号 (具体地说, 是接收到的信号 的釆样值, 该釆样值为复数, 包括是实部和虚部)为 r, 其中, 该信号 r包括 噪声和来自发送端设备的目标信号, 在本发明实施例中, 如上所述确定的目 标短训练序列可以用于使接收端设备完成对目标信号的初始时间同步。
可选地, 该根据该釆样点数量, 基于预设规则, 对该目标信号进行自相 关处理, 包括:
根据以下公式, 对该目标信号进行自相关处理,
Figure imgf000027_0001
其中, N为该子序列 包括的发送釆样点的数量, r表示接收到的信号 的釆样值,该接收釆样点数量为 2N . p, d表示该相关处理使用的起始接收釆 样点。
具体地说,在本发明实施例中,接收端设备可以定义如下判决变量 , 并根据该 R(d)进行初始时间同步。
如上所述, 在如上所述确定的接收釆样点数量表示为 2N . p时, 接收端 设备可以基于以下式 2依次对多个接收釆样点进行自相关处理(或者说, 自 相关运算) 而得到多个处理值。
Figure imgf000027_0002
其中, ^ /表示进行一次相关处理时使用的起始接收釆样点, 在本发明实 施例中, 该 的起始值为 1, 其后, 每次相关处理时, 依次加 1, 即, 第一 次相关处理时获得的处理值为第一个接收釆样点所对应的处理值 R(l), 第二 次相关处理时获得的处理值为第二个接收釆样点所对应的处理值 R(2), 依次 类推, 直到找到峰值。
其中, t Vl+Np表示从接收釆样点 d升始的 2N-P个点的自相关函数。
∑ IrJ2表示该 2N.p个点中, 前 N.p个点的能量值。 £ 1/;,12表示该 2N.p个点中, 后 N.p个点的能量值。 在忽略噪声的情形下, 由柯西不等式可知: 当且仅当存在某个复数 , 使得对任意的 d≤ ≤d + Np_l, 都有/ =^ 成立时, RW)达到峰值。
在本发明 实施例中 , 由于发送端设备确定的 目 标多 项式 · + ¾+1 · + ··· + · ¾+2,-1 = ±Ρ, 并使非目标多项式不等于 ±Ρ, 能够 确保存在复数 Α以及唯一正整数 /。, 其中, d=l0-N + l , 使得对任意的 6? ≤ " _1都有/ = 1 成立。
从而, 能够确保接收端设备通过上述相关处理得到的 仅存在一个大 于预设的目标阔值 峰值。 需要说明的是, 在本发明实施例两种, 接收端设 备可以根据预先实验或仿真等方式, 确定该目标阔值 δ。
可选地, 该确定该峰值位置包括:
根据该目标阔值, 确定该峰值位置, 其中, 该峰值大于该目标阔值。 具体地说,由于在 的峰值附近,当^≤/。^时,随 的取值增大, R(d) 的值有上升趋势, 并且, 当^>/。 时, 随 的取值增大, 取值有下降趋 势,因此,在本发明实施例中,接收端设备可以利用该目标阔值 以及 在 峰值附近先升后降性质, 执行以下操作, 来找到峰值位置。
在本发明实施例中, 可以根据***参数(例如, 带宽、 调制与编码方案 (MCS, Modulation and Coding Scheme ), 信道模型、 数据长度、 天线数、 均衡、 频偏等)进行时延, 从而获得不同***参数下的目标阔值^ 从而, 在实际的信号接收过程中, 可以根据当前使用的***参数, 选择相对应的目 标阔值 。
上述表 1列举了***参数与目标阔值 的对应关系的一例。
接收端设备确定峰值的处理过程为:
1. 根据当前使用的***参数, 确定目标阔值。
2. 按上述式 2, 按接收釆样点的排列顺序, 依次计算各接收釆样点所对 应的 RW)值, 直至出现 d。, 使得 RW。)> , 此时, 记录 U 0, R =RW。)。
3. 令 =U1, 计算 R(A)。
4.确定 R{dx )与 R 的关系,如果 R(A ) > R ,则更新 Jmax和 R ,使 Jmax = dxΜ=^?(Α), 返回第 3步; 如果 R(A)<RQ否则进行第 5步。
从而, 在 S230, 接收端设备可以将峰值位置 (或者说, 峰值所对应的 接收釆样点)作为目标短训练序列中的第 ZQ · N + 1个釆样点, 进而完成初始时 间同步。即,该根据该峰值位置进行针对该目标信号的初始时间同步, 包括: 确定该峰值位置为该目标短训练序列中的第 ZQ · N + 1个点。
应理解, 以上列举的接收端设备根据该峰值位置进行针对该目标信号的 初始时间同步的方式仅为示例性说明, 本发明并不限定于此, 例如, 受噪声 的影响, 在得到初始时间同步的定时点(峰值位置所对应的接收釆样点)之 后, 可适当调整, 例如, 回退预设数量(例如, 两个) 的接收釆样点, 使得 定时点落在一个 OFDM符号的循环前缀的范围内。 或者说, 也可以确定该 峰值位置为该目标短训练序列中的第 + 1 + Δ个点, 其中, △可正可负, 可以根据例如, 噪声情况等预先设定。
根据本发明实施例的方法, 仅需找到峰值位置便能够完成初始时间同 步, 而现有技术中需要完成对整个短训练序列的自相关和互相关运算才能够 得到上述平台的下降沿进而完成初始时间同步, 显然, 本发明实施例的处理 本复杂度更低。
应理解, 以上列举的接收端设备确定峰值位置的方法仅为示例性说明, 本发明并不限定于此, 例如, 也可以不适用上述目标阔值^ 而直接对计算 获得的各个接收釆样点所对应的相关处理的处理值进行比较,从而确定峰值 位置。
下面, 不失一般性, 在***带宽为 20MHz M=10 N = 6 使用目标 短训练序列中的四个子序列进行 AGC处理(即, ί0=4 )、接收釆样点数量为 2N.p = 64的情况下, 结合仿真结果, 对本发明的传输信号方法的效果进行说 明。
在发送端: 如上述 S110至 S140所述, 上述参数条件下, 发送端设备生 成的 生成符号序 列 为 {1,1,1,-1,1,1,1,1,-1,1} 、 目 标短训 练序 列 为 {b,b,b -b,b,b,b,b -b,b} , 由于发送端设备设置的 Z = 4, 因此, 按照发送端设备 的设置,接收端设备进行相关处理而得到的峰值位置应当出现在目标短训练 序列中的第 4 x 16+ 1=65个点。
在接收端: 在使用上述表 2所示***参数的情况下, 通过仿真获得表 3 所示的部分接收釆样点所对应的 R(d)值。
需要说明的是, 在进行上述仿真时, 为了接近实际, 在接收端, 在目标 短训练序列之前增加了 500个噪声釆样点, 所以实际峰值出现的位置应该是 所有釆样点(包括噪声釆样点和目标短训练序列中的接收釆样点)中的第 565 个点。
接收端设备确定峰值位置的具体过程为:
1. 根据表 2所示的***参数, 确定目标阔值 为 0.6
2. 按上述式 2, 例如, 可以从第一个接收釆样点开始, 计算 RW), 直至 出现^, 使得 R(d0) > S , 此时, 记录 d =d =562 R =RW = 0.6193
