WO2015147010A1 - ディップ成形用組成物及びディップ成形品 - Google Patents

ディップ成形用組成物及びディップ成形品 Download PDF

Info

Publication number
WO2015147010A1
WO2015147010A1 PCT/JP2015/058978 JP2015058978W WO2015147010A1 WO 2015147010 A1 WO2015147010 A1 WO 2015147010A1 JP 2015058978 W JP2015058978 W JP 2015058978W WO 2015147010 A1 WO2015147010 A1 WO 2015147010A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
copolymer rubber
nitrile group
latex
ethylenically unsaturated
Prior art date
Application number
PCT/JP2015/058978
Other languages
English (en)
French (fr)
Inventor
友則 中島
弘康 永森
清香 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580014873.0A priority Critical patent/CN106103571B/zh
Priority to KR1020167025639A priority patent/KR102247461B1/ko
Priority to EP15770234.1A priority patent/EP3124535B1/en
Priority to MYPI2016703528A priority patent/MY190720A/en
Priority to JP2016510398A priority patent/JPWO2015147010A1/ja
Priority to US15/128,163 priority patent/US10414908B2/en
Publication of WO2015147010A1 publication Critical patent/WO2015147010A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/005Hydrogenated nitrile rubber
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0082Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • A61B42/10Surgical gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2019/00Use of rubber not provided for in a single one of main groups B29K2007/00 - B29K2011/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0064Latex, emulsion or dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4842Outerwear
    • B29L2031/4864Gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • C08J2309/04Latex

