WO2015146412A1 - Antifouling antifogging member and method for producing same - Google Patents

Antifouling antifogging member and method for producing same Download PDF

Info

Publication number
WO2015146412A1
WO2015146412A1 PCT/JP2015/055003 JP2015055003W WO2015146412A1 WO 2015146412 A1 WO2015146412 A1 WO 2015146412A1 JP 2015055003 W JP2015055003 W JP 2015055003W WO 2015146412 A1 WO2015146412 A1 WO 2015146412A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
sulfo group
antifogging
resin
substrate
Prior art date
Application number
PCT/JP2015/055003
Other languages
French (fr)
Japanese (ja)
Inventor
掛樋 浩司
裕美 和田
有亮 佐藤
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014064877A external-priority patent/JP6347638B2/en
Priority claimed from JP2014064876A external-priority patent/JP6309803B2/en
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Publication of WO2015146412A1 publication Critical patent/WO2015146412A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to an antifouling and antifogging member and a method for producing the same.
  • a technique for coating the surface of a base material with a hydrophilic agent having an alkoxysilyl group that can be covalently bonded to the inorganic layer of the base material and a highly hydrophilic sulfo group is known (for example, Patent Documents). 1).
  • a highly hydrophilic sulfo group is exposed on the surface of the substrate, and condensation is prevented.
  • the anti-fogging member is obtained by moving the compound having a highly hydrophilic ionic functional group to the surface (outside) side of the base material by proceeding phase separation in the coating material.
  • Patent Documents 2 and 3 are also known (see, for example, Patent Documents 2 and 3). This member also prevents condensation by increasing the hydrophilicity on the surface side of the coating layer.
  • the turbidity of the substrate surface is prevented by intentionally delaying the progress of phase separation.
  • FIGS. 7A and 7B and FIGS. 8A and 8B show the ideal state of a conventional antifogging member.
  • the highly hydrophilic sulfo groups 32 are densely arranged in plan view, and the surface of the glass 31 of the substrate is hardly exposed to the outside. Since the surface of the glass (SiO 2 ) of the base material is hardly exposed to the outside, as shown in FIG. 7B, the pollutant 33 (mineral content in tap water, silicone oil contained in the hair wash, etc.) is the base material (glass 31). ) Cannot get close to the surface.
  • the highly hydrophilic sulfo groups 32 are spaced apart from each other.
  • the area exposed to the outside of the surface of the glass 31 becomes large, and as shown in FIG. Minerals, silicone oil contained in the hair washing agent, etc.) easily approach the surface of the glass 31.
  • the contaminant 33 When the contaminant 33 approaches the surface of the glass 31, it may react with the silanol group of the glass 31 to form a stain that is difficult to remove.
  • the sulfo group 32 in FIGS. 7A and 7B and FIGS. 8A and 8B is represented as “SO 3 H” for convenience, it may be in an alkali metal salt state.
  • the present invention has been made in view of the above, and an object thereof is to stably manufacture an antifouling and antifogging member having high antifogging properties and antifouling properties and such an antifouling and antifogging member. It is in providing the manufacturing method which can be performed.
  • the present invention includes a base material (for example, a base material 10A described later) and an antifouling and antifogging coating portion (for example, a coating portion 20A described later) formed on the base material. ), And the coating portion is selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin.
  • a resin layer containing at least one matrix resin for example, a resin layer 21A described later
  • a substance having a sulfo group for example, a substance 22A having a sulfo group described later
  • the coating portion formed on the base material of the antifouling and antifogging member has high hydrophobicity, that is, a resin layer that is difficult to react with contaminants because of its low surface free energy, and the surface of the resin layer. And a substance having a highly hydrophilic sulfo group to be arranged.
  • a highly hydrophilic substance having a sulfo group prevents condensation on the substrate surface, and the presence of a resin layer allows contaminants that enter between the substances having a sulfo group to adhere to the substrate surface.
  • an antifouling and antifogging member having both high antifogging properties and antifouling properties can be provided.
  • the coating includes a base material (for example, a base material 10A described later) and a coating portion (for example, a coating portion 20A described later) having antifouling properties and antifogging properties formed on the base material.
  • Part includes a resin layer (for example, a resin layer 21A described later) and a substance having a sulfo group (for example, a substance 22A having a sulfo group described later), and a method for producing an antifouling and antifogging member.
  • a step of forming a resin layer containing at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin on the substrate for example, step S11 described later
  • a step of disposing a substance having a sulfo group on the surface of the resin layer formed in the step for example, step S12 described later
  • a method for producing an antifouling and antifogging member To provide.
  • the method for producing an antifouling and antifogging member includes a step of forming a resin layer that is difficult to react with a contaminant because of its high hydrophobicity, and a substance having a highly hydrophilic sulfo group on the surface of the resin layer. And a step of arranging.
  • the antifouling and antifogging member having both high antifogging properties and antifouling properties can be produced as described above.
  • phase separation is not involved in the formation of the coating portion on the base material, a high-quality antifouling and antifogging member whose surface of the base material is not clouded can be stably produced.
  • the present invention includes a base material (for example, a base material 10B described later) and a coating portion (for example, a coating portion 20B described later) having antifouling properties and antifogging properties formed on the base material. ), and the coating portion is selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin.
  • a matrix component containing at least one resin for example, a matrix component 21B described later
  • a component having a sulfo group for example, a component 22B having a sulfo group described later
  • the component having the antifouling and antifogging member is characterized in that it is uniformly distributed inside the coating portion and at least a part of the component is exposed on the surface of the coating portion.
  • the coating portion formed on the base material of the antifouling and antifogging member has a high hydrophobicity, that is, a surface component having a low surface free energy, so that it does not easily react with contaminants and a highly hydrophilic sulfo group.
  • a component having a sulfo group, and the component having a sulfo group is uniformly distributed inside the coating portion and at least a part thereof is exposed on the surface of the coating portion.
  • the component having a highly hydrophilic sulfo group prevents condensation on the substrate surface, and the presence of the matrix component causes contaminants that have entered between the components having the sulfo group to adhere to the substrate surface.
  • an antifouling and antifogging member having both high antifogging properties and antifouling properties can be provided. Moreover, since the component which has a sulfo group is uniformly distributed without segregating inside the coating part, the cloudiness of the coating part at the time of manufacture can be prevented.
  • a base material for example, a base material 10B described later
  • a coating portion for example, a coating portion 20B described later
  • a method for producing an antifouling and antifogging member comprising a UV curable resin containing an acrylic resin (for example, a UV curable resin 210B described below) and a substance having a sulfo group (for example, a substance having a sulfo group described below) 220B) and a dispersion medium (for example, dispersion medium 230B described later) that can disperse the UV-curable resin and the substance having a sulfo group and that has a plurality of solvents having different solubility parameters, It is formed by an uncured film forming step (for example, step S21 described later) for forming an uncured film (for example, an uncured film 200B described later) by applying on the substrate, and the uncured film
  • a pre-curing step for example, step S23 described later for pre-curing the uncured film by irradiating UV, and the coating by irradiating the un-cured film pre-cured in the pre-curing step with UV for main curing
  • a main curing step for example, step S24 to be described later for forming a portion, and a method for producing an antifouling and antifogging member.
  • the method for producing an antifouling and antifogging member comprises an uncured film forming step of forming an uncured film by applying a solution on a substrate by a method capable of suppressing solvent volatilization, and an uncured film
  • a pre-curing step in which UV is applied to the uncured film formed in the forming step and pre-cured, and an uncured film pre-cured in the pre-curing step is irradiated with UV to perform main curing to form a coating portion.
  • the solution applied to the substrate can disperse the UV curable resin, the substance having a sulfo group, the UV curable resin and the substance having the sulfo group, and a solubility parameter. And a dispersion medium composed of a plurality of different solvents.
  • the antifouling and antifogging member having both high antifogging properties and antifouling properties can be produced as described above.
  • the formation of the coating part on the base material does not segregate the substance having sulfo groups and phase separation does not occur, so it is possible to stably produce high-quality antifouling and antifogging members whose base material surface is not clouded. can do.
  • the uncured film forming step it is preferable to apply the solution onto the substrate by a microdispenser.
  • the solution in the uncured film forming step, is applied onto the substrate by a microdispenser, a slit coater or a dip coater.
  • the solution when the solution is applied by a method of making the solution mist like spray coating, the specific surface area of the solution becomes very large.
  • the solvent volatilizes abruptly or the solution absorbs moisture in the atmosphere, causing the balance between the UV curable resin and the substance having a sulfo group to be lost, and in the uncured film. Segregation of components occurs and the coating becomes cloudy.
  • the coating using a micro-dispenser, slit coater or dip coater has a smaller specific surface area of the solution at the time of coating because the size of the liquid droplets to be ejected is larger than that of normal spray coating, resulting in the above problems. hard. Therefore, according to the present invention, a high-quality antifouling and antifogging member whose surface of the base material is not clouded can be stably produced.
  • the manufacturing method which can manufacture stably the antifouling antifogging member which has high antifogging property and antifouling property, and such an antifouling antifogging member can be provided. .
  • FIG. 1A is a diagram schematically showing a plane of the antifouling and antifogging member 1A according to the first embodiment
  • FIG. 1B is a schematic cross section of the antifouling and antifogging member 1A according to the present embodiment. It is the figure shown in.
  • the antifouling and antifogging member 1A includes a base material 10A and a coating portion 20A formed on the base material 10A.
  • the base material 10A may be a polycarbonate sheet.
  • examples of the base material 10A include a mirror, a window used in a washroom or an automobile, and a lens.
  • the coating portion 20A includes a resin layer 21A and a substance 22A having a sulfo group disposed on the surface of the resin layer 21A.
  • the resin layer 21A includes at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin.
  • the matrix resin included in the resin layer 21A preferably includes at least one matrix resin selected from the group consisting of highly hydrophobic acrylic resin, polyolefin resin, and fluororesin.
  • the matrix resin contained in the resin layer 21A is more preferably an acrylic resin obtained by polymerizing (meth) acrylic acid ester.
  • the matrix resin is an acrylic resin obtained by polymerizing (meth) acrylic acid ester
  • the antifouling property of the coating portion 20A is further improved, and a part of the (meth) acrylic acid ester 22A having a sulfo group described later and When combined, the durability of the antifogging performance is improved.
  • the hydrophobicity of the resin layer 21A of the coating portion 20A has a correlation with the surface free energy of the resin layer 21A. That is, the resin layer 21A has high hydrophobicity and low surface free energy.
  • This “surface free energy” is an index of the interaction force between substances. Specifically, since the resin layer 21A has a small surface free energy, it does not easily react with the contaminant 33A described later, and has high antifouling properties.
  • the substance 22A having a sulfo group is not particularly limited, but is preferably a substance obtained by polymerizing a sulfosilane represented by the following chemical formula (1) capable of forming a dense coating film having high hydrophilicity.
  • R 1 is H or C n H n ⁇ 2 (n is a natural number), and m is 0 or a natural number.)
  • Substance 22A having a sulfo group among Suruhoshiran represented by the chemical formula (1), R 1 is H, it is preferred that m is a substance Suruhoshiran are polymerized at 10 or less. Since the substance 22A having a sulfo group is a substance obtained by polymerizing such a sulfosilane, the anti-fogging property of the coating portion 20A becomes higher. In particular, when m is 10 or less, a gap through which a contaminant 33A to be described later enters on the surface of the resin layer 21A is less likely to occur, so that the antifouling property of the antifouling and antifogging member 1A is further improved.
  • the substance 22A having a sulfo group is more preferably a substance obtained by polymerizing sulfosilane having m of 0 to 3 among the sulfosilanes represented by the chemical formula (1).
  • the substance 22A having a sulfo group may react with and bind to the resin constituting the resin layer 21A.
  • the manufacturing method of 1 A of antifouling anti-fogging members which concern on 1st Embodiment is demonstrated.
  • 2A to 2C are views for explaining a method of manufacturing the antifouling and antifogging member 1A according to the present embodiment.
  • the manufacturing method of the antifouling / antifogging member 1A includes a step S11 (see FIG. 2A) for forming the resin layer 21A on the substrate 10A, and a step S12 for disposing a substance 22A having a sulfo group on the surface of the resin layer 21A ( 2B).
  • step S11 it is preferable to use a UV curable resin as a raw material for the matrix resin described above. Specifically, in step S11, a coating containing a UV curable resin and a photopolymerization initiator is applied to the substrate 10A, and the applied UV curable coating is irradiated with UV to form the resin layer 21A. Is preferred.
  • the UV curable resin includes at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin. The type of photopolymerization initiator and the curing conditions are appropriately set according to the type and concentration of the UV curable resin used.
  • the application method is not particularly limited, but it is a method of hand-coating using a waste, brush, or bar coater, a method using a roll coater, a method using a dispenser, a method using a slit coater, or spray coating. And the like.
  • the surface of the base material may be pretreated prior to step S11.
  • treatment with a coupling agent that firmly bonds the surface of the substrate 10A and the resin layer 21A chemical treatment such as primer treatment and etching treatment, flame treatment such as flame treatment and plasma treatment, sanding, A physical process such as polishing can be given.
  • step S12 a solution containing a compound that is a raw material of the substance 22A having a sulfo group is applied to the surface of the resin layer 21A.
  • a solution containing a compound that is a raw material for the substance 22A having a sulfo group and a solvent is applied onto the surface of the resin layer 21A, and further heated.
  • the compound serving as a raw material of the substance 22A having a sulfo group is preferably a sulfosilane represented by the following chemical formula (1) because a dense coating film having high hydrophilicity can be formed.
  • R 1 is H or C n H n ⁇ 2 (n is a natural number), and m is 0 or a natural number.)
  • the compound serving as a raw material of the substance 22A having a sulfo group is preferably a sulfosilane having R 1 of H and m of 10 or less among the sulfosilanes represented by the chemical formula (1).
  • m is 10 or less, a gap through which a contaminant 33A to be described later enters on the surface of the resin layer 21A is less likely to occur, so that the antifouling property of the antifouling and antifogging member 1A is further improved.
  • the compound serving as a raw material for the substance 22A having a sulfo group is more preferably a sulfosilane having m of 0 to 3 among the sulfosilanes represented by the chemical formula (1).
  • the antifogging property of the coating part 20A is further increased because the compound that is a raw material of the substance 22A having a sulfo group is a substance obtained by polymerizing such a sulfosilane.
  • the substance 22A having a sulfo group may react with and bind to the resin constituting the resin layer 21A.
  • the application method is not particularly limited, but it is a method of hand-coating using a waste, brush, or bar coater, a method using a roll coater, a method using a dispenser, a method using a slit coater, or spray coating. And the like.
  • the surface of the resin layer may be pretreated prior to step S12.
  • pretreatment in step S12 treatment with a coupling agent that strongly bonds the resin layer 21A and the substance 22A having a sulfo group, primer treatment, chemical treatment such as etching treatment, flame treatment such as flame treatment, plasma treatment, etc. , Physical processing such as sanding and polishing.
  • the coating portion 20A has antifouling properties and antifogging properties by including the resin layer 21A and the substance 22A having a sulfo group.
  • the coating portion 20A formed on the base material 10A of the antifouling and antifogging member 1A has a high hydrophobicity, that is, a resin layer 21A that hardly reacts with contaminants because of its low surface free energy.
  • the substance 22A having a highly hydrophilic sulfo group prevents condensation on the surface of the substrate 10A, and the presence of the resin layer 21A allows the contaminant 33A that has entered between the substances 22A having the sulfo group to enter.
  • the antifouling and antifogging member 1A according to the first embodiment has both high antifogging properties and antifouling properties.
  • the resin layer 21A of the coating portion 20A contains a matrix resin having a relatively high hydrophobicity. However, by placing a substance 22A having a very hydrophilic sulfo group on the resin layer 21A, a hydrophobic property can be obtained. Condensation can be prevented without being greatly affected by the high resin layer 21A.
  • the method for producing an antifouling and antifogging member includes a step S11 of forming a resin layer 21A that is difficult to react with a contaminant because of its high hydrophobicity, and a substance having a highly hydrophilic sulfo group Step S12 for arranging 22A on the surface of the resin layer 21A.
  • phase separation is not involved in the formation of the coating portion 20A on the substrate 10A, a high-quality antifouling and antifogging member 1A having a surface on which the surface of the substrate 10A is not cloudy can be stably produced.
  • FIG. 3A is a diagram schematically illustrating a plane of the antifouling and antifogging member 1B according to the second embodiment
  • FIG. 3B is a schematic cross section of the antifouling and antifogging member 1B according to the present embodiment. It is the figure shown in.
  • the antifouling and antifogging member 1B includes a base material 10B and a coating portion 20B formed on the base material 10B.
  • the base material 10B is not particularly limited, but is preferably made of an inorganic material such as silicon dioxide or having a layer made of an inorganic material on the surface.
  • the base material 10B may be a polycarbonate sheet.
  • the base material 10B includes a mirror, a window used in a washroom or an automobile, a lens, and the like.
  • the coating portion 20B includes a matrix component 21B and a component 22B having a sulfo group.
  • the matrix component 21B includes an acrylic resin.
  • the resin included in the matrix component 21B is an acrylic resin having high hydrophobicity.
  • the resin contained in the matrix component 21B is preferably an acrylic resin obtained by polymerizing (meth) acrylic acid ester.
  • the resin contained in the matrix component 21B is an acrylic resin obtained by polymerizing (meth) acrylic acid ester, so that the antifouling property of the coating portion 20B is further improved, and a part of the (meth) acrylic acid ester has a sulfo group described later. If it is combined with the component 22B having, the durability of the antifogging performance is improved.
  • the component 22B having a sulfo group is not particularly limited, but 2- (methacryloyloxy) ethanesulfonic acid, vinylsulfonic acid, allylsulfonic acid, alkalis of these sulfonic acids, which can form a highly dense coating film with the matrix component 21B.
  • 2- (methacryloyloxy) ethanesulfonic acid, vinylsulfonic acid, allylsulfonic acid, alkalis of these sulfonic acids which can form a highly dense coating film with the matrix component 21B.
  • a metal salt or a compound represented by the following chemical formula (2) a compound containing a sulfo group and one or more polymerizable functional groups, or a polymer thereof is preferable.
  • the component 22B having a sulfo group is uniformly distributed inside the coating part 20B and at least a part thereof is exposed on the surface of the coating part 20B.
  • the component 22B having a sulfo group is not unevenly distributed in the coating portion 20B.
  • the component 22B having a sulfo group may react and bond with the matrix component 21B.
  • the hydrophobicity of the matrix component 21B of the coating part 20B has a correlation with the surface free energy of the matrix component 21B. That is, the matrix component 21B of the coating part 20B has high hydrophobicity and low surface free energy.
  • This “surface free energy” is an index of the interaction force between substances. Specifically, since the matrix component 21B of the coating portion 20B has a small surface free energy, it hardly reacts with the contaminant 33B described later and has high antifouling properties.
  • the manufacturing method of the antifouling / antifogging member 1B includes an uncured film forming step S21, a desolvation step S22, a preliminary curing step S23, and a main curing step S24.
  • step S21 as shown in FIG. 4A, a UV curable resin 210B, a substance 220B having a sulfo group, and a dispersion medium 230B capable of dispersing the UV curable resin 210B and the substance 220B having a sulfo group are dispersed.
  • the uncured film 200 ⁇ / b> B is formed by applying the contained solution onto the base material.
  • the UV curable resin 210B is a UV curable resin containing an acrylic resin.
  • the UV curable resin 210B includes an acrylic resin having high hydrophobicity.
  • the UV curable resin 210B is preferably a UV curable resin made of an acrylic resin obtained by polymerizing (meth) acrylic acid ester. Since the UV curable resin 210B is a UV curable resin made of an acrylic resin obtained by polymerizing a (meth) acrylic acid ester, the antifouling property of the formed coating portion 20B is further improved, and the (meth) acrylic acid ester If a part thereof is combined with a substance 220B having a sulfo group, which will be described later, the durability of the antifogging performance is improved.
  • the substance 220B having a sulfo group is not particularly limited, but 2- (methacryloyloxy) ethanesulfonic acid, vinylsulfonic acid, allylsulfonic acid, and these sulfonic acids that can form a highly dense coating film with the UV curable resin 210B. It is preferable that it is a compound containing a sulfo group and 1 or more polymeric functional group like the alkali metal salt of this, and the compound represented by following Chemical formula (2).
  • paint containing the substance 220B having a sulfo group Forse Seed No. containing the compound represented by the above chemical formula (2) is used.
  • 140C-P acrylic UV curable paint, manufactured by China Paint Co., Ltd.
  • KPP # 04 acrylic UV curable paint, manufactured by Koshin Chemical Co., Ltd.
  • the dispersion medium 230B includes a plurality of solvents having different solubility parameters (SP values). Since the dispersion medium 230B is made of a plurality of solvents having different SP values, when the dispersion medium 230B volatilizes during the curing of the paint described later, the SP value of the dispersion medium 230B that has not volatilized is prevented from changing abruptly. Can do. When the SP value of the dispersion medium 230B rapidly changes, the material 220B having a sulfo group segregates and the coating portion 20B becomes cloudy. However, by using a plurality of solvents having different SP values as the dispersion medium 230B, The phenomenon can be prevented from occurring.
  • SP values solubility parameters
  • the dispersion medium 230B is preferably composed of a plurality of solvents having different evaporation rates.
  • a plurality of solvents having different evaporation rates as the dispersion medium, it is possible to suppress the dispersion medium 230B from volatilizing rapidly. If the dispersion medium 230B suddenly volatilizes, the material 220B having a sulfo group is segregated and the coating part 20B tends to become cloudy. However, this phenomenon is caused by using a plurality of solvents having different evaporation rates as the dispersion medium. Can be prevented.
  • the dispersion medium 230B it is preferable to use a dispersion medium in which two or more kinds are selected and combined from the solvents listed in Table 1, and it is more preferable to use a dispersion medium in which three or more kinds are selected and combined. Further, from the viewpoint of satisfactorily dispersing both the UV curable resin 210B and the substance 220B having a sulfo group, the dispersion medium 230B is a dispersion medium composed of a plurality of solvents having an SP value of 10.2 to 14.5. Is preferably used.
  • a dispersion medium consisting of 2-methoxyethanol, ethanol, 1-propanol and 2-propanol
  • dispersion medium consisting of ethanol, 2-propanol and 2-methoxyethanol, ethanol, 2-propanol, 2-methoxyethanol, methanol and 2-methoxyethane
  • the solution applied to the substrate 10B may contain a photopolymerization initiator and other components.
  • the kind and content of the photopolymerization initiator are appropriately set according to the curing conditions and the like.
  • the application method is not particularly limited, and examples thereof include a method of hand-coating using a waste or a brush, a method using a roll coater or a bar coater, a method using a dispenser, and the like.
  • step S21 when the solution is coated by a method of misting the solution like spray coating, the specific surface area of the solution becomes very large.
  • the coating using a micro-dispenser, slit coater or dip coater has a smaller specific surface area of the solution at the time of coating because the size of the liquid droplets to be ejected is larger than that of normal spray coating, resulting in the above problems. hard.
  • step S21 if the solution is applied on the base material 10B by a microdispenser, a slit coater or a dip coater, a high-quality antifouling and antifogging member whose surface of the base material is not clouded is stably produced.
  • a microdispenser a slit coater or a dip coater
  • a high-quality antifouling and antifogging member whose surface of the base material is not clouded is stably produced.
  • These coating methods that do not mist the solution do not pollute the environment and reduce the number of ventilations when used in a clean room, which is essential to achieve high-quality coating without foreign substances. Economical.
  • step S21 it is more preferable to apply the solution onto the substrate 10B with a microdispenser.
  • the micro dispenser is a dispenser capable of controlling the discharge amount per unit time in a range of 0.005 g / sec to 1.0 g / sec.
  • the micro dispenser include Aero Jet (registered trademark) manufactured by Musashi Engineering Co., Ltd.
  • Aero Jet registered trademark
  • the micro-dispenser When painting a large area using a micro-dispenser, attach the micro-dispenser to a robot or slide-type transport machine, adjust the transport speed and discharge volume appropriately, and parallel multiple micro-dispensers as necessary.
  • the required tact time can be achieved.
  • dispensers with a larger discharge amount than microdispensers such dispensers cannot be coated with a film thickness on the order of several ⁇ m, and it is necessary to excessively increase the speed of the conveyor to obtain the required film thickness.
  • the mass per unit area (g / cm 2 ) of the paint applied to the base material 10B using the microdispenser is the discharge rate per unit time (g / sec), the transport speed (cm / sec). ) And the coating width (cm).
  • the surface of the base material may be pretreated prior to step S21.
  • a flame such as a treatment with a coupling agent that firmly bonds the surface of the base material 10B and the coating portion 20B, a chemical conversion treatment such as a primer treatment or an etching treatment, a flame treatment, or a plasma treatment.
  • Physical treatment such as treatment, sanding, polishing, and cleaning treatment can be exemplified.
  • step S22 the uncured film formed in step S21 is dried.
  • step S22 it is preferable to volatilize the solvent from the uncured film by heating the uncured film.
  • the heating device to be used is not particularly limited, but it is preferable to provide a forced convection device in order to perform solvent volatilization uniformly and quickly. By performing the solvent volatilization uniformly, segregation of components in the uncured film is difficult to occur.
  • the temperature in step S22 is preferably 40 to 80 ° C. in order to evaporate the solvent appropriately.
  • the drying time is preferably within 10 minutes depending on the size of the substrate.
  • step S23 the uncured film is precured by irradiating UV to the uncured film formed in step S21 and desolvated in step S22.
  • step S24 the uncured film precured in step S23 is irradiated with UV to fully cure the uncured film, thereby forming the coating portion 20B (see FIGS. 4B and 4C).
  • the UV curing device used in step S23 and step S24 is not particularly limited, and examples thereof include a UV curing device using a high-pressure mercury lamp or a metal halide lamp. Among these, since a high pressure mercury lamp has a small calorific value, it is preferable to use a UV curing device using a high pressure mercury lamp in step S23 and step S24.
  • step S23 it is preferable to irradiate UV having a wavelength of 200 to 500 nm and an intensity of 400 to 1500 mW / cm 2 for 0.05 to 0.5 seconds to the uncured film obtained by volatilizing the solvent to some extent in step S22.
  • the UV-curable resin 210B is slightly cured by irradiating the uncured film with UV for a short time, thereby restraining the sulfo group-containing substance 220B in the uncured film. Prevent segregation.
  • the uncured film is preferably irradiated with UV having a wavelength of 200 to 500 nm and an intensity of 400 to 1500 mW / cm 2 for 1 to 10 seconds.
  • the uncured film precured in step S23 is irradiated with UV to completely cure the UV curable resin 210B.
  • the thickness of the coating portion 20B obtained by main-curing the uncured film in step S24 is preferably 2 to 20 ⁇ m so that the coating portion 20B does not generate cracks and exhibits sufficient wear resistance. .
  • the UV irradiation apparatus for hardening an uncured coating film used in process S23 and process S24 is not specifically limited, It is preferable to use a conveyor type UV irradiation apparatus. Specifically, UV having a predetermined intensity is irradiated while a substrate on which an uncured coating film is formed is transported on a conveyor. At this time, the UV irradiation time (the time for the substrate to pass through the UV irradiation range) can be controlled by controlling the conveying speed of the conveyor.
  • the coating part 20B formed on the base material 10B of the antifouling and antifogging member 1B has a hydrophobic property, so that the matrix component 21B which does not easily react with contaminants and a highly hydrophilic sulfo group And the component 22B having a sulfo group is uniformly distributed inside the coating part 20B and at least a part thereof is exposed on the surface of the coating part 20B.
  • the component 22B having a highly hydrophilic sulfo group prevents condensation on the surface of the base material 10B, and the presence of the matrix component 21B prevents the contaminant 33B that has entered between the components 22B having the sulfo group. It can prevent that it adheres to the base-material 10B surface and forms scales.
  • the antifouling and antifogging member 1B having both high antifogging properties and antifouling properties can be provided.
  • the component 22B having a sulfo group is uniformly distributed without segregation inside the coating part 20B, it is possible to prevent the coating part 20B from becoming clouded during production.
  • the manufacturing method of the antifouling and antifogging member 1B includes the step S21 of forming the uncured film 200B by applying a solution on the base material 10B, and the uncured formed in the step S21.
  • Step S23 for pre-curing the film 200B by irradiating UV and Step S24 for forming the coating portion 20B by irradiating the uncured film 200B pre-cured in Step S23 with UV for main curing
  • the solution applied to the base material 10B can disperse the UV curable resin 210B, the substance 220B having a sulfo group, the UV curable resin 210B, and the substance 220B having a sulfo group, and has a solubility.
  • a dispersion medium 230B composed of a plurality of solvents having different parameters.
  • the antifouling / antifogging member 1B having both high antifogging property and antifouling property as described above can be produced.
  • the material 220B having a sulfo group does not segregate and phase separation does not occur in the formation of the coating portion 20B on the base material 10B, the surface of the base material 10B is not white turbid and has a high quality antifouling and antifogging member 1B. Can be manufactured stably.
  • Example 1 Primer PC3-B (manufactured by Fluoro Technology Co., Ltd.) was applied to the PP plate using a waste cloth. After drying at room temperature for 1 hour, a solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was used with a waste cloth. The member of Example 1 was obtained by heating at 60 ° C. for 1 hour.
  • Example 2 PC-3B was applied to the acrylic plate using a waste cloth. Further, a solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was applied with waste cloth at 60 ° C. The member of Example 2 was obtained by heating for 1 hour.
  • Example 3 A UV curable paint FA-3118 (acrylic UV curable paint, manufactured by Nippon Kako Paint Co., Ltd.) was applied to a polycarbonate sheet and UV cured to obtain an 8 ⁇ m coating film (resin layer).
  • a solution was prepared by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour.
  • the member of Example 3 was obtained by applying a sulfosilane solution to the surface of the frame-treated UV cured coating film (resin layer) using a waste cloth and heating at 80 ° C. for 1 hour.
  • a UV curable paint FA-3118 (acrylic UV curable paint, manufactured by Nippon Kako Paint Co., Ltd.) was applied to a polycarbonate sheet with a bar coater and UV cured to form an 8 ⁇ m coating film. Obtained.
  • Comparative Example 4 The glass surface was polished with cerium oxide, washed thoroughly with pure water, and then dried by air blow. A solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was coated on the dried glass with a waste cloth. The member of Comparative Example 4 was obtained by heating at 0 ° C. for 1 hour.
  • Comparative Example 5 By polishing the surface of the member obtained according to the formulation of Comparative Example 4 with cerium oxide, the member of Comparative Example 5 that was partially covered with sulfosilane and partially exposed to glass was obtained.
  • Example 4 Forse Seed No. Solvent 50 in which 50 parts of 140C-P (acrylic UV curable paint, manufactured by China Paint Co., Ltd.) was mixed with ethanol, 2-methoxyethanol, 1-propanol and 2-propanol at a mass ratio of 6: 4: 1: 1 The solution diluted in the part was applied to a polycarbonate plate using a micro dispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so that the coating amount of the coating solution was 25 g / m 2 . Subsequently, the applied uncured film was dried at 60 ° C. for 3 minutes and UV cured to obtain a member of Example 4 (cured film thickness 4 ⁇ m).
  • 140C-P acrylic UV curable paint, manufactured by China Paint Co., Ltd.
  • UV curing a high-pressure mercury lamp is used to instantaneously (0.1 seconds) irradiate the coating film with UV (illuminance at a wavelength of 365 nm: 600 mW / cm 2 ), and continue to the precured coating film. (2 seconds) UV (irradiance at a wavelength of 365 nm: 600 mW / cm 2 ) was radiated continuously.
  • Forse Seed No. 140C-P contains methanol and 1-methoxy-2-propanol.
  • Example 5 A bathroom mirror (surface: soda glass) was polished with cerium oxide, thoroughly washed with pure water, and then dried with clean air. 1 part of silane coupling agent KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with 99 parts of propylene glycol monomethyl ether, 0.3 part of 5% hydrochloric acid was added, and the mixture was stirred for 1 hour. This was applied to a mirror with a micro dispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so that the coating amount of the solution was 10 g / m 2, and cured by heating at 140 ° C. for 10 minutes.
  • a micro dispenser Alo Jet, manufactured by Musashi Engineering Co., Ltd.
  • KPP # 04 (acrylic UV curable paint, manufactured by Koshin Chemical Co., Ltd.) was added to the surface with ethanol, 2-propanol and 2-methoxyethanol in a mass ratio of 6: 2: 2.
  • the solution diluted with 50 parts of the mixed solvent was applied using a microdispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so as to be 25 g / m 2 .
  • the applied uncured film was dried at 60 ° C. for 5 minutes and UV cured to obtain a member of Example 5 (cured film thickness 5 ⁇ m).
  • Example 2 In UV curing, as in Example 1, using a high-pressure mercury lamp, the coating film was irradiated with UV (illuminance at a wavelength of 365 nm: 800 mW / cm 2 ) instantaneously (for 0.2 seconds) and precured. The film was continuously (for 2 seconds) irradiated with UV (illuminance at a wavelength of 365 nm: 800 mW / cm 2 ). KPP # 04 contains methanol and 2-methoxyethanol.
  • Comparative Example 6 A member obtained by the same method as in Comparative Example 3 was used as a member in Comparative Example 6.
  • Comparative Example 7 A member obtained by the same method as in Comparative Example 4 was used as a member in Comparative Example 7.
  • Comparative Example 8 A member obtained by the same method as in Comparative Example 5 was used as a member in Comparative Example 8.
  • Example 10 In UV curing, a member was prepared in the same manner as in Example 4 except that the step of irradiating the coating film instantaneously (0.2 seconds) with UV (illuminance at wavelength 365 nm: 800 mW / cm 2 ) was not performed. went. However, in this case, the coating film becomes clouded during UV curing, and a member having a transparent coating film cannot be obtained.
  • ⁇ Abrasion test> A load of 1 kg was applied to a sponge soaked with water (Sumitomo 3M Scotch Bright S-21K), and the surface of each member was worn back and forth 10,000 times. In order to prevent the sponge from drying, water was supplied every 500 reciprocations. After the wear test, the test and measurement shown above were performed to confirm the durability of the coating portion of the member. The results are shown in Tables 2 and 3.
  • EPMA Electrode beam microanalyzer
  • Example 1 From comparison between Example 1 and Comparative Example 1, it was found that the member of Example 1 had a lower surface water contact angle (higher hydrophilicity) than the member of Comparative Example 1. From this result, it was confirmed that the member in which the substance having a sulfo group is arranged on the surface of the resin layer has higher antifogging property than the member in which the substance having a sulfo group is not arranged on the surface of the resin layer. This is also clear from the comparison between Example 2 and Comparative Example 2 and the comparison between Example 3 and Comparative Example 3.
  • a resin layer is not formed on a substrate such as glass.
  • a resin layer corresponding to the PP plate of Example 1 or a resin layer corresponding to the acrylic plate of Example 2 is provided on a substrate such as glass, and a substance having a sulfo group is disposed on the resin layer.
  • a substance having a sulfo group is disposed on the resin layer.
  • Example 4 From comparison between Example 4 and Comparative Example 6, it was found that the member of Example 4 had a lower surface water contact angle (higher hydrophilicity) than the member of Comparative Example 6. From this result, it was confirmed that the member in which the coating part contains the component which has a sulfo group has a higher antifogging property than the member in which the coating part does not contain the component which has a sulfo group.
  • Example 5 had higher scale removal performance than the member of Comparative Example 7.
  • a member in which a coating layer containing a matrix component and a component containing a sulfo group is formed on the surface of a substrate such as glass is a member in which a substance having a sulfo group is directly arranged on the surface of the substrate. It is clear that the antifouling property is higher than that.
  • Comparative Examples 9 and 10 the coating film became cloudy.
  • white turbidity was caused by segregation of a substance having a sulfo group due to a rapid SP value change caused by the rapid volatilization of the solvent due to the paint becoming mist during spray coating. it is conceivable that.
  • Comparative Example 10 it is considered that white turbidity occurred due to segregation of the substance having a sulfo group because UV irradiation was applied for a long time without performing preliminary curing.
  • Example 4 the substance having a sulfo group and the UV curable resin were dispersed with a dispersion medium composed of a plurality of solvents having different SP values, and the solvent was not volatilized by coating with a microdispenser.
  • a coating film free of white turbidity was obtained by suppressing the movement of the substance having a sulfo group by UV curing accompanied by preliminary curing.
  • Comparative Example 3 and Comparative Example 6 members were obtained by the same method, but the results of the test and measurement were slightly different. The difference between the test results of Comparative Example 3 and Comparative Example 6 is recognized to be caused by individual differences in the members, and does not affect the interpretation of the test results.

