WO2015145660A1 - 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置 - Google Patents

音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置 Download PDF

Info

Publication number
WO2015145660A1
WO2015145660A1 PCT/JP2014/058859 JP2014058859W WO2015145660A1 WO 2015145660 A1 WO2015145660 A1 WO 2015145660A1 JP 2014058859 W JP2014058859 W JP 2014058859W WO 2015145660 A1 WO2015145660 A1 WO 2015145660A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pass filter
unit
filter unit
frequency
Prior art date
Application number
PCT/JP2014/058859
Other languages
English (en)
French (fr)
Inventor
長谷川 真
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2014/058859 priority Critical patent/WO2015145660A1/ja
Priority to JP2016509747A priority patent/JP6371376B2/ja
Priority to US15/128,607 priority patent/US10839824B2/en
Publication of WO2015145660A1 publication Critical patent/WO2015145660A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/21Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information

Definitions

  • the present invention relates to an acoustic device, a missing band estimation device, a signal processing method and a signal processing program, a recording medium on which the signal processing program is recorded, and a frequency band estimation device.
  • Audio apparatuses that reproduce audio content recorded in a digital format have become widespread.
  • audio content data is digitally compressed by a method such as MP3 (MPEG (Moving Picture Expert Group) Audio Layer-3) in order to reduce the file size.
  • MP3 MPEG (Moving Picture Expert Group) Audio Layer-3)
  • Compressed audio signal according digital compression is achieved by decompressing the compressed audio data generated being performed, from the band limited by the sampling frequency employed in obtaining audio data before compression (F S)
  • the audio signal has a higher treble band.
  • the treble band limited by the compression process becomes wider as the bit rate is lower (that is, the compression rate is higher) if the compression process is performed by the same method.
  • the discriminating means reads information such as a bit rate that is separated from the compressed audio signal obtained by decompressing the compressed audio data. Subsequently, the discriminating means sets the cutoff frequency of the high-pass filter that allows the harmonic signal generated by the harmonic generating means to pass based on the read bit rate or the like. The signal that has passed through the high-pass filter in which the cutoff frequency is set in this way is synthesized with the compressed audio signal, so that the signal component in the high frequency band is interpolated.
  • the discrimination means separates from the compressed audio data in order to appropriately set the cutoff frequency of the high-pass filter that performs high-pass filtering on the harmonic signal generated by the harmonic generation means.
  • Information such as the bit rate is read. That is, in the conventional technique, the determination unit can access a storage device in which information such as compressed audio data and bit rate is stored.
  • the present invention provides a harmonic generation unit that generates harmonics of an input audio signal; a high-frequency range of the harmonics that has a variable cutoff frequency and is generated by the harmonic generation unit
  • a variable high-pass filter unit that extracts a component
  • a first high-pass filter unit that has a first cutoff frequency and extracts a high-frequency component of the input audio signal; and more than the first cutoff frequency
  • a second high-pass filter unit that has a high second cutoff frequency and extracts a high-frequency component of the input audio signal; a level of an output signal of the first high-pass filter unit; and the second high-pass filter unit
  • a control unit that controls a cutoff frequency of the variable high-pass filter unit based on a level of an output signal of the high-pass filter unit.
  • a first high-pass filter unit that has a first cutoff frequency and extracts a high frequency component of an input audio signal; and more than the first cutoff frequency.
  • a second high-pass filter unit that has a high second cutoff frequency and extracts a high-frequency component of the input audio signal; a level of an output signal of the first high-pass filter unit; and the second high-pass filter unit And a estimator that estimates a high frequency band in which a signal component is missing in the input audio signal based on the level of the output signal of the high-pass filter unit.
  • the present invention provides a harmonic generation unit that generates harmonics of an input audio signal; a cutoff frequency is variable, and the high frequency range of the harmonics generated by the harmonic generation unit
  • a variable high-pass filter unit that extracts a component
  • a first high-pass filter unit that has a first cutoff frequency and extracts a high-frequency component of the input audio signal; and more than the first cutoff frequency
  • a signal processing method for use in an acoustic device comprising: a second high-pass filter unit that has a high second cutoff frequency and extracts a high-frequency component of the input audio signal;
  • the present invention is a signal processing program that causes a computer included in an audio device to execute the signal processing method of the present invention.
  • the present invention is a recording medium on which the signal processing program of the present invention is recorded so as to be readable by a computer included in the audio device.
  • a first high-pass filter unit that has a first cutoff frequency and extracts a high frequency component of an input audio signal; and more than the first cutoff frequency.
  • a second high-pass filter unit that has a high second cutoff frequency and extracts a high-frequency component of the input audio signal; a level of an output signal of the first high-pass filter unit; and the second high-pass filter unit
  • An estimation unit that estimates a frequency band of the input voice signal based on a level of an output signal of a high-pass filter unit.
  • FIG. 1 is a block diagram schematically showing a configuration of an audio device according to an embodiment of the present invention. It is a figure which shows the average spectrum of the compression audio
  • HPF high-pass filters
  • DESCRIPTION OF SYMBOLS 100 Acoustic apparatus 110 ... Harmonic generation part 120 ... Missing band estimation apparatus (frequency band estimation apparatus) 121 1 ... High-pass filter (first high-pass filter) 121 2 ... High-pass filter (second high-pass filter) 124 ... estimation unit (control unit) 130 ... Variable high-pass filter section 140 ... Composition section
  • FIG. 1 is a block diagram illustrating a schematic configuration of an audio device 100 according to an embodiment. As shown in FIG. 1, the acoustic device 100 is connected to a compressed speech decompression device (CADD) 200 and a sound output device 300.
  • CADD compressed speech decompression device
  • the compressed audio decompression apparatus 200 decompresses the compressed audio data generated in accordance with a predetermined standard such as the MP3 standard, and generates a compressed audio signal (audio signal) CAD.
  • the compressed audio signal CAD generated in this way is sent to the acoustic device 100.
  • the compressed audio signal CAD is a compressed audio signal corresponding to one of the three bit rates of “BR1”, “BR2 (> BR1)”, and “BR3 (> BR2)”. Yes.
  • the sound output device 300 described above includes a speaker SP.
  • the sound output device 300 receives the high-frequency interpolated signal HID sent from the acoustic device 100. And the sound output device 300 outputs the sound according to the signal HID after the high frequency interpolation from the speaker SP.
  • the acoustic device 100 includes a harmonic generation unit (HMG) 110 and a missing band estimation device (MBE) 120.
  • the acoustic device 100 includes a variable high-pass filter (HPF) unit 130 and a synthesis unit 140.
  • HMG harmonic generation unit
  • MBE missing band estimation device
  • HPF variable high-pass filter
  • the missing band estimation device 120 receives the compressed audio signal CAD sent from the compressed audio decompression device 200. Subsequently, the missing band estimation device 120 estimates a treble band (hereinafter, also referred to as “missing band”) in which a signal component is missing in the compressed audio signal CAD based on the compressed audio signal CAD. Missing band estimation apparatus 120 then sends cut-off frequency designation HPC designating the estimated minimum frequency of the missing band to variable HPF unit 130.
  • Missing band estimation apparatus 120 sends cut-off frequency designation HPC designating the estimated minimum frequency of the missing band to variable HPF unit 130.