Definitions

  • the present invention relates to a dip-molding composition and a dip-molded product.
  • Rubber gloves are widely used for housework, for various industries such as the food industry and electronic parts manufacturing industry, and for medical use (especially for surgery).
  • Patent Document 1 discloses an acid-modified nitrile rubber for dip molding, in which a film obtained by drying has a methylethylketone insoluble content of 50 to 90% by weight and a methylethylketone swelling degree of the insoluble content of 3 to 15. Latex is described.
  • Patent Document 2 describes a latex of a hydrogenated conjugated diene polymer in which the content of a platinum group element derived from a hydrogenation catalyst is 100 ppm or less.
  • Patent Document 3 describes a method for producing a latex for dip molding in which a conjugated diene monomer, an ethylenically unsaturated nitrile monomer, an ethylenically unsaturated monomer, and the like are copolymerized.
  • Japanese Patent Publication “JP 2007-177091” (released July 12, 2007) Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2004-2756” (published January 8, 2004) Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2012-201856” (published on October 22, 2012)
  • gloves made of acrylonitrile-butadiene copolymer latex solve the problems caused by trace proteins in natural rubber latex, but they have problems such as inferior tensile strength that can be broken during work and temperature changes. There was a problem that it was difficult to withstand use in a large environment.
  • the dip molded product when transported by ship, it may pass through a warm place near the equator, for example. At this time, the temperature in the hold becomes extremely high.
  • the product after arrival at the destination, the product may be used in a cold environment after being sold as a product. It is necessary to have cold resistance after heat aging that can be sufficiently used even if there is a heat history with such a large difference in exposed temperature.
  • the present invention provides a dip-molding composition that is excellent in tensile strength and cold resistance after heat aging, and can provide a new dip-molded article, and a dip-molded article obtained by dip-molding the dip-molding composition.
  • the purpose is to do.
  • the present inventors have an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit out of a very large number of latexes, and at least a part of the conjugated diene monomer unit.
  • the latex (A) of the nitrile group-containing highly saturated copolymer rubber (a) obtained by hydrogenating the above is excellent in blending stability with a crosslinking agent or the like, and also comprises a composition for dip molding containing the latex (A) It has been found that when a product is dip-molded, a dip-molded product having excellent tensile strength and cold resistance after heat aging can be obtained, and the present invention has been conceived.
  • the dip molding composition according to the present invention has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit, and at least a part of the conjugated diene monomer unit is contained. It contains latex (A) of hydrogenated nitrile group-containing highly saturated copolymer rubber (a).
  • the dip-molded product according to the present invention is formed by dip-molding the dip-molding composition.
  • the dip molding composition according to the present invention has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit, and hydrogenates at least a part of the conjugated diene monomer unit. And a latex (A) of a nitrile group-containing highly saturated copolymer rubber (a).
  • the latex (A) usually has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit in an aqueous medium, and at least a part of the conjugated diene monomer unit.
  • the particles of the nitrile group-containing highly saturated copolymer rubber (a) obtained by hydrogenating are dispersed.
  • the aqueous medium is usually water, but is a mixture of a water-soluble organic solvent such as methanol, ethanol, and acetone as long as the dispersion stability of the nitrile group-containing highly saturated copolymer rubber (a) particles is not impaired. There may be.
  • the number average particle diameter of the nitrile group-containing highly saturated copolymer rubber (a) particles is usually 50 to 200 nm. This number average particle size can be measured using a dynamic light scattering particle size distribution measuring apparatus.
  • the nitrile group-containing highly saturated copolymer rubber (a) constituting the latex (A) has an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a conjugated diene monomer unit. It is formed by hydrogenating at least a part of the monomer unit.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer forming the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile. , ⁇ -cyanoethylacrylonitrile and the like. Among these, acrylonitrile and methacrylonitrile are more preferable, and acrylonitrile is more preferable. These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the amount of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile group-containing highly saturated copolymer rubber (a) is not particularly limited, but is preferably 10 to 50% by weight, and 15 to 45% by weight. More preferred is 20 to 40% by weight.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is 10% by weight or more, a dip-molded product having more excellent tensile strength can be obtained, and the content is 50% by weight or less. Thus, a dip-molded product having an excellent texture can be obtained.
  • the conjugated diene monomer that forms the conjugated diene monomer unit is not particularly limited.
  • 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1 examples include 3-butadiene, 1,3-pentadiene, and chloroprene.
  • 1,3-butadiene and isoprene are more preferable, and 1,3-butadiene is more preferable.
  • These conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the conjugated diene monomer unit is not particularly limited, but is preferably 49.5 to 89.5% by weight, more preferably 55 to 84% by weight, and still more preferably 58 to 76% by weight.
  • the content is 49.5% by weight or more, a dip-molded product with excellent texture can be obtained, and when the content is 89.5% by weight or less, a dip-molded product with more excellent tensile strength. Can be obtained.
  • At least a part of the conjugated diene monomer unit in the nitrile group-containing highly saturated copolymer rubber (a) is hydrogenated. Thereby, the tensile strength of the obtained dip-molded product can be further increased, and a dip-molded product having excellent cold resistance after heat aging can be obtained.
  • the conjugated diene monomer unit may be at least partially hydrogenated, but the iodine value of the nitrile group-containing highly saturated copolymer rubber (a) is more preferably 100 or less, and 50 or less. More preferably. By hydrating at least a part of the conjugated diene monomer unit so that the iodine value becomes 100 or less, a dip-molded product having more excellent tensile strength can be obtained.
  • Nitrile group-containing highly saturated copolymer rubber (a) comprises ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, and conjugated diene monomer units (carbon-carbon double bonds in conjugated diene monomer units). In addition to the structural unit obtained by hydrogenation, it is preferable to further contain an ⁇ , ⁇ -ethylenically unsaturated acid monomer unit.
  • the nitrile group-containing highly saturated copolymer rubber (a) further contains an ⁇ , ⁇ -ethylenically unsaturated acid monomer unit, a dip-molded product having excellent tensile strength can be obtained.
  • the ⁇ , ⁇ -ethylenically unsaturated acid monomer forming the ⁇ , ⁇ -ethylenically unsaturated acid monomer unit in the nitrile group-containing highly saturated copolymer rubber (a) is not particularly limited.
  • ⁇ , ⁇ -ethylenically unsaturated monomers containing acidic groups such as carboxyl groups, sulfonic acid groups, and acid anhydride groups.
  • ⁇ , ⁇ -ethylenically unsaturated monomer containing a carboxyl group examples include ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, and cinnamic acid.
  • Monomer ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid monomer such as itaconic acid, maleic acid, fumaric acid, citraconic acid, chloromaleic acid; monomethyl fumarate, monoethyl fumarate, monobutyl fumarate, malein ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monomethyl acid, monoethyl maleate, monobutyl maleate, mono-2-hydroxypropyl maleate, monomethyl itaconate, monoethyl itaconate, monobutyl itaconate Etc.
  • carboxylic acid monomer such as itaconic acid, maleic acid, fumaric acid, citraconic acid, chloromaleic acid
  • monomethyl fumarate monoethyl fumarate, monobutyl fumarate
  • malein ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as mono
  • ⁇ , ⁇ -ethylenically unsaturated monomer containing a sulfonic acid group include styrene sulfonic acid.
  • ⁇ , ⁇ -ethylenically unsaturated monomers containing acid anhydride groups include ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic anhydrides such as maleic anhydride, itaconic anhydride, citraconic anhydride, etc. You can list things.
  • ⁇ , ⁇ -ethylenically unsaturated acid monomers may be used alone or in combination of two or more.
  • ⁇ , ⁇ -ethylenically unsaturated acid monomers ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers are preferred, ethylenically unsaturated monocarboxylic acid monomers are more preferred, and methacrylic acid is preferred. Particularly preferred.
  • the ⁇ , ⁇ -ethylenically unsaturated acid monomer may be an alkali metal salt or an ammonium salt.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated acid monomer unit in the nitrile group-containing highly saturated copolymer rubber (a) is not particularly limited, but is preferably 0.5 to 10% by weight, and preferably 1 to 8%. % By weight is more preferred, and 2 to 6% by weight is particularly preferred. When the content is 0.5% by weight or more, it is possible to obtain a dip-molded product that is superior in tensile strength. When the content is 10% by weight or less, the texture is excellent, and the adhesion state is A dip-molded product that is superior in durability can be obtained.
  • Nitrile group-containing highly saturated copolymer rubber (a) comprises ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, conjugated diene monomer units (carbon-carbon double bonds in conjugated diene monomer units).
  • ⁇ -ethylenically unsaturated acid monomer units
  • ⁇ -ethylenically unsaturated nitrile monomers
  • conjugated diene monomers conjugated diene monomers
  • ⁇ , ⁇ - It may contain a unit of another monomer copolymerizable with the ethylenically unsaturated acid monomer (sometimes simply referred to as “other monomer”).
  • Such other monomer units are not particularly limited.
  • units of vinyl aromatic monomers units of ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers, ⁇ , ⁇ - Examples thereof include a unit of an ethylenically unsaturated amide monomer and a unit of an alkyl vinyl ether monomer.
  • vinyl aromatic monomer examples include styrene, alkyl styrene, vinyl naphthalene and the like.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomer may be ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer It may be a body.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers include acrylic acid ester monomers and methacrylic acid ester monomers (hereinafter collectively referred to as “acrylic acid and methacrylic acid”. ) "Acrylic acid”)) and the like.
  • (meth) acrylic acid ester monomers include (meth) acrylic acid alkyl ester monomers and (meth) acrylic acid aryl ester monomers.
  • any one of the alkyl group and the aryl group has a halogen atom, a hydroxyl group, an epoxy group, or an amino group.
  • a cyano group, an alkoxy group or the like may be substituted.
  • (meth) acrylic acid alkyl ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylic.
  • Trifluoroethyl acid Trifluoroethyl acid, tetrafluoropropyl (meth) acrylate, hydroxyethyl, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, cyanomethyl (meth) acrylate, (meta ) 2-cyanoethyl acrylate, 1-cyanopropyl (meth) acrylate, 2-ethyl-6-cyanohexyl (meth) acrylate, 3-cyanopropyl (meth) acrylate, methoxymethyl (meth) acrylate, (Meth) Ethoxyethyl acrylate, (meth) acrylic acid meth Shi ethoxyethyl, and (meth) 2-methoxyethyl acrylic acid.
  • ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acid ester monomers include ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid diester monomers, ⁇ , ⁇ -ethylenically unsaturated tricarboxylic acid triester monomers Examples include a polymer.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid diester monomers include maleic acid diester monomers such as diethyl maleate and dibutyl maleate; fumaric acid diester monomers such as diethyl fumarate and dibutyl fumarate Examples: Itaconic acid diester monomers such as dimethyl itaconate and diethyl itaconate.
  • ⁇ , ⁇ -ethylenically unsaturated amide monomer include amide derivatives of (meth) acrylic acid, and typical examples thereof include (meth) acrylamide and N-methylol (meth) acrylamide. N, N-dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide and the like.
  • alkyl vinyl ether monomer examples include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, fluoroethyl vinyl ether, 2,2,2-trifluoroethyl vinyl ether. 2,2,3,3,3-pentafluoropropyl vinyl ether and the like.
  • crosslinkable monomers can be mentioned.
  • crosslinkable monomers include polyvinyl aromatic monomers such as divinylbenzene; polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol ( And polyacrylate monomers such as (meth) acrylate;
  • the content of other monomer units is not particularly limited, but is preferably 19.5% by weight or less, more preferably 14% by weight or less, and further preferably 9% by weight or less. When the content is 19.5% by weight or less, a dip-molded product having an excellent balance between texture and tensile strength can be obtained.
  • the production method for obtaining the latex (A) of the nitrile group-containing highly saturated copolymer rubber (a) contained in the dip molding composition according to the present invention is not particularly limited, but the desired monomer is water. And emulsion polymerization in the presence of an emulsifier, and then hydrogenating at least part of the carbon-carbon double bond of the conjugated diene monomer unit in the copolymer contained in the obtained latex can be preferably employed. .
  • an anionic surfactant As the emulsifier used for emulsion polymerization, an anionic surfactant, a cationic surfactant, a nonionic surfactant, an amphoteric surfactant and the like can be usually used. Moreover, what is necessary is just to use what is normally used in emulsion polymerization as a polymerization initiator.
  • the polymerization method is not particularly limited, and any of batch type, semi-batch type and continuous type may be used.
  • the polymerization temperature is not particularly limited, but is preferably 0 to 95 ° C, more preferably 5 to 70 ° C.
  • Polymerization auxiliary materials that can be used in emulsion polymerization such as a molecular weight adjusting agent, a particle size adjusting agent, a chelating agent, and an oxygen scavenger, can be used when polymerization is performed.
  • latex (A) In the presence of a hydrogenation catalyst, at least part of the carbon-carbon double bond of the conjugated diene monomer unit in the copolymer contained in the obtained latex is hydrogenated with hydrogen. As a result, latex (A) can be obtained.
  • the hydrogenation catalyst examples include water-soluble compounds or water-dispersible compounds of platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, platinum).
  • platinum group elements ruthenium, rhodium, palladium, osmium, iridium, platinum.
  • these hydrogenation catalysts may be dissolved or dispersed in a latex without being supported on a carrier and subjected to a hydrogenation reaction.
  • a palladium compound and a rhodium compound are preferable, and a palladium compound is particularly preferable.
  • Two or more platinum group element compounds may be used in combination, but in this case as well, it is preferable to use a palladium compound as the main catalyst component.
  • the palladium compound is not particularly limited as long as it has hydrogenation catalytic activity, but is preferably water-soluble or water-dispersible, and more preferably water-soluble.
  • the form of the palladium compound is, for example, a salt or a complex salt.
  • the palladium compound examples include organic acid salts such as palladium acetate and palladium cyanide; halides such as palladium fluoride, palladium chloride, palladium bromide and palladium iodide; oxygen acid salts such as palladium nitrate and palladium sulfate; Palladium; Palladium hydroxide; Palladium compounds such as dichloro (cyclooctadiene) palladium, dichloro (norbornadiene) palladium, dichlorobis (triphenylphosphine) palladium, sodium tetrachloropalladate, ammonium hexachloropalladate; potassium tetracyanopalladate, etc. Complex salts; and the like.
  • organic acid salts such as palladium acetate and palladium cyanide
  • halides such as palladium fluoride, palladium chloride, palladium bromide and palladium iodide
  • palladium acetate, palladium nitrate, palladium sulfate, palladium chloride, sodium tetrachloropalladate, and ammonium hexachloropalladate are preferable, and palladium acetate, palladium nitrate, and palladium chloride are more preferable.
