WO2015146886A1 - Gas barrier film, method for manufacturing same, and electronic device using same - Google Patents

Gas barrier film, method for manufacturing same, and electronic device using same Download PDF

Info

Publication number
WO2015146886A1
WO2015146886A1 PCT/JP2015/058684 JP2015058684W WO2015146886A1 WO 2015146886 A1 WO2015146886 A1 WO 2015146886A1 JP 2015058684 W JP2015058684 W JP 2015058684W WO 2015146886 A1 WO2015146886 A1 WO 2015146886A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
group
film
barrier film
Prior art date
Application number
PCT/JP2015/058684
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 良孝
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016510324A priority Critical patent/JPWO2015146886A1/en
Publication of WO2015146886A1 publication Critical patent/WO2015146886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to a gas barrier film, a manufacturing method thereof, and an electronic device using the same. More specifically, the present invention relates to a gas barrier film having high gas barrier properties and excellent stability under a high temperature and high humidity environment, a method for producing the same, and an electronic device using the same.
  • a gas barrier layer is formed on a substrate such as a film by a plasma CVD method (Chemical Vapor Deposition). And a method of forming a gas barrier layer by applying a surface treatment (modification treatment) after applying a coating liquid containing polysilazane as a main component on a substrate (Japanese Patent Application Laid-Open No. 2009-255040). No., JP 2012-148416 A).
  • Japanese Patent Laid-Open No. 2009-255040 discloses polysilazane for the purpose of achieving both a thick gas barrier layer and a suppression of cracks in the thick gas barrier layer in order to obtain high gas barrier properties.
  • Japanese Patent Laid-Open No. 2012-148416 discloses a gas barrier property by covering a defect of a gas barrier layer formed by vapor deposition by laminating a polysilazane film having a transition metal compound on the gas barrier layer formed by vapor deposition. It is described to improve.
  • JP-A-63-191832 describes a method for obtaining polyaluminosilazane by heat-reacting polysilazane and aluminum alkoxide as a film material having high hardness and excellent heat resistance and oxidation resistance.
  • Japanese Patent Application Laid-Open No. 2012-56101 discloses a gas barrier film having a gas barrier layer produced using a polysilazane compound on both surfaces of a base material.
  • JP-A-63-191832 also requires performance stability in a high-temperature and high-humidity environment when applied to a gas barrier film having a gas barrier layer on a substrate.
  • gas barrier films that require high barrier properties such as sealing materials for electronic devices such as organic EL elements, are exposed to harsh environments.
  • the stability of the gas barrier performance before and after was not sufficient.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas barrier film having high gas barrier properties and excellent stability under high temperature and high humidity conditions.
  • the present inventor conducted intensive research to solve the above problems.
  • at least one of the gas barrier layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, silicon and
  • the present inventors have found that the above problems can be solved by a gas barrier film containing (except for carbon) and have completed the present invention.
  • At least one gas barrier layer obtained by applying a coating solution containing polysilazane on both surfaces of the substrate to obtain a coating layer and then performing a modification treatment by irradiating the coating layer with active energy rays.
  • a gas barrier film each having At least one of the gas barrier layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, excluding silicon and carbon) Containing a gas barrier film.
  • At least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is aluminum (Al), indium (In), gallium (Ga), The above-mentioned 1. which is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), germanium (Ge), and boron (B).
  • At least one gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is formed on both surfaces of the base material. Having 1 above. Or 2.
  • a gas barrier layer formed by a vapor deposition method is further included. After the gas barrier layer formed by the vapor deposition method has applied the coating liquid containing the polysilazane to obtain a coating layer, active energy rays are applied to the coating layer. Are formed adjacent to the gas barrier layer obtained by performing the modification treatment by irradiation ⁇ 3.
  • the gas barrier film according to any one of the above.
  • the gas barrier layer formed by the vapor deposition method is formed between the base material and the coating film layer.
  • the active energy ray is a vacuum ultraviolet ray, ⁇ 5.
  • the gas barrier film according to any one of the above.
  • the thickness of the base material is 125 ⁇ m or less. ⁇ 6.
  • the gas barrier film according to any one of the above.
  • a gas barrier layer is formed on both surfaces of the substrate by applying a coating liquid containing polysilazane to obtain a coating layer, and applying a modification treatment by irradiating the coating layer with active energy rays to obtain a gas barrier layer.
  • Forming a gas barrier film comprising: At least one of the coating layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (excluding silicon and carbon) ) Containing a gas barrier film.
  • An electronic device body 1 above. ⁇ 7. 7.
  • a gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is opposite to the electronic device body of the substrate. 8. provided on the side surface.
  • FIG. 101 is a plasma CVD apparatus
  • 102 is a vacuum chamber
  • 103 is a cathode electrode
  • 105 is a susceptor
  • 106 is a heat medium circulation system
  • 107 is a vacuum exhaust system
  • 108 is a gas introduction system
  • 109 is a high-frequency power source
  • 110 is a base material
  • 160 is a heating / cooling device.
  • It is a schematic diagram which shows an example of the other manufacturing apparatus used for formation of a vapor deposition gas barrier.
  • 1 is a gas barrier film
  • 2 is a substrate
  • 3 is a vapor deposition gas barrier layer
  • 31 is a manufacturing apparatus
  • 32 is a delivery roller
  • 33, 34, 35, and 36 are transport rollers
  • 39 and 40 are film forming rollers
  • 41 is a gas supply pipe
  • 42 is a power source for generating plasma
  • 43 and 44 are magnetic field generators
  • 45 is a winding roller.
  • 21 is an apparatus chamber
  • 22 is a Xe excimer lamp
  • 23 is an excimer lamp holder that also serves as an external electrode
  • 24 is a sample stage
  • 25 is a sample on which a layer is formed
  • 26 is a light shielding plate It is.
  • the present invention provides a gas barrier layer obtained by applying a coating solution containing polysilazane on both surfaces of a substrate to obtain a coating layer, and then subjecting the coating layer to irradiation with active energy rays to perform a modification treatment.
  • the coating layer is formed. Since it is modified from the surface of the layer, oxygen and moisture do not enter the coating layer, and oxidation to the inside of the coating layer and the interface between the coating layer and the substrate is difficult to proceed. Therefore, the unmodified coating layer remains unstable, and there is a problem that the performance such as gas barrier properties after storing under high temperature and high humidity is deteriorated.
  • the layer that does not contain (element) is irradiated with energy rays as a modification treatment, the dangling bond increases as described above, or the absorbance at 250 nm or less increases, and the layer reaches the inside. The energy rays gradually become difficult to penetrate and only the layer surface is modified.
  • the reason is not clear, when an additive element is contained, the absorbance on the low wavelength side decreases as the energy beam is irradiated.
  • the coating layer contains an additive element, irradiation with active energy rays such as vacuum ultraviolet rays improves not only the surface layer portion of the coating layer but also the inside of the coating layer in the film thickness direction. Is performed uniformly. As a result, it is considered that not only the gas barrier property is improved, but also a highly stable gas barrier film is formed which is not easily modified in a high-temperature and high-humidity environment and hardly changes in the film composition.
  • active energy rays such as vacuum ultraviolet rays
  • the gas barrier layer is not formed by providing the gas barrier layer on both surfaces of the substrate as compared with the gas barrier film having the gas barrier layer provided on only one surface of the substrate. Since the gas barrier property does not deteriorate due to the permeation of water vapor from the side surface, a higher gas barrier property can be obtained. In particular, in applications that require extremely high gas barrier properties, such as a sealing material for electronic devices, the influence of water vapor transmission from the side of the base material on which the gas barrier layer is not formed becomes large.
  • the gas barrier layer containing the additive element when the gas barrier layer containing the additive element is provided on at least one surface, the gas barrier layer is formed only on one surface, or on both surfaces. It has been found that the performance is dramatically improved as compared with the case where a gas barrier layer containing no additive element is formed.
  • the curl balance can be improved by providing a coating layer on both sides of the substrate, thereby suppressing deterioration of the support and curling of the film even if the substrate is thinned. It is possible to obtain a gas barrier film excellent in gas barrier properties, bending resistance after storage under high temperature and high humidity conditions, and the like. Therefore, the gas barrier film of the present invention can contribute to weight reduction and thinning of electronic devices.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the gas barrier film of the present invention is obtained by applying a coating liquid containing polysilazane on both the base material and both surfaces of the base material to obtain a coating film layer, and then irradiating the coating film layer with an active energy ray to modify the film. It has at least one gas barrier layer obtained by carrying out.
  • the gas barrier film of the present invention may further contain other members.
  • the gas barrier film of the present invention may have other members on any gas barrier layer between the base material and any gas barrier layer, for example.
  • the other members are not particularly limited, and members used for conventional gas barrier films can be used similarly or appropriately modified.
  • a gas barrier layer a smooth layer, an anchor coat layer, an intermediate layer, a protective layer, a desiccant layer (moisture absorbing layer) and a functionalized layer of an antistatic layer formed by a vapor deposition method.
  • These other members may be used alone or in combination of two or more.
  • the other member may exist as a single layer or may have a laminated structure of two or more layers.
  • a plurality of gas barrier layers may be formed on the same surface. That is, the gas barrier film of the present invention includes both a form in which a plurality of gas barrier layers are formed on one side of the substrate and a form in which a plurality of gas barrier layers are formed on both sides of the substrate.
  • the substrate of the gas barrier film of the present invention (hereinafter also referred to as a substrate) is not particularly limited as long as it can hold a gas barrier layer having gas barrier properties.
  • the said base material may exist as a single layer, or may have a laminated structure of two or more layers.
  • poly (meth) acrylic acid ester polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP ), Polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, and other resin films, organic-inorganic hybrid structures
  • a heat-resistant transparent film product name: Sila-DEC, manufactured by Chisso Corporation having a silsesquioxane having a basic skeleton, and a resin film formed by laminating two or more layers of the above resin It can gel.
  • polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN) and the like are preferably used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used.
  • polyimide or the like as the heat-resistant substrate.
  • thermoelectric substrate ex.Tg> 200 ° C.
  • heating at a temperature of 200 ° C. or higher is possible in the device manufacturing process, which is necessary for increasing the area of the device and improving the operating efficiency of the device.
  • the resistance of the patterned layer can be reduced by using a transparent conductive layer or metal nanoparticles. That is, the initial characteristics of the device can be greatly improved.
  • the thickness of the substrate is not particularly limited, but is preferably 125 ⁇ m or less, and more preferably 50 ⁇ m or less. By setting the thickness of the substrate to 125 ⁇ m or less, a gas barrier film excellent in flexibility can be obtained. Thus, the base material according to the present invention can be thinner than the conventional one, which can contribute to weight reduction and thinning of the electronic device.
  • the lower limit of the thickness of the substrate is not particularly limited, but is preferably 6 ⁇ m or more, more preferably 12 ⁇ m or more from the viewpoint of the physical strength of the substrate.
  • the substrate may have a functional layer such as a transparent conductive layer, a primer layer, or a clear hard coat layer. As the functional layer, in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
  • the base material is transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, the surface of the base material on which the gas barrier layer is provided may be polished to improve smoothness.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material used for the gas barrier film of the present invention can be produced by a conventionally known general method.
  • an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc.
  • a stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis).
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
  • the surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and laminating a smooth layer described later. Accordingly, it is preferable to perform a combination of the above processes.
  • the gas barrier film according to the present invention is obtained by applying a coating liquid containing polysilazane on both sides of a substrate and drying to obtain a coating layer, and then irradiating with active energy rays to perform a modification treatment. It has a gas barrier layer. And at least one layer of the gas barrier layer has at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table as an additive element (however, (Except silicon and carbon).
  • the number of the gas barrier layers is not particularly limited as long as at least one gas barrier layer is provided on both surfaces of the base material. However, from the viewpoint of gas barrier properties, the total number is preferably 3 to 10 layers, more preferably 3 layers in total. Layer to 6 layers.
  • the gas barrier layer containing an additive element may be at least one layer, but it is preferable that two or more gas barrier layers are contained.
  • the gas barrier layer containing the additive element is at least on both sides of the substrate.
  • One layer is preferably included.
  • the position in the stacking direction of the gas barrier layer containing the additive element is not particularly limited, but is preferably present in the outermost layer farthest from the substrate.
  • the coating layer containing the additive element before the modification treatment is present in the outermost layer, and by irradiating active energy rays such as vacuum ultraviolet rays from the outermost layer side, The effect of modifying the layer in the same way is obtained. Therefore, a gas barrier film that is almost uniformly modified in the film thickness direction and that is superior in gas barrier properties and bending resistance even after being stored under high temperature and high humidity conditions can be obtained.
  • the gas barrier layers containing each additive element may have the same composition or different compositions.
  • the gas barrier layer containing an additive element is formed by subjecting a coating layer containing a compound containing an additive element (hereinafter also simply referred to as an additive compound) to a modification treatment by active energy ray irradiation.
  • a coating layer containing a compound containing an additive element hereinafter also simply referred to as an additive compound
  • the gas barrier layer that does not contain the additive element is subjected to, for example, a modification process by irradiation with active energy rays on a coating layer that does not contain the additive element. It is formed by.
  • the additive element is not particularly limited as long as it is an element belonging to Group 2, Group 13, and Group 14 (except silicon and carbon) of the long-period periodic table, but examples of the additive element include beryllium ( Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), boron (B), aluminum (Al), gallium (Ga), indium (In), thallium ( Tl), germanium (Ge), tin (Sn), lead (Pb).
  • Be beryllium
  • Mg magnesium
  • Ca calcium
  • Ba barium
  • Ra radium
  • boron aluminum
  • Al aluminum
  • Ga gallium
  • Tl germanium
  • germanium (Ge), tin (Sn), lead (Pb) at least one selected from the group consisting of aluminum, indium, gallium, magnesium, calcium, germanium, and boron is preferable. More preferred is aluminum or boron, and further
  • the content of the additive element in the gas barrier film of the present invention is preferably 0.001 to 50% by mass, more preferably 0.1 to 40% by mass with respect to the mass of the entire gas barrier layer.
  • the gas barrier film of the present invention has two or more gas barrier layers containing an additive element, the total content of the additive elements in each layer is taken as the additive element content in the gas barrier film.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, nap
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • n is an integer
  • the polysilazane having the structure represented by the general formula (I) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
  • one of preferred embodiments is perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • PHPS perhydropolysilazane
  • the specific compound of polysilazane that can be used in the present invention the content of polysilazane in the coating layer before the modification treatment, the inorganic precursor compound other than polysilazane contained in the coating liquid containing polysilazane, for example,
  • the forms described in paragraphs “0050” to “0075” of Japanese Patent Application Laid-Open No. 2015-033764 can be appropriately employed.
  • a coating layer formed by applying and drying a coating layer forming coating solution to which an additive compound has been added may be formed.
  • the additive compound include a metal alkoxide compound.
  • metal alkoxide compounds include, for example, beryllium acetylacetonate, trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert borate.
  • a compound having a branched alkoxy group is preferable from the viewpoint of reactivity and solubility, and a compound having a 2-propoxy group or a sec-butoxy group is more preferable.
  • metal alkoxide compounds having an acetylacetonate group are also preferred.
  • the acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy.
  • a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
  • the central element of the metal alkoxide compound an element that easily forms a coordinate bond with a nitrogen atom in polysilazane is preferable, and Al or B having a high Lewis acidity is more preferable.
  • More preferred metal alkoxide compounds are, specifically, magnesium ethoxide, triisopropyl borate, aluminum trisec-butoxide, aluminum ethyl acetoacetate diisopropylate, calcium isopropoxide, indium isopropoxide, gallium isopropoxide.
  • metal alkoxide compound a commercially available product or a synthetic product may be used.
  • commercially available products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris).
  • Ethyl acetoacetate Ethyl acetoacetate
  • aluminum chelate M aluminum alkyl acetoacetate / diisopropylate
  • aluminum chelate D aluminum chelate
  • aluminum chelate A W
  • AL-M acetoalkoxy aluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.
  • Moth Chicks series manufactured by Matsumoto Fine Chemical Co., Ltd.
  • the coating liquid containing polysilazane inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
  • the following compounds can be used.
  • Boron compounds Boron oxide, boron tribromide, boron trifluoride, boron triiodide, sodium cyanoborohydride, diborane, boric acid, trimethyl borate, borax, borazine, borane, boronic acid and the like.
  • Indium compounds Indium oxide, indium chloride, etc.
  • the solvent for preparing the coating liquid for forming a coating layer is not particularly limited as long as it can dissolve or disperse polysilazane and an additive compound, but water and reactive groups that easily react with polysilazane (for example, An organic solvent that does not contain a hydroxyl group or an amine group and is inert to polysilazane is preferred, and an aprotic organic solvent is more preferred.
  • the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • an aprotic solvent for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • the concentration of polysilazane in the coating solution for forming a coating layer is not particularly limited, and is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution.
  • the amount of the additive compound used in the coating layer forming coating solution when the additive compound is used is not particularly limited, but is preferably 0.01 to 10 times the mass of the solid content of the polysilazane. The mass is more preferably 0.06 to 6 times.
  • the coating layer forming coating solution preferably contains a catalyst in order to promote modification.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably 0.01 to 2% by mass with respect to polysilazane.
  • the following additives can be used in the coating layer forming coating solution as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • the method for applying the coating liquid for forming a coating layer is not particularly limited, and a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose of use of the gas barrier film.
  • the coating thickness per gas barrier layer is preferably 0.01 to 1 ⁇ m, more preferably 0.02 to 0.6 ⁇ m, and more preferably 0.04 to 0.00 ⁇ m after drying. More preferably, it is 4 ⁇ m.
  • each coating thickness of a some coating film layer may be the same, and may differ.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
  • the drying temperature of the coating layer varies depending on the substrate to be applied, but is preferably 30 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • the coating film layer obtained by applying the coating liquid containing polysilazane may include a step of removing moisture before or during the modification treatment.
  • a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature.
  • the preferable dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferable dew point temperature is ⁇ 5 ° C. (temperature 25 ° C./humidity 10%) or less, and the maintaining time depends on the thickness of the gas barrier layer. It is preferable to set appropriately.
  • the dew point temperature is ⁇ 5 ° C. or less and the maintaining time is 1 minute or more.
  • the lower limit of the dew point temperature is not particularly limited, but is usually ⁇ 50 ° C. or higher, and preferably ⁇ 40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the gas barrier layer converted to silanol by removing water before or during the reforming treatment.
  • the coating layer modification treatment in the present invention refers to a reaction in which part or all of the polysilazane contained in the coating layer obtained above is converted into silicon oxide, silicon nitride, silicon oxynitride, etc. Specifically, it refers to a reaction in which the gas barrier film of the present invention forms an inorganic thin film at a level that can contribute to the development of gas barrier properties as a whole.
  • the reforming treatment in the present invention is performed by irradiating the coating layer with active energy rays after forming the coating layer.
  • Ozone and active oxygen atoms generated by active energy rays, especially vacuum ultraviolet rays (synonymous with vacuum ultraviolet light) have high oxidation ability, and have high density and insulating properties at low temperatures, silicon nitride, silicon nitride A film, a silicon oxynitride film, or the like can be formed.
  • the substrate is heated, and O 2 , H 2 O contributing to ceramics (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated, so that polysilazane is excited, The conversion of polysilazane into ceramic is promoted, and the resulting gas barrier layer becomes denser.
  • the modification is uniformly performed in the film thickness direction not only on the surface layer portion but also inside the coating layer. Therefore, even after storage under high temperature and high humidity conditions, it is possible to obtain a gas barrier film that hardly generates cracks, has excellent interlayer adhesion and bending resistance, and hardly deteriorates gas barrier properties.
  • the active energy ray for example, infrared ray, visible ray, ultraviolet ray, vacuum ultraviolet ray, X ray, electron beam, ⁇ ray, ⁇ ray, ⁇ ray and the like can be used, but electron beam, ultraviolet ray, vacuum ultraviolet ray are preferable, Ultraviolet rays and vacuum ultraviolet rays are more preferred, and vacuum ultraviolet rays are particularly preferred.
  • the vacuum ultraviolet ray referred to in the present invention generally means ultraviolet light containing electromagnetic waves having a wavelength of 10 to 200 nm.
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the coating layer to be irradiated is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the time required for irradiation with ultraviolet rays or vacuum ultraviolet rays is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate and gas barrier layer used.
  • the treatment by vacuum ultraviolet irradiation uses light energy having a wavelength larger than the interatomic bonding force in polysilazane, preferably 100 to 200 nm, more preferably 100 to 180 nm, and bonds the atoms by the action of only photons called photon processes.
  • an inorganic thin film is formed at a relatively low temperature (about 200 ° C. or lower) by proceeding an oxidation reaction with active oxygen or ozone while directly cutting.
  • Examples of such means for generating vacuum ultraviolet rays include, but are not limited to, metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers.
  • the vacuum ultraviolet ray from the source is reflected by the reflector. It is desirable to apply to the polysilazane coating layer before modification.
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet ray source in the present invention.
  • Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease.
  • it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 300 to 10,000 volume ppm (1 volume%), more preferably 500 to 5,000 volume ppm.
  • the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • the illuminance of the vacuum ultraviolet ray on the coating film surface received by the coating film layer is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, high reforming efficiency can be obtained. Moreover, if it is 10 W / cm ⁇ 2 > or less, possibility that ablation will be produced in a coating film or a base material will be damaged is low.
  • Irradiation energy amount of the VUV in coating layer is preferably 10 ⁇ 20000mJ / cm 2, more preferably 20 ⁇ 10000mJ / cm 2, 100 ⁇ 8000mJ / cm 2 More preferably. If the irradiation energy amount is 10 mJ / cm 2 or more, the modification can proceed sufficiently. Moreover, if the irradiation energy amount is 20000 mJ / cm 2 or less, cracks due to over-reformation and thermal deformation of the substrate are unlikely to occur.
  • heating the coating layer simultaneously with vacuum ultraviolet irradiation is also preferably used to promote the modification treatment.
  • the heating method is a method of heating the coating layer by heat conduction by bringing the substrate into contact with a heating element such as a heat block, a method of heating the atmosphere with an external heater such as a resistance wire, and an infrared region such as an IR heater.
  • a heating element such as a heat block
  • an external heater such as a resistance wire
  • an infrared region such as an IR heater.
  • the irradiation temperature (heating temperature) of vacuum ultraviolet rays is preferably 50 to 200 ° C., more preferably 80 to 150 ° C. It is preferable for the irradiation conditions to be within the above-mentioned range since deformation of the substrate and deterioration of strength are unlikely to occur, and the properties of the substrate are not impaired.
  • the irradiation time (heating time) is preferably in the range of 1 second to 10 hours, and more preferably in the range of 10 seconds to 1 hour.
  • the vacuum ultraviolet light used for reforming may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the silica conversion rate ( x in SiO x ) for example, it can be measured using an XPS method.
  • the chemical composition in the gas barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer.
  • the gas barrier layer can be cut and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
  • the chemical composition in the gas barrier layer can be controlled by the types and amounts of polysilazane and additive compounds used when forming the gas barrier layer, conditions for modifying the coating layer, and the like.
  • the thickness per gas barrier layer is preferably from 0.01 to 1 ⁇ m, more preferably from 0.02 to 0.6 ⁇ m, from the viewpoint of achieving both gas barrier properties and flexibility. More preferably, the thickness is 04 to 0.4 ⁇ m.
  • the thickness of the gas barrier layer is 0.01 ⁇ m or more, high gas barrier properties can be obtained. Moreover, if it is 1 micrometer or less, sufficient flexibility will be acquired and the crack of a film
  • the thickness per gas barrier layer is a thickness measured by a transmission electron microscope JEM-2000FX manufactured by JEOL.
  • the polysilazane is modified in the step of irradiating the coating layer with active energy rays such as vacuum ultraviolet rays, so that the layer as a whole is SiO x N y M w (M is an additive element)
  • a gas barrier layer containing silicon oxynitride having a composition of x, y, and w is an atomic ratio of oxygen, nitrogen, and M, respectively, with respect to silicon is formed.
  • active energy rays such as vacuum ultraviolet rays
  • the distribution of the composition SiO x N y M w is a predetermined condition, that is, 0.25 ⁇ x ⁇ 1.1 and 0.4 ⁇ y ⁇ 0.75, and 0 ⁇ w ⁇ 0. It is preferable to satisfy the condition of having a region of .5 in the thickness direction of 50 nm or more.
  • x and y are basically in the range of 2x + 3y ⁇ 4.
  • the coating film contains silanol groups, and there are cases where 2 ⁇ x ⁇ 2.5.
  • the values of x, y, z, and w described above are determined by measuring the element ratio (atomic ratio) in the film thickness direction of each constituent element using, for example, the following apparatus and method. be able to.
  • XPS analysis conditions Apparatus QUANTERASXM (manufactured by ULVAC-PHI Co., Ltd.)
  • X-ray source Monochromatic Al-K ⁇ Measurement area: Si2p, C1s, N1s, O1s, Al Sputtering ion: Ar (2 keV)
  • Depth profile repeat measurement after 1 minute sputtering. One measurement corresponds to a thickness of about 5 nm in terms of a SiO 2 thin film standard sample.
  • the background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • MultiPak manufactured by ULVAC-PHI
  • the first measurement data is excluded because of the influence of surface adsorbed water and organic contamination.
  • the film density of the gas barrier layer of the present invention can be appropriately set according to the purpose.
  • the film density of the gas barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film is improved, so that deterioration of the film under high-temperature and high-humidity conditions and accompanying gas barrier properties can be prevented.
  • the gas barrier film of the present invention preferably further has a gas barrier layer (hereinafter also simply referred to as a vapor deposition gas barrier layer) formed by a vapor deposition method.
  • a gas barrier layer By having a vapor deposition gas barrier layer, a gas barrier film having higher gas barrier properties can be obtained.
  • the vapor deposition gas barrier layer may form only one layer or a plurality of layers.
  • a vapor deposition gas barrier layer may be formed in the one surface side of a base material, and can also be formed in both surfaces.
  • the position in the stacking direction of the vapor deposition gas barrier layer in the gas barrier film of the present invention is not particularly limited, but after applying a coating liquid containing polysilazane to obtain a coating layer, the coating layer is irradiated with active energy rays. It is preferably formed adjacent to the gas barrier layer obtained by performing the modification treatment. By doing in this way, since the defect of a vapor deposition gas barrier layer can be repaired and the adhesiveness of the interface with a vapor deposition gas barrier layer is improved, a higher performance gas barrier layer can be obtained. In addition, a gas barrier film that is difficult to break can be obtained.
  • the coating layer is irradiated with active energy rays for modification treatment. It is preferable to form one or a plurality of gas barrier layers obtained by performing.
  • the film thickness of the vapor deposition gas barrier layer described here is not particularly limited, but is preferably 50 to 600 nm, and more preferably 100 to 500 nm. If it is such a range, it will be excellent in gas barrier performance, bending resistance, cutting process aptitude, etc.
  • the elastic modulus of the vapor deposition gas barrier layer is preferably 15 to 45 GPa, more preferably 20 to 40 GPa. If it is this range, gas-barrier performance, bending tolerance, and cutting processability will be obtained.
  • the elastic modulus can be measured by a nanoindentation method.
  • the vapor deposition method is not particularly limited, and a known thin film deposition technique can be used.
  • vapor deposition, reactive vapor deposition, sputtering, reactive sputtering, chemical vapor deposition, and the like can be given.
  • FIG. 1 is a schematic diagram showing an example of a vacuum plasma CVD apparatus used for forming a vapor deposition gas barrier layer.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the vapor deposition gas barrier layer is preferably formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when producing a vapor deposition gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
  • FIG. 3 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the vapor deposition gas barrier layer.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the vapor deposition gas barrier layer 3 can be appropriately selected and used according to the material of the vapor deposition gas barrier layer 3 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • Examples include silane and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferred from the viewpoints of handling properties of the compound and gas barrier properties of the obtained vapor deposition gas barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the kind of the vapor deposition gas barrier layer 3.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the ratio of the raw material gas and the reactive gas is a reaction that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive as compared with the ratio of the amount of gas. It is excellent in that excellent barrier properties and flex resistance can be obtained by the vapor deposition gas barrier layer 3 formed by not excessively increasing the ratio of the reaction gas. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a gas barrier layer, without impairing productivity.
  • the vapor deposition gas barrier layer is formed by the plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the formed film may be subjected to excimer treatment (modification treatment).
  • excimer treatment vacuum ultraviolet treatment
  • a known method can be used, but vacuum ultraviolet treatment as described in the above-mentioned section “ ⁇ Coating layer reforming treatment>” is preferable, and further 100 to 180 nm. Vacuum ultraviolet treatment with light energy of a wavelength of is preferred.
  • the gas barrier film of the present invention has a smooth layer (underlying layer, primer layer, hard coat layer) between the surface of the base material having the gas barrier layer, preferably between the base material and the first gas barrier layer. May be.
  • the smooth layer is provided in order to flatten the rough surface of the base material on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions on the base material.
  • Such a smooth layer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, the gas barrier film of the present invention preferably further has a smooth layer containing a carbon-containing polymer between the base material and the first gas barrier layer.
  • the smooth layer also contains a carbon-containing polymer, preferably a curable resin.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
  • the smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
  • the surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of ⁇ m many times.
  • AFM Anamic Force Microscope
  • the thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • an anchor coat layer On the surface of the base material, an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene / vinyl alcohol resin, vinyl-modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. Can be used alone or in combination of two or more.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” in 3% isopropyl alcohol) can be used.
  • the gas barrier film of the present invention can be continuously produced and wound into a roll form (so-called roll-to-roll production). In that case, it is preferable to stick and wind up a protective sheet on the surface in which the gas barrier layer was formed.
  • a protective sheet is applied in a place with a high degree of cleanliness. It is very effective to prevent the adhesion of dust. In addition, it is effective in preventing scratches on the gas barrier layer surface that enters during winding.
  • the protective sheet is not particularly limited, and general “protective sheet” and “release sheet” having a configuration in which a weakly adhesive layer is provided on a resin substrate having a thickness of about 100 ⁇ m can be used.
  • the water vapor transmission rate of the gas barrier film of the present invention is preferably as low as possible, but is preferably 0.001 to 0.00001 g / m 2 ⁇ 24 h, for example, 0.0001 to 0.00001 g / m 2 ⁇ 24 h. More preferably.
  • the method for measuring the water vapor transmission rate is not particularly limited, but in the present invention, the water vapor transmission rate measurement method was measured by the Ca method described in the examples described later.
  • the method for producing the gas barrier film of the present invention is not particularly limited. For example, by applying a coating liquid containing polysilazane to obtain a coating layer, and applying a modification treatment by irradiating the coating layer with active energy rays to obtain a gas barrier layer, It can be manufactured by a method including forming a gas barrier layer.
  • at least one of the coating layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, silicon and (Except carbon).
  • the gas barrier layer may be formed on the other surface in the same manner.
  • the modification treatment may be performed on the coating layers on both sides.
  • a first substrate and a second substrate are prepared, and a coating liquid containing polysilazane is applied to one surface to form a coating layer, and the coating layer is irradiated with active energy rays. Then, a gas barrier layer is formed by performing a modification treatment, and then the surfaces of the first base material and the second base material on which the gas barrier layer is not formed are bonded using an adhesive to obtain a gas barrier film. be able to. At this time, at least one layer of the coating layer contains an additive element. Although it does not restrict
  • the gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention provides the electronic device which has an electronic device main body and the gas barrier film of this invention, or the gas barrier film obtained by the manufacturing method which concerns on this invention.
  • the gas barrier film of the present invention may be sealed so that the gas barrier layer containing the additive element is on the side close to the electronic device body, and on the opposite side of the electronic device body across the substrate. It may be sealed.
  • Examples of the electronic device include electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
  • electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV).
  • an organic EL device such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
  • LCD liquid crystal display element
  • PV solar cell
  • the gas barrier film of the present invention can also be used for device film sealing. That is, it is a method of providing the gas barrier film of the present invention on the surface of the device itself as a support.
  • the device may be covered with a protective layer before providing the gas barrier film.
  • the gas barrier film of the present invention can also be used as a device substrate or a film for sealing by a solid sealing method.
  • the solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured.
  • an adhesive agent A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
  • Organic EL device Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
  • the reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom.
  • the gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a ⁇ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarization It has a structure consisting of a film. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the type of the liquid crystal cell is not particularly limited, but more preferably a TN type (Twisted Nematic), an STN type (Super Twisted Nematic), a HAN type (Hybrid Aligned Nematic), a VA type (Vertical Alignment), an EC type, a B type.
  • TN type Transmission Nematic
  • STN type Super Twisted Nematic
  • HAN type Hybrid Aligned Nematic
  • VA Very Alignment
  • an EC type a B type.
  • OCB type Optically Compensated Bend
  • IPS type In-Plane Switching
  • CPA type Continuous Pinwheel Alignment
  • the gas barrier film of the present invention can also be used as a sealing film for solar cell elements.
  • the solar cell element in which the gas barrier film of the present invention is preferably used is not particularly limited. For example, it is a single crystal silicon solar cell element, a polycrystalline silicon solar cell element, a single junction type, or a tandem structure type.
  • Amorphous silicon-based solar cell elements III-V group compound semiconductor solar cell elements such as gallium arsenide (GaAs) and indium phosphorus (InP), II-VI group compound semiconductor solar cell elements such as cadmium tellurium (CdTe), I-III- such as copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGS), etc.
  • Group VI compound semiconductor solar cell element dye-sensitized solar cell element, organic solar cell element, etc. And the like.
  • the solar cell element is a copper / indium / selenium system (so-called CIS system), a copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur.
  • CIS system copper / indium / selenium system
  • CIGS system copper / indium / gallium / selenium system
  • sulfur copper / indium / gallium / selenium / sulfur.
  • a group I-III-VI compound semiconductor solar cell element such as a system (so-called CIGSS system) is preferable.
  • the gas barrier film of the present invention can also be used as an optical member.
  • the optical member include a circularly polarizing plate.
  • a circularly polarizing plate can be produced by laminating a ⁇ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizing plate is 45 °.
  • a polarizing plate one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used.
  • MD longitudinal direction
  • those described in JP-A-2002-86554 can be suitably used. .
  • the polysilazane-containing coating solution prepared above is 250 nm thick on one side of the base material (A side: in this example, the side on which the organic EL element is arranged) with a spin coater.
  • the film was applied to form a film, allowed to stand for 2 minutes, then subjected to additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a coating layer.
  • vacuum ultraviolet irradiation treatment was performed by the following apparatus and method to produce a gas barrier film (sample No. 1).
  • Vacuum Ultraviolet Irradiator Excimer Irradiator MODEL MECL-M-1-200 Wavelength 172nm, stage temperature 100 ° C, Integrated light quantity 6500 mJ / cm 2 , oxygen concentration 0.1 volume%.
  • reference numeral 11 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber.
  • the oxygen concentration can be maintained at a predetermined concentration.
  • Reference numeral 12 denotes an Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm
  • reference numeral 13 denotes an excimer lamp holder that also serves as an external electrode.
  • Reference numeral 14 denotes a sample stage. The sample stage 14 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 11 by a moving means (not shown).
  • the sample stage 14 can be maintained at a predetermined temperature by a heating means (not shown).
  • Reference numeral 15 denotes a sample on which a polysilazane coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm.
  • Reference numeral 16 denotes a light shielding plate, which prevents the vacuum ultraviolet light from being applied to the coating layer of the sample during the aging of the Xe excimer lamp 12.
  • the energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics.
  • the sensor head is installed in the center of the sample stage 14 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 11 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the process, and the sample stage 14 was moved at a speed of 0.5 m / min for measurement.
  • an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
  • the moving speed of the sample stage was adjusted to adjust the irradiation energy to 6500 mJ / cm 2 .
  • the vacuum ultraviolet irradiation was performed after aging for 10 minutes as in the case of irradiation energy measurement.
  • the same polysilazane-containing coating as described above is formed on the surface of the substrate opposite to the surface on which the gas barrier layer is formed (B surface: the surface opposite to the side on which the organic EL element is arranged in this embodiment).
  • the solution was formed into a film with a spin coater to 250 nm and allowed to stand for 2 minutes, and then subjected to additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a coating layer.
  • Example 1 An aluminum-containing coating solution was prepared by the following method.
  • a gas barrier film (Sample No. 1) was prepared in the same manner as in Comparative Example 2 except that the aluminum-containing coating solution obtained above formed a coating layer serving as the first gas barrier layer on the A surface of the substrate. 3) was produced.
  • Example 2 A gas barrier film (sample No. 4) was produced in the same manner as in Comparative Example 2 except that the coating layer serving as a gas barrier layer was formed on the B surface of the base material with the aluminum-containing coating solution obtained above. did.
  • Example 3 With the aluminum-containing coating solution obtained above, except that the coating layer serving as the first gas barrier layer was formed on the A side of the substrate, and further, the coating layer was also formed on the B side of the substrate. In the same manner as in Comparative Example 2, a gas barrier film (Sample No. 5) was produced.
  • Comparative Example 3 A gas barrier film (sample) was prepared in the same manner as in Comparative Example 2 except that when the coating layer serving as a gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to 150 nm. No. 6) was produced.
  • Example 4 A gas barrier film (sample) was formed in the same manner as in Example 1 except that when the coating layer serving as the gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to 150 nm. No. 7) was produced.
  • Example 5 A gas barrier film (sample) was formed in the same manner as in Example 2 except that when the coating layer serving as a gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to a film thickness of 150 nm. No. 8) was produced.
  • Example 6 A gas barrier film (sample) was formed in the same manner as in Example 3 except that when the coating layer serving as the gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to a film thickness of 150 nm. No. 9) was produced.
  • Example 4 When forming a coating film layer serving as a gas barrier layer on the B-side of the substrate, the total amount of light at the time of vacuum ultraviolet irradiation after the coating film layer is formed by changing the spin coating rotation speed to a film thickness of 50 nm A gas barrier film (Sample No. 10) was produced in the same manner as in Comparative Example 2 except that was set to 3000 mJ / cm 2 .
  • Example 7 When forming a coating film layer serving as a gas barrier layer on the B-side of the substrate, the total amount of light at the time of vacuum ultraviolet irradiation after the coating film layer is formed by changing the spin coating rotation speed to a film thickness of 50 nm A gas barrier film (Sample No. 11) was produced in the same manner as in Example 2 except that the pressure was 3000 mJ / cm 2 .
  • Base material polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd., hard coat layer is composed of UV curable resin mainly composed of acrylic resin, PET thickness 125 ⁇ m, CHC thickness 6 ⁇ m
  • a gas barrier layer 100 nm
  • SiOC silicon oxycarbide
  • Comparative Example 6 A gas barrier film (Sample No. 13) was produced in the same manner as in Comparative Example 5 except that the same gas barrier layer as that of Sample 6 was provided on the B surface of the substrate.
  • Example 8 A gas barrier film (sample No. 14) similar to that of sample 13 was prepared except that the second layer of sample 13 was changed to the first layer of sample 3.
  • Example 9 The third layer of sample 13 was formed into a film having a thickness of 40 nm by changing the film thickness of the aluminum-containing coating solution of the first layer of sample 3 to form a polysilazane coating layer. Thereafter, vacuum ultraviolet irradiation was performed by the above apparatus and method (however, the integrated light amount was 3000 mJ / cm 2 ), and a gas barrier layer serving as a third layer was formed. In this way, a gas barrier film (sample No. 15 was produced.
  • Example 10 A gas barrier film (sample No. 16) similar to that of sample 14 was prepared except that the third layer of sample 14 was changed to the third layer of sample 15.
  • Example 11 A gas barrier film (sample No. 17) similar to that of sample 13 was prepared except that the B surface of sample 13 was changed to the B surface of sample 8.
  • Example 12 A gas barrier film (sample No. 18) similar to that of sample 16 was prepared except that the B surface of sample 16 was changed to the B surface of sample 17.
  • Example 13 A gas barrier film (sample No. 20) similar to that of sample 19 was prepared except that the second layer on the A side of sample 19 was changed to the second layer on the A side of sample 14.
  • Example 14 A gas barrier film (sample No. 21) similar to that of sample 19 was prepared except that the third layer on the A surface of sample 19 was changed to the third layer on the A surface of sample 15.
  • Example 15 A gas barrier film (sample No. 22) similar to that of sample 20 was produced except that the third layer on the A side of sample 20 was changed to the third layer on the A side of sample 15.
  • Example 16 A gas barrier film (sample No. 23) similar to that of sample 19 was prepared except that the second layer on the B surface of sample 19 was changed to the first layer on the B surface of sample 17.
  • Example 17 A gas barrier film (sample No. 24) similar to that of sample 21 was prepared except that the second layer on the B surface of sample 21 was changed to the first layer on the B surface of sample 17.
  • Example 18 A gas barrier film (sample No. 25) similar to the sample 24 was produced except that the second layer on the A side of the sample 24 was changed to the second layer on the A side of the sample 20.
  • Example 8 A gas barrier film (sample No. 26) similar to that of sample 19 was prepared except that the thickness of the base material of sample 19 was 25 ⁇ m.
  • Example 19 A gas barrier film (sample No. 27) similar to that of sample 20 was prepared except that the thickness of the base material of sample 20 was 25 ⁇ m.
  • Example 20 A gas barrier film (sample No. 28) similar to that of sample 21 was prepared except that the thickness of the base material of sample 21 was 25 ⁇ m.
  • Example 21 A gas barrier film (sample No. 29) similar to that of sample 23 was produced except that the thickness of the base material of sample 23 was 25 ⁇ m.
  • Example 22 In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, ALCH is the same amount of gallium (III) isopropoxide (Wako Pure Chemical Industries, Ltd.).
  • a gas barrier film (Sample No. 30) was produced in the same manner as Sample 25 except that the thickness was the same as that manufactured by the company.
  • Example 23 In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, ALCH was added in the same amount of indium (III) isopropoxide (Wako Pure Chemical Industries, Ltd.).
  • a gas barrier film (Sample No. 31) was produced in the same manner as Sample 25 except that the thickness was the same as that manufactured by the company.
  • Example 24 In the aluminum-containing coating solution used when preparing the second layer, the third layer on the A side of the sample 25, and the second layer on the B side, ALCH is the same amount of magnesium ethoxide (manufactured by Wako Pure Chemical Industries, Ltd.). A gas barrier film (Sample No. 32) was produced in the same manner as Sample 25 except that the thickness was the same.
  • Example 25 In the aluminum-containing coating solution used to prepare the second layer, the third layer, and the second layer on the B surface of the sample 25, ALCH is the same amount of calcium isopropoxide (manufactured by SIGMA-ALDRICH), A gas barrier film (Sample No. 33) was produced in the same manner as Sample 25 except that the thickness was the same.
  • Example 26 In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, the same amount of ALCH triisopropyl borate (manufactured by Wako Pure Chemical Industries, Ltd.) A gas barrier film (Sample No. 34) was produced in the same manner as Sample 25 except that the thickness was the same.
  • Evaluation of the water vapor barrier property was performed by depositing metal calcium having a thickness of 80 nm on a gas barrier film, and evaluating the time when the formed calcium was 50% area as 50% area time (see below). ). 50% area time before and after exposure to high temperature and high humidity for 500 hours was evaluated, and 50% area time after exposure / 50% area time before exposure was calculated as retention rate (%), and shown in Tables 2-4 It was. As an index of retention rate, 70% or more was considered acceptable, and less than 70% was judged as nonconforming.
  • Vapor deposition device JEOL Ltd., vacuum vapor deposition device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M (raw materials) Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample)
  • a vacuum vapor deposition apparatus manufactured by JEOL Ltd., vacuum vapor deposition apparatus JEE-400
  • metallic calcium was vapor-deposited in a size of 12 mm ⁇ 12 mm through a mask on the outermost gas barrier layer surface of the produced gas barrier film. At this time, the deposited film thickness was set to 80 nm.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed.
  • the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum vapor-deposited surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX Corporation).
  • the water vapor barrier property evaluation sample was produced by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 85 ° C. and 95% RH, and the state in which metallic calcium was corroded with respect to the storage time was observed.
  • the observation was obtained by linearly interpolating the time at which the area where metal calcium was corroded with respect to the metal calcium vapor deposition area of 12 mm ⁇ 12 mm to 50% from the observation results.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under the same high temperature and high humidity conditions of 85 ° C. and 95% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • Each gas barrier film was repeatedly bent 500 times at an angle of 180 ° so as to have a radius of curvature of 2 mm so that the A surface was on top. Thereafter, bending was repeated 500 times at an angle of 180 ° so that the radius was 2 mm so that the B surface was on top. Thereafter, the water vapor transmission rate (water vapor barrier property) was measured in the same manner as described above, the deterioration resistance was calculated according to the following formula from the change in the water vapor transmission rate before and after bending, and the bending resistance was evaluated according to the following criteria. .
  • Deterioration resistance (water vapor transmission rate after bending test / water vapor transmission rate before bending test) ⁇ 100 (%) 5: Deterioration resistance is 95% or more, 4: Deterioration resistance is 85% or more and less than 95%. 3: Deterioration resistance is 50% or more and less than 85%. 2: Deterioration resistance is 10% or more and less than 50%. 1: Deterioration resistance is less than 10%.
  • This test is a sample before being exposed to a high temperature and high humidity of 85 ° C. and 95% RH for 500 hours, and a sample after being exposed to a high temperature and high humidity of 85 ° C. and 95% RH for 500 hours (after 500 hours of DH). Went on both.
  • an organic EL element (after hot water treatment) was produced using a gas barrier film obtained by performing the following hot water treatment on the A surface of the gas barrier film produced above.
  • Hot water treatment The gas barrier film produced above was immersed in hot water at 90 ° C. for 15 minutes, and after natural drying, the surface was dried, and then an organic EL device was produced.
  • the hole transport layer forming coating liquid shown below is applied by an extrusion coater and then dried to form a hole transport layer. did.
  • the coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • the gas barrier film was subjected to cleaning surface modification using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • PEDOT / PSS polystyrene sulfonate
  • Baytron P AI 4083 manufactured by Bayer
  • ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
  • the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
  • the following coating solution for forming a white light-emitting layer was applied by an extrusion coater and then dried to form a light-emitting layer.
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • the host material HA is 1.0 g
  • the dopant material DA is 100 mg
  • the dopant material DB is 0.2 mg
  • the dopant material DC is 0.2 mg
  • 100 g of toluene was prepared as a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • an electron injection layer was formed on the formed electron transport layer.
  • the substrate was put into a decompression chamber and decompressed to 5 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Second electrode Except for the portion that becomes the extraction electrode on the first electrode, aluminum is used as the second electrode forming material on the formed electron injection layer under a vacuum of 5 ⁇ 10 ⁇ 4 Pa so as to have the extraction electrode. Then, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • Each gas barrier film formed up to the second electrode was moved again to a nitrogen atmosphere and cut to a prescribed size using an ultraviolet laser to produce an organic EL device.
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
  • a sealing member was bonded to the organic EL element to which the electrode lead (flexible printed circuit board) was connected using a commercially available roll laminating apparatus to produce an organic EL element.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • dry lamination adhesive two-component reaction type urethane adhesive
  • thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil.
  • thermosetting adhesive The following epoxy adhesive was used as the thermosetting adhesive.
  • the sealing substrate is closely attached and arranged so as to cover the joint portion of the take-out electrode and the electrode lead, and pressure bonding conditions using the pressure roll: pressure roll temperature 120 ° C., pressure 0.5 MPa, apparatus speed 0. Adherent sealing was performed at 3 m / min.
  • Element deterioration tolerance rate (area of black spots generated in elements not subjected to accelerated deterioration processing / area of black spots generated in elements subjected to accelerated deterioration processing) ⁇ 100 (%)
  • the element deterioration resistance rate is 20% or more and less than 60%.
  • X The element deterioration resistance rate is less than 20%.
  • This evaluation was performed on both the sample that was not subjected to hot water treatment (immediately) and the sample that was subjected to hot water treatment (after hot water treatment).
  • Tables 2 to 4 below show the structures and evaluation results of the gas barrier films of each Example and each Comparative Example.
  • the gas barrier films of the present invention produced according to the examples have higher gas barrier properties than those of the prior art, and are very stable even after being stored under high temperature and high humidity conditions. High, maintaining high gas barrier properties and excellent bending resistance. Moreover, since the gas barrier property is maintained even under severe wet heat environment, it has an effect of reducing the occurrence of dark spots by using it as a sealing film for organic EL elements.
  • the gas barrier film of Comparative Example 1 having a gas barrier layer only on one side of the substrate or the gas barrier films of Comparative Examples 2 to 4 having no gas barrier layer containing an additive element are used in a high-temperature and high-humidity environment.
  • the film exhibits a high retention rate of 70% or higher. Furthermore, even after being exposed to a high temperature and high humidity environment, high bending resistance was exhibited.
  • Example 1 the gas barrier film of Example 3 having the gas barrier layer containing the additive element on both sides of the substrate was Example 1 in which the gas barrier layer containing the additive element was provided only on one side. Compared with 2, the retention rate was improved.
  • Examples 8 to 26 by providing the vapor deposition gas barrier layer adjacent to the gas barrier layer prepared using polysilazane, more excellent gas barrier properties, bending resistance, and stability in a high temperature and high humidity environment.
  • the gas barrier film which has this is obtained, and the performance outstanding as a sealing film of an organic EL element is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a gas barrier film with high gas barrier properties and outstanding stability in high-temperature, high-humidity environments. This invention is a gas barrier film having at least one gas barrier layer each on both sides of a substrate, the gas barrier layer being obtained by applying a coating liquid containing polysilazane to obtain a coating film layer and then performing a modification process by irradiation of the coating film layer with an active energy beam, wherein at least one of the gas barrier layers contains at least one element selected from the group consisting of the elements in group 2, group 13, and group 14 of the long-form periodic table (excluding silicon and carbon).