  • the missing band estimation apparatus 120 also has a function as a frequency band estimation apparatus that estimates the frequency band of the compressed audio signal CAD.
  • the variable HPF unit 130 receives the signal HMD sent from the harmonic generation unit 110.
  • the variable HPF unit 130 receives the cut-off frequency designation HPC sent from the missing band estimation device 120. Then, the variable HPF unit 130 performs a high-pass filtering process on the signal HMD using the frequency specified by the cutoff frequency specifying HPC as a cutoff frequency. The result of the high-pass filtering process is sent to the synthesis unit 140 as a signal HBD.
  • the synthesizing unit 140 receives the compressed audio signal CAD sent from the compressed audio decompression device 200.
  • the synthesizing unit 140 receives the signal HBD sent from the variable HPF unit 130. Then, the synthesizer 140 synthesizes the compressed audio signal CAD and the signal HBD to generate a signal HID after high-frequency interpolation.
  • the high-frequency interpolated signal HID generated in this way is sent to the sound output device 300.
  • FIG. 2A schematically shows an average spectrum of the uncompressed sound corresponding to the digital music sound generated by sampling at the sample frequency F S.
  • FIG. 2B shows the signal band of the compressed audio having the bit rate BR1.
  • the upper limit frequency of the signal band is the frequency F BR1 and the frequency band (F BR1 to F MAX ) is higher than that of the audio before compression. This is a missing band of signal components.
  • FIG. 2C shows the signal band of the compressed audio with the bit rate BR2 (> BR1).
  • the upper limit frequency of the signal band is the frequency F BR2 (> F BR1 ), and the frequency band (F BR2 to F MAX ) is before compression.
  • the signal component has a missing band.
  • FIG. 2D shows a signal band of compressed audio with a bit rate BR3 (> BR2).
  • the upper limit frequency of the signal band is the frequency F BR3 (> F BR2 ), and the frequency band (F BR3 to F MAX ) is before compression.
  • the signal component has a missing band.
  • the missing band estimation device 120 includes bypass filter (HPF) units 121 1 and 121 2 and a subtraction unit 122. Further, the missing band estimation device 120 includes level detection units 123 1 and 123 2 and an estimation unit 124.
  • HPF bypass filter
  • the HPF unit 121 1 performs a high-pass filtering process at the cutoff frequency F C1 .
  • the HPF unit 121 1 receives the compressed audio signal CAD sent from the compressed audio decompressing device 200. Then, the HPF unit 121 1 performs high-pass filtering processing of the cutoff frequency F C1 on the compressed audio signal CAD. The result of this high-pass filtering process is sent to the subtraction unit 122 as the signal HPD 1 .
  • the HPF unit 121 2 performs a high-pass filtering process at the cutoff frequency F C2 (> F C1 ).
  • the HPF unit 121 2 receives the compressed audio signal CAD sent from the compressed audio decompression device 200. Then, the HPF unit 121 2 performs high-pass filtering processing of the cutoff frequency F C2 on the compressed audio signal CAD. The result of this high-pass filtering process is sent to the subtraction unit 122 and the level detection unit 123 2 as the signal HPD 2 .
  • the subtraction unit 122 receives the signal HPD 1 sent from the HPF unit 121 1 .
  • the subtractor 122 receives the signal HPD 2 sent from the HPF unit 121 2 .
  • the subtracting unit 122 subtracts the signal HPD 2 from the signal HPD 1 .
  • the result calculated in this way is sent to the level detection unit 123 1 as a signal SBD.
  • the level detection unit 123 1 receives the signal SBD sent from the subtraction unit 122. Then, the level detector 123 1 detects the power level of the signal SBD. The detection result by the level detection unit 123 1 is sent to the estimation unit 124 as the detection level DL 1 .
  • the level detection unit 123 2 receives the signal HPD 2 sent from the HPF unit 121 2 . Then, the level detector 123 2 detects the power level of the signal HPD 2 . The detection result by the level detection unit 123 2 is sent to the estimation unit 124 as the detection level DL 2 .
  • the estimation unit 124 generates a cutoff frequency designation HPC that designates the estimated lower limit frequency of the missing band.
  • the cut-off frequency designation HPC generated in this way is sent to the variable HPF unit 130.
  • FIG. 4A shows an example of filtering characteristics of the HPF unit 121 1 .
  • FIG. 4B shows an example of filtering characteristics of the HPF unit 121 2 .
  • the filtering characteristic of the HPF unit 121 2 is that the division resource in the estimation unit 124 does not overflow when calculating the ratio R, regardless of the bit rate of “BR1”, “BR2”, and “BR3”. Is set as follows.
  • signal components corresponding to detection targets of the HPF unit 121 1 and the HPF unit 121 2 are schematically shown in FIG.
  • the signal component corresponding to the detection target of the HPF unit 121 1 is indicated by a horizontal line hatch
  • the signal component corresponding to the detection target of the HPF unit 121 2 is indicated by a vertical line hatch.
  • FIG. 5A schematically shows signal components corresponding to detection targets of the HPF unit 121 1 and the HPF unit 121 2 in the case of the bit rate BR1.
  • FIG. 5B schematically shows signal components corresponding to detection targets of the HPF unit 121 1 and the HPF unit 121 2 in the case of the bit rate BR2.
  • FIG. 5C schematically shows signal components corresponding to detection targets of the HPF unit 121 1 and the HPF unit 121 2 in the case of the bit rate BR3.
  • the estimation unit 124 The bit rate can be estimated.
  • composition unit 140 (Configuration of composition unit 140) Next, the configuration of the synthesis unit 140 will be described.
  • the synthesis unit 140 includes a delay unit 141 and multiplication units 142 1 and 142 2 .
  • the synthesis unit 140 includes an addition unit 143.
  • D (T) D 0 (T ⁇ T DL ) (1)
  • the multiplication unit 142 1 receives the signal DLD sent from the delay unit 141. Then, the multiplier 142 1 multiplies the signal DLD by K 1 to generate a signal MLD. The signal MLD generated in this way is sent to the adder 143.
  • the multiplication unit 142 2 receives the signal HBD sent from the variable HPF unit 130. Then, the multiplier 142 2 multiplies the signal HBD by K 2 to generate a signal MHD. The signal MHD generated in this way is sent to the adding unit 143.
  • the ratio between the value K 1 and the value K 2 is determined in advance based on experiments, simulations, experiences, and the like from the viewpoint of appropriate high-frequency interpolation.
  • the adder 143 receives the signal MLD sent from the multiplier 142 1 .
  • Adder 143 receives signal MHD sent from multiplier 142 2 . Then, the adding unit 143 adds the signal MLD and the signal MHD to generate a signal HID after high-frequency interpolation.
  • the high-frequency interpolated signal HID generated in this way is sent to the sound output device 300.
  • FIG. 7A the spectrum of the signal MHD generated corresponding to the compressed audio signal CAD of the bit rate BR1 is indicated by a broken line.
  • FIG. 7B the spectrum of the signal MHD generated corresponding to the compressed audio signal CAD at the bit rate BR2 is indicated by a broken line.
  • FIG. 7C the spectrum of the signal MHD generated corresponding to the compressed audio signal CAD at the bit rate BR3 is indicated by a broken line.
  • FIGS. 7A to 7C the spectrum of a signal MLD obtained by multiplying the signal DLD by K 1 (and thus a signal obtained by multiplying the compressed audio signal CAD by K 1 ) is indicated by a solid line.
  • the signal HMD is a signal that appropriately interpolates the missing band of the signal component in the compressed audio signal CAD.
  • the harmonic generation unit 110 and the missing band estimation device 120 receive the compressed speech signal CAD.
  • the synthesis unit 140 receives the compressed audio signal CAD (see FIG. 1).
  • the harmonic generation unit 110 Upon receiving the compressed audio signal CAD, the harmonic generation unit 110 generates a harmonic of a component in a predetermined frequency band of the compressed audio signal CAD. Then, the harmonic generation unit 110 transmits, to the variable HPF unit 130, a signal having a frequency equal to or lower than the maximum frequency F MAX of the pre-compression voice band determined by the sample frequency F S among the generated harmonics as a signal HMD (see FIG. 1).
  • the missing band estimation device 120 estimates the missing band in the compressed audio signal CAD based on the compressed audio signal CAD in parallel with the generation of high frequency by the harmonic generation unit 110 described above. .