需要说明的是, 由于接收端设备是按接收釆样点的顺序进行计算, 因此 接收端设备实际上不关心 ^ /的具体值,也无需获取,这里为了便于读者理解, 结合具体的仿真结果示出, 实际应用中, 只要能够确保发送端设备能够区分 每次计算的 d即可, 可以任意赋值, 以下, 对相同或相似情况省略重复说明。
3. 令 H +1 = 563, 计算 R( ) = 0.6611
4. 确定 与 Rmax的关系, 由于 RW)>Rmax, 因此更新 a oRmax, 使 = 563 R^X =R(A) = 0.6611
5. 令 d2 = +1 = 564, 计算 ?W2) = 0.8051
6. 确定 RW2)与 Rmax的关系, 由于 RW2) >Rmax, 因此更新 J Rmax, 使
=d2 = 564 , Rmax =R(J2) = 0.80510
7. 令 d3 =d +1 = 565, 计算 ?(¾) = 0.7791
8. 确定 ^^)与^的关系, 由于 RW3)<Rmax, 因此确定峰值为此时的 R =0.8051
从而, 可以将峰值位置(或者说峰值所对应的接收釆样点)作为目标短 训练序列中的第 ZQ · N + 1 = 65个釆样点, 进而完成初始时间同步。
如上所述确定的理论定时点 (即, 目标短训练序列中的第 ZQ.N + 1 = 65个 釆样点)与真实定时点(峰值位置实际对应的釆样点, 即, 目标短训练序列 中的 64个釆样点 )偏差为 1, 较为准确。
图 3是在***带宽为 20MHz M = 10 N = 16、 使用目标短训练序列中 的四个子序列进行 AGC处理(即, ZQ = 4 )、 接收釆样点数量为 2N.p = 64的 情况下, 以及表 2所示***参数条件下,判决变量 ^ 与^ /的关系的仿真图。 如图 3所示,在接收端设备对各接收釆样点进行上述相关处理而得到的 判决变量 中,仅存在一个明显的峰值,并且该峰值的实际位置(或者说, 峰值所对应的实际的接收釆样点)与根据发送端设备的设置(具体地说, 是 发送端对 ZQ的设置) 而确定的峰值的理论位置 (或者说, 峰值所对应的理论 的接收釆样点) 的偏差较小, 因此, 能够获得较好的初步时间同步效果。
图 4是在与图 3相同的条件下的均方误差与信噪比的关系的仿真图。 图
5是在与图 3相同的条件下的相对误差与信噪比的关系的仿真图。 如图 4和 图 5所示, 当信噪比值增加时, 利用本发明实施例的传输信号的方法生成的 目标短训练序列做相应的初始时间同步时, 均方误差、 相对误差变化较小, 初始时间同步时较为准确。
下面, 不失一般性, 在***带宽为 20MHz M = 12 N = 16 ZQ = 8、 接 收釆样点数量为 2N . p = 64的情况下, 结合仿真结果, 对本发明的传输信号方 法的效果进行说明。
在发送端: 如上述 S110至 S140所述, 上述参数条件下, 发送端设备生 成^;生成符号序歹 'j为 {1, 1, 1, - 1, 1, 1, 1, - 1, 1, 1, 1, 1} 、 目 标短 1| 东序歹']为 {b, b, b, - b, b, b, b, - b, b, b, b, b} , 由于发送端设备设置的/。 = 8, 因此, 按照发送 端设备的设置,接收端设备进行相关处理而得到的峰值位置应当出现在目标 短训练序列中的第 8 X 16 + 1=129个点。
在接收端: 在使用上述表 2所示***参数的情况下, 通过仿真获得表 4 所示的部分接收釆样点所对应的 R(d)值。
需要说明的是, 在进行上述仿真时, 为了接近实际, 在接收端, 在目标 短训练序列之前增加了 500个噪声釆样点, 所以实际峰值出现的位置应该是 所有釆样点(包括噪声釆样点和目标短训练序列中的接收釆样点)中的第 629 个点。
接收端设备确定峰值位置的具体过程为
1. 根据表 2所示的***参数, 确定目标阔值 为 0.6
2. 按上述式 2, 例如, 可以从第一个接收釆样点开始, 计算 RW), 直至 出现^ ( =626 )使得 RW。)> ^,此时,记录 U = 626 R = R( ) = 0.6549 需要说明的是, 由于接收端设备是按接收釆样点的顺序进行计算, 因此 接收端设备实际上不关心 ^ /的具体值,也无需获取,这里为了便于读者理解, 结合具体的仿真结果示出, 实际应用中, 只要能够确保发送端设备能够区分 每次计算的 d即可, 可以任意赋值, 以下, 对相同或相似情况省略重复说明。
3. 令 Κ χ +1 = 627, 计算 ?( ) = 0.6856
4. 确定 与 Rmax的关系, 由于 RW)>Rmax, 因此更新 a oRmax, 使 =d, = 627和 R = Rid, ) = 0.6856
5. 令 d2 = ax+l = 628, 计算 R(¾) = 0.8109
6. 确定 RW2)与 R 关系, 由于 RW2)>R 则更新 和^? 使 =d2 = 628和 R R(d2) = 0.8109
7. 令^= +1 = 629, 计算 ?(¾) = 0.8059
8. 确定 ^^)与^的关系, 由于 RW3)<Rmax, 因此确定峰值为此时的
R =0.8051
从而, 将峰值位置(或者说峰值所对应的接收釆样点)作为目标短训练 序列中的第 ZQ · N + 1 = 129个釆样点, 进而完成初始时间同步。
如上所述确定的理论定时点(即, 目标短训练序列中的第 ZQ.N + 1 = 129个 釆样点)与真实定时点(峰值位置实际对应的釆样点, 即, 目标短训练序列 中的 128个釆样点)偏差为 1, 较为准确。
图 6是在***带宽为 20MHz M = 12 N = 16 ZQ = 8、 接收釆样点数量 为 2N.p = 64的情况下, 以及表 2所示***参数条件下, 判决变量 ^与^ /的 关系的仿真图。
如图 3所示,在接收端设备对各接收釆样点进行上述相关处理而得到的 判决变量 中,仅存在一个明显的峰值,并且该峰值的实际位置(或者说, 峰值所对应的实际的接收釆样点)与根据发送端设备的设置(具体地说, 是 发送端对 ZQ的设置) 而确定的峰值的理论位置 (或者说, 峰值所对应的理论 的接收釆样点) 的偏差较小, 因此, 能够获得较好的初步时间同步效果。
图 7是在与图 6相同的条件下的均方误差与信噪比的关系的仿真图。 图
8是在与图 6相同的条件下的相对误差与信噪比的关系的仿真图。 如图 7和 图 8所示, 当信噪比值增加时, 利用本发明实施例的传输信号的方法生成的 目标短训练序列做相应的初始时间同步时, 均方误差、 相对误差变化较小, 初始时间同步时较为准确。
根据本发明实施例的传输信号的方法,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
