WO2015144619A1 - Magnetischer kreis zum dynamischen laden von elektrofahrzeugen - Google Patents

Magnetischer kreis zum dynamischen laden von elektrofahrzeugen Download PDF

Info

Publication number
WO2015144619A1
WO2015144619A1 PCT/EP2015/056057 EP2015056057W WO2015144619A1 WO 2015144619 A1 WO2015144619 A1 WO 2015144619A1 EP 2015056057 W EP2015056057 W EP 2015056057W WO 2015144619 A1 WO2015144619 A1 WO 2015144619A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
energy transfer
transfer device
stationary energy
stationary
Prior art date
Application number
PCT/EP2015/056057
Other languages
English (en)
French (fr)
Inventor
Faical Turki
Original Assignee
Paul Vahle Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Vahle Gmbh & Co. Kg filed Critical Paul Vahle Gmbh & Co. Kg
Publication of WO2015144619A1 publication Critical patent/WO2015144619A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a stationary energy transmission device for inductively charging an energy storage device of a vehicle, wherein the energy transmission device comprises a plurality of along the roadway arranged conductor pairs, each pair of conductors is formed of a first conductor and a second conductor, the two conductors arranged parallel to each other in the roadway are and each form a conductor loop.
  • a generic energy transfer device is shown in Figures 1 and two.
  • the stationary energy transmission system has a power supply line 3 extending along the roadway F, which feeds a first supply unit 4.
  • the electrical switching device 5 flows either in the in the carriageway F in the direction of travel successively laid primary conductor loops 6, 6 ' an alternating current, which generates the magnetic field shown in Figure 2 M a and M b .
  • the two parallel conductors 6a and 6b are arranged in a plane to each other, which is arranged parallel to the road surface F 0 .
  • the magnetic fields M a and M b induce in the windings 2b of the pickup 2 of the vehicle 1, a voltage which is used to supply a battery, not shown, of the vehicle.
  • the windings 2b can form series or parallel resonant circuits with capacitors, not shown.
  • the magnetic coupling between the primary and secondary sides of the energy transfer system is improved as more ferromagnetic material is used in the secondary coil.
  • An increase in the coupling can also be achieved by using ferromagnetic material in the primary conductor arrangement.
  • This is disproportionately expensive due to the large use of materials, so that ferromagnetic material in the primary assembly should be avoided if possible.
  • an operating frequency 20 kHz to 200 kHz is usually chosen.
  • the working frequency is limited to the top essentially by the switching losses of the IGBTs used.
  • the present invention is based on the object, a stationary, d .h. primary to provide energy transfer device, which allows a larger air gap between the primary and the secondary side.
  • a stationary energy transfer device for inductive charging of an energy storage device of a vehicle is arranged in the first conductor at a distance above the second conductor in the roadway.
  • the two parallel conductors are arranged in a plane perpendicular to the road surface.
  • Each pair of conductors is part of either an electrical series or parallel resonant circuit, each consisting of the first and second electrical conductors and capacitors.
  • the first and the second conductors form conductor loops, that is to say, conductor loops. they are connected at one end directly or via a capacitor.
  • the pairs of conductors are selectively connectable by means of the supply and switching devices with a power supply line, so that not all arranged in the road conductor loops must be constantly flowed through, but only those over which a vehicle to be loaded is located.
  • a slit is incorporated in the road surface, in which the two conductors are inserted at a distance from each other and one above the other.
  • a housing can be dispensed with, provided that the two conductors and the spacer element are poured into the slot.
