WO2015145702A1 - Diphosphate compound detector and diphosphate compound detection method - Google Patents

Diphosphate compound detector and diphosphate compound detection method Download PDF

Info

Publication number
WO2015145702A1
WO2015145702A1 PCT/JP2014/059029 JP2014059029W WO2015145702A1 WO 2015145702 A1 WO2015145702 A1 WO 2015145702A1 JP 2014059029 W JP2014059029 W JP 2014059029W WO 2015145702 A1 WO2015145702 A1 WO 2015145702A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
diphosphate
group
compound
detection
Prior art date
Application number
PCT/JP2014/059029
Other languages
French (fr)
Japanese (ja)
Inventor
宮原 裕二
亮 松元
舞 三條
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Priority to PCT/JP2014/059029 priority Critical patent/WO2015145702A1/en
Publication of WO2015145702A1 publication Critical patent/WO2015145702A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Definitions

  • the present invention relates to a diphosphate compound detector and a diphosphate compound detection method.
  • the terminal base species can be known in order from the short DNA by measuring the fluorescence color. Thereby, sequencing is performed.
  • fluorescent DNA sequencers have been widely used, and have been very active in human genome analysis.
  • Pyrophosphate is converted to ATP by the action of the coexisting enzyme, and reacts in the presence of luciferin and luciferase to produce luminescence. By detecting this light, it can be seen that the added complementary strand synthesis substrate has been incorporated into the DNA strand, and the sequence information of the complementary strand, and thus the sequence information of the target DNA strand can be found.
  • ISFET ion-sensitive field effect transistor
  • FET field-effect transistor
  • JP-A-2006-187251 a diphosphate compound, particularly pyrophosphate, is a biologically important substance, and a method for detecting pyrophosphate using luminescence has been reported.
  • Japanese Patent Application Laid-Open No. 2010-200656 discloses a simple and highly sensitive method for specifically detecting and quantifying pyrophosphate by combining two enzyme reactions of pyruvate phosphate dikinase and pyruvate dehydrogenase. Etc. have been reported. However, none of these directly detect pyrophosphate, and the detection process is complicated.
  • a method used in a pyrosequence method or the like is generally used. That is, pyrophosphate generated by the DNA synthesis reaction of DNA polymerase is once converted into ATP by the action of ATP sulfurylase, and then luciferase emits light using ATP.
  • This is a method for indirectly measuring the release of pyrophosphate by measuring the emission intensity by utilizing this phenomenon.
  • the quantitativeness is ensured only within the range of each substrate concentration corresponding to the equilibrium constant of each enzyme. That is, it is necessary to appropriately adjust the concentration of each enzyme according to the initial amount of pyrophosphate released, and therefore the range of the concentration capable of detecting pyrophosphate is limited.
  • JP 2009-186350 A and JP 2001-133407 A a phosphate ion or an anion containing pyrophosphate reacts with a compound having a boronic acid group.
  • a method for detecting and measuring phosphate ions or anions such as pyrophosphate based on the fluorescence produced by fluorescently labeling and reacting with a test substance has been reported.
  • the method for electrically detecting pyrophosphoric acid described in JP 2013-116081 uses phenylboronic acid as a compound containing a boronic acid group.
  • the present invention has been made in view of the above, and an object thereof is to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.
  • a boronic acid group in a specific nitrogen-containing heterocyclic compound having a boronic acid group specifically binds to pyrophosphoric acid, and the physiological environment. Obtained knowledge that it is suitable for use below. Furthermore, it has been found that the boronic acid group specifically binds not only to pyrophosphoric acid (diphosphate) alone but also to a diphosphate group in a compound having a diphosphate group in the structure.
  • the present invention has been made based on the above findings, and specifically includes the following.
  • a diphosphate compound detector having a detection unit on which a compound represented by the following general formula (1) or the following general formula (2) is immobilized, and an electric circuit.
  • Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure.
  • R each independently represents a hydrogen atom or a monovalent substituent.
  • n represents an integer of 0 to 5.
  • Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure.
  • R each independently represents a hydrogen atom or a monovalent substituent.
  • n represents an integer of 0 to 5.
  • the diphosphate compound detector according to ⁇ 1> wherein the compound represented by the general formula (1) is a pyridylboronic acid derivative.
  • the electric circuit includes a field effect transistor (FET) connected to the detection unit.
  • FET field effect transistor
  • a contact step of bringing the boronic acid group of the detection unit into contact with the test object, and the detection unit A method for detecting a diphosphate compound, comprising: a measurement step for measuring an electrical change in the sample; and a detection step for detecting a diphosphate compound based on the electrical change.
  • ⁇ 5> The method for detecting a diphosphate compound according to ⁇ 4>, wherein the contact step is performed in a solution of pH 4.0 to pH 6.0.
  • the present invention it is possible to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.
  • 3 is an 11 B-NMR spectrum of a mixed solution of 3-pyridylboronic acid and pyrophosphoric acid.
  • 3 is a 31 P-NMR spectrum of a mixed solution of 3-pyridylboronic acid and pyrophosphoric acid. It is an 11 B-NMR spectrum of a mixed solution of phenylboronic acid and pyrophosphoric acid.
  • 3 is a 31 P-NMR spectrum of a mixed solution of 4-pyridylboronic acid and pyrophosphoric acid.
  • 3 is a 31 P-NMR spectrum of a mixed solution of 5-pyrimidineboronic acid and pyrophosphoric acid.
  • 3 is a 31 P-NMR spectrum of a mixed solution of 3-carboxy-3-pyridylboronic acid and pyrophosphoric acid.
  • 3 is an 11 B-NMR spectrum of a mixed solution of 3-pyridylboronic acid and gemcitabine-5-diphosphate. It is a graph which shows the electric potential change at the time of pyrophosphoric acid addition measured with the pyrophosphoric acid detection apparatus used in the Example.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “diphosphate compound” in the present invention means a compound having a diphosphate group in its structure including pyrophosphate (diphosphate) alone.
  • the diphosphate compound detector of the present invention has a detector and an electric circuit on which a compound represented by the general formula (1) or the general formula (2) described later is immobilized.
  • Japanese Patent Application Laid-Open No. 2013-116081 discloses a device for electrically detecting pyrophosphoric acid, comprising a conductive support on which a compound containing boronic acid is immobilized.
  • the compound containing boronic acid in the device described in Japanese Patent Application Laid-Open No. 2013-116081 is preferably a derivative of phenylboronic acid, a derivative of methylboronic acid, and a derivative of propenylboronic acid. Since these boronic acid-containing compounds have high pKa, it was difficult to detect pyrophosphate in a physiological environment.
  • the diphosphate compound detector of the present invention uses a compound represented by the general formula (1) or the general formula (2) which is a nitrogen-containing heterocyclic compound in the detection part, so that it can be used in a physiological environment.
  • a compound represented by the general formula (1) or the general formula (2) which is a nitrogen-containing heterocyclic compound in the detection part, so that it can be used in a physiological environment.
  • the detector of the present invention can suitably detect not only pyrophosphoric acid alone but also diphosphate compounds.
  • diphosphate compound examples include pyrophosphate, gemcitabine diphosphate, acyclovir diphosphate, cyclosar nucleotide, diphosphonated zidovudine, diphosphate didanosine, diphosphate zalcitabine, diphosphate stavudine, and diphosphate lamivudine.
  • the diphosphate compound detector of the present invention has a detector to which at least one compound represented by the following general formula (1) or the following general formula (2) is immobilized.
  • the detection unit in the diphosphate compound detector of the present invention preferably has a configuration in which the compound represented by the general formula (1) or the general formula (2) is immobilized on a support.
  • the detection unit may further include a signal converter.
  • the diphosphate compound detector of the present invention can be repeatedly detected. is there.
  • Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. In general formula (1), one to three of Z are preferably nitrogen atoms, more preferably one to two are nitrogen atoms, and still more preferably one is a nitrogen atom. In general formula (1), the boronic acid group (—B (OH) 2 ) may be bonded to a nitrogen atom or a carbon atom, but is preferably bonded to a carbon atom.
  • R represents a hydrogen atom or a monovalent substituent each independently.
  • R when R is a monovalent substituent and there are a plurality of R, it is preferable that at least one substituent having a terminal reactive with the support is included.
  • the group reactive with the support include a thiol group, an amino group, a succinimide group, a maleimide group, a hydroxy group, a carboxy group, an azide group, and an alkyne group.
  • adjacent substituents may be bonded to each other to form a ring structure.
  • the ring structure formed by bonding substituents to each other is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
  • the ring structure formed by bonding substituents to each other may be an aromatic ring or a heterocyclic ring.
  • the monovalent substituent represented by R is an alkyl group having 1 to 20 carbon atoms, an alkanethiol group having 1 to 20 carbon atoms, a halogen atom, a carboxy group, or a hydroxy group.
  • an alkanethiol group is preferable from the viewpoint of a molecular arrangement structure for introduction into a gold substrate.
  • n represents an integer of 0 to 5, preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 to 2.
  • one to three of Z are nitrogen atoms, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group.
  • a hydroxyl group, a hydroxy group, a fluoro group, a methoxy group, an ethoxy group, a nitro group, and a morpholino group, and n is preferably 1 to 4, and in general formula (1), one to two of Z are nitrogen atoms More preferably, R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a fluoro group, a methoxy group, an ethoxy group, a nitro group, or a morpholino group, and n is 1 to 2.
  • one of Z is a nitrogen atom
  • R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a fluoro group, a methoxy group, or an ethoxy group.
  • a nitro group, a morpholino group, and more preferably n is 1-2.
  • Specific examples of the compound represented by the general formula (1) in the present invention include pyridylboronic acid, fluoropyridylboronic acid, pyrimidinylboronic acid, quinolineboronic acid and the like. Among these, pyridylboronic acid, pyrimidinylboronic acid, and quinolineboronic acid are preferable, and pyridylboronic acid is more preferable.
  • Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. In general formula (2), one to three of Z are preferably nitrogen atoms, more preferably one to two are nitrogen atoms, and still more preferably one is a nitrogen atom. In general formula (2), the boronic acid group may be substituted with a nitrogen atom or a carbon atom, but is preferably substituted with a carbon atom.
  • R has the same meaning as R in general formula (1).
  • n represents an integer of 0 to 4, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • 1 to 3 of Z are nitrogen atoms, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group.
  • n 1 to 4
  • one to two of Z are nitrogen atoms
  • R is a hydrogen atom, alkyl group, halogen atom, carboxy group, amino group, hydroxy group, methoxy group, ethoxy group, nitro group, morpholino More preferably a benzyl group, and n is 1 to 2
  • one of Z is a nitrogen atom
  • R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a methoxy group, an ethoxy group, a nitro group, a morpholino group, a benzyl group More preferably, n is 1 to 2.
  • Specific examples of the compound represented by the general formula (2) in the present invention include pyrazole boronic acid, pyrrole boronic acid, indole boronic acid, indazole boronic acid and the like.
  • the substitutions represented by R in the formula can be bonded to the support and immobilized.
  • the support in the present invention can be selected from those generally used in the art. Among these, it is preferable to use a conductive support from the viewpoint that the test object can be detected by an electrical method.
  • the conductive support include noble metals (gold, silver, platinum, palladium, rhodium, iridium, ruthenium, etc.), metals such as copper, aluminum, tungsten, molybdenum, chromium, titanium, nickel; stainless steel, hastelloy, inconel Alloys such as Monel and Duralumin; Electrodes such as semiconductor elements (transistors, FETs, etc.); Silicon; Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; Plastics such as polyester, polystyrene, polyethylene, polypropylene, nylon, acrylic, polycarbonate, polyethylene terephthalate (PET), polyurethane, phenol resin, melamine resin, epoxy resin, and polyvinyl chloride; agarose, Dextran, cellulose, polyvinyl alcohol, nitrocellulose.
  • noble metals gold, silver, platinum, palladium, rho
  • a non-conductive support coated with a conductive material can be used as the conductive support.
  • the shape of the conductive support is also not particularly limited, and those formed by flat surfaces (for example, titer plates, porous and pore arrays, microchannels, etc.), flat plates, films, tubes, and particles (magnetic particles, etc.) Can be mentioned.
  • the conductive support may be an electrode for easily and efficiently measuring an electrical change described later.
  • a porous thin film or a pore array shape is preferable, and a pore array shape is more preferable.
  • the method for fixing the compound represented by the general formula (1) or the general formula (2) to the support is not particularly limited.
  • the compound represented by the general formula (1) or the general formula (2) can be fixed to the support by covalent bond, ionic bond, or physical adsorption.
  • the surface of the support is obtained by applying a solution (for example, in an organic solvent such as ethanol) mixed with the compound represented by the general formula (1) or (2) on the support and drying it.
  • the method of fixing the compound represented by general formula (1) or general formula (2) is mentioned.
  • the compound represented by the general formula (1) or the general formula (2) when it has a substituent, it may be appropriately selected according to a chemical reaction or an enzymatic reaction according to the properties of the support or the compound to be immobilized. The method of fixing is mentioned. Furthermore, the compound represented by the general formula (1) or the general formula (2) may be fixed to a support via a spacer sequence, for example, a hydrocarbon group containing 1 to 10 carbon atoms. .
  • the substituent in the compound represented by the general formula (1) or the general formula (2) This can be carried out by reacting the end of R with a reactive functional group introduced into the support.
  • the compound represented by the general formula (1) or the general formula (2) has an end of the substituent R that can be covalently bonded to the support (for example, a noble metal), the end of the substituent R is used.
  • the compound represented by the general formula (1) or the general formula (2) can be fixed to a noble metal support such as gold or platinum via a covalent bond. According to this method, arrangement of gold, platinum, etc. can be controlled at the atomic level.
  • the lattice plane grown as a metal crystal can be processed into a flat plate shape having no unevenness of one atomic level.
  • a plate-like support for detecting pyrophosphate can be obtained. That is, the height was controlled while the orientation of molecules was controlled on a support made of a metal material having a monomolecular layer of the compound represented by the general formula (1) or the general formula (2).
  • a detection unit can be provided.
  • any protein can be formed on a support made of a metal material having a monomolecular layer of the compound represented by the general formula (1) or the general formula (2) via a peptide tag capable of binding to a boronic acid group.
  • a support made of a metal material having a monomolecular layer of the compound represented by the general formula (1) or the general formula (2) via a peptide tag capable of binding to a boronic acid group By bonding the molecules, it is possible to provide a device in which the orientation of the molecules on the metal plane is controlled and the height of the molecules fixed with an error of several angstroms is controlled. For example, it can be immobilized as a monomolecular film in which molecules are held in the same orientation on the surface of the support.
  • an amino group is used as the terminal of the substituent R of the compound represented by the general formula (1), and an active ester group, epoxy group, aldehyde group, carbodiimide group, isothiocyanate group or isocyanate group is introduced into the support.