Description

ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイスGas barrier film, method for producing the same, and electronic device using the same
 本発明は、ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイスに関する。より詳細には、本発明は、高いガスバリア性を有し、高温高湿環境下での安定性に優れるガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイスに関する。 The present invention relates to a gas barrier film, a manufacturing method thereof, and an electronic device using the same. More specifically, the present invention relates to a gas barrier film having high gas barrier properties and excellent stability under a high temperature and high humidity environment, a method for producing the same, and an electronic device using the same.
 従来、食品、包装材料、医薬品などの分野で、水蒸気や酸素等のガスの透過を防ぐため、樹脂基材の表面に金属や金属酸化物の蒸着膜等の無機膜を設けた比較的簡易な構造を有するガスバリア性フィルムが用いられてきた。 Conventionally, in the fields of food, packaging materials, pharmaceuticals, etc., in order to prevent the permeation of gases such as water vapor and oxygen, it is relatively simple to provide an inorganic film such as a metal or metal oxide vapor deposition film on the surface of a resin substrate. Gas barrier films having a structure have been used.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムが、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)素子などの電子デバイスの分野にも利用されつつある。このような電子デバイスに、フレキシブル性と軽くて割れにくいという性質を付与するためには、硬くて割れ易いガラス基板ではなく、高いガスバリア性を有するガスバリア性フィルムが必要となってくる。 In recent years, such a gas barrier film that prevents permeation of water vapor, oxygen, and the like is being used in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL) elements. . In order to give such an electronic device the property of being flexible and light and difficult to break, a gas barrier film having high gas barrier properties is required instead of a hard and easily broken glass substrate.
 電子デバイスに適用可能なガスバリア性フィルムを得るための方策としては、樹脂基材上にプラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってフィルムなどの基材上にガスバリア層を形成する方法や、ポリシラザンを主成分とする塗布液を基材上に塗布した後、表面処理(改質処理)を施してガスバリア層を形成する方法が知られている(特開2009-255040号公報、特開2012-148416号公報)。 As a measure for obtaining a gas barrier film applicable to electronic devices, a gas barrier layer is formed on a substrate such as a film by a plasma CVD method (Chemical Vapor Deposition). And a method of forming a gas barrier layer by applying a surface treatment (modification treatment) after applying a coating liquid containing polysilazane as a main component on a substrate (Japanese Patent Application Laid-Open No. 2009-255040). No., JP 2012-148416 A).
 例えば、特開2009-255040号公報には、高いガスバリア性を得るため、ガスバリア層を厚膜化することと、厚膜化したガスバリア層のクラックを抑制することとの両立を図る目的で、ポリシラザンを含む液体を、湿式塗布法を用いてポリシラザン膜を形成する工程と、そのポリシラザン膜に真空紫外線を照射する工程とを、それぞれ2回以上繰り返して行って、基材上に薄膜を積層する技術について開示されている。 For example, Japanese Patent Laid-Open No. 2009-255040 discloses polysilazane for the purpose of achieving both a thick gas barrier layer and a suppression of cracks in the thick gas barrier layer in order to obtain high gas barrier properties. A technique of laminating a thin film on a substrate by repeatedly performing a step of forming a polysilazane film using a wet coating method and a step of irradiating the polysilazane film with vacuum ultraviolet rays at least twice each. Is disclosed.
 また、特開2012-148416号公報には、蒸着によって形成されたガスバリア層上に、遷移金属化合物を有するポリシラザン膜を積層することで、蒸着によって形成されたガスバリア層の欠陥を覆ってガスバリア性を向上させることが記載されている。 Japanese Patent Laid-Open No. 2012-148416 discloses a gas barrier property by covering a defect of a gas barrier layer formed by vapor deposition by laminating a polysilazane film having a transition metal compound on the gas barrier layer formed by vapor deposition. It is described to improve.
 特開昭63-191832号公報には、高硬度で耐熱性、耐酸化性に優れるフィルムの材料として、ポリシラザンとアルミニウムアルコキシドとを加熱反応させてポリアルミノシラザンを得る方法が記載されている。 JP-A-63-191832 describes a method for obtaining polyaluminosilazane by heat-reacting polysilazane and aluminum alkoxide as a film material having high hardness and excellent heat resistance and oxidation resistance.
 一方で、特開2012-56101号公報には、基材の両面にポリシラザン系化合物を用いて作製したガスバリア層を有するガスバリア性フィルムが開示されている。 On the other hand, Japanese Patent Application Laid-Open No. 2012-56101 discloses a gas barrier film having a gas barrier layer produced using a polysilazane compound on both surfaces of a base material.
 しかしながら、特開2009-255040号公報に記載の方法では、ガスバリア層が、ポリシラザン膜に真空紫外線を照射する工程により作製される場合、ガスバリア層内には、まだ加水分解によってアンモニアを発生しうる未反応(未改質)領域が残留しており、これが高温、高湿環境下で徐々に反応することにより、副生成物が生じ、この副生成物の拡散により、ガスバリア層が変形や破壊を受ける場合があり、その結果、ガスバリア性が徐々に低下するという問題があった。そのため、高温高湿下のような過酷な環境下でもガスバリア性の低下が起こりにくいガスバリア性フィルムが求められている。 However, in the method described in Japanese Patent Application Laid-Open No. 2009-255040, when the gas barrier layer is produced by a process of irradiating the polysilazane film with vacuum ultraviolet rays, ammonia is still not generated in the gas barrier layer by hydrolysis. The reaction (unmodified) region remains, and this gradually reacts in a high-temperature, high-humidity environment to produce a by-product. The diffusion of this by-product causes the gas barrier layer to be deformed or broken. In some cases, there is a problem that the gas barrier properties are gradually lowered. Therefore, there is a demand for a gas barrier film that is unlikely to deteriorate in gas barrier properties even under harsh environments such as high temperature and high humidity.
 さらに、より高いガスバリア性を得るためには、ポリシラザン膜を改質する真空紫外線の光量を増やし、複数のガスバリア層を積層する必要があるが、改質の進行度や積層数、膜厚が大きくなるほど、生産性を低下させると同時に、膜中の内部収縮応力が増大し、フレキシブルガスバリア性フィルムとしての特徴である柔軟性が低下し、屈曲等の物理的ストレスに対する耐久性が低下してしまうという課題があった。 Furthermore, in order to obtain higher gas barrier properties, it is necessary to increase the amount of vacuum ultraviolet light that modifies the polysilazane film and to stack a plurality of gas barrier layers. The lower the productivity, the more the internal shrinkage stress in the film increases, the lower the flexibility that is a characteristic of the flexible gas barrier film, and the lower the durability against physical stress such as bending. There was a problem.
 さらに、特開2012-148416号公報に記載の技術では、過酷な環境下で保存した後のガスバリア層の安定性や密着力が不十分であり、かつポリシラザンの未改質部分が残存することで高温高湿環境下での保管後、膜質や層間密着力が大きな劣化を起こし、ガスバリア性が不十分であるという問題があった。 Furthermore, in the technique described in Japanese Patent Application Laid-Open No. 2012-148416, the stability and adhesion of the gas barrier layer after storage in a harsh environment is insufficient, and an unmodified portion of polysilazane remains. After storage in a high-temperature and high-humidity environment, there was a problem that the film quality and interlayer adhesion greatly deteriorated and the gas barrier properties were insufficient.
 特開昭63-191832号公報に記載の方法についても、基材上にガスバリア層を有するガスバリア性フィルムに適用した際に高温高湿環境下での性能安定性が求められている。 The method described in JP-A-63-191832 also requires performance stability in a high-temperature and high-humidity environment when applied to a gas barrier film having a gas barrier layer on a substrate.
 また、特開2012-56101号公報に記載の技術を用いても、有機EL素子のような電子デバイスの封止材など、ハイバリア性が要求されているガスバリア性フィルムにおいて、過酷な環境におかれた前後でのガスバリア性能の安定性が十分なものではなかった。 Further, even when using the technique described in Japanese Patent Application Laid-Open No. 2012-56101, gas barrier films that require high barrier properties, such as sealing materials for electronic devices such as organic EL elements, are exposed to harsh environments. However, the stability of the gas barrier performance before and after was not sufficient.
 したがって、本発明は、上記事情を鑑みてなされたものであり、高いガスバリア性を有し、高温高湿条件環境下での安定性に優れるガスバリア性フィルムを提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas barrier film having high gas barrier properties and excellent stability under high temperature and high humidity conditions.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、基材の両面にポリシラザンを含有する塗布液を塗布して乾燥させ、得られた塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも一方は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有するガスバリア性フィルムによって、上記課題が解決されることを見出し、本発明を完成するに至った。 The present inventor conducted intensive research to solve the above problems. As a result, a gas barrier property having a gas barrier layer obtained by applying a coating liquid containing polysilazane on both sides of the substrate and drying, and irradiating the obtained coating layer with active energy rays to perform a modification treatment And at least one of the gas barrier layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, silicon and The present inventors have found that the above problems can be solved by a gas barrier film containing (except for carbon) and have completed the present invention.
 本発明の上記課題は、以下の手段により達成される。 The above object of the present invention is achieved by the following means.
 1.基材の両面に、ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を少なくとも1層ずつ有するガスバリア性フィルムであって、
 前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルム。
1. At least one gas barrier layer obtained by applying a coating solution containing polysilazane on both surfaces of the substrate to obtain a coating layer and then performing a modification treatment by irradiating the coating layer with active energy rays. A gas barrier film each having
At least one of the gas barrier layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, excluding silicon and carbon) Containing a gas barrier film.
 2.前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素が、アルミニウム(Al)、インジウム(In)、ガリウム(Ga)、マグネシウム(Mg)、カルシウム(Ca)、ゲルマニウム(Ge)、およびホウ素(B)からなる群より選択される少なくとも1種である、前記1.に記載のガスバリア性フィルム。 2. At least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is aluminum (Al), indium (In), gallium (Ga), The above-mentioned 1. which is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), germanium (Ge), and boron (B). The gas barrier film according to 1.
 3.前記基材の両面に、前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素を含有するガスバリア層を少なくとも1層ずつ有する、前記1.または2.に記載のガスバリア性フィルム。 3. At least one gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is formed on both surfaces of the base material. Having 1 above. Or 2. The gas barrier film according to 1.
 4.蒸着法により形成されるガスバリア層をさらに有し、前記蒸着法により形成されるガスバリア層が、前記ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層に隣接して形成される、前記1.~3.のいずれか1項に記載のガスバリア性フィルム。 4. A gas barrier layer formed by a vapor deposition method is further included. After the gas barrier layer formed by the vapor deposition method has applied the coating liquid containing the polysilazane to obtain a coating layer, active energy rays are applied to the coating layer. Are formed adjacent to the gas barrier layer obtained by performing the modification treatment by irradiation ~ 3. The gas barrier film according to any one of the above.
 5.前記蒸着法により形成されるガスバリア層は、前記基材と前記塗膜層との間に形成される、前記4.に記載のガスバリア性フィルム。 5. The gas barrier layer formed by the vapor deposition method is formed between the base material and the coating film layer. The gas barrier film according to 1.
 6.前記活性エネルギー線が真空紫外線である、前記1.~5.のいずれか1項に記載のガスバリア性フィルム。 6. The active energy ray is a vacuum ultraviolet ray, ~ 5. The gas barrier film according to any one of the above.
 7.前記基材の厚みが、125μm以下である、前記1.~6.のいずれか1項に記載のガスバリア性フィルム。 7. 1. The thickness of the base material is 125 μm or less. ~ 6. The gas barrier film according to any one of the above.
 8.ポリシラザンを含有する塗布液を塗布し塗膜層を得る工程と、前記塗膜層に活性エネルギー線を照射し改質処理を行ってガスバリア層を得る工程と、によって、基材の両面にガスバリア層を形成することを含む、ガスバリア性フィルムの製造方法であって、
 前記塗膜層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルムの製造方法。
8). A gas barrier layer is formed on both surfaces of the substrate by applying a coating liquid containing polysilazane to obtain a coating layer, and applying a modification treatment by irradiating the coating layer with active energy rays to obtain a gas barrier layer. Forming a gas barrier film, comprising:
At least one of the coating layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (excluding silicon and carbon) ) Containing a gas barrier film.
 9.電子デバイス本体と、
 前記1.~7.のいずれか1項に記載のガスバリア性フィルムまたは前記8.に記載の製造方法により得られるガスバリア性フィルムと、
を有する、電子デバイス。
9. An electronic device body;
1 above. ~ 7. 7. The gas barrier film according to any one of 8) or 8) above. A gas barrier film obtained by the production method described in 1.
Having an electronic device.
 10.前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素を含有するガスバリア層が、前記基材の前記電子デバイス本体と反対側の面に設けられる、前記9.に記載の電子デバイス。 10. A gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is opposite to the electronic device body of the substrate. 8. provided on the side surface. The electronic device according to.
本発明のガスバリア性フィルムにおける蒸着ガスバリアの形成に用いられる真空プラズマCVD装置の一例を示す模式図である。101はプラズマCVD装置であり、102は真空槽であり、103はカソード電極であり、105はサセプタであり、106は熱媒体循環系であり、107は真空排気系であり、108はガス導入系であり、109は高周波電源であり、110は基材であり、160は加熱冷却装置である。It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the vapor deposition gas barrier in the gas barrier film of this invention. 101 is a plasma CVD apparatus, 102 is a vacuum chamber, 103 is a cathode electrode, 105 is a susceptor, 106 is a heat medium circulation system, 107 is a vacuum exhaust system, and 108 is a gas introduction system. 109 is a high-frequency power source, 110 is a base material, and 160 is a heating / cooling device. 蒸着ガスバリアの形成に用いられる他の製造装置の一例を示す模式図である。1はガスバリア性フィルムであり、2は基材であり、3は蒸着ガスバリア層であり、31は製造装置であり、32は送り出しローラーであり、33、34、35、36は搬送ローラーであり、39、40は成膜ローラーであり、41はガス供給管であり、42はプラズマ発生用電源であり、43、44は磁場発生装置であり、45は巻取りローラーである。It is a schematic diagram which shows an example of the other manufacturing apparatus used for formation of a vapor deposition gas barrier. 1 is a gas barrier film, 2 is a substrate, 3 is a vapor deposition gas barrier layer, 31 is a manufacturing apparatus, 32 is a delivery roller, 33, 34, 35, and 36 are transport rollers, 39 and 40 are film forming rollers, 41 is a gas supply pipe, 42 is a power source for generating plasma, 43 and 44 are magnetic field generators, and 45 is a winding roller. 真空紫外線照射装置の一例を表す模式図である。21は装置チャンバであり、22はXeエキシマランプであり、23は外部電極を兼ねるエキシマランプのホルダーであり、24は試料ステージであり、25は層が形成された試料であり、26は遮光板である。It is a schematic diagram showing an example of a vacuum ultraviolet irradiation device. 21 is an apparatus chamber, 22 is a Xe excimer lamp, 23 is an excimer lamp holder that also serves as an external electrode, 24 is a sample stage, 25 is a sample on which a layer is formed, and 26 is a light shielding plate It is.
 本発明は、基材の両面に、ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を少なくとも1層ずつ有するガスバリア性フィルムであって、前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルムである。 The present invention provides a gas barrier layer obtained by applying a coating solution containing polysilazane on both surfaces of a substrate to obtain a coating layer, and then subjecting the coating layer to irradiation with active energy rays to perform a modification treatment. A gas barrier film having at least one layer, wherein at least one of the gas barrier layers is at least selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table It is a gas barrier film containing one element (however, excluding silicon and carbon).
 このような構成とすることにより、高いガスバリア性を有し、高温高湿環境のような過酷な条件下でも安定性に優れるガスバリア性フィルムが得られうる。 By adopting such a configuration, a gas barrier film having high gas barrier properties and excellent stability even under severe conditions such as a high temperature and high humidity environment can be obtained.
 本発明のガスバリア性フィルムにおける効果発現の詳細なメカニズムは不明であるが、以下のような理由によるものと考えられる。 The detailed mechanism of the effect manifestation in the gas barrier film of the present invention is unknown, but is considered to be due to the following reasons.
 ポリシラザンを含む塗布液を塗布乾燥し塗膜層を得た後、エキシマランプ等による真空紫外線を照射して改質処理を施しガスバリア層を形成する従来のガスバリア性フィルムの製造方法においては、塗膜層の表面から改質されるため、塗膜層内部に酸素や水分が入っていかず、塗膜層内部や、塗膜層と基材との界面までの酸化が進みにくい。よって、未改質の塗膜層が不安定なまま残ってしまい、特に高温高湿下で保存した後のガスバリア性等の性能が劣化するという問題があった。真空紫外線の照射量を増加させ、改質を行う試みもされているが、真空紫外線を当てるにつれ、塗膜層表面にダングリングボンドが形成され、表面吸収される真空紫外線の量が増え、改質の効率が悪くなるという問題があった。 In the conventional method for producing a gas barrier film in which a coating layer containing polysilazane is applied and dried to obtain a coating layer and then subjected to a modification treatment by irradiating with vacuum ultraviolet rays from an excimer lamp or the like, the coating layer is formed. Since it is modified from the surface of the layer, oxygen and moisture do not enter the coating layer, and oxidation to the inside of the coating layer and the interface between the coating layer and the substrate is difficult to proceed. Therefore, the unmodified coating layer remains unstable, and there is a problem that the performance such as gas barrier properties after storing under high temperature and high humidity is deteriorated. Attempts have been made to increase the irradiation amount of vacuum ultraviolet rays for modification, but as vacuum ultraviolet rays are applied, dangling bonds are formed on the surface of the coating layer, and the amount of vacuum ultraviolet rays absorbed is increased. There was a problem that the efficiency of quality deteriorated.
 ポリシラザンを含有する塗布液を塗布乾燥して形成された層であって、第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(以下、単に添加元素とも称する)を含有していない層は、改質処理としてエネルギー線を照射していくと、上述したようにダングリングボンドが増大するためか250nm以下の吸光度が増大していき、層内部までエネルギー線が徐々に侵入しにくくなり層表面しか改質されない。これに対し、理由は明らかではないが、添加元素を含有させると、エネルギー線を照射するにつれ低波長側の吸光度が減少する。このため、塗膜層が添加元素を含んでいれば、真空紫外線などの活性エネルギー線を照射することにより、塗膜層の表層部分だけではなく、塗膜層の内部まで膜厚方向に改質が均一に行われる。その結果、ガスバリア性が向上するだけでなく、高温高湿環境下でも膜変性しにくく、膜組成の変化しにくい、安定性の高いガスバリア性フィルムが形成されているものと考えられる。 A layer formed by applying and drying a coating liquid containing polysilazane, and at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 (hereinafter simply added) When the layer that does not contain (element) is irradiated with energy rays as a modification treatment, the dangling bond increases as described above, or the absorbance at 250 nm or less increases, and the layer reaches the inside. The energy rays gradually become difficult to penetrate and only the layer surface is modified. On the other hand, although the reason is not clear, when an additive element is contained, the absorbance on the low wavelength side decreases as the energy beam is irradiated. For this reason, if the coating layer contains an additive element, irradiation with active energy rays such as vacuum ultraviolet rays improves not only the surface layer portion of the coating layer but also the inside of the coating layer in the film thickness direction. Is performed uniformly. As a result, it is considered that not only the gas barrier property is improved, but also a highly stable gas barrier film is formed which is not easily modified in a high-temperature and high-humidity environment and hardly changes in the film composition.
 上述のように、基材の一方の表面に特定の添加元素を含むガスバリア層を形成すると、添加元素を含まない場合と比べて、ガスバリア性フィルムの安定性は大幅に向上する。しかしながら、高温高湿環境下での安定性をさらに向上させる目的で複数層のガスバリア層を設けても、積層数に応じた安定性の向上を達成することは容易ではないことがわかった。これは、添加元素の導入によるガスバリア層の水蒸気バリア性および安定性の向上によって、基材のガスバリア層を形成していない側の面からの水蒸気の透過の影響が相対的に大きくなるためと考えられる。本発明のガスバリア性フィルムによれば、基材の両面にガスバリア層を設けることによって、基材の一方の表面のみにガスバリア層を設けたガスバリア性フィルムと比較して、ガスバリア層を形成していない側の面からの水蒸気の透過によるガスバリア性の低下が生じないため、より高いガスバリア性が得られうる。特に、電子デバイスの封止材のような非常に高いガスバリア性が求められる用途では、基材のガスバリア層を形成していない側からの水蒸気の透過の影響は大きくなる。本発明によれば、基材の両面にガスバリア層を有するガスバリア性フィルムにおいて、少なくとも一方の面に添加元素を含有するガスバリア層を設けることによって、片面のみにガスバリア層を形成した場合や、両面に添加元素を含まないガスバリア層を形成した場合と比較して、飛躍的に性能が向上することを見出した。 As described above, when a gas barrier layer containing a specific additive element is formed on one surface of the substrate, the stability of the gas barrier film is greatly improved as compared with the case where no additive element is contained. However, it has been found that even if a plurality of gas barrier layers are provided for the purpose of further improving the stability in a high temperature and high humidity environment, it is not easy to achieve the improvement in stability according to the number of layers. This is thought to be due to the relatively large influence of water vapor transmission from the surface of the substrate on which the gas barrier layer is not formed due to the improvement of the water vapor barrier property and stability of the gas barrier layer by the introduction of the additive element. It is done. According to the gas barrier film of the present invention, the gas barrier layer is not formed by providing the gas barrier layer on both surfaces of the substrate as compared with the gas barrier film having the gas barrier layer provided on only one surface of the substrate. Since the gas barrier property does not deteriorate due to the permeation of water vapor from the side surface, a higher gas barrier property can be obtained. In particular, in applications that require extremely high gas barrier properties, such as a sealing material for electronic devices, the influence of water vapor transmission from the side of the base material on which the gas barrier layer is not formed becomes large. According to the present invention, in the gas barrier film having the gas barrier layer on both surfaces of the substrate, when the gas barrier layer containing the additive element is provided on at least one surface, the gas barrier layer is formed only on one surface, or on both surfaces. It has been found that the performance is dramatically improved as compared with the case where a gas barrier layer containing no additive element is formed.
 また、最近、電子デバイスの軽量化や薄膜化に伴って、ガスバリア性フィルムのより一層の軽量化、薄膜化も望まれており、このような要求に応じる手段として、ガスバリア性フィルムの基材の薄膜化が挙げられる。しかしながら、基材を薄くした場合、塗布乾燥による支持体の伸縮、フィルムのカール、これに起因する支持体の劣化やガスバリア性フィルムの割れ等が起こる可能性がある。本発明によれば、基材の両面に塗膜層を設けることにより、カールバランスを改善することができ、これにより、基材を薄くしても支持体の劣化やフィルムのカール等を抑制することができ、ガスバリア性や、高温高湿条件下で保存した後の折り曲げ耐性等に優れたガスバリア性フィルムを得ることができる。よって、本発明のガスバリア性フィルムは、電子デバイスの軽量化や薄膜化に寄与し得る。 Recently, with the reduction in weight and thickness of electronic devices, further reduction in the weight and thickness of gas barrier films has been desired. As a means to meet such demand, One example is thinning. However, when the substrate is thinned, there is a possibility that expansion and contraction of the support due to coating and drying, curling of the film, deterioration of the support due to this, cracking of the gas barrier film, and the like may occur. According to the present invention, the curl balance can be improved by providing a coating layer on both sides of the substrate, thereby suppressing deterioration of the support and curling of the film even if the substrate is thinned. It is possible to obtain a gas barrier film excellent in gas barrier properties, bending resistance after storage under high temperature and high humidity conditions, and the like. Therefore, the gas barrier film of the present invention can contribute to weight reduction and thinning of electronic devices.
 なお、上記のメカニズムは推定によるものであり、本発明は上記メカニズムに何ら限定されるものではない。 Note that the above mechanism is based on estimation, and the present invention is not limited to the above mechanism.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 [ガスバリア性フィルム]
 本発明のガスバリア性フィルムは、基材と、基材の両面に、ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を少なくとも1層ずつ有する。本発明のガスバリア性フィルムは、他の部材をさらに含むものであってもよい。本発明のガスバリア性フィルムは、例えば、基材といずれかのガスバリア層との間に、いずれかのガスバリア層の上に、他の部材を有していてもよい。ここで、他の部材としては、特に制限されず、従来のガスバリア性フィルムに使用される部材が同様にしてあるいは適宜修飾して使用できる。具体的には、蒸着法により形成されるガスバリア層、平滑層、アンカーコート層、中間層、保護層、デシカント層(吸湿層)や帯電防止層の機能化層などが挙げられる。上記他の部材は、単独でもまたは2種以上組み合わせて使用してもよい。また、上記他の部材は、単層として存在してもまたは2層以上の積層構造を有していてもよい。
[Gas barrier film]
The gas barrier film of the present invention is obtained by applying a coating liquid containing polysilazane on both the base material and both surfaces of the base material to obtain a coating film layer, and then irradiating the coating film layer with an active energy ray to modify the film. It has at least one gas barrier layer obtained by carrying out. The gas barrier film of the present invention may further contain other members. The gas barrier film of the present invention may have other members on any gas barrier layer between the base material and any gas barrier layer, for example. Here, the other members are not particularly limited, and members used for conventional gas barrier films can be used similarly or appropriately modified. Specific examples include a gas barrier layer, a smooth layer, an anchor coat layer, an intermediate layer, a protective layer, a desiccant layer (moisture absorbing layer) and a functionalized layer of an antistatic layer formed by a vapor deposition method. These other members may be used alone or in combination of two or more. The other member may exist as a single layer or may have a laminated structure of two or more layers.
 さらに、本発明では、同一の面に複数のガスバリア層が形成されていてもよい。すなわち、本発明のガスバリア性フィルムは、基材の一方の面に複数のガスバリア層が形成される形態、および基材の両面に複数のガスバリア層が形成される形態の双方をも包含する。 Furthermore, in the present invention, a plurality of gas barrier layers may be formed on the same surface. That is, the gas barrier film of the present invention includes both a form in which a plurality of gas barrier layers are formed on one side of the substrate and a form in which a plurality of gas barrier layers are formed on both sides of the substrate.
 〔基材〕
 本発明のガスバリア性フィルムの基材(以下、基材ともいう)としては、ガスバリア性を有するガスバリア層を保持することができるものであれば特に限定されるものではない。また、前記基材は、単層として存在してもまたは2層以上の積層構造を有していてもよい。
〔Base material〕
The substrate of the gas barrier film of the present invention (hereinafter also referred to as a substrate) is not particularly limited as long as it can hold a gas barrier layer having gas barrier properties. Moreover, the said base material may exist as a single layer, or may have a laminated structure of two or more layers.
 例えば、ポリ(メタ)アクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、シクロオレフィンポリマー、シクロオレフィンコポリマー等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等が好ましく用いられ、低リタデーションの観点からシクロオレフィンポリマー、シクロオレフィンコポリマーおよびポリカーボネート(PC)が好ましい。また、光学的透明性、耐熱性、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを好ましく用いることができる。その他にも、耐熱基材としてポリイミド等を用いることも好ましい。これは、耐熱基材(ex.Tg>200℃)を用いることにより、デバイス作製工程で200℃以上の温度での加熱が可能となり、デバイスの大面積化やデバイスの動作効率向上のために必要な透明導電層もしくは金属ナノ粒子によるパターン層の低抵抗化が達成可能となる。すなわちデバイスの初期特性が大幅に改善することが可能となるからである。 For example, poly (meth) acrylic acid ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP ), Polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, polyetherimide, cycloolefin polymer, cycloolefin copolymer, and other resin films, organic-inorganic hybrid structures A heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) having a silsesquioxane having a basic skeleton, and a resin film formed by laminating two or more layers of the above resin It can gel. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN) and the like are preferably used. From the viewpoint of low retardation, cycloolefin polymer, cycloolefin copolymer and polycarbonate (PC) are used. preferable. Further, in terms of optical transparency, heat resistance, and adhesion to the gas barrier layer, a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used. In addition, it is also preferable to use polyimide or the like as the heat-resistant substrate. By using a heat-resistant substrate (ex.Tg> 200 ° C.), heating at a temperature of 200 ° C. or higher is possible in the device manufacturing process, which is necessary for increasing the area of the device and improving the operating efficiency of the device. The resistance of the patterned layer can be reduced by using a transparent conductive layer or metal nanoparticles. That is, the initial characteristics of the device can be greatly improved.