以上, 结合图 1至图 9详细说明了本发明实施例的传输信号的方法, 下 面, 结合图 10和图 11, 详细说明本发明实施例的传输信号的装置。
图 10示出了本发明实施例的传输信号的装置 300, 如图 10所示, 该装 置 300包括:
初始短训练序列生成单元 310, 用于生成初始短训练序列, 该初始短训 练序列包括 M个子序列 b, 该子序列 b包括 N个发送釆样点;
确定单元 320, 用于确定接收端设备进行自相关处理时使用的接收釆样 点数量;
目标短训练序列生成单元 330, 用于根据该接收釆样点数量, 生成符号 序列, 该符号序列表示为 {Ω。 并才艮据该符号序列和该初始短 训练序歹 "J , 生成目 标短训练序歹 "J , 该 目 标短训练序列表示为 {a0b,a,b,...,aib,...,aK_,b}, 以使该接收端设备在根据预设规则对该目标短训练序 列进行相关处理而得到的处理结果中仅出现一个大于预设的目标阔值的峰 值;
发送单元, 用于向该接收端设备发送目标信号, 其中, 在该目标信号的 短训练序列域携带有短训练序列符号, 该短训练序列符号用于指示该目标训 练序列。
可选地, 该目标短训练序列生成单元 330具体用于根据该接收釆样点数 量, 确定多项式 ^ +^^+^+…+ ^^^+^, i G[0,M-2P] , 其中, 该接 收釆样点数量为 , 且 4≤2p≤M ;
确定目标多项式 · alo+p + ¾+1 · alo+ p +… + ala+p_x · akw, 其中, ZQ为预设整 数;
令该目标多项式等于士; ^, 令非目标多项式不等于 ±p, 以生成目标方程 组, 该非目标多项式是该多项式中除该目标多项式以外的式;
求解该目标方程组, 以生成符号序列。
可选地, 该目标短训练序列生成单元 330具体用于根据该目标训练序列 中用于自动增益控制 AGC的子序列 的数量 w,确定该目标多项式,以满足: 可选地, = 10 , p = 2 , /0 = 4 , 以及该目标方程组为:
Figure imgf000034_0001
可选地, 该符号序歹' J为 {1,U - 1,UU - U}, 以及, 该目标训练序列为 {b, b, b, -b, b, b, b, b, -b, b}。
根据本发明实施例的传输数据的装置 300可对应于本发明实施例的方法 中的发送端设备, 并且, 该传输数据的装置 300中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 2中的方法 100的相应流程,为了简洁,在 此不再赘述。
根据本发明实施例的传输信号的装置,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
图 11示出了本发明实施例的传输信号的装置 400, 如图 11所示, 该装 置 400包括:
确定单元 410, 用于确定接收釆样点数量;
接收单元 420, 用于接收信号;
自相关处理单元 430, 用于根据该接收釆样点数量, 基于预设规则, 对 该信号进行自相关处理, 其中, 该信号包括来自发送端设备的目标信号, 该 目标信号的短训练序列域携带有短训练序列符号, 该短训练序列符号用于指 示目标训练序列, 该目标序列是该发送端设备在生成初始短训练序列后, 根 据符号序列和该初始短训练序列生成的, 该符号序列该发送端设备根据该接 收釆样点数量生成的, 以使经该自相关处理而得到的处理结果中仅出现一个 大于预设的目标阔值的峰值;
该确定单元 410还用于确定该峰值的位置, 并根据该峰值的位置进行针 对该目标信号的初始时间同步。 可选地, 该自相关处理单元 430具体用于根据以下公式, 对该目标信号 进行自相关处理,
Figure imgf000035_0001
其中, N为该子序列 包括的发送釆样点的数量, 表示接收到的信号 值,该接收釆样点数量为 2N.p, d表示该相关处理使用的起始接收釆 可选地, 该确定单元 410具体用于根据预设的目标阔值, 确定该峰值位 置。
可选地, 该符号序列是该发送端设备求解目标方程组而生成的, 该目标 方程组是令多项式中的目标多项式等于 ±ρ且令该多项式中的非目标多项式 不等于 ±ρ而生成的, 其中, 该多项式为 Ω, · αι+ρ + αι+ι · αι+ι+ρ +■■■ + αι+ρ_ · αι+2ρ_ , iG[0,M-2p] , 该接收釆样点数量为 2N.p, 且 4≤2ρ≤Μ, 该目标多项式为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 该非目标多项式 是该多项式中除该目标多项式以外的式。
可选地, 该目标多项式是该发送端设备根据该目标训练序列中用于自动 增益控制 AGC的子序列 的数量 w确定的, 其中, 10>η。
可选地, =10, p = 2 , /0 = 4 , 以及该目标方程组为:
a2 + αλ a3 ≠±2
~ 1 ~ a4 ≠±2
a4 +a3 - a ≠±2
< α3 a + a4 ≠±2。
α4 a6 + a αΊ =±2
Figure imgf000035_0002
~
L a 6, ~ 1 ^, a9 ≠±2
可选地, 该符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以及, 该目标训练序列为 {b, b, b, -b, b, b, b, b, -b, b)。
可选地,该确定单元 410具体用于确定该峰值的位置为该短训练序列中 的第 + 1个点。
根据本发明实施例的传输数据的装置 400可对应于本发明实施例的方法 中的接收端设备, 并且, 该传输数据的装置 400中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 9中的方法 200的相应流程,为了简洁,在 此不再赘述。
根据本发明实施例的传输信号的装置,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
以上, 结合图 1至图 9详细说明了本发明实施例的传输信号的方法, 下 面, 结合图 12和图 13, 详细说明本发明实施例的传输信号的设备。
图 12示出了本发明实施例的传输信号的设备 500, 如图 12所示, 该设 备 500包括:
总线 510;
与所述总线 510相连的处理器 520;
与所述总线 510相连的存储器 530;
与所述总线 510相连的发射机 540;
其中, 该处理器 520通过所述总线 510, 调用所述存储器 530中存储的 程序, 以用于生成初始短训练序列, 该初始短训练序列包括 M个子序列 b, 该子序列 b包括 N个发送釆样点;
确定接收端设备进行相关处理时使用的接收釆样点数量;
根据该接收釆样点数量, 生成符号序列, 该符号序列表示为
