WO2015145818A1 - Power adjustment control device and power adjustment control method - Google Patents

Power adjustment control device and power adjustment control method Download PDF

Info

Publication number
WO2015145818A1
WO2015145818A1 PCT/JP2014/074774 JP2014074774W WO2015145818A1 WO 2015145818 A1 WO2015145818 A1 WO 2015145818A1 JP 2014074774 W JP2014074774 W JP 2014074774W WO 2015145818 A1 WO2015145818 A1 WO 2015145818A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
storage battery
power
amount
charge
Prior art date
Application number
PCT/JP2014/074774
Other languages
French (fr)
Japanese (ja)
Inventor
誠人 関
徹 赤津
吉伸 榊原
隆 荒木田
太一 野村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2015145818A1 publication Critical patent/WO2015145818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources

Definitions

  • the present invention relates to a power adjustment control device and method for adjusting and controlling the power of a storage battery and a generator linked to a power system.
  • a generator such as a diesel generator is operated as a power supply means.
  • the fuel cost is high including transportation costs.
  • the type of generator that generally generates power by consuming fuel fluctuates the amount of power generated per unit fuel depending on the size of the operating load, and there is a load zone where the most efficient operation can be performed To do. Since the load demand of the power system fluctuates from moment to moment, in general, multiple generators adjust the number of operating units according to the load demand and supply power to the load, so that the generator operates in a load state with the highest possible efficiency. Do.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-52132
  • Patent Document 2 Japanese Patent Laid-Open No. 1-97145
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-52132
  • a power generation system including a storage battery and a generator is controlled by controlling the charge and discharge of the storage battery so that the generator can continue to operate at the maximum efficiency output. Achieve improvements.
  • the generator was operated at a constant output for maximum efficiency. If the generator output exceeded the load demand power, the storage battery charged the surplus power, and the generator output was below the load demand power. In this case, the storage battery discharges the electric power corresponding to the insufficient electric power.
  • operation is provided by adjusting the electric power supply of a generator by charging / discharging of a storage battery.
  • Patent Document 2 Japanese Patent Laid-Open No. 1-97145
  • the state of charge of the storage battery is monitored, and when the state of charge of the storage battery decreases and reaches the lower limit, Is activated to supply power to the load, and the surplus power is charged into the storage battery to restore the state of charge of the storage battery.
  • the power generation equipment stops and supplies power from the storage battery to the load.
  • the control amount is not distributed in consideration of the operation efficiency with respect to the fuel consumption of the generator, and the operation control is performed so that the difference between the power supply and demand is exclusively covered by the generator and the storage battery. Only mentioned. As a result, the efficiency of control in the entire power generation system has not been improved due to power generation output with poor operation efficiency and insufficient utilization of storage batteries.
  • a power adjustment control device that adjusts and controls a power supply amount of a storage battery and a generator connected to a grid according to a power demand amount of a load, the power demand amount and the charging of the storage battery
  • a command unit that issues a control command to the storage battery based on the charge / discharge control amount, and the calculation unit determines the operation pattern so that the operation efficiency with respect to fuel consumption of the generator is increased
  • the charge / discharge control amount is determined from a difference between the power demand amount and a power supply amount of a generator based on the operation pattern.
  • the present invention by allocating the control amount in consideration of the operation efficiency with respect to the fuel consumption of the generator, the power generation output with good operation efficiency is increased and the use of the storage battery is promoted. Efficiency can be improved.
  • FIG. It is a block diagram which shows the structure of the electric power generation system of the Example of this invention. It is a flowchart for demonstrating the operation control of the generator 1 of the said power generation system, and the charging / discharging control flow of the storage battery 3.
  • FIG. It is a flowchart for demonstrating the calculation flow which performs the setting of the initial state of the charging / discharging control flow of the said electric power generation system, and creation of a database.
  • the charge / discharge control flows of the power generation system a calculation flow for calculating the number of operating generators 1 and the power generation output and the charge / discharge output of the storage battery 3 from the input load demand power in the supply and demand adjustment mode is described. It is a flowchart.
  • FIG. 1 shows a configuration example of the entire system including the power adjustment control device of the present invention.
  • the system includes a generator 1, a storage battery control device 2, a storage battery 3, a load demand power monitoring device 5, and a power adjustment control device 10.
  • the power adjustment control device 10 includes an input unit 11, a calculation unit 12, and a command unit 13, and is connected to the load 4.
  • the generator 1 is a device that consumes fuel and generates electric power, and is connected to a storage battery 3 via a load 4 and a storage battery control device 2.
  • a generator that consumes fuel and generates electric power has a load zone in which the amount of power generated per unit fuel varies depending on the load, and the maximum efficiency is obtained.
  • a diesel generator can be employed as the generator 1, for example.
  • a plurality of generators 1 may be provided.
  • the storage battery control device 2 monitors the state of charge of the storage battery 3 and inputs it to the input unit 11 of the power adjustment control device 10, and charges according to the storage battery control amount command value output from the command unit 13 of the power adjustment control device 10.
  • the discharge power is commanded to the storage battery 3.
  • the storage battery 3 is a battery having a charge / discharge function, and the storage battery control device 2 controls charging or discharging of the storage battery 3.
  • a secondary battery such as a lithium ion battery or a lead storage battery can be employed.
  • the load 4 is a load of the power system.
  • power consumers such as factories, hospitals, and general households are applicable.
  • the load demand power monitoring device 5 monitors and measures fluctuations in demand power of the load 4 and inputs the measured demand power to the input unit 11 in the power adjustment control device 10.
  • the power adjustment control device 10 includes an input unit 11 that receives information from the outside, a calculation unit 12 that calculates a command value by means described later, and the command value calculated by the calculation unit 12 using the generator 1 and the storage battery control device 2.
  • the command unit 13 for outputting to The input unit 11 receives a charge state of the storage battery 3 from the storage battery control device 2 and a load demand power from the load demand power monitoring device 5.
  • the calculation unit 12 calculates the number of generators 1 operated and the power generation output and the charge / discharge output of the storage battery 3 using the charge state and load demand power of the storage battery 3 input to the input unit 11, and outputs them to the command unit 13. To do.
  • the command unit 13 outputs the number of generators 1 operated and the power generation output command calculated by the calculation unit 12 to the generator 1, and outputs a charge / discharge output command for the storage battery 3 to the storage battery control device 2.
  • FIG. 2 shows the overall calculation flow.
  • 3 to 5 show the calculation flow of the subroutine in FIG.
  • step S1 initial settings and database creation are performed.
  • the calculation flow in step S1 will be described in detail in steps S16 to S19 with reference to FIG.
  • step S16 the maximum discharge output B dch [kW], the maximum charge input B ch [kW], and the battery capacity B cap [kWh] of the storage battery 3 are set.
  • a database is created for the specifications of the number n [units] of generators 1 included in this system.
  • the database includes the number i of the generator 1, the maximum efficiency output p i [kW] when the power generation efficiency with respect to the fuel consumption is maximum, and the operation efficiency ⁇ i (x) [with respect to the load demand power x [kW] of the generator.
  • the generators are numbered in descending order of maximum efficiency output. In other words, it is p 1 ⁇ p 2 ⁇ ... ⁇ p n.
  • step S18 the total value P j [kW] of the operation pattern j representing the combination of the generators to be operated among the n generators 1 and the maximum efficiency output p i of the generator 1 to be operated at the operation pattern j. ] Is set.
  • the operation pattern j refers to operating the generator j from the generator 1 with respect to the load 4.
  • the total value of the maximum efficiency outputs of the generator 1 that is operated in the operation pattern j is calculated from the following equation (1).
  • threshold values TH1, TH2, and TH3 used in the calculation of the calculation unit 12 are set.
  • TH1 is a threshold value indicating that the battery is in a state close to full charge in the operation range.
  • TH2 is a threshold value that represents a state close to complete discharge in the operation range. Note that the relationship between TH1, TH2, the fully charged state, and the fully discharged state as the storage battery capacity is the fully charged state in the operating range> TH1> TH2> the fully discharged state in the operating range.