 基材の厚さは、特に制限されないが、125μm以下であることが好ましく、50μm以下であることがより好ましい。基材の厚さを125μm以下とすることで、屈曲性に優れたガスバリア性フィルムが得られうる。このように、本発明に係る基材は、従来と比べてより薄いものを用いることができ、電子デバイスの軽量化、薄膜化に寄与し得る。基材の厚さの下限値は特に制限されないが、基材の物理的強度の観点から、好ましくは6μm以上であり、より好ましくは12μm以上である。該基材は、透明導電層、プライマー層、クリアハードコート層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006-289627号公報の段落番号「0036」~「0038」に記載されているものを好ましく採用できる。 The thickness of the substrate is not particularly limited, but is preferably 125 μm or less, and more preferably 50 μm or less. By setting the thickness of the substrate to 125 μm or less, a gas barrier film excellent in flexibility can be obtained. Thus, the base material according to the present invention can be thinner than the conventional one, which can contribute to weight reduction and thinning of the electronic device. The lower limit of the thickness of the substrate is not particularly limited, but is preferably 6 μm or more, more preferably 12 μm or more from the viewpoint of the physical strength of the substrate. The substrate may have a functional layer such as a transparent conductive layer, a primer layer, or a clear hard coat layer. As the functional layer, in addition to those described above, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
 また、前記基材は、透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。 Further, it is preferable that the base material is transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent gas barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. It is.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材のガスバリア層を設ける表面を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, the surface of the base material on which the gas barrier layer is provided may be polished to improve smoothness.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 本発明のガスバリア性フィルムに用いられる基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The base material used for the gas barrier film of the present invention can be produced by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, etc. A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the base material, but is preferably 2 to 10 times in each of the vertical axis direction and the horizontal axis direction.
 基材の表面には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述する平滑層の積層等を行ってもよく、必要に応じて上記処理を組み合わせて行うことが好ましい。 The surface of the base material may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and laminating a smooth layer described later. Accordingly, it is preferable to perform a combination of the above processes.
 〔ガスバリア層〕
 本発明に係るガスバリア性フィルムは、基材の両面に、ポリシラザンを含有する塗布液を塗布し乾燥して塗膜層を得た後、活性エネルギー線を照射し改質処理を行うことにより得られるガスバリア層を有する。そして、前記ガスバリア層の少なくとも1層は、添加元素として、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する。
[Gas barrier layer]
The gas barrier film according to the present invention is obtained by applying a coating liquid containing polysilazane on both sides of a substrate and drying to obtain a coating layer, and then irradiating with active energy rays to perform a modification treatment. It has a gas barrier layer. And at least one layer of the gas barrier layer has at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table as an additive element (however, (Except silicon and carbon).
 当該ガスバリア層は、基材の両面に少なくとも1層ずつあればその層数は特に制限されないが、ガスバリア性の観点から、好ましくは、合わせて3層~10層であり、より好ましくは合わせて3層~6層である。 The number of the gas barrier layers is not particularly limited as long as at least one gas barrier layer is provided on both surfaces of the base material. However, from the viewpoint of gas barrier properties, the total number is preferably 3 to 10 layers, more preferably 3 layers in total. Layer to 6 layers.
 前記ガスバリア層のうち、添加元素を含有するガスバリア層は、少なくとも1層あればよいが、2層以上含まれることが好ましく、特には、基材の両面に、添加元素を含有するガスバリア層が少なくとも1層ずつ含まれていることが好ましい。 Of the gas barrier layers, the gas barrier layer containing an additive element may be at least one layer, but it is preferable that two or more gas barrier layers are contained. In particular, the gas barrier layer containing the additive element is at least on both sides of the substrate. One layer is preferably included.
 添加元素を含有するガスバリア層の積層方向の位置は、特に制限されないが、基材から最も離れた最外層に存在することが好ましい。この形態であれば、改質処理前の添加元素を含む塗膜層が最外層に存在することになり、当該最外層の側から真空紫外線などの活性エネルギー線を照射することにより、その下部の層の改質が同様に行われる効果が得られる。よって、膜厚方向にほぼ均一に改質され、高温高湿条件下で保存した後でも、ガスバリア性や折り曲げ耐性により優れるガスバリア性フィルムが得られうる。 The position in the stacking direction of the gas barrier layer containing the additive element is not particularly limited, but is preferably present in the outermost layer farthest from the substrate. In this form, the coating layer containing the additive element before the modification treatment is present in the outermost layer, and by irradiating active energy rays such as vacuum ultraviolet rays from the outermost layer side, The effect of modifying the layer in the same way is obtained. Therefore, a gas barrier film that is almost uniformly modified in the film thickness direction and that is superior in gas barrier properties and bending resistance even after being stored under high temperature and high humidity conditions can be obtained.
 添加元素を含有するガスバリア層を2層以上有する場合、各添加元素を含有するガスバリア層は、同じ組成であってもよいし異なる組成であってもよい。 When two or more gas barrier layers containing additive elements are included, the gas barrier layers containing each additive element may have the same composition or different compositions.
 添加元素を含有するガスバリア層は、添加元素を含む化合物(以下、単に添加化合物とも称する)を含有する塗膜層に対して活性エネルギー線照射による改質処理を行うことにより形成される。なお、ガスバリア性フィルムが添加元素を含有しないガスバリア層を含む場合、添加元素を含まないガスバリア層は、例えば、添加元素を含有しない塗膜層に対して活性エネルギー線照射による改質処理を行うことにより形成される。 The gas barrier layer containing an additive element is formed by subjecting a coating layer containing a compound containing an additive element (hereinafter also simply referred to as an additive compound) to a modification treatment by active energy ray irradiation. In addition, when the gas barrier film includes a gas barrier layer that does not contain an additive element, the gas barrier layer that does not contain the additive element is subjected to, for example, a modification process by irradiation with active energy rays on a coating layer that does not contain the additive element. It is formed by.
 添加元素は、長周期型周期表の第2族、第13族、および第14族の元素(ただし、ケイ素および炭素を除く)であれば特に制限されないが、添加元素の例としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)が挙げられる。これらの中でも、高いガスバリア性および高い酸化耐性を有するガスバリア層を得る観点から、アルミニウム、インジウム、ガリウム、マグネシウム、カルシウム、ゲルマニウム、およびホウ素からなる群より選択される少なくとも1種が好ましい。より好ましくはアルミニウムまたはホウ素であり、さらに好ましくはアルミニウムである。これら添加元素は、1種単独であってもよいし、2種以上組み合わせてもよい。 The additive element is not particularly limited as long as it is an element belonging to Group 2, Group 13, and Group 14 (except silicon and carbon) of the long-period periodic table, but examples of the additive element include beryllium ( Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), boron (B), aluminum (Al), gallium (Ga), indium (In), thallium ( Tl), germanium (Ge), tin (Sn), lead (Pb). Among these, from the viewpoint of obtaining a gas barrier layer having high gas barrier properties and high oxidation resistance, at least one selected from the group consisting of aluminum, indium, gallium, magnesium, calcium, germanium, and boron is preferable. More preferred is aluminum or boron, and further preferred is aluminum. These additive elements may be used alone or in combination of two or more.
 本発明のガスバリア性フィルムにおける添加元素の含有量は、ガスバリア層全体の質量に対して0.001~50質量%であることが好ましく、0.1~40質量%であることがより好ましい。なお、本発明のガスバリア性フィルムが添加元素を含有するガスバリア層を2層以上有する場合は、それぞれの層の添加元素の含有量を合計したものをガスバリア性フィルムにおける添加元素の含有量とする。 The content of the additive element in the gas barrier film of the present invention is preferably 0.001 to 50% by mass, more preferably 0.1 to 40% by mass with respect to the mass of the entire gas barrier layer. In addition, when the gas barrier film of the present invention has two or more gas barrier layers containing an additive element, the total content of the additive elements in each layer is taken as the additive element content in the gas barrier film.
 以下、塗膜層形成に用いられる塗布液に含まれるポリシラザン、および添加化合物について説明する。 Hereinafter, polysilazane and additive compounds contained in the coating solution used for forming the coating layer will be described.
 <ポリシラザン>
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
<Polysilazane>
Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシル基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR~Rと同じとなることはない。例えば、R~Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。 In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) may be determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザン(PHPS)である。 In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 なお、本発明で使用できるポリシラザンの具体的な化合物、改質処理前の塗膜層中におけるポリシラザンの含有量、ポリシラザンを含有する塗布液中に含まれるポリシラザン以外の無機前駆体化合物は、例えば、特開2015-033764号公報の段落「0050」~「0075」に記載の形態等を適宜採用することができる。 In addition, the specific compound of polysilazane that can be used in the present invention, the content of polysilazane in the coating layer before the modification treatment, the inorganic precursor compound other than polysilazane contained in the coating liquid containing polysilazane, for example, The forms described in paragraphs “0050” to “0075” of Japanese Patent Application Laid-Open No. 2015-033764 can be appropriately employed.
 <添加化合物>
 添加元素を含むガスバリア層を形成する場合は、添加化合物を添加した塗膜層形成用塗布液を塗布乾燥した塗膜層を形成すればよい。添加化合物の例としては、金属アルコキシド化合物が挙げられる。
<Additive compounds>
In the case of forming a gas barrier layer containing an additive element, a coating layer formed by applying and drying a coating layer forming coating solution to which an additive compound has been added may be formed. Examples of the additive compound include a metal alkoxide compound.
 金属アルコキシド化合物のさらに具体的な例としては、例えば、ベリリウムアセチルアセトネート、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリn-プロピル、ホウ酸トリイソプロピル、ホウ酸トリn-ブチル、ホウ酸トリtert-ブチル、マグネシウムエトキシド、マグネシウムエトキシエトキシド、マグネシウムメトキシエトキシド、マグネシウムアセチルアセトネート、アルミニウムトリメトキシド、アルミニウムトリエトキシド、アルミニウムトリn-プロポキシド、アルミニウムトリイソプロポキシド、アルミニウムトリn-ブトキシド、アルミニウムトリsec-ブトキシド、アルミニウムトリtert-ブトキシド、アルミニウムアセチルアセトナート、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムエチルアセトアセテートジn-ブチレート、アルミニウムジエチルアセトアセテートモノn-ブチレート、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムトリスアセチルアセトネート、アルミニウムトリスエチルアセトアセテート、ビス(エチルアセトアセテート)(2,4-ペンタンジオナト)アルミニウム、アルミニウムアルキルアセトアセテートジイソプロピレート、アルミニウムオキサイドイソプロポキサイドトリマー、アルミニウムオキサイドオクチレートトリマー、カルシウムメトキシド、カルシウムエトキシド、カルシウムイソプロポキシド、カルシウムアセチルアセトネート、ガリウムメトキシド、ガリウムエトキシド、ガリウムイソプロポキシド、ガリウムアセチルアセトナート、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムイソプロポキシド、ゲルマニウムn-ブトキシド、ゲルマニウムtert-ブトキシド、エチルトリエトキシゲルマニウム、ストロンチウムイソプロポキシド、トリス(2,4-ペンタンジオナト)インジウム、インジウムイソプロポキシド、インジウムn-ブトキシド、インジウムメトキシエトキシド、スズn-ブトキシド、スズtert-ブトキシド、スズアセチルアセトネート、バリウムジイソプロポキシド、バリウムtert-ブトキシド、バリウムアセチルアセトネート、タリウムエトキシド、タリウムアセチルアセトネート、鉛アセチルアセトネートなどが挙げられる。 More specific examples of metal alkoxide compounds include, for example, beryllium acetylacetonate, trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tri-tert borate. -Butyl, magnesium ethoxide, magnesium ethoxyethoxide, magnesium methoxyethoxide, magnesium acetylacetonate, aluminum trimethoxide, aluminum triethoxide, aluminum tri-n-propoxide, aluminum triisopropoxide, aluminum tri-n-butoxide , Aluminum tri-sec-butoxide, aluminum tri-tert-butoxide, aluminum acetylacetonate, acetoalkoxyaluminum diisopropylate, aluminum Um ethyl acetoacetate diisopropylate, aluminum ethyl acetoacetate di n-butyrate, aluminum diethyl acetoacetate mono n-butyrate, aluminum diisopropylate mono sec-butylate, aluminum trisacetylacetonate, aluminum trisethylacetoacetate, bis ( Ethyl acetoacetate) (2,4-pentanedionato) aluminum, aluminum alkyl acetoacetate diisopropylate, aluminum oxide isopropoxide trimer, aluminum oxide octylate trimer, calcium methoxide, calcium ethoxide, calcium isopropoxide, calcium Acetyl acetonate, gallium methoxide, gallium ethoxide, galiu Isopropoxide, gallium acetylacetonate, germanium methoxide, germanium ethoxide, germanium isopropoxide, germanium n-butoxide, germanium tert-butoxide, ethyltriethoxygermanium, strontium isopropoxide, tris (2,4-pentanedio Nato) indium, indium isopropoxide, indium n-butoxide, indium methoxyethoxide, tin n-butoxide, tin tert-butoxide, tin acetylacetonate, barium diisopropoxide, barium tert-butoxide, barium acetylacetonate, Examples include thallium ethoxide, thallium acetylacetonate, and lead acetylacetonate.
 これら金属アルコキシド化合物の中でも、反応性、溶解性等の観点から分岐状のアルコキシ基を有する化合物が好ましく、2-プロポキシ基、またはsec-ブトキシ基を有する化合物がより好ましい。また、ガスバリア性能、密着性等の観点から、エトキシ基を有する化合物が好ましい。 Among these metal alkoxide compounds, a compound having a branched alkoxy group is preferable from the viewpoint of reactivity and solubility, and a compound having a 2-propoxy group or a sec-butoxy group is more preferable. Moreover, the compound which has an ethoxy group from viewpoints, such as gas barrier performance and adhesiveness, is preferable.
 さらに、アセチルアセトナート基を有する金属アルコキシド化合物もまた好ましい。アセチルアセトナート基は、カルボニル構造によりアルコキシド化合物の中心元素と相互作用を有するため、取り扱い性が容易になり好ましい。さらに好ましくは上記のアルコキシド基、またはアセチルアセトナート基を複数種有する化合物が反応性や膜組成の観点からより好ましい。 Furthermore, metal alkoxide compounds having an acetylacetonate group are also preferred. The acetylacetonate group is preferable because it has an interaction with the central element of the alkoxide compound due to the carbonyl structure, so that handling is easy. More preferably, a compound having a plurality of alkoxide groups or acetylacetonate groups is more preferable from the viewpoint of reactivity and film composition.
 また、金属アルコキシド化合物の中心元素としては、ポリシラザン中の窒素原子と配位結合を形成しやすい元素が好ましく、ルイス酸性が高いAlまたはBがより好ましい。 As the central element of the metal alkoxide compound, an element that easily forms a coordinate bond with a nitrogen atom in polysilazane is preferable, and Al or B having a high Lewis acidity is more preferable.
 さらに好ましい金属アルコキシド化合物は、具体的には、マグネシウムエトキシド、ホウ酸トリイソプロピル、アルミニウムトリsec-ブトキシド、アルミニウムエチルアセトアセテート・ジイソプロピレート、カルシウムイソプロポキシド、インジウムイソプロポキシド、ガリウムイソプロポキシド、アルミニウムジイソプロピレートモノsec-ブチレート、アルミニウムエチルアセトアセテートジn-ブチレート、またはアルミニウムジエチルアセトアセテートモノn-ブチレートである。 More preferred metal alkoxide compounds are, specifically, magnesium ethoxide, triisopropyl borate, aluminum trisec-butoxide, aluminum ethyl acetoacetate diisopropylate, calcium isopropoxide, indium isopropoxide, gallium isopropoxide. Aluminum diisopropylate monosec-butyrate, aluminum ethyl acetoacetate di n-butyrate, or aluminum diethyl acetoacetate mono n-butyrate.
 金属アルコキシド化合物は、市販品を用いてもよいし合成品を用いてもよい。市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)、ALCH-TR(アルミニウムトリスエチルアセトアセテート)、アルミキレートM(アルミニウムアルキルアセトアセテート・ジイソプロピレート)、アルミキレートD(アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート)、アルミキレートA(W)(アルミニウムトリスアセチルアセトネート)(以上、川研ファインケミカル株式会社製)、プレンアクト(登録商標)AL-M(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインケミカル株式会社製)、オルガチックスシリーズ(マツモトファインケミカル株式会社製)等が挙げられる。 As the metal alkoxide compound, a commercially available product or a synthetic product may be used. Specific examples of commercially available products include, for example, AMD (aluminum diisopropylate monosec-butyrate), ASBD (aluminum secondary butyrate), ALCH (aluminum ethyl acetoacetate diisopropylate), ALCH-TR (aluminum tris). Ethyl acetoacetate), aluminum chelate M (aluminum alkyl acetoacetate / diisopropylate), aluminum chelate D (aluminum bisethylacetoacetate / monoacetylacetonate), aluminum chelate A (W) (aluminum trisacetylacetonate) , Kawaken Fine Chemical Co., Ltd.), Preneact (registered trademark) AL-M (acetoalkoxy aluminum diisopropylate, Ajinomoto Fine Chemical Co., Ltd.), Moth Chicks series (manufactured by Matsumoto Fine Chemical Co., Ltd.) and the like.
 なお、金属アルコキシド化合物を用いる場合は、ポリシラザンを含む塗布液と不活性ガス雰囲気下で混合することが好ましい。金属アルコキシド化合物が大気中の水分や酸素と反応し、激しく酸化が進むことを抑制するためである。 In addition, when using a metal alkoxide compound, it is preferable to mix with the coating liquid containing polysilazane in inert gas atmosphere. This is to prevent the metal alkoxide compound from reacting with moisture and oxygen in the atmosphere and causing intense oxidation.
 また、金属アルコキシド化合物以外では、下記に示すような化合物を使用することができる。 Besides the metal alkoxide compounds, the following compounds can be used.
 ・アルミニウム化合物
 アノーソクレース、アルミナ、アルミノケイ酸塩、アルミン酸、アルミン酸ナトリウム、アレキサンドライト、アンモニウム白榴石、イットリウム・アルミニウム・ガーネット、黄長石、尾去沢石、オンファス輝石、輝石、絹雲母、ギブス石、サニディン、サファイア、酸化アルミニウム、水酸化酸化アルミニウム、臭化アルミニウム、十二ホウ化アルミニウム、硝酸アルミニウム、白雲母、水酸化アルミニウム、水素化アルミニウムリチウム、杉石、スピネル、ダイアスポア、ヒ化アルミニウム、ピーコック(顔料)、微斜長石、ヒスイ輝石、氷晶石、普通角閃石、フッ化アルミニウム、沸石、ブラジル石、ベスブ石、Bアルミナ固体電解質、ペツォッタイト、方ソーダ石、有機アルミニウム化合物、リシア輝石、リチア雲母、硫酸アルミニウム、緑柱石、緑泥石、緑簾石、リン化アルミニウム、リン酸アルミニウム等。
・ Aluminum compound Anosoclase, alumina, aluminosilicate, aluminate, sodium aluminate, alexandrite, ammonium leucite, yttrium aluminum garnet, feldspar, osarizawa stone, omphasite, pyroxene, sericite, gibbsite, Sanidine, sapphire, aluminum oxide, aluminum hydroxide oxide, aluminum bromide, aluminum dodecaboride, aluminum nitrate, muscovite, aluminum hydroxide, lithium aluminum hydride, cedar stone, spinel, diaspore, aluminum arsenide, peacock ( Pigment), fine plagioclase, jadeite, cryolite, amphibole, aluminum fluoride, zeolite, Brazilian stone, vesuvite, B-alumina solid electrolyte, petotite, sodalite, organoaluminum compound, lithiated pyroxene, Li Thia mica, aluminum sulfate, beryl, chlorite, chlorite, aluminum phosphide, aluminum phosphate, etc.
 ・マグネシウム化合物
 亜鉛緑礬、亜硫酸マグネシウム、安息香酸マグネシウム、カーナライト、過塩素酸マグネシウム、過酸化マグネシウム、滑石、頑火輝石、カンラン石、酢酸マグネシウム、酸化マグネシウム、蛇紋石、臭化マグネシウム、硝酸マグネシウム、水酸化マグネシウム、スピネル、普通角閃石、普通輝石、フッ化マグネシウム、硫化マグネシウム、硫酸マグネシウム、菱苦土鉱等。
Magnesium compound Zinc green glaze, magnesium sulfite, magnesium benzoate, carnalite, magnesium perchlorate, magnesium peroxide, talc, pyroxene, olivine, magnesium acetate, magnesium oxide, serpentine, magnesium bromide, magnesium nitrate, Magnesium hydroxide, spinel, amphibole, ordinary pyroxene, magnesium fluoride, magnesium sulfide, magnesium sulfate, rhododendron, etc.
 ・カルシウム化合物
 アラレ石、亜硫酸カルシウム、安息香酸カルシウム、エジプシャンブルー、塩化カルシウム、塩化水酸化カルシウム、塩素酸カルシウム、灰クロム柘榴石、灰重石、灰鉄輝石、灰簾石、過酸化カルシウム、過リン酸石灰、カルシウムシアナミド、次亜塩素酸カルシウム、シアン化カルシウム、臭化カルシウム、重過リン酸石灰、シュウ酸カルシウム、臭素酸カルシウム、硝酸カルシウム、水酸化カルシウム、普通角閃石、普通輝石、フッ化カルシウム、フッ素燐灰石、ヨウ化カルシウム、ヨウ素酸カルシウム、ヨハンセン輝石、硫化カルシウム、硫酸カルシウム、緑閃石、緑簾石、緑簾石、燐灰ウラン石、燐灰石、リン酸カルシウム等。
Calcium compounds Araleite, calcium sulfite, calcium benzoate, Egyptian blue, calcium chloride, calcium chloride hydroxide, calcium chlorate, chromite meteorite, scheelite, wollastonite, wollastonite, calcium peroxide, superphosphorus Acid lime, calcium cyanamide, calcium hypochlorite, calcium cyanide, calcium bromide, calcium biperphosphate, calcium oxalate, calcium bromate, calcium nitrate, calcium hydroxide, amphibole, ordinary pyroxene, fluoride Calcium, fluorapatite, calcium iodide, calcium iodate, johansen pyroxene, calcium sulfide, calcium sulfate, chlorite, chlorite, chlorite, apatite, apatite, calcium phosphate, etc.
 ・ガリウム化合物
 酸化ガリウム(III)、水酸化ガリウム(III)、窒化ガリウム、ヒ化ガリウム、ヨウ化ガリウム(III)、リン酸ガリウム等。
Gallium compounds Gallium (III) oxide, gallium hydroxide (III), gallium nitride, gallium arsenide, gallium iodide (III), gallium phosphate, and the like.
 ・ホウ素化合物
 酸化ホウ素、三臭化ホウ素、三フッ化ホウ素、三ヨウ化ホウ素、シアノ水素化ホウ素ナトリウム、ジボラン、ホウ酸、ホウ酸トリメチル、ホウ砂、ボラジン、ボラン、ボロン酸等。
Boron compounds Boron oxide, boron tribromide, boron trifluoride, boron triiodide, sodium cyanoborohydride, diborane, boric acid, trimethyl borate, borax, borazine, borane, boronic acid and the like.
 ・ゲルマニウム化合物
 有機ゲルマニウム化合物、無機ゲルマニウム化合物、酸化ゲルマニウム等。
-Germanium compounds Organic germanium compounds, inorganic germanium compounds, germanium oxide, and the like.
 ・インジウム化合物
 酸化インジウム、塩化インジウム等。
Indium compounds Indium oxide, indium chloride, etc.
 <塗膜層形成用塗布液>
 塗膜層形成用塗布液を調製するための溶剤としては、ポリシラザンおよび添加化合物を溶解または分散できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
<Coating liquid for coating layer formation>
The solvent for preparing the coating liquid for forming a coating layer is not particularly limited as long as it can dissolve or disperse polysilazane and an additive compound, but water and reactive groups that easily react with polysilazane (for example, An organic solvent that does not contain a hydroxyl group or an amine group and is inert to polysilazane is preferred, and an aprotic organic solvent is more preferred. Specifically, the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
 塗膜層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、ガスバリア層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%程度である。 The concentration of polysilazane in the coating solution for forming a coating layer is not particularly limited, and is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the gas barrier layer and the pot life of the coating solution.
 また、添加化合物を用いる場合の塗膜層形成用塗布液における添加化合物の使用量は、特に制限されないが、ポリシラザンの固形分質量に対して、0.01~10倍の質量であることが好ましく、0.06~6倍の質量であることがより好ましい。 Further, the amount of the additive compound used in the coating layer forming coating solution when the additive compound is used is not particularly limited, but is preferably 0.01 to 10 times the mass of the solid content of the polysilazane. The mass is more preferably 0.06 to 6 times.
 塗膜層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N',N'-テトラメチル-1,3-ジアミノプロパン、N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンに対して、0.01~2質量%が好ましい。触媒添加量をこの範囲とすることで、反応の急激な進行による過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating layer forming coating solution preferably contains a catalyst in order to promote modification. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably 0.01 to 2% by mass with respect to polysilazane. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 また、塗膜層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 In addition, the following additives can be used in the coating layer forming coating solution as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
 <塗膜層形成用塗布液を塗布する方法>
 本発明において、塗膜層形成用塗布液を塗布する方法は、特に制限されず、従来公知の適切な湿式塗布方法が採用されうる。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
<Method of Applying Coating Liquid for Forming Coating Layer>
In the present invention, the method for applying the coating liquid for forming a coating layer is not particularly limited, and a conventionally known appropriate wet coating method can be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
 塗布厚さは、ガスバリア性フィルムの使用目的に応じて適切に設定されうる。例えば、ガスバリア層1層当たりの塗布厚さは、乾燥後の厚さが0.01~1μmであることが好ましく、0.02~0.6μmであることがより好ましく、0.04~0.4μmであることがさらに好ましい。なお、複数の塗膜層の各塗布厚さは、同じであってもよいし異なっていてもよい。 The coating thickness can be appropriately set according to the purpose of use of the gas barrier film. For example, the coating thickness per gas barrier layer is preferably 0.01 to 1 μm, more preferably 0.02 to 0.6 μm, and more preferably 0.04 to 0.00 μm after drying. More preferably, it is 4 μm. In addition, each coating thickness of a some coating film layer may be the same, and may differ.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリア層が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
 塗膜層の乾燥温度は、適用する基材によっても異なるが、30~200℃であることが好ましい。例えば、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。 The drying temperature of the coating layer varies depending on the substrate to be applied, but is preferably 30 to 200 ° C. For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used as the substrate, the drying temperature is preferably set to 150 ° C. or less in consideration of deformation of the substrate due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
 ポリシラザンを含む塗布液を塗布して得られた塗膜層は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-5℃(温度25℃/湿度10%)以下であり、維持される時間はガスバリア層の膜厚によって適宜設定することが好ましい。ガスバリア層の膜厚が1.0μm以下の条件においては、露点温度は-5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、-50℃以上であり、-40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化したガスバリア層の脱水反応を促進する観点から好ましい形態である。 The coating film layer obtained by applying the coating liquid containing polysilazane may include a step of removing moisture before or during the modification treatment. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. The preferable dew point temperature is 4 ° C. or less (temperature 25 ° C./humidity 25%), the more preferable dew point temperature is −5 ° C. (temperature 25 ° C./humidity 10%) or less, and the maintaining time depends on the thickness of the gas barrier layer. It is preferable to set appropriately. Under the condition that the thickness of the gas barrier layer is 1.0 μm or less, it is preferable that the dew point temperature is −5 ° C. or less and the maintaining time is 1 minute or more. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher, and preferably −40 ° C. or higher. This is a preferred form from the viewpoint of promoting the dehydration reaction of the gas barrier layer converted to silanol by removing water before or during the reforming treatment.
 <塗膜層の改質処理>
 本発明における塗膜層の改質処理とは、上記で得られた塗膜層に含まれるポリシラザンの一部または全部が、酸化ケイ素、窒化ケイ素、酸窒化ケイ素等へ転化する反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性を発現するに貢献できるレベルの無機薄膜を形成する反応を指す。
<Coating layer modification treatment>
The coating layer modification treatment in the present invention refers to a reaction in which part or all of the polysilazane contained in the coating layer obtained above is converted into silicon oxide, silicon nitride, silicon oxynitride, etc. Specifically, it refers to a reaction in which the gas barrier film of the present invention forms an inorganic thin film at a level that can contribute to the development of gas barrier properties as a whole.
 本発明における改質処理は、塗膜層を形成した後、塗膜層に活性エネルギー線を照射することにより行われる。活性エネルギー線、特に真空紫外線(真空紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性とを有する酸化ケイ素膜、窒化ケイ素膜、酸窒化ケイ素膜等を形成することが可能である。 The reforming treatment in the present invention is performed by irradiating the coating layer with active energy rays after forming the coating layer. Ozone and active oxygen atoms generated by active energy rays, especially vacuum ultraviolet rays (synonymous with vacuum ultraviolet light) have high oxidation ability, and have high density and insulating properties at low temperatures, silicon nitride, silicon nitride A film, a silicon oxynitride film, or the like can be formed.