Abstract

To provide: an antifouling antifogging member which has both high antifogging properties and high antifouling properties; and a method which enables stable production of the antifouling antifogging member. An antifouling antifogging member (1A) which is provided with a base (10A) and a coating part (20A) that is formed on the base (10A) and has antifouling properties and antifogging properties. This antifouling antifogging member (1A) is characterized in that: the coating part (20A) is configured to comprise a resin layer (21A) that contains at least one matrix resin selected from the group consisting of acrylic resins, polyolefin resins, fluororesins and silicone resins; and a substance (22A) that is arranged on the surface of the resin layer (21A) and has a sulfo group.

Description

防汚防曇性部材及びその製造方法Antifouling and antifogging member and method for producing the same
 本発明は、防汚防曇性部材及びその製造方法に関する。 The present invention relates to an antifouling and antifogging member and a method for producing the same.
 従来、浴室内において鏡が配置されている。鏡の表面に、湯気が付着して結露すると、鏡の表面の微細な水滴が光を乱反射するので、鏡に映しだされるはずの像が視認し難くなる。このような問題に対して、鏡等の基材の表面をコーティングすることにより、結露を防止する技術が提案されている。 Conventionally, mirrors are arranged in the bathroom. If steam adheres to the surface of the mirror and condenses, fine water droplets on the surface of the mirror diffusely reflect light, making it difficult to visually recognize the image that should be projected on the mirror. In order to solve such a problem, a technique for preventing condensation by coating the surface of a substrate such as a mirror has been proposed.
 具体的には、基材の表面を、基材の無機層と共有結合可能なアルコキシシリル基と親水性の高いスルホ基とを有する親水剤によってコーティングする技術が知られている(例えば、特許文献1参照)。これにより、基材の表面に親水性の高いスルホ基が露出し、結露が防止される。また、コーティング層を形成する際に、コーティング材中で相分離を進行させることで、基材の表面(外)側に親水性の高いイオン性官能基を有する化合物を移動させた防曇性部材も知られている(例えば、特許文献2及び3参照)。この部材も、コーティング層の表面側の親水性を高めることで、結露を防止している。なお、この技術では、意図的に相分離の進行を遅らせることによって基材表面の白濁を防止しようとしている。 Specifically, a technique for coating the surface of a base material with a hydrophilic agent having an alkoxysilyl group that can be covalently bonded to the inorganic layer of the base material and a highly hydrophilic sulfo group is known (for example, Patent Documents). 1). Thereby, a highly hydrophilic sulfo group is exposed on the surface of the substrate, and condensation is prevented. Further, when forming the coating layer, the anti-fogging member is obtained by moving the compound having a highly hydrophilic ionic functional group to the surface (outside) side of the base material by proceeding phase separation in the coating material. Are also known (see, for example, Patent Documents 2 and 3). This member also prevents condensation by increasing the hydrophilicity on the surface side of the coating layer. In this technique, the turbidity of the substrate surface is prevented by intentionally delaying the progress of phase separation.
特開2012-97171号公報JP 2012-97171 A 特開2012-236949号公報JP 2012-236949 A 特開2012-236950号公報JP 2012-236950 A
 図7A及び図7B並びに図8A及び図8Bの模式図を参照しながら従来の、基材の表面に親水性の高いスルホ基を露出させた防曇性部材について説明する。
 図7A及び図7Bは、従来の防曇性部材の理想的な状態について示したものである。図7Aに示すように、従来の防曇性部材30は、平面視において、親水性の高いスルホ基32が密に配置されており、基板のガラス31の表面はほとんど外部に露出していない。基材のガラス(SiO)の表面はほとんど外部に露出しないことにより、図7Bに示すように汚染物質33(水道水中のミネラル分や洗髪剤に含まれるシリコーンオイル等)が基材(ガラス31)の表面に近づくことができない。
A conventional antifogging member in which a highly hydrophilic sulfo group is exposed on the surface of a substrate will be described with reference to the schematic views of FIGS. 7A and 7B and FIGS. 8A and 8B.
7A and 7B show the ideal state of a conventional antifogging member. As shown in FIG. 7A, in the conventional anti-fogging member 30, the highly hydrophilic sulfo groups 32 are densely arranged in plan view, and the surface of the glass 31 of the substrate is hardly exposed to the outside. Since the surface of the glass (SiO 2 ) of the base material is hardly exposed to the outside, as shown in FIG. 7B, the pollutant 33 (mineral content in tap water, silicone oil contained in the hair wash, etc.) is the base material (glass 31). ) Cannot get close to the surface.
 しかしながら、実際には、親水性の高いスルホ基32をガラス31の表面に隙間なく密に配置するのは難しい。つまり、従来の防曇性部材においては、実際には、図8A及び図8Bに示すように、親水性の高いスルホ基32同士が互いに間隔を開けて配置されている場合が多い。親水性の高いスルホ基32同士が互いに間隔を開けて配置されていると、ガラス31の表面のうち、外部に露出する面積が広くなってしまい、図8Bに示すように汚染物質33(水道水中のミネラル分や洗髪剤に含まれるシリコーンオイル等)がガラス31の表面に近づきやすくなってしまう。汚染物質33がガラス31の表面に近づくと、ガラス31のシラノール基と反応して、除去することが困難な汚れを形成する場合がある。
 なお、図7A及び図7B並びに図8A及び図8Bのスルホ基32は、便宜的に「SOH」と表記したが、アルカリ金属塩の状態になっていてもよい。
However, in practice, it is difficult to arrange the highly hydrophilic sulfo groups 32 densely on the surface of the glass 31 without any gaps. That is, in the conventional anti-fogging member, in fact, as shown in FIGS. 8A and 8B, in many cases, the highly hydrophilic sulfo groups 32 are spaced apart from each other. When the highly hydrophilic sulfo groups 32 are spaced apart from each other, the area exposed to the outside of the surface of the glass 31 becomes large, and as shown in FIG. Minerals, silicone oil contained in the hair washing agent, etc.) easily approach the surface of the glass 31. When the contaminant 33 approaches the surface of the glass 31, it may react with the silanol group of the glass 31 to form a stain that is difficult to remove.
Although the sulfo group 32 in FIGS. 7A and 7B and FIGS. 8A and 8B is represented as “SO 3 H” for convenience, it may be in an alkali metal salt state.
 なお、防曇性部材のコーティング層を形成する際にコーティング材中で相分離を進行させた場合、相分離の進行を遅らせたとしても基材表面の白濁を完全に防ぐことは困難である。つまり、上記の特許文献2及び3で開示された技術では、基材表面が白濁していない防曇性部材を製造することができる場合があるにしても、そのような部材を安定して製造することは困難なものと認められる。 In addition, when phase separation proceeds in the coating material when forming the coating layer of the antifogging member, it is difficult to completely prevent the white turbidity of the substrate surface even if the phase separation is delayed. That is, with the techniques disclosed in Patent Documents 2 and 3 described above, even if an anti-fogging member whose substrate surface is not clouded may be manufactured, such a member can be manufactured stably. It is recognized that it is difficult to do.
 本発明は上記に鑑みてなされたものであり、その目的は、高い防曇性と防汚性を兼ね備えた防汚防曇性部材及びそのような防汚防曇性部材を安定して製造することのできる製造方法を提供することにある。 The present invention has been made in view of the above, and an object thereof is to stably manufacture an antifouling and antifogging member having high antifogging properties and antifouling properties and such an antifouling and antifogging member. It is in providing the manufacturing method which can be performed.
 上記目的を達成するため本発明は、基材(例えば、後述の基材10A)と、該基材上に形成された防汚性及び防曇性を有するコーティング部(例えば、後述のコーティング部20A)と、を備える防汚防曇性部材(例えば、後述の防汚防曇性部材1A)であって、前記コーティング部は、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含む樹脂層(例えば、後述の樹脂層21A)と、前記樹脂層の表面上に配置されるスルホ基を有する物質(例えば、後述のスルホ基を有する物質22A)と、を含んで構成されることを特徴とする防汚防曇性部材を提供する。 In order to achieve the above object, the present invention includes a base material (for example, a base material 10A described later) and an antifouling and antifogging coating portion (for example, a coating portion 20A described later) formed on the base material. ), And the coating portion is selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin. A resin layer containing at least one matrix resin (for example, a resin layer 21A described later), and a substance having a sulfo group (for example, a substance 22A having a sulfo group described later) disposed on the surface of the resin layer; Thus, an antifouling and antifogging member is provided.
 この発明では、防汚防曇性部材の基材上に形成されたコーティング部が、疎水性が高い、つまり表面自由エネルギーが小さいことから汚染物質と反応し難い樹脂層と、樹脂層の表面に配置される親水性の高いスルホ基を有する物質と、を含んで構成されるものとする。
 これにより、親水性の高いスルホ基を有する物質が基材表面における結露を防止するとともに、樹脂層が存在することによって、スルホ基を有する物質同士の間に侵入した汚染物質が基材表面に付着して水垢を形成してしまうのを防ぐことができる。このように、本発明により、高い防曇性と防汚性を兼ね備えた防汚防曇性部材を提供できる。
In this invention, the coating portion formed on the base material of the antifouling and antifogging member has high hydrophobicity, that is, a resin layer that is difficult to react with contaminants because of its low surface free energy, and the surface of the resin layer. And a substance having a highly hydrophilic sulfo group to be arranged.
As a result, a highly hydrophilic substance having a sulfo group prevents condensation on the substrate surface, and the presence of a resin layer allows contaminants that enter between the substances having a sulfo group to adhere to the substrate surface. Thus, it is possible to prevent the formation of scale. Thus, according to the present invention, an antifouling and antifogging member having both high antifogging properties and antifouling properties can be provided.
 また、基材(例えば、後述の基材10A)と、該基材上に形成された防汚性及び防曇性を有するコーティング部(例えば、後述のコーティング部20A)と、を備え、前記コーティング部は、樹脂層(例えば、後述の樹脂層21A)と、スルホ基を有する物質(例えば、後述のスルホ基を有する物質22A)と、を含んで構成される防汚防曇性部材の製造方法であって、前記基材上に、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含む樹脂層を形成する工程(例えば、後述の工程S11)と、前記工程で形成された樹脂層の表面にスルホ基を有する物質を配置する工程(例えば、後述の工程S12)と、を有することを特徴とする防汚防曇性部材の製造方法を提供する。 Further, the coating includes a base material (for example, a base material 10A described later) and a coating portion (for example, a coating portion 20A described later) having antifouling properties and antifogging properties formed on the base material. Part includes a resin layer (for example, a resin layer 21A described later) and a substance having a sulfo group (for example, a substance 22A having a sulfo group described later), and a method for producing an antifouling and antifogging member. A step of forming a resin layer containing at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin on the substrate (for example, step S11 described later) And a step of disposing a substance having a sulfo group on the surface of the resin layer formed in the step (for example, step S12 described later), and a method for producing an antifouling and antifogging member, To provide.
 この発明では、防汚防曇性部材の製造方法が、疎水性が高いことから汚染物質と反応し難い樹脂層を形成する工程と、親水性の高いスルホ基を有する物質を樹脂層の表面に配置する工程と、を有するものとする。
 これにより、上記のように高い防曇性と防汚性を兼ね備えた防汚防曇性部材を製造することができる。また、基材上のコーティング部の形成において相分離が伴わないので、基材表面が白濁していない品質の高い防汚防曇性部材を安定して製造することができる。
In this invention, the method for producing an antifouling and antifogging member includes a step of forming a resin layer that is difficult to react with a contaminant because of its high hydrophobicity, and a substance having a highly hydrophilic sulfo group on the surface of the resin layer. And a step of arranging.
Thereby, the antifouling and antifogging member having both high antifogging properties and antifouling properties can be produced as described above. In addition, since phase separation is not involved in the formation of the coating portion on the base material, a high-quality antifouling and antifogging member whose surface of the base material is not clouded can be stably produced.
 上記目的を達成するため本発明は、基材(例えば、後述の基材10B)と、該基材上に形成された防汚性及び防曇性を有するコーティング部(例えば、後述のコーティング部20B)と、を備える防汚防曇性部材(例えば、後述の防汚防曇性部材1B)であって、前記コーティング部は、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種の樹脂を含むマトリクス成分(例えば、後述のマトリクス成分21B)と、スルホ基を有する成分(例えば、後述のスルホ基を有する成分22B)と、を含んで構成され、前記スルホ基を有する成分は、コーティング部の内部に均一に分布し且つ少なくとも一部が前記コーティング部の表面に露出していることを特徴とする防汚防曇性部材を提供する。 In order to achieve the above object, the present invention includes a base material (for example, a base material 10B described later) and a coating portion (for example, a coating portion 20B described later) having antifouling properties and antifogging properties formed on the base material. ), And the coating portion is selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin. A matrix component containing at least one resin (for example, a matrix component 21B described later) and a component having a sulfo group (for example, a component 22B having a sulfo group described later), The component having the antifouling and antifogging member is characterized in that it is uniformly distributed inside the coating portion and at least a part of the component is exposed on the surface of the coating portion. To.
 この発明では、防汚防曇性部材の基材上に形成されたコーティング部が、疎水性が高い、つまり表面自由エネルギーが小さいことから汚染物質と反応し難いマトリクス成分と、親水性の高いスルホ基を有する成分とを含んで構成され、スルホ基を有する成分が、コーティング部の内部に均一に分布し且つ少なくとも一部がコーティング部の表面に露出されるものとする。
 これにより、親水性の高いスルホ基を有する成分が基材表面における結露を防止するとともに、マトリクス成分が存在することによって、スルホ基を有する成分同士の間に侵入した汚染物質が基材表面に付着して水垢を形成してしまうのを防ぐことができる。このように、本発明により、高い防曇性と防汚性を兼ね備えた防汚防曇性部材を提供できる。また、スルホ基を有する成分がコーティング部の内部で偏析せずに均一に分布されることから、製造時におけるコーティング部の白濁を防止できる。
In this invention, the coating portion formed on the base material of the antifouling and antifogging member has a high hydrophobicity, that is, a surface component having a low surface free energy, so that it does not easily react with contaminants and a highly hydrophilic sulfo group. And a component having a sulfo group, and the component having a sulfo group is uniformly distributed inside the coating portion and at least a part thereof is exposed on the surface of the coating portion.
As a result, the component having a highly hydrophilic sulfo group prevents condensation on the substrate surface, and the presence of the matrix component causes contaminants that have entered between the components having the sulfo group to adhere to the substrate surface. Thus, it is possible to prevent the formation of scale. Thus, according to the present invention, an antifouling and antifogging member having both high antifogging properties and antifouling properties can be provided. Moreover, since the component which has a sulfo group is uniformly distributed without segregating inside the coating part, the cloudiness of the coating part at the time of manufacture can be prevented.
 また、本発明では、基材(例えば、後述の基材10B)と、該基材上に形成された防汚性及び防曇性を有するコーティング部(例えば、後述のコーティング部20B)と、を備える防汚防曇性部材の製造方法であって、アクリル樹脂を含むUV硬化型樹脂(例えば、後述のUV硬化型樹脂210B)と、スルホ基を有する物質(例えば、後述のスルホ基を有する物質220B)と、これらUV硬化型樹脂及びスルホ基を有する物質を分散可能であり且つ溶解度パラメータの異なる複数の溶媒からなる分散媒(例えば、後述の分散媒230B)と、を含有する溶液を、前記基材上に塗布することで未硬化膜(例えば、後述の未硬化膜200B)を形成する未硬化膜形成工程(例えば、後述の工程S21)と、前記未硬化膜形成工程で形成された未硬化膜にUVを照射して予備硬化させる予備硬化工程(例えば、後述の工程S23)と、前記予備硬化工程で予備硬化された未硬化膜にUVを照射して本硬化させることで前記コーティング部を形成する本硬化工程(例えば、後述の工程S24)と、を有することを特徴とする防汚防曇性部材の製造方法を提供する。 Further, in the present invention, a base material (for example, a base material 10B described later), and a coating portion (for example, a coating portion 20B described later) having antifouling properties and antifogging properties formed on the base material, A method for producing an antifouling and antifogging member comprising a UV curable resin containing an acrylic resin (for example, a UV curable resin 210B described below) and a substance having a sulfo group (for example, a substance having a sulfo group described below) 220B) and a dispersion medium (for example, dispersion medium 230B described later) that can disperse the UV-curable resin and the substance having a sulfo group and that has a plurality of solvents having different solubility parameters, It is formed by an uncured film forming step (for example, step S21 described later) for forming an uncured film (for example, an uncured film 200B described later) by applying on the substrate, and the uncured film forming step. A pre-curing step (for example, step S23 described later) for pre-curing the uncured film by irradiating UV, and the coating by irradiating the un-cured film pre-cured in the pre-curing step with UV for main curing And a main curing step (for example, step S24 to be described later) for forming a portion, and a method for producing an antifouling and antifogging member.
 この発明では、防汚防曇性部材の製造方法が、基材上に溶液を、溶媒の揮発を抑制できる方法で塗布することで未硬化膜を形成する未硬化膜形成工程と、未硬化膜形成工程で形成された未硬化膜にUVを照射して予備硬化させる予備硬化工程と、予備硬化工程で予備硬化された未硬化膜にUVを照射して本硬化させることでコーティング部を形成する本硬化工程と、を有するものとする。また、未硬化膜形成工程において、基材に塗布する溶液は、UV硬化型樹脂と、スルホ基を有する物質と、これらUV硬化型樹脂及びスルホ基を有する物質を分散可能であり且つ溶解度パラメータの異なる複数の溶媒からなる分散媒と、を含有するものとする。
 これにより、上記のように高い防曇性と防汚性を兼ね備えた防汚防曇性部材を製造することができる。また、基材上のコーティング部の形成においてスルホ基を有する物質が偏析せず、相分離が起きないので、基材表面が白濁していない品質の高い防汚防曇性部材を安定して製造することができる。