  • the HPF unit 121 1 that has received the compressed audio signal CAD performs a high-pass filtering process on the cut-off frequency F C1 on the compressed audio signal CAD. Then, the HPF unit 121 1 sends the result of the high-pass filtering process to the subtraction unit 122 as the signal HPD 1 (see FIG. 3).
  • the HPF unit 121 2 Upon receiving the compressed audio signal CAD, the HPF unit 121 2 performs a high-pass filtering process on the cut-off frequency F C2 on the compressed audio signal CAD in parallel with the high-pass filtering process performed by the HPF unit 121 1 described above. Then, the HPF unit 121 2 sends the result of the high-pass filtering process to the subtraction unit 122 and the level detection unit 123 2 as a signal HPD 2 (see FIG. 3).
  • the subtracting unit 122 calculates the difference between the signal HPD 1 and the signal HPD 2 .
  • the subtraction unit 122 sends the calculated difference, the level detecting unit 123 1 as the signal SBD (see FIG. 3).
  • the level detector 123 1 When receiving the signal SBD sent from the subtractor 122, the level detector 123 1 detects the power level of the signal SBD. Then, the level detection unit 123 1 sends the detection result to the estimation unit 124 as the detection level DL 1 (see FIG. 3).
  • the level detection unit 123 2 When receiving the signal HPD 2 sent from the HPF unit 121 2 , the level detection unit 123 2 detects the power level of the signal HPD 2 . Then, the level detection unit 123 2 sends the detection result to the estimation unit 124 as the detection level DL 2 (see FIG. 3).
  • Detection level DL 1 sent from the level detection unit 123 1, and receives a detection level DL 2 sent from the level detection unit 123 2, estimating unit 124, based on the detection level DL 1 and the detection level DL 2 Then, a cutoff frequency designation HPC is generated.
  • the estimation unit 124 estimates the missing band of the compressed audio signal based on the calculated ratio R.
  • the estimation unit 124 generates a cutoff frequency designation HPC that designates the estimated lower limit frequency of the missing band. Then, the estimation unit 124 sends the generated cutoff frequency designation HPC to the variable HPF unit 130 (see FIG. 3).
  • variable HPF unit 130 uses the frequency designated by the cutoff frequency designation HPC as a cutoff frequency.
  • the filtering process is performed on the signal HMD sent from the harmonic generation unit 110 to generate the signal HBD.
  • the variable HPF unit 130 sends the generated signal HBD to the synthesis unit 140 (see FIG. 1).
  • the synthesis unit 140 Upon receiving the signal HBD sent from the variable HPF unit 130, the synthesis unit 140 synthesizes the signal HBD and the compressed audio signal CAD sent from the compressed audio decompression device 200. In the synthesis, in the synthesis unit 140, the delay unit 141 delays the compressed audio signal CAD by a time T DL corresponding to the phase delay in the harmonic generation unit 110 and the variable HPF unit 130, and synchronization with the signal HBD is performed. Generated signal DLD. The delay unit 141 sends the generated signal DLD to the multiplying unit 142 1 (see FIG. 6).
  • the multiplication unit 142 1 When receiving the signal DLD sent from the delay unit 141, the multiplication unit 142 1 multiplies the signal DLD by K 1 to generate a signal MLD. Then, the multiplier 142 1 sends the generated signal MLD to the adder 143 (see FIG. 6).
  • the multiplication unit 142 2 multiplies the signal HBD by K 2 to generate the signal MHD. Then, the multiplication unit 142 2 sends the generated signal MHD to the addition unit 143 (see FIG. 6).
  • the addition unit 143 Upon receiving the signal MLD sent from the multiplication unit 142 1 and the signal MHD sent from the multiplication unit 142 2 , the addition unit 143 adds the signal MLD and the signal MHD, and has undergone high-frequency interpolation. Generate an HID. Then, the adding unit 143 sends the generated signal HID after high frequency interpolation to the sound output device 300 (see FIG. 6).
  • the synthesizing unit 140 synchronizes the signal HBD and the compressed audio signal CAD, and then performs weighted addition with a mixing ratio that enables appropriate high-frequency interpolation to synthesize the signal HBD and the compressed audio signal CAD. .
  • the high-frequency interpolated signal HID generated as a result of the synthesis is sent to the sound output device 300.
  • the sound output device 300 Upon receiving the high-frequency interpolated signal HID sent from the audio device 100 (more specifically, the synthesizing unit 140), the sound output device 300 outputs a sound according to the high-frequency interpolated signal HID from the speaker SP. . As a result, the sound output device 300 outputs high-quality sound that has been appropriately subjected to high-frequency interpolation in accordance with the bit rate of the compressed sound signal CAD.
  • the harmonic generation unit 110 At the time of high-frequency interpolation, first, the harmonic generation unit 110 generates harmonics of the input compressed audio signal CAD. In parallel with the generation of such harmonics, the missing band estimation device 120 estimates the missing band in the compressed audio signal CAD.
  • the high-pass filter unit 121 1 having the cutoff frequency F C1 extracts a high-frequency component of the compressed audio signal CAD and also uses the cutoff frequency F C2 (> F C1 ) Has a high-pass filter section 121 2 that extracts a high-frequency component of the compressed audio signal CAD.
  • the estimation unit 124 outputs the signal HPD 1 output from the high-pass filter unit 121 1 (first high-pass filter unit) to the high-pass filter unit 121 2 (second high-pass filter unit). the level of the difference signal SBD obtained by subtracting the signal HPD 2 that is, for calculating the ratio R between the level of the signal HPD 2.
  • the filtering characteristics of the high-pass filter sections 121 1 and 121 2 are set so that the ratio R is different when the bit rate of the compressed audio signal CAD is different.
  • the estimation unit 124 estimates the missing band of the compressed audio signal CAD based on the calculated ratio R. Then, the estimation unit 124 controls the high-pass filtering process by the variable HPF unit 130 by sending a cutoff frequency designation HPC designating the estimated lower limit frequency of the missing band to the variable HPF unit 130.
  • variable HPF unit 130 performs a high-pass filtering process using the frequency specified by the cutoff frequency specifying HPC as a cutoff frequency on the signal HMD sent from the harmonic generation unit 110, A signal HBD is generated. Then, the synthesis unit 140 synthesizes the compressed audio signal CAD and the signal HBD.
  • the level of the difference signal obtained by subtracting the signal output from the second high-pass filter unit from the signal output from the first high-pass filter unit and the signal output from the second high-pass filter unit The missing band of the input compressed audio signal is estimated based on the ratio to the signal level.
  • the frequency band of the input compressed audio signal is estimated based on the ratio between the level of the signal output from the first high-pass filter unit and the level of the signal output from the second high-pass filter unit. You may make it do. Then, the cutoff frequency designation specifying the estimated upper limit frequency of the frequency band may be performed on the variable HPF unit.
  • the present invention is applied to high-frequency interpolation of a compressed audio signal.
  • the present invention may be applied to high-frequency interpolation of an audio signal other than the compressed audio signal.
  • the compressed voice decompression device and the sound output device are arranged as devices different from the acoustic device.
  • the acoustic device may have a function of a compressed voice decompression device, or the acoustic device may have a function of a sound output device.
  • the acoustic device of the above-described embodiment is configured as a computer as a calculation unit including a DSP (Digital Signal Processor) and the like, and the processing in the above-described embodiment is performed by executing a program prepared in advance on the computer. A part or all of the above may be executed.
  • This program may be acquired in the form recorded in a portable recording medium such as a CD-ROM or DVD, or may be acquired in the form of delivery via a network such as the Internet. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 高域補間に際して、まず、高調波生成部が、入力された圧縮音声信号(CAD)の高調波信号を生成する。こうした高調波信号の生成と並行して、カットオフ周波数FC1を有するHPF部(1211)が、圧縮音声信号(CAD)の高域成分を抽出する。また、カットオフ周波数FC2(>FC1)を有するHPF部(1212)が、圧縮音声信号(CAD)の高域成分を抽出する。推定部(124)は、HPF部(1211)の出力信号(HPD1)からHPF部(1212)の出力信号(HPD2)を差し引いた差信号(SBD)の信号レベルと、信号(HPD2)との信号レベルとの比に基づいて、圧縮音声信号(CAD)の欠落帯域を推定する。そして、推定部(124)が、推定された欠落帯域に基づいて、高域補間のための信号成分を高調波信号から抽出する可変HPF部(130)のカットオフ周波数を制御する。