 この活性エネルギー線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO、HOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるガスバリア層が一層緻密になる。また、改質処理前の塗膜層の少なくとも1層には、添加元素が含まれているため、塗膜層の表層部だけでなく内部まで膜厚方向に改質が均一に行われる。したがって、高温高湿条件下で保存した後でも、クラックの発生がほとんどなく、層間密着力や折り曲げ耐性に優れ、ガスバリア性がほとんど劣化しないガスバリア性フィルムが得られうる。 By this active energy ray irradiation, the substrate is heated, and O 2 , H 2 O contributing to ceramics (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated, so that polysilazane is excited, The conversion of polysilazane into ceramic is promoted, and the resulting gas barrier layer becomes denser. Further, since at least one layer of the coating layer before the modification treatment contains an additive element, the modification is uniformly performed in the film thickness direction not only on the surface layer portion but also inside the coating layer. Therefore, even after storage under high temperature and high humidity conditions, it is possible to obtain a gas barrier film that hardly generates cracks, has excellent interlayer adhesion and bending resistance, and hardly deteriorates gas barrier properties.
 活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、真空紫外線、X線、電子線、α線、β線、γ線等が使用可能であるが、電子線または紫外線、真空紫外線が好ましく、紫外線、真空紫外線がより好ましく、真空紫外線が特に好ましい。 As the active energy ray, for example, infrared ray, visible ray, ultraviolet ray, vacuum ultraviolet ray, X ray, electron beam, α ray, β ray, γ ray and the like can be used, but electron beam, ultraviolet ray, vacuum ultraviolet ray are preferable, Ultraviolet rays and vacuum ultraviolet rays are more preferred, and vacuum ultraviolet rays are particularly preferred.
 真空紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。なお、本発明でいう真空紫外線とは、一般には10~200nmの波長を有する電磁波を含む紫外光をいう。 Any vacuum generator that is commonly used can be used in the vacuum ultraviolet irradiation treatment. The vacuum ultraviolet ray referred to in the present invention generally means ultraviolet light containing electromagnetic waves having a wavelength of 10 to 200 nm.
 真空紫外線の照射は、照射される塗膜層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the irradiation with vacuum ultraviolet rays, it is preferable to set the irradiation intensity and the irradiation time within a range in which the substrate carrying the coating layer to be irradiated is not damaged.
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as a base material, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
 紫外線または真空紫外線の照射に要する時間は、使用する基材やガスバリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 The time required for irradiation with ultraviolet rays or vacuum ultraviolet rays is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate and gas barrier layer used.
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい、好ましくは100~200nm、より好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、無機薄膜の形成を行う方法である。 The treatment by vacuum ultraviolet irradiation uses light energy having a wavelength larger than the interatomic bonding force in polysilazane, preferably 100 to 200 nm, more preferably 100 to 180 nm, and bonds the atoms by the action of only photons called photon processes. In this method, an inorganic thin film is formed at a relatively low temperature (about 200 ° C. or lower) by proceeding an oxidation reaction with active oxygen or ozone while directly cutting.
 このような真空紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた真空紫外線を改質前のポリシラザン塗膜層に照射する際には、効率向上と均一な照射とを達成する観点から、発生源からの真空紫外線を反射板で反射させてから改質前のポリシラザン塗膜層に当てることが望ましい。本発明においての真空紫外線源は、希ガスエキシマランプが好ましく用いられる。 Examples of such means for generating vacuum ultraviolet rays include, but are not limited to, metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers. In addition, when irradiating the generated vacuum ultraviolet ray to the polysilazane coating layer before modification, from the viewpoint of achieving efficiency improvement and uniform irradiation, the vacuum ultraviolet ray from the source is reflected by the reflector. It is desirable to apply to the polysilazane coating layer before modification. As the vacuum ultraviolet ray source in the present invention, a rare gas excimer lamp is preferably used.
 真空紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、300~10,000体積ppm(1体積%)とすることが好ましく、500~5,000体積ppmとすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of vacuum ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. In addition, it is preferably performed in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 300 to 10,000 volume ppm (1 volume%), more preferably 500 to 5,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射において、塗膜層が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、高い改質効率が得られうる。また、10W/cm以下であれば、塗膜にアブレーションを生じたり、基材にダメージを与えたりする可能性が低い。 In vacuum ultraviolet irradiation, the illuminance of the vacuum ultraviolet ray on the coating film surface received by the coating film layer is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. and further preferably 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, high reforming efficiency can be obtained. Moreover, if it is 10 W / cm < 2 > or less, possibility that ablation will be produced in a coating film or a base material will be damaged is low.
 塗膜層における真空紫外線の照射エネルギー量(照射量、積算光量)は、10~20000mJ/cmであることが好ましく、20~10000mJ/cmであることがより好ましく、100~8000mJ/cmであることがさらに好ましい。照射エネルギー量が10mJ/cm以上であれば、改質が十分に進行しうる。また、照射エネルギー量が20000mJ/cm以下であれば、過剰改質によるクラック発生や、基材の熱変形が生じにくい。 Irradiation energy amount of the VUV in coating layer (irradiation dose accumulated light amount) is preferably 10 ~ 20000mJ / cm 2, more preferably 20 ~ 10000mJ / cm 2, 100 ~ 8000mJ / cm 2 More preferably. If the irradiation energy amount is 10 mJ / cm 2 or more, the modification can proceed sufficiently. Moreover, if the irradiation energy amount is 20000 mJ / cm 2 or less, cracks due to over-reformation and thermal deformation of the substrate are unlikely to occur.
 また、真空紫外線照射と同時に塗膜層を加熱することも、改質処理を促進するために好ましく用いられる。加熱の方法は、ヒートブロック等の発熱体に基材を接触させ熱伝導により塗膜層を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターのような赤外領域の光を用いた方法等が挙げられるが、特に制限されない。塗膜層の平滑性を維持できる方法を適宜選択してよい。真空紫外線の照射条件は、適用する基材によっても異なり、当業者により適宜決定されうる。例えば、真空紫外線の照射温度(加熱温度)は、50~200℃であることが好ましく、80~150℃であることがより好ましい。照射条件が上記範囲内であると、基材の変形や強度の劣化が生じにくく、基材の特性が損なわれないことから好ましい。照射時間(加熱時間)としては、1秒~10時間の範囲が好ましく、10秒~1時間の範囲がより好ましい。 Also, heating the coating layer simultaneously with vacuum ultraviolet irradiation is also preferably used to promote the modification treatment. The heating method is a method of heating the coating layer by heat conduction by bringing the substrate into contact with a heating element such as a heat block, a method of heating the atmosphere with an external heater such as a resistance wire, and an infrared region such as an IR heater. Although the method using light etc. are mentioned, it does not restrict | limit in particular. A method capable of maintaining the smoothness of the coating layer may be appropriately selected. The irradiation conditions of the vacuum ultraviolet rays vary depending on the substrate to be applied and can be appropriately determined by those skilled in the art. For example, the irradiation temperature (heating temperature) of vacuum ultraviolet rays is preferably 50 to 200 ° C., more preferably 80 to 150 ° C. It is preferable for the irradiation conditions to be within the above-mentioned range since deformation of the substrate and deterioration of strength are unlikely to occur, and the properties of the substrate are not impaired. The irradiation time (heating time) is preferably in the range of 1 second to 10 hours, and more preferably in the range of 10 seconds to 1 hour.
 また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4. Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 好適な形態であるポリシラザンがパーヒドロポリシラザンである場合に、真空紫外線照射でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構については、例えば、特開2015-033764号公報の段落「0125」~「0133」の記載を参照することができる。 When the preferred form of polysilazane is perhydropolysilazane, the reaction mechanism presumed to produce silicon oxynitride and further silicon oxide from perhydropolysilazane by irradiation with vacuum ultraviolet rays is disclosed, for example, in JP-A-2015-033764 Reference can be made to the descriptions in paragraphs “0125” to “0133” of the publication.
 シリカ転化率(SiOxにおけるx)の測定方法としては、例えば、XPS法を用いて測定することができる。 As a method for measuring the silica conversion rate ( x in SiO x ), for example, it can be measured using an XPS method.
 ガスバリア層における化学組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、ガスバリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The chemical composition in the gas barrier layer can be measured by measuring the atomic composition ratio using an XPS surface analyzer. Alternatively, the gas barrier layer can be cut and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
 ガスバリア層における化学組成は、ガスバリア層を形成する際に用いるポリシラザン、添加化合物等の種類および量、ならびに塗膜層を改質する際の条件等により、制御することができる。 The chemical composition in the gas barrier layer can be controlled by the types and amounts of polysilazane and additive compounds used when forming the gas barrier layer, conditions for modifying the coating layer, and the like.
 当該ガスバリア層1層当たりの厚さは、ガスバリア性とフレキシブル性とを両立する観点から、0.01~1μmであることが好ましく、0.02~0.6μmであることがより好ましく、0.04~0.4μmであることがさらに好ましい。ガスバリア層の厚さが0.01μm以上であれば、高いガスバリア性が得られうる。また、1μm以下であれば、十分なフレキシブル性が得られ、膜のひび割れが発生しにくい。本明細書中、ガスバリア層1層当たりの厚さは、JEOL社製透過型電子顕微鏡JEM-2000FXによって測定した厚さとする。 The thickness per gas barrier layer is preferably from 0.01 to 1 μm, more preferably from 0.02 to 0.6 μm, from the viewpoint of achieving both gas barrier properties and flexibility. More preferably, the thickness is 04 to 0.4 μm. When the thickness of the gas barrier layer is 0.01 μm or more, high gas barrier properties can be obtained. Moreover, if it is 1 micrometer or less, sufficient flexibility will be acquired and the crack of a film | membrane will not generate | occur | produce easily. In this specification, the thickness per gas barrier layer is a thickness measured by a transmission electron microscope JEM-2000FX manufactured by JEOL.
 当該ガスバリア層は、塗膜層に真空紫外線などの活性エネルギー線を照射する工程において、ポリシラザンの少なくとも一部が改質されることで、層全体としてSiO(Mは添加元素であり、x、y、wはそれぞれケイ素に対する酸素、窒素、Mの原子比である)の組成で示される酸化窒化ケイ素を含むガスバリア層が形成される。良好なガスバリア性を得るためには、ガスバリア層中には、炭素原子は実質的に存在しないことが好ましく、ガスバリア層の安定性を高めるためには、水素原子は少ないことが好ましい。 In the gas barrier layer, at least a part of the polysilazane is modified in the step of irradiating the coating layer with active energy rays such as vacuum ultraviolet rays, so that the layer as a whole is SiO x N y M w (M is an additive element) A gas barrier layer containing silicon oxynitride having a composition of x, y, and w is an atomic ratio of oxygen, nitrogen, and M, respectively, with respect to silicon is formed. In order to obtain good gas barrier properties, it is preferable that carbon atoms are not substantially present in the gas barrier layer, and in order to improve the stability of the gas barrier layer, it is preferable that there are few hydrogen atoms.
 ガスバリア層は、組成SiOの分布が所定の条件、すなわち、0.25≦x≦1.1であり、かつ0.4≦y≦0.75であり、0≦w<0.5である領域を、厚さ方向で50nm以上有する条件を満たすことが好ましい。 In the gas barrier layer, the distribution of the composition SiO x N y M w is a predetermined condition, that is, 0.25 ≦ x ≦ 1.1 and 0.4 ≦ y ≦ 0.75, and 0 ≦ w <0. It is preferable to satisfy the condition of having a region of .5 in the thickness direction of 50 nm or more.
 また、Si、O、Nの結合手の関係から、基本的にはx、yは2x+3y≦4の範囲にあることが好ましい。酸化が完全に進んだy=0の状態においては、塗膜中にシラノール基を含有するようになり、2<x<2.5の範囲となる場合もある。 In addition, from the relationship of Si, O, and N bond hands, it is basically preferable that x and y are basically in the range of 2x + 3y ≦ 4. In the state of y = 0 where the oxidation has progressed completely, the coating film contains silanol groups, and there are cases where 2 <x <2.5.
 なお、本発明において、前述したx、y、z、およびwの値について、例えば下記装置および方法を用いて、各構成元素の膜厚方向における元素比(原子比)を測定することによって決定することができる。 In the present invention, the values of x, y, z, and w described above are determined by measuring the element ratio (atomic ratio) in the film thickness direction of each constituent element using, for example, the following apparatus and method. be able to.
 XPS分析条件
 装置:QUANTERASXM(アルバック・ファイ株式会社製)
 X線源:単色化Al-Kα
 測定領域:Si2p、C1s、N1s、O1s、Al
 スパッタイオン:Ar(2keV)
 デプスプロファイル:1分間のスパッタ後に測定を繰り返す。1回の測定は、SiO薄膜標準サンプル換算で、約5nmの厚さ分に相当する。
XPS analysis conditions Apparatus: QUANTERASXM (manufactured by ULVAC-PHI Co., Ltd.)
X-ray source: Monochromatic Al-Kα
Measurement area: Si2p, C1s, N1s, O1s, Al
Sputtering ion: Ar (2 keV)
Depth profile: repeat measurement after 1 minute sputtering. One measurement corresponds to a thickness of about 5 nm in terms of a SiO 2 thin film standard sample.
 定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。 Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
 データ処理:MultiPak(アルバック・ファイ株式会社製)
 なお、表面の吸着水や有機物汚染の影響があるため、1回目の測定データは除く。
Data processing: MultiPak (manufactured by ULVAC-PHI)
Note that the first measurement data is excluded because of the influence of surface adsorbed water and organic contamination.
 また、本発明のガスバリア層の膜密度は、目的に応じて適切に設定され得る。例えば、ガスバリア層の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲内であれば、膜の緻密さが向上するため、高温高湿条件下での膜の劣化やそれに伴うガスバリア性の低下を防止することができる。 Moreover, the film density of the gas barrier layer of the present invention can be appropriately set according to the purpose. For example, the film density of the gas barrier layer is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film is improved, so that deterioration of the film under high-temperature and high-humidity conditions and accompanying gas barrier properties can be prevented.
 〔蒸着法により形成されるガスバリア層〕
 本発明のガスバリア性フィルムは、蒸着法により形成されるガスバリア層(以下、単に蒸着ガスバリア層とも称する)をさらに有していることが好ましい。蒸着ガスバリア層を有することによって、より高いガスバリア性を有するガスバリアフィルムが得られうる。蒸着ガスバリア層は、1層のみを形成してもよく、複数の層を形成してもよい。また、蒸着ガスバリア層は、基材の一方の表面の側に形成してもよく、両面に形成することもできる。
[Gas barrier layer formed by vapor deposition]
The gas barrier film of the present invention preferably further has a gas barrier layer (hereinafter also simply referred to as a vapor deposition gas barrier layer) formed by a vapor deposition method. By having a vapor deposition gas barrier layer, a gas barrier film having higher gas barrier properties can be obtained. The vapor deposition gas barrier layer may form only one layer or a plurality of layers. Moreover, a vapor deposition gas barrier layer may be formed in the one surface side of a base material, and can also be formed in both surfaces.
 本発明のガスバリア性フィルムにおける蒸着ガスバリア層の積層方向の位置は、特に制限されないが、ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層に隣接して形成されることが好ましい。このようにすることで、蒸着ガスバリア層の欠陥を補修することができ、蒸着ガスバリア層との界面の密着性が高められるため、より高性能のガスバリア層が得られうる。また、割れにくいガスバリア性フィルムが得られうる。特には、基材上に蒸着ガスバリア層を形成し、さらに、前記ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を、1層または複数層形成することが好ましい。 The position in the stacking direction of the vapor deposition gas barrier layer in the gas barrier film of the present invention is not particularly limited, but after applying a coating liquid containing polysilazane to obtain a coating layer, the coating layer is irradiated with active energy rays. It is preferably formed adjacent to the gas barrier layer obtained by performing the modification treatment. By doing in this way, since the defect of a vapor deposition gas barrier layer can be repaired and the adhesiveness of the interface with a vapor deposition gas barrier layer is improved, a higher performance gas barrier layer can be obtained. In addition, a gas barrier film that is difficult to break can be obtained. In particular, after forming a vapor deposition gas barrier layer on the substrate, and further applying a coating liquid containing the polysilazane to obtain a coating layer, the coating layer is irradiated with active energy rays for modification treatment. It is preferable to form one or a plurality of gas barrier layers obtained by performing.
 ここで述べる、蒸着ガスバリア層の膜厚は、特に制限されないが、50~600nmであることが好ましく、100~500nmであることがより好ましい。このような範囲であれば、ガスバリア性能、折り曲げ耐性、断裁加工適性等に優れる。 The film thickness of the vapor deposition gas barrier layer described here is not particularly limited, but is preferably 50 to 600 nm, and more preferably 100 to 500 nm. If it is such a range, it will be excellent in gas barrier performance, bending resistance, cutting process aptitude, etc.
 また、蒸着ガスバリア層の弾性率は、15~45GPaであることが好ましく、20~40GPaであることがより好ましい。この範囲であれば、ガスバリア性能、折り曲げ耐性、断裁加工適性が得られる。なお、該弾性率は、ナノインデンテーション法により測定することができる。 The elastic modulus of the vapor deposition gas barrier layer is preferably 15 to 45 GPa, more preferably 20 to 40 GPa. If it is this range, gas-barrier performance, bending tolerance, and cutting processability will be obtained. The elastic modulus can be measured by a nanoindentation method.
 蒸着法としては、特に限定されず、公知の薄膜堆積技術を利用することができる。例えば、蒸着法、反応性蒸着法、スパッタ法、反応性スパッタ法、化学気相成長法などが挙げられる。 The vapor deposition method is not particularly limited, and a known thin film deposition technique can be used. For example, vapor deposition, reactive vapor deposition, sputtering, reactive sputtering, chemical vapor deposition, and the like can be given.
 以下、CVD法のうち、好適な形態である真空プラズマCVD法について具体的に説明する。 Hereinafter, the vacuum plasma CVD method, which is a preferred form among the CVD methods, will be described in detail.
 図1は、蒸着ガスバリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。 FIG. 1 is a schematic diagram showing an example of a vacuum plasma CVD apparatus used for forming a vapor deposition gas barrier layer.
 図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。 In FIG. 1, the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided.
 また、前記蒸着ガスバリア層は、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記蒸着ガスバリア層を形成させることが好ましい。また、このようなプラズマCVD法により蒸着ガスバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 The vapor deposition gas barrier layer is preferably formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity. In addition, an apparatus that can be used when producing a vapor deposition gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
 以下、図2を参照しながら、プラズマCVD法による蒸着ガスバリア層の形成方法について、より詳細に説明する。なお、図3は、蒸着ガスバリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, a method for forming a vapor deposition gas barrier layer by plasma CVD will be described in more detail with reference to FIG. FIG. 3 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the vapor deposition gas barrier layer. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 The manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置の具体的な形態、このような製造装置を用いてプラズマCVD法によって蒸着ガスバリア層を形成する方法、成膜ガス、成膜条件などの具体的な形態は、特開2014-141056号公報の段落「0091」~「0116」に開示されている形態を適宜参照することができる。 Specific forms of such a manufacturing apparatus, a method for forming a vapor deposition gas barrier layer by a plasma CVD method using such a manufacturing apparatus, a film forming gas, film forming conditions, etc. Reference can appropriately be made to the forms disclosed in paragraphs “0091” to “0116” of Japanese Patent No. 141056.
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。蒸着ガスバリア層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成する蒸着ガスバリア層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる蒸着ガスバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、蒸着ガスガスバリア層3の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 41 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the vapor deposition gas barrier layer 3 can be appropriately selected and used according to the material of the vapor deposition gas barrier layer 3 to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferred from the viewpoints of handling properties of the compound and gas barrier properties of the obtained vapor deposition gas barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organic silicon compound gas and organic compound gas, an appropriate source gas is selected according to the kind of the vapor deposition gas barrier layer 3.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
 このような成膜ガスが原料ガスと反応ガスとを含有する場合には、原料ガスと反応ガスとの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される蒸着ガスバリア層3によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film forming gas contains a raw material gas and a reactive gas, the ratio of the raw material gas and the reactive gas is a reaction that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive as compared with the ratio of the amount of gas. It is excellent in that excellent barrier properties and flex resistance can be obtained by the vapor deposition gas barrier layer 3 formed by not excessively increasing the ratio of the reaction gas. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 39 and the film forming roller 40, an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used. The power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、ガスバリア層として十分な厚みを確保することができる点で優れている。 The conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a gas barrier layer, without impairing productivity.
 上記したように、本実施形態のより好ましい態様としては、蒸着ガスバリア層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜する。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、ガスバリア性能とが両立するガスバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the vapor deposition gas barrier layer is formed by the plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently manufacture a gas barrier layer having both gas barrier performance and gas barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 <蒸着ガスバリア層の改質処理>
 蒸着ガスバリア層においては、成膜された膜にエキシマ処理(改質処理)を施してもよい。エキシマ処理(真空紫外線処理)は、公知の方法を用いることができるが、前述した「<塗膜層の改質処理>」の項で述べたような真空紫外線処理が好ましく、さらには100~180nmの波長の光のエネルギーによる真空紫外線処理が好ましい。
<Modification of vapor deposition gas barrier layer>
In the vapor deposition gas barrier layer, the formed film may be subjected to excimer treatment (modification treatment). For the excimer treatment (vacuum ultraviolet treatment), a known method can be used, but vacuum ultraviolet treatment as described in the above-mentioned section “<Coating layer reforming treatment>” is preferable, and further 100 to 180 nm. Vacuum ultraviolet treatment with light energy of a wavelength of is preferred.
 〔平滑層(下地層、プライマー層、ハードコート層)〕
 本発明のガスバリア性フィルムは、基材のガスバリア層を有する面、好ましくは基材と第1層目のガスバリア層との間に平滑層(下地層、プライマー層、ハードコート層)を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、基材に存在する突起により、ガスバリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、いずれの材料で形成されてもよいが、炭素含有ポリマーを含むことが好ましく、炭素含有ポリマーから構成されることがより好ましい。すなわち、本発明のガスバリア性フィルムは、基材と第1層目のガスバリア層との間に、炭素含有ポリマーを含む平滑層をさらに有することが好ましい。
[Smooth layer (underlayer, primer layer, hard coat layer)]
The gas barrier film of the present invention has a smooth layer (underlying layer, primer layer, hard coat layer) between the surface of the base material having the gas barrier layer, preferably between the base material and the first gas barrier layer. May be. The smooth layer is provided in order to flatten the rough surface of the base material on which protrusions and the like exist, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions on the base material. Such a smooth layer may be formed of any material, but preferably includes a carbon-containing polymer, and more preferably includes a carbon-containing polymer. That is, the gas barrier film of the present invention preferably further has a smooth layer containing a carbon-containing polymer between the base material and the first gas barrier layer.
 また、平滑層は、炭素含有ポリマー、好ましくは硬化性樹脂を含む。前記硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。 The smooth layer also contains a carbon-containing polymer, preferably a curable resin. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material or the like with an active energy ray such as an ultraviolet ray to be cured is heated. And thermosetting resins obtained by curing. These curable resins may be used alone or in combination of two or more.
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。 The smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601: 2001, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 平滑層の膜厚としては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 〔アンカーコート層〕
 基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレン・ビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化性ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
[Anchor coat layer]
On the surface of the base material, an anchor coat layer may be formed as an easy-adhesion layer for the purpose of improving adhesiveness (adhesion). Examples of the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene / vinyl alcohol resin, vinyl-modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. Can be used alone or in combination of two or more. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” in 3% isopropyl alcohol) can be used.
 《ガスバリア性フィルムの包装形態》
 本発明のガスバリア性フィルムは、連続生産しロール形態に巻き取ることができる(いわゆるロール・トゥ・ロール生産)。その際、ガスバリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。特に、本発明のガスバリア性フィルムを有機薄膜デバイスの封止材として用いる場合、表面に付着したゴミ(例えば、パーティクル)が原因で欠陥となる場合が多く、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時に入るガスバリア層表面への傷の防止に有効である。
<< Packing form of gas barrier film >>
The gas barrier film of the present invention can be continuously produced and wound into a roll form (so-called roll-to-roll production). In that case, it is preferable to stick and wind up a protective sheet on the surface in which the gas barrier layer was formed. In particular, when the gas barrier film of the present invention is used as a sealing material for organic thin film devices, it often causes defects due to dust (for example, particles) adhering to the surface, and a protective sheet is applied in a place with a high degree of cleanliness. It is very effective to prevent the adhesion of dust. In addition, it is effective in preventing scratches on the gas barrier layer surface that enters during winding.
 保護シートとしては、特に限定するものではないが、膜厚100μm程度の樹脂基板に弱粘着性の接着層を付与した構成の一般的な「保護シート」、「剥離シート」を用いることができる。 The protective sheet is not particularly limited, and general “protective sheet” and “release sheet” having a configuration in which a weakly adhesive layer is provided on a resin substrate having a thickness of about 100 μm can be used.
 《ガスバリア性フィルムの水蒸気透過率》
 本発明のガスバリア性フィルムの水蒸気透過率は、低いほど好ましいが、例えば、0.001~0.00001g/m2・24hであることが好ましく、0.0001~0.00001g/m2・24hであることがより好ましい。
<< Water vapor permeability of gas barrier film >>
The water vapor transmission rate of the gas barrier film of the present invention is preferably as low as possible, but is preferably 0.001 to 0.00001 g / m 2 · 24 h, for example, 0.0001 to 0.00001 g / m 2 · 24 h. More preferably.
 本発明のガスバリア性フィルムにおいては、水蒸気透過率の測定方法は特に制限されないが、本発明では、水蒸気透過率測定方法として、後述の実施例に記載のCa法による測定を行った。 In the gas barrier film of the present invention, the method for measuring the water vapor transmission rate is not particularly limited, but in the present invention, the water vapor transmission rate measurement method was measured by the Ca method described in the examples described later.