{a0,a„. . . , ai, . . . , aK_, } , 并才艮据该符号序列和该初始短训练序列, 生成目标短训 练序列, 该目标短训练序列表示为
Figure imgf000036_0001
, 以使该接收端设备 在根据预设规则对该目标短训练序列进行自相关处理而得到的处理结果中 仅出现一个大于预设的目标阔值的峰值;
控制该发射机 540向该接收端设备发送目标信号, 其中, 在该目标信号 的短训练序列域字段携带有短训练序列符号, 该短训练序列符号用于指示该 目标训练序列。
可选地, 该处理器 520具体用于根据该接收釆样点数量, 确定多项式
Figure imgf000036_0002
i [ ,M - 2p] , 其中, 该接收釆样点数量为 2N ' p , 且 4≤2p≤M ;
确定目标多项式 α1ο · alo+p + alo+1 · a^+p +… + · alaW, 其中, ZQ为预设整 数;
令该目标多项式等于士; ^, 令非目标多项式不等于 ±p, 以生成目标方程 组, 该非目标多项式是该多项式中除该目标多项式以外的式;
求解该目标方程组, 以生成符号序列。
可选地, 该处理器 520具体用于根据该目标训练序列中用于自动增益控 制 AGC的子序列 b的数量 n, 确定该目标多项式, 以满足: l0≥n 。
可选地, = 10 , p = 2 , /0 = 4 , 以及该目标方程组为:
Figure imgf000037_0001
可选地, 该符号序歹' J为 {1,U - 1,UU - U}, 以及, 该目标训练序列为 、b,b,b,—b, b, b,b,b,—b, b、。
在本发明实施例中,处理单器还可以称为 CPU。存储器可以包括只读存 储器和随机存取存储器, 并向处理器提供指令和信号。 存储器的一部分还可 以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 传输信号的设 备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传 输信号的设备的各个模块通过总线***耦合在一起, 其中, 总线***除包括 信号总线之外, 还包括电源总线、 控制总线和状态信号总线。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件 处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完成。 软 件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电 可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于 存储器, 解码单元或者处理单元读取存储器中的信息, 结合其硬件完成上述 方法的步骤。
应理解, 在本发明实施例中, 该处理器可以是中央处理单元 (Central
Processing Unit, 简称为 "CPU" ), 该处理器还可以是其他通用处理器、 数 字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑 电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法 的步骤。 为避免重复, 这里不再详细描述。
根据本发明实施例的传输信号的设备 500可对应于本发明实施例的方法 中的发送端设备, 并且, 该传输信号的设备 500中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 2中的方法 100的相应流程,为了简洁,在 此不再赘述。
根据本发明实施例的传输信号的设备,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
图 13示出了本发明实施例的传输信号的设备 600, 如图 13所示, 该设 备 600包括:
总线 610;
与所述总线 610相连的处理器 620;
与所述总线 610相连的存储器 630;
与所述总线 610相连的接收机 640;
其中, 该处理器 620通过所述总线 610, 调用所述存储器 630中存储的 程序, 以用于确定接收釆样点数量;
当该接收机 640接收到信号时,根据该接收釆样点数量,基于预设规则, 对该信号进行自相关处理, 其中, 该信号包括来自发送端设备的目标信号, 该目标信号的短训练序列域携带有短训练序列符号, 该短训练序列符号用于 指示目标训练序列, 该目标序列是该发送端设备在生成初始短训练序列后, 根据符号序列和该初始短训练序列生成的, 该符号序列该发送端设备根据该 接收釆样点数量生成的, 以使经该自相关处理而得到的处理结果中仅出现一 个大于预设的目标阔值的峰值;
确定该峰值的位置, 并根据该峰值的位置进行针对该目标信号的初始时 间同步。
可选地, 该处理器 620具体用于根据以下公式, 对该目标信号进行相关 处理,
Figure imgf000039_0001
其中, N为该子序列 包括的发送釆样点的数量, 表示接收到的信号 值,该接收釆样点数量为 2N.p, d表示该相关处理使用的起始接收釆 可选地,该处理器 620具体用于根据预设的目标阔值,确定该峰值位置, 其中, 该峰值大于该目标阔值。
可选地, 该符号序列是该发送端设备求解目标方程组而生成的, 该目标 方程组是令多项式中的目标多项式等于 ±ρ且令该多项式中的非目标多项式 不等于 ±ρ而生成的, 其中, 该多项式为 Ω,. · ai+p + αΜ · aM+p +■■■ + ai+p_x · ai+2p_x, iG[0,M-2p] , 该接收釆样点数量为 2N.p, 且 4≤2ρ≤Μ, 该目标多项式为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 该非目标多项式 是该多项式中除该目标多项式以外的式。
可选地, 该目标多项式是该发送端设备根据该目标训练序列中用于自动 增益控制 AGC的子序列 的数量 w确定的, 其中, 10>η。
可选地, =10, p = 2 , /0 = 4 , 以及该目标方程组为:
a2 + αλ a3 ≠±2
~ 1 ~ a4 ≠±2
a4 +a3 - a ≠±2
< α3 a + a4 ≠±2。
α4 a6 + a αΊ =±2
Figure imgf000039_0002
L a 6, ~ 1 ~^, a9 ≠±2
可选地, 该符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以及, 该目标训练序列为 {b, b, b, -b, b, b, b, b, -b, b)。
可选地, 该处理器 620具体用于确定该峰值的位置为该目标短训练序列 中的第 ZQ . N + 1个点。