In this invention, the method for producing an antifouling and antifogging member comprises an uncured film forming step of forming an uncured film by applying a solution on a substrate by a method capable of suppressing solvent volatilization, and an uncured film A pre-curing step in which UV is applied to the uncured film formed in the forming step and pre-cured, and an uncured film pre-cured in the pre-curing step is irradiated with UV to perform main curing to form a coating portion. A main curing step. Further, in the uncured film forming step, the solution applied to the substrate can disperse the UV curable resin, the substance having a sulfo group, the UV curable resin and the substance having the sulfo group, and a solubility parameter. And a dispersion medium composed of a plurality of different solvents.
Thereby, the antifouling and antifogging member having both high antifogging properties and antifouling properties can be produced as described above. In addition, the formation of the coating part on the base material does not segregate the substance having sulfo groups and phase separation does not occur, so it is possible to stably produce high-quality antifouling and antifogging members whose base material surface is not clouded. can do.
 また、前記未硬化膜形成工程は、マイクロディスペンサにより前記溶液を前記基材上に塗布することが好ましい。 In the uncured film forming step, it is preferable to apply the solution onto the substrate by a microdispenser.
 この発明では、未硬化膜形成工程において、基材上への溶液の塗布をマイクロディスペンサ、スリットコーター又はディップコーターにより行う。
 未硬化膜形成工程において、溶液を、スプレー塗装のように溶液をミスト化する方法で塗装した場合、溶液の比表面積が非常に大きくなる。溶液の比表面積が大きくなると、溶媒が急激に揮発したり、溶液が大気中の水分を吸収したりすることで、UV硬化型樹脂とスルホ基を有する物質のバランスが崩れて未硬化膜中で成分の偏析が起こり、塗膜が白濁する。これに対し、マイクロディスペンサ、スリットコーター又はディップコーターを用いた塗装では、通常のスプレー塗装と比べ、吐出する液滴のサイズが大きいため、塗装時の溶液の比表面積が小さく、上記の問題が生じ難い。従って、この発明により、基材表面が白濁していない品質の高い防汚防曇性部材を安定して製造することができる。
In the present invention, in the uncured film forming step, the solution is applied onto the substrate by a microdispenser, a slit coater or a dip coater.
In the uncured film forming step, when the solution is applied by a method of making the solution mist like spray coating, the specific surface area of the solution becomes very large. When the specific surface area of the solution increases, the solvent volatilizes abruptly or the solution absorbs moisture in the atmosphere, causing the balance between the UV curable resin and the substance having a sulfo group to be lost, and in the uncured film. Segregation of components occurs and the coating becomes cloudy. On the other hand, the coating using a micro-dispenser, slit coater or dip coater has a smaller specific surface area of the solution at the time of coating because the size of the liquid droplets to be ejected is larger than that of normal spray coating, resulting in the above problems. hard. Therefore, according to the present invention, a high-quality antifouling and antifogging member whose surface of the base material is not clouded can be stably produced.
 本発明によれば、高い防曇性と防汚性を兼ね備えた防汚防曇性部材及びそのような防汚防曇性部材を安定して製造することのできる製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method which can manufacture stably the antifouling antifogging member which has high antifogging property and antifouling property, and such an antifouling antifogging member can be provided. .
本発明の第1実施形態に係る防汚防曇性部材の平面を模式的に示した図である。It is the figure which showed typically the plane of the antifouling antifogging member which concerns on 1st Embodiment of this invention. 上記実施形態に係る防汚防曇性部材の断面を模式的に示した図である。It is the figure which showed typically the cross section of the pollution protection antifogging member which concerns on the said embodiment. 上記実施形態に係る防汚防曇性部材の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the pollution protection antifogging member which concerns on the said embodiment. 本発明の第1実施形態に係る防汚防曇性部材の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the antifouling anti-fogging member which concerns on 1st Embodiment of this invention. 上記実施形態に係る防汚防曇性部材の表面の状態について模式的に示した図である。It is the figure which showed typically about the state of the surface of the antifouling antifogging member which concerns on the said embodiment. 本発明の第2実施形態に係る防汚防曇性部材の平面を模式的に示した図である。It is the figure which showed typically the plane of the pollution protection anti-fogging member which concerns on 2nd Embodiment of this invention. 上記実施形態に係る防汚防曇性部材の断面を模式的に示した図である。It is the figure which showed typically the cross section of the pollution protection antifogging member which concerns on the said embodiment. 上記実施形態に係る防汚防曇性部材の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the pollution protection antifogging member which concerns on the said embodiment. 本発明の第2実施形態に係る防汚防曇性部材の製造方法について説明するための図である。It is a figure for demonstrating the manufacturing method of the pollution protection anti-fogging member which concerns on 2nd Embodiment of this invention. 上記実施形態に係る防汚防曇性部材の表面の状態について模式的に示した図である。It is the figure which showed typically about the state of the surface of the antifouling antifogging member which concerns on the said embodiment. 本発明の実施例におけるEPMA分析の結果である。It is a result of the EPMA analysis in the Example of this invention. 本発明の実施例におけるEPMA分析の結果である。It is a result of the EPMA analysis in the Example of this invention. 従来の防曇性部材の平面を模式的に示した図である。It is the figure which showed typically the plane of the conventional anti-fogging member. 従来の防曇性部材の断面を模式的に示した図である。It is the figure which showed typically the cross section of the conventional anti-fogging member. 従来の防曇性部材の平面を模式的に示した図である。It is the figure which showed typically the plane of the conventional anti-fogging member. 従来の防曇性部材の断面を模式的に示した図である。It is the figure which showed typically the cross section of the conventional anti-fogging member.
<第1実施形態>
 以下、本発明の第1実施形態について詳細に説明する。
 図1Aは、第1実施形態に係る防汚防曇性部材1Aの平面を模式的に示した図であり、図1Bは、本実施形態に係る防汚防曇性部材1Aの断面を模式的に示した図である。
 図1Bに示すように、防汚防曇性部材1Aは、基材10Aと、基材10A上に形成されたコーティング部20A、を備える。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described in detail.
FIG. 1A is a diagram schematically showing a plane of the antifouling and antifogging member 1A according to the first embodiment, and FIG. 1B is a schematic cross section of the antifouling and antifogging member 1A according to the present embodiment. It is the figure shown in.
As shown in FIG. 1B, the antifouling and antifogging member 1A includes a base material 10A and a coating portion 20A formed on the base material 10A.
 基材10Aは、特に限定されないが、二酸化ケイ素等の無機物からなる、あるいは表面に無機物からなる層を有するものであることが好ましい。また、基材10Aは、ポリカーボネートシートであってもよい。具体的には、基材10Aは、鏡、洗面所や自動車の内部に使用されるウィンドウ、レンズ等が挙げられる。 Although 10 A of base materials are not specifically limited, It is preferable that it consists of inorganic substances, such as a silicon dioxide, or has a layer which consists of inorganic substances on the surface. The base material 10A may be a polycarbonate sheet. Specifically, examples of the base material 10A include a mirror, a window used in a washroom or an automobile, and a lens.
 コーティング部20Aは、樹脂層21Aと、樹脂層21Aの表面上に配置されるスルホ基を有する物質22Aと、を含んで構成される。
 樹脂層21Aは、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含む。樹脂層21Aの含むマトリクス樹脂は、疎水性の高い、アクリル樹脂、ポリオレフィン樹脂及びフッ素樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含むことが好ましい。また、樹脂層21Aの含むマトリクス樹脂は、(メタ)アクリル酸エステルを重合したアクリル樹脂であることがより好ましい。マトリクス樹脂が、(メタ)アクリル酸エステルを重合したアクリル樹脂であることでコーティング部20Aの防汚性がより向上し、(メタ)アクリル酸エステルの一部が後述するスルホ基を有する物質22Aと結合すれば防曇性能の持続性が向上する。
The coating portion 20A includes a resin layer 21A and a substance 22A having a sulfo group disposed on the surface of the resin layer 21A.
The resin layer 21A includes at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin. The matrix resin included in the resin layer 21A preferably includes at least one matrix resin selected from the group consisting of highly hydrophobic acrylic resin, polyolefin resin, and fluororesin. The matrix resin contained in the resin layer 21A is more preferably an acrylic resin obtained by polymerizing (meth) acrylic acid ester. Since the matrix resin is an acrylic resin obtained by polymerizing (meth) acrylic acid ester, the antifouling property of the coating portion 20A is further improved, and a part of the (meth) acrylic acid ester 22A having a sulfo group described later and When combined, the durability of the antifogging performance is improved.
 ところで、コーティング部20Aの樹脂層21Aの疎水性は、樹脂層21Aの表面自由エネルギーと相関関係がある。つまり、樹脂層21Aは、疎水性が高く、表面自由エネルギーが小さい。この「表面自由エネルギー」は、物質間同士の相互作用力の指標となる。具体的には、樹脂層21Aは、表面自由エネルギーが小さいことから、後述する汚染物質33Aと反応し難く、防汚性が高い。 Incidentally, the hydrophobicity of the resin layer 21A of the coating portion 20A has a correlation with the surface free energy of the resin layer 21A. That is, the resin layer 21A has high hydrophobicity and low surface free energy. This “surface free energy” is an index of the interaction force between substances. Specifically, since the resin layer 21A has a small surface free energy, it does not easily react with the contaminant 33A described later, and has high antifouling properties.
 スルホ基を有する物質22Aは、特に限定されないが、高い親水性を有する緻密な塗膜を形成可能な、下記の化学式(1)で表されるスルホシランが重合した物質であることが好ましい。 The substance 22A having a sulfo group is not particularly limited, but is preferably a substance obtained by polymerizing a sulfosilane represented by the following chemical formula (1) capable of forming a dense coating film having high hydrophilicity.
Figure JPOXMLDOC01-appb-C000001
(化学式(1)中において、Rは、H又はCn×2(nは自然数)であり、mは、0又は自然数である。)
Figure JPOXMLDOC01-appb-C000001
(In the chemical formula (1), R 1 is H or C n H n × 2 (n is a natural number), and m is 0 or a natural number.)
 スルホ基を有する物質22Aは、化学式(1)で表されるスルホシランの中でも、RがHであり、mが10以下であるスルホシランが重合した物質であることが好ましい。スルホ基を有する物質22Aが、このようなスルホシランが重合した物質であることで、コーティング部20Aの防曇性がより高くなる。特に、mが10以下であることにより、樹脂層21Aの表面上に後述する汚染物質33Aが侵入する隙間が生じにくくなるので、防汚防曇性部材1Aの防汚性がより向上する。スルホ基を有する物質22Aは、化学式(1)で表されるスルホシランの中でも、mが0~3であるスルホシランが重合した物質であることがより好ましい。スルホ基を有する物質22Aは、樹脂層21Aを構成する樹脂と反応して結合していてもよい。 Substance 22A having a sulfo group, among Suruhoshiran represented by the chemical formula (1), R 1 is H, it is preferred that m is a substance Suruhoshiran are polymerized at 10 or less. Since the substance 22A having a sulfo group is a substance obtained by polymerizing such a sulfosilane, the anti-fogging property of the coating portion 20A becomes higher. In particular, when m is 10 or less, a gap through which a contaminant 33A to be described later enters on the surface of the resin layer 21A is less likely to occur, so that the antifouling property of the antifouling and antifogging member 1A is further improved. The substance 22A having a sulfo group is more preferably a substance obtained by polymerizing sulfosilane having m of 0 to 3 among the sulfosilanes represented by the chemical formula (1). The substance 22A having a sulfo group may react with and bind to the resin constituting the resin layer 21A.
 続いて、第1実施形態に係る防汚防曇性部材1Aの製造方法について説明する。図2A~図2Cは、本実施形態に係る防汚防曇性部材1Aの製造方法について説明するための図である。
 防汚防曇性部材1Aの製造方法は、基材10A上に樹脂層21Aを形成する工程S11(図2A参照)と、樹脂層21Aの表面にスルホ基を有する物質22Aを配置する工程S12(図2B参照)と、を有する。
Then, the manufacturing method of 1 A of antifouling anti-fogging members which concern on 1st Embodiment is demonstrated. 2A to 2C are views for explaining a method of manufacturing the antifouling and antifogging member 1A according to the present embodiment.
The manufacturing method of the antifouling / antifogging member 1A includes a step S11 (see FIG. 2A) for forming the resin layer 21A on the substrate 10A, and a step S12 for disposing a substance 22A having a sulfo group on the surface of the resin layer 21A ( 2B).
 工程S11では、上述したマトリクス樹脂の原料として、UV硬化型樹脂を用いることが好ましい。具体的には、工程S11では、UV硬化型樹脂及び光重合開始剤を含む塗料を基材10Aに塗布して、塗布されたUV硬化塗料にUVを照射することで樹脂層21Aを形成することが好ましい。工程S11においてUV硬化型樹脂が用いられる場合、UV硬化型樹脂は、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種を含む。光重合開始剤の種類や、硬化の条件は、用いられるUV硬化型樹脂の種類や濃度に応じて適宜設定される。 In step S11, it is preferable to use a UV curable resin as a raw material for the matrix resin described above. Specifically, in step S11, a coating containing a UV curable resin and a photopolymerization initiator is applied to the substrate 10A, and the applied UV curable coating is irradiated with UV to form the resin layer 21A. Is preferred. When a UV curable resin is used in step S11, the UV curable resin includes at least one selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin. The type of photopolymerization initiator and the curing conditions are appropriately set according to the type and concentration of the UV curable resin used.
 工程S11において、塗布の方法は特に限定されないが、ウエスや刷毛、バーコーターを用いて手塗りする方法や、ロールコーターを用いる方法や、ディスペンサを用いる方法や、スリットコーターを用いる方法や、スプレー塗装する方法等を挙げることができる。 In step S11, the application method is not particularly limited, but it is a method of hand-coating using a waste, brush, or bar coater, a method using a roll coater, a method using a dispenser, a method using a slit coater, or spray coating. And the like.
 基材の表面は、工程S11に先立って前処理を行っていてもよい。工程S11の前処理としては、基材10Aの表面と樹脂層21Aを強固に結合させるカップリング剤による処理、プライマー処理、エッチング処理等の化成処理、フレーム処理、プラズマ処理等の火炎処理、サンディング、ポリッシング等の物理的処理を挙げることができる。 The surface of the base material may be pretreated prior to step S11. As the pretreatment in step S11, treatment with a coupling agent that firmly bonds the surface of the substrate 10A and the resin layer 21A, chemical treatment such as primer treatment and etching treatment, flame treatment such as flame treatment and plasma treatment, sanding, A physical process such as polishing can be given.
 工程S12では、スルホ基を有する物質22Aの原料となる化合物を含む溶液を樹脂層21Aの表面に塗布する。好ましくは、工程S12では、スルホ基を有する物質22Aの原料となる化合物と溶媒とを含有する溶液を樹脂層21Aの表面上に塗布し、更に加熱する。 In step S12, a solution containing a compound that is a raw material of the substance 22A having a sulfo group is applied to the surface of the resin layer 21A. Preferably, in step S12, a solution containing a compound that is a raw material for the substance 22A having a sulfo group and a solvent is applied onto the surface of the resin layer 21A, and further heated.
 スルホ基を有する物質22Aの原料となる化合物は、高い親水性を有する緻密な塗膜を形成可能であることから、下記の化学式(1)で表されるスルホシランであることが好ましい。 The compound serving as a raw material of the substance 22A having a sulfo group is preferably a sulfosilane represented by the following chemical formula (1) because a dense coating film having high hydrophilicity can be formed.
Figure JPOXMLDOC01-appb-C000002
(化学式(1)中において、Rは、H又はCn×2(nは自然数)であり、mは、0又は自然数である。)
Figure JPOXMLDOC01-appb-C000002
(In the chemical formula (1), R 1 is H or C n H n × 2 (n is a natural number), and m is 0 or a natural number.)
 スルホ基を有する物質22Aの原料となる化合物は、化学式(1)で表されるスルホシランの中でも、RがHであり、mが10以下であるスルホシランであることが好ましい。特に、mが10以下であることにより、樹脂層21Aの表面上に後述する汚染物質33Aが侵入する隙間が生じにくくなるので、防汚防曇性部材1Aの防汚性がより向上する。スルホ基を有する物質22Aの原料となる化合物は、化学式(1)で表されるスルホシランの中でも、mが0~3であるスルホシランであることがより好ましい。スルホ基を有する物質22Aの原料となる化合物が、このようなスルホシランが重合した物質であることで、コーティング部20Aの防曇性がより高くなる。スルホ基を有する物質22Aは、樹脂層21Aを構成する樹脂と反応して結合してもよい。 The compound serving as a raw material of the substance 22A having a sulfo group is preferably a sulfosilane having R 1 of H and m of 10 or less among the sulfosilanes represented by the chemical formula (1). In particular, when m is 10 or less, a gap through which a contaminant 33A to be described later enters on the surface of the resin layer 21A is less likely to occur, so that the antifouling property of the antifouling and antifogging member 1A is further improved. The compound serving as a raw material for the substance 22A having a sulfo group is more preferably a sulfosilane having m of 0 to 3 among the sulfosilanes represented by the chemical formula (1). The antifogging property of the coating part 20A is further increased because the compound that is a raw material of the substance 22A having a sulfo group is a substance obtained by polymerizing such a sulfosilane. The substance 22A having a sulfo group may react with and bind to the resin constituting the resin layer 21A.
 工程S12において、塗布の方法は特に限定されないが、ウエスや刷毛、バーコーターを用いて手塗りする方法や、ロールコーターを用いる方法や、ディスペンサーを用いる方法や、スリットコーターを用いる方法や、スプレー塗装する方法等を挙げることができる。 In step S12, the application method is not particularly limited, but it is a method of hand-coating using a waste, brush, or bar coater, a method using a roll coater, a method using a dispenser, a method using a slit coater, or spray coating. And the like.
 樹脂層の表面は、工程S12に先立って前処理を行っていてもよい。工程S12の前処理としては、樹脂層21Aと、スルホ基を有する物質22Aとを強固に結合させるカップリング剤による処理、プライマー処理、エッチング処理等の化成処理、フレーム処理、プラズマ処理等の火炎処理、サンディング、ポリッシング等の物理的処理を挙げることができる。 The surface of the resin layer may be pretreated prior to step S12. As the pretreatment in step S12, treatment with a coupling agent that strongly bonds the resin layer 21A and the substance 22A having a sulfo group, primer treatment, chemical treatment such as etching treatment, flame treatment such as flame treatment, plasma treatment, etc. , Physical processing such as sanding and polishing.