  • a thiol group may be used as the terminal of the substituent R, and an active ester group, a maleimide group or a disulfide group may be introduced into the support.
  • the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2, and 3-dicarboximide group.
  • One method for introducing a functional group into the support is to treat the support surface with a silane coupling agent having a desired functional group ( ⁇ -aminopropyltriethoxysilane or the like). Another method includes plasma treatment.
  • the compound represented by the general formula (1) or the general formula (2) can be fixed to the support.
  • a gold electrode is used as a support, an alkanethiol is introduced into 3-pyridylboronic acid, and a self-assembled monolayer of a alkanethiol derivative (Self-Assembled Monolayer; SAM) on the gold electrode.
  • SAM Self-Assembled Monolayer
  • a crosslinkable molecule is used as another method.
  • a crosslinkable functional group for example, a hydroxyl group
  • a crosslinkable molecule is used.
  • crosslinking is mentioned.
  • cross-linking molecules include polyhydric alcohols such as polyvinyl alcohol and polysaccharides such as dextran.
  • the support (immobilized substrate) examples include solid, polymer membrane, polymer semipermeable membrane, film, solid phase gel, and liquid phase gel. Therefore, the present invention stably and covalently bonds the compound represented by the general formula (1) or the general formula (2) in a film-like substance such as a semipermeable membrane or a gel-like substance having various moisture contents. It can also be set as the detection part fixed by. Also, these supports can be microscopic, eg, micrometer or nanometer size.
  • the detection unit in which the compound represented by the general formula (1) or the general formula (2) is fixed on a completely flat support made of a single metal crystal and has a uniform orientation and height is a sensor chip such as an FET. It is suitable for.
  • a field effect transistor is a technology widely used for sensors using electrical detection.
  • the current flowing from the source electrode to the drain electrode is controlled by the gate electrode, which is the third electrode, and if the intermolecular interaction occurs on the surface of the gate electrode, the charge of the gate electrode changes, so Response changes.
  • FET field-effect transistor
  • the detectable distance is several nanometers from the support surface. Therefore, in the case of a support (for example, a metal crystal base) on which a compound represented by the general formula (1) or the general formula (2) whose orientation is controlled and the height is aligned with high accuracy as described above is fixed. It is possible to detect the charge transfer reaction effectively within the detection limit.
  • a support on which the compound represented by the general formula (1) or (2) is fixed is placed in the solution.
  • the solution to be used is not particularly limited, and can be appropriately selected according to the type of test substance (reaction that generates pyrophosphate), the type of support, and the like. Examples thereof include aqueous buffers such as water, physiological saline, phosphate buffer (PBS), Tris buffer, acetate buffer, carbonate buffer, and borate buffer.
  • the solution preferably has a pH of 8.0 or less, and has a pH of 3.0. More preferably, the pH is more preferably 7.0, and even more preferably 4.0 to 6.0.
  • an embodiment in which a support on which a compound represented by the general formula (1) or (2) is immobilized is bonded to a solid phase substrate (for example, glass).
  • a solid phase substrate for example, glass
  • Surface plasmon can be generated at the interface with the compound immobilized on the surface of the support by injecting laser light from one end face of the solid phase substrate to the support at an angle greater than the critical angle.
  • the detection of pyrophosphate can be performed using resonance (Surface Plasmon Resonance: SPR).
  • the solid phase substrate may be arranged in place of the gate insulating film 15 in FIG.
  • a support on which a compound represented by the general formula (1) or (2) is fixed is bonded to a crystal resonator, and a crystal resonator microbalance ( The aspect made into a Quartz Crystal Microbalance (QCM) sensor is mentioned.
  • the QCM sensor can measure the mass of a trace substance adsorbed or bound to a compound immobilized on the surface of a support from a resonance frequency change via a quartz crystal resonator, and thus pyrophosphate can be detected. .
  • the detection unit in the diphosphate compound detector of the present invention may include a signal converter.
  • the signal converter can convert a signal such as a surface plasmon change, a mass change, a chemical potential, a heat, and an optical change associated with a chemical reaction into an electrical signal.
  • signals such as surface plasmon change, mass change, chemical potential, heat, and optical change generated when the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound are combined. Is converted into an electrical signal and output as an electrical change from the detector.
  • the diphosphate compound detector of the present invention can detect the diphosphate compound by thermal change, optical change, and the like.
  • the diphosphate compound detector of the present invention has an electric circuit.
  • the electric circuit is connected to the detection unit, and an electrical change in the detection unit (including a change in the electric signal converted by the signal converter) can be measured by a voltage change measuring device or the like.
  • the voltage change measuring instrument has any circuit configuration as long as it is a measuring instrument capable of measuring a minute voltage change or a measuring instrument capable of detecting electron movement (minute current) in an electrode caused by a minute voltage change. But you can.
  • the diphosphate compound detector 1 of the present invention includes a detection unit 3, a detection unit drive circuit unit 4 that drives the detection unit 3 by giving a signal, a power supply unit 5 that supplies power to each circuit unit, and a detection A detection circuit unit 6 that processes the output from the unit 3 and outputs a detection signal and an output interface (output IF) unit 7 for outputting the detection signal to the outside are integrally formed on the printed circuit board 2. And has an integrated configuration.
  • the detection unit 3 includes a field effect transistor (hereinafter also referred to as an FET) 8 serving as a detection medium, and is supplied from a power source 10 based on a control signal of the detection unit drive circuit unit 4 mounted on the printed mounting board 2.
  • FET field effect transistor
  • the detection unit 3 can sample with the ammeter 11 output from the FET 8 and send the detection result to the detection circuit unit 6. Thereby, in the diphosphate compound detector 1, the detection result from the FET 8 can be processed by the detection circuit unit 6 and extracted from the output IF unit 7 as a predetermined detection signal.
  • the FET 8 has the general formula (1) or the general formula on the surface of the source 13 and the drain 14 formed on the surface of the semiconductor substrate 12 and the gate insulating film 15 formed on the semiconductor substrate 12, the source 13 and the drain 14. It has the structure provided with the support body (detection device) 16 which fix
  • the detection device 16 has a configuration in which, for example, one surface of the support 20 made of a gold vapor-deposited thin film is coated with the compound 21 represented by the general formula (1) or the general formula (2). Is formed on the gate insulating film 15, and the compound 21 represented by the general formula (1) or the general formula (2) is configured to be exposed in the detection region as a detection surface. At this time, the support 20 functions as a gate.
  • the FET 8 for example, a voltage is applied to the support 20 using the reference electrode 22, and in this state, the diphosphate compound solution flows into the detection region, and the reference electrode 22 and the detection surface are connected to each other. By being put in the diphosphate compound solution, a current flows between the source 13 and the drain 14.
  • all the components including the detector 3 can be integrated on a single printed mounting board 2, and pyrophosphoric acid is detected with a very small and simple configuration. be able to.
  • the FET 8 is a non-invasive / non-labeling measurement method that detects the molecular intrinsic charge provided on the detection surface in synchronization with the change in transistor characteristics, and enables real-time measurement.
  • the FET 8 can be reduced in cost and size by the amount that no optical system equipment such as a laser is required, and can be easily realized in high density and super parallelism by semiconductor processing technology, and is required for high throughput system. Potentially covering key key requirements.
  • the method for detecting a diphosphate compound of the present invention uses the above-described diphosphate compound detector to bring the detection unit of the diphosphate compound detector into contact with the test object, and the electrical change of the detection unit. A measurement step of measuring, and a step of detecting a diphosphate compound based on the electrical change.
  • the diphosphate compound detection method of the present invention uses the above-described diphosphate compound detector, the detection sensitivity is excellent. Below, each process of the diphosphate compound detection method of this invention is demonstrated in detail.
  • the method for detecting a diphosphate compound according to the present invention includes a contact step of bringing a boronic acid group of a detection unit, to which a compound represented by general formula (1) or general formula (2) is immobilized, into contact with a test substance. Have.
  • the “test object” is a target for detecting a diphosphate compound, and includes, for example, a reaction product that generates pyrophosphate, a reaction solution of a chemical reaction or an enzyme reaction, and the like.
  • Contact means an operation in which the test object comes close to the support in the detection unit. For example, adding the test object (liquid) to the support in the detection unit, adding the test object (liquid) to the solution in which the support in the detection unit is arranged, and mixing, on the support in the detection unit Including performing a chemical reaction or an enzymatic reaction.
  • the contact step is preferably performed in a solution from the viewpoint of the reactivity between the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound.
  • the solution preferably has a pH of 8.0 or less, more preferably from pH 3.0 to pH 7.0, and still more preferably from pH 4.0 to pH 6.0.
  • the diphosphate compound detection method of the present invention includes a measurement step of measuring an electrical change of the detection unit.
  • the “electrical change” is known in the art, refers to a change in potential in the detection unit, and can be measured as a change in voltage / current.
  • the electrical change can be measured by a voltage change measuring device or the like via an electric circuit connected to the detection unit.
  • the voltage change measuring instrument has any circuit configuration as long as it is a measuring instrument capable of measuring a minute voltage change or a measuring instrument capable of detecting electron movement (minute current) in an electrode caused by a minute voltage change. But you can.
  • a transistor preferably a field effect transistor (FET), or an instrument having an equivalent minute current measurement system in the circuit can be used to measure minute voltage changes.
  • FET field effect transistor
  • an electrode is used as the detection unit, an electrode to which the compound represented by the general formula (1) or (2) is fixed is used as the gate electrode of the FET, and its electrical change is observed over time.
  • a device configuration that can be used is used. In order to measure the change, the voltage or microcurrent before contact with the test object or the control voltage or microcurrent without contact with the test object is measured and compared with the voltage or microcurrent after contact. Changes may be measured.
  • the electrical change in the present invention includes one converted from another signal to an electrical signal by a signal converter. That is, by using a signal converter, a surface plasmon change, a mass change, which occurs when the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound are combined in the measurement process of the present invention. Measurements are also possible for chemical potential, thermal and optical changes.
  • the method for detecting a diphosphate compound of the present invention includes a detection step of detecting a diphosphate compound based on an electrical change of the detection unit. When the electrical change is measured, the presence of the diphosphate compound in the test object is detected. Since the degree of the electrical change varies depending on the amount of the diphosphate compound, the diphosphate compound can be quantified by measuring the degree of the electrical change.
  • a DNA polymerase reaction product is used as a test substance. That is, pyrophosphoric acid to be detected is pyrophosphoric acid released by DNA complementary strand synthesis by DNA polymerase using target DNA or RNA as a template. DNA polymerase releases pyrophosphate when deoxyribonucleic acid (nucleotide triphosphate: dATP, dCTP, dGTP, or dTTP) compatible with the target DNA or RNA is incorporated as a substrate.
  • deoxyribonucleic acid nucleotide triphosphate: dATP, dCTP, dGTP, or dTTP
  • the target DNA of unknown sequence as a template, 4 types of deoxyribonucleic acid (substrate) are added in sequence, and pyrophosphoric acid is detected to determine whether or not a substrate suitable for the sequence has been incorporated, and finally Makes it possible to determine the base sequence of the target DNA.
  • the whole or part of the base sequence of the target DNA can be determined by monitoring the stepwise complementary strand synthesis of DNA.
  • the presence or absence of incorporation of a substrate suitable for the sequence is determined, and the base sequence of the target DNA or RNA is determined. Determine all or part of it. Thereby, the target DNA or RNA can be finally detected or quantified.
  • a method for optically detecting a diphosphate compound by combining a compound represented by the general formula (1) or (2) with a dye compound Is mentioned a method for optically detecting a diphosphate compound by combining a compound represented by the general formula (1) or (2) with a dye compound Is mentioned.
  • an ultraviolet absorption property, a visible light absorption property, an infrared absorption property, a fluorescence spectrum, and a fluorescence spectrum of the dye compound accompanying the reaction between the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound, and A change in circularly polarized dichroism absorbance and the like can be detected to detect a diphosphate compound.
  • Reference Example 6 The pyrophosphate in Reference Example 1 was changed to gemcitabine-5-diphosphate, and dissolved in pure water so that 3-pyridylboronic acid (3-PyBA) was 10 mM and gemcitabine-5-diphosphate was 4 mM as a mixed solution. A 3-PyBA / gemcitabine-5-diphosphate mixed solution was prepared. The pH of the mixed solution was adjusted to 5. The 11 B-NMR spectrum of the obtained mixture was measured in the same manner as in Reference Example 1. The measurement results are shown in FIG.
  • Example 1 Preparation of detector>
  • 3-pyridylboronic acid (3-PyBA) 3-pyridylboronic acid
  • 3-PyBA 3-pyridylboronic acid
  • the obtained alkanethiol derivative was dissolved in methanol to a concentration of 0.5 mM to obtain a methanol solution of the alkanethiol derivative.
  • a gold sputtered thin film substrate was immersed in this solution for half a day to form a self-assembled film (3-PyBA-SAM) into which 3-PyBA was introduced on the gold substrate.
  • a source and a drain were formed on the surface of the semiconductor substrate, and a gate insulating film was further formed thereon.
  • a gold substrate on which 3-PyBA-SAM was formed was laminated on the surface of the gate insulating film to obtain a detection unit in which 3-PyBA was immobilized.
  • a detection circuit unit that processes the above and outputs a detection signal and an output interface (IF) unit for outputting the detection signal to the outside are formed on a printed circuit board.
  • the detector drive circuit unit, the power feeding unit, the detection circuit unit, and the output interface unit are also collectively referred to as an electric circuit.
  • pyrophosphate dissolved in pure water is 5 so that the concentration of pyrophosphate after addition to the buffer solution is 0.2 mM, 0.38 mM, 0.57 mM, 0.74 mM, and 0.91 mM.
  • 10 ⁇ l was added. The change in potential at the detection part when pyrophosphate was added was measured to detect pyrophosphate.
  • Example 1 The measurement results of Example 1 and Comparative Example 1 are shown in FIG. In FIG. 9, the horizontal axis represents the elapsed time since the start of the potential measurement, and the vertical axis represents the potential change. Pyrophosphate (diphosphate; PPi) and monophosphate (Pi) were added at the timing indicated by the arrows in the graph.
  • the present invention it is possible to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.