在本发明实施例中,处理单器还可以称为 CPU。存储器可以包括只读存 储器和随机存取存储器, 并向处理器提供指令和信号。 存储器的一部分还可 以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 传输信号的设 备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传 输信号的设备的各个模块通过总线***耦合在一起, 其中, 总线***除包括 信号总线之外, 还包括电源总线、 控制总线和状态信号总线。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件 处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完成。 软 件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电 可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于 存储器, 解码单元或者处理单元读取存储器中的信息, 结合其硬件完成上述 方法的步骤。
应理解, 在本发明实施例中, 该处理器可以是中央处理单元 (Central Processing Unit, 简称为 "CPU" ), 该处理器还可以是其他通用处理器、 数 字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑 电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法 的步骤。 为避免重复, 这里不再详细描述。
根据本发明实施例的传输信号的设备 600可对应于本发明实施例的方法 中的接收端设备, 并且, 该传输信号的设备 600中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 9中的方法 200的相应流程,为了简洁,在 此不再赘述。
根据本发明实施例的传输信号的设备,通过根据接收端设备进行相关处 理时使用的接收釆样点数量确定需要发送给接收端设备的目标短训练序列, 使接收端设备在根据预设规则对该目标短训练序列进行相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值, 从而, 接收端设备能够 根据该峰值的位置进行初始时间同步, 能够实现快速的初始时间同步。
应理解, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 可以表示: 单独存在 , 同时存 在 和^ 单独存在 B这三种情况。 另外, 本文中字符 "/", 一般表示前后 关联对象是一种 "或" 的关系。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种传输信号的方法, 其特征在于, 所述方法包括:
发送端设备生成初始短训练序列,所述初始短训练序列包括 M个子序列 b , 每个所述子序列 包括 N个发送釆样点;
确定接收端设备进行自相关处理时使用的接收釆样点数量;
根据所述接收釆样点数量, 生成符号序列, 所述符号序列表示为 ,Ωι,...,Ω,,..., — J, 并根据所述符号序列和所述初始短训练序列, 生成目标 短训练序列, 所述目标短训练序列表示为 { b, axb, ... , αρ, ... , aK_xb\, 以使所述接 收端设备在根据预设规则对所述目标短训练序列进行自相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值;
向所述接收端设备发送目标信号, 其中, 在所述目标信号的短训练序列 域字段携带有短训练序列符号, 所述短训练序列符号用于指示所述目标短训 练序列。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述根据所述接收釆样 点数量, 生成符号序列, 包括:
根据所述接收釆样点数量, 确定多项式 +aM.a,+ p +■→αι+ρ_ίι+2ρ_ί, i G[0,M-2p] , 其中, 所述接收釆样点数量为 , 且 4≤2p≤M ;
确定目标多项式 · alo+p + ¾+1 · alo+ p +… + ala+p_x · akw, 其中, ZQ为预设整 数;
令所述目标多项式等于 ±ρ, 令非目标多项式不等于 ±ρ, 以生成目标方 程组, 所述非目标多项式是所述多项式中除所述目标多项式以外的式;
求解所述目标方程组, 以生成符号序列。
3、 根据权利要求 2所述的方法, 其特征在于, 所述确定目标多项式, 包括:
根据所述目标训练序列中用于自动增益控制 AGC的子序列 b的数量 w, 确定所述目标多项式, 以满足: l0≥n。
4、根据权利要求 2或 3所述的方法,其特征在于, M =10, p = 2 , l0 =4 , 以及所述目标方程组为:
Figure imgf000044_0001
5、 根据权利要求 4所述的方法, 所述符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以 及, 所述目标训练序列为 {b,b,b,-b,b,b,b,b,-b,b}。
6、 一种传输信号的方法, 其特征在于, 所述方法包括:
确定接收釆样点数量;
当接收到信号时, 根据所述接收釆样点数量, 基于预设规则, 对所述信 号进行自相关处理, 其中, 所述信号包括来自发送端设备的目标信号, 所述 目标信号的短训练序列域携带有短训练序列符号, 所述短训练序列符号用于 后, 根据符号序列和所述初始短训练序列生成的, 所述符号序列所述发送端 设备根据所述接收釆样点数量生成的, 以使经所述自相关处理而得到的处理 结果中仅出现一个大于预设的目标阔值的峰值;
确定所述峰值的位置, 并根据所述峰值的位置进行针对所述目标信号的 初始时间同步。
7、 根据权利要求 6所述的方法, 其特征在于, 所述根据所述釆样点数 量, 基于预设规则, 对所述目标信号进行自相关处理, 包括:
根据以下公式, 对所述目标信号进行自相关处理,
Figure imgf000044_0002
其中, N为所述子序列 包括的发送釆样点的数量, r表示接收到的信 号的釆样值, 所述接收釆样点数量为 2N.p, ί /表示所述自相关处理使用的起 始接收釆样点。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述确定所述峰值 位置包括:
根据所述目标阔值, 确定所述峰值位置。