 コーティング部20Aは、樹脂層21Aと、スルホ基を有する物質22Aと、を含んで構成されることで、防汚性及び防曇性を有する。 The coating portion 20A has antifouling properties and antifogging properties by including the resin layer 21A and the substance 22A having a sulfo group.
 本発明の第1実施形態によれば、以下の効果が奏される。
 第1実施形態では、防汚防曇性部材1Aの基材10A上に形成されたコーティング部20Aが、疎水性が高い、つまり表面自由エネルギーが小さいことから汚染物質と反応し難い樹脂層21Aと、樹脂層21Aの表面に配置される親水性の高いスルホ基を有する物質22Aと、を含んで構成されるものとした。
 これにより、親水性の高いスルホ基を有する物質22Aが基材10A表面における結露を防止するとともに、樹脂層21Aが存在することによって、スルホ基を有する物質22A同士の間に侵入した汚染物質33Aが基材表面に付着して水垢を形成してしまうのを防ぐことができる(図1B参照)。このように、第1実施形態に係る防汚防曇性部材1Aは、高い防曇性と防汚性を兼ね備える。
 なお、コーティング部20Aの樹脂層21Aは、比較的疎水性の高いマトリクス樹脂を含むが、親水性の非常に高いスルホ基を有する物質22Aを樹脂層21Aの上に配置することで、疎水性の高い樹脂層21Aの大きな影響を受けずに結露を防止することができる。
According to the first embodiment of the present invention, the following effects are exhibited.
In the first embodiment, the coating portion 20A formed on the base material 10A of the antifouling and antifogging member 1A has a high hydrophobicity, that is, a resin layer 21A that hardly reacts with contaminants because of its low surface free energy. And a substance 22A having a highly hydrophilic sulfo group disposed on the surface of the resin layer 21A.
Thereby, the substance 22A having a highly hydrophilic sulfo group prevents condensation on the surface of the substrate 10A, and the presence of the resin layer 21A allows the contaminant 33A that has entered between the substances 22A having the sulfo group to enter. It can prevent that it adheres to the base-material surface and forms scale (refer FIG. 1B). Thus, the antifouling and antifogging member 1A according to the first embodiment has both high antifogging properties and antifouling properties.
The resin layer 21A of the coating portion 20A contains a matrix resin having a relatively high hydrophobicity. However, by placing a substance 22A having a very hydrophilic sulfo group on the resin layer 21A, a hydrophobic property can be obtained. Condensation can be prevented without being greatly affected by the high resin layer 21A.
 また、第1実施形態では、防汚防曇性部材の製造方法が、疎水性が高いことから汚染物質と反応し難い樹脂層21Aを形成する工程S11と、親水性の高いスルホ基を有する物質22Aを樹脂層21Aの表面に配置する工程S12と、を有するものとした。
 これにより、上記のように高い防曇性と防汚性を兼ね備えた防汚防曇性部材1Aを製造することができる。また、基材10A上のコーティング部20Aの形成において相分離が伴わないので、基材10A表面が白濁いない品質の高い防汚防曇性部材1Aを安定して製造することができる。
In the first embodiment, the method for producing an antifouling and antifogging member includes a step S11 of forming a resin layer 21A that is difficult to react with a contaminant because of its high hydrophobicity, and a substance having a highly hydrophilic sulfo group Step S12 for arranging 22A on the surface of the resin layer 21A.
Thereby, 1 A of antifouling antifogging members which have high antifogging property and antifouling property as mentioned above can be manufactured. In addition, since phase separation is not involved in the formation of the coating portion 20A on the substrate 10A, a high-quality antifouling and antifogging member 1A having a surface on which the surface of the substrate 10A is not cloudy can be stably produced.
<第2実施形態>
 以下、本発明の第2実施形態について詳細に説明する。
 図3Aは、第2実施形態に係る防汚防曇性部材1Bの平面を模式的に示した図であり、図3Bは、本実施形態に係る防汚防曇性部材1Bの断面を模式的に示した図である。
 図3Bに示すように、防汚防曇性部材1Bは、基材10Bと、基材10B上に形成されたコーティング部20Bと、を備える。
Second Embodiment
Hereinafter, the second embodiment of the present invention will be described in detail.
FIG. 3A is a diagram schematically illustrating a plane of the antifouling and antifogging member 1B according to the second embodiment, and FIG. 3B is a schematic cross section of the antifouling and antifogging member 1B according to the present embodiment. It is the figure shown in.
As shown in FIG. 3B, the antifouling and antifogging member 1B includes a base material 10B and a coating portion 20B formed on the base material 10B.
 基材10Bは、特に限定されないが、二酸化ケイ素等の無機物からなる、あるいは表面に無機物からなる層を有するものであることが好ましい。また、基材10Bは、ポリカーボネートシートであってもよい。具体的には、基材10Bは、鏡、洗面所や自動車の内部に使用されるウィンドウ、レンズ等が挙げられる。 The base material 10B is not particularly limited, but is preferably made of an inorganic material such as silicon dioxide or having a layer made of an inorganic material on the surface. The base material 10B may be a polycarbonate sheet. Specifically, the base material 10B includes a mirror, a window used in a washroom or an automobile, a lens, and the like.
 コーティング部20Bは、マトリクス成分21Bと、スルホ基を有する成分22Bと、を含んで構成される。
 マトリクス成分21Bは、アクリル樹脂を含む。マトリクス成分21Bの含む樹脂は、疎水性の高いアクリル樹脂である。また、マトリクス成分21Bの含む樹脂は、(メタ)アクリル酸エステルを重合したアクリル樹脂であることが好ましい。マトリクス成分21Bの含む樹脂が、(メタ)アクリル酸エステルを重合したアクリル樹脂であることでコーティング部20Bの防汚性がより向上し、(メタ)アクリル酸エステルの一部が後述するスルホ基を有する成分22Bと結合すれば防曇性能の持続性が向上する。
The coating portion 20B includes a matrix component 21B and a component 22B having a sulfo group.
The matrix component 21B includes an acrylic resin. The resin included in the matrix component 21B is an acrylic resin having high hydrophobicity. The resin contained in the matrix component 21B is preferably an acrylic resin obtained by polymerizing (meth) acrylic acid ester. The resin contained in the matrix component 21B is an acrylic resin obtained by polymerizing (meth) acrylic acid ester, so that the antifouling property of the coating portion 20B is further improved, and a part of the (meth) acrylic acid ester has a sulfo group described later. If it is combined with the component 22B having, the durability of the antifogging performance is improved.
 スルホ基を有する成分22Bは、特に限定されないが、マトリクス成分21Bとともに高い緻密な塗膜を形成可能な、2-(メタクリロイルオキシ)エタンスルホン酸、ビニルスルホン酸、アリルスルホン酸、これらスルホン酸類のアルカリ金属塩や下記の化学式(2)で表される化合物のように、スルホ基と1個以上の重合性官能基を含む化合物や、その重合体であることが好ましい。 The component 22B having a sulfo group is not particularly limited, but 2- (methacryloyloxy) ethanesulfonic acid, vinylsulfonic acid, allylsulfonic acid, alkalis of these sulfonic acids, which can form a highly dense coating film with the matrix component 21B. Like a metal salt or a compound represented by the following chemical formula (2), a compound containing a sulfo group and one or more polymerizable functional groups, or a polymer thereof is preferable.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 図3Bに示すように、スルホ基を有する成分22Bは、コーティング部20Bの内部に均一に分布し且つ少なくとも一部がコーティング部20Bの表面に露出している。スルホ基を有する成分22Bは、コーティング部20Bの内部で偏在していない。
 スルホ基を有する成分22Bは、マトリクス成分21Bと反応して結合していてもよい。
As shown in FIG. 3B, the component 22B having a sulfo group is uniformly distributed inside the coating part 20B and at least a part thereof is exposed on the surface of the coating part 20B. The component 22B having a sulfo group is not unevenly distributed in the coating portion 20B.
The component 22B having a sulfo group may react and bond with the matrix component 21B.
 ところで、コーティング部20Bのマトリクス成分21Bの疎水性は、マトリクス成分21Bの表面自由エネルギーと相関関係がある。つまり、コーティング部20Bのマトリクス成分21Bは、疎水性が高く、表面自由エネルギーが小さい。この「表面自由エネルギー」は、物質間同士の相互作用力の指標となる。具体的には、コーティング部20Bのマトリクス成分21Bは、表面自由エネルギーが小さいことから、後述する汚染物質33Bと反応し難く、防汚性が高い。 Incidentally, the hydrophobicity of the matrix component 21B of the coating part 20B has a correlation with the surface free energy of the matrix component 21B. That is, the matrix component 21B of the coating part 20B has high hydrophobicity and low surface free energy. This “surface free energy” is an index of the interaction force between substances. Specifically, since the matrix component 21B of the coating portion 20B has a small surface free energy, it hardly reacts with the contaminant 33B described later and has high antifouling properties.
 続いて、第2実施形態に係る防汚防曇性部材1Bの製造方法について説明する。図4A~図4Cは、本実施形態に係る防汚防曇性部材1Bの製造方法について説明するための図である。
 防汚防曇性部材1Bの製造方法は、未硬化膜形成工程S21と、脱溶媒工程S22と、予備硬化工程S23と、本硬化工程S24と、を有する。
Subsequently, a manufacturing method of the antifouling and antifogging member 1B according to the second embodiment will be described. 4A to 4C are views for explaining a method of manufacturing the antifouling and antifogging member 1B according to the present embodiment.
The manufacturing method of the antifouling / antifogging member 1B includes an uncured film forming step S21, a desolvation step S22, a preliminary curing step S23, and a main curing step S24.
 工程S21では、図4Aに示すように、UV硬化型樹脂210Bと、スルホ基を有する物質220Bと、これらUV硬化型樹脂210B及びスルホ基を有する物質220Bを分散可能である分散媒230Bと、を含有する溶液を、前記基材上に塗布することで未硬化膜200Bを形成する。 In step S21, as shown in FIG. 4A, a UV curable resin 210B, a substance 220B having a sulfo group, and a dispersion medium 230B capable of dispersing the UV curable resin 210B and the substance 220B having a sulfo group are dispersed. The uncured film 200 </ b> B is formed by applying the contained solution onto the base material.
 UV硬化型樹脂210Bは、アクリル樹脂を含むUV硬化型樹脂である。UV硬化型樹脂210Bは、疎水性の高いアクリル樹脂を含む。また、UV硬化型樹脂210Bは、(メタ)アクリル酸エステルを重合したアクリル樹脂からなるUV硬化樹脂であることが好ましい。UV硬化型樹脂210Bが、(メタ)アクリル酸エステルを重合したアクリル樹脂からなるUV硬化樹脂であることで、形成されるコーティング部20Bの防汚性がより向上し、(メタ)アクリル酸エステルの一部が後述するスルホ基を有する物質220Bと結合すれば防曇性能の持続性が向上する。 The UV curable resin 210B is a UV curable resin containing an acrylic resin. The UV curable resin 210B includes an acrylic resin having high hydrophobicity. The UV curable resin 210B is preferably a UV curable resin made of an acrylic resin obtained by polymerizing (meth) acrylic acid ester. Since the UV curable resin 210B is a UV curable resin made of an acrylic resin obtained by polymerizing a (meth) acrylic acid ester, the antifouling property of the formed coating portion 20B is further improved, and the (meth) acrylic acid ester If a part thereof is combined with a substance 220B having a sulfo group, which will be described later, the durability of the antifogging performance is improved.
 スルホ基を有する物質220Bは、特に限定されないが、UV硬化型樹脂210Bとともに高い緻密な塗膜を形成可能な、2-(メタクリロイルオキシ)エタンスルホン酸、ビニルスルホン酸、アリルスルホン酸、これらスルホン酸類のアルカリ金属塩や下記の化学式(2)で表される化合物のように、スルホ基と1個以上の重合性官能基を含む化合物であることが好ましい。 The substance 220B having a sulfo group is not particularly limited, but 2- (methacryloyloxy) ethanesulfonic acid, vinylsulfonic acid, allylsulfonic acid, and these sulfonic acids that can form a highly dense coating film with the UV curable resin 210B. It is preferable that it is a compound containing a sulfo group and 1 or more polymeric functional group like the alkali metal salt of this, and the compound represented by following Chemical formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 具体的にスルホ基を有する物質220Bを含有する塗料としては、上記の化学式(2)で表される化合物を含有するフォルシードNo.140C-P(アクリル系UV硬化塗料、中国塗料株式会社製)やKPP#04(アクリル系UV硬化塗料、公進ケミカル株式会社製)等を挙げることができる。 Specifically, as the paint containing the substance 220B having a sulfo group, Forse Seed No. containing the compound represented by the above chemical formula (2) is used. 140C-P (acrylic UV curable paint, manufactured by China Paint Co., Ltd.) and KPP # 04 (acrylic UV curable paint, manufactured by Koshin Chemical Co., Ltd.).
 分散媒230Bは、溶解度パラメータ(SP値)の異なる複数の溶媒からなる。分散媒230Bが、SP値の異なる複数の溶媒からなることにより、後述する塗料の硬化時に分散媒230Bが揮発する際、揮発していない分散媒230BのSP値が急激に変化するのを抑えることができる。分散媒230BのSP値が急激に変化すると、スルホ基を有する物質220Bが偏析してコーティング部20Bが白濁してしまうが、SP値の異なる複数の溶媒を分散媒230Bとして用いることでこのような現象が起きるのを防ぐことができる。 The dispersion medium 230B includes a plurality of solvents having different solubility parameters (SP values). Since the dispersion medium 230B is made of a plurality of solvents having different SP values, when the dispersion medium 230B volatilizes during the curing of the paint described later, the SP value of the dispersion medium 230B that has not volatilized is prevented from changing abruptly. Can do. When the SP value of the dispersion medium 230B rapidly changes, the material 220B having a sulfo group segregates and the coating portion 20B becomes cloudy. However, by using a plurality of solvents having different SP values as the dispersion medium 230B, The phenomenon can be prevented from occurring.
 分散媒230Bは、蒸発速度の異なる複数の溶媒からなることが好ましい。蒸発速度の異なる複数の溶媒を分散媒として用いることで、急激に分散媒230Bが揮発するのを抑えることができる。急激に分散媒230Bが揮発すると、やはり、スルホ基を有する物質220Bが偏析してコーティング部20Bが白濁してしまいやすいが、蒸発速度の異なる複数の溶媒を分散媒として用いることでこのような現象が起きるのを防ぐことができる。 The dispersion medium 230B is preferably composed of a plurality of solvents having different evaporation rates. By using a plurality of solvents having different evaporation rates as the dispersion medium, it is possible to suppress the dispersion medium 230B from volatilizing rapidly. If the dispersion medium 230B suddenly volatilizes, the material 220B having a sulfo group is segregated and the coating part 20B tends to become cloudy. However, this phenomenon is caused by using a plurality of solvents having different evaporation rates as the dispersion medium. Can be prevented.
 表1に、主な溶剤のSP値と蒸発速度について示す。分散媒230Bとしては、表1に挙げた溶剤から、2種以上を選択して組み合わせた分散媒を用いることが好ましく、3種以上を選択して組み合わせた分散媒を用いることがより好ましい。
 また、UV硬化型樹脂210B及びスルホ基を有する物質220Bを両方とも良好に分散する観点から、分散媒230Bとしては、複数の、SP値が10.2~14.5である溶剤からなる分散媒を用いることが好ましい。
Table 1 shows the SP values and evaporation rates of main solvents. As the dispersion medium 230B, it is preferable to use a dispersion medium in which two or more kinds are selected and combined from the solvents listed in Table 1, and it is more preferable to use a dispersion medium in which three or more kinds are selected and combined.
Further, from the viewpoint of satisfactorily dispersing both the UV curable resin 210B and the substance 220B having a sulfo group, the dispersion medium 230B is a dispersion medium composed of a plurality of solvents having an SP value of 10.2 to 14.5. Is preferably used.
 特に、2‐メトキシエタノール、エタノール、1‐プロパノール及び2‐プロパノールからなる分散媒、2‐メトキシエタノール、エタノール、1‐プロパノール、2‐プロパノール、メタノール及び1-メトキシ-2-プロパノールからなる分散媒、2‐メトキシエタノール、1‐メトキシ‐2‐プロパノール、エタノール、1‐プロパノール、1‐ブタノール及び2-プロパノールからなる分散媒、2‐メトキシエタノール、1‐メトキシ‐2‐プロパノール、エタノール、1‐プロパノール、1‐ブタノール、2-プロパノール及びメタノールからなる分散媒、エタノール、2‐プロパノール及び2‐メトキシエタノールからなる分散媒、エタノール、2‐プロパノール、2‐メトキシエタノール、メタノール及び2‐メトキシエタノールからなる分散媒、2‐プロパノール及び1‐メトキシ‐2‐プロパノールからなる分散媒、並びに、2‐プロパノール、1‐メトキシ‐2‐プロパノール及びメタノールからなる分散媒を分散媒230Bとして用いることが、コーティング部20Bを白濁させないためには好ましい。 In particular, a dispersion medium consisting of 2-methoxyethanol, ethanol, 1-propanol and 2-propanol, a dispersion medium consisting of 2-methoxyethanol, ethanol, 1-propanol, 2-propanol, methanol and 1-methoxy-2-propanol, Dispersion medium consisting of 2-methoxyethanol, 1-methoxy-2-propanol, ethanol, 1-propanol, 1-butanol and 2-propanol, 2-methoxyethanol, 1-methoxy-2-propanol, ethanol, 1-propanol, Dispersion medium consisting of 1-butanol, 2-propanol and methanol, dispersion medium consisting of ethanol, 2-propanol and 2-methoxyethanol, ethanol, 2-propanol, 2-methoxyethanol, methanol and 2-methoxyethane A dispersion medium composed of 2-propanol and 1-methoxy-2-propanol, and a dispersion medium composed of 2-propanol, 1-methoxy-2-propanol and methanol can be used as the dispersion medium 230B. In order not to make the coating part 20B cloudy, it is preferable.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 工程S21において、基材10Bに塗布される溶液は、光重合開始剤やその他の成分を含有していてもよい。光重合開始剤の種類や、含有量は硬化条件等に応じて適宜設定される。 In step S21, the solution applied to the substrate 10B may contain a photopolymerization initiator and other components. The kind and content of the photopolymerization initiator are appropriately set according to the curing conditions and the like.
 工程S21において、塗布の方法は、特に限定されないが、ウエスや刷毛を用いて手塗りする方法や、ロールコーターやバーコーターを用いる方法や、ディスペンサを用いる方法等を挙げることができる。これらの中でも、工程S21では、マイクロディスペンサ、スリットコーター又はディップコーターにより溶液を基材10B上に塗布することが、溶媒の揮発を抑制できることから好ましい。 In step S21, the application method is not particularly limited, and examples thereof include a method of hand-coating using a waste or a brush, a method using a roll coater or a bar coater, a method using a dispenser, and the like. Among these, in step S21, it is preferable to apply the solution onto the base material 10B with a microdispenser, a slit coater, or a dip coater because volatilization of the solvent can be suppressed.
 工程S21において、溶液を、スプレー塗装のように溶液をミスト化する方法で塗装した場合、溶液の比表面積が非常に大きくなる。溶液の比表面積が大きくなると、溶媒が急激に揮発したり、溶液が大気中の水分を吸収したりすることで、UV硬化型樹脂とスルホ基を有する物質のバランスが崩れて未硬化膜中で成分の偏析が起こり、塗膜が白濁する。これに対し、マイクロディスペンサ、スリットコーター又はディップコーターを用いた塗装では、通常のスプレー塗装と比べ、吐出する液滴のサイズが大きいため、塗装時の溶液の比表面積が小さく、上記の問題が生じ難い。従って、工程S21において、マイクロディスペンサ、スリットコーター又はディップコーターにより溶液を基材10B上に塗布すれば、基材表面が白濁していない品質の高い防汚防曇性部材を安定して製造することができる。
 なお、これら溶液をミスト化しない塗装方法は、異物の無い高品位な塗装を実現するために必須となるクリーンルーム内で用いる場合にも、環境を汚染せず、また、換気回数を減らすことができ経済的である。