 〔ガスバリア性フィルムの製造方法〕
 本発明のガスバリア性フィルムの製造方法は、特に制限されない。例えば、ポリシラザンを含有する塗布液を塗布し塗膜層を得る工程と、前記塗膜層に活性エネルギー線を照射し改質処理を行ってガスバリア層を得る工程と、によって、基材の両面にガスバリア層を形成することを含む方法によって製造することができる。ここで、前記塗膜層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する。この際、基材の一方の面に塗膜層を得て改質処理をしてガスバリア層を得た後、他方の面にも同様にしてガスバリア層を形成してもよく、基材の両面に塗布層を形成した後、両面の塗布層に対して改質処理を行ってもよい。
[Method for producing gas barrier film]
The method for producing the gas barrier film of the present invention is not particularly limited. For example, by applying a coating liquid containing polysilazane to obtain a coating layer, and applying a modification treatment by irradiating the coating layer with active energy rays to obtain a gas barrier layer, It can be manufactured by a method including forming a gas barrier layer. Here, at least one of the coating layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, silicon and (Except carbon). At this time, after obtaining a coating layer on one surface of the substrate and performing a modification treatment to obtain a gas barrier layer, the gas barrier layer may be formed on the other surface in the same manner. After forming the coating layer, the modification treatment may be performed on the coating layers on both sides.
 または、第1の基材、および第2の基材を準備し、それぞれ、一方の面に、ポリシラザンを含有する塗布液を塗布し塗膜層を形成し、塗膜層に活性エネルギー線を照射し改質処理を行ってガスバリア層を形成し、その後、第1の基材および第2の基材のガスバリア層を形成していない面同士を接着剤を用いて貼り合わせてガスバリア性フィルムを得ることができる。この際、前記塗膜層の少なくとも1層は、添加元素を含有する。接着剤としては、特に制限されないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等を用いることができる。 Alternatively, a first substrate and a second substrate are prepared, and a coating liquid containing polysilazane is applied to one surface to form a coating layer, and the coating layer is irradiated with active energy rays. Then, a gas barrier layer is formed by performing a modification treatment, and then the surfaces of the first base material and the second base material on which the gas barrier layer is not formed are bonded using an adhesive to obtain a gas barrier film. be able to. At this time, at least one layer of the coating layer contains an additive element. Although it does not restrict | limit especially as an adhesive agent, A thermosetting epoxy resin, a photocurable acrylate resin, etc. can be used.
 〔電子デバイス〕
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。すなわち、本発明は、電子デバイス本体と、本発明のガスバリア性フィルムまたは本発明に係る製造方法により得られるガスバリア性フィルムと、を有する電子デバイスを提供する。
[Electronic device]
The gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, this invention provides the electronic device which has an electronic device main body and the gas barrier film of this invention, or the gas barrier film obtained by the manufacturing method which concerns on this invention.
 ここで、本発明のガスバリア性フィルムは、添加元素を含むガスバリア層が電子デバイス本体に近い側となるように封止してもよく、基材を挟んで電子デバイス本体と反対側になるように封止してもよい。 Here, the gas barrier film of the present invention may be sealed so that the gas barrier layer containing the additive element is on the side close to the electronic device body, and on the opposite side of the electronic device body across the substrate. It may be sealed.
 前記電子デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。 Examples of the electronic device include electronic devices such as an organic EL element, a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, and a solar cell (PV). From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
 本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける方法である。ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。 The gas barrier film of the present invention can also be used for device film sealing. That is, it is a method of providing the gas barrier film of the present invention on the surface of the device itself as a support. The device may be covered with a protective layer before providing the gas barrier film.
 本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。 The gas barrier film of the present invention can also be used as a device substrate or a film for sealing by a solid sealing method. The solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured. Although there is no restriction | limiting in particular in an adhesive agent, A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
 <有機EL素子>
 ガスバリア性フィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。
<Organic EL device>
Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
 <液晶表示素子>
 反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、IPS型(In-Plane Switching)、CPA型(Continuous Pinwheel Alignment)であることが好ましい。
<Liquid crystal display element>
The reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a λ / 4 plate, and a polarizing film in order from the bottom. The gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a λ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a λ / 4 plate, and a polarization It has a structure consisting of a film. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The type of the liquid crystal cell is not particularly limited, but more preferably a TN type (Twisted Nematic), an STN type (Super Twisted Nematic), a HAN type (Hybrid Aligned Nematic), a VA type (Vertical Alignment), an EC type, a B type. OCB type (Optically Compensated Bend), IPS type (In-Plane Switching), CPA type (Continuous Pinwheel Alignment) are preferable.
 <太陽電池>
 本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。本発明のガスバリア性フィルムが好ましく用いられる太陽電池素子としては、特に制限はないが、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。中でも、本発明においては、上記太陽電池素子が、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池素子であることが好ましい。
<Solar cell>
The gas barrier film of the present invention can also be used as a sealing film for solar cell elements. The solar cell element in which the gas barrier film of the present invention is preferably used is not particularly limited. For example, it is a single crystal silicon solar cell element, a polycrystalline silicon solar cell element, a single junction type, or a tandem structure type. Amorphous silicon-based solar cell elements, III-V group compound semiconductor solar cell elements such as gallium arsenide (GaAs) and indium phosphorus (InP), II-VI group compound semiconductor solar cell elements such as cadmium tellurium (CdTe), I-III- such as copper / indium / selenium (so-called CIS), copper / indium / gallium / selenium (so-called CIGS), copper / indium / gallium / selenium / sulfur (so-called CIGS), etc. Group VI compound semiconductor solar cell element, dye-sensitized solar cell element, organic solar cell element, etc. And the like. In particular, in the present invention, the solar cell element is a copper / indium / selenium system (so-called CIS system), a copper / indium / gallium / selenium system (so-called CIGS system), copper / indium / gallium / selenium / sulfur. A group I-III-VI compound semiconductor solar cell element such as a system (so-called CIGSS system) is preferable.
 <その他>
 その他の適用例としては、特表平10-512104号公報に記載の薄膜トランジスタ、特開平5-127822号公報、特開2002-48913号公報等に記載のタッチパネル、特開2000-98326号公報に記載の電子ペーパー等が挙げられる。
<Others>
As other application examples, the thin film transistor described in JP-T-10-512104, the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper and the like.
 <光学部材>
 本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。
<Optical member>
The gas barrier film of the present invention can also be used as an optical member. Examples of the optical member include a circularly polarizing plate.
 (円偏光板)
 本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002-86554号公報に記載のものを好適に用いることができる。
(Circularly polarizing plate)
A circularly polarizing plate can be produced by laminating a λ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the λ / 4 plate and the absorption axis of the polarizing plate is 45 °. As such a polarizing plate, one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used. For example, those described in JP-A-2002-86554 can be suitably used. .
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。また、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。また、下記操作において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で行う。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Further, in the examples, “part” or “%” is used, but “part by mass” or “% by mass” is expressed unless otherwise specified. In the following operations, unless otherwise specified, the measurement of the operation and physical properties is performed under the conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 (比較例1)
 《A面側のガスバリア層の作製》
 基材として、両面ハードコート層(中間層)付き透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、ハードコート層はアクリル樹脂を主成分としたUV硬化樹脂より構成、PETの厚さ125μm)を準備した。
(Comparative Example 1)
<< Production of A-side Gas Barrier Layer >>
Transparent resin substrate with double-sided hard coat layer (intermediate layer) as substrate (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd.), hard coat layer is UV curable resin mainly composed of acrylic resin And a PET thickness of 125 μm) were prepared.
 〔ガスバリア層(ポリシラザン塗膜層)の形成〕
 <ポリシラザン含有塗布液の調製>
 無触媒のパーヒドロポリシラザン(PHPS)を20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、1質量%のアミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテル溶媒で、塗布液の固形分が10質量%になるように希釈調整した。
[Formation of gas barrier layer (polysilazane coating layer)]
<Preparation of polysilazane-containing coating solution>
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (PHPS) (manufactured by AZ Electronic Materials, NN120-20) and 1% by mass of amine catalyst (N, N, N ′, N′-tetra) Methyl-1,6-diaminohexane) and a dibutyl ether solution containing 19% by mass of perhydropolysilazane (AZ Electronic Materials Co., Ltd., NAX120-20) in a ratio of 4: 1, and further dibutyl ether Dilution adjustment was performed with a solvent so that the solid content of the coating solution was 10% by mass.
 <製膜>
 上記で調製したポリシラザン含有塗布液を、スピンコーターにて基材の一方の面(A面:本実施例では、有機EL素子が配置される側の面)の上に厚さが250nmになるように塗布して製膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、塗膜層を形成した。
<Film formation>
The polysilazane-containing coating solution prepared above is 250 nm thick on one side of the base material (A side: in this example, the side on which the organic EL element is arranged) with a spin coater. The film was applied to form a film, allowed to stand for 2 minutes, then subjected to additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a coating layer.
 塗膜層を形成した後、下記の装置および方法により、真空紫外線照射処理を施して、ガスバリア性フィルム(サンプルNo.1)を作製した。 After forming the coating layer, vacuum ultraviolet irradiation treatment was performed by the following apparatus and method to produce a gas barrier film (sample No. 1).
 真空紫外線照射装置
 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長172nm、ステージ温度100℃、
 積算光量6500mJ/cm、酸素濃度0.1体積%。
Vacuum Ultraviolet Irradiator Excimer Irradiator MODEL: MECL-M-1-200
Wavelength 172nm, stage temperature 100 ° C,
Integrated light quantity 6500 mJ / cm 2 , oxygen concentration 0.1 volume%.
 <真空紫外線照射条件・照射エネルギーの測定>
 真空紫外線照射は、図3に断面模式図で示した装置を用いて行った。
<Measurement of vacuum ultraviolet irradiation conditions and irradiation energy>
The vacuum ultraviolet irradiation was performed using the apparatus shown in the schematic cross-sectional view of FIG.
 図3において、11は装置チャンバであり、図示しないガス供給口から内部に窒素と酸素とを適量供給し、図示しないガス排出口から排気することで、チャンバ内部から実質的に水蒸気を除去し、酸素濃度を所定の濃度に維持することができる。12は172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプ、13は外部電極を兼ねるエキシマランプのホルダーである。14は試料ステージである。試料ステージ14は、図示しない移動手段により装置チャンバ11内を水平に所定の速度で往復移動することができる。また、試料ステージ14は図示しない加熱手段により、所定の温度に維持することができる。15はポリシラザン塗膜層が形成された試料である。試料ステージが水平移動する際、試料の塗膜層表面と、エキシマランプ管面との最短距離が3mmとなるように試料ステージの高さが調整されている。16は遮光板であり、Xeエキシマランプ12のエージング中に試料の塗布層に真空紫外光が照射されないようにしている。 In FIG. 3, reference numeral 11 denotes an apparatus chamber, which supplies appropriate amounts of nitrogen and oxygen from a gas supply port (not shown) to the inside and exhausts gas from a gas discharge port (not shown), thereby substantially removing water vapor from the inside of the chamber. The oxygen concentration can be maintained at a predetermined concentration. Reference numeral 12 denotes an Xe excimer lamp having a double tube structure that irradiates vacuum ultraviolet rays of 172 nm, and reference numeral 13 denotes an excimer lamp holder that also serves as an external electrode. Reference numeral 14 denotes a sample stage. The sample stage 14 can be reciprocated horizontally at a predetermined speed in the apparatus chamber 11 by a moving means (not shown). The sample stage 14 can be maintained at a predetermined temperature by a heating means (not shown). Reference numeral 15 denotes a sample on which a polysilazane coating layer is formed. When the sample stage moves horizontally, the height of the sample stage is adjusted so that the shortest distance between the surface of the sample coating layer and the excimer lamp tube surface is 3 mm. Reference numeral 16 denotes a light shielding plate, which prevents the vacuum ultraviolet light from being applied to the coating layer of the sample during the aging of the Xe excimer lamp 12.
 真空紫外線照射工程で試料塗布層表面に照射されるエネルギーは、浜松ホトニクス社製の紫外線積算光量計:C8026/H8025 UV POWER METERを用い、172nmのセンサヘッドを用いて測定した。測定に際しては、Xeエキシマランプ管面とセンサヘッドの測定面との最短距離が、3mmとなるようにセンサヘッドを試料ステージ14中央に設置し、かつ、装置チャンバ11内の雰囲気が、真空紫外線照射工程と同一の酸素濃度となるように窒素と酸素とを供給し、試料ステージ14を0.5m/minの速度で移動させて測定を行った。測定に先立ち、Xeエキシマランプ12の照度を安定させるため、Xeエキシマランプ点灯後に10分間のエージング時間を設け、その後試料ステージを移動させて測定を開始した。 The energy applied to the surface of the sample coating layer in the vacuum ultraviolet irradiation process was measured using a 172 nm sensor head using a UV integrating photometer: C8026 / H8025 UV POWER METER manufactured by Hamamatsu Photonics. In the measurement, the sensor head is installed in the center of the sample stage 14 so that the shortest distance between the Xe excimer lamp tube surface and the measurement surface of the sensor head is 3 mm, and the atmosphere in the apparatus chamber 11 is irradiated with vacuum ultraviolet rays. Nitrogen and oxygen were supplied so that the oxygen concentration was the same as that in the process, and the sample stage 14 was moved at a speed of 0.5 m / min for measurement. Prior to the measurement, in order to stabilize the illuminance of the Xe excimer lamp 12, an aging time of 10 minutes was provided after the Xe excimer lamp was turned on, and then the sample stage was moved to start the measurement.
 この測定で得られた照射エネルギーを元に、試料ステージの移動速度を調整することで6500mJ/cmの照射エネルギーとなるように調整した。尚、真空紫外線照射に際しては、照射エネルギー測定時と同様に、10分間のエージング後に行った。 Based on the irradiation energy obtained by this measurement, the moving speed of the sample stage was adjusted to adjust the irradiation energy to 6500 mJ / cm 2 . The vacuum ultraviolet irradiation was performed after aging for 10 minutes as in the case of irradiation energy measurement.
 (比較例2)
 《B面側のガスバリア層の作製》
 比較例1と同様の手順で基材のA面側にガスバリア層を形成した。
(Comparative Example 2)
<< Preparation of gas barrier layer on B side >>
A gas barrier layer was formed on the A side of the substrate in the same procedure as in Comparative Example 1.
 次いで、基材の、ガスバリア層を作製した面と反対側の面(B面:本実施例では、有機EL素子を配置する側と反対側の面)の上に、上記と同様のポリシラザン含有塗布液をスピンコーターにて250nmになるよう製膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、塗膜層を形成した。 Next, the same polysilazane-containing coating as described above is formed on the surface of the substrate opposite to the surface on which the gas barrier layer is formed (B surface: the surface opposite to the side on which the organic EL element is arranged in this embodiment). The solution was formed into a film with a spin coater to 250 nm and allowed to stand for 2 minutes, and then subjected to additional heat treatment for 1 minute on a hot plate at 80 ° C. to form a coating layer.
 塗膜層を形成した後、同様に真空紫外光(エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ステージ温度100℃、積算光量6500mJ/cm、酸素濃度0.1体積%)を照射して、ガスバリア層を形成し、ガスバリア性フィルム(サンプルNo.2)を得た。 After the coating layer was formed, similarly, vacuum ultraviolet light (M.D. Com's excimer irradiation device MODEL: MECL-M-1-200, wavelength 172 nm, stage temperature 100 ° C., integrated light quantity 6500 mJ / cm 2 , oxygen concentration 0.1 volume%) was irradiated to form a gas barrier layer, and a gas barrier film (sample No. 2) was obtained.
 (実施例1)
 下記の方法でアルミニウム含有塗布液を調製した。
Example 1
An aluminum-containing coating solution was prepared by the following method.
 <アルミニウム含有塗布液の調製>
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、1質量%のアミン触媒(N,N,N',N'-テトラメチル-1,6-ジアミノヘキサン)および19質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1の割合(質量比)で混合したもの 2.318g、ALCH(川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレート) 0.306g、およびジブチルエーテル 12.776gを混合したものを塗布液とした。
<Preparation of aluminum-containing coating solution>
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and 1% by mass of amine catalyst (N, N, N ′, N′-tetramethyl-1) , 6-diaminohexane) and a dibutyl ether solution containing 19% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) at a ratio (mass ratio) of 4: 1. A mixture of 318 g, ALCH (produced by Kawaken Fine Chemical Co., Ltd., aluminum ethyl acetoacetate diisopropylate) 0.306 g, and dibutyl ether 12.776 g was used as a coating solution.
 上記で得られたアルミニウム含有塗布液により、基材のA面に第1層のガスバリア層となる塗膜層を形成したこと以外は、比較例2と同様にして、ガスバリア性フィルム(サンプルNo.3)を作製した。 A gas barrier film (Sample No. 1) was prepared in the same manner as in Comparative Example 2 except that the aluminum-containing coating solution obtained above formed a coating layer serving as the first gas barrier layer on the A surface of the substrate. 3) was produced.
 (実施例2)
 上記で得られたアルミニウム含有塗布液により、基材のB面にガスバリア層となる塗膜層を形成したこと以外は、比較例2と同様にして、ガスバリア性フィルム(サンプルNo.4)を作製した。
(Example 2)
A gas barrier film (sample No. 4) was produced in the same manner as in Comparative Example 2 except that the coating layer serving as a gas barrier layer was formed on the B surface of the base material with the aluminum-containing coating solution obtained above. did.
 (実施例3)
 上記で得られたアルミニウム含有塗布液により、基材のA面に第1層のガスバリア層となる塗膜層を形成し、さらに、基材のB面にも塗膜層を形成したこと以外は、比較例2と同様にして、ガスバリア性フィルム(サンプルNo.5)を作製した。
Example 3
With the aluminum-containing coating solution obtained above, except that the coating layer serving as the first gas barrier layer was formed on the A side of the substrate, and further, the coating layer was also formed on the B side of the substrate. In the same manner as in Comparative Example 2, a gas barrier film (Sample No. 5) was produced.
 (比較例3)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を150nmとしたこと以外は、比較例2と同様にして、ガスバリア性フィルム(サンプルNo.6)を作製した。
(Comparative Example 3)
A gas barrier film (sample) was prepared in the same manner as in Comparative Example 2 except that when the coating layer serving as a gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to 150 nm. No. 6) was produced.
 (実施例4)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を150nmとしたこと以外は、実施例1と同様にして、ガスバリア性フィルム(サンプルNo.7)を作製した。
Example 4
A gas barrier film (sample) was formed in the same manner as in Example 1 except that when the coating layer serving as the gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to 150 nm. No. 7) was produced.
 (実施例5)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を150nmとしたこと以外は、実施例2と同様にして、ガスバリア性フィルム(サンプルNo.8)を作製した。
(Example 5)
A gas barrier film (sample) was formed in the same manner as in Example 2 except that when the coating layer serving as a gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to a film thickness of 150 nm. No. 8) was produced.
 (実施例6)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を150nmとしたこと以外は、実施例3と同様にして、ガスバリア性フィルム(サンプルNo.9)を作製した。
(Example 6)
A gas barrier film (sample) was formed in the same manner as in Example 3 except that when the coating layer serving as the gas barrier layer was formed on the B surface of the substrate, the spin coating rotation speed was changed to a film thickness of 150 nm. No. 9) was produced.
 (比較例4)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を50nmとし、塗膜層を形成した後の真空紫外線照射処理の際の積算光量を3000mJ/cmとしたこと以外は、比較例2と同様にして、ガスバリア性フィルム(サンプルNo.10)を作製した。
(Comparative Example 4)
When forming a coating film layer serving as a gas barrier layer on the B-side of the substrate, the total amount of light at the time of vacuum ultraviolet irradiation after the coating film layer is formed by changing the spin coating rotation speed to a film thickness of 50 nm A gas barrier film (Sample No. 10) was produced in the same manner as in Comparative Example 2 except that was set to 3000 mJ / cm 2 .
 (実施例7)
 基材のB面にガスバリア層となる塗膜層を形成する際に、スピン塗布回転数を変化させて膜厚を50nmとし、塗膜層を形成した後の真空紫外線照射処理の際の積算光量を3000mJ/cmとしたこと以外は、実施例2と同様にして、ガスバリア性フィルム(サンプルNo.11)を作製した。
(Example 7)
When forming a coating film layer serving as a gas barrier layer on the B-side of the substrate, the total amount of light at the time of vacuum ultraviolet irradiation after the coating film layer is formed by changing the spin coating rotation speed to a film thickness of 50 nm A gas barrier film (Sample No. 11) was produced in the same manner as in Example 2 except that the pressure was 3000 mJ / cm 2 .
 (比較例5)
 《A面側のガスバリア層の作製》
 〔第1層の形成〕
 〔蒸着法により形成されるガスバリア層の作製〕
 大気圧プラズマ製膜装置(特開2008-56967号の図2に記載、ロールツーロール形態の大気圧プラズマCVD装置)を用いて、大気圧プラズマ法により、ハードコート層(中間層)付き透明樹脂基材(きもと社製クリアハードコート層(CHC)付ポリエチレンテレフタレート(PET)フィルム、ハードコート層はアクリル樹脂を主成分としたUV硬化樹脂より構成、PETの厚さ125μm、CHCの厚さ6μm)上に、以下の表1の薄膜形成条件で酸炭化珪素(SiOC)から構成されるガスバリア層(100nm)を形成した。このガスバリア層の弾性率E1をナノインテンデーション法により測定したところ、膜厚方向で一様に30GPaであった。
(Comparative Example 5)
<< Production of A-side Gas Barrier Layer >>
[Formation of the first layer]
[Production of gas barrier layer formed by vapor deposition]
Transparent resin with a hard coat layer (intermediate layer) by an atmospheric pressure plasma method using an atmospheric pressure plasma film forming apparatus (described in FIG. 2 of JP-A-2008-56967, roll-to-roll atmospheric pressure plasma CVD apparatus) Base material (polyethylene terephthalate (PET) film with clear hard coat layer (CHC) manufactured by Kimoto Co., Ltd., hard coat layer is composed of UV curable resin mainly composed of acrylic resin, PET thickness 125 μm, CHC thickness 6 μm) A gas barrier layer (100 nm) composed of silicon oxycarbide (SiOC) was formed on the thin film formation conditions shown in Table 1 below. When the elastic modulus E1 of this gas barrier layer was measured by the nanoindentation method, it was 30 GPa uniformly in the film thickness direction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔第2層の形成〕
 比較例1で調製したポリシラザン含有塗布液を用い、スピンコーターにて、上記で作製した第1層の上に、厚さが250nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間追加加熱処理を行い、ポリシラザン塗膜層を形成した。その後、上記の装置および方法により、真空紫外線照射を施し、第2層となるガスバリア層を形成した。
[Formation of second layer]
Using the polysilazane-containing coating solution prepared in Comparative Example 1 and using a spin coater, a film having a thickness of 250 nm was formed on the first layer prepared above, and allowed to stand for 2 minutes, and then heated at 80 ° C. The plate was subjected to additional heat treatment for 1 minute to form a polysilazane coating layer. Thereafter, vacuum ultraviolet irradiation was performed by the above apparatus and method to form a gas barrier layer serving as a second layer.
 〔第3層の形成〕
 上記で作製した第2層の上に、上記第2層の形成と同様の方法で、ただし、厚さが40nmになるよう成膜し、ポリシラザン塗膜層を形成した。その後、上記の装置および方法により、真空紫外線照射を施し(ただし、積算光量は3000mJ/cm)、第3層となるガスバリア層を形成した。このようにして、ガスバリア性フィルム(サンプルNo.12)を作製した。
[Formation of third layer]
On the 2nd layer produced above, it formed into a film so that thickness might be set to 40 nm by the method similar to formation of the said 2nd layer, and the polysilazane coating layer was formed. Thereafter, vacuum ultraviolet irradiation was performed by the above apparatus and method (however, the integrated light amount was 3000 mJ / cm 2 ), and a gas barrier layer serving as a third layer was formed. In this way, a gas barrier film (Sample No. 12) was produced.
 (比較例6)
 基材のB面に、サンプル6と同様のガスバリア層を設けたことを除いては、比較例5と同様にして、ガスバリア性フィルム(サンプルNo.13)を作製した。
(Comparative Example 6)
A gas barrier film (Sample No. 13) was produced in the same manner as in Comparative Example 5 except that the same gas barrier layer as that of Sample 6 was provided on the B surface of the substrate.
 (実施例8)
 サンプル13の第2層をサンプル3の第1層にしたこと以外は、サンプル13と同様のガスバリア性フィルム(サンプルNo.14)を作製した。
(Example 8)
A gas barrier film (sample No. 14) similar to that of sample 13 was prepared except that the second layer of sample 13 was changed to the first layer of sample 3.
 (実施例9)
 サンプル13の第3層を、サンプル3の第1層のアルミニウム含有塗布液を膜厚変化させて厚さが40nmになるよう成膜し、ポリシラザン塗膜層を形成した。その後、上記の装置および方法により、真空紫外線照射を施し(ただし、積算光量は3000mJ/cm)、第3層となるガスバリア層を形成した。このようにして、ガスバリア性フィルム(サンプルNo.15を作製した。
Example 9
The third layer of sample 13 was formed into a film having a thickness of 40 nm by changing the film thickness of the aluminum-containing coating solution of the first layer of sample 3 to form a polysilazane coating layer. Thereafter, vacuum ultraviolet irradiation was performed by the above apparatus and method (however, the integrated light amount was 3000 mJ / cm 2 ), and a gas barrier layer serving as a third layer was formed. In this way, a gas barrier film (sample No. 15 was produced.
 (実施例10)
 サンプル14の第3層をサンプル15の第3層にしたこと以外は、サンプル14と同様のガスバリア性フィルム(サンプルNo.16)を作製した。
(Example 10)
A gas barrier film (sample No. 16) similar to that of sample 14 was prepared except that the third layer of sample 14 was changed to the third layer of sample 15.
 (実施例11)
 サンプル13のB面をサンプル8のB面にしたこと以外は、サンプル13と同様のガスバリア性フィルム(サンプルNo.17)を作製した。
(Example 11)
A gas barrier film (sample No. 17) similar to that of sample 13 was prepared except that the B surface of sample 13 was changed to the B surface of sample 8.
 (実施例12)
 サンプル16のB面をサンプル17のB面にしたこと以外は、サンプル16と同様のガスバリア性フィルム(サンプルNo.18)を作製した。
Example 12
A gas barrier film (sample No. 18) similar to that of sample 16 was prepared except that the B surface of sample 16 was changed to the B surface of sample 17.
 (比較例7)
 サンプル12のB面に、サンプル12のA面の第1層を第1層として、サンプル13のB面の第1層を第2層として設けたこと以外は、サンプル12と同様のガスバリア性フィルム(サンプルNo.19)を作製した。
(Comparative Example 7)
A gas barrier film similar to that of sample 12, except that the first layer of the A surface of the sample 12 is provided as the first layer and the first layer of the B surface of the sample 13 is provided as the second layer on the B surface of the sample 12. (Sample No. 19) was produced.
 (実施例13)
 サンプル19のA面の第2層をサンプル14のA面の第2層にしたこと以外は、サンプル19と同様のガスバリア性フィルム(サンプルNo.20)を作製した。
(Example 13)
A gas barrier film (sample No. 20) similar to that of sample 19 was prepared except that the second layer on the A side of sample 19 was changed to the second layer on the A side of sample 14.
 (実施例14)