  • the conductors, and possibly also other passive and / or active components are arranged in a housing above the introduction into the lane slot have been embedded with each other at a distance in a potting compound and then subsequently the composite structure of conductors and if necessary, further components are subsequently introduced into the carriageway slot. It must be ensured in each case that the ladder arrangement is not damaged by the loads that occur when driving over the later closed lane slot. This can be realized by suitable measures which absorb the forces and / or divert to the side.
  • Figure 1 A generic energy transfer device with successively arranged in the direction of travel conductor loops, which are arranged parallel to the road surface;
  • FIG. 2 shows a cross-sectional view through the energy transmission system shown in principle in FIG. 1;
  • FIG. 3 shows a cross-sectional view through the energy transmission system according to the invention
  • Figure 4 further possible embodiment of a power transmission system according to the invention.
  • FIG 3 shows a cross-sectional view through an inventive energy transmission system, in which the two conductors 6a and 6b in the plane E, which is aligned perpendicular to the road surface F 0 and the plane of the drawing, are arranged at a distance A to each other.
  • the upper conductor 6a generates the magnetic field M a, which is captured by the ferrite arrangement 2 a of the pickup 2 and induces a voltage in the coil winding or the coil windings 2 b of the pickup 2.
  • the pickup 2 is arranged or integrated below the vehicle 1 or in the vehicle floor.
  • the shield 2c shields the pickup 2 from the vehicle 1, wherein the shield 2c can also be arranged in the pickup 2 itself.
  • the lower magnetic field of the lower conductor 6 b is not shown because it does not interact with the pickup 2.
  • the distance A must not be too large so that the inductance formed by the conductors 6a, 6b does not become too large and the strength of the lateral magnetic field does not exceed the permissible limits.
  • Each conductor pair 6a, 6b can be connected to the supply line 3 by means of the electrical switching devices or devices 4, 5 illustrated in FIG.
  • the upper conductor is advantageously arranged below the road surface F 0 of the carriageway F. It is possible that the upper conductor 6a is arranged in the uppermost roadway layer. As shown in Figure 4, the two conductors 6a and 6b einer in a vertical slot S of the carriageway F. Advantageously, they are spaced from each other by a spacer AE. So z. B. are placed under a foundation layer FU in the slot on which the lower conductor 6b is placed, after which then the or the spacer elements AR are placed on the lower conductor 6b. Subsequently, the upper conductor 6a is inserted into the slot S, which can then be closed, for example, with the road surface.
  • the two conductors 6a and 6b are poured in a mold outside of the slot S at a distance to each other, and then then the cured cast body with the embedded conductors 6a and 6b and, if necessary.
  • Other electrical components such , B. capacity, is admitted in the carriageway slot S.
  • the conductors are arranged in a housing G, and as a whole with the housing G in the lane slot S are admitted.
  • the secondary-side energy transmission device 2 may have at least one, in particular flat, disk-shaped, coil core 2a, which is formed in particular by a flat ferrite arrangement.
  • the coil core 2b is encompassed by at least one winding 2b at its top and bottom, wherein the coil core 2b and parallel to the road surface F 0 aligned with the vehicle 1 is arranged or fixed.
  • a metallic shield 2c is arranged above the pickup coil 2a, 2b, so that the vehicle 1 is not disturbed by the magnetic fields generated by the current-carrying conductors arranged above the coil core 2a.
  • the pickup coil 2a, 2b is either part of an electrical series or parallel resonant circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft eine stationäre Energieübertragungseinrichtung zum induktiven Laden eines Energiespeichers eines Fahrzeuges (1), wobei die Energieübertragungseinrichtung mehrere entlang der Fahrbahn (F) hintereinander angeordnete Leiterpaare (6a, 6b) aufweist, wobei jedes Leiterpaar (6a, 6b) aus einem ersten Leiter (6a) und einem zweiten Leiter (6b) gebildet ist, die beiden Leiter (6a, 6b) parallel zueinander in der Fahrbahn (F) angeordnet sind und jeweils eine Leiterschlaufe (6) bilden, dadurch gekennzeichnet, dass der erste Leiter (6a) in einem Abstand (A) oberhalb des zweiten Leiters (6b) in der Fahrbahn (F) angeordnet ist.