In step S21, when the solution is coated by a method of misting the solution like spray coating, the specific surface area of the solution becomes very large. When the specific surface area of the solution increases, the solvent volatilizes abruptly or the solution absorbs moisture in the atmosphere, causing the balance between the UV curable resin and the substance having a sulfo group to be lost, and in the uncured film. Segregation of components occurs and the coating becomes cloudy. On the other hand, the coating using a micro-dispenser, slit coater or dip coater has a smaller specific surface area of the solution at the time of coating because the size of the liquid droplets to be ejected is larger than that of normal spray coating, resulting in the above problems. hard. Therefore, in step S21, if the solution is applied on the base material 10B by a microdispenser, a slit coater or a dip coater, a high-quality antifouling and antifogging member whose surface of the base material is not clouded is stably produced. Can do.
These coating methods that do not mist the solution do not pollute the environment and reduce the number of ventilations when used in a clean room, which is essential to achieve high-quality coating without foreign substances. Economical.
 更には、塗装するために用いる装置が安価であることから、工程S21では、マイクロディスペンサにより溶液を基材10B上に塗布することがより好ましい。 Furthermore, since the apparatus used for coating is inexpensive, in step S21, it is more preferable to apply the solution onto the substrate 10B with a microdispenser.
 ところで、マイクロディスペンサとは、単位時間当たりの吐出量を0.005g/sec~1.0g/secの範囲に制御可能なディスペンサである。マイクロディスペンサとしては、例えば武蔵エンジニアリング株式会社製のAero Jet(登録商標)等が挙げられる。マイクロディスペンサを用いて広い面積を塗装する場合には、マイクロディスペンサをロボットやスライド式の搬送機に取り付け、適切な搬送速度・吐出量に調整し、必要に応じてマイクロディスペンサを複数台並列させることで、必要なタクトタイムを達成することができる。なお、マイクロディスペンサより吐出量が大きいディスペンサも存在するが、このようなディスペンサは、数μmレベルの膜厚を塗装できず、必要な膜厚を得るために搬送機の速度を過剰に速くする必要がある等の問題がある。
 なお、マイクロディスペンサを用いて、基材10Bに塗着させた塗料の単位面積当たりの質量(g/cm)は、単位時間当たりの吐出量(g/sec)を、搬送速度(cm/sec)と塗装幅(cm)で割ることで求めることができる。
By the way, the micro dispenser is a dispenser capable of controlling the discharge amount per unit time in a range of 0.005 g / sec to 1.0 g / sec. Examples of the micro dispenser include Aero Jet (registered trademark) manufactured by Musashi Engineering Co., Ltd. When painting a large area using a micro-dispenser, attach the micro-dispenser to a robot or slide-type transport machine, adjust the transport speed and discharge volume appropriately, and parallel multiple micro-dispensers as necessary. Thus, the required tact time can be achieved. Although there are dispensers with a larger discharge amount than microdispensers, such dispensers cannot be coated with a film thickness on the order of several μm, and it is necessary to excessively increase the speed of the conveyor to obtain the required film thickness. There are problems such as.
Note that the mass per unit area (g / cm 2 ) of the paint applied to the base material 10B using the microdispenser is the discharge rate per unit time (g / sec), the transport speed (cm / sec). ) And the coating width (cm).
 基材の表面は、工程S21に先立って前処理を行っていてもよい。未硬化膜形成工程の前処理としては、基材10Bの表面とコーティング部20Bとを強固に結合させるカップリング剤による処理、プライマー処理、エッチング処理等の化成処理、フレーム処理、プラズマ処理等の火炎処理、サンディング、ポリッシング等の物理的処理及び洗浄処理を挙げることができる。 The surface of the base material may be pretreated prior to step S21. As a pretreatment of the uncured film forming step, a flame such as a treatment with a coupling agent that firmly bonds the surface of the base material 10B and the coating portion 20B, a chemical conversion treatment such as a primer treatment or an etching treatment, a flame treatment, or a plasma treatment. Physical treatment such as treatment, sanding, polishing, and cleaning treatment can be exemplified.
 工程S22では、工程S21で形成された未硬化膜を乾燥する。工程S22では、未硬化膜を加熱することで未硬化膜から溶媒を揮発させることが好ましい。
 工程S22で加熱装置を使用する場合、使用される加熱装置は特に限定されないが、溶媒揮発を均一に且つ迅速に行うため、強制対流装置を備えることが好ましい。溶媒揮発を均一に行うことで、未硬化膜中の成分の偏析がおきにくくなる。
In step S22, the uncured film formed in step S21 is dried. In step S22, it is preferable to volatilize the solvent from the uncured film by heating the uncured film.
When a heating device is used in step S22, the heating device to be used is not particularly limited, but it is preferable to provide a forced convection device in order to perform solvent volatilization uniformly and quickly. By performing the solvent volatilization uniformly, segregation of components in the uncured film is difficult to occur.
 工程S22での温度は、溶媒を適度に蒸発させるために、40~80℃であることが好ましい。乾燥時間については、基材の大きさにもよるが、10分以内であることが好ましい。長時間乾燥させると、未硬化膜中のUV硬化型樹脂とスルホ基を有する物質の偏析が進行し、コーティング部が白濁する。 The temperature in step S22 is preferably 40 to 80 ° C. in order to evaporate the solvent appropriately. The drying time is preferably within 10 minutes depending on the size of the substrate. When dried for a long time, segregation of the UV curable resin and the substance having a sulfo group in the uncured film proceeds, and the coating portion becomes cloudy.
 工程S23では、工程S21で形成され、工程S22において脱溶媒された未硬化膜にUVを照射することで未硬化膜を予備硬化させる。工程S24では、工程S23で予備硬化された未硬化膜にUVを照射して、未硬化膜を本硬化させることでコーティング部20Bを形成する(図4B及び図4C参照)。 In step S23, the uncured film is precured by irradiating UV to the uncured film formed in step S21 and desolvated in step S22. In step S24, the uncured film precured in step S23 is irradiated with UV to fully cure the uncured film, thereby forming the coating portion 20B (see FIGS. 4B and 4C).
 工程S23及び工程S24で使用されるUV硬化装置は、特に限定されないが、高圧水銀ランプやメタルハライドランプを用いたUV硬化装置を挙げることができる。これらの中でも、高圧水銀ランプは発熱量が少ないことから、工程S23及び工程S24では高圧水銀ランプを用いたUV硬化装置を使用することが好ましい。 The UV curing device used in step S23 and step S24 is not particularly limited, and examples thereof include a UV curing device using a high-pressure mercury lamp or a metal halide lamp. Among these, since a high pressure mercury lamp has a small calorific value, it is preferable to use a UV curing device using a high pressure mercury lamp in step S23 and step S24.
 工程S23では、工程S22で溶媒をある程度揮発させた未硬化膜に、波長200~500nm、強度400~1500mW/cmのUVを0.05~0.5秒間照射するのが好ましい。
 工程S23では、未硬化膜に短時間UVを照射することで、UV硬化型樹脂210Bを若干硬化させることでスルホ基を有する物質220Bを未硬化膜中で拘束し、スルホ基を有する物質220Bが偏析してしまうのを防ぐ。
In step S23, it is preferable to irradiate UV having a wavelength of 200 to 500 nm and an intensity of 400 to 1500 mW / cm 2 for 0.05 to 0.5 seconds to the uncured film obtained by volatilizing the solvent to some extent in step S22.
In step S23, the UV-curable resin 210B is slightly cured by irradiating the uncured film with UV for a short time, thereby restraining the sulfo group-containing substance 220B in the uncured film. Prevent segregation.
 工程S24では、未硬化膜に、波長200~500nm、強度400~1500mW/cmのUVを1~10秒間照射するのが好ましい。
 工程S24では、工程S23で予備硬化された未硬化膜にUVを照射して、UV硬化型樹脂210B完全に硬化させる。
In step S24, the uncured film is preferably irradiated with UV having a wavelength of 200 to 500 nm and an intensity of 400 to 1500 mW / cm 2 for 1 to 10 seconds.
In step S24, the uncured film precured in step S23 is irradiated with UV to completely cure the UV curable resin 210B.
 工程S24で未硬化膜を本硬化させることで得たコーティング部20Bの厚みは、コーティング部20Bがクラックを発生せず且つ十分な耐摩耗性を発揮するために、2~20μmであることが好ましい。 The thickness of the coating portion 20B obtained by main-curing the uncured film in step S24 is preferably 2 to 20 μm so that the coating portion 20B does not generate cracks and exhibits sufficient wear resistance. .
 なお、工程S23及び工程S24において用いられる、未硬化塗膜を硬化のためのUV照射装置は特に限定されないが、コンベア型のUV照射装置を用いることが好ましい。具体的には、コンベア上に未硬化塗膜を形成した基材を載せて搬送しながら所定強度のUVを照射する。この際、コンベアの搬送速度を制御することによって、UVの照射時間(基材がUVの照射範囲を通過する時間)を制御することができる。 In addition, although the UV irradiation apparatus for hardening an uncured coating film used in process S23 and process S24 is not specifically limited, It is preferable to use a conveyor type UV irradiation apparatus. Specifically, UV having a predetermined intensity is irradiated while a substrate on which an uncured coating film is formed is transported on a conveyor. At this time, the UV irradiation time (the time for the substrate to pass through the UV irradiation range) can be controlled by controlling the conveying speed of the conveyor.
 本発明の第2実施形態によれば、以下の効果が奏される。
 第2実施形態では、防汚防曇性部材1Bの基材10B上に形成されたコーティング部20Bが、疎水性が高いことから汚染物質と反応し難いマトリクス成分21Bと、親水性の高いスルホ基を有する成分22Bとを含んで構成され、スルホ基を有する成分22Bが、コーティング部20Bの内部に均一に分布し且つ少なくとも一部がコーティング部20Bの表面に露出されるものとした。
 これにより、親水性の高いスルホ基を有する成分22Bが基材10B表面における結露を防止するとともに、マトリクス成分21Bが存在することによって、スルホ基を有する成分22B同士の間に侵入した汚染物質33Bが基材10B表面に付着して水垢を形成してしまうのを防ぐことができる。このように、高い防曇性と防汚性を兼ね備えた防汚防曇性部材1Bを提供できる。また、スルホ基を有する成分22Bがコーティング部20Bの内部で偏析せずに均一に分布されることから、製造時におけるコーティング部20Bの白濁を防止できる。
According to 2nd Embodiment of this invention, the following effects are show | played.
In the second embodiment, the coating part 20B formed on the base material 10B of the antifouling and antifogging member 1B has a hydrophobic property, so that the matrix component 21B which does not easily react with contaminants and a highly hydrophilic sulfo group And the component 22B having a sulfo group is uniformly distributed inside the coating part 20B and at least a part thereof is exposed on the surface of the coating part 20B.
As a result, the component 22B having a highly hydrophilic sulfo group prevents condensation on the surface of the base material 10B, and the presence of the matrix component 21B prevents the contaminant 33B that has entered between the components 22B having the sulfo group. It can prevent that it adheres to the base-material 10B surface and forms scales. Thus, the antifouling and antifogging member 1B having both high antifogging properties and antifouling properties can be provided. In addition, since the component 22B having a sulfo group is uniformly distributed without segregation inside the coating part 20B, it is possible to prevent the coating part 20B from becoming clouded during production.
 また、第2実施形態では、防汚防曇性部材1Bの製造方法が、基材10B上に溶液を塗布することで未硬化膜200Bを形成する工程S21と、工程S21で形成された未硬化膜200BにUVを照射して予備硬化させる工程S23と、工程S23で予備硬化された未硬化膜200BにUVを照射して本硬化させることでコーティング部20Bを形成する工程S24と、を有するものとする。また、工程S21において、基材10Bに塗布する溶液は、UV硬化型樹脂210Bと、スルホ基を有する物質220Bと、これらUV硬化型樹脂210B及びスルホ基を有する物質220Bを分散可能であり且つ溶解度パラメータの異なる複数の溶媒からなる分散媒230Bと、を含有するものとする。
 これにより、上記のように高い防曇性と防汚性を兼ね備えた防汚防曇性部材1Bを製造することができる。また、基材10B上のコーティング部20Bの形成においてスルホ基を有する物質220Bが偏析せず、相分離が起きないので、基材10B表面が白濁していない品質の高い防汚防曇性部材1Bを安定して製造することができる。
In the second embodiment, the manufacturing method of the antifouling and antifogging member 1B includes the step S21 of forming the uncured film 200B by applying a solution on the base material 10B, and the uncured formed in the step S21. Step S23 for pre-curing the film 200B by irradiating UV, and Step S24 for forming the coating portion 20B by irradiating the uncured film 200B pre-cured in Step S23 with UV for main curing And In step S21, the solution applied to the base material 10B can disperse the UV curable resin 210B, the substance 220B having a sulfo group, the UV curable resin 210B, and the substance 220B having a sulfo group, and has a solubility. And a dispersion medium 230B composed of a plurality of solvents having different parameters.
Thereby, the antifouling / antifogging member 1B having both high antifogging property and antifouling property as described above can be produced. In addition, since the material 220B having a sulfo group does not segregate and phase separation does not occur in the formation of the coating portion 20B on the base material 10B, the surface of the base material 10B is not white turbid and has a high quality antifouling and antifogging member 1B. Can be manufactured stably.
 なお、本発明は上記の第1及び第2実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Note that the present invention is not limited to the first and second embodiments described above, and includes modifications and improvements as long as the object of the present invention can be achieved.
 本発明に係る防汚防曇性部材及びその製造方法について、実施例により具体的に説明するが、本発明はこれに限定されるものではない。なお、特に断りがない限り「部」は質量基準である。 The antifouling and antifogging member and the production method thereof according to the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, “part” is based on mass.
[実施例1]
 PP板に、プライマーPC3-B(株式会社フロロテクノロジー製)を、ウエスを用いて塗布した。1時間常温乾燥した後、更に、スルホシラン(構造:(HO)Si-(CH-SOH)1部をイソプロピルアルコール100部で希釈して1時間攪拌した溶液を、ウエスを用いて塗布し、60℃で1時間加熱することで、実施例1の部材を得た。
[Example 1]
Primer PC3-B (manufactured by Fluoro Technology Co., Ltd.) was applied to the PP plate using a waste cloth. After drying at room temperature for 1 hour, a solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was used with a waste cloth. The member of Example 1 was obtained by heating at 60 ° C. for 1 hour.
[実施例2]
 アクリル板に、PC-3Bを、ウエスを用いて塗布した。更に、スルホシラン(構造:(HO)Si-(CH-SOH)1部をイソプロピルアルコール100部で希釈して1時間攪拌した溶液を、ウエスを用いて塗布し、60℃で1時間加熱することで、実施例2の部材を得た。
[Example 2]
PC-3B was applied to the acrylic plate using a waste cloth. Further, a solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was applied with waste cloth at 60 ° C. The member of Example 2 was obtained by heating for 1 hour.
[実施例3]
 UV硬化塗料FA-3118(アクリル系UV硬化塗料、日本化工塗料株式会社製)をポリカーボネートシートに塗布してUV硬化させ、8μmの塗膜(樹脂層)を得た。スルホシラン(構造:(HO)Si-(CH-SOH)1部をイソプロピルアルコール100部で希釈して1時間攪拌した溶液を調製した。フレーム処理したUV硬化塗膜(樹脂層)の表面に、スルホシラン溶液を、ウエスを用いて塗布し、80℃で1時間加熱することで実施例3の部材を得た。
[Example 3]
A UV curable paint FA-3118 (acrylic UV curable paint, manufactured by Nippon Kako Paint Co., Ltd.) was applied to a polycarbonate sheet and UV cured to obtain an 8 μm coating film (resin layer). A solution was prepared by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour. The member of Example 3 was obtained by applying a sulfosilane solution to the surface of the frame-treated UV cured coating film (resin layer) using a waste cloth and heating at 80 ° C. for 1 hour.
[比較例1]
 未処理のPP板を実施例1の比較として用意した。
[Comparative Example 1]
An untreated PP plate was prepared for comparison with Example 1.
[比較例2]
 未処理のアクリル板を実施例2の比較として用意した。
[Comparative Example 2]
An untreated acrylic plate was prepared as a comparison with Example 2.
[比較例3]
 ポリカーボネートシートにUV硬化塗料FA-3118(アクリル系UV硬化塗料、日本化工塗料株式会社製)をバーコーターで塗布してUV硬化させ、8μmの塗膜を形成することで、比較例3の部材を得た。
[Comparative Example 3]
A UV curable paint FA-3118 (acrylic UV curable paint, manufactured by Nippon Kako Paint Co., Ltd.) was applied to a polycarbonate sheet with a bar coater and UV cured to form an 8 μm coating film. Obtained.
[比較例4]
 ガラス表面を酸化セリウムで研磨し、純水でよく洗浄したのち、エアブローで乾燥させた。スルホシラン(構造:(HO)Si-(CH-SOH)1部をイソプロピルアルコール100部で希釈して1時間攪拌した溶液を、乾燥後のガラス上にウエスで塗布し、60℃で1時間加熱することで比較例4の部材を得た。
[Comparative Example 4]
The glass surface was polished with cerium oxide, washed thoroughly with pure water, and then dried by air blow. A solution obtained by diluting 1 part of sulfosilane (structure: (HO) 3 Si— (CH 2 ) 3 —SO 3 H) with 100 parts of isopropyl alcohol and stirring for 1 hour was coated on the dried glass with a waste cloth. The member of Comparative Example 4 was obtained by heating at 0 ° C. for 1 hour.
[比較例5]
 比較例4の処方に従って得た部材の表面を、酸化セリウムで磨くことで、部分的にスルホシランに覆われ、且つ、部分的にガラスが露出した表面状態である比較例5の部材を得た。
[Comparative Example 5]
By polishing the surface of the member obtained according to the formulation of Comparative Example 4 with cerium oxide, the member of Comparative Example 5 that was partially covered with sulfosilane and partially exposed to glass was obtained.
[実施例4]
 フォルシードNo.140C-P(アクリル系UV硬化塗料、中国塗料株式会社製)50部を、エタノール、2‐メトキシエタノール、1‐プロパノール及び2‐プロパノールが質量比6:4:1:1で混合された溶媒50部で希釈した溶液を、マイクロディスペンサ(Aero Jet、武蔵エンジニアリング株式会社製)を用いて、塗料溶液の塗着量が25g/mとなるよう、ポリカーボネート板に塗布した。続いて、塗布した未硬化膜を、60℃で3分間乾燥して、UV硬化させることで実施例4の部材を得た(硬化膜厚4μm)。UV硬化では、高圧水銀ランプを用いて、塗膜に瞬間的に(0.1秒間)UV(波長365nmにおける照度:600mW/cm)を照射する工程と、予備硬化した塗膜に継続して(2秒間)UV(波長365nmにおける照度:600mW/cm)を照射する工程と、を連続して行った。なお、フォルシードNo.140C-Pは、メタノール及び1-メトキシ-2-プロパノールを含有する。
[Example 4]
Forse Seed No. Solvent 50 in which 50 parts of 140C-P (acrylic UV curable paint, manufactured by China Paint Co., Ltd.) was mixed with ethanol, 2-methoxyethanol, 1-propanol and 2-propanol at a mass ratio of 6: 4: 1: 1 The solution diluted in the part was applied to a polycarbonate plate using a micro dispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so that the coating amount of the coating solution was 25 g / m 2 . Subsequently, the applied uncured film was dried at 60 ° C. for 3 minutes and UV cured to obtain a member of Example 4 (cured film thickness 4 μm). In UV curing, a high-pressure mercury lamp is used to instantaneously (0.1 seconds) irradiate the coating film with UV (illuminance at a wavelength of 365 nm: 600 mW / cm 2 ), and continue to the precured coating film. (2 seconds) UV (irradiance at a wavelength of 365 nm: 600 mW / cm 2 ) was radiated continuously. Forse Seed No. 140C-P contains methanol and 1-methoxy-2-propanol.