  • TH3 is the ratio of the driving efficiency to the maximum fuel efficiency, and is a threshold value indicating that the generator 1 is operating efficiently.
  • step S ⁇ b> 2 the load demand power monitoring device 3 inputs the load demand power D (t) [kW] of the load 4 at a certain time t to the input unit 11 in the power adjustment control device 10.
  • step S ⁇ b> 3 the storage battery control device 2 receives the charge state B SOC (t) [kWh] of the storage battery 3 at time t from the storage battery 3 and outputs it to the input unit 11 in the power adjustment control device 10.
  • step S4 it is determined whether the current control mode in the calculation flow is the supply and demand adjustment mode or the substitute operation mode.
  • the generator 1 In the supply and demand adjustment mode, the generator 1 is operated at the maximum efficiency output, and when the generator output exceeds the load demand power, the storage battery 3 charges the surplus power, and the generator output falls below the load demand power. In this case, the power stored in the storage battery 3 is discharged.
  • the substitute operation mode is a state in which a sufficient amount of power is stored in the storage battery 3, the generator 1 that is operating inefficiently is stopped, and the storage battery 3 is replaced by the stopped generator 1. Electric power is supplied to the load 4 by discharging.
  • the control mode is switched according to the state of charge of the storage battery 3 in steps S11 to S15. At the start of control, the initial state of the control mode is the supply and demand adjustment mode.
  • step S5 the operating number d of the generator 1 for the load demand power D (t), the operation pattern d that is a combination of the operating generators when operating the d generators 1, and the charging of the storage battery 3
  • the discharge control amount Bx (t) [kW] is calculated.
  • the calculation flow of step S5 is described with reference to FIG. 4, and details are described in steps S20 to S24.
  • step S20 the difference between the load demand power D (t) and P 0 to P n set in Equation 1 is taken, and the charge / discharge adjustment amount B 0 to B n [ kW] is calculated from Equation 2 below.
  • the operation pattern d of the generator 1 that requires the least amount of charge / discharge adjustment of the storage battery 3 with respect to D (t) is determined.
  • the operation pattern d when the absolute values of B 0 to B n calculated by Equation 2 are the smallest is the operation pattern of the generator 1 to be obtained.
  • step S21 the charge / discharge control amount Bx (t) of the storage battery 3 at a certain time t is calculated from Equation 3.
  • Bx (t) is equal to the charge / discharge adjustment amount Bd of the storage battery 3 in the operation pattern d of the generator 1 calculated in step S20.
  • step S22 it is determined whether B x (t) calculated in Equation 3 can be output by the storage battery 3 and whether it conforms to the specifications of the storage battery 3 defined in step S16 of FIG.
  • B X (t) is lower than B ch .
  • B dch the storage battery 3 is adjusted so that the charged state of the storage battery 3 does not fall below 0% or exceed 100% by inputting / outputting B X (t). It is determined whether the following equations 4 and 5 are satisfied.
  • Equation 5 represents the total value of the set of B X from time tT to time t, and the charging state B SOC (tT) at time tT, when the state of charge of the storage battery 3 at a certain time t is represented as B SOC (t). It is determined whether or not the sum is within 0 to B cap .
  • step S23 When the charge / discharge control amount B X (t) of the storage battery 3 does not satisfy the specifications of the storage battery 3 in the above determination, the process proceeds to step S23.
  • step S24 When the charge / discharge control amount B X (t) of the storage battery 3 satisfies the specification of the storage battery 3 in the determination, the process proceeds to step S24.
  • step S23 the charge / discharge control amount B X (t) is adjusted so that the storage battery 3 can output it.
  • step S16 the power generation output of the generator 1, the number of operating units, the operating pattern, the ratio of the operating efficiency to the maximum fuel efficiency, the charge / discharge control amount of the storage battery 3, and the state of charge of the storage battery 3 are calculated in step S16. Until the calculated specifications of the generator 1 and the storage battery 3 are satisfied, the determination in step S22 and the calculation in step S23 are repeated.
  • step S24 B SOC (t) at a certain time t is calculated as shown in Equation 6 below.
  • step S6 the number d of operating generators 1, the operation pattern d, and the operation efficiency with respect to the load power demand are calculated without considering the supply and demand adjustment of the storage battery 3.
  • step S7 it is determined whether or not the calculated ratio of driving efficiency and maximum fuel efficiency is equal to or greater than a predetermined threshold TH3.
  • the generator 1 operates with a smaller number ( ⁇ d) than that calculated in step S6, and the storage battery 3 supplies the power that is insufficient with respect to the demand load power. Electric power is supplied to the load 4 by discharging. Details of the calculation flow of the substitute operation mode will be described below.
  • step S6 how many generators 1 are operated with respect to the load demand power D (t) is obtained.
  • the number of operating generators 1 the number of operating units d and the operating pattern d are calculated according to the load in the same manner as in step S20.
  • the ratio of the driving efficiency to the maximum fuel efficiency at the calculated driving pattern is calculated from the driving efficiency ⁇ i (x) [%] with respect to the load demand power set in step S17.
  • step S7 it is determined whether the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 exceeds a predetermined threshold TH3. If the operation of the generator 1 realizes sufficiently high operation efficiency, the same processing as S5 is performed, and the command value for the generator / storage battery is determined by the control amount calculated in S6. That is, if the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 is equal to or greater than TH3, the generator operation command value is the power generation output of the generator 1 calculated in step S6 (although not shown, S22- S24 processing is also performed). On the other hand, if the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 is less than TH3, the process proceeds to step S8.
  • step S8 the number of operating generators 1, selection of the operating generator, the output value of the generator 1, and the discharge control amount of the storage battery 3 are calculated with respect to the load demand power.
  • the calculation flow of step S8 will be described with reference to FIG. 5, and details will be described in steps S25 to S29.
  • step S25 how many generators 1 are operated with respect to the load demand power D (t) at a certain time t is obtained.
  • the number of operating generators 1 is less than d units as described above, and the storage battery control amount B X (t) that increases the distribution of storage battery discharge output in order to utilize the storage battery as much as possible. Determine the control amount. If the number of operating units at this time is c, the total value of the maximum efficiency output of the generator 1 at the time of the operating pattern c is P c (t) expressed by the following formula 7.
  • step S27 in the same manner as in step S22, it is determined whether or not B x (t) can be output by the storage battery 3 according to the embodiment and whether it conforms to the specification of the storage battery 3 defined in step S16. If B X (t) does not satisfy the specifications of the storage battery 3 of the power generation system, the process proceeds to step S28. If B X (t) satisfies the specifications of the storage battery 3 of the power generation system, the process proceeds to step S29.
  • the power generation output of the generator 1 calculated by recalculation in this way, the number of operating units, the operating pattern, the ratio of the operating efficiency to the maximum fuel efficiency, the charge / discharge control amount of the storage battery 3, and the state of charge of the storage battery 3 are The determination in step S27 and the calculation in step S28 are repeated until the specifications of the generator 1 and the storage battery 3 calculated in step S16 are satisfied.
  • step S29 B SOC (t) at a certain time t is calculated as shown in Equation 8 below.
  • step S9 the power adjustment control device 10 inputs the generator operation command value calculated in step S5, step S6, or step S8 from the command unit 13 to the generator 1.
  • step S10 the storage battery charge / discharge command value calculated in step S5, step S6, or step S8 is input to the storage battery control device 2 from the command unit 13 to the storage battery control device 2.
  • the mode switching is determined from the charged state of the storage battery 3.
  • the supply / demand adjustment mode is switched to the substitute operation mode when the charge state of the storage battery 3 exceeds a threshold value indicating that the charge state is sufficiently high.
  • the supply / demand adjustment mode is switched from the substitute operation mode when the charge state of the storage battery 3 falls below a threshold value indicating that the charge state is sufficiently low.
  • step S11 the current control mode state is determined in step S11. If it is determined in step S11 that the current control mode is the supply and demand adjustment mode, the process proceeds to step S12. If it is determined in step S11 that the current control mode is the substitute operation mode, the process proceeds to step S13.
  • step S12 it is determined whether the current state of charge of the storage battery 3 is equal to or higher than TH1 determined in step S19. If it is determined in step S12 that the current charging state of the storage battery 3 is equal to or higher than TH1, the process proceeds to step S14. If it is less than TH1, the process proceeds to step S15. If it is determined in step S13 that the current state of charge of the storage battery 3 is greater than TH2, the process proceeds to step S14. If it is determined in step S13 that the current state of charge of the storage battery 3 is less than TH2, the process proceeds to step S15.