Abstract

A diphosphate compound detector having: a detection unit wherein compounds indicated by general formula (1) or general formula (2) are solidified; and an electric circuit. In general formula (1) and general formula (2), each Z independently indicates a carbon atom or a nitrogen atom. However, at least one nitrogen atom is included in the ring structure. Each R independently indicates a hydrogen atom or a monovalent substituent. n indicates an integer between 0 and 5.

Description

二リン酸化合物検出器、及び二リン酸化合物検出方法Diphosphate compound detector and diphosphate compound detection method
 本発明は、二リン酸化合物検出器、及び二リン酸化合物検出方法に関する。 The present invention relates to a diphosphate compound detector and a diphosphate compound detection method.
 現代化学,2004年7月号,vol.400,p.66-69,2004年に記載されているように、DNAの塩基配列決定にはゲル電気泳動と蛍光検出を用いた方法が広く用いられている。この方法は、配列決定を行うDNA断片のコピーを沢山作製し、DNAの5’末端を始点として種々の長さの蛍光標識断片を作製する。また、これらDNA断片の3’末端の塩基種に応じて波長の異なる蛍光標識を付加しておく。ゲル電気泳動により長さの違いを1塩基の差で識別し、それぞれの断片群が発する発光を検出する。発光波長色から測定中のDNA断片群のDNA末端塩基種を知る。DNAは短い断片群から順次蛍光検出部を通過するので、蛍光色を計測することで短いDNAから順に末端塩基種を知ることができる。これにより、配列決定を行う。このような蛍光式DNAシーケンサは幅広く普及しており、また、ヒトゲノム解析にも大いに活躍した。 Hyundai Kagaku, July 2004, vol. 400, p. 66-69, 2004, a method using gel electrophoresis and fluorescence detection is widely used to determine the base sequence of DNA. In this method, many copies of a DNA fragment to be sequenced are prepared, and fluorescently labeled fragments of various lengths are prepared starting from the 5 'end of the DNA. In addition, fluorescent labels having different wavelengths are added according to the base species at the 3 'end of these DNA fragments. The difference in length is identified by the difference of one base by gel electrophoresis, and the luminescence emitted from each fragment group is detected. The DNA terminal base type of the DNA fragment group being measured is determined from the emission wavelength color. Since DNA sequentially passes through the fluorescence detection unit from a short fragment group, the terminal base species can be known in order from the short DNA by measuring the fluorescence color. Thereby, sequencing is performed. Such fluorescent DNA sequencers have been widely used, and have been very active in human genome analysis.
 一方、Electrophoresis,vol.22,p.3497-3504,2001年に記載されているように、DNAの解析方法として、段階的なDNA相補鎖合成を用いるパイロシーケンシングがある。この方法ではターゲットとするDNA鎖にプライマーをハイブリダイズさせ、4種の相補鎖合成核酸基質(dATP、dCTP、dGTP、dTTP)を1種類ずつ順番に反応液中に加えて相補鎖合成反応を行う。相補鎖合成反応が起きるとDNA相補鎖が伸長し、副産物として二リン酸(ピロリン酸:ppi)が生成する。ピロリン酸は共存する酵素の働きでATPに変換され、ルシフェリンとルシフェラーゼの共存下で反応して発光を生じる。この光を検出することで加えた相補鎖合成基質がDNA鎖に取り込まれたことがわかり、相補鎖の配列情報、従ってターゲットとなったDNA鎖の配列情報がわかる。 On the other hand, Electrophoresis, vol. 22, p. As described in 3497-3504, 2001, as a DNA analysis method, there is pyrosequencing using stepwise DNA complementary strand synthesis. In this method, a primer is hybridized to a target DNA strand, and four types of complementary strand synthesis nucleic acid substrates (dATP, dCTP, dGTP, dTTP) are added to the reaction solution one by one in order to perform a complementary strand synthesis reaction. . When the complementary strand synthesis reaction occurs, the DNA complementary strand is elongated and diphosphate (pyrophosphate: ppi) is generated as a byproduct. Pyrophosphate is converted to ATP by the action of the coexisting enzyme, and reacts in the presence of luciferin and luciferase to produce luminescence. By detecting this light, it can be seen that the added complementary strand synthesis substrate has been incorporated into the DNA strand, and the sequence information of the complementary strand, and thus the sequence information of the target DNA strand can be found.
 Nature,vol.475,p.348-352,2011年には、バイオセンサーを用いて、DNAを検出する、又はDNA塩基配列決定する技術が報告されている。この方法では、イオンを検知するイオン感応型電解効果トランジスタ(ISFET)を用い、電界効果トランジスタ(FET:Field-Effect Transistor)のゲート電極上又はその近傍にDNAプローブを固定し、ターゲットDNAをハイブリダイズさせた時の電極の電位変化を検出したり、DNA相補鎖合成の結果生成するピロリン酸から生じるHを、pHセンサーを用いて検出したりしている。 Nature, vol. 475, p. In 348-352, 2011, a technique for detecting DNA or determining a DNA base sequence using a biosensor is reported. In this method, an ion-sensitive field effect transistor (ISFET) that detects ions is used, a DNA probe is immobilized on or near the gate electrode of a field-effect transistor (FET), and the target DNA is hybridized. A change in the potential of the electrode when detected is detected, or H + generated from pyrophosphate generated as a result of DNA complementary strand synthesis is detected using a pH sensor.
 特開2006-187251号公報では、二リン酸化合物、特にピロリン酸は生物学的にも重要な物質であり、発光を用いてピロリン酸を検出する方法が報告されており、白濁を目途にピロリン酸を検出する方法、特開2010-200656号公報では、ピルビン酸リン酸ジキナーゼとピルビン酸デヒドロゲナーゼの2つの酵素反応を組み合わせることにより、ピロリン酸を特異的に検出・定量する簡便且つ高感度な方法などが報告されている。しかし、これらはいずれもピロリン酸を直接検出するものではなく、検出プロセスが複雑である。 In JP-A-2006-187251, a diphosphate compound, particularly pyrophosphate, is a biologically important substance, and a method for detecting pyrophosphate using luminescence has been reported. Japanese Patent Application Laid-Open No. 2010-200656 discloses a simple and highly sensitive method for specifically detecting and quantifying pyrophosphate by combining two enzyme reactions of pyruvate phosphate dikinase and pyruvate dehydrogenase. Etc. have been reported. However, none of these directly detect pyrophosphate, and the detection process is complicated.
 従来のピロリン酸検出法としては、パイロシーケンス法等において利用されている方法が一般的である。即ち、DNAポリメラーゼのDNA合成反応などに伴って生じるピロリン酸をATPスルフリラーゼの働きにより一旦ATPに変換し、その後ルシフェラーゼがATPを使って発光する。この現象を利用し、発光強度を計測することにより、間接的にピロリン酸の放出を定量的に計測する方法である。この方法では、3種の酵素を同じ反応槽に混在させるため各酵素の平衡定数に見合った各基質濃度の範囲内でのみ定量性が担保されている。すなわち、初期のピロリン酸放出量に応じた各酵素濃度が適切に調整されている必要があり、従ってピロリン酸検出可能な濃度の範囲が限定的である。 As a conventional pyrophosphate detection method, a method used in a pyrosequence method or the like is generally used. That is, pyrophosphate generated by the DNA synthesis reaction of DNA polymerase is once converted into ATP by the action of ATP sulfurylase, and then luciferase emits light using ATP. This is a method for indirectly measuring the release of pyrophosphate by measuring the emission intensity by utilizing this phenomenon. In this method, since three kinds of enzymes are mixed in the same reaction tank, the quantitativeness is ensured only within the range of each substrate concentration corresponding to the equilibrium constant of each enzyme. That is, it is necessary to appropriately adjust the concentration of each enzyme according to the initial amount of pyrophosphate released, and therefore the range of the concentration capable of detecting pyrophosphate is limited.
 一方、特開2009-186350号公報及び特開2001-133407号公報では、ピロリン酸を含むリン酸イオン又は陰イオンが、ボロン酸基を有する化合物と反応することから、該ボロン酸基を有する化合物を蛍光標識して被検物と反応させ、生じる蛍光に基づいてピロリン酸などのリン酸イオン又は陰イオンを検出・測定する方法が報告されている。 On the other hand, in JP 2009-186350 A and JP 2001-133407 A, a phosphate ion or an anion containing pyrophosphate reacts with a compound having a boronic acid group. A method for detecting and measuring phosphate ions or anions such as pyrophosphate based on the fluorescence produced by fluorescently labeling and reacting with a test substance has been reported.
 また、Analyst,vol.137,p.1351-1362,2012年には、ピロリン酸を電気的に検出する方法として、ピロリン酸を捕らえるプローブに亜鉛ジピロリルアミン二核錯体を用い、プローブが固定化された支持体の電気的変化を検出する方法が報告されている。 Also, Analyst, vol. 137, p. In 1351-1362, 2012, as a method for electrically detecting pyrophosphate, a zinc dipyrrolylamine binuclear complex was used as the probe for capturing pyrophosphate, and the electrical change of the support on which the probe was immobilized was detected. How to do it has been reported.
 さらに、特開2013-116081号公報では、DNAポリメラーゼやDNAリガーゼにより放出されるピロリン酸を直接検出する方法として、フェニルボロン酸誘導体、メチルボロン酸誘導体、又はプロペニルボロン酸誘導体が固定化された導電性支持体と、被検物を接触させ、導電性支持体の電気的変化を測定し、ピロリン酸を電気的に検出する方法が提案されている。 Furthermore, in Japanese Patent Laid-Open No. 2013-116081, as a method for directly detecting pyrophosphoric acid released by DNA polymerase or DNA ligase, a conductive material in which a phenylboronic acid derivative, a methylboronic acid derivative, or a propenylboronic acid derivative is immobilized is disclosed. There has been proposed a method in which pyrophosphate is electrically detected by bringing a support into contact with a test object, measuring an electrical change of the conductive support.
 Analyst,vol.137,p.1351-1362,2012年に記載されたピロリン酸を電気的に検出する方法は、ピロリン酸の検出感度に優れるが、亜鉛ジピロリルアミン二核錯体とピロリン酸とが一度結合すると、分離することが困難である。そのため、繰り返し検出を行うと検出能が低下する傾向があり、繰り返し使用する用途には不向きであった。 Analyst, vol. 137, p. Although the method for electrically detecting pyrophosphate described in 1351-1362, 2012 is excellent in pyrophosphate detection sensitivity, it can be separated once the zinc dipyrrolylamine binuclear complex and pyrophosphate are bound. Have difficulty. For this reason, when detection is repeatedly performed, the detectability tends to decrease, and is not suitable for repeated use.
 特開2013-116081号公報に記載されたピロリン酸を電気的に検出する方法は、ボロン酸基を含む化合物として、フェニルボロン酸を用いるものである。一般的に、フェニルボロン酸の酸性度は低く(pKa=9.0)、生理環境下での使用が困難とされてきた。そのため、生理環境下においても使用可能な糖応答システムの開発が求められている。 The method for electrically detecting pyrophosphoric acid described in JP 2013-116081 uses phenylboronic acid as a compound containing a boronic acid group. Generally, the acidity of phenylboronic acid is low (pKa = 9.0), and it has been difficult to use it in a physiological environment. Therefore, development of a sugar response system that can be used even in a physiological environment is demanded.
 本発明は上記に鑑みなされたものであり、検出感度に優れ、繰り返し検出可能な二リン酸化合物検出器及び二リン酸化合物検出方法を提供することを課題とする。 The present invention has been made in view of the above, and an object thereof is to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.
 本発明者は、上記課題を解決するため鋭意検討を行った結果、ボロン酸基を有する特定の含窒素複素環化合物におけるボロン酸基と、ピロリン酸とが、特異的に結合し、しかも生理環境下での使用に適しているという知見を得た。
 さらに、前記ボロン酸基は、ピロリン酸(二リン酸)単体のみならず、構造内に二リン酸基を有する化合物における二リン酸基とも特異的に結合するという知見を得た。
 本発明は上記知見に基づいてなされたものであり、具体的には以下を包含する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a boronic acid group in a specific nitrogen-containing heterocyclic compound having a boronic acid group specifically binds to pyrophosphoric acid, and the physiological environment. Obtained knowledge that it is suitable for use below.
Furthermore, it has been found that the boronic acid group specifically binds not only to pyrophosphoric acid (diphosphate) alone but also to a diphosphate group in a compound having a diphosphate group in the structure.
The present invention has been made based on the above findings, and specifically includes the following.
<1> 下記一般式(1)又は下記一般式(2)で表される化合物が固定化される検出部と、電気回路と、を有する二リン酸化合物検出器。 <1> A diphosphate compound detector having a detection unit on which a compound represented by the following general formula (1) or the following general formula (2) is immobilized, and an electric circuit.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 一般式(1)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。Rは、それぞれ独立に水素原子又は一価の置換基を表す。nは、0~5の整数を表す。 In general formula (1), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. R each independently represents a hydrogen atom or a monovalent substituent. n represents an integer of 0 to 5.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 一般式(2)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。Rは、それぞれ独立に水素原子又は一価の置換基を表す。nは、0~5の整数を表す。 In general formula (2), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. R each independently represents a hydrogen atom or a monovalent substituent. n represents an integer of 0 to 5.
<2> 前記一般式(1)で表される化合物が、ピリジルボロン酸誘導体である<1>に記載の二リン酸化合物検出器。
<3> 前記検出部に接続された電界効果トランジスタ(FET)を、前記電気回路内に有する<1>又は<2>に記載の二リン酸化合物検出器。
<2> The diphosphate compound detector according to <1>, wherein the compound represented by the general formula (1) is a pyridylboronic acid derivative.
<3> The diphosphate compound detector according to <1> or <2>, wherein the electric circuit includes a field effect transistor (FET) connected to the detection unit.
<4> <1>~<3>のいずれか1つに記載された二リン酸化合物検出器を用い、前記検出部のボロン酸基と被検物とを接触させる接触工程と、前記検出部の電気的変化を測定する測定工程と、前記電気的変化に基づいて二リン酸化合物を検出する検出工程と、を含む、二リン酸化合物検出方法。 <4> Using the diphosphate compound detector according to any one of <1> to <3>, a contact step of bringing the boronic acid group of the detection unit into contact with the test object, and the detection unit A method for detecting a diphosphate compound, comprising: a measurement step for measuring an electrical change in the sample; and a detection step for detecting a diphosphate compound based on the electrical change.
<5> 前記接触工程を、pH4.0~pH6.0の溶液中で行う<4>に記載の二リン酸化合物検出方法。 <5> The method for detecting a diphosphate compound according to <4>, wherein the contact step is performed in a solution of pH 4.0 to pH 6.0.
 本発明によれば、検出感度に優れ、繰り返し検出可能な二リン酸化合物検出器及び二リン酸化合物検出方法を提供することができる。 According to the present invention, it is possible to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.