Description

音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置
 本発明は、音響装置、欠落帯域推定装置、信号処理方法及び信号処理プログラム、並びに、当該信号処理プログラムが記録された記録媒体、及び、周波数帯域推定装置に関する。
 近年、デジタル形式で記録された音響コンテンツを再生する音響装置が広く普及している。こうした音響コンテンツのデータは、多くの場合に、ファイルサイズを縮小するために、MP3(MPEG(Moving Picture Expert Group) Audio Layer-3)等の方式によってデジタル圧縮処理が施されている。かかるデジタル圧縮処理が行われて生成された圧縮音声データを解凍して得られる圧縮音声信号は、圧縮処理前の音声データを得る際に採用されたサンプリング周波数(FS)によって制限される帯域よりも更に高音帯域が制限された音声信号となっている。そして、圧縮処理により制限される高音帯域は、同一方式による圧縮処理であれば、ビットレートが低くなるほど(すなわち、圧縮率が高くなるほど)広くなる。
 このため、ビットレートに応じた、すなわち、圧縮率の応じた圧縮処理に起因して信号成分が欠落することになった高音帯域を補間する技術が提案されている(特許文献1参照:以下、「従来例」という)。この従来例の技術では、判別手段が、圧縮音声データを解凍して得られる圧縮音声信号とは分離されているビットレート等の情報を読み取る。引き続き、当該判別手段が、読み取られたビットレート等に基づいて、高調波発生手段が発生した高調波信号を通過させるハイパスフィルタのカットオフ周波数を設定することにしている。こうしてカットオフ周波数が設定されたハイパスフィルタを通過した信号が圧縮音声信号と合成されることにより、高音帯域の信号成分が補間される。
特開2004―317622号公報
 上述した従来例の技術では、判別手段が、高調波発生手段が発生した高調波信号に対してハイパスフィルタリング処理を施すハイパスフィルタのカットオフ周波数を適切に設定するために、圧縮音声データとは分離されているビットレート等の情報を読み取るようになっている。すなわち、従来例の技術では、判別手段が、圧縮音声データ及びビットレート等の情報が記憶された記憶装置にアクセスできるようになっている。
 ところで、近年においては、圧縮音声データ及びビットレート等の情報は、小型の携帯端末装置により、音響コンテンツとして、ネットワーク上のサーバからダウンロードされる場合が多い。このため、小型の携帯端末装置により生成される圧縮音声信号を、別の音響装置へ送り、当該音響装置により高音帯域の補間を行った高品質な音声信号とした上で、音声出力をすることがある。
 かかる場合に従来例の技術を適用する際には、圧縮音声信号の経路とは異なる経路を介して、携帯端末装置から別の音響装置へビットレート等の情報を送信することが必要となる。したがって、携帯端末装置における機能の追加が必要となり、簡易な構成で高音帯域の補間を行った高品質な音声を出力できるとはいい難かった。
 このため、簡易な構成で高音帯域の補間を行った高品質な音声を出力できる技術が待望されている。かかる要請に応えることが、本発明が解決すべき課題の一つとして挙げられる。
 本発明は、第1の観点からすると、入力された音声信号の高調波を生成する高調波生成部と;カットオフ周波数が可変であり、前記高調波生成部が生成した前記高調波の高域成分を抽出する可変ハイパスフィルタ部と;第1のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記可変ハイパスフィルタ部のカットオフ周波数を制御する制御部と;を備えることを特徴とする音響装置である。
 本発明は、第2の観点からすると、第1のカットオフ周波数を有し、入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記入力された音声信号において信号成分が欠落している高音帯域を推定する推定部と;を備えることを特徴とする欠落帯域推定装置である。
 本発明は、第3の観点からすると、入力された音声信号の高調波を生成する高調波生成部と;カットオフ周波数が可変であり、前記高調波生成部が生成した前記高調波の高域成分を抽出する可変ハイパスフィルタ部と;第1のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;を備える音響装置において使用される信号処理方法であって、前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとを取得する取得工程と;前記取得工程における取得結果に基づいて、前記可変ハイパスフィルタ部のカットオフ周波数を制御する制御工程と;
 を備えることを特徴とする信号処理方法である。
 本発明は、第4の観点からすると、音響装置が有するコンピュータに、本発明の信号処理方法を実行させる、ことを特徴とする信号処理プログラムである。
 本発明は、第5の観点からすると、音響装置が有するコンピュータにより読み取り可能に、本発明の信号処理プログラムが記録されている、ことを特徴とする記録媒体である。
 本発明は、第6の観点からすると、第1のカットオフ周波数を有し、入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記入力された音声信号の周波数帯域を推定する推定部と;を備えることを特徴とする周波数帯域推定装置である。
本発明の一実施形態に係る音響装置の構成を概略的に示すブロック図である。 図1の音響装置に入力されるビットレートごとの圧縮音声信号の平均的なスペクトルを示す図である。 図1の欠落帯域推定装置の構成を示すブロック図である。 図3の2種のハイパスフィルタ(HPF)部のフィルタリング特性を説明するための図である。 3つのビットレートごとに、図3の2種のレベル検出部の検出対象に対応する信号成分を説明するための図である。 図1の合成部の構成を説明するためのブロック図である。 図1の装置による高域補間を説明するための図である。
 100  … 音響装置
 110  … 高調波生成部
 120  … 欠落帯域推定装置(周波数帯域推定装置)
 1211  … ハイパスフィルタ(第1のハイパスフィルタ)
 1212  … ハイパスフィルタ(第2のハイパスフィルタ)
 124  … 推定部(制御部)
 130  … 可変ハイパスフィルタ部
 140  … 合成部
 以下、本発明の一実施形態を、図1~図7を参照して説明する。なお、図面においては、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
 [構成]
 図1には、一実施形態に係る音響装置100の概略的な構成が、ブロック図にて示されている。この図1に示されるように、音響装置100は、圧縮音声解凍装置(CADD)200及び音出力装置300と接続されている。
 ここで、上記の圧縮音声解凍装置200は、MP3規格等の所定の標準規格に準拠して生成された圧縮音声データを解凍して、圧縮音声信号(音声信号)CADを生成する。こうして生成された圧縮音声信号CADが、音響装置100へ送られる。