Abstract

 In conventional power generation systems, distribution of the control amount does not take place in view of operation efficiency in relation to fuel consumption of a generator, and there are no reports made beyond performing operation control so as to solely cover differences in the amount of power demand using the generator and a power storage cell. As a result, due to inadequate storage cell utilization or the power generation output being at a level at which the operation efficiency is poor, it has not been possible to improve the efficiency of control for the entire power generation system. Accordingly, the present invention is a power adjustment control instrument for performing adjustment control on the amount of power supplied by a generator and a storage cell connected to a system according to the amount of power demanded by load, wherein the power adjustment control instrument is characterized in being provided with an input unit into which the amount of power demanded and the charge state of the storage cell are inputted, a computation unit for obtaining an operation pattern for the generator and the charge/discharge control amount of the storage cell on the basis of the inputted information, and a command unit for issuing a control command to the generator on the basis of the operation pattern or a control command to the storage cell on the basis of the charge/discharge control amount; the computation unit determining the operation pattern so that the operation efficiency in relation to fuel consumption of the generator increases and determining the charge/discharge control amount from the difference between the amount of power demanded and the amount of power supplied by the generator based on the operation pattern.

Description

電力調整制御装置及び電力調整制御方法Power adjustment control device and power adjustment control method
 本発明は、電力系統に連系された蓄電池と発電機の電力を調整制御する電力調整制御装置及び方法に関する。 The present invention relates to a power adjustment control device and method for adjusting and controlling the power of a storage battery and a generator linked to a power system.
 離島等の独立系電力系統では、ディーゼル発電機等の発電機が電力供給手段として運用されている。離島地域では、発電機に使用する燃料を島外から調達する必要があるため、その燃料費は輸送コストを含めて高い。加えて、一般に燃料を消費して電力を発電する型の発電機は、運転負荷の大きさにより単位燃料あたりに生み出す発電量が変動し、最も効率の良い運転を行うことが出来る負荷帯が存在する。電力系統の負荷需要は刻々と変動するため、一般に複数の発電機が負荷需要に応じて運転台数を調整して負荷に電力を供給することで、発電機は極力効率の良い負荷状態で運転を行う。しかしながら、昼夜間等時間帯に応じて需要電力に差が生じるため、時間帯によって発電機は効率の悪い部分負荷状態で運転し、燃料消費量が多くなる。このため、特許文献1(特開2003-52132)や特許文献2(特開平1-97145)のように、発電設備が効率の良い運転を続けられるように、発電設備と負荷との間に蓄電池を接続する発電システムが提案されている。発電機の運転効率を向上することで燃料節約を図るものである。 In an independent power system such as a remote island, a generator such as a diesel generator is operated as a power supply means. In remote island areas, it is necessary to procure fuel for generators from outside the island, so the fuel cost is high including transportation costs. In addition, the type of generator that generally generates power by consuming fuel fluctuates the amount of power generated per unit fuel depending on the size of the operating load, and there is a load zone where the most efficient operation can be performed To do. Since the load demand of the power system fluctuates from moment to moment, in general, multiple generators adjust the number of operating units according to the load demand and supply power to the load, so that the generator operates in a load state with the highest possible efficiency. Do. However, since there is a difference in demand power according to time zones such as day and night, the generator operates in a partial load state with low efficiency depending on the time zones, and the fuel consumption increases. Therefore, as in Patent Document 1 (Japanese Patent Laid-Open No. 2003-52132) and Patent Document 2 (Japanese Patent Laid-Open No. 1-97145), a storage battery is installed between the power generating equipment and the load so that the power generating equipment can continue to operate efficiently. A power generation system that connects the two has been proposed. It is intended to save fuel by improving the operating efficiency of the generator.
 特許文献1(特開2003-52132)では、発電機が最大効率の出力で運転し続けられるように、蓄電池の充放電を制御することで、蓄電池と発電機を備えた発電システムは運転効率の向上を実現する。発電機は最大効率となる一定の出力で運転を行い、発電機の出力が負荷需要電力を上回っていた場合は蓄電池がその余剰電力を充電し、発電機の出力が負荷需要電力を下回っていた場合は蓄電池がその不足電力に見合った電力を放電する。このように蓄電池の充放電により発電機の電力供給の調整を行うことで、効率的な運転が行える発電システムを提供する。 In Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-52132), a power generation system including a storage battery and a generator is controlled by controlling the charge and discharge of the storage battery so that the generator can continue to operate at the maximum efficiency output. Achieve improvements. The generator was operated at a constant output for maximum efficiency. If the generator output exceeded the load demand power, the storage battery charged the surplus power, and the generator output was below the load demand power. In this case, the storage battery discharges the electric power corresponding to the insufficient electric power. Thus, the power generation system which can perform an efficient driving | operation is provided by adjusting the electric power supply of a generator by charging / discharging of a storage battery.
 特許文献2(特開平1-97145)では、蓄電池の充電状態を検知する手段を備えることで、蓄電池の充電状態を監視し、蓄電池の充電状態が低下して下限値に達したとき、発電設備を起動して負荷に電力を供給し、余剰電力を蓄電池に充電して蓄電池の充電状態を回復させる。一方、蓄電池の充電状態が回復して上限値に達したとき、発電設備は停止し、蓄電池から負荷に電力供給する。 In Patent Document 2 (Japanese Patent Laid-Open No. 1-97145), by providing means for detecting the state of charge of the storage battery, the state of charge of the storage battery is monitored, and when the state of charge of the storage battery decreases and reaches the lower limit, Is activated to supply power to the load, and the surplus power is charged into the storage battery to restore the state of charge of the storage battery. On the other hand, when the state of charge of the storage battery recovers and reaches the upper limit value, the power generation equipment stops and supplies power from the storage battery to the load.
特開2003-52132号JP2003-52132A 特開平1-97145号JP-A-1-97145
 しかし、上記の発電システムでは、発電機の燃料消費に対する運転効率を考慮して制御量の配分をしておらず、専ら電力需給量の差分を発電機と蓄電池で賄うように運転制御するところまでしか言及されていない。結果として、運転効率の悪い発電出力や、蓄電池の活用不足により、発電システム全体での制御の高効率化が図れていない。 However, in the above power generation system, the control amount is not distributed in consideration of the operation efficiency with respect to the fuel consumption of the generator, and the operation control is performed so that the difference between the power supply and demand is exclusively covered by the generator and the storage battery. Only mentioned. As a result, the efficiency of control in the entire power generation system has not been improved due to power generation output with poor operation efficiency and insufficient utilization of storage batteries.
 上記課題を解決する為に本発明では、負荷の電力需要量に応じて系統に接続する蓄電池及び発電機の電力供給量を調整制御する電力調整制御機器において、前記電力需要量及び前記蓄電池の充電状態が入力させる入力部と、前記入力された情報に基づいて、前記発電機の運転パターン及び前記蓄電池の充放電制御量を求める演算部と、前記運転パターンに基づいて前記発電機に制御指令を行い、又は前記充放電制御量に基づいて前記蓄電池に制御指令を行う指令部とを備え、前記演算部は、前記発電機の燃料消費に対する運転効率が高くなるように前記運転パターンを決定し、前記電力需要量と前記運転パターンに基づく発電機の電力供給量との差から、前記充放電制御量を決定することを特徴とする。 In order to solve the above problems, in the present invention, in a power adjustment control device that adjusts and controls a power supply amount of a storage battery and a generator connected to a grid according to a power demand amount of a load, the power demand amount and the charging of the storage battery An input unit for inputting a state, a calculation unit for obtaining an operation pattern of the generator and a charge / discharge control amount of the storage battery based on the input information, and a control command to the generator based on the operation pattern Or a command unit that issues a control command to the storage battery based on the charge / discharge control amount, and the calculation unit determines the operation pattern so that the operation efficiency with respect to fuel consumption of the generator is increased, The charge / discharge control amount is determined from a difference between the power demand amount and a power supply amount of a generator based on the operation pattern.
 また、本装置発明に対応する方法発明も含む。 Also included is a method invention corresponding to the present invention.
 本発明により、発電機の燃料消費に対する運転効率を考慮して制御量の配分をすることで、運転効率の良い発電出力の増大や、蓄電池の活用拡大を促し、発電システム全体での制御の高効率化が図れる。 According to the present invention, by allocating the control amount in consideration of the operation efficiency with respect to the fuel consumption of the generator, the power generation output with good operation efficiency is increased and the use of the storage battery is promoted. Efficiency can be improved.