検出器の構成例を示す図である。It is a figure which shows the structural example of a detector. 3-ピリジルボロン酸とピロリン酸との混合液の11B-NMRスペクトルである。3 is an 11 B-NMR spectrum of a mixed solution of 3-pyridylboronic acid and pyrophosphoric acid. 3-ピリジルボロン酸とピロリン酸との混合液の31P-NMRスペクトルである。3 is a 31 P-NMR spectrum of a mixed solution of 3-pyridylboronic acid and pyrophosphoric acid. フェニルボロン酸とピロリン酸との混合液の11B-NMRスペクトルである。It is an 11 B-NMR spectrum of a mixed solution of phenylboronic acid and pyrophosphoric acid. 4-ピリジルボロン酸とピロリン酸との混合液の31P-NMRスペクトルである。3 is a 31 P-NMR spectrum of a mixed solution of 4-pyridylboronic acid and pyrophosphoric acid. 5-ピリミジンボロン酸とピロリン酸との混合液の31P-NMRスペクトルである。3 is a 31 P-NMR spectrum of a mixed solution of 5-pyrimidineboronic acid and pyrophosphoric acid. 3-カルボキシ-3-ピリジルボロン酸とピロリン酸との混合液の31P-NMRスペクトルである。3 is a 31 P-NMR spectrum of a mixed solution of 3-carboxy-3-pyridylboronic acid and pyrophosphoric acid. 3-ピリジルボロン酸とゲムシタビン-5-二リン酸との混合液の11B-NMRスペクトルである。3 is an 11 B-NMR spectrum of a mixed solution of 3-pyridylboronic acid and gemcitabine-5-diphosphate. 実施例で用いたピロリン酸検出装置で測定された、ピロリン酸添加時の電位変化を示すグラフである。It is a graph which shows the electric potential change at the time of pyrophosphoric acid addition measured with the pyrophosphoric acid detection apparatus used in the Example.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれに限定されるものではなく、その趣旨の範囲内で種々変形して実施することができる。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明における「二リン酸化合物」とは、ピロリン酸(二リン酸)単体を含め、構造内に二リン酸基を有する化合物を意味する。
Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to this, A various deformation | transformation can be implemented within the range of the meaning.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
The “diphosphate compound” in the present invention means a compound having a diphosphate group in its structure including pyrophosphate (diphosphate) alone.
<二リン酸化合物検出器>
 本発明の二リン酸化合物検出器は、後述する一般式(1)又は一般式(2)で表される化合物が固定化された検出部と電気回路とを有する。
<Diphosphate compound detector>
The diphosphate compound detector of the present invention has a detector and an electric circuit on which a compound represented by the general formula (1) or the general formula (2) described later is immobilized.
 特開2013-116081号公報には、ボロン酸を含む化合物が固定化された導電性支持体を備えることを特徴とするピロリン酸を電気的に検出するためのデバイスが開示されている。特開2013-116081号公報に記載されたデバイスにおけるボロン酸を含む化合物は、フェニルボロン酸の誘導体、メチルボロン酸の誘導体、及びプロペニルボロン酸の誘導体が好ましいとされている。これらのボロン酸を含む化合物は、pKaが高いため、生理環境下におけるピロリン酸の検出は困難であった。 Japanese Patent Application Laid-Open No. 2013-116081 discloses a device for electrically detecting pyrophosphoric acid, comprising a conductive support on which a compound containing boronic acid is immobilized. The compound containing boronic acid in the device described in Japanese Patent Application Laid-Open No. 2013-116081 is preferably a derivative of phenylboronic acid, a derivative of methylboronic acid, and a derivative of propenylboronic acid. Since these boronic acid-containing compounds have high pKa, it was difficult to detect pyrophosphate in a physiological environment.
 それに対し、本発明の二リン酸化合物検出器は、検出部に含窒素複素環化合物である一般式(1)又は一般式(2)で表される化合物を用いるため、生理環境下で使用可能であり、例えば、DNA配列決定、細胞状態の解析、及び酵素反応の解析等に応用が可能である。
 また、本発明の検出器は、ピロリン酸単体のみならず、二リン酸化合物についても好適に検出することができる。
 二リン酸化合物として、例えば、ピロリン酸、ゲムシタビン二リン酸、アシクロビル二リン酸、シクロサールヌクレオチド、ニリン酸化ジドブジン、ニリン酸化ジダノシン、ニリン酸化ザルシタビン、ニリン酸化スタブジン、ニリン酸化ラミブジンなどが挙げられる。
On the other hand, the diphosphate compound detector of the present invention uses a compound represented by the general formula (1) or the general formula (2) which is a nitrogen-containing heterocyclic compound in the detection part, so that it can be used in a physiological environment. For example, it can be applied to DNA sequencing, cell state analysis, enzyme reaction analysis, and the like.
In addition, the detector of the present invention can suitably detect not only pyrophosphoric acid alone but also diphosphate compounds.
Examples of the diphosphate compound include pyrophosphate, gemcitabine diphosphate, acyclovir diphosphate, cyclosar nucleotide, diphosphonated zidovudine, diphosphate didanosine, diphosphate zalcitabine, diphosphate stavudine, and diphosphate lamivudine.
 以下、本発明の二リン酸化合物検出器の構成部分について説明する。 Hereinafter, components of the diphosphate compound detector of the present invention will be described.
≪検出部≫
 本発明の二リン酸化合物検出器は、下記一般式(1)又は下記一般式(2)で表される化合物の少なくとも1種が固定化される検出部を有する。
 本発明の二リン酸化合物検出器における検出部は、一般式(1)又は一般式(2)で表される化合物が、支持体に固定化されている構成であることが好ましい。
 また検出部は、更に信号変換器を含んでもよい。
≪Detector≫
The diphosphate compound detector of the present invention has a detector to which at least one compound represented by the following general formula (1) or the following general formula (2) is immobilized.
The detection unit in the diphosphate compound detector of the present invention preferably has a configuration in which the compound represented by the general formula (1) or the general formula (2) is immobilized on a support.
The detection unit may further include a signal converter.
 本発明における一般式(1)又は一般式(2)で表される化合物と、二リン酸化合物は特異的に反応し結合するため、本発明の検出器において、二リン酸化合物を感度良く検出することができる。
 また、一般式(1)又は一般式(2)で表される化合物と二リン酸化合物は可逆的に共有結合を形成するため、本発明の二リン酸化合物検出器は、繰り返し検出が可能である。
Since the compound represented by the general formula (1) or the general formula (2) in the present invention and the diphosphate compound react and bind specifically, the diphosphate compound is detected with high sensitivity in the detector of the present invention. can do.
In addition, since the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound reversibly form a covalent bond, the diphosphate compound detector of the present invention can be repeatedly detected. is there.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 一般式(1)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。
 一般式(1)中、Zは、1つ~3つが窒素原子であることが好ましく、1つ~2つが窒素原子であることがより好ましく、1つが窒素原子であることが更に好ましい。なお、一般式(1)中、ボロン酸基(-B(OH))は、窒素原子に結合してもよく、炭素原子に結合してもよいが、炭素原子に結合することが好ましい。
In general formula (1), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure.
In general formula (1), one to three of Z are preferably nitrogen atoms, more preferably one to two are nitrogen atoms, and still more preferably one is a nitrogen atom. In general formula (1), the boronic acid group (—B (OH) 2 ) may be bonded to a nitrogen atom or a carbon atom, but is preferably bonded to a carbon atom.
 一般式(1)中、Rは、それぞれ独立に水素原子又は一価の置換基を表す。
 一般式(1)中、Rが、一価の置換基であり、かつ複数の場合は、支持体と反応性を示す基を末端に有する置換基を少なくとも1つ含むことが好ましい。
 支持体と反応性を示す基との具体例としては、チオール基、アミノ基、スクシンイミド基、マレイミド基、ヒドロキシ基、カルボキシ基、アジド基、アルキン基などが挙げられる。
 一般式(1)中、Rが、複数であり、かつ隣接する場合、隣接する置換基が互いに結合して、環構造を形成してもよい。
 置換基が互いに結合して形成される環構造は、3員環~8員環が好ましく、5員環~6員環がより好ましい。また、置換基が互いに結合して形成される環構造は、芳香族環であっても、複素環であってもよい。
In general formula (1), R represents a hydrogen atom or a monovalent substituent each independently.
In general formula (1), when R is a monovalent substituent and there are a plurality of R, it is preferable that at least one substituent having a terminal reactive with the support is included.
Specific examples of the group reactive with the support include a thiol group, an amino group, a succinimide group, a maleimide group, a hydroxy group, a carboxy group, an azide group, and an alkyne group.
In General Formula (1), when R is plural and adjacent, adjacent substituents may be bonded to each other to form a ring structure.
The ring structure formed by bonding substituents to each other is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring. The ring structure formed by bonding substituents to each other may be an aromatic ring or a heterocyclic ring.
 一般式(1)中、Rで表される一価の置換基として、炭素数1~炭素数20のアルキル基、炭素数1~炭素数20のアルカンチオール基、ハロゲン原子、カルボキシ基、ヒドロキシ基、アミノ基、ニトロ基、メトキシ基、エトキシ基、モルホリノ基、シアノ基などが挙げられる。これらの中でも、金基板へ導入するための分子配列構造の観点から、アルカンチオール基が好ましい。 In the general formula (1), the monovalent substituent represented by R is an alkyl group having 1 to 20 carbon atoms, an alkanethiol group having 1 to 20 carbon atoms, a halogen atom, a carboxy group, or a hydroxy group. Amino group, nitro group, methoxy group, ethoxy group, morpholino group, cyano group and the like. Among these, an alkanethiol group is preferable from the viewpoint of a molecular arrangement structure for introduction into a gold substrate.
 一般式(1)中、nは、0~5の整数を表し、1~4が好ましく、1~3がより好ましく、1~2が更に好ましい。 In general formula (1), n represents an integer of 0 to 5, preferably 1 to 4, more preferably 1 to 3, and still more preferably 1 to 2.
 本発明における一般式(1)で表される化合物は、一般式(1)中、Zのうち1つ~3つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、フルオロ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基であり、nが1~4であることが好ましく、一般式(1)中、Zのうち1つ~2つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、フルオロ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基であり、nが1~2であることがより好ましく、一般式(1)中、Zのうち1つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、フルオロ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基であり、nが1~2であることがさらに好ましい。 In the compound represented by the general formula (1) in the present invention, in the general formula (1), one to three of Z are nitrogen atoms, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group. A hydroxyl group, a hydroxy group, a fluoro group, a methoxy group, an ethoxy group, a nitro group, and a morpholino group, and n is preferably 1 to 4, and in general formula (1), one to two of Z are nitrogen atoms More preferably, R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a fluoro group, a methoxy group, an ethoxy group, a nitro group, or a morpholino group, and n is 1 to 2. Preferably, in general formula (1), one of Z is a nitrogen atom, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a fluoro group, a methoxy group, or an ethoxy group. A nitro group, a morpholino group, and more preferably n is 1-2.
 本発明における一般式(1)で表される化合物の具体例として、ピリジルボロン酸、フルオロピリジルボロン酸、ピリミジニルボロン酸、キノリンボロン酸などが挙げられる。これらの中でも、ピリジルボロン酸、ピリミジニルボロン酸、キノリンボロン酸が好ましく、ピリジルボロン酸がより好ましい。 Specific examples of the compound represented by the general formula (1) in the present invention include pyridylboronic acid, fluoropyridylboronic acid, pyrimidinylboronic acid, quinolineboronic acid and the like. Among these, pyridylboronic acid, pyrimidinylboronic acid, and quinolineboronic acid are preferable, and pyridylboronic acid is more preferable.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 一般式(2)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。
 一般式(2)中、Zは、1つ~3つが窒素原子であることが好ましく、1つ~2つが窒素原子であることがより好ましく、1つが窒素原子であることが更に好ましい。なお、一般式(2)中、ボロン酸基は、窒素原子に置換してもよく、炭素原子に置換してもよいが、炭素原子に置換することが好ましい。
In general formula (2), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure.
In general formula (2), one to three of Z are preferably nitrogen atoms, more preferably one to two are nitrogen atoms, and still more preferably one is a nitrogen atom. In general formula (2), the boronic acid group may be substituted with a nitrogen atom or a carbon atom, but is preferably substituted with a carbon atom.
 一般式(2)中、Rは、前記一般式(1)中のRと同義である。 In general formula (2), R has the same meaning as R in general formula (1).
 一般式(2)中、nは、0~4の整数を表し、1~3が好ましく、1~2がより好ましく、1が更に好ましい。 In general formula (2), n represents an integer of 0 to 4, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
 本発明における一般式(2)で表される化合物は、一般式(2)中、Zのうち1つ~3つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基、ベンジル基であり、nが1~4であることが好ましく、
 一般式(2)中、Zのうち1つ~2つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基、ベンジル基であり、nが1~2であることがより好ましく、
 一般式(2)中、Zのうち1つが窒素原子であり、Rが水素原子、アルキル基、ハロゲン原子、カルボキシ基、アミノ基、ヒドロキシ基、メトキシ基、エトキシ基、ニトロ基、モルホリノ基、ベンジル基であり、nが1~2であることがさらに好ましい。
In the compound represented by the general formula (2) in the present invention, in the general formula (2), 1 to 3 of Z are nitrogen atoms, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group. Group, hydroxy group, methoxy group, ethoxy group, nitro group, morpholino group, benzyl group, and preferably n is 1 to 4,
In general formula (2), one to two of Z are nitrogen atoms, and R is a hydrogen atom, alkyl group, halogen atom, carboxy group, amino group, hydroxy group, methoxy group, ethoxy group, nitro group, morpholino More preferably a benzyl group, and n is 1 to 2,
In general formula (2), one of Z is a nitrogen atom, and R is a hydrogen atom, an alkyl group, a halogen atom, a carboxy group, an amino group, a hydroxy group, a methoxy group, an ethoxy group, a nitro group, a morpholino group, a benzyl group More preferably, n is 1 to 2.
 本発明における一般式(2)で表される化合物の具体例として、ピラゾールボロン酸、ピロールボロン酸、インドールボロン酸、インダゾールボロン酸などが挙げられる。 Specific examples of the compound represented by the general formula (2) in the present invention include pyrazole boronic acid, pyrrole boronic acid, indole boronic acid, indazole boronic acid and the like.
(支持体)
 本発明における一般式(1)又は一般式(2)で表される化合物は、式中Rで表される置換の少なくとも1つと支持体とが結合し、固定化することができる。
 本発明における支持体は、当技術分野で一般的に用いられるものから選択して用いることができる。中でも、電気的方法で被検物を検出できる点から、導電性支持体を用いることが好ましい。
(Support)
In the compound represented by the general formula (1) or the general formula (2) in the present invention, at least one of the substitutions represented by R in the formula can be bonded to the support and immobilized.
The support in the present invention can be selected from those generally used in the art. Among these, it is preferable to use a conductive support from the viewpoint that the test object can be detected by an electrical method.
 導電性支持体の具体例としては、貴金属(金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム等)、銅、アルミニウム、タングステン、モリブデン、クロム、チタン、ニッケル等の金属;ステンレス、ハステロイ、インコネル、モネル、ジュラルミン等の合金;半導体素子等の電極(トランジスタ、FETなど);シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライト及び感光性ガラス等のガラス材料;ポリエステル、ポリスチレン、ポリエチレン、ポリプロピレン、ナイロン、アクリル、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリウレタン、フェノール樹脂、メラミン樹脂、エポキシ樹脂及びポリ塩化ビニル等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロースが挙げられる。 Specific examples of the conductive support include noble metals (gold, silver, platinum, palladium, rhodium, iridium, ruthenium, etc.), metals such as copper, aluminum, tungsten, molybdenum, chromium, titanium, nickel; stainless steel, hastelloy, inconel Alloys such as Monel and Duralumin; Electrodes such as semiconductor elements (transistors, FETs, etc.); Silicon; Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; Plastics such as polyester, polystyrene, polyethylene, polypropylene, nylon, acrylic, polycarbonate, polyethylene terephthalate (PET), polyurethane, phenol resin, melamine resin, epoxy resin, and polyvinyl chloride; agarose, Dextran, cellulose, polyvinyl alcohol, nitrocellulose.