 サンプル19のA面の第3層をサンプル15のA面の第3層にしたこと以外は、サンプル19と同様のガスバリア性フィルム(サンプルNo.21)を作製した。
(Example 14)
A gas barrier film (sample No. 21) similar to that of sample 19 was prepared except that the third layer on the A surface of sample 19 was changed to the third layer on the A surface of sample 15.
 (実施例15)
 サンプル20のA面の第3層をサンプル15のA面の第3層にしたこと以外は、サンプル20と同様のガスバリア性フィルム(サンプルNo.22)を作製した。
(Example 15)
A gas barrier film (sample No. 22) similar to that of sample 20 was produced except that the third layer on the A side of sample 20 was changed to the third layer on the A side of sample 15.
 (実施例16)
 サンプル19のB面の第2層をサンプル17のB面の第1層にしたこと以外は、サンプル19と同様のガスバリア性フィルム(サンプルNo.23)を作製した。
(Example 16)
A gas barrier film (sample No. 23) similar to that of sample 19 was prepared except that the second layer on the B surface of sample 19 was changed to the first layer on the B surface of sample 17.
 (実施例17)
 サンプル21のB面の第2層をサンプル17のB面の第1層にしたこと以外は、サンプル21と同様のガスバリア性フィルム(サンプルNo.24)を作製した。
(Example 17)
A gas barrier film (sample No. 24) similar to that of sample 21 was prepared except that the second layer on the B surface of sample 21 was changed to the first layer on the B surface of sample 17.
 (実施例18)
 サンプル24のA面の第2層をサンプル20のA面の第2層にしたこと以外は、サンプル24と同様のガスバリア性フィルム(サンプルNo.25)を作製した。
(Example 18)
A gas barrier film (sample No. 25) similar to the sample 24 was produced except that the second layer on the A side of the sample 24 was changed to the second layer on the A side of the sample 20.
 (比較例8)
 サンプル19の基材の厚みを25μmとしたこと以外は、サンプル19と同様のガスバリア性フィルム(サンプルNo.26)を作製した。
(Comparative Example 8)
A gas barrier film (sample No. 26) similar to that of sample 19 was prepared except that the thickness of the base material of sample 19 was 25 μm.
 (実施例19)
 サンプル20の基材の厚みを25μmとしたこと以外は、サンプル20と同様のガスバリア性フィルム(サンプルNo.27)を作製した。
(Example 19)
A gas barrier film (sample No. 27) similar to that of sample 20 was prepared except that the thickness of the base material of sample 20 was 25 μm.
 (実施例20)
 サンプル21の基材の厚みを25μmとしたこと以外は、サンプル21と同様のガスバリア性フィルム(サンプルNo.28)を作製した。
(Example 20)
A gas barrier film (sample No. 28) similar to that of sample 21 was prepared except that the thickness of the base material of sample 21 was 25 μm.
 (実施例21)
 サンプル23の基材の厚みを25μmとしたこと以外は、サンプル23と同様のガスバリア性フィルム(サンプルNo.29)を作製した。
(Example 21)
A gas barrier film (sample No. 29) similar to that of sample 23 was produced except that the thickness of the base material of sample 23 was 25 μm.
 (実施例22)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のガリウム(III)イソプロポキシド(和光純薬工業株式会社製)とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.30)を作製した。
(Example 22)
In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, ALCH is the same amount of gallium (III) isopropoxide (Wako Pure Chemical Industries, Ltd.). A gas barrier film (Sample No. 30) was produced in the same manner as Sample 25 except that the thickness was the same as that manufactured by the company.
 (実施例23)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のインジウム(III)イソプロポキシド(和光純薬工業株式会社製)とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.31)を作製した。
(Example 23)
In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, ALCH was added in the same amount of indium (III) isopropoxide (Wako Pure Chemical Industries, Ltd.). A gas barrier film (Sample No. 31) was produced in the same manner as Sample 25 except that the thickness was the same as that manufactured by the company.
 (実施例24)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のマグネシウムエトキシド(和光純薬工業株式会社製)とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.32)を作製した。
(Example 24)
In the aluminum-containing coating solution used when preparing the second layer, the third layer on the A side of the sample 25, and the second layer on the B side, ALCH is the same amount of magnesium ethoxide (manufactured by Wako Pure Chemical Industries, Ltd.). A gas barrier film (Sample No. 32) was produced in the same manner as Sample 25 except that the thickness was the same.
 (実施例25)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のカルシウムイソプロポキシド(SIGMA-ALDRICH社製)とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.33)を作製した。
(Example 25)
In the aluminum-containing coating solution used to prepare the second layer, the third layer, and the second layer on the B surface of the sample 25, ALCH is the same amount of calcium isopropoxide (manufactured by SIGMA-ALDRICH), A gas barrier film (Sample No. 33) was produced in the same manner as Sample 25 except that the thickness was the same.
 (実施例26)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のホウ酸トリイソプロピル(和光純薬工業株式会社製)とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.34)を作製した。
(Example 26)
In the aluminum-containing coating solution used for preparing the second layer, the third layer on the A side, and the second layer on the B side of the sample 25, the same amount of ALCH triisopropyl borate (manufactured by Wako Pure Chemical Industries, Ltd.) A gas barrier film (Sample No. 34) was produced in the same manner as Sample 25 except that the thickness was the same.
 (比較例9)
 サンプル25のA面の第2層、第3層、およびB面の第2層を作製する際のアルミニウム含有塗布液において、ALCHを同量のトリス(ジブチルスルフィド)ロジウムクロライド[Tris(dibutylsulfide)RhCl,Gelest,Inc.製]とし、同様の厚みとしたこと以外は、サンプル25と同様にしてガスバリア性フィルム(サンプルNo.35)を作製した。
(Comparative Example 9)
In the aluminum-containing coating solution used to prepare the second layer, the third layer, and the second layer of the B surface of the sample 25, ALCH is mixed with the same amount of tris (dibutylsulfide) rhodium chloride [Tris (dibutylsulfide) RhCl. 3 , Gelest, Inc. A gas barrier film (Sample No. 35) was produced in the same manner as Sample 25 except that the thickness was the same as that of Sample 25.
 《水蒸気バリア性の評価》
 上記で作製したガスバリア性フィルムについて、85℃95%RHの高温高湿下に500時間曝したサンプル(DH500時間後)を各々準備した。
<Evaluation of water vapor barrier properties>
About the gas barrier film produced above, each sample (after DH 500 hours) exposed to high temperature and high humidity of 85 ° C. and 95% RH was prepared.
 水蒸気バリア性の評価は、80nm厚の金属カルシウムをガスバリア性フィルム上に蒸着製膜し、製膜したカルシウムが50%の面積になる時間を50%面積時間として評価することで行った(下記参照)。高温高湿下に500時間曝す前後の50%面積時間を評価し、曝した後の50%面積時間/曝す前の50%面積時間を保持率(%)として算出し、表2~4に示した。保持率の指標としては70%以上あれば許容とし、70%未満は不適合と判断した。 Evaluation of the water vapor barrier property was performed by depositing metal calcium having a thickness of 80 nm on a gas barrier film, and evaluating the time when the formed calcium was 50% area as 50% area time (see below). ). 50% area time before and after exposure to high temperature and high humidity for 500 hours was evaluated, and 50% area time after exposure / 50% area time before exposure was calculated as retention rate (%), and shown in Tables 2-4 It was. As an index of retention rate, 70% or more was considered acceptable, and less than 70% was judged as nonconforming.
 (金属カルシウム製膜装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価試料の作製)
 真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、作製したガスバリア性フィルムの最外層のガスバリア層表面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は80nmとなるようにした。
(Metal calcium film forming equipment)
Vapor deposition device: JEOL Ltd., vacuum vapor deposition device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
(raw materials)
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation sample)
Using a vacuum vapor deposition apparatus (manufactured by JEOL Ltd., vacuum vapor deposition apparatus JEE-400), metallic calcium was vapor-deposited in a size of 12 mm × 12 mm through a mask on the outermost gas barrier layer surface of the produced gas barrier film. At this time, the deposited film thickness was set to 80 nm.
 その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス株式会社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリア性評価試料を作製した。 Thereafter, the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet and temporarily sealed. Next, the vacuum state is released, and it is immediately transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum vapor-deposited surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX Corporation). The water vapor barrier property evaluation sample was produced by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
 得られた試料を、85℃95%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は、12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積が50%になる時間を観察結果から直線で内挿して求めた。 The obtained sample was stored under high temperature and high humidity of 85 ° C. and 95% RH, and the state in which metallic calcium was corroded with respect to the storage time was observed. The observation was obtained by linearly interpolating the time at which the area where metal calcium was corroded with respect to the metal calcium vapor deposition area of 12 mm × 12 mm to 50% from the observation results.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な85℃、95%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under the same high temperature and high humidity conditions of 85 ° C. and 95% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 《折り曲げ耐性評価》
 各ガスバリア性フィルムを、A面が上になるように、半径が2mmの曲率になるように、180°の角度で500回の屈曲を繰り返した。その後、B面が上になるように、半径が2mmの曲率になるように、180°の角度で500回の屈曲を繰り返した。その後、上記と同様の方法で水蒸気透過率(水蒸気バリア性)を測定し、屈曲前後での水蒸気透過率の変化より、下式に従って耐劣化度を算出し、下記の基準に従って折り曲げ耐性を評価した。
《Bending resistance evaluation》
Each gas barrier film was repeatedly bent 500 times at an angle of 180 ° so as to have a radius of curvature of 2 mm so that the A surface was on top. Thereafter, bending was repeated 500 times at an angle of 180 ° so that the radius was 2 mm so that the B surface was on top. Thereafter, the water vapor transmission rate (water vapor barrier property) was measured in the same manner as described above, the deterioration resistance was calculated according to the following formula from the change in the water vapor transmission rate before and after bending, and the bending resistance was evaluated according to the following criteria. .
 耐劣化度=(屈曲試験後の水蒸気透過率/屈曲試験前の水蒸気透過率)×100(%)
 5:耐劣化度が95%以上である、
 4:耐劣化度が85%以上95%未満である、
 3:耐劣化度が50%以上85%未満である、
 2:耐劣化度が10%以上50%未満である、
 1:耐劣化度が10%未満である。
Deterioration resistance = (water vapor transmission rate after bending test / water vapor transmission rate before bending test) × 100 (%)
5: Deterioration resistance is 95% or more,
4: Deterioration resistance is 85% or more and less than 95%.
3: Deterioration resistance is 50% or more and less than 85%.
2: Deterioration resistance is 10% or more and less than 50%.
1: Deterioration resistance is less than 10%.
 この試験を、85℃95%RHの高温高湿下に500時間曝す前のサンプル(即)と、85℃95%RHの高温高湿下に500時間曝した後のサンプル(DH500時間後)との両方で行った。 This test is a sample before being exposed to a high temperature and high humidity of 85 ° C. and 95% RH for 500 hours, and a sample after being exposed to a high temperature and high humidity of 85 ° C. and 95% RH for 500 hours (after 500 hours of DH). Went on both.
 《有機薄膜電子デバイスの作製》
 上記で作製したガスバリア性フィルムを用いて、有機薄膜電子デバイスである有機EL素子(即)を作製した。
<< Production of organic thin film electronic devices >>
Using the gas barrier film produced above, an organic EL element (immediately) which is an organic thin film electronic device was produced.
 また、上記で作製したガスバリア性フィルムのA面に以下の熱水処理を施したガスバリア性フィルムを用いて有機EL素子(熱水処理後)を作製した。 Also, an organic EL element (after hot water treatment) was produced using a gas barrier film obtained by performing the following hot water treatment on the A surface of the gas barrier film produced above.
 熱水処理
 90℃の熱水に上記で作製したガスバリア性フィルムを15分間浸し、自然乾燥後表面が乾いた後、有機EL素子の作製を行った。
Hot water treatment The gas barrier film produced above was immersed in hot water at 90 ° C. for 15 minutes, and after natural drying, the surface was dried, and then an organic EL device was produced.
 〔有機EL素子の作製〕
 (第1電極層の形成)
 各実施例および比較例で製造した各ガスバリア性フィルムのA面の最外層のガスバリア層上に、厚さ150nmのITO(インジウムスズ酸化物)をスパッタ法により成膜した。次いで、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターニングは発光面積が50mm平方となるようなパターンとした。
[Production of organic EL elements]
(Formation of first electrode layer)
On the outermost gas barrier layer on the A side of each gas barrier film produced in each example and comparative example, ITO (indium tin oxide) having a thickness of 150 nm was formed by sputtering. Next, patterning was performed by a photolithography method to form a first electrode layer. The patterning was such that the light emission area was 50 mm square.
 (正孔輸送層の形成)
 第1電極層が形成された各ガスバリア性フィルムの第1電極層の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
(Formation of hole transport layer)
On the first electrode layer of each gas barrier film on which the first electrode layer is formed, the hole transport layer forming coating liquid shown below is applied by an extrusion coater and then dried to form a hole transport layer. did. The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
 正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルムの洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。 Before applying the coating solution for forming the hole transport layer, the gas barrier film was subjected to cleaning surface modification using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. The charge removal treatment was performed using a static eliminator with weak X-rays.
 〈塗布条件〉
 塗布工程は大気中、25℃、相対湿度(RH)50%の環境で行った。
<Application conditions>
The coating process was performed in an atmosphere of 25 ° C. and a relative humidity (RH) of 50%.
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
<Preparation of hole transport layer forming coating solution>
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer.
 〈乾燥および加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
<Drying and heat treatment conditions>
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
 (発光層の形成)
 引き続き、正孔輸送層まで形成したガスバリア性フィルムの正孔輸送層上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
(Formation of light emitting layer)
Subsequently, on the hole transport layer of the gas barrier film formed up to the hole transport layer, the following coating solution for forming a white light-emitting layer was applied by an extrusion coater and then dried to form a light-emitting layer. The white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
 〈白色発光層形成用塗布液〉
 ホスト材のH-Aを1.0gと、ドーパント材のD-Aを100mgと、ドーパント材のD-Bを0.2mgと、ドーパント材のD-Cを0.2mgと、を100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
<White luminescent layer forming coating solution>
The host material HA is 1.0 g, the dopant material DA is 100 mg, the dopant material DB is 0.2 mg, the dopant material DC is 0.2 mg, and 100 g of toluene. And was prepared as a white light emitting layer forming coating solution.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 〈塗布条件〉
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
 〈乾燥および加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した。次いで、温度130℃で加熱処理を行い、発光層を形成した。
<Drying and heat treatment conditions>
After the white light emitting layer forming coating solution was applied, the solvent was removed at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5% and a temperature of 60 ° C. Next, heat treatment was performed at a temperature of 130 ° C. to form a light emitting layer.
 (電子輸送層の形成)
 次に、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
(Formation of electron transport layer)
Next, the following coating liquid for forming an electron transport layer was applied by an extrusion coater and then dried to form an electron transport layer. The coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
 〈塗布条件〉
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
 〈電子輸送層形成用塗布液〉
 電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
<Coating liquid for electron transport layer formation>
The electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〈乾燥および加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した。次いで、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
<Drying and heat treatment conditions>
After applying the electron transport layer forming coating solution, the solvent was removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 60 ° C. Next, in the heat treatment section, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.
 (電子注入層の形成)
 次に、形成された電子輸送層上に電子注入層を形成した。まず、基板を減圧チャンバに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(Formation of electron injection layer)
Next, an electron injection layer was formed on the formed electron transport layer. First, the substrate was put into a decompression chamber and decompressed to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
 (第2電極の形成)
 第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10-4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法で、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Except for the portion that becomes the extraction electrode on the first electrode, aluminum is used as the second electrode forming material on the formed electron injection layer under a vacuum of 5 × 10 −4 Pa so as to have the extraction electrode. Then, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
 (裁断)
 第2電極まで形成した各ガスバリア性フィルムを、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。
(Cutting)
Each gas barrier film formed up to the second electrode was moved again to a nitrogen atmosphere and cut to a prescribed size using an ultraviolet laser to produce an organic EL device.
 (電極リード接続)
 作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12.5 μm). , Surface-treated NiAu plating).
 圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。 Crimping conditions: Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
 (封止)
 電極リード(フレキシブルプリント基板)を接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機EL素子を作製した。
(Sealing)
A sealing member was bonded to the organic EL element to which the electrode lead (flexible printed circuit board) was connected using a commercially available roll laminating apparatus to produce an organic EL element.
 なお、封止部材としては、ドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いて、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をラミネートしたもの(接着剤層の厚み1.5μm)を用いた。 In addition, as a sealing member, a polyethylene terephthalate (PET) film (PET) film (on Toyo Aluminum Co., Ltd.) on a 30 μm-thick aluminum foil using a dry lamination adhesive (two-component reaction type urethane adhesive). 12 μm thick) (adhesive layer thickness 1.5 μm) was used.
 ディスペンサを使用して、アルミニウム面に熱硬化性接着剤をアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。 Using a dispenser, a thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 μm along the adhesive surface (glossy surface) of the aluminum foil.
 熱硬化接着剤としては以下のエポキシ系接着剤を用いた。 The following epoxy adhesive was used as the thermosetting adhesive.
 ビスフェノールAジグリシジルエーテル(DGEBA)
 ジシアンジアミド(DICY)
 エポキシアダクト系硬化促進剤。
Bisphenol A diglycidyl ether (DGEBA)
Dicyandiamide (DICY)
Epoxy adduct curing accelerator.
 しかる後、封止基板を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件:圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。 Thereafter, the sealing substrate is closely attached and arranged so as to cover the joint portion of the take-out electrode and the electrode lead, and pressure bonding conditions using the pressure roll: pressure roll temperature 120 ° C., pressure 0.5 MPa, apparatus speed 0. Adherent sealing was performed at 3 m / min.
 《有機EL素子の評価》
 上記で作製した有機EL素子について、下記の方法に従って、耐久性の評価を行った。
<< Evaluation of organic EL elements >>
About the organic EL element produced above, durability was evaluated according to the following method.
 〔耐久性の評価〕
 (加速劣化処理)
 上記作製した各有機EL素子を、85℃、95%RHの環境下で300時間の加速劣化処理を施した後、加速劣化処理を施していない有機EL素子と共に、下記の黒点に関する評価を行った。
[Evaluation of durability]
(Accelerated deterioration processing)
Each of the produced organic EL elements was subjected to an accelerated deterioration treatment for 300 hours in an environment of 85 ° C. and 95% RH, and then evaluated for the following black spots together with the organic EL elements not subjected to the accelerated deterioration treatment. .
 (黒点の評価)
 加速劣化処理を施した有機EL素子及び加速劣化処理を施していない有機EL素子に対し、それぞれ1mA/cmの電流を印加し、24時間連続発光させた後、100倍のマイクロスコープ(株式会社モリテックス製MS-804、レンズMP-ZE25-200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、黒点の発生面積比率を求め、下式に従って素子劣化耐性率を算出し、下記の基準に従って耐久性を評価した。評価ランクが、○であれば、実用上好ましい特性であると判定した。
(Evaluation of sunspots)
A current of 1 mA / cm 2 was applied to the organic EL element subjected to the accelerated deterioration treatment and the organic EL element not subjected to the accelerated deterioration treatment to emit light continuously for 24 hours. A portion of the panel was magnified with a Moritex MS-804 and a lens MP-ZE25-200) and photographed. The photographed image was cut out in a 2 mm square, the black spot generation area ratio was determined, the element deterioration resistance rate was calculated according to the following formula, and the durability was evaluated according to the following criteria. If the evaluation rank was ◯, it was determined to be a practically preferable characteristic.
 素子劣化耐性率=(加速劣化処理を施していない素子で発生した黒点の面積/加速劣化処理を施した素子で発生した黒点の面積)×100(%)
 ◎:素子劣化耐性率が、98%以上である、
 ○:素子劣化耐性率が、90%以上、98%未満である、
 ○△:素子劣化耐性率が、60%以上、90%未満である、
 △:素子劣化耐性率が、20%以上、60%未満である、
 ×:素子劣化耐性率が、20%未満である。
Element deterioration tolerance rate = (area of black spots generated in elements not subjected to accelerated deterioration processing / area of black spots generated in elements subjected to accelerated deterioration processing) × 100 (%)
A: The element deterioration resistance rate is 98% or more.
○: The element deterioration resistance rate is 90% or more and less than 98%.
◯: The element deterioration resistance rate is 60% or more and less than 90%.
Δ: The element deterioration resistance rate is 20% or more and less than 60%.
X: The element deterioration resistance rate is less than 20%.
 この評価を、熱水処理を行っていないサンプル(即)と、熱水処理を行った後のサンプル(熱水処理後)との両方で行った。 This evaluation was performed on both the sample that was not subjected to hot water treatment (immediately) and the sample that was subjected to hot water treatment (after hot water treatment).
 各実施例および各比較例のガスバリア性フィルムの構成および評価結果を下記表2~4に示す。 Tables 2 to 4 below show the structures and evaluation results of the gas barrier films of each Example and each Comparative Example.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表2~4から明らかなように、実施例により作製した本発明のガスバリア性フィルムは、従来と比べて高いガスバリア性を有し、高温高湿条件下で保存した後でも安定性が非常に高く、高いガスバリア性を維持し、折り曲げ耐性に優れる。また、厳しい湿熱環境下でもガスバリア性が維持されるため、有機EL素子の封止フィルムとして用いることでダークスポットの発生を低減させる効果を有する。 As is apparent from Tables 2 to 4 above, the gas barrier films of the present invention produced according to the examples have higher gas barrier properties than those of the prior art, and are very stable even after being stored under high temperature and high humidity conditions. High, maintaining high gas barrier properties and excellent bending resistance. Moreover, since the gas barrier property is maintained even under severe wet heat environment, it has an effect of reducing the occurrence of dark spots by using it as a sealing film for organic EL elements.
 具体的には、基材の片面のみにガスバリア層を有する比較例1のガスバリア性フィルムや、添加元素を含むガスバリア層を有していない比較例2~4のガスバリア性フィルムの高温高湿環境に500時間さらした後のガスバリア性の保持率が0%に近いのに対して、基材の両面にガスバリア層を有し、少なくとも1つのガスバリア層に添加元素を含む実施例1~7のガスバリア性フィルムは、70%以上の高い保持率を示す。さらに、高温高湿環境下にさらした後であっても高い折り曲げ耐性を示した。 Specifically, the gas barrier film of Comparative Example 1 having a gas barrier layer only on one side of the substrate or the gas barrier films of Comparative Examples 2 to 4 having no gas barrier layer containing an additive element are used in a high-temperature and high-humidity environment. The gas barrier properties of Examples 1 to 7 having a gas barrier layer on both sides of the substrate and containing an additive element in at least one gas barrier layer, while the retention rate of the gas barrier property after exposure for 500 hours is close to 0% The film exhibits a high retention rate of 70% or higher. Furthermore, even after being exposed to a high temperature and high humidity environment, high bending resistance was exhibited.
 また、実施例1~3の結果を比較すると、基材の両面に添加元素を含むガスバリア層を有する実施例3のガスバリア性フィルムは、片面のみに添加元素を含むガスバリア層を設けた実施例1、2と比較して保持率が向上した。 Further, comparing the results of Examples 1 to 3, the gas barrier film of Example 3 having the gas barrier layer containing the additive element on both sides of the substrate was Example 1 in which the gas barrier layer containing the additive element was provided only on one side. Compared with 2, the retention rate was improved.
 基材の片面のみに添加元素を含むガスバリア層を設ける場合、ガスバリア層の積層数が同じであれば、実施例2のように基材の裏側に添加元素を含むガスバリア層を設けるほうが効果が高い。 When providing a gas barrier layer containing an additive element only on one side of the substrate, it is more effective to provide a gas barrier layer containing the additive element on the back side of the substrate as in Example 2 if the number of stacked gas barrier layers is the same. .
 また、実施例8~26のように、蒸着ガスバリア層を、ポリシラザンを用いて調製したガスバリア層に隣接して設けることによって、より優れたガスバリア性、折り曲げ耐性、高温高湿環境下での安定性を有するガスバリア性フィルムが得られ、有機EL素子の封止フィルムとして優れた性能を示す。 Further, as in Examples 8 to 26, by providing the vapor deposition gas barrier layer adjacent to the gas barrier layer prepared using polysilazane, more excellent gas barrier properties, bending resistance, and stability in a high temperature and high humidity environment. The gas barrier film which has this is obtained, and the performance outstanding as a sealing film of an organic EL element is shown.
 この場合も、比較例5、6と実施例8~12の比較、および比較例7~9と実施例13~26との比較から、ガスバリア層の積層数が同じであれば、添加元素を含むガスバリア層を有している本発明のガスバリア性フィルムは、添加元素を含まない場合と比較して、高いガスバリア性、折り曲げ耐性を示し、高温高湿環境下の安定性が大幅に向上することが確認された。添加元素としては、アルミニウムの他に、ガリウム、インジウム、マグネシウム、カルシウム、およびホウ素でも同様の効果が得られた(実施例18、22~26)が、長周期型周期表の第2族、第13族、および第14族の元素以外の金属元素であるロジウムを用いた比較例9のガスバリア性フィルムでは良好な性能が得られないことがわかった。 Also in this case, from the comparison between Comparative Examples 5 and 6 and Examples 8 to 12 and the comparison between Comparative Examples 7 to 9 and Examples 13 to 26, if the number of stacked gas barrier layers is the same, an additive element is included. The gas barrier film of the present invention having a gas barrier layer exhibits a high gas barrier property and bending resistance as compared with the case where no additive element is contained, and the stability under a high temperature and high humidity environment is greatly improved. confirmed. As the additive element, in addition to aluminum, the same effect was obtained with gallium, indium, magnesium, calcium, and boron (Examples 18, 22 to 26). It was found that the gas barrier film of Comparative Example 9 using rhodium which is a metal element other than the elements of Group 13 and Group 14 cannot obtain good performance.
 なお、本出願は、2014年3月24日に出願された日本特許出願第2014-060875号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2014-060875 filed on March 24, 2014, the disclosure of which is incorporated by reference in its entirety.