[実施例5]
 浴室用鏡(表面:ソーダガラス)を、酸化セリウムで研磨し、純水でよく洗浄したのち、クリーンエアで乾燥させた。シランカップリング剤KBM5103(信越化学工業株式会社製)1部をプロピレングリコールモノメチルエーテル99部で希釈し、5%塩酸0.3部を加え、1時間攪拌した。これをマイクロディスペンサ(Aero Jet、武蔵エンジニアリング株式会社製)で溶液の塗着量が10g/mとなるよう鏡に塗布し、140℃で10分加熱硬化した。この鏡を冷却した後、その表面に、KPP#04(アクリル系UV硬化塗料、公進ケミカル株式会社製)50部をエタノール、2‐プロパノール及び2‐メトキシエタノールが質量比6:2:2で混合された溶媒50部で希釈した溶液を、マイクロディスペンサ(Aero Jet、武蔵エンジニアリング株式会社製)を用いて、25g/mとなるよう、塗布した。続いて、塗布した未硬化膜を60℃で5分間乾燥して、UV硬化させることで実施例5の部材を得た(硬化膜厚5μm)。UV硬化では実施例1と同様に、高圧水銀ランプを用いて、塗膜に瞬間的に(0.2秒間)UV(波長365nmにおける照度:800mW/cm)を照射する工程と、予備硬化した塗膜に継続して(2秒間)UV(波長365nmにおける照度:800mW/cm)を照射する工程と、を連続して行った。なお、KPP#04は、メタノール及び2‐メトキシエタノールを含有する。
[Example 5]
A bathroom mirror (surface: soda glass) was polished with cerium oxide, thoroughly washed with pure water, and then dried with clean air. 1 part of silane coupling agent KBM5103 (manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with 99 parts of propylene glycol monomethyl ether, 0.3 part of 5% hydrochloric acid was added, and the mixture was stirred for 1 hour. This was applied to a mirror with a micro dispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so that the coating amount of the solution was 10 g / m 2, and cured by heating at 140 ° C. for 10 minutes. After cooling the mirror, 50 parts of KPP # 04 (acrylic UV curable paint, manufactured by Koshin Chemical Co., Ltd.) was added to the surface with ethanol, 2-propanol and 2-methoxyethanol in a mass ratio of 6: 2: 2. The solution diluted with 50 parts of the mixed solvent was applied using a microdispenser (Aero Jet, manufactured by Musashi Engineering Co., Ltd.) so as to be 25 g / m 2 . Subsequently, the applied uncured film was dried at 60 ° C. for 5 minutes and UV cured to obtain a member of Example 5 (cured film thickness 5 μm). In UV curing, as in Example 1, using a high-pressure mercury lamp, the coating film was irradiated with UV (illuminance at a wavelength of 365 nm: 800 mW / cm 2 ) instantaneously (for 0.2 seconds) and precured. The film was continuously (for 2 seconds) irradiated with UV (illuminance at a wavelength of 365 nm: 800 mW / cm 2 ). KPP # 04 contains methanol and 2-methoxyethanol.
[比較例6]
 比較例3と同様の方法で得られた部材を比較例6の部材とした。
[Comparative Example 6]
A member obtained by the same method as in Comparative Example 3 was used as a member in Comparative Example 6.
[比較例7]
 比較例4と同様の方法で得られた部材を比較例7の部材とした。
[Comparative Example 7]
A member obtained by the same method as in Comparative Example 4 was used as a member in Comparative Example 7.
[比較例8]
 比較例5と同様の方法で得られた部材を比較例8の部材とした。
[Comparative Example 8]
A member obtained by the same method as in Comparative Example 5 was used as a member in Comparative Example 8.
[比較例9]
 フォルシードNo.140C-Pを、溶媒で希釈することなく、ポリカーボネート板にスプレーを用いて塗布した。そして、塗布した塗膜を60℃で3分間乾燥して、UV硬化させることで部材の作製を行った(硬化膜厚4μm)。UV硬化では、高圧水銀ランプを用いて、塗膜に継続して(2秒間)UV(波長365nmにおける照度:600mW/cm)を照射する工程を行った。
 しかしながら、この場合にはUV硬化時に塗膜が白濁してしまい、透明な塗膜の形成された部材を得ることができなかった。
[Comparative Example 9]
Forse Seed No. 140C-P was applied to a polycarbonate plate using a spray without diluting with a solvent. Then, the coated film was dried at 60 ° C. for 3 minutes and UV-cured to prepare a member (cured film thickness: 4 μm). In the UV curing, a step of continuously irradiating UV (illuminance at a wavelength of 365 nm: 600 mW / cm 2 ) was performed on the coating film using a high-pressure mercury lamp (for 2 seconds).
However, in this case, the coating film becomes clouded during UV curing, and a member having a transparent coating film cannot be obtained.
[比較例10]
 UV硬化において、塗膜に瞬間的に(0.2秒間)UV(波長365nmにおける照度:800mW/cm)を照射する工程を行わない以外は、実施例4と同様の方法で部材の作成を行った。
 しかしながら、この場合にはUV硬化時に塗膜が白濁してしまい、透明な塗膜の形成された部材を得ることができなかった。
[Comparative Example 10]
In UV curing, a member was prepared in the same manner as in Example 4 except that the step of irradiating the coating film instantaneously (0.2 seconds) with UV (illuminance at wavelength 365 nm: 800 mW / cm 2 ) was not performed. went.
However, in this case, the coating film becomes clouded during UV curing, and a member having a transparent coating film cannot be obtained.
 実施例及び比較例(比較例1~8)で得られた部材を、下に示した試験・測定に供した。 The members obtained in Examples and Comparative Examples (Comparative Examples 1 to 8) were subjected to the tests and measurements shown below.
<水接触角の測定>
 接触角計DM-500(協和界面科学株式会社)を用い、各部材の表面で水接触角(単位:°)を測定した。結果を表2及び表3に示す。
<Measurement of water contact angle>
Using a contact angle meter DM-500 (Kyowa Interface Science Co., Ltd.), the water contact angle (unit: °) was measured on the surface of each member. The results are shown in Tables 2 and 3.
<水垢除去試験>
 水道水を各部材の表面に噴霧し、40℃温風で2時間乾燥させた。この操作を30回繰り返し、水道水中の溶存ミネラルを各部材の表面に析出させた。各部材の表面に析出したミネラル汚れを濡れスポンジで拭き掃除した後の、ミネラル汚れの除去率を、下記数式(1)に基づき算出した結果を表2及び表3に示す。なお、下記数式(1)の、「拭き掃除後のミネラル汚れ残存面積」及び「拭き掃除前のミネラル汚れ付着面積」は、目視にて算出した。水垢除去試験の結果は、下記の判定基準により評価することができる。
[数1]
除去率={1-(拭き掃除後のミネラル汚れ残存面積/拭き掃除前のミネラル汚れ付着面積)}×100 ・・・(1)
<Scale removal test>
Tap water was sprayed on the surface of each member and dried with hot air at 40 ° C. for 2 hours. This operation was repeated 30 times, and dissolved minerals in tap water were deposited on the surface of each member. Tables 2 and 3 show the results of calculating the removal rate of mineral stains after wiping and cleaning the mineral stains deposited on the surface of each member based on the following mathematical formula (1). In addition, “the mineral dirt remaining area after wiping cleaning” and “the mineral dirt adhesion area before wiping cleaning” of the following mathematical formula (1) were calculated visually. The result of the scale removal test can be evaluated according to the following criteria.
[Equation 1]
Removal rate = {1− (residual area of mineral dirt after wiping cleaning / area of mineral dirt adhesion before wiping)} × 100 (1)
<耐汚染性試験>
 オレイン酸5部とステアリン酸カルシウム5部とを混合した擬似汚れを各部材上に塗布し、40℃の温水をシャワーで3分間当てた後の擬似汚れの除去率を下記数式(2)に基づき算出しした。結果を表2及び表3に示す。なお、下記数式(2)の、「洗浄後の擬似汚れ残存面積」及び「洗浄前の擬似汚れ付着面積」は、目視にて算出した。耐汚染性試験の結果は、下記の判定基準により評価することができる。
[数2]
除去率={1-(洗浄後の擬似汚れ残存面積/洗浄前の擬似汚れ付着面積)}×100 ・・・(2)
<Contamination resistance test>
Applying pseudo-stains mixed with 5 parts of oleic acid and 5 parts of calcium stearate on each member and calculating the removal rate of pseudo-stains after applying hot water of 40 ° C. for 3 minutes in a shower based on the following formula (2) I did. The results are shown in Tables 2 and 3. In addition, the “pseudo-stain remaining area after cleaning” and “pseudo-stain adhesion area before cleaning” in the following mathematical formula (2) were calculated visually. The result of the stain resistance test can be evaluated according to the following criteria.
[Equation 2]
Removal rate = {1− (remaining area of pseudo dirt after cleaning / pseudo dirt adhesion area before cleaning)} × 100 (2)
<防曇性評価>
 80℃に熱した温水の上に各サンプルを配置し、曇る(結露する)までの時間を測定し、下記の判定基準により評価した。結果を表2及び表3に示す。なお、測定は、10分で終了した。
<Anti-fogging evaluation>
Each sample was placed on hot water heated to 80 ° C., and the time until clouding (condensation) was measured, and evaluated according to the following criteria. The results are shown in Tables 2 and 3. The measurement was completed in 10 minutes.
<磨耗試験>
 水を含ませたスポンジ(住友3MスコッチブライトS-21K)に1kgの荷重を掛け、各部材の表面を10000回往復磨耗した。スポンジの乾燥を防ぐため、500往復ごとに、水を供給した。磨耗試験後、上に示した試験・測定を実施し、部材のコーティング部の耐久性を確認した。結果を表2及び表3に示す。
<Abrasion test>
A load of 1 kg was applied to a sponge soaked with water (Sumitomo 3M Scotch Bright S-21K), and the surface of each member was worn back and forth 10,000 times. In order to prevent the sponge from drying, water was supplied every 500 reciprocations. After the wear test, the test and measurement shown above were performed to confirm the durability of the coating portion of the member. The results are shown in Tables 2 and 3.
<耐リンス試験>
 各部材のシリコーンオイルの吸着・除去性について以下の方法で試験した。水で50倍に希釈した市販の頭髪用化粧品(LUXスーパーリッチシャインコンディショナー(シリコーンオイル含有)、ユニリーバ・ジャパン株式会社製)を、霧吹きで各部材の表面にまんべんなく吹きつけ、10分間放置した。これを50回繰り返した後、洗浄剤(バスマジックリン泡立ちスプレー、花王株式会社)とスポンジを用いて各部材の表面を洗浄した。耐リンス試験後、上に示した試験・測定を実施し、部材のコーティング部の耐久性を確認した。結果を表2及び表3に示す。
<Rinse resistance test>
The silicone oil adsorption / removability of each member was tested by the following method. Commercially available hair cosmetics diluted 50 times with water (LUX Super Rich Shine Conditioner (containing silicone oil), manufactured by Unilever Japan Co., Ltd.) were sprayed evenly on the surface of each member with a sprayer and allowed to stand for 10 minutes. After repeating this 50 times, the surface of each member was cleaned using a cleaning agent (Bath Magiclin Foaming Spray, Kao Corporation) and a sponge. After the rinse resistance test, the test and measurement described above were performed to confirm the durability of the coating portion of the member. The results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<電子線マイクロアナライザ(EPMA)分析>
 実施例4で得られた部材の表面及び断面について、EPMA分析した。EPMA分析はJXA-8500Fフィールドエミッション電子プローブマイクロアナライザ(日本電子株式会社製)によって行った。EPMA分析によって、実施例4で得られた部材のコーティング部における硫黄(S)原子の分布状態、つまり、親水性の高いスルホ基を有する成分の分布状態を知ることができる。具体的には、今回の分析においては、硫黄(S)原子の濃度の高い部分が薄い色(白色)を呈する。結果を図5及び6に示す。
<Electron beam microanalyzer (EPMA) analysis>
The surface and cross section of the member obtained in Example 4 were analyzed by EPMA. EPMA analysis was performed with a JXA-8500F field emission electron probe microanalyzer (manufactured by JEOL Ltd.). By EPMA analysis, the distribution state of sulfur (S) atoms in the coating part of the member obtained in Example 4, that is, the distribution state of components having a highly hydrophilic sulfo group can be known. Specifically, in this analysis, a portion with a high concentration of sulfur (S) atoms exhibits a light color (white). The results are shown in FIGS.
 実施例1と比較例1との比較から、実施例1の部材の方が比較例1の部材よりも表面の水接触角が低い(親水性が高い)ことが分かった。この結果から、樹脂層の表面にスルホ基を有する物質を配置しない部材よりも、樹脂層の表面にスルホ基を有する物質を配置した部材の方が、防曇性が高いことが確認された。このことは、実施例2と比較例2との比較及び実施例3と比較例3との比較からも明らかである。 From comparison between Example 1 and Comparative Example 1, it was found that the member of Example 1 had a lower surface water contact angle (higher hydrophilicity) than the member of Comparative Example 1. From this result, it was confirmed that the member in which the substance having a sulfo group is arranged on the surface of the resin layer has higher antifogging property than the member in which the substance having a sulfo group is not arranged on the surface of the resin layer. This is also clear from the comparison between Example 2 and Comparative Example 2 and the comparison between Example 3 and Comparative Example 3.
 また、実施例1~3と比較例4(及び5)との比較から、実施例1~3の部材の方が、比較例4の部材よりも水垢除去性が高いことが確認された。この結果から、ガラス等の基材の表面にマトリクス樹脂を含む樹脂層を形成してから、その樹脂層の表面にスルホ基を有する物質を配置した部材の方が、基材の表面に直接スルホ基を有する物質を配置した部材よりも、防汚性が高いことが明らかである。 Further, from comparison between Examples 1 to 3 and Comparative Example 4 (and 5), it was confirmed that the members of Examples 1 to 3 had higher scale removal performance than the members of Comparative Example 4. From this result, a member in which a resin layer containing a matrix resin is formed on the surface of a substrate such as glass and a substance having a sulfo group on the surface of the resin layer is directly attached to the surface of the substrate. It is clear that the antifouling property is higher than that of a member in which a substance having a group is arranged.
 なお、実施例1及び2では、ガラス等の基材上に樹脂層を形成していない。しかし、ガラス等の基材上に、実施例1のPP板に相当する樹脂層あるいは実施例2のアクリル板に相当する樹脂層を設けて、その樹脂層上にスルホ基を有する物質を配置したとしても、実施例1及び2と同等の試験結果が得られることは明らかである。 In Examples 1 and 2, a resin layer is not formed on a substrate such as glass. However, a resin layer corresponding to the PP plate of Example 1 or a resin layer corresponding to the acrylic plate of Example 2 is provided on a substrate such as glass, and a substance having a sulfo group is disposed on the resin layer. However, it is clear that the same test results as in Examples 1 and 2 can be obtained.
 実施例4と比較例6との比較から、実施例4の部材の方が比較例6の部材よりも表面の水接触角が低い(親水性が高い)ことが分かった。この結果から、コーティング部がスルホ基を有する成分を含有しない部材よりも、コーティング部がスルホ基を有する成分を含有する部材の方が、防曇性が高いことが確認された。 From comparison between Example 4 and Comparative Example 6, it was found that the member of Example 4 had a lower surface water contact angle (higher hydrophilicity) than the member of Comparative Example 6. From this result, it was confirmed that the member in which the coating part contains the component which has a sulfo group has a higher antifogging property than the member in which the coating part does not contain the component which has a sulfo group.
 また、実施例5と比較例7(及び8)との比較から、実施例5の部材の方が、比較例7の部材よりも水垢除去性が高いことが確認された。この結果から、ガラス等の基材の表面にマトリクス成分とスルホ基を含有する成分とを含有するコーティング層を形成した部材の方が、基材の表面に直接スルホ基を有する物質を配置した部材よりも、防汚性が高いことが明らかである。 In addition, from the comparison between Example 5 and Comparative Example 7 (and 8), it was confirmed that the member of Example 5 had higher scale removal performance than the member of Comparative Example 7. From this result, a member in which a coating layer containing a matrix component and a component containing a sulfo group is formed on the surface of a substrate such as glass is a member in which a substance having a sulfo group is directly arranged on the surface of the substrate. It is clear that the antifouling property is higher than that.
 また、部材の表面の分析の結果から、実施例4で得られた部材のコーティング部の表面にはスルホ基を有する成分が露出していることが確認された(図3)。また同様に、部材の断面のEPMA分析の結果から、実施例4で得られた部材のコーティング部の内部にはスルホ基を有する成分が均一に分布していることが確認された(図4)。 Further, from the result of analysis of the surface of the member, it was confirmed that a component having a sulfo group was exposed on the surface of the coating portion of the member obtained in Example 4 (FIG. 3). Similarly, from the result of EPMA analysis of the cross section of the member, it was confirmed that a component having a sulfo group was uniformly distributed inside the coating portion of the member obtained in Example 4 (FIG. 4). .
 なお、比較例9及び10では、塗膜が白濁してしまった。比較例9に関しては、スプレー塗装時に塗料がミスト化したことで、溶媒が急速に揮発したことに伴う急激なSP値変化によって、スルホ基を有する物質の偏析が起こったことで白濁が生じたものと考えられる。比較例10に関しては、予備硬化を行うことなく、UV照射を長く掛けたために、スルホ基を有する物質の偏析が起こったことで白濁が生じたものと考えられる。実施例4及び5では、スルホ基を有する物質とUV硬化型樹脂をSP値の異なる複数の溶媒からなる分散媒によって分散したこと、マイクロディスペンサで塗装することで溶媒の急激な揮発を起こさなかったこと、更には予備硬化を伴うUV硬化によってスルホ基を有する物質の移動を抑えたことにより、白濁のない塗膜が得られたものと認められる。 In Comparative Examples 9 and 10, the coating film became cloudy. Regarding Comparative Example 9, white turbidity was caused by segregation of a substance having a sulfo group due to a rapid SP value change caused by the rapid volatilization of the solvent due to the paint becoming mist during spray coating. it is conceivable that. Regarding Comparative Example 10, it is considered that white turbidity occurred due to segregation of the substance having a sulfo group because UV irradiation was applied for a long time without performing preliminary curing. In Examples 4 and 5, the substance having a sulfo group and the UV curable resin were dispersed with a dispersion medium composed of a plurality of solvents having different SP values, and the solvent was not volatilized by coating with a microdispenser. In addition, it is recognized that a coating film free of white turbidity was obtained by suppressing the movement of the substance having a sulfo group by UV curing accompanied by preliminary curing.
 なお、比較例3及び比較例6は、同様の方法で部材を得ているが、試験・測定の結果が若干異なる。比較例3及び比較例6の試験結果の差は、部材の個体差に起因するものと認められ、試験結果の解釈に影響を及ぼさない。 In Comparative Example 3 and Comparative Example 6, members were obtained by the same method, but the results of the test and measurement were slightly different. The difference between the test results of Comparative Example 3 and Comparative Example 6 is recognized to be caused by individual differences in the members, and does not affect the interpretation of the test results.
 1A,1B…防汚防曇性部材
 10A,10B…基材
 20A,20B…コーティング部
 21A…樹脂層
 21B…マトリクス成分
 22A…スルホ基を有する物質
 22B…スルホ基を有する成分
 200B…未硬化膜
 210B…UV硬化型樹脂
 220B…スルホ基を有する物質
 230B…分散媒
DESCRIPTION OF SYMBOLS 1A, 1B ... Antifouling anti-fogging member 10A, 10B ... Base material 20A, 20B ... Coating part 21A ... Resin layer 21B ... Matrix component 22A ... Substance having sulfo group 22B ... Component having sulfo group 200B ... Uncured film 210B ... UV curable resin 220B ... Substance having sulfo group 230B ... Dispersion medium