 また、非導電性支持体を導電性材料で被覆したものも導電性支持体として用いることができる。導電性支持体の形状も、特に限定はなく、平面により形成されるもの(例えばタイタープレート、多孔質及び細孔アレー、マイクロ流路など)、平板、フィルム、チューブ及び粒子(磁性粒子等)が挙げられる。導電性支持体は、後述する電気的変化の測定を簡便かつ効率的に行うための電極であってもよい。 Also, a non-conductive support coated with a conductive material can be used as the conductive support. The shape of the conductive support is also not particularly limited, and those formed by flat surfaces (for example, titer plates, porous and pore arrays, microchannels, etc.), flat plates, films, tubes, and particles (magnetic particles, etc.) Can be mentioned. The conductive support may be an electrode for easily and efficiently measuring an electrical change described later.
 これらの中でも二リン酸化合物を高感度かつ定量的に測定する観点から、多孔性薄膜、または細孔アレー形状などが好ましく、細孔アレー形状がより好ましい。 Among these, from the viewpoint of highly sensitive and quantitative measurement of the diphosphate compound, a porous thin film or a pore array shape is preferable, and a pore array shape is more preferable.
(支持体への固定化方法)
 一般式(1)又は一般式(2)で表される化合物を支持体に固定する方法は、特に限定されるものではない。例えば、共有結合、イオン結合、物理吸着によって一般式(1)又は一般式(2)で表される化合物を支持体に固定することができる。
 具体例として、一般式(1)又は一般式(2)で表される化合物を混和させた溶液(例えばエタノールなどの有機溶媒中)を支持体上に塗布し、乾燥させることにより支持体の表面に一般式(1)又は一般式(2)で表される化合物を固定する方法が挙げられる。
 また、一般式(1)又は一般式(2)で表される化合物が置換基を有する場合には、支持体の性質や固定化させる化合物の性質に合わせ、適宜、化学反応又は酵素反応などにより固定する方法が挙げられる。さらに、一般式(1)又は一般式(2)で表される化合物は、スペーサー配列、例えば1個~10個の炭素原子を含む炭化水素基を介して、支持体に固定させる方法も挙げられる。
(Immobilization method to support)
The method for fixing the compound represented by the general formula (1) or the general formula (2) to the support is not particularly limited. For example, the compound represented by the general formula (1) or the general formula (2) can be fixed to the support by covalent bond, ionic bond, or physical adsorption.
As a specific example, the surface of the support is obtained by applying a solution (for example, in an organic solvent such as ethanol) mixed with the compound represented by the general formula (1) or (2) on the support and drying it. The method of fixing the compound represented by general formula (1) or general formula (2) is mentioned.
Further, when the compound represented by the general formula (1) or the general formula (2) has a substituent, it may be appropriately selected according to a chemical reaction or an enzymatic reaction according to the properties of the support or the compound to be immobilized. The method of fixing is mentioned. Furthermore, the compound represented by the general formula (1) or the general formula (2) may be fixed to a support via a spacer sequence, for example, a hydrocarbon group containing 1 to 10 carbon atoms. .
 一般式(1)又は一般式(2)で表される化合物を、共有結合によって支持体に固定する場合は、例えば、一般式(1)又は一般式(2)で表される化合物における置換基Rの末端と、支持体に導入された反応性の官能基と、を反応させることにより実施できる。
 また、一般式(1)又は一般式(2)で表される化合物が支持体(例えば貴金属)と共有結合可能な置換基Rの末端を有する場合には、その置換基Rの末端を利用して、一般式(1)又は一般式(2)で表される化合物を金や白金等の貴金属支持体に共有結合を介して固定することができる。この方法によれば、金や白金等は原子レベルで配列制御ができる。すなわち金属結晶として成長させた格子面は1原子レベルの凹凸も無い平板状加工が可能である。前記格子面に一般式(1)又は一般式(2)で表される化合物の単分子層を構築することにより、ピロリン酸を検出するための平板状支持体を得ることができる。すなわち、この一般式(1)又は一般式(2)で表される化合物の単分子層を持つ金属材でできた支持体上に分子の配向が制御された上で、高さが制御された検出部を提供することができる。
 また、この一般式(1)又は一般式(2)で表される化合物の単分子層を持つ金属材でできた支持体上に、ボロン酸基と結合可能なペプチドタグを介して任意のタンパク質分子を結合させることで、金属平面上にその分子の配向が制御された上で、かつ数オングストロームの誤差で固定された分子の高さが制御されたデバイスを提供することができる。
 例えば、支持体の表面上に分子を同一配向で保持されている単分子膜として固定化することができる。
When the compound represented by the general formula (1) or the general formula (2) is fixed to the support by a covalent bond, for example, the substituent in the compound represented by the general formula (1) or the general formula (2) This can be carried out by reacting the end of R with a reactive functional group introduced into the support.
In addition, when the compound represented by the general formula (1) or the general formula (2) has an end of the substituent R that can be covalently bonded to the support (for example, a noble metal), the end of the substituent R is used. Thus, the compound represented by the general formula (1) or the general formula (2) can be fixed to a noble metal support such as gold or platinum via a covalent bond. According to this method, arrangement of gold, platinum, etc. can be controlled at the atomic level. In other words, the lattice plane grown as a metal crystal can be processed into a flat plate shape having no unevenness of one atomic level. By constructing a monomolecular layer of the compound represented by the general formula (1) or the general formula (2) on the lattice plane, a plate-like support for detecting pyrophosphate can be obtained. That is, the height was controlled while the orientation of molecules was controlled on a support made of a metal material having a monomolecular layer of the compound represented by the general formula (1) or the general formula (2). A detection unit can be provided.
Further, any protein can be formed on a support made of a metal material having a monomolecular layer of the compound represented by the general formula (1) or the general formula (2) via a peptide tag capable of binding to a boronic acid group. By bonding the molecules, it is possible to provide a device in which the orientation of the molecules on the metal plane is controlled and the height of the molecules fixed with an error of several angstroms is controlled.
For example, it can be immobilized as a monomolecular film in which molecules are held in the same orientation on the surface of the support.
 また例えば、一般式(1)で表される化合物の置換基Rの末端としてアミノ基を使用し、支持体に活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基又はイソシアネート基を導入することにより共有結合を形成できる。
 また、置換基Rの末端としてチオール基を使用し、支持体に活性エステル基、マレイミド基又はジスルフィド基を導入してもよい。活性エステル基としては、例えば、p-ニトロフェニル基、N-ヒドロキシスクシンイミド基、コハク酸イミド基、フタル酸イミド基、5-ノルボルネン-2、3-ジカルボキシイミド基等が挙げられる。
 官能基を支持体に導入する方法の一つとしては、所望の官能基を有するシランカップリング剤(γ-アミノプロピルトリエトキシシランなど)によって支持体表面を処理する方法が挙げられる。別の方法としては、プラズマ処理が挙げられる。
Also, for example, an amino group is used as the terminal of the substituent R of the compound represented by the general formula (1), and an active ester group, epoxy group, aldehyde group, carbodiimide group, isothiocyanate group or isocyanate group is introduced into the support. By doing so, a covalent bond can be formed.
Moreover, a thiol group may be used as the terminal of the substituent R, and an active ester group, a maleimide group or a disulfide group may be introduced into the support. Examples of the active ester group include p-nitrophenyl group, N-hydroxysuccinimide group, succinimide group, phthalimide group, 5-norbornene-2, and 3-dicarboximide group.
One method for introducing a functional group into the support is to treat the support surface with a silane coupling agent having a desired functional group (γ-aminopropyltriethoxysilane or the like). Another method includes plasma treatment.
 上述のようにして、一般式(1)又は一般式(2)で表される化合物を支持体に固定することができる。 As described above, the compound represented by the general formula (1) or the general formula (2) can be fixed to the support.
 本発明の好ましい実施形態は、支持体に金電極を用い、3-ピリジルボロン酸にアルカンチオールを導入し、金電極上にアルカンチオール誘導体の自己組織化単分子膜(Self-Assembled Monolayer;SAM)を生成し、ピロリン酸検出用電極とする。 In a preferred embodiment of the present invention, a gold electrode is used as a support, an alkanethiol is introduced into 3-pyridylboronic acid, and a self-assembled monolayer of a alkanethiol derivative (Self-Assembled Monolayer; SAM) on the gold electrode. To produce pyrophosphate detection electrode.
 本発明では別の方法として、一般式(1)又は一般式(2)で表される化合物が、置換基Rとして架橋性の官能基(例えば、水酸基など)を有する場合、架橋分子を用いて架橋することにより、一般式(1)又は一般式(2)で表される化合物自体で支持体(固定化基材)を形成する方法が挙げられる。架橋分子としては、多価アルコール、例えばポリビニルアルコールや、多糖類、例えばデキストランなどが挙げられる。 In the present invention, as another method, when the compound represented by the general formula (1) or the general formula (2) has a crosslinkable functional group (for example, a hydroxyl group) as the substituent R, a crosslinkable molecule is used. The method of forming a support body (immobilization base material) with the compound itself represented by General formula (1) or General formula (2) by bridge | crosslinking is mentioned. Examples of cross-linking molecules include polyhydric alcohols such as polyvinyl alcohol and polysaccharides such as dextran.
 形成することができる支持体(固定化基材)としては、固体、高分子膜、高分子半透膜、フィルム、固相ゲル及び液相ゲルなどが挙げられる。したがって、本発明は、一般式(1)又は一般式(2)で表される化合物を、半透膜などのフィルム状物質や、様々な含水率を有するゲル状物質中に安定的に共有結合により固定化した検出部とすることもできる。また、これらの支持体は、微小な、例えばマイクロメートル又はナノメートルのサイズとすることが可能である。 Examples of the support (immobilized substrate) that can be formed include solid, polymer membrane, polymer semipermeable membrane, film, solid phase gel, and liquid phase gel. Therefore, the present invention stably and covalently bonds the compound represented by the general formula (1) or the general formula (2) in a film-like substance such as a semipermeable membrane or a gel-like substance having various moisture contents. It can also be set as the detection part fixed by. Also, these supports can be microscopic, eg, micrometer or nanometer size.
 さらに、このように固定された一般式(1)又は一般式(2)で表される化合物のボロン酸基を利用して、他にも様々な分子(タンパク質など)を支持体に固定することが可能である。
 一般式(1)又は一般式(2)で表される化合物や他のタンパク質分子を電極等の貴金属支持体上に配向制御した状態で結合させることができるため、固定化した化合物又は分子(例えばタンパク質、とりわけ酵素)の活性部位を貴金属支持体表面から約100オングストローム以内におさめて固定することも可能となる。これにより、数十から百数十オングストロームと推定されている電界効果トランジスタ(FET)のデバイ長内に化学反応又は酵素反応(種々の電荷移動反応を含むことが多い)を惹起させることが可能となる。そのため、ピロリン酸の検出反応又は任意の酵素反応を、FETにより検出する系の構築が可能となる。例えば、単金属結晶からなる完全に平板な支持体上に配向及び高さを揃えて一般式(1)又は一般式(2)で表される化合物を固定した検出部は、FETなどのセンサーチップに好適である。
Furthermore, other various molecules (proteins, etc.) are immobilized on the support using the boronic acid group of the compound represented by the general formula (1) or the general formula (2) thus immobilized. Is possible.
Since the compound represented by the general formula (1) or the general formula (2) and other protein molecules can be bonded in an orientation-controlled state on a noble metal support such as an electrode, an immobilized compound or molecule (for example, It is also possible to fix the active site of proteins (especially enzymes) within about 100 angstroms from the surface of the noble metal support. As a result, it is possible to cause chemical reactions or enzyme reactions (often including various charge transfer reactions) within the Debye length of field effect transistors (FETs) estimated to be tens to hundreds of angstroms. Become. Therefore, it is possible to construct a system for detecting a pyrophosphate detection reaction or an arbitrary enzyme reaction using an FET. For example, the detection unit in which the compound represented by the general formula (1) or the general formula (2) is fixed on a completely flat support made of a single metal crystal and has a uniform orientation and height is a sensor chip such as an FET. It is suitable for.
 ここで、電界効果トランジスタ(FET)とは、電気的検出を利用したセンサーに汎用されている技術である。原理としては、ソース電極からドレイン電極へ流れる電流を、第三の電極であるゲート電極で制御し、そのゲート電極表面で分子間相互作用を起こさせるとゲート電極の電荷が変化するため、電流的応答が変化する。 Here, a field effect transistor (FET) is a technology widely used for sensors using electrical detection. In principle, the current flowing from the source electrode to the drain electrode is controlled by the gate electrode, which is the third electrode, and if the intermolecular interaction occurs on the surface of the gate electrode, the charge of the gate electrode changes, so Response changes.
 FETはセンサーチップ上に電荷移動が生じる反応が起こった場合、高感度な検出ができるが、検出できる距離が支持体表面から数ナノメートルとされている。そのため、上述のように配向が制御され、かつ高さが高精度で揃えられた一般式(1)又は一般式(2)で表される化合物を固定した支持体(例えば金属結晶基盤)の場合、検出限界内で有効に電荷移動反応を検出することが可能である。 FET is capable of highly sensitive detection when a reaction that causes charge transfer on the sensor chip occurs, but the detectable distance is several nanometers from the support surface. Therefore, in the case of a support (for example, a metal crystal base) on which a compound represented by the general formula (1) or the general formula (2) whose orientation is controlled and the height is aligned with high accuracy as described above is fixed. It is possible to detect the charge transfer reaction effectively within the detection limit.
 ピロリン酸の検出の際、一般式(1)又は一般式(2)で表される化合物が固定された支持体を溶液中に配置されることが好ましい。使用する溶液は、特に限定されるものではなく、被検物(ピロリン酸を生じる反応)の種類、支持体の種類などに応じて適宜選択することができる。例えば、水、生理食塩水、リン酸緩衝液(PBS)、Tris緩衝液、酢酸緩衝液、炭酸緩衝液、ホウ酸緩衝液などの水性緩衝液が挙げられる。 When detecting pyrophosphoric acid, it is preferable that a support on which the compound represented by the general formula (1) or (2) is fixed is placed in the solution. The solution to be used is not particularly limited, and can be appropriately selected according to the type of test substance (reaction that generates pyrophosphate), the type of support, and the like. Examples thereof include aqueous buffers such as water, physiological saline, phosphate buffer (PBS), Tris buffer, acetate buffer, carbonate buffer, and borate buffer.
 これらの溶液の中でも、一般式(1)又は一般式(2)で表される化合物とピロリン酸との反応性の観点から、前記溶液は、pH8.0以下であることが好ましく、pH3.0~pH7.0であることがより好ましく、pH4.0~pH6.0であることが更に好ましい。 Among these solutions, from the viewpoint of the reactivity between the compound represented by the general formula (1) or the general formula (2) and pyrophosphoric acid, the solution preferably has a pH of 8.0 or less, and has a pH of 3.0. More preferably, the pH is more preferably 7.0, and even more preferably 4.0 to 6.0.