Claims (10)

  1.  基材の両面に、ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層を少なくとも1層ずつ有するガスバリア性フィルムであって、
     前記ガスバリア層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルム。
    At least one gas barrier layer obtained by applying a coating solution containing polysilazane on both surfaces of the substrate to obtain a coating layer and then performing a modification treatment by irradiating the coating layer with active energy rays. A gas barrier film each having
    At least one of the gas barrier layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (however, excluding silicon and carbon) Containing a gas barrier film.
  2.  前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素が、アルミニウム(Al)、インジウム(In)、ガリウム(Ga)、マグネシウム(Mg)、カルシウム(Ca)、ゲルマニウム(Ge)、およびホウ素(B)からなる群より選択される少なくとも1種である、請求項1に記載のガスバリア性フィルム。 At least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is aluminum (Al), indium (In), gallium (Ga), The gas barrier film according to claim 1, which is at least one selected from the group consisting of magnesium (Mg), calcium (Ca), germanium (Ge), and boron (B).
  3.  前記基材の両面に、前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素を含有するガスバリア層を少なくとも1層ずつ有する、請求項1または2に記載のガスバリア性フィルム。 At least one gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is formed on both surfaces of the base material. The gas barrier film according to claim 1 or 2, comprising:
  4.  蒸着法により形成されるガスバリア層をさらに有し、前記蒸着法により形成されるガスバリア層が、前記ポリシラザンを含有する塗布液を塗布し塗膜層を得た後、前記塗膜層に活性エネルギー線を照射して改質処理を行うことにより得られるガスバリア層に隣接して形成される、請求項1~3のいずれか1項に記載のガスバリア性フィルム。 A gas barrier layer formed by a vapor deposition method is further included. After the gas barrier layer formed by the vapor deposition method has applied the coating liquid containing the polysilazane to obtain a coating layer, active energy rays are applied to the coating layer. The gas barrier film according to any one of claims 1 to 3, wherein the gas barrier film is formed adjacent to a gas barrier layer obtained by performing a reforming treatment by irradiating with water.
  5.  前記蒸着法により形成されるガスバリア層は、前記基材と前記塗膜層との間に形成される、請求項4に記載のガスバリア性フィルム。 The gas barrier film according to claim 4, wherein the gas barrier layer formed by the vapor deposition method is formed between the base material and the coating layer.
  6.  前記活性エネルギー線が真空紫外線である、請求項1~5のいずれか1項に記載のガスバリア性フィルム。 6. The gas barrier film according to claim 1, wherein the active energy ray is a vacuum ultraviolet ray.
  7.  前記基材の厚みが、125μm以下である、請求項1~6のいずれか1項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 6, wherein the substrate has a thickness of 125 µm or less.
  8.  ポリシラザンを含有する塗布液を塗布し塗膜層を得る工程と、前記塗膜層に活性エネルギー線を照射し改質処理を行ってガスバリア層を得る工程と、によって、基材の両面にガスバリア層を形成することを含む、ガスバリア性フィルムの製造方法であって、
     前記塗膜層の少なくとも1層は、長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素(ただし、ケイ素および炭素を除く)を含有する、ガスバリア性フィルムの製造方法。
    A gas barrier layer is formed on both surfaces of the substrate by applying a coating liquid containing polysilazane to obtain a coating layer, and applying a modification treatment by irradiating the coating layer with active energy rays to obtain a gas barrier layer. Forming a gas barrier film, comprising:
    At least one of the coating layers is at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table (excluding silicon and carbon) ) Containing a gas barrier film.
  9.  電子デバイス本体と、
     請求項1~7のいずれか1項に記載のガスバリア性フィルムまたは請求項8に記載の製造方法により得られるガスバリア性フィルムと、
    を有する、電子デバイス。
    An electronic device body;
    A gas barrier film according to any one of claims 1 to 7 or a gas barrier film obtained by the production method according to claim 8,
    Having an electronic device.
  10.  前記長周期型周期表の第2族、第13族、および第14族の元素からなる群より選択される少なくとも1種の元素を含有するガスバリア層が、前記基材の前記電子デバイス本体と反対側の面に設けられる、請求項9に記載の電子デバイス。
     