9、 根据权利要求 6至 8中任一项所述的方法, 其特征在于, 所述符号 序列是所述发送端设备求解目标方程组而生成的, 所述目标方程组是令多项 式中的目标多项式等于 ±p且令所述多项式中的非目标多项式不等于 ±p而生 成的, 其中, 所述多项式为 ^^+^^ +…+ ^^^+^, i G[ ,M-2P] , 所述接收釆样点数量为 2N.p, 且 4≤2p≤M , 所述目 标多项式为 alo -alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 所述非目标多项 式是所述多项式中除所述目标多项式以外的式。
10、 根据权利要求 9所述的方法, 其特征在于, 所述目标多项式是所述 发送端设备根据所述目标训练序列中用于自动增益控制 AGC 的子序列 的 数量 w确定的, 其中, 10>η。
11、根据权利要求 9或 10所述的方法,其特征在于, M =10, p = 2 , 10 = 4 , 以及所述目标方程组为:
Figure imgf000045_0001
12、 根据权利要求 11所述的方法, 所述符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以及, 所述目标训练序列为 {b,b,b,-b,b,b,b,b,-b,b}。
13、 根据权利要求 9至 12中任一项所述的方法, 其特征在于, 所述根 据所述峰值的位置进行针对所述目标信号的初始时间同步, 包括:
确定所述峰值的位置为所述目标短训练序列中的第 ZQ · N + 1个点。
14、 一种传输信号的装置, 其特征在于, 所述装置包括:
初始短训练序列生成单元, 用于生成初始短训练序列, 所述初始短训练 序列包括 M个子序列 b, 每个所述子序列 b包括 N个发送釆样点;
确定单元,用于确定接收端设备进行自相关处理时使用的接收釆样点数 量;
目标短训练序列生成单元, 用于根据所述接收釆样点数量, 生成符号序 歹 ij, 所述符号序列表示为 ,^...,^...,^—^ , 并根据所述符号序列和所述初 始短训练序列, 生成目标短训练序列, 所述目标短训练序列表示为 {α^,α^,...,α^...,ακ_^}, 以使所述接收端设备在根据预设规则对所述目标短训 练序列进行自相关处理而得到的处理结果中仅出现一个大于预设的目标阔 值的峰值;
发送单元, 用于向所述接收端设备发送目标信号, 其中, 在所述目标信 号的短训练序列域携带有短训练序列符号, 所述短训练序列符号用于指示所 述目标训练序列。
15、 根据权利要求 14所述的装置, 其特征在于, 所述目标短训练序列 生成单元具体用 于根据所述接收釆样点数量, 确定多 项式 a ai+p+aM-aM+p+- + ai+p_x-aiW , ϊ [0,Μ~2ρ] , 其中, 所述接收釆样点数量 为 2Ν■ ρ , 且 4≤2ρ≤Μ ;
确定目标多项式 · alo+p + alo+1 · α^ +… + · alaW, 其中, ZQ为预设整 数;
令所述目标多项式等于 ±ρ, 令非目标多项式不等于 ±ρ, 以生成目标方 程组, 所述非目标多项式是所述多项式中除所述目标多项式以外的式;
求解所述目标方程组, 以生成符号序列。
16、 根据权利要求 15所述的装置, 其特征在于, 所述目标短训练序列 生成单元具体用于根据所述目标训练序列中用于自动增益控制 AGC的子序 列 的数量", 确定所述目标多项式, 以满足: l0≥n。
17、 根据权利要求 15或 16所述的装置, 其特征在于, Μ =10, ρ = 2 , /0 = 4 , 以及所述目标方程组为:
Figure imgf000046_0001
18、 根据权利要求 17所述的装置, 所述符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以及, 所述目标训练序列为 {b,b,b,-b,b,b,b,b,-b,b}。
19、 一种传输信号的装置, 其特征在于, 所述装置包括:
确定单元, 用于确定接收釆样点数量;
接收单元, 用于接收信号; 自相关处理单元, 用于根据所述接收釆样点数量, 基于预设规则, 对所 述信号进行自相关处理, 其中, 所述信号包括来自发送端设备的目标信号, 所述目标信号的短训练序列域携带有短训练序列符号, 所述短训练序列符号 用于指示目标训练序列,
Figure imgf000047_0001
序列后, 才艮据符号序列和所述初始短训练序列生成的, 所述符号序列所述发 送端设备根据所述接收釆样点数量生成的, 以使经所述自相关处理而得到的 处理结果中仅出现一个大于预设的目标阔值的峰值;
所述确定单元还用于确定所述峰值的位置, 并根据所述峰值的位置进行 针对所述目标信号的初始时间同步。
20、 根据权利要求 19所述的装置, 其特征在于, 所述自相关处理单元 具体用于根据以下公式, 对所述目标信号进行自相关处理,
Figure imgf000047_0002
其中, N为所述子序列 包括的发送釆样点的数量, /"表示接收到的信 号的釆样值, 所述接收釆样点数量为 2N.p, ^ /表示所述自相关处理使用的起 始接收釆样点。
21、 根据权利要求 19或 20所述的装置, 其特征在于, 所述确定单元具 体用于根据所述目标阔值, 确定所述峰值的位置。
22、 根据权利要求 19至 21中任一项所述的装置, 其特征在于, 所述符 号序列是所述发送端设备求解目标方程组而生成的, 所述目标方程组是令多 项式中的目标多项式等于 ±ρ且令所述多项式中的非目标多项式不等于 ±ρ而 生成的, 其中, 所述多项式为 Ω, ·Ω,+ί) +Ω,+1 · +— + 2^, i G[ ,M-2P], 所述接收釆样点数量为 2N.p, 且 4≤2p≤M , 所述目 标多项式为 alo-alo+p+alo+1.alo+ p + - + alo+p_1.alo+2p_1 , 其中, ZQ为预设整数, 所述非目标多项 式是所述多项式中除所述目标多项式以外的式。
23、 根据权利要求 22所述的装置, 其特征在于, 所述目标多项式是所 述发送端设备根据所述目标训练序列中用于自动增益控制 AGC 的子序列 的数量 "确定的, 其中, 10>η。
24、 根据权利要求 22或 23所述的装置, 其特征在于, M=10, p二 2, L = 4 , 以及所述目标方程组为:
Figure imgf000048_0001
25、 根据权利要求 24所述的装置, 所述符号序列为 {1,1,1,-1,1,1,1,1,-1,1}, 以及, 所述目标训练序列为 {b,b,b,-b,b,b,b,b,-b,b}。
26、 根据权利要求 22至 25中任一项所述的装置, 其特征在于, 所述确 定单元具体用于确定所述峰值的位置为所述目标短训练序列中的第 /。 . N + 1 小占
PCT/CN2014/074632 2014-04-02 2014-04-02 传输信号的方法和装置 WO2015149301A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480077528.7A CN106465308B (zh) 2014-04-02 2014-04-02 传输信号的方法和装置