本発明の実施例の発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the electric power generation system of the Example of this invention. 前記発電システムの発電機1の運転制御及び蓄電池3の充放電制御フローを説明する為のフローチャートである。It is a flowchart for demonstrating the operation control of the generator 1 of the said power generation system, and the charging / discharging control flow of the storage battery 3. FIG. 前記発電システムの充放電制御フローの初期状態の設定及びデータベースの作成を行う計算フローを説明するためのフローチャートである。It is a flowchart for demonstrating the calculation flow which performs the setting of the initial state of the charging / discharging control flow of the said electric power generation system, and creation of a database. 前記発電システムの充放電制御フローのうち、需給調整モードにおける、入力された負荷需要電力から発電機1の運転台数及び発電出力と、蓄電池3の充放電出力を算出する計算フローを説明するためのフローチャートである。Among the charge / discharge control flows of the power generation system, a calculation flow for calculating the number of operating generators 1 and the power generation output and the charge / discharge output of the storage battery 3 from the input load demand power in the supply and demand adjustment mode is described. It is a flowchart. 前記発電システムの充放電制御フローのうち、代用運転モードにおける、入力された負荷需要電力から発電機1の運転台数及び発電出力と、蓄電池3の放電出力を算出する計算フローを説明するためのフローチャートである。Among the charge / discharge control flow of the power generation system, a flowchart for explaining a calculation flow for calculating the number of generators 1 operated and the power generation output and the discharge output of the storage battery 3 from the input load demand power in the substitute operation mode. It is.
 以下、本発明の実施例を図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、下記具体的内容に発明自体が限定されることを意図する趣旨ではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following is merely an example of implementation and is not intended to limit the invention itself to the following specific contents.
 図1に本発明の電力調整制御装置を含むシステム全体の構成例を示す。本システムは、発電機1と、蓄電池制御装置2と、蓄電池3と、負荷需要電力監視装置5と、電力調整制御装置10からなる。電力調整制御装置10は、入力部11と、演算部12と、指令部13を有しており、負荷4に接続している。 FIG. 1 shows a configuration example of the entire system including the power adjustment control device of the present invention. The system includes a generator 1, a storage battery control device 2, a storage battery 3, a load demand power monitoring device 5, and a power adjustment control device 10. The power adjustment control device 10 includes an input unit 11, a calculation unit 12, and a command unit 13, and is connected to the load 4.
 発電機1は、燃料を消費して電力を発電する装置であり、負荷4と、蓄電池制御装置2を介して蓄電池3に接続されている。一般に燃料を消費して電力を発電する型の発電機は、負荷によって単位燃料あたりに生み出す発電量が変化し、最大効率を出す負荷帯が存在する。発電機1としては例えばディーゼル発電機等を採用出来る。発電機1は複数台であってもよい。 The generator 1 is a device that consumes fuel and generates electric power, and is connected to a storage battery 3 via a load 4 and a storage battery control device 2. In general, a generator that consumes fuel and generates electric power has a load zone in which the amount of power generated per unit fuel varies depending on the load, and the maximum efficiency is obtained. As the generator 1, for example, a diesel generator can be employed. A plurality of generators 1 may be provided.
 蓄電池制御装置2は、蓄電池3の充電状態を監視し、電力調整制御装置10の入力部11に入力するとともに、電力調整制御装置10の指令部13から出力する蓄電池制御量指令値に応じた充放電電力を蓄電池3に指令する。 The storage battery control device 2 monitors the state of charge of the storage battery 3 and inputs it to the input unit 11 of the power adjustment control device 10, and charges according to the storage battery control amount command value output from the command unit 13 of the power adjustment control device 10. The discharge power is commanded to the storage battery 3.
 蓄電池3は、充放電機能を有する電池であり、蓄電池制御装置2が蓄電池3の充電又は放電の制御を行う。蓄電池3としては、リチウムイオン電池や鉛蓄電池等の二次電池を採用出来る。 The storage battery 3 is a battery having a charge / discharge function, and the storage battery control device 2 controls charging or discharging of the storage battery 3. As the storage battery 3, a secondary battery such as a lithium ion battery or a lead storage battery can be employed.
 負荷4は、電力系統の負荷である。例えば、工場、病院、一般家庭等の電力需要家が該当する。 The load 4 is a load of the power system. For example, power consumers such as factories, hospitals, and general households are applicable.
 負荷需要電力監視装置5は、負荷4の需要電力の変動を監視・計測し、計測した需要電力を電力調整制御装置10内の入力部11に入力する。 The load demand power monitoring device 5 monitors and measures fluctuations in demand power of the load 4 and inputs the measured demand power to the input unit 11 in the power adjustment control device 10.
 電力調整制御装置10は、外部からの情報を受け取る入力部11と、後述する手段により指令値を算出する演算部12と、演算部12にて算出した指令値を発電機1と蓄電池制御装置2に出力する指令部13を有する。入力部11には、蓄電池制御装置2から蓄電池3の充電状態と、負荷需要電力監視装置5から負荷需要電力が入力される。演算部12では、入力部11に入力された蓄電池3の充電状態と負荷需要電力を用いて、発電機1の運転台数及び発電出力、蓄電池3の充放電出力を算出し、指令部13に出力する。指令部13では、演算部12で算出した発電機1の運転台数及び発電出力指令を発電機1に対して出力し、蓄電池3の充放電出力指令を蓄電池制御装置2に対して出力する。 The power adjustment control device 10 includes an input unit 11 that receives information from the outside, a calculation unit 12 that calculates a command value by means described later, and the command value calculated by the calculation unit 12 using the generator 1 and the storage battery control device 2. The command unit 13 for outputting to The input unit 11 receives a charge state of the storage battery 3 from the storage battery control device 2 and a load demand power from the load demand power monitoring device 5. The calculation unit 12 calculates the number of generators 1 operated and the power generation output and the charge / discharge output of the storage battery 3 using the charge state and load demand power of the storage battery 3 input to the input unit 11, and outputs them to the command unit 13. To do. The command unit 13 outputs the number of generators 1 operated and the power generation output command calculated by the calculation unit 12 to the generator 1, and outputs a charge / discharge output command for the storage battery 3 to the storage battery control device 2.
 次に、図2乃至5を参照しながら、当該演算部における計算フローについて説明する。図2に全体の計算フローを示す。図3乃至5に、図2におけるサブルーチンの計算フローを示す。 Next, a calculation flow in the calculation unit will be described with reference to FIGS. FIG. 2 shows the overall calculation flow. 3 to 5 show the calculation flow of the subroutine in FIG.
 図2によりステップS1において、初期設定及びデータベースの作成を行う。ステップS1における計算フローは図3を参照し、ステップS16~ステップS19において詳細に記載する。 Referring to FIG. 2, in step S1, initial settings and database creation are performed. The calculation flow in step S1 will be described in detail in steps S16 to S19 with reference to FIG.
 図3によりステップS16において、蓄電池3の最大放電出力Bdch[kW]と、最大充電入力Bch[kW]と、電池容量Bcap[kWh]の設定を行う。 According to FIG. 3, in step S16, the maximum discharge output B dch [kW], the maximum charge input B ch [kW], and the battery capacity B cap [kWh] of the storage battery 3 are set.
 ステップS17において、本システムに含まれる台数n[台]の発電機1の仕様についてデータベースを作成する。データベースは、発電機1の番号i、燃料消費に対する発電効率が最大となるときの最大効率出力pi[kW]と、発電機の負荷需要電力x[kW]に対する運転効率δi(x)[%]の特性について纏めたものを作成する。ここで、iはi=1~nの任意の整数である。なお、発電機の番号付けは最大効率出力が大きい順に行う。つまり、p1≧p2≧…≧pnである。 In step S17, a database is created for the specifications of the number n [units] of generators 1 included in this system. The database includes the number i of the generator 1, the maximum efficiency output p i [kW] when the power generation efficiency with respect to the fuel consumption is maximum, and the operation efficiency δ i (x) [with respect to the load demand power x [kW] of the generator. Create a summary of the properties of [%]. Here, i is an arbitrary integer of i = 1 to n. Note that the generators are numbered in descending order of maximum efficiency output. In other words, it is p 1 ≧ p 2 ≧ ... ≧ p n.
 ステップS18において、n台の発電機1の内、運転する発電機の組み合わせを表す運転パターンjと、運転パターンjのときに運転する発電機1の最大効率出力piの合計値Pj[kW]の設定を行う。運転パターンjとは、負荷4に対して発電機1号機から発電機j号機を運転させることを指す。運転パターンjのときに運転する発電機1の最大効率出力の合計値は、下記の数1より算出する。ここで、jはj=0~nの整数である。 In step S18, the total value P j [kW] of the operation pattern j representing the combination of the generators to be operated among the n generators 1 and the maximum efficiency output p i of the generator 1 to be operated at the operation pattern j. ] Is set. The operation pattern j refers to operating the generator j from the generator 1 with respect to the load 4. The total value of the maximum efficiency outputs of the generator 1 that is operated in the operation pattern j is calculated from the following equation (1). Here, j is an integer of j = 0 to n.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ステップS19において、演算部12の計算で用いる閾値TH1、TH2及びTH3の設定を行う。TH1は、運用範囲における満充電に近い状態にあることを表す閾値である。TH2は、運用範囲における完全放電に近い状態にあることを表す閾値である。なお、TH1と、TH2と、満充電状態と、完全放電状態との蓄電池容量としての関係は、運用範囲における満充電状態>TH1>TH2>運用範囲における完全放電状態である。TH3は最大燃費効率に対する運転効率の比率であり、発電機1が効率の良い運転をしていることを表す閾値である。 In step S19, threshold values TH1, TH2, and TH3 used in the calculation of the calculation unit 12 are set. TH1 is a threshold value indicating that the battery is in a state close to full charge in the operation range. TH2 is a threshold value that represents a state close to complete discharge in the operation range. Note that the relationship between TH1, TH2, the fully charged state, and the fully discharged state as the storage battery capacity is the fully charged state in the operating range> TH1> TH2> the fully discharged state in the operating range. TH3 is the ratio of the driving efficiency to the maximum fuel efficiency, and is a threshold value indicating that the generator 1 is operating efficiently.