 また、本発明の検出部の他の実施態様として、一般式(1)又は一般式(2)で表される化合物を固定化した支持体を固相基板(例えば、ガラスなど)に接合する態様が挙げられる。この固相基板の一端面から支持体に臨界角以上の角度でレーザー光を入射することにより、支持体表面に固定化された化合物との境界面に表面プラズモンを発生させることができ、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)を利用して、ピロリン酸の検出が可能である。固相基板は、例えば、図1のゲート絶縁膜15に代えて配置した態様とすることができる。 As another embodiment of the detection unit of the present invention, an embodiment in which a support on which a compound represented by the general formula (1) or (2) is immobilized is bonded to a solid phase substrate (for example, glass). Is mentioned. Surface plasmon can be generated at the interface with the compound immobilized on the surface of the support by injecting laser light from one end face of the solid phase substrate to the support at an angle greater than the critical angle. The detection of pyrophosphate can be performed using resonance (Surface Plasmon Resonance: SPR). For example, the solid phase substrate may be arranged in place of the gate insulating film 15 in FIG.
 また、本発明の検出部の他の実施態様として、一般式(1)又は一般式(2)で表される化合物を固定化した支持体を水晶振動子に接合し、水晶振動子マイクロバランス(Quartz Crystal Microbalance:QCM)センサーとする態様が挙げられる。QCMセンサーは、共振周波数変化から、水晶振動子を介して、支持体表面に固定化された化合物に吸着又は結合した微量物質の質量測定することができ、これによりピロリン酸の検出が可能である。 As another embodiment of the detection unit of the present invention, a support on which a compound represented by the general formula (1) or (2) is fixed is bonded to a crystal resonator, and a crystal resonator microbalance ( The aspect made into a Quartz Crystal Microbalance (QCM) sensor is mentioned. The QCM sensor can measure the mass of a trace substance adsorbed or bound to a compound immobilized on the surface of a support from a resonance frequency change via a quartz crystal resonator, and thus pyrophosphate can be detected. .
(信号変換器)
 本発明の二リン酸化合物検出器における検出部は、信号変換器を含んでもよい。信号変換器は、化学反応に伴う、表面プラズモン変化、質量変化、化学ポテンシャル、熱、及び光学的な変化などの信号を電気信号に変換することができる。
 これにより、一般式(1)又は一般式(2)で表される化合物と二リン酸化合物が結合するときに生じる表面プラズモン変化、質量変化、化学ポテンシャル、熱、及び光学的な変化などの信号が電気信号に変換され、検出部から電気的変化として出力される。
 その結果、本発明の二リン酸化合物検出器において、熱変化、光学的変化などによる二リン酸化合物の検出が可能となる。
(Signal converter)
The detection unit in the diphosphate compound detector of the present invention may include a signal converter. The signal converter can convert a signal such as a surface plasmon change, a mass change, a chemical potential, a heat, and an optical change associated with a chemical reaction into an electrical signal.
Thereby, signals such as surface plasmon change, mass change, chemical potential, heat, and optical change generated when the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound are combined. Is converted into an electrical signal and output as an electrical change from the detector.
As a result, the diphosphate compound detector of the present invention can detect the diphosphate compound by thermal change, optical change, and the like.
≪電気回路≫
 本発明の二リン酸化合物検出器は、電気回路を有する。
 電気回路は、前記検出部に接続され、検出部における電気的変化(前記信号変換器により変換された電気信号の変化を含む)を、電圧変化測定器等によって測定することができる。電圧変化測定器は、微小な電圧変化を測定可能な測定器、又は微小な電圧変化に惹起される電極内電子移動(微小電流)を検知可能な測定器であればいかなる回路構成を有する測定器でもよい。
≪Electric circuit≫
The diphosphate compound detector of the present invention has an electric circuit.
The electric circuit is connected to the detection unit, and an electrical change in the detection unit (including a change in the electric signal converted by the signal converter) can be measured by a voltage change measuring device or the like. The voltage change measuring instrument has any circuit configuration as long as it is a measuring instrument capable of measuring a minute voltage change or a measuring instrument capable of detecting electron movement (minute current) in an electrode caused by a minute voltage change. But you can.
 本発明の検出器の構成例について、図1を用いて説明する。
 本発明の二リン酸化合物検出器1は、検出部3と、この検出部3に信号を与えて駆動させる検出部駆動回路部4と、各回路部に電源を供給する給電部5と、検出部3からの出力を処理して検出信号を出力する検出回路部6と、検出信号を外部に出力するための出力インターフェース(出力IF)部7とが、プリント実装基板2上に一体的に形成され、集積化された構成を有する。
 検出部3は、検出媒体となる電界効果トランジスタ(以下、FETとも呼ぶ)8を備えており、プリント実装基板2上に実装された検出部駆動回路部4の制御信号を基に、電源10から給電される電力により駆動し得る。実際上、この検出部3は、FET8から出力される電流計11でサンプリングし、その検出結果を検出回路部6に送出し得る。これにより、二リン酸化合物検出器1では、FET8からの検出結果を検出回路部6で処理し所定の検出信号として出力IF部7から取り出し得るようになされている。
 ここでFET8は、半導体基板12の表面に形成されたソース13及びドレイン14と、これら半導体基板12、ソース13及びドレイン14上に形成されたゲート絶縁膜15の表面に一般式(1)又は一般式(2)で表される化合物を固定化した支持体(検出デバイス)16が設けられた構成を有する。実際上、ゲート絶縁膜15の上には、検出デバイス16を測定セル壁17が取り囲んだ検出領域が形成されており、当該測定セル壁17によって区画された検出領域内に、ピロリン酸等の二リン酸化合物溶液を留め得るようになされている。
 かかる構成に加えて検出デバイス16は、例えば金蒸着薄膜からなる支持体20の一面を一般式(1)又は一般式(2)で表される化合物21で被覆した構成を有し、支持体20がゲート絶縁膜15に形成され、一般式(1)又は一般式(2)で表される化合物21が検出表面として検出領域内に露出し得るように構成されている。このとき支持体20は、ゲートとして機能する。
 このようなFET8は、例えば参照電極22を用いて、支持体20に対して電圧が印加され、かつこの状態で二リン酸化合物溶液が検出領域に流入されて当該参照電極22と検出表面とが二リン酸化合物溶液中に入れられることで、ソース13及びドレイン14間に電流が流れる。
 因みに、この実施形態では、検出部3を含めて全ての構成を単一のプリント実装基板2上に集積化することが可能であり、非常に小型で、かつ簡便な構成によりピロリン酸を検出することができる。また、FET8は、検出表面上に備えた分子固有電荷をトランジスタ特性変化と同期させて検出する非侵襲・非標識計測法であり、リアルタイム計測も可能となる。さらにこのFET8は、レーザー等の光学系機器が不要となる分だけコスト低減や小型化を図ることもでき、また半導体加工技術による高密度・超並列化が容易に行え、ハイスループットシステム化において求められる主要要件を潜在的に網羅する。
A configuration example of the detector of the present invention will be described with reference to FIG.
The diphosphate compound detector 1 of the present invention includes a detection unit 3, a detection unit drive circuit unit 4 that drives the detection unit 3 by giving a signal, a power supply unit 5 that supplies power to each circuit unit, and a detection A detection circuit unit 6 that processes the output from the unit 3 and outputs a detection signal and an output interface (output IF) unit 7 for outputting the detection signal to the outside are integrally formed on the printed circuit board 2. And has an integrated configuration.
The detection unit 3 includes a field effect transistor (hereinafter also referred to as an FET) 8 serving as a detection medium, and is supplied from a power source 10 based on a control signal of the detection unit drive circuit unit 4 mounted on the printed mounting board 2. It can be driven by the supplied power. In practice, the detection unit 3 can sample with the ammeter 11 output from the FET 8 and send the detection result to the detection circuit unit 6. Thereby, in the diphosphate compound detector 1, the detection result from the FET 8 can be processed by the detection circuit unit 6 and extracted from the output IF unit 7 as a predetermined detection signal.
Here, the FET 8 has the general formula (1) or the general formula on the surface of the source 13 and the drain 14 formed on the surface of the semiconductor substrate 12 and the gate insulating film 15 formed on the semiconductor substrate 12, the source 13 and the drain 14. It has the structure provided with the support body (detection device) 16 which fix | immobilized the compound represented by Formula (2). In practice, a detection region in which the measurement cell wall 17 surrounds the detection device 16 is formed on the gate insulating film 15, and in the detection region partitioned by the measurement cell wall 17, two pyrophosphates or the like are formed. The phosphate compound solution can be retained.
In addition to this configuration, the detection device 16 has a configuration in which, for example, one surface of the support 20 made of a gold vapor-deposited thin film is coated with the compound 21 represented by the general formula (1) or the general formula (2). Is formed on the gate insulating film 15, and the compound 21 represented by the general formula (1) or the general formula (2) is configured to be exposed in the detection region as a detection surface. At this time, the support 20 functions as a gate.
In such an FET 8, for example, a voltage is applied to the support 20 using the reference electrode 22, and in this state, the diphosphate compound solution flows into the detection region, and the reference electrode 22 and the detection surface are connected to each other. By being put in the diphosphate compound solution, a current flows between the source 13 and the drain 14.
Incidentally, in this embodiment, all the components including the detector 3 can be integrated on a single printed mounting board 2, and pyrophosphoric acid is detected with a very small and simple configuration. be able to. Further, the FET 8 is a non-invasive / non-labeling measurement method that detects the molecular intrinsic charge provided on the detection surface in synchronization with the change in transistor characteristics, and enables real-time measurement. Furthermore, the FET 8 can be reduced in cost and size by the amount that no optical system equipment such as a laser is required, and can be easily realized in high density and super parallelism by semiconductor processing technology, and is required for high throughput system. Potentially covering key key requirements.
<二リン酸化合物検出方法>
 本発明の二リン酸化合物検出方法は、既述の二リン酸化合物検出器を用い、二リン酸化合物検出器の検出部と被検物を接触させる工程と、前記検出部の電気的変化を測定する測定工程と、前記電気的変化に基づいて二リン酸化合物を検出する工程を有する。
<Diphosphate detection method>
The method for detecting a diphosphate compound of the present invention uses the above-described diphosphate compound detector to bring the detection unit of the diphosphate compound detector into contact with the test object, and the electrical change of the detection unit. A measurement step of measuring, and a step of detecting a diphosphate compound based on the electrical change.
 本発明の二リン酸化合物検出方法は、既述の二リン酸化合物検出器を用いるため、検出感度に優れる。
 以下に、本発明の二リン酸化合物検出方法の各工程について詳細に説明する。
Since the diphosphate compound detection method of the present invention uses the above-described diphosphate compound detector, the detection sensitivity is excellent.
Below, each process of the diphosphate compound detection method of this invention is demonstrated in detail.
≪接触工程≫
 本発明の二リン酸化合物検出方法は、少なくとも一般式(1)又は一般式(2)で表される化合物が固定化された検出部のボロン酸基と被検物とを接触させる接触工程を有する。
≪Contact process≫
The method for detecting a diphosphate compound according to the present invention includes a contact step of bringing a boronic acid group of a detection unit, to which a compound represented by general formula (1) or general formula (2) is immobilized, into contact with a test substance. Have.
 本発明において「被検物」とは、二リン酸化合物を検出しようとする対象であり、例えばピロリン酸を生じる反応物、化学反応又は酵素反応の反応液などが含まれる。また「接触」は、被検物が検出部における支持体と近接するような操作を意味する。例えば被検物(液体)を検出部における支持体に添加すること、被検物(液体)を検出部における支持体が配置された溶液中に添加し混和すること、検出部における支持体上で化学反応又は酵素反応を行うこと、などを包含する。 In the present invention, the “test object” is a target for detecting a diphosphate compound, and includes, for example, a reaction product that generates pyrophosphate, a reaction solution of a chemical reaction or an enzyme reaction, and the like. “Contact” means an operation in which the test object comes close to the support in the detection unit. For example, adding the test object (liquid) to the support in the detection unit, adding the test object (liquid) to the solution in which the support in the detection unit is arranged, and mixing, on the support in the detection unit Including performing a chemical reaction or an enzymatic reaction.
 前記接触工程は、一般式(1)又は一般式(2)で表される化合物と二リン酸化合物との反応性の観点から、溶液中で行われることが好ましい。
 また、溶液は、pH8.0以下であることが好ましく、pH3.0~pH7.0であることがより好ましく、pH4.0~pH6.0であることが更に好ましい。
The contact step is preferably performed in a solution from the viewpoint of the reactivity between the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound.
The solution preferably has a pH of 8.0 or less, more preferably from pH 3.0 to pH 7.0, and still more preferably from pH 4.0 to pH 6.0.
≪測定工程≫
 本発明の二リン酸化合物検出方法は、検出部の電気的変化を測定する測定工程を含む。
 本発明において「電気的変化」とは、当技術分野で公知であり、検出部における電位の変化を指し、電圧・電流の変化として測定することができる。電気的変化は、検出部に接続した電気回路を介して電圧変化測定器等によって測定することができる。電圧変化測定器は、微小な電圧変化を測定可能な測定器、又は微小な電圧変化に惹起される電極内電子移動(微小電流)を検知可能な測定器であればいかなる回路構成を有する測定器でもよい。
 例えば、微小な電圧変化を測定するためにトランジスタ、好ましくは電界効果トランジスタ(FET)、又は同等の微小電流測定系を回路内に有する測定器を用いることができる。好ましい実施形態においては、検出部として電極を採用し、一般式(1)又は一般式(2)で表される化合物を固定した電極をFETのゲート電極とし、その電気的変化を経時的に観察できる装置構成を用いる。変化を測定するため、被検物との接触前の電圧又は微小電流や、被検物を接触させない対照の電圧又は微小電流を測定して、接触後の電圧又は微小電流と比較することにより電気的変化を測定してもよい。
≪Measurement process≫
The diphosphate compound detection method of the present invention includes a measurement step of measuring an electrical change of the detection unit.
In the present invention, the “electrical change” is known in the art, refers to a change in potential in the detection unit, and can be measured as a change in voltage / current. The electrical change can be measured by a voltage change measuring device or the like via an electric circuit connected to the detection unit. The voltage change measuring instrument has any circuit configuration as long as it is a measuring instrument capable of measuring a minute voltage change or a measuring instrument capable of detecting electron movement (minute current) in an electrode caused by a minute voltage change. But you can.
For example, a transistor, preferably a field effect transistor (FET), or an instrument having an equivalent minute current measurement system in the circuit can be used to measure minute voltage changes. In a preferred embodiment, an electrode is used as the detection unit, an electrode to which the compound represented by the general formula (1) or (2) is fixed is used as the gate electrode of the FET, and its electrical change is observed over time. A device configuration that can be used is used. In order to measure the change, the voltage or microcurrent before contact with the test object or the control voltage or microcurrent without contact with the test object is measured and compared with the voltage or microcurrent after contact. Changes may be measured.