EP14888189.9A EP3116271B1 (en) 2014-04-02 2014-04-02 Signal transmission method and apparatus
PCT/CN2014/074632 WO2015149301A1 (zh) 2014-04-02 2014-04-02 传输信号的方法和装置
US15/280,016 US10187242B2 (en) 2014-04-02 2016-09-29 Signal transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074632 WO2015149301A1 (zh) 2014-04-02 2014-04-02 传输信号的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/280,016 Continuation US10187242B2 (en) 2014-04-02 2016-09-29 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2015149301A1 true WO2015149301A1 (zh) 2015-10-08

Family

ID=54239282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074632 WO2015149301A1 (zh) 2014-04-02 2014-04-02 传输信号的方法和装置

Country Status (4)

Country Link
US (1) US10187242B2 (zh)
EP (1) EP3116271B1 (zh)
CN (1) CN106465308B (zh)
WO (1) WO2015149301A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511206A (zh) * 2016-06-30 2021-03-16 华为技术有限公司 一种波束训练序列设计方法及装置
CN113328825A (zh) * 2017-11-10 2021-08-31 中兴通讯股份有限公司 短序列信号的分组和使用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109086467B (zh) * 2017-06-14 2023-05-02 上海复旦微电子集团股份有限公司 可编程逻辑器件的i/o单元布局方法及装置、介质及设备
CN108881082B (zh) * 2018-06-26 2019-09-24 中国人民解放军国防科技大学 信噪比确定方法及装置、信道均衡方法及装置
CN110691052B (zh) * 2018-07-06 2021-11-23 扬智科技股份有限公司 符号同步方法与信号接收电路
CN112615803B (zh) * 2020-12-29 2022-12-16 深圳捷扬微电子有限公司 一种信号处理方法及处理装置
CN114448475A (zh) * 2022-01-06 2022-05-06 浙江科睿微电子技术有限公司 一种用于wlan***的噪声能量确定方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347926A (zh) * 2011-09-26 2012-02-08 豪威科技(上海)有限公司 载波频率捕获方法及装置
CN102939724A (zh) * 2010-02-03 2013-02-20 阿纳大学 同步数据分组的无线传输的方法和***
US20130064124A1 (en) * 2008-11-11 2013-03-14 Qualcomm Incorporated Weak signal detection in wireless communication systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422278B (en) * 2002-12-03 2007-04-04 Synad Technologies Ltd Method and device for synchronisation in OFDM
JP4636162B2 (ja) * 2008-10-10 2011-02-23 ソニー株式会社 無線通信装置及び無線通信方法
CN101714965B (zh) * 2009-07-10 2012-04-18 北京新岸线无线技术有限公司 符号定时方法/装置、细频偏估计方法/装置
US20110013575A1 (en) * 2009-07-16 2011-01-20 Yen-Chin Liao Method of generating preamble sequence for wireless local area network system and device thereof
CN102025671B (zh) * 2009-09-09 2014-09-17 中国科学院微电子研究所 时间粗同步和频率精同步的时域联合估计方法
US8699635B2 (en) * 2009-11-12 2014-04-15 Cambridge Silicon Radio Limited Frame boundary detection
US8879472B2 (en) * 2011-04-24 2014-11-04 Broadcom Corporation Long training field (LTF) for use within single user, multiple user, multiple access, and/or MIMO wireless communications
ITTO20110731A1 (it) * 2011-08-05 2013-02-06 Inst Rundfunktechnik Gmbh Digitale umschaltsignalsequenz fuer umschaltzwecke, geraet zum unterbringen dieser digitalen umschaltsignalsequenz in einem digitalen audio-nutzsignal, und geraet zum empfangen des nutzsignals versehen mit der umschaltsignalsequenz.