    A gas barrier layer containing at least one element selected from the group consisting of elements of Group 2, Group 13, and Group 14 of the long-period periodic table is opposite to the electronic device body of the substrate. The electronic device according to claim 9, wherein the electronic device is provided on a side surface.
PCT/JP2015/058684 2014-03-24 2015-03-23 Gas barrier film, method for manufacturing same, and electronic device using same WO2015146886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510324A JPWO2015146886A1 (en) 2014-03-24 2015-03-23 Gas barrier film, method for producing the same, and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060875 2014-03-24
JP2014-060875 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146886A1 true WO2015146886A1 (en) 2015-10-01

Family

ID=54195400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058684 WO2015146886A1 (en) 2014-03-24 2015-03-23 Gas barrier film, method for manufacturing same, and electronic device using same

Country Status (2)

Country Link
JP (1) JPWO2015146886A1 (en)
WO (1) WO2015146886A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071093A (en) * 2015-10-06 2017-04-13 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film and electronic device
JP2018154012A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Functional film and method for manufacturing electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279362A (en) * 1997-03-31 1998-10-20 Tonen Corp Formation of sio2 ceramic film
JP2012056101A (en) * 2010-09-06 2012-03-22 Konica Minolta Holdings Inc Gas barrier film and electronic device using the same
JP2012148416A (en) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc Laminate and method for producing the same
JP2013188942A (en) * 2012-03-14 2013-09-26 Konica Minolta Inc Method of manufacturing water vapor barrier film, water vapor barrier film and electronic apparatus
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2013226732A (en) * 2012-04-26 2013-11-07 Konica Minolta Inc Method for manufacturing gas barrier film
JP2013226673A (en) * 2012-04-24 2013-11-07 Konica Minolta Inc Gas barrier film and its forming method, and electronic device containing the gas barrier film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279362A (en) * 1997-03-31 1998-10-20 Tonen Corp Formation of sio2 ceramic film
JP2012056101A (en) * 2010-09-06 2012-03-22 Konica Minolta Holdings Inc Gas barrier film and electronic device using the same
JP2012148416A (en) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc Laminate and method for producing the same
JP2013188942A (en) * 2012-03-14 2013-09-26 Konica Minolta Inc Method of manufacturing water vapor barrier film, water vapor barrier film and electronic apparatus
JP2013226673A (en) * 2012-04-24 2013-11-07 Konica Minolta Inc Gas barrier film and its forming method, and electronic device containing the gas barrier film
WO2013161894A1 (en) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 Gas barrier film, substrate for electronic device, and electronic device
JP2013226732A (en) * 2012-04-26 2013-11-07 Konica Minolta Inc Method for manufacturing gas barrier film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071093A (en) * 2015-10-06 2017-04-13 コニカミノルタ株式会社 Gas barrier film, method for producing gas barrier film and electronic device
JP2018154012A (en) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 Functional film and method for manufacturing electronic device

Also Published As

Publication number Publication date
JPWO2015146886A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6504284B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP6252493B2 (en) Gas barrier film
JP6274213B2 (en) Gas barrier film
WO2014119750A1 (en) Gas barrier film
WO2015002156A1 (en) Gas-barrier film and method for producing same, and electronic device using same
JP6319316B2 (en) Method for producing gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2015182623A1 (en) Gas barrier film and electronic device using same
JP6354756B2 (en) Gas barrier film and electronic device
JP6060848B2 (en) Gas barrier film
JP5987562B2 (en) Method for producing gas barrier film and electronic device
WO2015119260A1 (en) Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
WO2015146886A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
WO2015147221A1 (en) Gas barrier film and manufacturing method for gas barrier film
JPWO2015146886A6 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP6295864B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2015053055A1 (en) Functional film
JP6295865B2 (en) Gas barrier film
JPWO2015029795A1 (en) Method for producing gas barrier film
WO2014188981A1 (en) Gas barrier film
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film
JP6402518B2 (en) Gas barrier film, method for producing the same, and electronic device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769329

Country of ref document: EP

Kind code of ref document: A1