 図2によりステップS2において、ある時刻tの負荷4の負荷需要電力D(t) [kW]を負荷需要電力監視装置3が電力調整制御装置10内の入力部11に入力する。 Referring to FIG. 2, in step S <b> 2, the load demand power monitoring device 3 inputs the load demand power D (t) [kW] of the load 4 at a certain time t to the input unit 11 in the power adjustment control device 10.
 ステップS3において、時刻tの蓄電池3の充電状態BSOC(t)[kWh]を蓄電池制御装置2が蓄電池3より入力され、電力調整制御装置10内の入力部11に出力する。 In step S < b> 3, the storage battery control device 2 receives the charge state B SOC (t) [kWh] of the storage battery 3 at time t from the storage battery 3 and outputs it to the input unit 11 in the power adjustment control device 10.
 ステップS4において、計算フローにおける現在の制御モードが需給調整モードと代用運転モードのどちらであるか判定を行う。需給調整モードとは、発電機1が最大効率出力で運転し、発電機出力が負荷需要電力を上回っていた場合は蓄電池3が余剰電力を充電し、発電機出力が負荷需要電力を下回っていた場合は蓄電池3が蓄電していた電力を放電するものである。一方、代用運転モードとは蓄電池3に十分な電力が蓄電されている状態にあって、効率の悪い運転を行っている発電機1を停止させ、停止させた発電機1に代わって蓄電池3が放電することで負荷4に電力を供給するものである。制御モードの切換はステップS11~S15において蓄電池3の充電状態によって判定を行なう。なお、制御開始時において、制御モードの初期状態は需給調整モードとなる。 In step S4, it is determined whether the current control mode in the calculation flow is the supply and demand adjustment mode or the substitute operation mode. In the supply and demand adjustment mode, the generator 1 is operated at the maximum efficiency output, and when the generator output exceeds the load demand power, the storage battery 3 charges the surplus power, and the generator output falls below the load demand power. In this case, the power stored in the storage battery 3 is discharged. On the other hand, the substitute operation mode is a state in which a sufficient amount of power is stored in the storage battery 3, the generator 1 that is operating inefficiently is stopped, and the storage battery 3 is replaced by the stopped generator 1. Electric power is supplied to the load 4 by discharging. The control mode is switched according to the state of charge of the storage battery 3 in steps S11 to S15. At the start of control, the initial state of the control mode is the supply and demand adjustment mode.
 ステップS5において、負荷需要電力D(t)に対して、発電機1の運転台数d台、d台の発電機1を運転させるときの運転発電機の組み合わせである運転パターンd、蓄電池3の充放電制御量Bx (t) [kW]を算出する。ステップS5の計算フローは図4を参照し、詳細はステップS20~ステップS24に記載する。 In step S5, the operating number d of the generator 1 for the load demand power D (t), the operation pattern d that is a combination of the operating generators when operating the d generators 1, and the charging of the storage battery 3 The discharge control amount Bx (t) [kW] is calculated. The calculation flow of step S5 is described with reference to FIG. 4, and details are described in steps S20 to S24.
 図4によりステップS20において、負荷需要電力D(t)と数1で設定したP0~Pnの差分を取り、発電機1の発電出力に対する蓄電池3の充放電調整量B0~Bn[kW]を、下記の数2より算出する。 According to FIG. 4, in step S20, the difference between the load demand power D (t) and P 0 to P n set in Equation 1 is taken, and the charge / discharge adjustment amount B 0 to B n [ kW] is calculated from Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 D(t)に対して蓄電池3の充放電調整量が最も少なく済む発電機1の運転パターンdを決定する。数2で算出したB0~Bnの絶対値が最も小さくなるときの運転パターンdが、求める発電機1の運転パターンである。 The operation pattern d of the generator 1 that requires the least amount of charge / discharge adjustment of the storage battery 3 with respect to D (t) is determined. The operation pattern d when the absolute values of B 0 to B n calculated by Equation 2 are the smallest is the operation pattern of the generator 1 to be obtained.
 ステップS21において、ある時刻tにおける蓄電池3の充放電制御量Bx(t)を、数3より算出する。Bx(t)は、ステップS20において算出した発電機1の運転パターンdのときの蓄電池3の充放電調整量Bdと等しい。 In step S21, the charge / discharge control amount Bx (t) of the storage battery 3 at a certain time t is calculated from Equation 3. Bx (t) is equal to the charge / discharge adjustment amount Bd of the storage battery 3 in the operation pattern d of the generator 1 calculated in step S20.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 BX(t)≧0ならば、運転パターンdのときの発電機1の最大効率出力が負荷需要電力を上回るので、蓄電池3は需要負荷に対する発電機出力の余剰電力を充電する充電運転を行う。BX(t)<0ならば、運転パターンdのときの発電機1の最大効率出力が負荷需要電力を下回るので、蓄電池3は需要負荷に対する発電機出力の不足電力を放電する放電運転を行う。 If B X (t) ≧ 0, the maximum efficiency output of the generator 1 at the time of the operation pattern d exceeds the load demand power, so the storage battery 3 performs a charging operation for charging surplus power of the generator output with respect to the demand load. . If B X (t) <0, the maximum efficiency output of the generator 1 at the time of the operation pattern d is lower than the load demand power, so the storage battery 3 performs a discharge operation to discharge the insufficient power of the generator output with respect to the demand load. .
 ステップS22において、数3で算出したBX(t)を蓄電池3が出力可能か、図3のステップS16で定義した蓄電池3の仕様にならっているか判定を行う。蓄電池3が充電運転を行う場合は、BX(t)がBchを下回っているかを判定する。一方、蓄電池3が放電運転を行う場合は、BX(t)がBdchを下回っているかを判定する。また、蓄電池3がBX(t)を入出力することで、蓄電池3の充電状態が0%を下回ったり100%を上回ったりすることがないように調整を行う。下記の数4、数5を満足するかどうか判定を行う。Tは本演算の対象となる時間幅であり、例えばT=1hである。 In step S22, it is determined whether B x (t) calculated in Equation 3 can be output by the storage battery 3 and whether it conforms to the specifications of the storage battery 3 defined in step S16 of FIG. When the storage battery 3 performs the charging operation, it is determined whether B X (t) is lower than B ch . On the other hand, when the storage battery 3 performs the discharge operation, it is determined whether B X (t) is lower than B dch . Further, the storage battery 3 is adjusted so that the charged state of the storage battery 3 does not fall below 0% or exceed 100% by inputting / outputting B X (t). It is determined whether the following equations 4 and 5 are satisfied. T is the time width that is the subject of this calculation, for example, T = 1h.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 数5は、ある時刻tにおける蓄電池3の充電状態をBSOC(t)と表したとき、時刻t-Tから時刻tまでのBXの集合の合計値と、時刻t-Tにおける充電状態BSOC(t-T)との和が0~Bcap以内であるか判定するものである。 Equation 5 represents the total value of the set of B X from time tT to time t, and the charging state B SOC (tT) at time tT, when the state of charge of the storage battery 3 at a certain time t is represented as B SOC (t). It is determined whether or not the sum is within 0 to B cap .
 前記の判定で蓄電池3の充放電制御量BX(t)が蓄電池3の仕様を満たしていない場合、ステップS23に進む。前記判定で蓄電池3の充放電制御量BX(t)が蓄電池3の仕様を満たしている場合、ステップS24に進む。 When the charge / discharge control amount B X (t) of the storage battery 3 does not satisfy the specifications of the storage battery 3 in the above determination, the process proceeds to step S23. When the charge / discharge control amount B X (t) of the storage battery 3 satisfies the specification of the storage battery 3 in the determination, the process proceeds to step S24.
 ステップS23において、充放電制御量BX(t)を蓄電池3が出力可能となるように調整を行う。数4を満たしていない場合、BX(t)=Bch(蓄電池3が充電運転のとき)、もしくはBX(t)=-Bdch(蓄電池3が放電運転のとき)と計算する。再計算して算出した発電機1の発電出力と、運転台数と、運転パターンと、最大燃費効率に対する運転効率の比率と、蓄電池3の充放電制御量と、蓄電池3の充電状態がステップS16において算出した発電機1と蓄電池3の仕様を満たすまで、ステップS22における判定とステップS23における計算を繰り返し行う。 In step S23, the charge / discharge control amount B X (t) is adjusted so that the storage battery 3 can output it. When Equation 4 is not satisfied, it is calculated as B X (t) = B ch (when the storage battery 3 is in a charging operation) or B X (t) = − B dch (when the storage battery 3 is in a discharging operation). In step S16, the power generation output of the generator 1, the number of operating units, the operating pattern, the ratio of the operating efficiency to the maximum fuel efficiency, the charge / discharge control amount of the storage battery 3, and the state of charge of the storage battery 3 are calculated in step S16. Until the calculated specifications of the generator 1 and the storage battery 3 are satisfied, the determination in step S22 and the calculation in step S23 are repeated.
 ステップS24において、ある時刻tにおけるBSOC(t)を下記の数6のようにして算出する。 In step S24, B SOC (t) at a certain time t is calculated as shown in Equation 6 below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図2によりステップS6~ステップS7において、代用運転モードにおける制御の計算フローについて説明する。代用運転モードにおいては、始めに、ステップS6で蓄電池3の需給調整を考慮しないで負荷需要電力に対する発電機1の運転台数d台、運転パターンd、運転効率を算出する。次に、ステップS7において、算出した運転効率と最大燃費効率の比率があらかじめ定めた閾値TH3以上かどうかを判定する。運転効率が閾値TH3を下回っている場合は、発電機1がステップS6で算出したときより少ない台数(<d)で運転し、需要負荷電力に対して不足している分の電力を蓄電池3が放電することで、負荷4に電力を供給する。代用運転モードの計算フローの詳細は下記にて説明する。 Referring to FIG. 2, the calculation flow of control in the substitute operation mode will be described in steps S6 to S7. In the substitute operation mode, first, in step S6, the number d of operating generators 1, the operation pattern d, and the operation efficiency with respect to the load power demand are calculated without considering the supply and demand adjustment of the storage battery 3. Next, in step S7, it is determined whether or not the calculated ratio of driving efficiency and maximum fuel efficiency is equal to or greater than a predetermined threshold TH3. When the operating efficiency is lower than the threshold TH3, the generator 1 operates with a smaller number (<d) than that calculated in step S6, and the storage battery 3 supplies the power that is insufficient with respect to the demand load power. Electric power is supplied to the load 4 by discharging. Details of the calculation flow of the substitute operation mode will be described below.
 ステップS6において、負荷需要電力D(t)に対して何台の発電機1を運転するかを求める。発電機1の運転台数は、ステップS20と同様にして、負荷に応じて運転台数d台、運転パターンdを算出する。算出した運転パターンのときの最大燃費効率に対する運転効率の比率を、ステップS17で設定した負荷需要電力に対する運転効率δi(x)[%]から算出する。 In step S6, how many generators 1 are operated with respect to the load demand power D (t) is obtained. As for the number of operating generators 1, the number of operating units d and the operating pattern d are calculated according to the load in the same manner as in step S20. The ratio of the driving efficiency to the maximum fuel efficiency at the calculated driving pattern is calculated from the driving efficiency δ i (x) [%] with respect to the load demand power set in step S17.
 ステップS7において、ステップS6で算出した最大燃費効率に対する運転効率の比率が、所定の閾値TH3を上回るかどうかを判定する。発電機1の運転が十分に高い運転効率を実現するのであれば、S5と同様の処理を行いS6で算出した制御量で発電機・蓄電池に対する指令値を決定する。つまり、ステップS6で算出した最大燃費効率に対する運転効率の比率がTH3以上であれば、発電機運転指令値はステップS6において算出した発電機1の発電出力とする(図示しないが適宜S5のS22-S24処理も行う)。一方、ステップS6で算出した最大燃費効率に対する運転効率の比率がTH3未満であれば、ステップS8に進む。 In step S7, it is determined whether the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 exceeds a predetermined threshold TH3. If the operation of the generator 1 realizes sufficiently high operation efficiency, the same processing as S5 is performed, and the command value for the generator / storage battery is determined by the control amount calculated in S6. That is, if the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 is equal to or greater than TH3, the generator operation command value is the power generation output of the generator 1 calculated in step S6 (although not shown, S22- S24 processing is also performed). On the other hand, if the ratio of the driving efficiency to the maximum fuel efficiency calculated in step S6 is less than TH3, the process proceeds to step S8.
 ステップS8において、負荷需要電力に対して、発電機1の運転台数、運転発電機の選定、発電機1の出力値、蓄電池3の放電制御量を算出する。ステップS8の計算フローは図5を参照し、詳細はステップS25~ステップS29に記載する。 In step S8, the number of operating generators 1, selection of the operating generator, the output value of the generator 1, and the discharge control amount of the storage battery 3 are calculated with respect to the load demand power. The calculation flow of step S8 will be described with reference to FIG. 5, and details will be described in steps S25 to S29.
 図5によりステップS25において、ある時刻tの負荷需要電力D(t)に対して何台の発電機1を運転するかを求める。発電機1の運転台数は、上述よりd台未満となり、かつ蓄電池を出来る限り活用する為に蓄電池放電出力配分がより多くなる蓄電池制御量BX(t)で、発電機の運転台数及び残りの制御量を決定する。なお、このときの運転台数をc台とすると、運転パターンcのときの発電機1の最大効率出力の合計値は以下数7で示すPc(t)となる。 In FIG. 5, in step S25, how many generators 1 are operated with respect to the load demand power D (t) at a certain time t is obtained. The number of operating generators 1 is less than d units as described above, and the storage battery control amount B X (t) that increases the distribution of storage battery discharge output in order to utilize the storage battery as much as possible. Determine the control amount. If the number of operating units at this time is c, the total value of the maximum efficiency output of the generator 1 at the time of the operating pattern c is P c (t) expressed by the following formula 7.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ステップS27において、ステップS22と同様にして、BX(t)を実施例の蓄電池3が出力可能かを、ステップS16で定義した蓄電池3の仕様にならっているか判定を行う。BX(t)が発電システムの蓄電池3の仕様を満たしていない場合、ステップS28に進む。BX(t)が発電システムの蓄電池3の仕様を満たしている場合、ステップS29に進む。 In step S27, in the same manner as in step S22, it is determined whether or not B x (t) can be output by the storage battery 3 according to the embodiment and whether it conforms to the specification of the storage battery 3 defined in step S16. If B X (t) does not satisfy the specifications of the storage battery 3 of the power generation system, the process proceeds to step S28. If B X (t) satisfies the specifications of the storage battery 3 of the power generation system, the process proceeds to step S29.
 ステップS28において、蓄電池3の放電出力が最大出力値にならうように調整を行う。数4を満たしていない場合、BX(t)=-Bdchとする。このように再計算して算出した発電機1の発電出力と、運転台数と、運転パターンと、最大燃費効率に対する運転効率の比率と、蓄電池3の充放電制御量と、蓄電池3の充電状態がステップS16において算出した発電機1と蓄電池3の仕様を満たすまで、ステップS27における判定とステップS28における計算を繰り返し行う。 In step S28, adjustment is performed so that the discharge output of the storage battery 3 follows the maximum output value. If Equation 4 is not satisfied, B X (t) = − B dch . The power generation output of the generator 1 calculated by recalculation in this way, the number of operating units, the operating pattern, the ratio of the operating efficiency to the maximum fuel efficiency, the charge / discharge control amount of the storage battery 3, and the state of charge of the storage battery 3 are The determination in step S27 and the calculation in step S28 are repeated until the specifications of the generator 1 and the storage battery 3 calculated in step S16 are satisfied.
 上記と同様の方法で、ステップS29において、ある時刻tにおけるBSOC(t)を下記の数8のようにして算出する。 In the same manner as described above, in step S29, B SOC (t) at a certain time t is calculated as shown in Equation 8 below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 図2によりステップS9において、電力調整制御装置10はステップS5、ステップS6、あるいはステップS8にて算出した発電機運転指令値を指令部13から発電機1に入力する。 2, in step S9, the power adjustment control device 10 inputs the generator operation command value calculated in step S5, step S6, or step S8 from the command unit 13 to the generator 1.
 ステップS10において、蓄電池制御装置2にステップS5、ステップS6、あるいはステップS8にて算出した蓄電池充放電指令値を指令部13から蓄電池制御装置2に入力する。 In step S10, the storage battery charge / discharge command value calculated in step S5, step S6, or step S8 is input to the storage battery control device 2 from the command unit 13 to the storage battery control device 2.
 ステップS11~S15において、蓄電池3の充電状態からモード切替の判定を行う。需給調整モードで制御を行う間は、蓄電池3の充電状態が十分に高い充電状態になったことを表す閾値を上回ったときに需給調整モードから代用運転モードに切り替える。代用運転モードで制御を行う間は、蓄電池3の充電状態が十分に低い充電状態になったことを表す閾値を下回ったときに代用運転モードから需給調整モードに切り替える。 In steps S11 to S15, the mode switching is determined from the charged state of the storage battery 3. During the control in the supply / demand adjustment mode, the supply / demand adjustment mode is switched to the substitute operation mode when the charge state of the storage battery 3 exceeds a threshold value indicating that the charge state is sufficiently high. While the control is performed in the substitute operation mode, the supply / demand adjustment mode is switched from the substitute operation mode when the charge state of the storage battery 3 falls below a threshold value indicating that the charge state is sufficiently low.
 図2によりステップS11において、現在の制御モードの状態を判定する。ステップS11の判定で、現在の制御モードが需給調整モードであればステップS12に進む。ステップS11の判定で、現在の制御モードが代用運転モードであればステップS13に進む。ステップS12において、現在の蓄電池3の充電状態がステップS19で定められたTH1以上かどうかを判定する。ステップS12の判定において、現在の蓄電池3の充電状態がTH1以上であれば、ステップS14に進む。TH1未満であれば、ステップS15に進む。ステップS13の判定で、現在の蓄電池3の充電状態がTH2以上であれば、ステップS14に進む。ステップS13の判定で、現在の蓄電池3の充電状態がTH2未満であれば、ステップS15に進む。 Referring to FIG. 2, the current control mode state is determined in step S11. If it is determined in step S11 that the current control mode is the supply and demand adjustment mode, the process proceeds to step S12. If it is determined in step S11 that the current control mode is the substitute operation mode, the process proceeds to step S13. In step S12, it is determined whether the current state of charge of the storage battery 3 is equal to or higher than TH1 determined in step S19. If it is determined in step S12 that the current charging state of the storage battery 3 is equal to or higher than TH1, the process proceeds to step S14. If it is less than TH1, the process proceeds to step S15. If it is determined in step S13 that the current state of charge of the storage battery 3 is greater than TH2, the process proceeds to step S14. If it is determined in step S13 that the current state of charge of the storage battery 3 is less than TH2, the process proceeds to step S15.
 なお、本発明は本実施例によって限定されるものではなく、適宜当業者において設計変更させたものにも適用が可能である。 It should be noted that the present invention is not limited to this embodiment, and can be applied to those appropriately modified by those skilled in the art.
1      発電機
2      蓄電池制御装置
3      蓄電池
4      負荷
5      負荷需要電力監視装置
10      電力調整制御装置
11      入力部
12      演算部
13      指令部
1 Generator
2 Storage battery controller
3 Storage battery
4 Load
5 Load demand power monitoring device
10 Power adjustment control device
11 Input section
12 Calculation unit
13 Command section