  • rhodium compound examples include halides such as rhodium chloride, rhodium bromide and rhodium iodide; inorganic acid salts such as rhodium nitrate and rhodium sulfate; rhodium acetate, rhodium formate, rhodium propionate, rhodium butyrate, rhodium valerate, Organic acid salts such as rhodium naphthenate and rhodium acetylacetonate; rhodium oxide; rhodium trihydroxide;
  • a commercially available platinum group element compound may be obtained or may be prepared by a known method.
  • the method of dissolving or dispersing the platinum group element compound in the latex is not particularly limited, and examples thereof include a method of directly adding the compound to the latex and a method of adding the compound in a state of being dissolved or dispersed in water.
  • the temperature of the hydrogenation reaction is preferably 0 ° C. to 200 ° C., more preferably 5 ° C. to 150 ° C., and further preferably 10 to 100 ° C.
  • the reaction temperature is preferably 0 ° C. to 200 ° C., more preferably 5 ° C. to 150 ° C., and further preferably 10 to 100 ° C.
  • the pressure of hydrogen is preferably from atmospheric pressure to 20 MPa, more preferably from atmospheric pressure to 15 MPa, and further preferably from atmospheric pressure to 10 MPa.
  • the reaction time is not particularly limited, but is preferably 30 minutes to 50 hours.
  • Hydrogenation rate of the resulting nitrile group-containing highly saturated copolymer rubber (a) (ratio of hydrogenated carbon-carbon double bonds to the total number of carbon-carbon double bonds present in the polymer before the reaction) can be arbitrarily controlled in the range of 1 to 100% by appropriately changing the various reaction conditions described above.
  • the hydrogenation rate represented by the iodine value is preferably 100 or less, more preferably 50 or less, as described above.
  • the dip molding composition according to the present invention preferably further contains a crosslinking agent.
  • a cross-linking agent By including a cross-linking agent, a dip-molded product that is superior in tensile strength can be obtained.
  • a crosslinking accelerator is further included so that crosslinking can be performed at an appropriate crosslinking rate, and zinc oxide may be included if desired.
  • Latex (A) contained in the dip molding composition according to the present invention is excellent in blending properties with a crosslinking agent, a crosslinking accelerator, and zinc oxide, and generation of coarse aggregates during blending is suppressed.
  • a dip-molded product having a uniform film thickness is obtained.
  • crosslinking agent examples include powder sulfur, sulfur white, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, and the like; hexamethylene diamine, hexamethylene diamine carbamate, 2,2-bis [4- (4- Aminophenoxy) phenyl] propane, triethylenetetramine, polyethylenes such as tetraethylenepentamine, and organic peroxide crosslinking agents.
  • sulfur is preferable.
  • organic peroxide crosslinking agent conventionally known ones can be used, such as dicumyl peroxide, cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t-butyl peroxide, 1,3- Bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t -Butyl-peroxy) -n-butylvalerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3 1,1-di-t-butylperoxy-3,5,5-trimethylcyclohexane, p-chlorobenzo
  • the amount of the crosslinking agent used is preferably 0.1 to 5 parts by weight, more preferably 0.3 to 3 parts by weight, and particularly preferably 0.5 to 2 parts by weight with respect to 100 parts by weight of the solid content of the latex (A). Part.
  • the crosslinking accelerator include dithiocarbamic acids such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, dibenzyldithiocarbamic acid, and zinc salts thereof; 2-mercapto Benzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2- (2,4-dinitrophenylthio) benzothiazole, 2- (N, N-diethylthiocarbaylthio) benzothiazole, 2 -(2,6-Dimethyl-4-morpholinothio) benzothiazole, 2- (4'-morpholino dithio) benzothiazole, 4-morpholinyl-2-benzothiazyl disulf
  • zinc diethyldithiocarbamate zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole, and zinc 2-mercaptobenzothiazole are preferable.
  • These crosslinking accelerators may be used alone or in combination of two or more.
  • the amount of the crosslinking accelerator used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, particularly preferably 1 to 5 parts by weight based on 100 parts by weight of the solid content of the latex (A). Part.
  • the amount of zinc oxide used is preferably 10 parts by weight or less, more preferably 8 parts by weight or less, and particularly preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the solid content of the latex (A).
  • the acid group in the monomer unit is oxidized.
  • Zinc reacts to form ionic bonds. Therefore, in such a case, zinc oxide has a function as a crosslinking agent.
  • the dip molding composition according to the present invention may further contain additives such as a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener, and an antiseptic. Good.
  • additives such as a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener, and an antiseptic. Good.
  • the pigment examples include white pigments such as titanium oxide (TiO 2 ).
  • latexes such as natural rubber latex, isoprene rubber latex, nitrile rubber latex other than latex (A) can be used in combination as long as the object of the present invention is not impaired.
  • the solid content concentration of the dip molding composition in which the above-mentioned crosslinking agent, crosslinking accelerator, zinc oxide, additive, other latex and the like are mixed with the latex (A) is preferably 20 to 45% by weight, more preferably It is 20 to 40% by weight, more preferably 25 to 40% by weight.
  • the pH of the dip molding composition is preferably 8.5 to 12, more preferably 9 to 11.
  • the dip-molded product of the present invention is formed by dip-molding the dip-molding composition according to the present invention.
  • the dip molding method a conventionally known method may be employed, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method.
  • the anode coagulation dipping method is preferable because a dip-molded product having a uniform thickness can be easily obtained.
  • a dip-molding mold is immersed in a coagulant solution, the coagulant is attached to the surface of the mold, and then the dip-molding composition is immersed in the dip-molding composition, A dip-molded layer may be formed on the substrate.
  • the coagulant examples include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; and the like. Of these, calcium chloride and calcium nitrate are preferable.
  • the coagulant is used, for example, as a solution of water, alcohol, or a mixture thereof.
  • the coagulant concentration is preferably 5 to 50% by weight, more preferably 10 to 30% by weight.
  • the obtained dip-molded layer may be subjected to heat treatment for crosslinking. Before the heat treatment, for example, it may be immersed in water, preferably warm water of 30 to 70 ° C., for about 1 to 60 minutes to remove water-soluble impurities (for example, excess emulsifier and coagulant). This operation may be performed after heat-treating the dip-formed layer, but is preferably performed before the heat treatment from the viewpoint that water-soluble impurities can be more efficiently removed.
  • water-soluble impurities for example, excess emulsifier and coagulant
  • the dip-molded layer thus obtained is subjected to a heat treatment at a temperature of 100 to 150 ° C. for 10 to 120 minutes for crosslinking.
  • a heating method an external heating method using infrared rays or hot air or an internal heating method using high frequency can be employed. Of these, heating with hot air is preferred.
  • a dip-molded product is obtained by detaching the crosslinked dip-molding layer from the dip-molding die.
  • the desorption method it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
  • heat treatment may be performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
  • the surface treatment layer may be further formed on the inner and / or outer surface of the dip-molded product.
  • the dip-molded product according to the present invention one having a tensile strength of 35 MPa or more, preferably 40 MPa or more, more preferably 45 MPa is easily obtained.
  • Such a dip-molded product having a tensile strength of 35 MPa or more is hydrogenated so that the nitrile group-containing highly saturated copolymer rubber (a) constituting the latex (A) has a lower element number, ⁇ , ⁇ -The tensile strength can be suitably improved by increasing the content of the ethylenically unsaturated acid monomer unit.
  • the dip-formed product according to the present invention is excellent in cold resistance after heat aging. Therefore, even after being placed in a high temperature environment, it can be suitably used in a low temperature environment. That is, the dip-molded product according to the present invention is a strip shape having a width of 4 cm and a length of 10 cm. The tangents in the direction are bent until they are 90 °, and no cracks are generated. The dip-formed product is effective for a dip-formed product having a thermal history with a large difference in exposed temperature in the transportation route.
  • Such a dip-molded article having excellent cold resistance after heat aging is hydrogenated so that the iodine value of the nitrile group-containing highly saturated copolymer rubber (a) is lower, or ⁇ , ⁇ -ethylenically unsaturated. It is obtained by adjusting the content of nitrile monomer units.
  • the dip-formed product according to the present invention can have a thickness of about 0.03 to about 3 mm, and can be suitably used particularly for a thin product having a thickness of 0.05 to 1 mm.
  • medical supplies such as nipples for baby bottles, syringes, conduits, and water pillows; toys and exercise equipment such as balloons, dolls, and balls; industrial articles such as pressure forming bags and gas storage bags; Examples include household, agricultural, fishery and industrial gloves; finger sack. It is particularly suitable for thin surgical gloves.
  • test piece was cut out from the dip-molded product into a strip shape having a width of 2 cm and a length of 10 cm. This test piece was put into a gear oven and heat-treated at 130 ° C. for 6 days. Thereafter, the test piece was bent 90 ° in a low temperature bath of ⁇ 30 ° C., and the appearance was visually observed. The test piece with cracks or cracks was marked with ⁇ , and the one without cracks was marked with ⁇ .
  • nitrile group-containing copolymer rubber latex (x) A part of the nitrile group-containing copolymer rubber latex (x) was sampled, and methanol was added thereto for coagulation, followed by washing with water and drying to obtain a nitrile group-containing copolymer rubber.
  • the amount of each monomer unit of the nitrile group-containing copolymer rubber was determined by 1 H-NMR and 13 C-NMR, and the results are shown in Table 2.
  • the nitrile group-containing copolymer rubber latex (x) is adjusted so that the palladium content relative to the dry weight of the rubber contained in the nitrile group-containing copolymer rubber latex (x) is 1000 ppm by weight.
  • a palladium catalyst a solution obtained by mixing 1% by weight palladium acetate / acetone solution and equal weight of ion-exchanged water, and performing a hydrogenation reaction at a hydrogen pressure of 3 MPa and a temperature of 50 ° C. for 6 hours to adjust the solid concentration.
  • a latex (A1) solid content concentration 40% by weight
  • this latex (A1) was sampled, and methanol was added thereto for coagulation, followed by washing with water and drying to obtain a nitrile group-containing highly saturated copolymer rubber.
  • the amount of each monomer unit of the nitrile group-containing highly saturated copolymer rubber was determined by 1 H-NMR and 13 C-NMR, and the iodine value was determined by the method described above. The results are shown in Table 2. .
  • the amount of each monomer unit and iodine value of the nitrile group-containing highly saturated copolymer rubber contained in the nitrile group-containing highly saturated copolymer rubber latex (A2) were determined in the same manner as in Synthesis Example 1, and the results are shown. It was shown in 2.
  • the amount of each monomer unit and iodine value of the nitrile group-containing highly saturated copolymer rubber contained in the nitrile group-containing highly saturated copolymer rubber latex (A3) were determined in the same manner as in Synthesis Example 1, and the results are shown. It was shown in 2.
  • Synthesis Example 4 (Production of Nitrile Group-Containing Highly Saturated Copolymer Rubber Latex (A4)) The same operation as in Synthesis Example 1 was performed, except that acrylonitrile was changed from 35 parts to 33.5 parts and methacrylic acid was changed from 4 parts to 5.5 parts. As a result, a nitrile group-containing highly saturated copolymer rubber latex (A4) (solid content concentration 39% by weight) was produced. In the same manner as in Synthesis Example 1, the amount of each monomer unit and iodine value of the nitrile group-containing highly saturated copolymer rubber contained in the nitrile group-containing highly saturated copolymer rubber latex (A4) were determined, and the results were shown. It was shown in 2.
  • Example 1 To 250 parts of the nitrile group-containing highly saturated copolymer rubber latex (A1) obtained in Synthesis Example 1 (corresponding to a solid content of 100 parts), 1 part of sulfur, 1.5 parts of zinc oxide, 0.5 parts of zinc diethyldithiocarbamate After mixing 8.66 parts of a crosslinking agent dispersion prepared by mixing 1.5 parts of titanium oxide, 1.5 parts of titanium oxide, 0.03 parts of potassium hydroxide and 5.63 parts of water, an appropriate amount of 5% aqueous potassium hydroxide solution, Deionized water was added to obtain a dip molding composition (A′1) having a solid content of 30% and a pH of 9.8.
  • the glove mold was immersed for 1 minute in a coagulant aqueous solution prepared by mixing 20 parts of calcium nitrate, 0.05 part of polyoxyethylene octylphenyl ether as a nonionic emulsifier and 80 parts of water, and then pulled up, and then heated to 50 ° C. And dried for 3 minutes to allow the coagulant to adhere to the glove mold.
  • a coagulant aqueous solution prepared by mixing 20 parts of calcium nitrate, 0.05 part of polyoxyethylene octylphenyl ether as a nonionic emulsifier and 80 parts of water, and then pulled up, and then heated to 50 ° C. And dried for 3 minutes to allow the coagulant to adhere to the glove mold.
  • the glove mold with the coagulant attached is dipped in the dip molding composition (A′1) for 6 minutes, pulled up, and then the glove mold with the dip molding layer formed is dried at 25 ° C. for 3 minutes. Then, it was immersed in warm water at 40 ° C. for 3 minutes to elute water-soluble impurities.
  • the glove mold was dried at 80 ° C. for 20 minutes, and subsequently heat treated at 120 ° C. for 25 minutes to crosslink the dip-formed layer. Finally, the crosslinked dip-formed layer was peeled off from the glove mold to obtain a glove-shaped dip-formed product (AA′1).
  • the tensile strength, tensile stress and elongation of this dip-formed product (AA′1) were measured by the above-mentioned methods, and the results are shown in Table 1.
  • Example 2 instead of the nitrile group-containing highly saturated copolymer rubber latex (A1), the same procedure as in Example 1 was used except that the nitrile group-containing highly saturated copolymer rubber latex (A2) obtained in Synthesis Example 2 was used. The dip molded product (AA′2) was adjusted and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 instead of the nitrile group-containing highly saturated copolymer rubber latex (A1), the same procedure as in Example 1 was used except that the nitrile group-containing highly saturated copolymer rubber latex (A3) obtained in Synthesis Example 3 was used. The dip molded product (AA'3) was adjusted and evaluated in the same manner. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was conducted except that the nitrile group-containing highly saturated copolymer rubber latex (A4) obtained in Synthesis Example 4 was used instead of the nitrile group-containing highly saturated copolymer rubber latex (A1).
  • the dip-molded product (AA'4) was adjusted and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 The same as Example 1 except that 333 parts of the nitrile group-containing copolymer rubber latex (x) obtained in Synthesis Example 1 was used instead of 250 parts of the nitrile group-containing highly saturated copolymer rubber latex (A1). Then, the dip-molded product (aa′1) was adjusted and evaluated in the same manner. The results are shown in Table 1.
  • Table 1 shows the following.
  • dip-molded product formed by dip-molding the dip-molding composition containing the nitrile group-containing highly saturated copolymer rubber latex defined in the present invention was excellent in tensile strength and cold resistance after heat aging (implementation) Examples 1 to 4).
  • a dip-molded product obtained by dip-molding a conventional dip-molding composition containing a nitrile group-containing copolymer rubber latex is inferior in tensile strength and cold resistance after heat aging (Comparative Examples 1 to 3).
  • the present invention can be used for various dip-molded products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Textile Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明のディップ成形用組成物は、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)を含む。本発明のディップ成形品は前記ディップ成形用組成物をディップ成形してなる。