KR101656083B1 (ko) * 2011-09-15 2016-09-09 한국전자통신연구원 근거리 무선 통신 시스템에서의 수신 동기 획득 방법 및 그 장치
US8837644B2 (en) * 2012-06-29 2014-09-16 Blackberry Limited Method and apparatus of cross-correlation with application to channel estimation and detection
CN103298100B (zh) * 2013-06-19 2016-02-03 东南大学 用于ofdm-wlan***的定时同步方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064124A1 (en) * 2008-11-11 2013-03-14 Qualcomm Incorporated Weak signal detection in wireless communication systems
CN102939724A (zh) * 2010-02-03 2013-02-20 阿纳大学 同步数据分组的无线传输的方法和***
CN102347926A (zh) * 2011-09-26 2012-02-08 豪威科技(上海)有限公司 载波频率捕获方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511206A (zh) * 2016-06-30 2021-03-16 华为技术有限公司 一种波束训练序列设计方法及装置
CN112511206B (zh) * 2016-06-30 2022-07-12 华为技术有限公司 一种波束训练序列设计方法及装置
CN113328825A (zh) * 2017-11-10 2021-08-31 中兴通讯股份有限公司 短序列信号的分组和使用
CN113328825B (zh) * 2017-11-10 2022-08-16 中兴通讯股份有限公司 短序列信号的分组和使用
US11469847B2 (en) 2017-11-10 2022-10-11 Zte Corporation Grouping and use of short sequence signals
US11533120B2 (en) 2017-11-10 2022-12-20 Zte Corporation Grouping and use of short sequence signals
US11621810B2 (en) 2017-11-10 2023-04-04 Zte Corporation Grouping and use of short sequence signals
US11641256B2 (en) 2017-11-10 2023-05-02 Zte Corporation Grouping and use of short sequence signals

Also Published As

Publication number Publication date
US10187242B2 (en) 2019-01-22
US20170019287A1 (en) 2017-01-19
EP3116271A4 (en) 2017-06-07
EP3116271A1 (en) 2017-01-11
CN106465308B (zh) 2019-12-17
CN106465308A (zh) 2017-02-22
EP3116271B1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2015149301A1 (zh) 传输信号的方法和装置
EP3343856B1 (en) Method and apparatus for transmitting synchronization signal
US10425203B2 (en) Data transmission method and apparatus
RU2669585C1 (ru) Способ и устройство передачи данных
US9882754B2 (en) Data transmission method and apparatus
JP2018510551A (ja) Stfを用いたwlanパケットの自動検出システム及び方法
JP2016536910A (ja) 屋外wlanのための拡張ガードインターバル
CN116318583B (zh) 一种信令字段指示方法及装置
US10735237B2 (en) Apparatus and method for generating and detecting preamble symbol
US10952097B2 (en) Frame transmission method for wireless local area network and wireless local area network apparatus
WO2018082071A1 (zh) 一种参考信号配置方法、训练字段配置方法及装置
WO2011120362A1 (zh) 辅同步信号的生成方法和装置
CN107819716B (zh) 一种基于频域的频偏补偿方法及设备
WO2017059719A1 (zh) 传输数据的方法和设备
WO2016154951A1 (zh) 一种数据传输方法和传输装置
WO2014205743A1 (zh) 长训练序列生成方法、发送信号方法和装置
US11025397B2 (en) Quick acknowledgement reply method and apparatus
CN107367723B (zh) 一种测量距离的方法及设备
CN108156108B (zh) 一种ofdm符号的起点位置确定方法及设备
US10193719B2 (en) Signal processing method, network equipment, system and computer storage medium
WO2016161916A1 (zh) 一种数据传输方法及设备
US20140029697A1 (en) GMSK-Based Modulation in a Wireless Local Area Network
WO2017117795A1 (zh) 一种信号的发送方法、接收方法、终端设备、基站及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014888189

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888189

Country of ref document: EP