 なお、本実施形態では、圧縮音声信号CADは、「BR1」、「BR2(>BR1)」及び「BR3(>BR2)」の3種類のビットレートのいずれかに対応する圧縮音声信号となっている。
 また、上記の音出力装置300は、スピーカSPを備えて構成されている。この音出力装置300は、音響装置100から送られた高域補間後の信号HIDを受ける。そして、音出力装置300は、高域補間後の信号HIDに従った音をスピーカSPから出力する。
 <音響装置100の構成>
 上記の音響装置100は、高調波生成部(HMG)110と、欠落帯域推定装置(MBE)120を備えている。また、音響装置100は、可変ハイパスフィルタ(HPF)部130と、合成部140とを備えている。
 上記の高調波生成部110は、圧縮音声解凍装置200から送られた圧縮音声信号CADを受ける。引き続き、高調波生成部110は、圧縮音声信号CADの所定の周波数帯域(0~FH)の成分の第1~第N次の高調波を生成する。そして、生成された高調波のうち、サンプル周波数FSで定まる圧縮前音声の帯域の最高周波数FMAX(=FS/2)以下の成分が、信号HMDとして、可変HPF部130へ送られる。
 上記の欠落帯域推定装置120は、圧縮音声解凍装置200から送られた圧縮音声信号CADを受ける。引き続き、欠落帯域推定装置120は、圧縮音声信号CADに基づいて、圧縮音声信号CADにおいて信号成分が欠落している高音帯域(以下、「欠落帯域」とも呼ぶ)を推定する。そして、欠落帯域推定装置120は、当該推定された欠落帯域の最低周波数を指定したカットオフ周波数指定HPCを可変HPF部130へ送る。
 ここで、圧縮音声信号CADにおける欠落帯域を推定することは、圧縮音声信号CADの周波数帯域を推定することに他ならない。このため、欠落帯域推定装置120は、圧縮音声信号CADの周波数帯域を推定する周波数帯域推定装置としての機能も有しているといえる。
 なお、欠落帯域推定装置120の構成の詳細については、後述する。
 上記の可変HPF部130は、高調波生成部110から送られた信号HMDを受ける。また、可変HPF部130は、欠落帯域推定装置120から送られたカットオフ周波数指定HPCを受ける。そして、可変HPF部130は、カットオフ周波数指定HPCで指定された周波数をカットオフ周波数とするハイパスフィルタリング処理を信号HMDに対して施す。このハイパスフィルタリング処理の結果が、信号HBDとして合成部140へ送られる。
 上記の合成部140は、圧縮音声解凍装置200から送られた圧縮音声信号CADを受ける。また、合成部140は、可変HPF部130から送られた信号HBDを受ける。そして、合成部140は、圧縮音声信号CADと信号HBDとの合成を行い、高域補間後の信号HIDを生成する。こうして生成された高域補間後の信号HIDは、音出力装置300へ送られる。
 なお、合成部140の構成の詳細については、後述する。
 ここで、ビットレートと圧縮音声の帯域との関係を説明する。図2(A)には、サンプル周波数FSでサンプリングされて生成されたデジタル楽曲音に対応する圧縮前音声の平均的なスペクトルが模式的に示されている。この図2(A)に示されるように、圧縮前音声の帯域の上限周波数は、最高周波数FMAX(=FS/2)となっている。
 かかる圧縮前音声のデータを圧縮して得られる上述したビットレートBR1~BR3の圧縮音声データを解凍して得られる圧縮音声の信号帯域が図2(B)~(D)に示されている。ここで、図2(B)には、ビットレートBR1の圧縮音声の信号帯域が示されている。この図2(B)に示されるように、ビットレートBR1の圧縮音声は、信号帯域の上限周波数が周波数FBR1であり、周波数帯域(FBR1~FMAX)が、圧縮前音声と比べて、信号成分の欠落帯域となっている。
 また、図2(C)には、ビットレートBR2(>BR1)の圧縮音声の信号帯域が示されている。この図2(C)に示されるように、ビットレートBR2の圧縮音声は、信号帯域の上限周波数が周波数FBR2(>FBR1)であり、周波数帯域(FBR2~FMAX)が、圧縮前音声と比べて、信号成分の欠落帯域となっている。
 また、図2(D)には、ビットレートBR3(>BR2)の圧縮音声の信号帯域が示されている。この図2(D)に示されるように、ビットレートBR3の圧縮音声は、信号帯域の上限周波数が周波数FBR3(>FBR2)であり、周波数帯域(FBR3~FMAX)が、圧縮前音声と比べて、信号成分の欠落帯域となっている。
 (欠落帯域推定装置120の構成)
 次に、上記の欠落帯域推定装置120の構成について説明する。
 欠落帯域推定装置120は、図3に示されるように、パイパスフィルタ(HPF)部1211,1212と、減算部122とを備えている。また、欠落帯域推定装置120は、レベル検出部1231,1232と、推定部124とを備えている。
 上記のHPF部1211は、カットオフ周波数FC1でハイパスフィルタリング処理を行う。このHPF部1211は、圧縮音声解凍装置200から送られた圧縮音声信号CADを受ける。そして、HPF部1211は、カットオフ周波数FC1のハイパスフィルタリング処理を圧縮音声信号CADに対して施す。このハイパスフィルタリング処理の結果が、信号HPD1として減算部122へ送られる。
 上記のHPF部1212は、カットオフ周波数FC2(>FC1)でハイパスフィルタリング処理を行う。このHPF部1212は、圧縮音声解凍装置200から送られた圧縮音声信号CADを受ける。そして、HPF部1212は、カットオフ周波数FC2のハイパスフィルタリング処理を圧縮音声信号CADに対して施す。このハイパスフィルタリング処理の結果が、信号HPD2として減算部122及びレベル検出部1232へ送られる。
 上記の減算部122は、HPF部1211から送られた信号HPD1を受ける。また、減算部122は、HPF部1212から送られた信号HPD2を受ける。そして、減算部122は、信号HPD1から信号HPD2を差し引く。こうして算出された結果が、信号SBDとしてレベル検出部1231へ送られる。
 上記のレベル検出部1231は、減算部122から送られた信号SBDを受ける。そして、レベル検出部1231は、信号SBDのパワーレベルを検出する。レベル検出部1231による検出結果は、検出レベルDL1として推定部124へ送られる。
 上記のレベル検出部1232は、HPF部1212から送られた信号HPD2を受ける。そして、レベル検出部1232は、信号HPD2のパワーレベルを検出する。レベル検出部1232による検出結果は、検出レベルDL2として推定部124へ送られる。
 上記の推定部124は、レベル検出部1231から送られた検出レベルDL1を受ける。また、推定部124は、レベル検出部1232から送られた検出レベルDL2を受ける。そして、推定部124は、検出レベルDL1と検出レベルDL2との比R(=DL1/DL2)に基づいて、圧縮音声信号CADにおける欠落帯域を推定する。