Description

ディップ成形用組成物及びディップ成形品
 本発明はディップ成形用組成物及びディップ成形品に関する。
 ゴム手袋は、家事用、食品工業や電子部品製造業などの種々の工業用及び医療用(特に手術用)など、幅広く使用されている。
 従来、ゴム手袋として、天然ゴムラテックスをディップ成形して得られるものが多用されている。しかし、天然ゴムラテックス製の手袋には、ゴム成分中に微量存在するたんぱく質により、使用者によってはアレルギーを引き起こす恐れがあるため、そのような懸念のない合成ゴムラテックス、たとえば、アクリロニトリル-ブタジエン共重合体ラテックス製の手袋が一般に用いられている。
 特許文献1には、乾燥して得られるフィルムのメチルエチルケトン不溶分含有量が50~90重量%で、かつ、該不溶分のメチルエチルケトン膨潤度が3~15である、ディップ成形用の酸変性ニトリルゴムラテックスが記載されている。
 また、特許文献2には、水素化触媒に由来する白金族元素の含有量を100ppm以下とした水素化共役ジエン系重合体のラテックスが記載されている。
 また、特許文献3には、共役ジエン単量体、エチレン性不飽和ニトリル単量体、エチレン性不飽和単量体等を共重合する、ディップ成形用ラテックスの製造方法が記載されている。
日本国公開特許公報「特開2007-177091号」公報(2007年7月12日公開) 日本国公開特許公報「特開2004-2756号公報」(2004年1月8日公開) 日本国公開特許公報「特開2012-201856号公報」(2012年10月22日公開)
 しかし、アクリロニトリル-ブタジエン共重合体ラテックス製の手袋は、天然ゴムラテックス中の微量たんぱく質に起因する問題を解決するものではあるが、作業中に破れるような、引張強度に劣るという問題や、温度変化の大きい環境での使用に耐え難いという問題があった。
 また、特許文献1に記載の通り、ディップ成形品から水分を十分に除去するために、その製造工程において、100℃~150℃の加熱処理を行う場合もある。このため、熱履歴の影響を受けにくいディップ成形品が望ましい。
 また、ディップ成形品が船で搬送される際、例えば、赤道近辺の暖かい場所を通過することがある。このとき、船倉の中の温度は極めて高くなる。一方、目的地到着後に、商品として販売された後、寒冷環境下で使用されることがある。このような曝される温度の差が大きい熱履歴があっても十分に使用できるだけの、熱老化後の耐寒性が必要である。
 そこで、本発明は、引張強度及び熱老化後の耐寒性に優れた、新たなディップ成形品を与え得るディップ成形用組成物及び前記ディップ成形用組成物をディップ成形してなるディップ成形品を提供することを目的とする。
 ところで、或るラテックスが、ディップ成形した際に、所望の性能を発揮するか否かは、実際に当該ラテックスを含むディップ成形用組成物をディップ成形してみるまで分からない。また、そもそもディップ成形できるか否かについても、架橋剤等との配合安定性が良好であることが分かっていなければ、ディップ成形に適用することに想到することは困難である。本発明者らは、極めて多数のラテックスの中から、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)が、架橋剤等との配合安定性に優れており、また、前記ラテックス(A)を含むディップ成形用組成物をディップ成形すると、引張強度及び熱老化後の耐寒性に優れたディップ成形品が得られることを見出し、本発明に想到するに至った。
 即ち、本発明に係るディップ成形用組成物は、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)を含む。
 また、本発明に係るディップ成形品は、前記ディップ成形用組成物をディップ成形してなる。
 本発明によれば、引張強度及び熱老化後の耐寒性に優れた、新たなディップ成形品を提供できるという効果を奏する。
 <ディップ成形用組成物>
 本発明に係るディップ成形用組成物は、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)を含む。
 前記ラテックス(A)は、通常、水性媒体中に、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)の粒子が分散しているものである。
 前記水性媒体は、通常、水であるが、ニトリル基含有高飽和共重合体ゴム(a)粒子の分散安定性を損なわない限り、メタノール、エタノール、アセトンなどの水溶性有機溶媒を混合したものであってもよい。
 ニトリル基含有高飽和共重合体ゴム(a)粒子の、数平均粒子径は、通常、50~200nmである。この数平均粒子径は、動的光散乱式粒子径分布測定装置を用いて測定することができる。
 <ニトリル基含有高飽和共重合体ゴム(a)>
 ラテックス(A)を構成するニトリル基含有高飽和共重合体ゴム(a)は、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるものである。
 〔α,β-エチレン性不飽和ニトリル単量体〕
 α,β-エチレン性不飽和ニトリル単量体単位を形成するα,β-エチレン性不飽和ニトリル単量体としては、特に限定されず、例えば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリル等が挙げられる。中でも、アクリロニトリル及びメタクリロニトリルがより好ましく、アクリロニトリルがさらに好ましい。これらのα,β-エチレン性不飽和ニトリル単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリル基含有高飽和共重合体ゴム(a)中のα,β-エチレン性不飽和ニトリル単量体単位の量は、特に限定されないが、10~50重量%が好ましく、15~45重量%がより好ましく、20~40重量%がさらに好ましい。α,β-エチレン性不飽和ニトリル単量体単位の含有量が10重量%以上であることにより、より引張強度に優れるディップ成形品を得ることができ、当該含有量が50重量%以下であることにより、風合いに優れるディップ成形品を得ることができる。
 〔共役ジエン単量体〕
 共役ジエン単量体単位を形成する共役ジエン単量体としては、特に限定されず、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエン及びクロロプレン等が挙げられる。中でも、1,3-ブタジエン及びイソプレンがより好ましく、1,3-ブタジエンがさらに好ましい。これらの共役ジエン単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン単量体単位の含有量は、特に限定されないが、49.5~89.5重量%が好ましく、55~84重量%がより好ましく、58~76重量%がさらに好ましい。当該含有量が49.5重量%以上であることにより、風合いに優れるディップ成形品を得ることができ、当該含有量が89.5重量%以下であることにより、より引張強度に優れるディップ成形品を得ることができる。
 ニトリル基含有高飽和共重合体ゴム(a)中の共役ジエン単量体単位の少なくとも一部は水素化されている。これにより、得られるディップ成形品の引張強度をより強くすることができ、また、熱老化後の耐寒性にも優れるディップ成形品を得ることができる。共役ジエン単量体単位は、その少なくとも一部が水素化されていればよいが、ニトリル基含有高飽和共重合体ゴム(a)のよう素価が100以下であることがより好ましく、50以下であることがさらに好ましい。よう素価が100以下になるように、共役ジエン単量体単位の少なくとも一部を水素化することで、より引張強度に優れるディップ成形品を得ることができる。
 〔α,β-エチレン性不飽和酸単量体〕
 ニトリル基含有高飽和共重合体ゴム(a)は、α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位(共役ジエン単量体単位中の炭素-炭素二重結合を水素添加した構造単位も含む。)以外に、さらにα,β-エチレン性不飽和酸単量体単位を含有することが好ましい。ニトリル基含有高飽和共重合体ゴム(a)が、さらにα,β-エチレン性不飽和酸単量体単位を含有することにより、引張強度により優れるディップ成形品が得られる。
 ニトリル基含有高飽和共重合体ゴム(a)中のα,β-エチレン性不飽和酸単量体単位を形成するα,β-エチレン性不飽和酸単量体は、特に限定されず、例えば、カルボキシル基、スルホン酸基、酸無水物基等の酸性基を含有するα,β-エチレン性不飽和単量体等が挙げられる。
 カルボキシル基を含有するα,β-エチレン性不飽和単量体の具体例としては、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等のα,β-エチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸、シトラコン酸、クロロマレイン酸等のα,β-エチレン性不飽和多価カルボン酸単量体;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等のα,β-エチレン性不飽和多価カルボン酸部分エステル単量体等を挙げることができる。
 スルホン酸基を含有するα,β-エチレン性不飽和単量体の具体例としては、スチレンスルホン酸等を挙げることができる。
 酸無水物基を含有するα,β-エチレン性不飽和単量体の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等のα,β-エチレン性不飽和多価カルボン酸無水物を挙げることができる。
 これらのα,β-エチレン性不飽和酸単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのα,β-エチレン性不飽和酸単量体の中でも、α,β-エチレン性不飽和カルボン酸単量体が好ましく、エチレン性不飽和モノカルボン酸単量体がより好ましく、メタクリル酸が特に好ましい。
 また、α,β-エチレン性不飽和酸単量体はアルカリ金属塩又はアンモニウム塩であってもよい。
 ニトリル基含有高飽和共重合体ゴム(a)中のα,β-エチレン性不飽和酸単量体単位の含有量は、特に限定されないが、0.5~10重量%が好ましく、1~8重量%がより好ましく、2~6重量%が特に好ましい。当該含有量が0.5重量%以上であることにより、引張強度により優れるディップ成形品を得ることができ、当該含有量が10重量%以下であることにより、風合いに優れ、また、密着状態の持続性により優れるディップ成形品を得ることができる。
 〔その他の単量体〕
 ニトリル基含有高飽和共重合体ゴム(a)は、α,β-エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位(共役ジエン単量体単位中の炭素-炭素二重結合を水素添加した構造単位も含む。)、及びα,β-エチレン性不飽和酸単量体単位以外に、α,β-エチレン性不飽和ニトリル単量体、共役ジエン単量体及びα,β-エチレン性不飽和酸単量体と共重合可能なその他の単量体(単に、「その他の単量体」という場合がある。)の単位を含んでいてもよい。
 このようなその他の単量体の単位としては、特に限定されず、例えば、ビニル芳香族単量体の単位、α,β-エチレン性不飽和カルボン酸エステル単量体の単位、α,β-エチレン性不飽和アミド単量体の単位、アルキルビニルエーテル単量体の単位等を挙げることができる。
 ビニル芳香族単量体の具体例としては、スチレン、アルキルスチレン、ビニルナフタレン等を挙げることができる。
 α,β-エチレン性不飽和カルボン酸エステル単量体は、α,β-エチレン性不飽和モノカルボン酸エステル単量体であってもα,β-エチレン性不飽和多価カルボン酸エステル単量体であってもよい。
 α,β-エチレン性不飽和モノカルボン酸エステル単量体の具体例としては、アクリル酸エステル単量体及びメタクリル酸エステル単量体(以下、アクリル酸及びメタクリル酸を総称して、「(メタ)アクリル酸」ということがある。)等を挙げることができる。
 (メタ)アクリル酸エステル単量体の具体例としては、(メタ)アクリル酸アルキルエステル単量体、(メタ)アクリル酸アリールエステル単量体等を挙げることができる。
 また、(メタ)アクリル酸アルキルエステル単量体及び(メタ)アクリル酸アリールエステル単量体は、アルキル基及びアリール基のうちのいずれかの水素原子が、ハロゲン原子、水酸基、エポキシ基、アミノ基、シアノ基、アルコキシ基等で置換されたものであってもよい。
 (メタ)アクリル酸アルキルエステル単量体の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸1-シアノプロピル、(メタ)アクリル酸2-エチル-6-シアノヘキシル、(メタ)アクリル酸3-シアノプロピル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸2-メトキシエチル等を挙げることができる。
 α,β-エチレン性不飽和多価カルボン酸エステル単量体の具体例としては、α,β-エチレン性不飽和ジカルボン酸ジエステル単量体、α,β-エチレン性不飽和トリカルボン酸トリエステル単量体等を挙げることができる。
 α,β-エチレン性不飽和ジカルボン酸ジエステル単量体の具体例としては、マレイン酸ジエチル、マレイン酸ジブチル等のマレイン酸ジエステル単量体;フマル酸ジエチル、フマル酸ジブチル等のフマル酸ジエステル単量体;イタコン酸ジメチル、イタコン酸ジエチル等のイタコン酸ジエステル単量体等を挙げることができる。
 α,β-エチレン性不飽和アミド単量体の具体例としては、(メタ)アクリル酸のアミド誘導体を挙げることができ、その代表例としては、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等を挙げることができる。
 アルキルビニルエーテル単量体の具体例としては、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、フルオロエチルビニルエーテル、2,2,2-トリフルオロエチルビニルエーテル、2,2,3,3,3-ペンタフルオロプロピルビニルエーテル等を挙げることができる。