Description

Magnetischer Kreis zum dynamischen Laden von Elektrofahrzeugen
Die vorliegende Erfindung betrifft eine stationäre Energieübertragungseinrichtung zum induktiven Laden eines Energiespeichers eines Fahrzeuges, wobei die Energieübertragungseinrichtung mehrere entlang der Fahrbahn hintereinander angeordnete Leiterpaare aufweist, wobei jedes Leiterpaar aus einem ersten Leiter und einem zweiten Leiter gebildet ist, die beiden Leiter parallel zueinander in der Fahrbahn angeordnet sind und jeweils eine Leiterschlaufe bilden.
Eine gattungsgemäße Energieübertragungseinrichtung ist in den Figuren 1 und zwei dargestellt. Das stationäre Energieübertragungssystem weist eine sich entlang der Fahrbahn F erstreckende Energieversorgungsleitung 3 auf, die eine erste Versorgungseinheit 4 speist. Mittels der elektrischen Schaltvorrichtung 5 fließt wahlweise in den in der Fahrbahn F in Fahrtrichtung hintereinander verlegten Primärleiterschleifen 6, 6 ' einen Wechselstrom, der das in Figur 2 dargestellte Magnetfeld Ma und Mb erzeugt. Die beiden parallelen Leiter 6a und 6b sind in einer Ebene zueinander angeordnet, welche parallel zu der Fahrbahnoberfläche F0 angeordnet ist. Die Magnetfelder Ma und Mb induzieren in den Wicklungen 2b der Pickup 2 des Fahrzeuges 1 eine Spannung, die zur Versorgung einer nicht dargestellten Batterie des Fahrzeuges genutzt wird . Die Wicklungen 2b können mit nicht dargestellten Kondensatoren Serien- oder Parallelschwingkreise bilden.
Die magnetische Kopplung zwischen der Primär- und der Sekundärseite des Energieübertragungssystems wird verbessert, sofern mehr ferromagnetisches Material in der Sekundärspule verwendet wird . Eine Erhöhung der Kopplung kann auch durch Verwendung von ferromagnetischem Material in der Primärleiteranordnung erzielt werden. Die ist jedoch bedingt durch den großen Materialeinsatz unverhältnismäßig teuer, so dass auf ferromagnetisches Material in der Primäranordnung nach Möglichkeit verzichtet werden sollte. Bei Leistungen unterhalb von 100kW wird gewöhnlich eine Arbeitsfrequenz von 20 kHz bis 200 kHz gewählt. Die Arbeitsfrequenz wird nach oben hin im Wesentlichen durch die Schaltverluste der verwendeten IGBTs begrenzt. Andererseits werden die passiven Schaltungskomponenten, insbesondere die Spulen bei höheren Arbeitsfrequenzen kleiner bei gleicher zu übertragender Leistung. Für die Übertragung kleinerer Leistungen sind Arbeitsfrequenzen von 80-90 kHz und 130 bis 145 kHz üblich.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine stationäre, d .h. primäre, Energieübertragungseinrichtung bereitzustellen, welche einen größeren Luftspalt zwischen der Primär- und der Sekundärseite zulässt.
Diese Aufgabe wird erfindungsgemäß mit einer stationären Energieübertragungseinrichtung zum induktiven Laden eines Energiespeichers eines Fahrzeuges gelöst, bei der erste Leiter in einem Abstand oberhalb des zweiten Leiters in der Fahrbahn angeordnet ist. Die beiden parallelen Leiter sind dabei in einer Ebene senkrecht zur Fahrbahnoberfläche angeordnet. Hierdurch koppelt die Pickup des Fahrzeuges lediglich mit dem Magnetfeld des oberen ersten Leiters, wodurch die Pickup kleiner gebaut werden kann. Die Wicklung der sekundären Spule der Pickup ist dabei um den Ferritkern der Pickup herum gewickelt, wodurch sich auch oberhalb des Ferritkerns stromdurchflossene Wicklungsdrähte befinden, so dass eine Abschirmung der Pickup gegenüber dem Fahrzeug zwingend notwendig ist.