 引き続き、推定部124は、推定された欠落帯域の下限周波数を指定したカットオフ周波数指定HPCを生成する。こうして生成されたカットオフ周波数指定HPCは、可変HPF部130へ送られる。
 なお、HPF部1211及びHPF部1212のフィルタリング特性の例が図4に示されている。ここで、図4(A)には、HPF部1211のフィルタリング特性の例が示されている。また、図4(B)には、HPF部1212のフィルタリング特性の例が示されている。
 ここで、HPF部1212のフィルタリング特性は、ビットレートが「BR1」,「BR2」,「BR3」のいずれであっても、比Rの算出に際して、推定部124における除算資源がオーバフローを起こさないように設定される。
 また、HPF部1211及びHPF部1212の検出対象に対応する信号成分が図5に模式的に示されている。なお、図5では、HPF部1211の検出対象に対応する信号成分が横線ハッチで示されるとともに、HPF部1212の検出対象に対応する信号成分が縦線ハッチで示されている。
 ここで、図5(A)には、ビットレートBR1の場合に、HPF部1211及びHPF部1212の検出対象に対応する信号成分が模式的に示されている。また、図5(B)には、ビットレートBR2の場合に、HPF部1211及びHPF部1212の検出対象に対応する信号成分が模式的に示されている。また、図5(C)には、ビットレートBR3の場合に、HPF部1211及びHPF部1212の検出対象に対応する信号成分が模式的に示されている。
 図5(A)~(C)を相互に比較して分るように、ビットレートが異なると、算出される比Rが異なるようになっている。このため、算出された比Rの値に基づいて圧縮音声信号CADにおける欠落領域が推定できるので、ビットレートに対する欠落帯域が一義的に決まっている場合は、推定部124は、圧縮音声信号CADのビットレートを推定することができる。
 (合成部140の構成)
 次いで、上記の合成部140の構成について説明する。
 合成部140は、図6に示されるように、遅延部141と、乗算部1421,1422を備えている。また、合成部140は、加算部143を備えている。
 上記の遅延部141は、圧縮音声解凍装置200から送られた圧縮音声信号CAD(=D0(T)(T:時刻))を受ける。そして、遅延部141は、圧縮音声信号CADを、高調波生成部110及び可変HPF部130における位相遅延に対応する時間TDLだけ遅延させた信号DLD(=D(T))を生成する。ここで、信号D(T)と圧縮音声信号D0(T)との関係は、次の(1)式で表される。
  D(T)=D0(T-TDL)       …(1)
 この結果、信号DLDと、上述した可変HPF部130から出力される信号HBDとの同期が図られるようになっている。こうして生成された信号DLDは、乗算部1421へ送られる。
 上記の乗算部1421は、遅延部141から送られた信号DLDを受ける。そして、乗算部1421は、信号DLDをK1倍して信号MLDを生成する。こうして生成された信号MLDは、加算部143へ送られる。
 上記の乗算部1422は、可変HPF部130から送られた信号HBDを受ける。そして、乗算部1422は、信号HBDをK2倍して信号MHDを生成する。こうして生成された信号MHDは、加算部143へ送られる。
 なお、値K1と値K2との比は、適切な高域補間の観点から、実験、シミュレーション、経験等に基づいて予め定められる。
 上記の加算部143は、乗算部1421から送られた信号MLDを受ける。また、加算部143は、乗算部1422から送られた信号MHDを受ける。そして、加算部143は、信号MLDと信号MHDとを加算して高域補間後の信号HIDを生成する。こうして生成された高域補間後の信号HIDは、音出力装置300へ送られる。
 上述のようにして生成された信号MHDのスペクトルが図7に示されている。ここで、図7(A)には、ビットレートBR1の圧縮音声信号CADに対応して生成された信号MHDのスペクトルが、破線にて示されている。また、図7(B)には、ビットレートBR2の圧縮音声信号CADに対応して生成された信号MHDのスペクトルが、破線にて示されている。さらに、図7(C)には、ビットレートBR3の圧縮音声信号CADに対応して生成された信号MHDのスペクトルが、破線にて示されている。なお、図7(A)~(C)では、信号DLDをK1倍した信号MLD(ひいては、圧縮音声信号CADをK1倍した信号)のスペクトルが、実線にて示されている。
 図7(A)~(C)に示されるように、信号HMDは、圧縮音声信号CADにおける信号成分の欠落帯域を、適切に補間する信号となっている。
 [動作]
 次に、上記のように構成された音響装置100の動作について、圧縮音声信号CADに基づく信号HBD(図1参照)の生成処理に主に着目して説明する。
 圧縮音声解凍装置200が圧縮音声信号CADの供給を開始すると、音響装置100では、高調波生成部110及び欠落帯域推定装置120が圧縮音声信号CADを受ける。また、音響装置100では、合成部140が圧縮音声信号CADを受ける(図1参照)。
 圧縮音声信号CADを受けると、高調波生成部110は、圧縮音声信号CADの所定の周波数帯域の成分の高調波を生成する。そして、高調波生成部110は、生成された高調波のうち、サンプル周波数FSで定まる圧縮前音声の帯域の最高周波数FMAX以下の成分を、信号HMDとして、可変HPF部130へ送る(図1参照)。
 一方、圧縮音声信号CADを受けると、欠落帯域推定装置120は、上述の高調波生成部110による高周波発生と並行して、圧縮音声信号CADに基づいて、圧縮音声信号CADにおける欠落帯域を推定する。かかる欠落帯域の推定に際して、欠落帯域推定装置120では、圧縮音声信号CADを受けたHPF部1211が、カットオフ周波数FC1のハイパスフィルタリング処理を圧縮音声信号CADに対して施す。そして、HPF部1211は、ハイパスフィルタリング処理の結果を、信号HPD1として減算部122へ送る(図3参照)。
 また、圧縮音声信号CADを受けると、HPF部1212が、上述のHPF部1211によるハイパスフィルタリング処理と並行して、カットオフ周波数FC2のハイパスフィルタリング処理を圧縮音声信号CADに対して施す。そして、HPF部1212は、ハイパスフィルタリング処理の結果を、信号HPD2として減算部122及びレベル検出部1232へ送る(図3参照)。
 HPF部1211から送られた信号HPD1、及び、HPF部1212から送られた信号HPD2を受けると、減算部122は、信号HPD1と信号HPD2との差分を算出する。そして、減算部122は、算出された差分を、信号SBDとしてレベル検出部1231へ送る(図3参照)。
 減算部122から送られた信号SBDを受けると、レベル検出部1231は、信号SBDのパワーレベルを検出する。そして、レベル検出部1231は、検出結果を、検出レベルDL1として推定部124へ送る(図3参照)。
 HPF部1212から送られた信号HPD2を受けると、レベル検出部1232は、信号HPD2のパワーレベルを検出する。そして、レベル検出部1232は、検出結果を、検出レベルDL2として推定部124へ送る(図3参照)。