 また、その他の単量体として、架橋性単量体が挙げられる。このような架橋性単量体としては、ジビニルベンゼン等のポリビニル芳香族単量体;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等のポリアクリレート単量体;等を挙げることができる。
 以上に例示した、その他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 その他の単量体の単位の含有量は、特に限定されないが、19.5重量%以下であることが好ましく、14重量%以下がより好ましく、9重量%以下がさらに好ましい。当該含有量が19.5重量%以下であることにより、風合いと引張強度とのバランスが優れたディップ成形品が得られる。
 〔ラテックス(A)の製造方法〕
 本発明に係るディップ成形用組成物に含まれるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)を得るための製造方法としては、特に限定されないが、所望の単量体を水及び乳化剤の存在下に乳化重合し、次いで、得られたラテックスに含まれる共重合体中の共役ジエン単量体単位の炭素-炭素二重結合の少なくとも一部を水素添加する方法が好ましく採用できる。
 乳化重合に使用する乳化剤は、通常、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等を使用できる。また、重合開始剤等も乳化重合において通常使用されているものを用いればよい。
 また、重合方式も特に限定されず、回分式、半回分式及び連続式のいずれでもよい。
 重合温度は、特に限定されないが、0~95℃が好ましく、5~70℃がより好ましい。
 重合する際には、必要に応じて、分子量調整剤、粒径調整剤、キレート化剤、酸素捕捉剤等の、乳化重合において使用され得る重合副資材を使用することができる。
 〔水素化〕
 乳化重合により得られたラテックスを、水素化触媒の存在下、得られたラテックスに含まれる共重合体中の共役ジエン単量体単位の炭素-炭素二重結合の少なくとも一部を、水素により水素化することにより、ラテックス(A)を得ることができる。
 水素化触媒としては、例えば、白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)の水溶性化合物または水分散性化合物が挙げられる。これらの水素化触媒を、例えば、担体に担持することなく、ラテックス中に溶解または分散させて水素化反応に供してもよい。水素化触媒のより具体的な例としては、パラジウム化合物及びロジウム化合物が好ましく、パラジウム化合物が特に好ましい。また、2種以上の白金族元素化合物を併用してもよいが、その場合もパラジウム化合物を主たる触媒成分とすることが好ましい。
 パラジウム化合物は、水素化触媒活性を有するものであれば特に限定されないが、水溶性又は水分散性のものが好ましく、水溶性のものがさらに好ましい。パラジウム化合物の形態は、例えば、塩及び錯塩である。
 パラジウム化合物としては、例えば、酢酸パラジウム、シアン化パラジウムなどの有機酸塩;フッ化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのハロゲン化物;硝酸パラジウム、硫酸パラジウムなどの酸素酸塩;酸化パラジウム;水酸化パラジウム;ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラクロロパラジウム酸ナトリウム、ヘキサクロロパラジウム酸アンモニウムなどのパラジウム化合物;テトラシアノパラジウム酸カリウムなどの錯塩;等が挙げられる。
 以上に例示したパラジウム化合物の中でも、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、塩化パラジウム、テトラクロロパラジウム酸ナトリウム、へキサクロロパラジウム酸アンモニウムが好ましく、酢酸パラジウム、硝酸パラジウム及び塩化パラジウムがより好ましい。
 ロジウム化合物としては、例えば、塩化ロジウム、臭化ロジウム、ヨウ化ロジウム等のハロゲン化物;硝酸ロジウム、硫酸ロジウム等の無機酸塩;酢酸ロジウム、蟻酸ロジウム、プロピオン酸ロジウム、酪酸ロジウム、吉草酸ロジウム、ナフテン酸ロジウム、アセチルアセトン酸ロジウム等の有機酸塩;酸化ロジウム;三水酸化ロジウム;等が挙げられる。
 白金族元素の化合物は市販のものを入手してもよく、公知の方法で調製してもよい。
 白金族元素の化合物をラテックスに溶解又は分散させる方法は特に限定されず、該化合物を直接ラテックスに添加する方法、該化合物を水に溶解または分散した状態で加える方法等が挙げられる。
 水素化反応の温度は、0℃~200℃が好ましく、5℃~150℃がより好ましく、10~100℃がさらに好ましい。反応温度を200℃以下とすることで、ニトリル基の水素化のような副反応を抑えることができる。また、反応温度を0℃以上とすることで、十分な反応速度が得られる。
 水素の圧力は、大気圧~20MPaが好ましく、大気圧~15MPaがより好ましく、大気圧~10MPaがさらに好ましい。反応時間は特に限定されないが、30分~50時間が好ましい。
 また、塩基性条件下の水素化反応によれば、ラテックス状態での反応にもかかわらず、水素化反応が速やかに進行する。得られるニトリル基含有高飽和共重合体ゴム(a)の水素化率(反応前の重合体中に存在した炭素-炭素二重結合の総計に対する水素化された炭素-炭素二重結合の割合)は、上記した各種の反応条件を適宜変更することにより、1~100%の範囲で任意に制御することができる。よう素価で表される水素化率は、上述の通り、好ましくは100以下であり、より好ましくは50以下である。
 本発明に係るディップ成形用組成物は、さらに架橋剤を含むことが好ましい。架橋剤を含むことにより、引張強度により優れるディップ成形品が得られる。また、適切な架橋速度で架橋できるよう、さらに架橋促進剤を含むことがより好ましく、所望により酸化亜鉛を含んでいてもよい。
 本発明に係るディップ成形用組成物に含まれるラテックス(A)は、架橋剤、架橋促進剤、酸化亜鉛との配合特性に優れており、配合時に粗大な凝集物の発生が抑制されるため、均一な膜厚のディップ成形品が得られる。
 架橋剤の具体例としては、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアミン類、有機過酸化物架橋剤等が挙げられる。なかでも、硫黄が好ましい。
 有機過酸化物架橋剤としては、従来公知のものを用いることができ、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイドジイソブチリルパーオキサイド、ジ-2,4-ジクロロベンゾイルパーオキサイド、ジ-3,5,5-トリメチルヘキサノイルパーオキサイド、ジオクタノイルパーオキサイド、ジラウロイルパーオキサイド、ジステアロイルパーオキサイド、ジサキシニックアシッドパーオキサイド、ジ-m-トルオイルパーオキサイド、ジベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジ-イソプロピルパーオキシジカーボネート、ビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-2-メトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、(α,α’-ネオデカノイルパーオキシ)ジ-イソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート1-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、1-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ビス-t-ブチルパーオキシイソフタレート、(α,α'-ネオデカノイルパーオキシ)ジ-イソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート1-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、1-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、ビス-t-ブチルパーオキシイソフタレートなどが挙げられる。これらのなかでも、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼンが好ましい。これらは一種単独でまたは複数種併せて用いることができる。
 架橋剤の使用量は、ラテックス(A)の固形分100重量部に対して、好ましくは0.1~5重量部、より好ましく0.3~3重量部、特に好ましくは0.5~2重量部である。
 架橋促進剤の具体例としては、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸等のジチオカルバミン酸類及びそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリア、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(以下「DBU」と略す場合がある)及び1,5-ジアザビシクロ[4,3,0]ノネン-5(以下「DBN」と略す場合がある)、1-メチルイミダゾール、1-エチルイミダゾール、1-フェニルイミダゾール、1-ベンジルイミダゾール、1,2-ジメチルイミダゾール、1-エチル-2-メチルイミダゾール、1-メトキシエチルイミダゾール、1-フェニル-2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-メチル-2-フェニルイミダゾール、1-メチル-2-ベンジルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、1,2,4-トリメチルイミダゾール、1,4-ジメチル-2-エチルイミダゾール、1-メチル-2-メトキシイミダゾール、1-メチル-2-エトキシイミダゾール、1-メチル-4-メトキシイミダゾール、1-メチル-2-メトキシイミダゾール、1-エトキシメチル-2-メチルイミダゾール、1-メチル-4-ニトロイミダゾール、1,2-ジメチル-5-ニトロイミダゾール、1,2-ジメチル-5-アミノイミダゾール、1-メチル-4-(2-アミノエチル)イミダゾール、1-メチルベンゾイミダゾール、1-メチル-2-ベンジルベンゾイミダゾール、1-メチル-5-ニトロベンゾイミダゾール、1-メチルイミダゾリン、1,2-ジメチルイミダゾリン、1,2,4-トリメチルイミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-フェニルイミダゾリン、1-メチル-2-ベンジルイミダゾリン、1-メチル-2-エトキシイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-ウンデシルイミダゾリン、1-メチル-2-ヘプタデシルイミダゾリン、1-メチル-2-エトキシメチルイミダゾリン、1-エトキシメチル-2-メチルイミダゾリンなどの環状アミジン構造を有する塩基性架橋促進剤;テトラメチルグアニジン、テトラエチルグアニジン、ジフェニルグアニジン、1,3-ジ-オルト-トリルグアニジン、オルトトリルビグアニドなどのグアニジン系塩基性架橋促進剤;n-ブチルアルデヒドアニリン、アセトアルデヒドアンモニアなどのアルデヒドアミン系塩基性架橋促進剤等が挙げられる。なかでも、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの架橋促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 架橋促進剤の使用量は、ラテックス(A)の固形分100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~10重量部、特に好ましくは1~5重量部である。
 酸化亜鉛の使用量は、ラテックス(A)の固形分100重量部に対して、好ましくは10重量部以下、より好ましくは8重量部以下、特に好ましくは0.5~5重量部である。
 なお、ラテックス(A)中のニトリル基含有高飽和共重合体ゴム(a)が、α,β-エチレン性不飽和酸単量体単位を有する場合、該単量体単位中の酸基と酸化亜鉛が反応してイオン結合を形成する。よって、このような場合には、酸化亜鉛は架橋剤としての機能を有する。
 本発明に係るディップ成形用組成物には、さらに所望により、pH調整剤、増粘剤、老化防止剤、分散剤、顔料、充填剤、軟化剤、防腐剤等の添加剤を配合してもよい。
 顔料としては、例えば、酸化チタン(TiO)等の白色顔料が挙げられる。
 また、本発明の目的を損なわない限り、ラテックス(A)以外の天然ゴムラテックス、イソプレンゴムラテックス、ニトリルゴムラテックス等のその他のラテックスを併用することもできる。
 ラテックス(A)に、上述した架橋剤、架橋促進剤、酸化亜鉛、添加剤、その他のラテックス等を混合したディップ成形用組成物の固形分濃度は、好ましくは20~45重量%、より好ましくは20~40重量%、さらに好ましくは25~40重量%である。また、前記ディップ成形用組成物のpHは、8.5~12が好ましく、9~11がより好ましい。
 <ディップ成形品>
 本発明のディップ成形品は、前記の本発明に係るディップ成形用組成物をディップ成形してなる。
 ディップ成形法としては、従来公知の方法を採用すればよく、例えば、直接浸漬法、アノード凝着浸漬法、ティーグ凝着浸漬法等が挙げられる。なかでも、均一な厚みを有するディップ成形品が得られやすい点で、アノード凝着浸漬法が好ましい。
 アノード凝着浸漬法の場合、例えば、ディップ成形用型を凝固剤溶液に浸漬して、該型表面に凝固剤を付着させた後、それをディップ成形用組成物に浸漬して、該型表面にディップ成形層を形成すればよい。