Es ergeben sich dadurch folgende Vorteile :
- einfacher Aufbau der primärseitigen Leiterschleifen;
- kostengünstige primärseitige Energieübertragungseinrichtung;
- geringe Leitungslänge, da die Leiter in Fahrtrichtung verlegt sind;
- keine Ferrite oder zusätzlichen Metalle zur Beeinflussung des Magnetfei- des auf der Primärseite.
Jedes Leiterpaar ist dabei Bestandteil entweder eines elektrischen Serien- oder Parallelschwingkreises, bestehend jeweils aus dem ersten und zweiten elektrischen Leiter und Kondensatoren. Wie bereits in den Figuren 1 und 2 dargestellt und erläutert, bilden der erste und der zweite Leiter Leiterschleifen, d .h. sie sind an einem Ende direkt oder über einen Kondensator miteinander verbunden. Die leiterpaare sind mittels der Versorgungs- und Schalteinrichtungen mit einer Energieversorgungsleitung wahlweise verbindbar, so dass nicht alle in der Fahrbahn angeordneten Leiterschleifen ständig stromdurchflossen sein müssen, sondern lediglich diejenigen über denen sich ein zu ladendes Fahrzeug befindet.
Durch das übereinander Anordnen der beiden parallel zueinander angeordneten Leiter, ergibt sich ein einfacher Aufbau. Zudem ergeben sich geringe Ausrüstungskosten für die Strecke und geringe Abmessungen der sekundärseiti- gen Einrichtungen, insbesondere der Pickups.
Im einfachsten Falle wird in die Fahrbahnoberfläche ein Schlitz eingearbeitet, in den die beiden Leiter auf Abstand zueinander und übereinander eingelegt werden. Auf ein Gehäuse kann verzichtet werden, sofern die beiden Leiter und das Abstandselement in dem Schlitz eingegossen werden. Es ist jedoch auch möglich, dass die Leiter, und gegebenenfalls auch weitere passive und/oder aktive Komponenten, in einem Gehäuse angeordnet sind ober vor dem Einbringen in den Fahrbahnschlitz miteinander auf Abstand in eine Vergussmasse eingebettet worden sind und dann anschließend die Verbundstruktur aus Leitern und ggfs. weiterer Komponenten anschließend in den Fahrbahnschlitz eingebracht werden. Dabei ist jeweils darauf zu achten, dass durch das Überfahren des später verschlossenen Fahrbahnschlitzes die Leiteranordnung durch die auftretenden Belastungen nicht beschädigt wird . Dies kann durch geeignete Maßnahmen, welche die Kräfte aufnehmen und/oder zur Seite hin ableiten, realisiert werden.
Nachfolgend wird die Erfindung anhand von Zeichnungen näher erläutert.
Es zeigen : Figur 1 : Eine gattungsgemäße Energieübertragungseinrichtung mit hintereinander in Fahrtrichtung angeordneten Leiterschleifen, welche parallel zur Fahrbahnoberfläche angeordnet sind;
Figur 2 : Querschnittsdarstellung durch das in Figur 1 prinziphaft dargestellte Energieübertragungssystem;
Figur 3 : Querschnittsdarstellung durch das erfindungsgemäße Energieübertragungssystem;
Figur 4: weitere mögliche Ausbildung eines erfindungsgemäßen Energieübertragungssystems.