 レベル検出部1231から送られた検出レベルDL1、及び、レベル検出部1232から送られた検出レベルDL2を受けると、推定部124は、検出レベルDL1及び検出レベルDL2に基づいて、カットオフ周波数指定HPCを生成する。かかるカットオフ周波数指定HPCの生成に際して、推定部124は、まず、検出レベルDL1と検出レベルDL2との比R(=DL1/DL2)を算出する。
 引き続き、推定部124は、算出された比Rに基づいて、圧縮音声信号の欠落帯域を推定する。
 次に、推定部124は、推定された欠落帯域の下限周波数を指定したカットオフ周波数指定HPCを生成する。そして、推定部124は、生成されたカットオフ周波数指定HPCは、可変HPF部130へ送る(図3参照)。
 欠落帯域推定装置120(より詳しくは、推定部124)から送られたカットオフ周波数指定HPCを受けると、可変HPF部130は、カットオフ周波数指定HPCで指定された周波数をカットオフ周波数とするハイパスフィルタリング処理を、高調波生成部110から送られた信号HMDに対して施して、信号HBDを生成する。そして、可変HPF部130は、生成された信号HBDを合成部140へ送る(図1参照)。
 可変HPF部130から送られた信号HBDを受けると、合成部140は、信号HBDと、圧縮音声解凍装置200から送られた圧縮音声信号CADとの合成を行う。かかる合成に際して、合成部140では、遅延部141が、圧縮音声信号CADを、高調波生成部110及び可変HPF部130における位相遅延に対応する時間TDLだけ遅延させて、信号HBDとの同期が図られ信号DLDを生成する。そして、遅延部141は、生成された信号DLDを乗算部1421へ送る(図6参照)。
 遅延部141から送られた信号DLDを受けると、乗算部1421は、信号DLDをK1倍して信号MLDを生成する。そして、乗算部1421は、生成された信号MLDを加算部143へ送る(図6参照)。
 一方、乗算部1422は、信号HBDをK2倍して信号MHDを生成する。そして、乗算部1422は、生成された信号MHDを加算部143へ送る(図6参照)。
 乗算部1421から送られた信号MLD、及び、乗算部1422から送られた信号MHDを受けると、加算部143は、信号MLDと信号MHDとを加算して、高域補間がなされた信号HIDを生成する。そして、加算部143は、生成された高域補間後の信号HIDを音出力装置300へ送る(図6参照)。
 すなわち、合成部140は、信号HBDと圧縮音声信号CADとの同期を図ったうえで、適切な高域補間ができる混合比で重み付け加算して、信号HBDと圧縮音声信号CADとの合成を行う。かかる合成の結果として生成された高域補間後の信号HIDが、音出力装置300へ送られるようになっている。
 音響装置100(より詳しくは、合成部140)から送られた高域補間後の信号HIDを受けると、音出力装置300は、高域補間後の信号HIDに従った音をスピーカSPから出力する。この結果、圧縮音声信号CADのビットレートに対応して適切に高域補間が行われた高品質の音声が、音出力装置300から出力される。
 以上説明したように、本実施形態では、高域補間に際して、まず、高調波生成部110が、入力された圧縮音声信号CADの高調波を生成する。こうした高調波の生成と並行して、欠落帯域推定装置120が圧縮音声信号CADにおける欠落帯域を推定する。
 かかる欠落帯域の推定に際して、欠落帯域推定装置120では、カットオフ周波数FC1を有するハイパスフィルタ部1211が、圧縮音声信号CADの高域成分を抽出するとともに、カットオフ周波数FC2(>FC1)を有するハイパスフィルタ部1212が、圧縮音声信号CADの高域成分を抽出する。引き続き、欠落帯域推定装置120では、推定部124が、ハイパスフィルタ部1211(第1のハイパスフィルタ部)から出力された信号HPD1からハイパスフィルタ部1212(第2のハイパスフィルタ部)から出力された信号HPD2を差し引いた差信号SBDのレベルと、信号HPD2とのレベルとの比Rを算出する。なお、圧縮音声信号CADのビットレートが異なると、比Rが異なるように、ハイパスフィルタ部1211,1212のフィルタリング特性が設定される。
 次に、推定部124が、算出された比Rに基づいて、圧縮音声信号CADの欠落帯域を推定する。そして、推定部124が、推定された欠落帯域の下限周波数を指定したカットオフ周波数指定HPCを可変HPF部130へ送ることにより、可変HPF部130によるハイパスフィルタリング処理を制御する。
 かかる制御もとで、可変HPF部130は、カットオフ周波数指定HPCで指定された周波数をカットオフ周波数とするハイパスフィルタリング処理を、高調波生成部110から送られた信号HMDに対して施して、信号HBDを生成する。そして、合成部140により、圧縮音声信号CADと信号HBDとが合成される。
 したがって、本実施形態によれば、簡易な構成で高音帯域の補間を適切に行った高品質な音声を出力できる。
 [実施形態の変形]
 本発明は、上記の実施形態に限定されるものではなく、様々な変形が可能である。
 例えば、上記の実施形態では、第1のハイパスフィルタ部から出力された信号から第2のハイパスフィルタ部から出力された信号を差し引いた差信号のレベルと、第2のハイパスフィルタ部から出力された信号のレベルとの比に基づいて、入力された圧縮音声信号の欠落帯域を推定するようにした。これに対し、第1のハイパスフィルタ部から出力された信号のレベルと、第2のハイパスフィルタ部から出力された信号のレベルとの比に基づいて、入力された圧縮音声信号の周波数帯域を推定するようにしてもよい。そして、推定された周波数帯域の上限周波数を指定したカットオフ周波数指定を、可変HPF部に対して行うようにしてもよい。
 また、圧縮音声信号のビットレートが異なると、第1のハイパスフィルタ部から出力された信号のレベルと、第2のハイパスフィルタ部から出力された信号のレベルとの比が異なるのであれば、上記の実施形態で例示したハイパスフィルタ部の特性以外のフィルタリング特性を有するハイパスフィルタ部を採用してもよい。
 また、上記の実施形態では、圧縮音声信号の高域補間に本発明を適用するようにしたが、圧縮音声信号以外の音声信号の高域補間に本発明を適用してもよい。
 また、上記の実施形態では、音響装置とは別の装置として圧縮音声解凍装置及び音出力装置が配置される構成とした。これに対し、音響装置が圧縮音声解凍装置の機能を備えるようにしてもよいし、また、音響装置が音出力装置の機能を備えるようにしてもよい。
 なお、上記の実施形態の音響装置を、DSP(Digital Signal Processor)等を備えた演算手段としてのコンピュータとして構成し、予め用意されたプログラムを当該コンピュータで実行することにより、上記の実施形態における処理の一部又は全部を実行するようにしてもよい。このプログラムは、CD-ROM、DVD等の可搬型記録媒体に記録された形態で取得されるようにしてもよいし、インターネットなどのネットワークを介した配送の形態で取得されるようにしてもよい。