 凝固剤としては、例えば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;等が挙げられる。なかでも、塩化カルシウム及び硝酸カルシウムが好ましい。
 凝固剤は、例えば、水、アルコール、又はそれらの混合物の溶液として使用する。凝固剤濃度は、5~50重量%が好ましく、10~30重量%がより好ましい。
 得られたディップ成形層は、加熱処理を施し架橋してもよい。加熱処理を施す前に、例えば水、好ましくは30~70℃の温水に、1~60分程度浸漬し、水溶性不純物(例えば、余剰の乳化剤や凝固剤等)を除去してもよい。この操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、熱処理前に行なうのが好ましい。
 このようにして得られたディップ成形層は、100~150℃の温度で、10~120分の加熱処理を行い、架橋する。加熱の方法としては、赤外線又は熱空気による外部加熱又は高周波による内部加熱による方法が採用できる。なかでも、熱空気による加熱が好ましい。
 架橋したディップ成形層をディップ成形用型から脱着することによって、ディップ成形品が得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。
 脱着後、例えば、60~120℃の温度で、10~120分の加熱処理を行なってもよい。
 ディップ成形品は、さらに、その内側及び/又は外側の表面に、表面処理層が形成されていてもよい。
 本発明に係るディップ成形品として、引張強度が35MPa以上、好ましくは40MPa以上、より好ましくは45MPaのものが容易に得られる。このような引張強度が35MPa以上のディップ成形品は、ラテックス(A)を構成するニトリル基含有高飽和共重合体ゴム(a)のよう素価がより低くなるように水素化したり、α,β-エチレン性不飽和酸単量体単位の含有量を増やしたりすることで、引張強度を好適に向上させることができる。
 また、本発明に係るディップ成形品は、熱老化後の耐寒性に優れている。そのため、高温環境下に置かれた後であっても、低温環境下で好適に使用できる。つまり、本発明に係るディップ成形品は、幅4cm、長さ10cmの短冊状として、130℃の環境下に6日間置いた後、-30℃の環境下で、上記短冊状における両端の長さ方向の接線同士が90°になるまで折り曲げて、ひび割れが発生しないものである。当該ディップ成形品は、輸送ルートにおいて、曝される温度の差が大きい熱履歴となるディップ成形品に有効である。このような熱老化後の耐寒性に優れるディップ成形品は、ニトリル基含有高飽和共重合体ゴム(a)のよう素価がより低くなるように水素化したり、α,β-エチレン性不飽和ニトリル単量体単位の含有量を調節したりすることにより得られるものである。
 本発明に係るディップ成形品は、厚みを約0.03~約3ミリとすることができ、特に厚みが0.05~1ミリの薄手のものに好適に使用できる。具体的には、哺乳瓶用乳首、スポイト、導管、水枕等の医療用品;風船、人形、ボール等の玩具や運動具;加圧成形用バッグ、ガス貯蔵用バッグ等の工業用品;手術用、家庭用、農業用、漁業用及び工業用の手袋;指サック等が挙げられる。特に、薄手の手術用手袋に好適である。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下に実施例及び比較例を挙げて、本発明についてさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。また、これらの例における部及び%は、特に断りのない限り重量基準である。なお、試験、評価は以下によった。
 〔よう素価〕
 ラテックス100グラムをメタノール1リットルで凝固した後、60℃で一晩真空乾燥した。乾燥したゴムのよう素価をJIS K6235に従って測定した。
 〔ディップ成形品(加硫フィルム)引張試験〕
 (ディップ成形品の物性評価用試験片の作製)
 ASTM D412に準じて、ゴム手袋状のディップ成形品をダンベル(Die-C)で打ち抜いて、試験片とした。
 (引張強度、引張応力、伸びの測定)
 得られた試験片を用いて、JIS K6251に準じて、ディップ成形品の引張強度、100%引張応力、200%引張応力、300%引張応力、及び伸びをそれぞれ測定した。
 〔熱老化後の低温曲げ試験〕
 ディップ成形品から幅2cm長さ10cmの短冊状に試験片を切り出した。この試験片をギヤーオーブンに入れて130℃で6日間、加熱処理を行った。その後、-30℃の低温槽内で試験片を90°折り曲げて、外観を目視で観察した。試験片の割れ又はクラックのあるものを×、ないものを○とした。
 〔合成例1(ニトリル基含有高飽和共重合体ゴムラテックス(A1)の作製)〕
 反応容器に、イオン交換水180部、濃度10重量%のドデシルベンゼンスルホン酸ナトリウム水溶液25部、アクリロニトリル35部、メタクリル酸4部及びt-ドデシルメルカプタン(分子量調整剤)0.5部の順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン61部を仕込んだ。反応器を5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部を仕込み、攪拌しながら重合反応を継続し、重合転化率が90%になった時点で、濃度10重量%のハイドロキノン水溶液(重合停止剤)0.1部を加えて重合反応を停止した。次いで、水温60℃で残留単量体を除去し、ニトリル基含有共重合体ゴムラテックス(x)(固形分濃度約30重量%)を得た。
 ニトリル基含有共重合体ゴムラテックス(x)の一部を採取し、それにメタノールを加えて凝固させた後、水洗・乾燥し、ニトリル基含有共重合体ゴムを得た。このニトリル基含有共重合体ゴム各単量体単位量を、H-NMR及び13C-NMRにより求め、結果を表2に示した。
 次に、ニトリル基含有共重合体ゴムラテックス(x)に含有されるゴムの乾燥重量に対するパラジウム含有量が1000重量ppmになるように、オートクレーブ中に、ニトリル基含有共重合体ゴムラテックス(x)及びパラジウム触媒(1重量%酢酸パラジウムアセトン溶液と等重量のイオン交換水を混合した溶液)を添加して、水素圧3MPa、温度50℃で6時間水素添加反応を行い、固形分濃度を調整して、ニトリル基含有高飽和共重合体ゴムのラテックス(A1)(固形分濃度40重量%)を作製した。
 このラテックス(A1)の一部を採取し、それにメタノールを加えて凝固させた後、水洗・乾燥し、ニトリル基含有高飽和共重合体ゴムを得た。このニトリル基含有高飽和共重合体ゴムの各単量体単位量を、H-NMR及び13C-NMRにより求め、また、上述した方法でよう素価を求め、結果を表2に示した。
 〔合成例2(ニトリル基含有高飽和共重合体ゴムラテックス(A2)の作製)〕
 ニトリル基含有共重合体ゴムラテックス(x)に含有されるゴムの乾燥重量に対するパラジウム含有量を1200重量ppmとなるようにパラジウム触媒を添加した以外は、合成例1と同様に操作して、ニトリル基含有高飽和共重合体ゴムラテックス(A2)(固形分濃度40重量%)を作製した。合成例1と同様にして、ニトリル基含有高飽和共重合体ゴムラテックス(A2)に含まれるニトリル基含有高飽和共重合体ゴムの各単量体単位量及びよう素価を求め、結果を表2に示した。
 〔合成例3(ニトリル基含有高飽和共重合体ゴムラテックス(A3)の作製)〕
 ニトリル基含有共重合体ゴムラテックス(x)に含有されるゴムの乾燥重量に対するパラジウム含有量を900重量ppmとなるようにパラジウム触媒を添加した以外は、合成例1と同様に操作して、ニトリル基含有高飽和共重合体ゴムラテックス(A3)(固形分濃度40重量%)を作製した。合成例1と同様にして、ニトリル基含有高飽和共重合体ゴムラテックス(A3)に含まれるニトリル基含有高飽和共重合体ゴムの各単量体単位量及びよう素価を求め、結果を表2に示した。
 〔合成例4(ニトリル基含有高飽和共重合体ゴムラテックス(A4)の作製)〕
 アクリロニトリルを35部から33.5部に、メタクリル酸を4部から5.5部に変更した以外は、合成例1と同様の操作を行なった。これにより、ニトリル基含有高飽和共重合体ゴムラテックス(A4)(固形分濃度39重量%)を作製した。合成例1と同様にして、ニトリル基含有高飽和共重合体ゴムラテックス(A4)に含まれるニトリル基含有高飽和共重合体ゴムの各単量体単位量及びよう素価を求め、結果を表2に示した。
 〔合成例5(ニトリル基含有共重合体ゴムラテックス(B1)の作製)〕
 反応容器に、イオン交換水150部、ドデシルベンゼンスルホン酸ナトリウム1.5部、過硫酸カリウム0.2部、エチレンジアミン四酢酸ナトリウム0.1部、アクリロニトリル27.0部、1,3-ブタジエン67.5部、メタクリル酸5.5部、及びt-ドデシルメルカプタン0.5部を仕込んだ。重合系内の温度を35℃に上昇させて重合反応を開始した。
 重合転化率が50%になった時点で、追加乳化剤として、ドデシルベンゼンスルホン酸ナトリウム1.0部を10%水溶液で一括添加した。
 その後、全単量体の重合転化率が97%になるまで重合を継続し、その後、ジエチルヒドロキシルアミン0.1部を添加して重合反応を停止した。得られたラテックスから、未反応単量体を留去した後、固形分濃度及びpHを調整して、pH8.3のニトリル基含有共重合体ゴムラテックス(B1)(固形分濃度約40%)を得た。次いで、合成例1と同様に操作し、このラテックス(B1)に含まれるニトリル基含有共重合体ゴムの各単量体単位量を求め、結果を表2に示した。
 〔合成例6(ニトリル基含有共重合体ゴムラテックス(B2)の作製)〕
 t-ドデシルメルカプタン1.0部とした以外は合成例4と同様にして、ニトリル基含有共重合体ゴムラテックス(B2)(固形分濃度約:40%、ラテックスpH:8.3)を得た。次いで、合成例1と同様に操作し、このラテックス(B2)に含まれるニトリル基含有共重合体ゴムの各単量体単位量を求め、結果を表2に示した。
 〔実施例1〕
 合成例1で得られたニトリル基含有高飽和共重合体ゴムラテックス(A1)250部(固形分100部に相当)に、硫黄1部、酸化亜鉛1.5部、ジエチルジチオカルバミン酸亜鉛0.5部、酸化チタン1.5部、水酸化カリウム0.03部及び水5.63部を混合して調製した架橋剤分散液8.66部を混合した後、適量の5%水酸化カリウム水溶液、脱イオン水を加えて、固形分濃度30%、pH9.8のディップ成形用組成物(A’1)を得た。
 また、硝酸カルシウム20部、非イオン性乳化剤のポリオキシエチレンオクチルフェニルエーテル0.05部及び水80部を混合して調製した凝固剤水溶液に手袋型を1分間浸漬し、引き上げた後、50℃で3分間乾燥して、凝固剤を手袋型に付着させた。
 次に、凝固剤の付着した手袋型を上記のディップ成形用組成物(A’1)に6分間浸漬し、引き上げた後、そのディップ成形層が形成された手袋型を25℃で3分間乾燥し、次いで40℃の温水に3分間浸漬して、水溶性不純物を溶出させた。
 次いで、その手袋型を80℃で20分間乾燥し、引続き、120℃で25分間熱処理してディップ成形層を架橋した。最後に、架橋したディップ成形層を手袋型から剥して、手袋形状のディップ成形物(AA’1)を得た。このディップ成形物(AA’1)の引張強度、引張応力及び伸びを上述の方法で測定し、結果を表1に示した。
 〔実施例2〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)の代わりに、合成例2で得られたニトリル基含有高飽和共重合体ゴムラテックス(A2)を使用した以外は、実施例1と同様にして、ディップ成形物(AA’2)を調整し、同様に評価を行った。結果を表1に示す。
 〔実施例3〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)の代わりに、合成例3で得られたニトリル基含有高飽和共重合体ゴムラテックス(A3)を使用した以外は、実施例1と同様にして、ディップ成形物(AA’3)を調整し、同様に評価を行った。結果を表1に示す。
 〔実施例4〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)の代わりに、合成例4で得られたニトリル基含有高飽和共重合体ゴムラテックス(A4)を使用した以外は、実施例1と同様にして、ディップ成形物(AA’4)を調整し、同様に評価を行った。結果を表1に示す。
 〔比較例1〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)の代わりに、合成例4で得られたニトリル基含有共重合体ゴムラテックス(B1)を使用した以外は、実施例1と同様にして、ディップ成形物(BB’1)を調整し、同様に評価を行った。結果を表1に示す。
 〔比較例2〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)の代わりに、合成例5で得られたニトリル基含有共重合体ゴムラテックス(B2)を使用した以外は、実施例1と同様にして、ディップ成形物(BB’2)を調整し、同様に評価を行った。結果を表1に示す。
 〔比較例3〕
 ニトリル基含有高飽和共重合体ゴムラテックス(A1)250部の代わりに、合成例1で得られたニトリル基含有共重合体ゴムラテックス(x)333部を使用した以外は、実施例1と同様にして、ディップ成形物(aa’1)を調整し、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から以下のことがわかる。
 本発明で規定するニトリル基含有高飽和共重合体ゴムラテックスを含むディップ成形用組成物をディップ成形してなるディップ成形品は、引張強度及び熱老化後の耐寒性に優れるものであった(実施例1~4)。
 一方、従来のニトリル基含有共重合体ゴムラテックスを含むディップ成形用組成物をディップ成形してなるディップ成形品は、引張強度及び熱老化後の耐寒性に劣るものであった(比較例1~3)。
 本発明は、様々なディップ成形品に利用することができる。