Die Figur 3 zeigt eine Querschnittsdarstellung durch ein erfindungsgemäßes Energieübertragungssystem, bei dem die beiden Leiter 6a und 6b in der Ebene E, welche senkrecht zur Fahrbahnoberfläche F0 und der Zeichnungsebene ausgerichtet ist, in einem Abstand A zueinander angeordnet sind . Der obere Leiter 6a erzeugt dabei das Magnetfeld Ma welches von der Ferritanordnung 2a der Pickup 2 eingefangen wird und in der Spulenwicklung bzw. den Spulenwicklungen 2b der Pickup 2 eine Spannung induziert. Die Pickup 2 ist unterhalb des Fahrzeuges 1 bzw. im Fahrzeugboden angeordnet bzw. integriert. Die Abschirmung 2c schirmt die Pickup 2 gegenüber dem Fahrzeug 1 ab, wobei die Abschirmung 2c auch in der Pickup 2 selbst angeordnet sein kann . Das untere Magnetfeld des unteren Leiters 6b ist nicht dargestellt, da es nicht mit der Pickup 2 zusammenwirkt.
Durch den Abstand A darf nicht zu groß gewählt werden, damit die durch die Leiter 6a, 6b gebildete Induktivität nicht zu groß wird und die Stärke des seitlichen Magnetfeldes nicht die zulässigen Grenzwerte überschreitet.
Jedes Leiterpaar 6a, 6b ist mittels der in Figur 2 dargestellten elektrischen Schaltvorrichtungen oder Einrichtungen 4, 5 mit der Versorgungsleitung 3 verbindbar.
Der obere Leiter wird vorteilhaft unterhalb der Fahrbahnoberfläche F0 der Fahrbahn F angeordnet. Es ist möglich, dass der oberer Leiter 6a in der obersten Fahrbahnschicht angeordnet ist. Wie in Figur 4 dargestellt, können die beiden Leiter 6a und 6b in einem senkrechten Schlitz S der Fahrbahn F einliegen. Vorteilhaft sind sie durch ein Abstandselement AE voneinander beabstandet. So kann z. B. eine unter Fundamentschicht FU in den Schlitz eingebracht werden, auf den der untere Leiter 6b gelegt wird, wonach dann das bzw. die Abstandselemente AR auf den unteren Leiter 6b gelegt werden. Anschließend wird der oberer Leiter 6a in den Schlitz S eingelegt, welcher dann z.B. mit dem Fahrbahnbelag verschlossen werden kann.
Es ist selbstverständlich auch möglich, dass die beiden Leiter 6a und 6b in einer Gussform außerhalb des Schlitzes S in einem Abstand zueinander eingegossen werden, und dann anschließend der ausgehärtete Gusskörper mit den darin eingebetteten Leitern 6a und 6b und ggfs. weiterer elektrischer Komponenten, wie z. B. Kapazitäten, in den Fahrbahnschlitz S eingelassen wird.
Auch ist es möglich, dass die Leiter in einem Gehäuse G angeordnet werden, und als Ganzes mit dem Gehäuse G in den Fahrbahnschlitz S eingelassen werden.
Die Sekundärseitige Energieübertragungseinrichtung 2 kann mindestens einen, insbesondere flachen, scheibenförmigen, Spulenkern 2a, welcher insbesondere durch eine flache Ferritanordnung gebildet ist, aufweisen. Der Spulenkern 2b ist von mindestens einer Wicklung 2b an seiner Ober- und Unterseite umgriffen, wobei der Spulenkern 2b und parallel zur Fahrbahnoberfläche F0 ausgerichtet am Fahrzeug 1 angeordnet bzw. befestigt ist. Oberhalb der Pickup- Spule 2a, 2b ist eine metallische Abschirmung 2c angeordnet, damit das Fahrzeug 1 nicht durch die magnetischen Felder, welche durch die oberhalb des Spulenkerns 2a angeordneten stromdurchflossenen Leiter erzeugt werden, gestört wird.
Je nachdem, wie das Energieübertragungssystem ausgelegt ist, ist die Pickup- Spule 2a, 2b entweder Bestandteil eines elektrischen Serien- oder Parallelschwingkreises.