Claims (9)

  1.  入力された音声信号の高調波を生成する高調波生成部と;
     カットオフ周波数が可変であり、前記高調波生成部が生成した前記高調波の高域成分を抽出する可変ハイパスフィルタ部と;
     第1のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;
     前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;
     前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記可変ハイパスフィルタ部のカットオフ周波数を制御する制御部と;
     を備えることを特徴とする音響装置。
  2.  前記第1のカットオフ周波数及び前記第2のカットオフ周波数は、前記入力された音声信号に対応するビットレートが異なると、前記第1のハイパスフィルタ部の出力信号のレベルと前記第2のハイパスフィルタ部の出力信号のレベルとの比が異なるように設定される、
     ことを特徴とする請求項1に記載の音響装置。
  3.  前記制御部は、前記第1のハイパスフィルタ部の出力信号から前記第2のハイパスフィルタ部の出力信号を差し引いた差信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとの比に基づいて、前記可変ハイパスフィルタ部のカットオフ周波数を制御する、ことを特徴とする請求項2に記載の音響装置。
  4.  前記入力された音声信号と、前記可変ハイパスフィルタ部の出力信号とを合成する合成部を更に備える、ことを特徴とする請求項1~3のいずれか一項に記載の音響装置。
  5.  第1のカットオフ周波数を有し、入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;
     前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;
     前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記入力された音声信号において信号成分が欠落している高音帯域を推定する推定部と;
     を備えることを特徴とする欠落帯域推定装置。
  6.  入力された音声信号の高調波を生成する高調波生成部と;カットオフ周波数が可変であり、前記高調波生成部が生成した前記高調波の高域成分を抽出する可変ハイパスフィルタ部と;第1のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;を備える音響装置において使用される信号処理方法であって、
     前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとを取得する取得工程と;
     前記取得工程における取得結果に基づいて、前記可変ハイパスフィルタ部のカットオフ周波数を制御する制御工程と;
     を備えることを特徴とする信号処理方法。
  7.  音響装置が有するコンピュータに、請求項6に記載の信号処理方法を実行させる、ことを特徴とする信号処理プログラム。
  8.  音響装置が有するコンピュータにより読み取り可能に、請求項7に記載の信号処理プログラムが記録されている、ことを特徴とする記録媒体。
  9.  第1のカットオフ周波数を有し、入力された音声信号の高域成分を抽出する第1のハイパスフィルタ部と;
     前記第1のカットオフ周波数よりも高い第2のカットオフ周波数を有し、前記入力された音声信号の高域成分を抽出する第2のハイパスフィルタ部と;
     前記第1のハイパスフィルタ部の出力信号のレベルと、前記第2のハイパスフィルタ部の出力信号のレベルとに基づいて、前記入力された音声信号の周波数帯域を推定する推定部と;
     を備えることを特徴とする周波数帯域推定装置。
PCT/JP2014/058859 2014-03-27 2014-03-27 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置 WO2015145660A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/058859 WO2015145660A1 (ja) 2014-03-27 2014-03-27 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置
JP2016509747A JP6371376B2 (ja) 2014-03-27 2014-03-27 音響装置及び信号処理方法
US15/128,607 US10839824B2 (en) 2014-03-27 2014-03-27 Audio device, missing band estimation device, signal processing method, and frequency band estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058859 WO2015145660A1 (ja) 2014-03-27 2014-03-27 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置

Publications (1)

Publication Number Publication Date
WO2015145660A1 true WO2015145660A1 (ja) 2015-10-01

Family

ID=54194253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058859 WO2015145660A1 (ja) 2014-03-27 2014-03-27 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置

Country Status (3)

Country Link
US (1) US10839824B2 (ja)
JP (1) JP6371376B2 (ja)
WO (1) WO2015145660A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109036457A (zh) * 2018-09-10 2018-12-18 广州酷狗计算机科技有限公司 恢复音频信号的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192964A (ja) * 2006-01-18 2007-08-02 Yamaha Corp オーディオ信号の帯域拡張装置
JP2011203480A (ja) * 2010-03-25 2011-10-13 Toshiba Corp 音声認識装置、及びコンテンツ再生装置
JP2013511752A (ja) * 2009-12-16 2013-04-04 ドルビー インターナショナル アーベー Sbrビットストリームパラメータダウンミックス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317622A (ja) 2003-04-14 2004-11-11 Matsushita Electric Ind Co Ltd 音響再生装置
GB0822537D0 (en) * 2008-12-10 2009-01-14 Skype Ltd Regeneration of wideband speech
US9947340B2 (en) * 2008-12-10 2018-04-17 Skype Regeneration of wideband speech
JP5458057B2 (ja) * 2011-05-17 2014-04-02 日本電信電話株式会社 信号広帯域化装置、信号広帯域化方法、及びそのプログラム
JP5711645B2 (ja) * 2011-10-12 2015-05-07 旭化成株式会社 オーディオ信号出力装置およびオーディオ信号出力方法
EP2798737B1 (en) * 2011-12-27 2018-10-10 Dts Llc Bass enhancement system
WO2013183103A1 (ja) * 2012-06-04 2013-12-12 三菱電機株式会社 周波数特性変形装置
US9418671B2 (en) * 2013-08-15 2016-08-16 Huawei Technologies Co., Ltd. Adaptive high-pass post-filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007192964A (ja) * 2006-01-18 2007-08-02 Yamaha Corp オーディオ信号の帯域拡張装置
JP2013511752A (ja) * 2009-12-16 2013-04-04 ドルビー インターナショナル アーベー Sbrビットストリームパラメータダウンミックス
JP2011203480A (ja) * 2010-03-25 2011-10-13 Toshiba Corp 音声認識装置、及びコンテンツ再生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109036457A (zh) * 2018-09-10 2018-12-18 广州酷狗计算机科技有限公司 恢复音频信号的方法和装置
US11315582B2 (en) 2018-09-10 2022-04-26 Guangzhou Kugou Computer Technology Co., Ltd. Method for recovering audio signals, terminal and storage medium

Also Published As

Publication number Publication date
JP6371376B2 (ja) 2018-08-08
US20170103772A1 (en) 2017-04-13
US10839824B2 (en) 2020-11-17
JPWO2015145660A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5098569B2 (ja) 帯域拡張再生装置
JP6401521B2 (ja) 信号処理装置及び信号処理方法
JP4827675B2 (ja) 低周波帯域音声復元装置、音声信号処理装置および録音機器
JP4972742B2 (ja) 高域信号補間方法及び高域信号補間装置
JP2010028307A (ja) 雑音低減装置及び方法、並びにプログラム
CN106941006B (zh) 用于音频信号的分离和低音增强的方法、装置和***
JP5232121B2 (ja) 信号処理装置
KR20140017639A (ko) 부가적인 출력 채널들을 제공하기 위하여 스테레오 출력 신호를 발생시키기 위한 장치와 방법 및 컴퓨터 프로그램
JP4701392B2 (ja) 高域信号補間方法及び高域信号補間装置
JP6371376B2 (ja) 音響装置及び信号処理方法
JP5430263B2 (ja) オーディオ装置
JP6685443B2 (ja) 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置
JP6506424B2 (ja) 音響装置、欠落帯域推定装置、信号処理方法及び周波数帯域推定装置
JP5604275B2 (ja) 相関低減方法、音声信号変換装置および音響再生装置
JP2007272059A (ja) オーディオ信号処理装置,オーディオ信号処理方法,プログラムおよび記憶媒体
US10068580B2 (en) Band expander, reception device, band expanding method for expanding signal band
US9871497B2 (en) Processing audio signal to produce enhanced audio signal
JP2014102317A (ja) 雑音除去装置、雑音除去方法、及びプログラム
JP4206409B2 (ja) 音声処理装置、その方法、プログラム、及びそのプログラムを記録した記録媒体
US10917108B2 (en) Signal processing apparatus and signal processing method
JP5241373B2 (ja) 高調波生成装置
JP2015191102A (ja) 音響装置及び信号処理方法
JP6196437B2 (ja) 受信機、及びプログラム
JP6032703B2 (ja) 音響信号処理装置及び音響信号処理方法
JP6314803B2 (ja) 信号処理装置、信号処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509747

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887252

Country of ref document: EP

Kind code of ref document: A1