 また、本発明における電気的変化には、信号変換器により他の信号から電気信号に変換されたものも含まれる。すなわち、信号変換器を用いることにより、本発明の測定工程において一般式(1)又は一般式(2)で表される化合物と二リン酸化合物が結合するときに生じる表面プラズモン変化、質量変化、化学ポテンシャル、熱、及び光学的な変化についても測定が可能である。 In addition, the electrical change in the present invention includes one converted from another signal to an electrical signal by a signal converter. That is, by using a signal converter, a surface plasmon change, a mass change, which occurs when the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound are combined in the measurement process of the present invention. Measurements are also possible for chemical potential, thermal and optical changes.
≪検出工程≫
 本発明の二リン酸化合物検出方法は、検出部の電気的変化に基づいて二リン酸化合物を検出する検出工程を含む。
 電気的変化が測定された場合には、被検物中の二リン酸化合物の存在が検出される。電気的変化は、二リン酸化合物の存在量に応じてその変化の程度も変わるため、電気的変化の程度を測定することにより、二リン酸化合物を定量することも可能である。
≪Detection process≫
The method for detecting a diphosphate compound of the present invention includes a detection step of detecting a diphosphate compound based on an electrical change of the detection unit.
When the electrical change is measured, the presence of the diphosphate compound in the test object is detected. Since the degree of the electrical change varies depending on the amount of the diphosphate compound, the diphosphate compound can be quantified by measuring the degree of the electrical change.
 本発明の一態様においては、被検物としてDNAポリメラーゼの反応物を用いる。すなわち、検出対象となるピロリン酸は、ターゲットDNA又はRNAを鋳型としたDNAポリメラーゼによるDNA相補鎖合成により放出されるピロリン酸である。
 DNAポリメラーゼは、ターゲットDNA又はRNAに適合するデオキシリボ核酸(ヌクレオチド三リン酸:dATP、dCTP、dGTP又はdTTP)が基質として取り込まれた際にピロリン酸を放出する。そのため、未知配列のターゲットDNAを鋳型として用いて、4種のデオキシリボ核酸(基質)を順次添加し、ピロリン酸を検出することにより、配列に適合した基質の取り込みの有無を判定し、最終的にはターゲットDNAの塩基配列を決定することが可能となる。またDNAの段階的な相補鎖合成をモニターすることにより、ターゲットDNAの塩基配列の全体又は一部を決定することができる。
 さらに、ターゲットDNA又はRNAを鋳型としたDNAポリメラーゼによるDNA相補鎖合成により放出されるピロリン酸を検出することにより、配列に適合した基質の取り込みの有無を判定し、ターゲットDNA又はRNAの塩基配列の全体又は一部を決定する。これにより最終的にはターゲットDNA又はRNAを検出又は定量することができる。
In one embodiment of the present invention, a DNA polymerase reaction product is used as a test substance. That is, pyrophosphoric acid to be detected is pyrophosphoric acid released by DNA complementary strand synthesis by DNA polymerase using target DNA or RNA as a template.
DNA polymerase releases pyrophosphate when deoxyribonucleic acid (nucleotide triphosphate: dATP, dCTP, dGTP, or dTTP) compatible with the target DNA or RNA is incorporated as a substrate. Therefore, using the target DNA of unknown sequence as a template, 4 types of deoxyribonucleic acid (substrate) are added in sequence, and pyrophosphoric acid is detected to determine whether or not a substrate suitable for the sequence has been incorporated, and finally Makes it possible to determine the base sequence of the target DNA. In addition, the whole or part of the base sequence of the target DNA can be determined by monitoring the stepwise complementary strand synthesis of DNA.
Furthermore, by detecting pyrophosphate released by DNA complementary strand synthesis by DNA polymerase using the target DNA or RNA as a template, the presence or absence of incorporation of a substrate suitable for the sequence is determined, and the base sequence of the target DNA or RNA is determined. Determine all or part of it. Thereby, the target DNA or RNA can be finally detected or quantified.
 本発明の二リン酸化合物検出方法の別の態様として、一般式(1)又は一般式(2)で表される化合物に、色素化合物を組み合わせて、二リン酸化合物を光学的に検出する方法が挙げられる。
 この方法では、一般式(1)又は一般式(2)で表される化合物と二リン酸化合物との反応に伴う色素化合物の紫外線吸収特性、可視光吸収特性、赤外線吸収特性、蛍光スペクトル、及び円偏光二色吸光度の変化などを検出し、二リン酸化合物を検出することができる。
As another aspect of the method for detecting a diphosphate compound of the present invention, a method for optically detecting a diphosphate compound by combining a compound represented by the general formula (1) or (2) with a dye compound Is mentioned.
In this method, an ultraviolet absorption property, a visible light absorption property, an infrared absorption property, a fluorescence spectrum, and a fluorescence spectrum of the dye compound accompanying the reaction between the compound represented by the general formula (1) or the general formula (2) and the diphosphate compound, and A change in circularly polarized dichroism absorbance and the like can be detected to detect a diphosphate compound.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」及び「部」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Unless otherwise specified, “%” and “part” are based on mass.
(参考例1)
 3-ピリジルボロン酸(3-PyBA)及びピロリン酸(PPi)をそれぞれ20mMになるよう純水に溶解させ、3-PyBA/PPi混合液を調製した。1M塩酸又は1M水酸化ナトリウムを用い、前記混合液のpHを種々の値に調整した。
 各pHの混合液の11B-NMRスペクトルを、11B-NMR装置(JEOL社製、AL300)を用いて、三フッ化ホウ素ジエチルエーテル錯体(BF・OEt、δ=0ppm)を外部標準として測定を行った。測定結果は図2に示す。
 また、各pHの混合液の31P-NMRスペクトルを、31P-NMR装置(Burker社製、ADVANCEIII 400)を用いて、リン酸トリフェニル(PO(C、δ=-17.8ppm)を外部標準として測定を行った。測定結果は図3に示す。
(Reference Example 1)
3-Pyridylboronic acid (3-PyBA) and pyrophosphoric acid (PPi) were each dissolved in pure water to 20 mM to prepare a 3-PyBA / PPi mixed solution. 1M hydrochloric acid or 1M sodium hydroxide was used to adjust the pH of the mixture to various values.
The 11 B-NMR spectrum of the mixed solution at each pH was measured using an 11 B-NMR apparatus (manufactured by JEOL, AL300), and boron trifluoride diethyl ether complex (BF 3 · OEt 2 , δ = 0 ppm) as an external standard. As measured. The measurement results are shown in FIG.
In addition, 31 P-NMR spectrum of the mixed solution at each pH was measured using a 31 P-NMR apparatus (manufactured by Burker, ADVANCE III 400), triphenyl phosphate (PO 4 (C 6 H 5 ) 3 , δ = − 17.8 ppm) was measured as an external standard. The measurement results are shown in FIG.
 (参考例2)
 参考例1における3-PyBAをフェニルボロン酸(PBA)に変えた以外は、参考例1と同様にして、各pHの混合液の11B-NMRスペクトルを測定した。測定結果は図4に示す。
(Reference Example 2)
The 11 B-NMR spectrum of the mixed solution at each pH was measured in the same manner as in Reference Example 1 except that 3-PyBA in Reference Example 1 was changed to phenylboronic acid (PBA). The measurement results are shown in FIG.
 図2に示すように参考例1では、いずれのpHの混合液においても、0ppm付近に3-PyBAとPPiが結合して生成した化合物に起因するピークが観測される。
 一方、図4に示すように参考例2では、0ppm付近にピークが現れず、いずれのpHの混合液においても、PBAとPPiが結合していないことがわかる。
As shown in FIG. 2, in Reference Example 1, in any mixed solution at any pH, a peak due to a compound formed by combining 3-PyBA and PPi is observed near 0 ppm.
On the other hand, as shown in FIG. 4, in Reference Example 2, no peak appears in the vicinity of 0 ppm, and it can be seen that PBA and PPi are not bonded in the mixed solution at any pH.
(参考例3)
 参考例1における3-PyBAを4-ピリジルボロン酸(4-PyBA)に変えた以外は、参考例1と同様にして、各pHの混合液の31P-NMRスペクトルを測定した。測定結果は図5に示す。
(Reference Example 3)
A 31 P-NMR spectrum of the mixed solution at each pH was measured in the same manner as in Reference Example 1 except that 3-PyBA in Reference Example 1 was changed to 4-pyridylboronic acid (4-PyBA). The measurement results are shown in FIG.
(参考例4)
 参考例1における3-PyBAを5-ピリミジンボロン酸に変えた以外は、参考例1と同様にして、各pHの混合液の31P-NMRスペクトルを測定した。測定結果は図6に示す。
(Reference Example 4)
A 31 P-NMR spectrum of the mixed solution at each pH was measured in the same manner as in Reference Example 1 except that 3-PyBA in Reference Example 1 was changed to 5-pyrimidineboronic acid. The measurement results are shown in FIG.
(参考例5)
 参考例1における3-PyBAを3-カルボキシ-3-ピリジルボロン酸に変えた以外は、参考例1と同様にして、各pHの混合液の31P-NMRスペクトルを測定した。測定結果は図7に示す。
(Reference Example 5)
A 31 P-NMR spectrum of the mixed solution at each pH was measured in the same manner as in Reference Example 1 except that 3-PyBA in Reference Example 1 was changed to 3-carboxy-3-pyridylboronic acid. The measurement results are shown in FIG.
(参考例6)
 参考例1におけるピロリン酸をゲムシタビン-5-二リン酸に変え、混合液として3-ピリジルボロン酸(3-PyBA)が10mM、ゲムシタビン-5-二リン酸が4mMになるよう純水に溶解させ3-PyBA/ゲムシタビン-5-二リン酸混合液を調整した。混合液のpHは5に調整した。得られた混合液の11B-NMRスペクトルを参考例1と同様にして測定した。測定結果は図8に示す。
(Reference Example 6)
The pyrophosphate in Reference Example 1 was changed to gemcitabine-5-diphosphate, and dissolved in pure water so that 3-pyridylboronic acid (3-PyBA) was 10 mM and gemcitabine-5-diphosphate was 4 mM as a mixed solution. A 3-PyBA / gemcitabine-5-diphosphate mixed solution was prepared. The pH of the mixed solution was adjusted to 5. The 11 B-NMR spectrum of the obtained mixture was measured in the same manner as in Reference Example 1. The measurement results are shown in FIG.
 図3及び図5~図8に示すように、参考例1及び参考例3~参考例6では、いずれのpH混合液においても、31P-NMRスペクトルにおいては-12ppm付近にピークが観測され、11B-NMRスペクトルにおいては0ppm付近にピークが観測される。これらのピークは、ボロン酸基と二リン酸化合物の結合に由来するピークであり、参考例1及び参考例3~参考例6のいずれの化合物においても、二リン酸化合物との結合が確認された。 As shown in FIGS. 3 and 5 to 8, in Reference Example 1 and Reference Examples 3 to 6, a peak was observed around −12 ppm in the 31 P-NMR spectrum in any pH mixed solution, In the 11 B-NMR spectrum, a peak is observed around 0 ppm. These peaks are derived from the bond between the boronic acid group and the diphosphate compound. In any of the compounds of Reference Example 1 and Reference Examples 3 to 6, the bond with the diphosphate compound was confirmed. It was.
(実施例1)
<検出部の作製>
 3-ピリジルボロン酸(3-PyBA)を金基板表面へ固定化するため、3-PyBAに対してチオール基の導入を行った。導入方法は、下記スキームに示すように3-PyBAのピリジン窒素に対してチオ酢酸S-ブロモブチルを反応させ、チオ酢酸の脱保護により行った。
Example 1
<Preparation of detector>
In order to immobilize 3-pyridylboronic acid (3-PyBA) on the gold substrate surface, a thiol group was introduced into 3-PyBA. As shown in the scheme below, the introduction was carried out by reacting 3-PyBA pyridine nitrogen with S-bromobutyl thioacetate and deprotecting the thioacetic acid.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 得られたアルカンチオール誘導体を濃度0.5mMとなるようにメタノールに溶解させアルカンチオール誘導体のメタノール溶液を得た。金スパッタ薄膜基板をこの溶液に半日間浸漬し、金基板上に3-PyBAを導入した自己組織化膜(3-PyBA-SAM)を形成させた。
 一方、半導体基板の表面に、ソース及びドレインを形成し、さらにその上にゲート絶縁膜を形成した。ゲート絶縁膜の表面に3-PyBA-SAMを形成させた金基板を積層し、3-PyBAを固定化させた検出部を得た。
The obtained alkanethiol derivative was dissolved in methanol to a concentration of 0.5 mM to obtain a methanol solution of the alkanethiol derivative. A gold sputtered thin film substrate was immersed in this solution for half a day to form a self-assembled film (3-PyBA-SAM) into which 3-PyBA was introduced on the gold substrate.
On the other hand, a source and a drain were formed on the surface of the semiconductor substrate, and a gate insulating film was further formed thereon. A gold substrate on which 3-PyBA-SAM was formed was laminated on the surface of the gate insulating film to obtain a detection unit in which 3-PyBA was immobilized.
<検出器の作製>
 上記で得られた3-PyBAを固定させた検出部と、この検出部に信号を与えて駆動させる検出器駆動回路部と、各回路部に電源を供給する給電部と、検出部からの出力を処理して検出信号を出力する検出回路部と、検出信号を外部に出力するための出力インターフェース(IF)部とを、プリント実装基板上に形成した。なお、検出器駆動回路部、給電部、検出回路部、及び出力インターフェース部を総称して電気回路とも呼ぶ。
<Production of detector>
The detection unit to which 3-PyBA obtained above is fixed, a detector driving circuit unit that drives the detection unit by giving a signal, a power supply unit that supplies power to each circuit unit, and an output from the detection unit A detection circuit unit that processes the above and outputs a detection signal and an output interface (IF) unit for outputting the detection signal to the outside are formed on a printed circuit board. The detector drive circuit unit, the power feeding unit, the detection circuit unit, and the output interface unit are also collectively referred to as an electric circuit.
 上記で得られた検出器の3-PyBAを固定化させた検出部を、50mM酢酸緩衝液(pH=5)に浸漬させ、純水に溶解させたピロリン酸(PPi)を緩衝溶液に加え、緩衝溶液中で、前記検出部とピロリン酸を接触させた。なお、純水に溶解させたピロリン酸は、緩衝溶液に加えた後のピロリン酸の濃度が0.2mM、0.38mM、0.57mM、0.74mM、及び0.91mMとなるように、5回に分け、10μlずつ添加した。
 ピロリン酸を添加した時の検出部の電位変化を測定し、ピロリン酸を検出した。
The detection part to which 3-PyBA of the detector obtained above was immobilized was immersed in a 50 mM acetate buffer solution (pH = 5), pyrophosphate (PPi) dissolved in pure water was added to the buffer solution, The detection unit and pyrophosphate were brought into contact with each other in a buffer solution. It should be noted that pyrophosphate dissolved in pure water is 5 so that the concentration of pyrophosphate after addition to the buffer solution is 0.2 mM, 0.38 mM, 0.57 mM, 0.74 mM, and 0.91 mM. Divided into batches, 10 μl was added.
The change in potential at the detection part when pyrophosphate was added was measured to detect pyrophosphate.
(比較例1)
 実施例1におけるピロリン酸を一リン酸に変更した以外は、同様にして、一リン酸を添加した時の検出部の電位変化を測定した。
(Comparative Example 1)
In the same manner as in Example 1, except that pyrophosphoric acid was changed to monophosphoric acid, the change in potential of the detection part when monophosphoric acid was added was measured.
 実施例1及び比較例1の測定結果を図9に示す。
 図9において、横軸は電位測定を開始してからの経過時間を表し、縦軸は電位変化を表す。ピロリン酸(二リン酸;PPi)及び一リン酸(Pi)はグラフ中に矢印で示したタイミングで添加した。
The measurement results of Example 1 and Comparative Example 1 are shown in FIG.
In FIG. 9, the horizontal axis represents the elapsed time since the start of the potential measurement, and the vertical axis represents the potential change. Pyrophosphate (diphosphate; PPi) and monophosphate (Pi) were added at the timing indicated by the arrows in the graph.
 図9に示されるように、ピロリン酸の添加に応答して電位変化が検出器部の電位変化が観測される。一方、一リン酸を添加した場合、電位変化は観測されない。すなわち、3-PyBAを固定化させた検出部を有する検出器において、ピロリン酸が検出可能であることがわかる。 As shown in FIG. 9, a change in potential is observed in response to the addition of pyrophosphate, and a change in potential of the detector is observed. On the other hand, when monophosphoric acid is added, no potential change is observed. That is, it can be seen that pyrophosphate can be detected in a detector having a detection unit to which 3-PyBA is immobilized.
 本発明によると、検出感度に優れ、繰り返し検出可能な二リン酸化合物検出器及び二リン酸化合物検出方法を提供することが可能となった。 According to the present invention, it is possible to provide a diphosphate compound detector and a diphosphate compound detection method that are excellent in detection sensitivity and can be repeatedly detected.