Claims

Patentansprüche
1. Stationäre Energieübertragungseinrichtung zum induktiven Laden eines Energiespeichers eines Fahrzeuges (1), wobei die Energieübertragungseinrichtung mehrere entlang der Fahrbahn (F) hintereinander angeordnete Leiterpaare (6a, 6b) aufweist, wobei jedes Leiterpaar (6a, 6b) aus einem ersten Leiter (6a) und einem zweiten Leiter (6b) gebildet ist, die beiden Leiter (6a, 6b) parallel zueinander in der Fahrbahn (F) angeordnet sind und jeweils eine Leiterschlaufe (6) bilden, dadurch gekennzeichnet, dass der erste Leiter (6a) in einem Abstand (A) oberhalb des zweiten Leiters (6b) in der Fahrbahn (F) angeordnet ist, und dass die Leiter (6a, 6b) parallel zur Fahrtrichtung angeordnet sind.
2. Stationäre Energieübertragungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der erste Leiter (6a) und der zweite Leiter (6b) in einer Ebene (E) angeordnet sind, die senkrecht zur Fahrbahnoberfläche (F0) angeordnet ist.
3. Stationäre Energieübertragungseinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass jedes Leiterpaar (6a, 6b) Bestandteil eines elektrischen eines Serien- oder Parallelschwingkreises, bestehend aus elektrischen Leitern (6, 6a, 6b) und Kondensatoren sind.
4. Stationäre Energieübertragungseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass jedes Leiterpaar (6a, 6b) mittels elektrischer Schaltvorrichtungen (4, 5) mit einer Spannungs- oder Stromversorgungseinrichtung (3) verbindbar ist.
5. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterpaare (6a, 6b) unterhalb der Fahrbahnoberfläche (F0) in der Fahrbahn (F) angeordnet sind .
6. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterpaare (6a, 6b) in einem Gehäuse (G) angeordnet oder in einer Vergussmasse (V) einge- gössen sind.
7. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Leiterpaare (6a, 6b) in einem von oben in die Fahrbahnoberfläche (F0) der Fahrbahn (F) eingearbeiteten Längsschlitz (L) eingelegt und mittels mindestens einem Abstandselement (AE) auf Abstand gehalten sind und mittels einer Vergussmasse (V) eingegossen sind .
8. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abstand (A) zwischen dem ersten und dem zweiten Leiter (6a, 6b) eines Leiterpaares (6) derart bemessen ist, dass allein oder im wesentlichen Maße nur vom magnetischen Feld (Ma) des ersten oberen Leiters (6a) eine Spannung in der am Fahrzeug (1) angeordneten sekundärseitigen Energieübertragungseinrichtung (2), insbesondere in Form eine Pick-Up, induziert und die Induktivität der Leiteranordnung (6a, 6b) nicht zu groß wird .
9. Stationäre Energieübertragungseinrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei stationäre Energieübertragungseinrichtungen quer zur Fahrbahnlängserstre- ckung (L) nebeneinander und/oder in Fahrbahnlängserstreckung (L) versetzt zueinander angeordnet sind .
10. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Längserstreckungsrich- tung der Fahrbahn mehrere Leiterpaare (6) hintereinander angeordnet sind und mittels der Schaltvorrichtung (4, 5) mit einer Spannungs- oder Stromversorgungseinrichtung (3) verbindbar sind .
11. Stationäre Energieübertragungseinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass eine übergeordnete Steuerung (4) mittels der Schaltvorrichtung (5) nur in die Leiterpaare (6, 6a, 6b) eine Wechselspannung oder einen Wechselstrom einprägt bzw. einspeist, über denen sich ein Fahrzeug befindet oder demnächst befinden wird .
12. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in mindestens einer Spur einer Fahrbahn (F) einer ein- oder mehrspurigen Straße mindestens eine stationäre Energieübertragungseinrichtung angeordnet ist.
13. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Leiter (6a) und der zweite Leiter (6b) mittels mindestens einem Abstandselement (AE) auf Abstand (A) gehalten sind .
14. Stationäre Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die stationäre Energieübertragungseinrichtung Magnetfelder nur mittels des ersten Leiters (6a) und des zweiten Leiters (6b) erzeugt.
15. Sekundärseitige Energieübertragungseinrichtung (2) zur Bildung eines induktiven Energieübertragungssystem zusammen mit einer stationären Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die sekundärseitige Energieübertragungseinrichtung (2) mindestens einen, insbesondere flachen, scheibenförmigen, Spulenkern (2a), insbesondere durch eine Ferritanordnung gebildet, aufweist, welcher von mindestens einer Wicklung (2b) an seiner Ober- und Unterseite umgriffen und parallel zur Fahrbahnoberfläche (F0) ausgerichtet ist.
16. Sekundärseitige Energieübertragungseinrichtung (2) zur Bildung eines induktiven Energieübertragungssystem zusammen mit einer stationären Energieübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die sekundärseitige Energieübertragungseinrichtung (2) mindestens einen, insbesondere flachen, scheibenförmigen, Spulenkern (2a), insbesondere durch eine Ferritanordnung gebildet, aufweist, wobei an der Unterseite des Spulenkerns (2a) mindestens zwei benachbarte und in einer Ebene parallel zur Fahrbahnoberfläche (F0) angeordnete Flachspulen angeordnet sind.
17. Sekundärseitige Energieübertragungseinrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass oberhalb der sekundärseitigen Energieübertragungseinrichtung (2) eine metallische Abschirmung (2c), welche insbesondere größere Abmessungen als die Ferritanordnung (2a) aufweist.
Sekundärseitige Energieübertragungseinrichtung nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass die mindestens eine Wicklung Bestandteil eines elektrischen Serien- oder Parallelschwingkreises ist.
PCT/EP2015/056057 2014-03-28 2015-03-23 Magnetischer kreis zum dynamischen laden von elektrofahrzeugen WO2015144619A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014104437.1 2014-03-28
DE102014104437.1A DE102014104437A1 (de) 2014-03-28 2014-03-28 Magnetischer Kreis zum dynamischen Laden von Elektrofahrzeugen