Claims (9)

  1.  負荷の電力需要量に応じて系統に接続する蓄電池及び発電機の電力供給量を調整制御する電力調整制御機器において、
     前記電力需要量及び前記蓄電池の充電状態が入力させる入力部と、
     前記入力された情報に基づいて、前記発電機の運転パターン及び前記蓄電池の充放電制御量を求める演算部と、
     前記運転パターンに基づいて前記発電機に制御指令を行い、又は前記充放電制御量に基づいて前記蓄電池に制御指令を行う指令部とを備え、
     前記演算部は、前記発電機の燃料消費に対する運転効率が高くなるように前記運転パターンを決定し、前記電力需要量と前記運転パターンに基づく発電機の電力供給量との差から、前記充放電制御量を決定することを特徴とする電力調整制御機器。
    In the power adjustment control device that adjusts and controls the power supply amount of the storage battery and the generator connected to the grid according to the power demand of the load,
    An input unit for inputting the power demand and the state of charge of the storage battery; and
    Based on the input information, a calculation unit for obtaining an operation pattern of the generator and a charge / discharge control amount of the storage battery,
    A control unit that performs a control command to the generator based on the operation pattern, or a command unit that performs a control command to the storage battery based on the charge / discharge control amount;
    The calculation unit determines the operation pattern so that the operation efficiency with respect to fuel consumption of the generator is increased, and the charge / discharge is determined based on a difference between the power demand and the power supply amount of the generator based on the operation pattern. A power adjustment control device characterized by determining a control amount.
  2.  請求項1に記載の電力系統制御装置において、
     前記演算部は、前記発電機の運転効率について所定の閾値を設けて、所定の閾値以下のとき、前記蓄電池の放電出力量を大きくすることを特徴とする電力調整制御装置。
    In the electric power system control device according to claim 1,
    The power calculation control device is characterized in that the calculation unit provides a predetermined threshold value for the operation efficiency of the generator, and increases the discharge output amount of the storage battery when the operating value is equal to or less than the predetermined threshold value.
  3.  請求項2に記載の電力調整制御装置において、
     前記演算部は、前記蓄電池の充電状態が所定の閾値より大きくなるとき、前記蓄電池の放電出力量を大きくすることを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 2,
    The calculation unit increases the discharge output amount of the storage battery when the state of charge of the storage battery becomes larger than a predetermined threshold value.
  4.  請求項1に記載の電力調整制御装置において、
     前記演算部は、
     前記蓄電池の充電状態に基づいて、前記蓄電池と前記発電機に対する制御モードを切り替えることを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 1,
    The computing unit is
    A power adjustment control device that switches control modes for the storage battery and the generator based on a state of charge of the storage battery.
  5.  請求項4に記載の電力調整制御装置において、
     前記演算部は、
     前記制御モードの切り替えに伴い、前記発電機の出力量を抑制又は停止する制御量を決定することを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 4,
    The computing unit is
    A power adjustment control device that determines a control amount for suppressing or stopping the output amount of the generator in accordance with the switching of the control mode.
  6.  請求項1記載の電力調整制御装置において、
     前記演算部は、
     前記蓄電池の仕様又は充電状態に基づいて前記充放電制御量が所定の範囲内となるか判定することを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 1,
    The computing unit is
    A power adjustment control device that determines whether the charge / discharge control amount falls within a predetermined range based on a specification or a state of charge of the storage battery.
  7.  請求項6記載の電力調整制御装置において、
     前記所定の範囲内とは、前記蓄電池の最大放電出力量、最大充電入力量又は電池容量に基づいて決定することを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 6, wherein
    The predetermined range is determined based on a maximum discharge output amount, a maximum charge input amount, or a battery capacity of the storage battery.
  8.  請求項1記載の電力調整制御装置において、
     前記運転パターンは、前記運転効率が高い前記発電機の順番に制御量を決定することを特徴とする電力調整制御装置。
    The power adjustment control device according to claim 1,
    The power adjustment control device according to claim 1, wherein the operation pattern determines a control amount in order of the generator having the highest operation efficiency.
  9.  負荷の電力需要量に応じて系統に接続する蓄電池及び発電機の電力供給量を調整制御する電力調整制御方法において、
     前記電力需要量及び前記蓄電池の充電状態を入力し、
     前記入力された情報に基づいて、前記発電機の運転パターンは前記発電機の燃料消費に対する運転効率が高くなるように決定し、前記蓄電池の充放電制御量は、前記電力需要量と前記運転パターンに基づく発電機の電力供給量との差から決定し、
     前記運転パターンに基づいて前記発電機に制御指令を行い、又は前記充放電制御量に基づいて前記蓄電池に制御指令を行うことを特徴とする電力調整制御方法。
    In the power adjustment control method for adjusting and controlling the power supply amount of the storage battery and the generator connected to the grid according to the power demand amount of the load,
    Enter the power demand and the state of charge of the storage battery,
    Based on the input information, the operation pattern of the generator is determined so that the operation efficiency with respect to the fuel consumption of the generator is increased, and the charge / discharge control amount of the storage battery is determined based on the power demand amount and the operation pattern. Determined from the difference between the generator power supply based on
    A power adjustment control method, wherein a control command is issued to the generator based on the operation pattern, or a control command is issued to the storage battery based on the charge / discharge control amount.
PCT/JP2014/074774 2014-03-25 2014-09-19 Power adjustment control device and power adjustment control method WO2015145818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061115A JP2015186361A (en) 2014-03-25 2014-03-25 Power adjustment controller and power adjustment control method
JP2014-061115 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015145818A1 true WO2015145818A1 (en) 2015-10-01