Claims (5)

  1.  基材と、該基材上に形成された防汚性及び防曇性を有するコーティング部と、を備える防汚防曇性部材であって、
     前記コーティング部は、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含む樹脂層と、前記樹脂層の表面上に配置されるスルホ基を有する物質と、を含んで構成されることを特徴とする防汚防曇性部材。
    An antifouling and antifogging member comprising a substrate and a coating portion having antifouling and antifogging properties formed on the substrate,
    The coating portion includes a resin layer containing at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin, and a substance having a sulfo group disposed on the surface of the resin layer And an antifouling antifogging member characterized by comprising.
  2.  基材と、該基材上に形成された防汚性及び防曇性を有するコーティング部と、を備え、前記コーティング部は、樹脂層と、スルホ基を有する物質と、を含んで構成される防汚防曇性部材の製造方法であって、
     前記基材上に、アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂及びシリコーン樹脂からなる群より選ばれた少なくとも1種のマトリクス樹脂を含む樹脂層を形成する工程と、
     前記工程で形成された樹脂層の表面にスルホ基を有する物質を配置する工程と、を有することを特徴とする防汚防曇性部材の製造方法。
    A substrate and a coating portion having antifouling properties and antifogging properties formed on the substrate, and the coating portion includes a resin layer and a substance having a sulfo group. A method for producing an antifouling and antifogging member,
    Forming a resin layer containing at least one matrix resin selected from the group consisting of an acrylic resin, a polyolefin resin, a fluororesin, and a silicone resin on the substrate;
    And a step of disposing a substance having a sulfo group on the surface of the resin layer formed in the step, and a method for producing an antifouling and antifogging member.
  3.  基材と、該基材上に形成された防汚性及び防曇性を有するコーティング部と、を備える防汚防曇性部材であって、
     前記コーティング部は、アクリル樹脂を含むマトリクス成分と、スルホ基を有する成分と、を含んで構成され、
     前記スルホ基を有する成分は、コーティング部の内部に均一に分布し且つ少なくとも一部が前記コーティング部の表面に露出していることを特徴とする防汚防曇性部材。
    An antifouling and antifogging member comprising a substrate and a coating portion having antifouling and antifogging properties formed on the substrate,
    The coating portion includes a matrix component including an acrylic resin, and a component having a sulfo group,
    The antifouling and antifogging member, wherein the component having a sulfo group is uniformly distributed inside the coating part and at least a part thereof is exposed on the surface of the coating part.
  4.  基材と、該基材上に形成された防汚性及び防曇性を有するコーティング部と、を備える防汚防曇性部材の製造方法であって、
     アクリル樹脂を含むUV硬化型樹脂と、スルホ基を有する物質と、これらUV硬化型樹脂及びスルホ基を有する物質を分散可能であり且つ溶解度パラメータの異なる複数の溶媒からなる分散媒と、を含有する溶液を、前記基材上に塗布することで未硬化膜を形成する未硬化膜形成工程と、
     前記未硬化膜形成工程で形成された未硬化膜にUVを照射して予備硬化させる予備硬化工程と、
     前記予備硬化工程で予備硬化された未硬化膜にUVを照射して本硬化させることで前記コーティング部を形成する本硬化工程と、を有することを特徴とする防汚防曇性部材の製造方法。
    A method for producing an antifouling and antifogging member comprising a substrate and a coating portion having antifouling and antifogging properties formed on the substrate,
    Contains a UV curable resin containing an acrylic resin, a substance having a sulfo group, and a dispersion medium composed of a plurality of solvents that can disperse the UV curable resin and the substance having a sulfo group and have different solubility parameters. An uncured film forming step of forming an uncured film by applying a solution on the substrate;
    A pre-curing step of pre-curing the uncured film formed in the uncured film forming step with UV irradiation;
    And a main curing step of forming the coating portion by irradiating UV to the uncured film that has been precured in the preliminary curing step, thereby forming the coating portion. .
  5.  前記未硬化膜形成工程は、マイクロディスペンサ、スリットコーター又はディップコーターにより前記溶液を前記基材上に塗布することを特徴とする請求項4に記載の防汚防曇性部材の製造方法。 The method for producing an antifouling and antifogging member according to claim 4, wherein in the uncured film forming step, the solution is applied onto the substrate by a microdispenser, a slit coater or a dip coater.
PCT/JP2015/055003 2014-03-26 2015-02-23 Antifouling antifogging member and method for producing same WO2015146412A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014064877A JP6347638B2 (en) 2014-03-26 2014-03-26 Method for producing antifouling and antifogging member
JP2014-064877 2014-03-26
JP2014064876A JP6309803B2 (en) 2014-03-26 2014-03-26 Antifouling and antifogging member and method for producing the same
JP2014-064876 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146412A1 true WO2015146412A1 (en) 2015-10-01