Claims (8)

  1.  α,β-エチレン性不飽和ニトリル単量体単位、及び共役ジエン単量体単位を有し、前記共役ジエン単量体単位の少なくとも一部を水素化してなるニトリル基含有高飽和共重合体ゴム(a)のラテックス(A)を含むディップ成形用組成物。
  2.  ニトリル基含有高飽和共重合体ゴム(a)のよう素価が、100以下である請求項1に記載のディップ成形用組成物。
  3.  ニトリル基含有高飽和共重合体ゴム(a)が、さらにα,β-エチレン性不飽和酸単量体単位を有する請求項1又は2に記載のディップ成形用組成物。
  4.  さらに架橋剤を含む請求項1~3のいずれかに記載のディップ成形用組成物。
  5.  請求項1~4のいずれかに記載のディップ成形用組成物をディップ成形してなるディップ成形品。
  6.  手袋である請求項5に記載のディップ成形品。
  7.  引張強度が35MPa以上である請求項5又は6に記載のディップ成形品。
  8.  幅2cm、長さ10cmの短冊状として、130℃の環境下に6日間置いた後、-30℃の環境下で、上記短冊状における両端の長さ方向の接線同士が90°になるまで折り曲げて、ひび割れが発生しないディップ成形品である請求項5~7のいずれかに記載のディップ成形品。
PCT/JP2015/058978 2014-03-28 2015-03-24 ディップ成形用組成物及びディップ成形品 WO2015147010A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580014873.0A CN106103571B (zh) 2014-03-28 2015-03-24 浸渍成型用组合物和浸渍成型品
KR1020167025639A KR102247461B1 (ko) 2014-03-28 2015-03-24 딥 성형용 조성물 및 딥 성형품
EP15770234.1A EP3124535B1 (en) 2014-03-28 2015-03-24 Use of a composition for dip molding and dip-molded article
MYPI2016703528A MY190720A (en) 2014-03-28 2015-03-24 Composition for dip molding and dip-molded article
JP2016510398A JPWO2015147010A1 (ja) 2014-03-28 2015-03-24 ディップ成形用組成物及びディップ成形品
US15/128,163 US10414908B2 (en) 2014-03-28 2015-03-24 Composition for dip molding and dip-molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068761 2014-03-28
JP2014068761 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147010A1 true WO2015147010A1 (ja) 2015-10-01

Family

ID=54195522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058978 WO2015147010A1 (ja) 2014-03-28 2015-03-24 ディップ成形用組成物及びディップ成形品

Country Status (7)

Country Link
US (1) US10414908B2 (ja)
EP (1) EP3124535B1 (ja)
JP (1) JPWO2015147010A1 (ja)
KR (1) KR102247461B1 (ja)
CN (1) CN106103571B (ja)
MY (1) MY190720A (ja)
WO (1) WO2015147010A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149949A (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体
WO2017164077A1 (ja) * 2016-03-23 2017-09-28 日本ゼオン株式会社 ラテックス組成物および摩擦材
WO2017164078A1 (ja) * 2016-03-23 2017-09-28 日本ゼオン株式会社 ラテックス組成物の製造方法
WO2018163734A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 ラテックス組成物
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
JP2020516761A (ja) * 2017-04-10 2020-06-11 アランセオ・ドイチュランド・ゲーエムベーハー Hxnbrラテックス及び多官能エポキシドを含有する加硫可能な組成物
US11058162B2 (en) 2016-02-25 2021-07-13 Zeon Corporation Method for manufacturing glove
US11065788B2 (en) 2016-02-25 2021-07-20 Zeon Corporation Method for manufacturing gloves
US11236218B2 (en) 2016-09-30 2022-02-01 Zeon Corporation Latex composition and film molded body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239217A4 (en) * 2014-12-25 2018-07-18 Zeon Corporation Dip-molded product
US10280291B2 (en) 2014-12-25 2019-05-07 Zeon Corporation Dip-forming latex composition and dip-formed article
US10287382B2 (en) * 2015-03-13 2019-05-14 Zeon Corporation Nitrile rubber composition and cross-linked rubber
KR102600563B1 (ko) * 2017-11-24 2023-11-09 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 성형된 성형품