Publications (1)

Publication Number Publication Date
WO2015144619A1 true WO2015144619A1 (de) 2015-10-01

Family

ID=52814072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/056057 WO2015144619A1 (de) 2014-03-28 2015-03-23 Magnetischer kreis zum dynamischen laden von elektrofahrzeugen

Country Status (2)

Country Link
DE (1) DE102014104437A1 (de)
WO (1) WO2015144619A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3654493A1 (de) * 2018-11-15 2020-05-20 Daihen Corporation Einheit mit zwei parallelen leitungen
EP3656602A1 (de) * 2018-11-15 2020-05-27 Daihen Corporation Kondensatoreinheit für system zur kontaktlose stromübertragung
EP4029040A4 (de) * 2019-09-11 2023-10-18 Battelle Energy Alliance, LLC Aktive elektromagnetische abschirmung für hochleistungsfähige dynamische drahtlose aufladung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103590A1 (de) * 2015-03-11 2016-09-15 Paul Vahle Gmbh & Co. Kg Drehwinkelunabhängige Sekundäreinrichtung zur berührungslosen Energieübertragung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170612A (ja) * 1993-12-10 1995-07-04 Fujitsu Ten Ltd 電池充電システム
WO2011152677A2 (ko) * 2010-06-03 2011-12-08 한국과학기술원 모듈별 온오프 제어되는 교차형 세그멘트 급전장치
KR20120058892A (ko) * 2010-11-30 2012-06-08 (주)삼우아이엠씨 전기 자동차용 급전라인이 매립되는 도로 포장 구조
US20130098724A1 (en) * 2009-12-16 2013-04-25 Nam Pyo Suh Modular electric-vehicle electricity supply device and electrical wire arrangement method
DE102012107358A1 (de) * 2012-08-10 2014-02-13 Industrieanlagen-Betriebsgesellschaft Mbh Primärleitersystem und Energieversorgungseinrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476497A (en) * 2009-12-23 2011-06-29 Bombardier Transp Gmbh Transferring electromagnetic energy to a vehicle
US9318257B2 (en) * 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170612A (ja) * 1993-12-10 1995-07-04 Fujitsu Ten Ltd 電池充電システム
US20130098724A1 (en) * 2009-12-16 2013-04-25 Nam Pyo Suh Modular electric-vehicle electricity supply device and electrical wire arrangement method
WO2011152677A2 (ko) * 2010-06-03 2011-12-08 한국과학기술원 모듈별 온오프 제어되는 교차형 세그멘트 급전장치
KR20120058892A (ko) * 2010-11-30 2012-06-08 (주)삼우아이엠씨 전기 자동차용 급전라인이 매립되는 도로 포장 구조
DE102012107358A1 (de) * 2012-08-10 2014-02-13 Industrieanlagen-Betriebsgesellschaft Mbh Primärleitersystem und Energieversorgungseinrichtung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3654493A1 (de) * 2018-11-15 2020-05-20 Daihen Corporation Einheit mit zwei parallelen leitungen
CN111193326A (zh) * 2018-11-15 2020-05-22 株式会社达谊恒 平行二线单元
EP3656602A1 (de) * 2018-11-15 2020-05-27 Daihen Corporation Kondensatoreinheit für system zur kontaktlose stromübertragung
EP4029040A4 (de) * 2019-09-11 2023-10-18 Battelle Energy Alliance, LLC Aktive elektromagnetische abschirmung für hochleistungsfähige dynamische drahtlose aufladung