Family

ID=54194947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055003 WO2015146412A1 (en) 2014-03-26 2015-02-23 Antifouling antifogging member and method for producing same

Country Status (1)

Country Link
WO (1) WO2015146412A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038270A1 (en) * 2016-08-26 2018-03-01 三井化学株式会社 Antifog laminate
EP3692006A4 (en) * 2017-10-04 2021-10-06 MCS Industries, Inc. Anti-fogging coating and application process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827290A (en) * 1994-07-19 1996-01-30 Sekisui Chem Co Ltd Production of antifogging coated article
WO2002102907A1 (en) * 2001-06-13 2002-12-27 Nippon Arc Co., Ltd. Coating composition and article coated with the composition
WO2013014733A1 (en) * 2011-07-25 2013-01-31 三井化学株式会社 Monolayer film and hydrophilic material comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827290A (en) * 1994-07-19 1996-01-30 Sekisui Chem Co Ltd Production of antifogging coated article
WO2002102907A1 (en) * 2001-06-13 2002-12-27 Nippon Arc Co., Ltd. Coating composition and article coated with the composition
WO2013014733A1 (en) * 2011-07-25 2013-01-31 三井化学株式会社 Monolayer film and hydrophilic material comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038270A1 (en) * 2016-08-26 2018-03-01 三井化学株式会社 Antifog laminate
JPWO2018038270A1 (en) * 2016-08-26 2019-06-24 三井化学株式会社 Antifogging laminate
US11338562B2 (en) 2016-08-26 2022-05-24 Mitsui Chemicals, Inc. Antifogging laminate
EP3692006A4 (en) * 2017-10-04 2021-10-06 MCS Industries, Inc. Anti-fogging coating and application process
US11673827B2 (en) 2017-10-04 2023-06-13 Mcs Industries, Inc. Anti-fogging coating and application process

Similar Documents

Publication Publication Date Title
CN107075304B (en) High gain durable anti-reflective coating
JP6887423B2 (en) Coating equipment
JP4267813B2 (en) Antifouling coating layer for antireflection surface and preparation method
US20100173167A1 (en) Method for producing thin layers and corresponding layer
KR101454921B1 (en) Method for protecting glass
TWI534113B (en) Glass article with an anti-smudge surface and a method of making the same
WO2005116617A1 (en) Apparatus and process for detecting inclusions
JP5699307B2 (en) Film formation method
WO2013005710A1 (en) Haze-proof optical article and method for producing same
JP5023078B2 (en) Manufacturing method of lens having coat layer
CN101622579A (en) Processed substrates having water-repellent areas in patterns, process for production thereof, and process for production of members having patterms made of functional material films
Zelsmann et al. Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatments in UV nanoimprint lithography
WO2015146412A1 (en) Antifouling antifogging member and method for producing same
JP6347638B2 (en) Method for producing antifouling and antifogging member
JP2018187767A (en) Water-repellent member and manufacturing method thereof
JP6980905B2 (en) Compositions and Uses For Making Glass Coatings Using Inkjet Printing Methods
KR20210090670A (en) Easy-to-clean coating
Zhou et al. Multilevel nanoparticles coatings with excellent liquid repellency
JP2018510760A (en) Method and apparatus for manufacturing coated articles
JP2010053305A (en) Composite material
JP2013071118A (en) Coating film having super-hydrophilic surface area, and method for producing the same
JP6309803B2 (en) Antifouling and antifogging member and method for producing the same
JP2013213199A (en) Hydrophilic film and coating liquid
TWI734914B (en) A coating and glass of self-cleaning and anti-reflective properties simultaneously and manufacturing methods thereof
JP2010144083A (en) Coating material composition, coated article and coating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768226

Country of ref document: EP

Kind code of ref document: A1