Family

ID=54194396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074774 WO2015145818A1 (en) 2014-03-25 2014-09-19 Power adjustment control device and power adjustment control method

Country Status (2)

Country Link
JP (1) JP2015186361A (en)
WO (1) WO2015145818A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383095A (en) * 2017-11-29 2019-10-25 株式会社东芝 Evaluating apparatus, accumulating system, evaluation method and computer program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094649A (en) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The Power generation planning method and power generation planning apparatus using secondary battery
JP2007116805A (en) * 2005-10-19 2007-05-10 Shikoku Res Inst Inc Control method of autonomous distribution control system of power system
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP2012010454A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Operation planning apparatus for firepower generator
WO2012014332A1 (en) * 2010-07-30 2012-02-02 株式会社 東芝 Output distribution control apparatus
WO2013122079A1 (en) * 2012-02-16 2013-08-22 株式会社日立製作所 Method and device for operating power system, and rechargeable-battery management device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488965B2 (en) * 2009-10-02 2014-05-14 西芝電機株式会社 Private power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094649A (en) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The Power generation planning method and power generation planning apparatus using secondary battery
JP2007116805A (en) * 2005-10-19 2007-05-10 Shikoku Res Inst Inc Control method of autonomous distribution control system of power system
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP2012010454A (en) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The Operation planning apparatus for firepower generator
WO2012014332A1 (en) * 2010-07-30 2012-02-02 株式会社 東芝 Output distribution control apparatus
WO2013122079A1 (en) * 2012-02-16 2013-08-22 株式会社日立製作所 Method and device for operating power system, and rechargeable-battery management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110383095A (en) * 2017-11-29 2019-10-25 株式会社东芝 Evaluating apparatus, accumulating system, evaluation method and computer program

Also Published As

Publication number Publication date
JP2015186361A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6459085B2 (en) Charging facility and energy management method
KR101725701B1 (en) Secondary cell system having plurality of cells, and method for distributing charge/discharge electric power or current
JP6298465B2 (en) Power management apparatus, power management system, server, power management method, program
JP6304008B2 (en) Power supply system
US20210291689A1 (en) System and Method for a Station Providing Grid Support
JP5113789B2 (en) Charge / discharge control device and charge / discharge control method
JP6790833B2 (en) Storage battery control system, storage battery control method, and recording medium
WO2016017425A1 (en) Control device, electrical storage device, control assistance device, control method, control assistance method, and recording medium
EP3018787B1 (en) Microgrid control device and control method therefor
US10084314B2 (en) Storage battery equipment
KR101769776B1 (en) System and method for Frequency Control
US20160118846A1 (en) Isolated-Type Hybrid Solar Photovoltaic System and Switching Control Method
JP6522901B2 (en) DC distribution system
WO2016158900A1 (en) Control apparatus, device control apparatus, control system, control method and program
CN106159980B (en) Power generation system and energy management method
JP5994027B2 (en) Power supply system and energy management system used therefor
JP2016039728A (en) Controller for storage battery system
JP5721498B2 (en) Demand control device
JP6172868B2 (en) Power supply
WO2015145818A1 (en) Power adjustment control device and power adjustment control method
KR102029030B1 (en) Apparatus and method for controlling drive of energy storage system considering both long term and short term characteristics
JP2018023262A (en) Power supply system
JP5995804B2 (en) Storage system management device and control target value determination method
US10027124B2 (en) Electric power supply system controller
JP6390259B2 (en) Charge / discharge control device and charge / discharge control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887345

Country of ref document: EP

Kind code of ref document: A1