Also Published As

Publication number Publication date
DE102014104437A1 (de) 2015-10-01

Similar Documents

Publication Publication Date Title
EP3126159B1 (de) Anordnung, system und verfahren zum induktiven übertragen von energie für das laden mindestens eines energiespeichers eines schienenfahrzeugs
DE102009013694A1 (de) Energieübertragungssystem mit mehreren Primärspulen
EP2524834A1 (de) Vorrichtung zum induktiven Laden zumindest eines elektrischen Energiespeichers eines Elektrofahrzeuges
DE102013219540A1 (de) Ladeanordnung zur induktiven drahtlosen Abgabe von Energie
EP2659497A1 (de) Flachspule für kontaktlose induktive energieübertragung
EP3005526B1 (de) Schaltungsanordnung für den primärteil eines systems zur kontaktlosen energieübertragung, sowie übertragerelement
WO2015144619A1 (de) Magnetischer kreis zum dynamischen laden von elektrofahrzeugen
WO2017050491A1 (de) Induktionsspuleneinheit mit einem faserverstärkten ferritkern
WO2018065451A1 (de) Spuleneinheit zum induktiven laden eines fahrzeuges
WO2016008663A1 (de) Induktives energieübertragungssystem mit mehrphasigem primärkreis
WO2016078814A1 (de) Wicklungsanordnung für ein induktives energieübertragungssystem
DE102019212930B3 (de) Fahrzeugbordnetz und Verfahren zum Betreiben eines Fahrzeugbordnetzes
WO2020070115A1 (de) Einrichtung zur kontaktlosen induktiven energieübertragung, insbesondere für induktive ladevorgänge bei kraftfahrzeugen
DE112019003942T5 (de) Drahtgebundenes/drahtloses integriertes Leistungsempfangssystem
DE102013219714A1 (de) Anordnung einer Elektronik bei einem System zur induktiven Energieübertragung
EP3488452A2 (de) System zur induktiven energieübertragung an ein auf einer verfahrfläche, insbesondere verfahrebene, bewegbar angeordnetes fahrzeug
DE102012107358A1 (de) Primärleitersystem und Energieversorgungseinrichtung
DE102019109110B4 (de) Spulenkörper und Vorrichtung mit Spulenkörper
EP3421288A1 (de) Ladesystem für ein batteriebetriebenes flurförderzeug sowie verfahren zum induktiven laden eines batteriebetriebenen flurförderzeugs
EP3245660A1 (de) Verwendung und anordnung von pencake-spulen zur drahtlosen energieübertragung an elektrofahrzeuge
WO2020160989A1 (de) Sekundärspulentopologie
DE102022125039A1 (de) Induktive Ladeeinrichtung für ein Fahrzeugladesystem
DE102022107568A1 (de) Induktive Ladeeinrichtung für ein Fahrzeugladesystem
DE102018201814A1 (de) Gehäuse für eine Energieübertragungsspule und die zur Energieübertragung erforderlichen elektronischen Schaltungen
WO2023186750A1 (de) Induktive ladeeinrichtung für ein fahrzeugladesystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15714437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15714437

Country of ref document: EP

Kind code of ref document: A1