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002756A (ja) * 2002-03-26 2004-01-08 Nippon Zeon Co Ltd 水素化共役ジエン系重合体ラテックスおよびその製造方法、ならびに水素化共役ジエン系重合体ゴム
JP2004002768A (ja) * 2002-03-27 2004-01-08 Nippon Zeon Co Ltd 水素化反応混合物から触媒を回収する方法および水素化共役ジエン系重合体の製造方法
WO2010050552A1 (ja) * 2008-10-29 2010-05-06 日本ゼオン株式会社 ニトリル共重合体ラテックス組成物およびニトリル共重合体ゴム組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737555B2 (ja) * 1986-10-31 1995-04-26 三菱化学株式会社 水素化アクリロニトリル−ブタジエンゴム加硫組成物
US5014362A (en) * 1990-05-11 1991-05-14 Tillotson Corporation Elastomeric covering material and hand glove made therewith
JP2637876B2 (ja) * 1992-06-12 1997-08-06 バンドー化学株式会社 加硫性ゴム組成物
WO1998044038A1 (fr) * 1997-03-31 1998-10-08 Nippon Zeon Co., Ltd. Composition caoutchoutee resistante a l'huile et composite de cette composition et de fibres
NZ513955A (en) * 1999-02-12 2001-09-28 Allegiance Corp Powder-free nitrile-coated gloves with an intermediate rubber-nitrile layer between the glove and the coating
US6391409B1 (en) * 1999-02-12 2002-05-21 Allegiance Corporation Powder-free nitrile-coated gloves with an intermediate rubber-nitrile layer between the glove and the coating and method of making same
JP2001011126A (ja) 1999-06-28 2001-01-16 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形物
TW520379B (en) 1999-06-28 2003-02-11 Nippon Zeon Co Dip forming latex and dip-formed article
JP4062828B2 (ja) * 1999-08-20 2008-03-19 日本ゼオン株式会社 架橋性ゴム組成物および架橋物
JP2002173512A (ja) * 1999-11-17 2002-06-21 Sanyo Chem Ind Ltd 含金属単量体組成物及び樹脂組成物
JP2002293995A (ja) * 2001-03-30 2002-10-09 Yokohama Rubber Co Ltd:The ゴム組成物
JP2003096241A (ja) * 2001-09-25 2003-04-03 Yokohama Rubber Co Ltd:The ゴム組成物およびパワーステアリングホース
JP2003246891A (ja) * 2002-02-27 2003-09-05 Nippon Zeon Co Ltd ディップ成形用組成物およびディップ成形品
MY137533A (en) 2002-02-28 2009-02-27 Zeon Corp Dip-forming latex, dip-forming composition and dip-formed article
JP2004034161A (ja) 2002-06-28 2004-02-05 Uht Corp フレキシブルプリント配線板の切断方法
EP1650237A4 (en) 2003-07-31 2010-05-05 Zeon Corp TAUCHCOPOLYMERLATEX
US8117672B2 (en) 2005-05-13 2012-02-21 Kimberly-Clark Worldwide Inc. Nitrile rubber article having natural rubber characteristics
US8250672B2 (en) 2005-05-13 2012-08-28 Kimberly-Clark Worldwide, Inc. Exterior-coated nitrile rubber article having natural rubber characteristics
US20090105424A1 (en) * 2005-05-20 2009-04-23 Zeon Corporation DIP Forming Latex Composition and DIP Formed Article
JPWO2007049689A1 (ja) * 2005-10-28 2009-04-30 日本ゼオン株式会社 ディップ成形品およびディップ成形用組成物
WO2007072900A1 (ja) * 2005-12-21 2007-06-28 Zeon Corporation 架橋性ゴム組成物およびゴム架橋物
JP2007177091A (ja) 2005-12-28 2007-07-12 Nippon Zeon Co Ltd ディップ成形用ラテックス及びディップ成形品
US8389620B2 (en) 2006-06-30 2013-03-05 Four Road Research Ltd. Dip forming latex composition containing crosslinking agent and dip formed article obtained therefrom
JP4457164B2 (ja) 2006-06-30 2010-04-28 有限会社フォアロードリサーチ 架橋剤を含むラテックス組成物およびその架橋成形体
JP2009197149A (ja) * 2008-02-22 2009-09-03 Nippon A&L Inc ディップ成形用共重合体ラテックス、ディップ成形用組成物およびディップ成形品
JP2009235178A (ja) * 2008-03-26 2009-10-15 Jsr Corp ゴム手袋用組成物、及びゴム手袋
KR101126583B1 (ko) * 2008-09-26 2012-03-29 주식회사 엘지화학 황 및 가황 촉진제를 포함하지 않는 고무장갑용 라텍스 수지 조성물 및 그 조성물을 이용한 딥 성형물 제조방법
KR101288780B1 (ko) * 2010-01-29 2013-07-22 주식회사 엘지화학 수소화된 니트릴계 성형물, 및 이의 수소화 방법
CN103228688B (zh) 2010-09-30 2015-05-06 高产有限公司 不使用硫化助剂和硫的弹性体橡胶、和弹性体橡胶产品
WO2012090941A1 (ja) * 2010-12-27 2012-07-05 日本ゼオン株式会社 ゴム組成物およびゴム架橋物
JP5594207B2 (ja) 2011-03-28 2014-09-24 日本ゼオン株式会社 ディップ成形用ラテックスの製造方法、ディップ成形用ラテックス及びディップ成形用組成物並びにディップ成形物
JP5983614B2 (ja) * 2011-08-31 2016-09-06 日本ゼオン株式会社 接着剤組成物
KR101424856B1 (ko) 2011-11-22 2014-08-04 주식회사 엘지화학 딥 성형용 카르본산 변성 니트릴계 공중합체 라텍스, 이를 포함하는 딥 성형용 라텍스 조성물 및 이로부터 제조된 성형품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002756A (ja) * 2002-03-26 2004-01-08 Nippon Zeon Co Ltd 水素化共役ジエン系重合体ラテックスおよびその製造方法、ならびに水素化共役ジエン系重合体ゴム
JP2004002768A (ja) * 2002-03-27 2004-01-08 Nippon Zeon Co Ltd 水素化反応混合物から触媒を回収する方法および水素化共役ジエン系重合体の製造方法
WO2010050552A1 (ja) * 2008-10-29 2010-05-06 日本ゼオン株式会社 ニトリル共重合体ラテックス組成物およびニトリル共重合体ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124535A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377893B2 (en) 2013-07-16 2019-08-13 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
JP2017149949A (ja) * 2016-02-25 2017-08-31 日本ゼオン株式会社 ラテックス組成物および膜成形体
US11065788B2 (en) 2016-02-25 2021-07-20 Zeon Corporation Method for manufacturing gloves
US11058162B2 (en) 2016-02-25 2021-07-13 Zeon Corporation Method for manufacturing glove
US20190093724A1 (en) 2016-03-23 2019-03-28 Zeon Corporation Method for producing latex composition
US11067145B2 (en) 2016-03-23 2021-07-20 Zeon Corporation Method for producing latex composition
JPWO2017164078A1 (ja) * 2016-03-23 2019-02-07 日本ゼオン株式会社 ラテックス組成物の製造方法
CN108884232A (zh) * 2016-03-23 2018-11-23 日本瑞翁株式会社 胶乳组合物的制造方法
CN108779297A (zh) * 2016-03-23 2018-11-09 日本瑞翁株式会社 胶乳组合物和摩擦材料
JP7036003B2 (ja) 2016-03-23 2022-03-15 日本ゼオン株式会社 ラテックス組成物の製造方法
JPWO2017164077A1 (ja) * 2016-03-23 2019-01-31 日本ゼオン株式会社 ラテックス組成物および摩擦材
WO2017164077A1 (ja) * 2016-03-23 2017-09-28 日本ゼオン株式会社 ラテックス組成物および摩擦材
WO2017164078A1 (ja) * 2016-03-23 2017-09-28 日本ゼオン株式会社 ラテックス組成物の製造方法
US11236218B2 (en) 2016-09-30 2022-02-01 Zeon Corporation Latex composition and film molded body
JPWO2018163734A1 (ja) * 2017-03-08 2020-01-09 日本ゼオン株式会社 ラテックス組成物
WO2018163734A1 (ja) * 2017-03-08 2018-09-13 日本ゼオン株式会社 ラテックス組成物
JP7131540B2 (ja) 2017-03-08 2022-09-06 日本ゼオン株式会社 ラテックス組成物
JP2020516761A (ja) * 2017-04-10 2020-06-11 アランセオ・ドイチュランド・ゲーエムベーハー Hxnbrラテックス及び多官能エポキシドを含有する加硫可能な組成物

Also Published As

Publication number Publication date
MY190720A (en) 2022-05-12
EP3124535A1 (en) 2017-02-01
KR102247461B1 (ko) 2021-04-30
CN106103571B (zh) 2018-08-28
US20170088700A1 (en) 2017-03-30
CN106103571A (zh) 2016-11-09
US10414908B2 (en) 2019-09-17
KR20160140626A (ko) 2016-12-07
EP3124535A4 (en) 2017-04-12
EP3124535B1 (en) 2021-03-17
JPWO2015147010A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015147010A1 (ja) ディップ成形用組成物及びディップ成形品
JP6360970B2 (ja) カルボン酸変性ニトリル系共重合体ラテックスを含むディップ成形用ラテックス組成物及びこれから製造されたディップ成形品
JP3900530B2 (ja) ディップ成形品、ディップ成形用組成物およびディップ成形品の製造方法
TWI701268B (zh) 羧酸改質腈系共聚物乳膠組成物、製備彼之方法、包含彼之浸漬模製用乳膠組成物及由彼模製之物件
EP3421533B1 (en) Method for manufacturing glove
JPWO2006057392A1 (ja) ディップ成形用組成物及びディップ成形品
JP5594207B2 (ja) ディップ成形用ラテックスの製造方法、ディップ成形用ラテックス及びディップ成形用組成物並びにディップ成形物
JP2017149925A (ja) ラテックス組成物および膜成形体
JP6349850B2 (ja) ディップ成形用組成物およびディップ成形品
WO2015146974A1 (ja) ディップ成形品およびディップ成形品の製造方法
EP3753981A1 (en) Latex composition and film molded article
US11851548B2 (en) Latex composition
EP3421534B1 (en) Method for manufacturing gloves
JP2015105281A (ja) ディップ成形用組成物およびディップ成形品
JP4618129B2 (ja) ディップ成形用組成物及びディップ成形品
JPWO2007015450A1 (ja) ディップ成形品
WO2019146526A1 (ja) カルボキシ基含有水素化ニトリルゴムの製造方法
JP2020049825A (ja) ディップ成形体の製造方法
JP2019034982A (ja) ラテックス組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510398

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025639

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015770234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015770234

Country of ref document: EP