Claims (5)

  1.  下記一般式(1)又は下記一般式(2)で表される化合物が固定化される検出部と、電気回路と、を有する二リン酸化合物検出器。
    Figure JPOXMLDOC01-appb-C000001

     
     一般式(1)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。Rは、それぞれ独立に水素原子又は一価の置換基を表す。nは、0~5の整数を表す。
    Figure JPOXMLDOC01-appb-C000002

     
     
     一般式(2)中、Zは、それぞれ独立に炭素原子又は窒素原子を表す。ただし、環構造中に窒素原子が1つ以上含まれる。Rは、それぞれ独立に水素原子又は一価の置換基を表す。nは、0~5の整数を表す。
    A diphosphate compound detector comprising: a detection unit on which a compound represented by the following general formula (1) or the following general formula (2) is immobilized; and an electric circuit.
    Figure JPOXMLDOC01-appb-C000001


    In general formula (1), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. R each independently represents a hydrogen atom or a monovalent substituent. n represents an integer of 0 to 5.
    Figure JPOXMLDOC01-appb-C000002



    In general formula (2), Z represents a carbon atom or a nitrogen atom each independently. However, one or more nitrogen atoms are contained in the ring structure. R each independently represents a hydrogen atom or a monovalent substituent. n represents an integer of 0 to 5.
  2.  前記一般式(1)で表される化合物が、ピリジルボロン酸誘導体である請求項1に記載の二リン酸化合物検出器。 The diphosphate compound detector according to claim 1, wherein the compound represented by the general formula (1) is a pyridylboronic acid derivative.
  3.  前記検出部に接続された電界効果トランジスタ(FET)を、前記電気回路内に有する請求項1又は請求項2に記載の二リン酸化合物検出器。 The diphosphate compound detector according to claim 1 or 2, wherein a field effect transistor (FET) connected to the detection unit is included in the electric circuit.
  4.  請求項1~請求項3のいずれか1項に記載された二リン酸化合物検出器を用い、
     前記検出部のボロン酸基と被検物とを接触させる接触工程と、
     前記検出部の電気的変化を測定する測定工程と、
     前記電気的変化に基づいて二リン酸化合物を検出する検出工程と、
    を含む、二リン酸化合物検出方法。
    Using the diphosphate compound detector according to any one of claims 1 to 3,
    A contact step of bringing the boronic acid group of the detection unit into contact with the test substance;
    A measurement step of measuring an electrical change of the detection unit;
    A detection step of detecting a diphosphate compound based on the electrical change;
    A method for detecting a diphosphate compound.
  5.  前記接触工程を、pH4.0~pH6.0の溶液中で行う請求項4に記載の二リン酸化合物検出方法。 The method for detecting a diphosphate compound according to claim 4, wherein the contacting step is performed in a solution having a pH of 4.0 to 6.0.
PCT/JP2014/059029 2014-03-27 2014-03-27 Diphosphate compound detector and diphosphate compound detection method WO2015145702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059029 WO2015145702A1 (en) 2014-03-27 2014-03-27 Diphosphate compound detector and diphosphate compound detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059029 WO2015145702A1 (en) 2014-03-27 2014-03-27 Diphosphate compound detector and diphosphate compound detection method

Publications (1)

Publication Number Publication Date
WO2015145702A1 true WO2015145702A1 (en) 2015-10-01

Family

ID=54194291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059029 WO2015145702A1 (en) 2014-03-27 2014-03-27 Diphosphate compound detector and diphosphate compound detection method

Country Status (1)

Country Link
WO (1) WO2015145702A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175406A1 (en) * 2019-02-28 2020-09-03 池田食研株式会社 Gene amplification method and gene amplification kit
JP7451198B2 (en) 2020-02-03 2024-03-18 キヤノンメディカルシステムズ株式会社 Sample testing equipment and sample testing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186350A (en) * 2008-02-07 2009-08-20 Saitama Univ Detecting method of phosphate ion, and kit for detection
JP2010107496A (en) * 2008-06-24 2010-05-13 Univ Of Tokyo Biosensor, method for detecting biological material with biosensor, and kit therefor
JP2012026839A (en) * 2010-07-22 2012-02-09 Univ Of Tokyo Detection device and biosensor
JP2013116081A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Method for detecting pyrophosphoric acid using boronic acid group-immobilized support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186350A (en) * 2008-02-07 2009-08-20 Saitama Univ Detecting method of phosphate ion, and kit for detection
JP2010107496A (en) * 2008-06-24 2010-05-13 Univ Of Tokyo Biosensor, method for detecting biological material with biosensor, and kit therefor
JP2012026839A (en) * 2010-07-22 2012-02-09 Univ Of Tokyo Detection device and biosensor
JP2013116081A (en) * 2011-12-05 2013-06-13 Hitachi Ltd Method for detecting pyrophosphoric acid using boronic acid group-immobilized support

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAI SANJO ET AL.: "Pyridylboronic Acid ni yoru Bunshi Ninshikino o Riyo shita Pyrophosphoric Acid no Sentakuteki Kenshutsu", POLYMER PREPRINTS, vol. 62, no. 2, 28 August 2013 (2013-08-28), Japan, pages 4616 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175406A1 (en) * 2019-02-28 2020-09-03 池田食研株式会社 Gene amplification method and gene amplification kit
JP7451198B2 (en) 2020-02-03 2024-03-18 キヤノンメディカルシステムズ株式会社 Sample testing equipment and sample testing method

Similar Documents

Publication Publication Date Title
Xu et al. Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes
Numnuam et al. Potentiometric detection of DNA hybridization
Xu et al. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor
Liu et al. Selective sensing of phosphorylated peptides and monitoring kinase and phosphatase activity with a supramolecular tandem assay
US9442111B2 (en) Method and apparatus for measuring phosphorylation kinetics on large arrays
US20220325268A1 (en) Devices and methods for sample analysis
Nevídalová et al. Capillary electrophoresis‐based approaches for the study of affinity interactions combined with various sensitive and nontraditional detection techniques
Chen et al. Improved DNA detection by utilizing electrically neutral DNA probe in field-effect transistor measurements as evidenced by surface plasmon resonance imaging
Wang et al. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot–copper nanocluster nanohybrid
Sun et al. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor
Lindsay Biochemistry and semiconductor electronics—the next big hit for silicon?
Prasongkit et al. Topological line defects around graphene nanopores for DNA sequencing
WO2011142307A1 (en) Nucleic acid analysis device, method for producing same, and nucleic acid analyzer
Yin et al. Molecular dipole-driven electronic structure modifications of DNA/RNA nucleobases on graphene
Murray Challenges in environmental analytical chemistry
WO2015145702A1 (en) Diphosphate compound detector and diphosphate compound detection method
Zhang et al. Nanoparticle-assisted detection of nucleic acids in a polymeric nanopore with a large pore size
García-Campaña et al. Trends in the analytical applications of chemiluminescence in the liquid phase
US20140178862A1 (en) Photoinduced redox current (pirc) detection for dna sequencing using integrated transducer array
Castillo et al. Electrochemical and photometric detection of plasmin by specific peptide substrate
US8048377B1 (en) Immobilizing chemical or biological sensing molecules on semi-conducting nanowires
Xiong et al. Nanofluidic Device for Detection of Lysine Methylpeptides and Sensing of Lysine Methylation
Wasilewski Ionic liquids in gas sensors and biosensors
JP5759351B2 (en) Pyrophosphate detection method using boronic acid group-immobilized support
Kurinomaru et al. Immobilization of DNA on Biosensing Devices with Nitrogen Mustard–Modified Linkers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP