WO2015143683A1 - 一种抗病毒化合物在抗hiv-1病毒药物中的应用 - Google Patents

一种抗病毒化合物在抗hiv-1病毒药物中的应用 Download PDF

Info

Publication number
WO2015143683A1
WO2015143683A1 PCT/CN2014/074231 CN2014074231W WO2015143683A1 WO 2015143683 A1 WO2015143683 A1 WO 2015143683A1 CN 2014074231 W CN2014074231 W CN 2014074231W WO 2015143683 A1 WO2015143683 A1 WO 2015143683A1
Authority
WO
WIPO (PCT)
Prior art keywords
hiv
compound
formula
virus
antiviral
Prior art date
Application number
PCT/CN2014/074231
Other languages
English (en)
French (fr)
Inventor
张辉
柏川
潘婷
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to PCT/CN2014/074231 priority Critical patent/WO2015143683A1/zh
Publication of WO2015143683A1 publication Critical patent/WO2015143683A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/423Oxazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/16Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to a novel compound, and more particularly to an antiviral compound and use thereof. Background technique
  • HIV-1 virus was first discovered in the United States in 1981. After a series of unexplained syndromes characterized by cellular immunodeficiency, researchers began looking for a source of disease. In 1983, the French team isolated HIV-1 from the lymph nodes of patients with lymphadenopathy. It is a lentivirus that infects the cells of the human immune system. It destroys the body's immunity and causes the immune system to lose its resistance. As a result, various diseases and cancers can survive in the human body, leading to acquired immunodeficiency syndrome. An AIDS. At present, due to the inadequate coverage of AIDS education, global HIV infection is still on the rise, especially in China, which has entered a period of rapid growth.
  • the present invention provides an antiviral compound for use in an anti-HIV-1 virus drug, the structural formula of the antiviral compound being as shown in Formula I:
  • the R is 4-N(Me)2, 4-N(Et)2, 4-N(Pr) 2 , 4-N(i-Pr) 2 , 3-OH, 4-OMe, 2-OH
  • the R is 3-OH and 4-OMe.
  • An antiviral compound is provided for use in an anti-HIV-1 viral drug, and the structural formula of the antiviral compound is as shown in Formula I:
  • R described in formula I is 2-OH and 4-N(Et)2.
  • an antiviral compound is used in an anti-HIV-1 virus drug, and the structural formula of the antiviral compound is as shown in Formula I:
  • X is 0 or 8.
  • an antiviral compound for use in an anti-HIV-1 virus drug characterized in that the structural formula of the antiviral compound is as shown in Formula III, Formula IV or Formula V:
  • Ri is Cl, CF 3 , OCF 3 , COOMe, Me, t-ButyK OMe, N(Me) 2 or SMe, Preferably, the Ri and R 2 are simultaneously Me or CI, and when R 2 is H, Ri is CF 3 , OCF 3 COOMe, t-ButyK OMe, N(Me) 2 or SMe.
  • the antiviral compound also includes an acceptable pharmaceutically acceptable salt of the compound.
  • the pharmaceutically acceptable salt is a sodium salt, a potassium salt or a calcium salt.
  • HIV-1 Vif protein can degrade the functional properties of A3G protein by ubiquitination, confirming that the above-mentioned antiviral compounds can inhibit the degradation of A3G by Vif protein, resulting in a rebound in the expression of green fluorescent protein in the screening system. It was confirmed by experiments on wild-type HIV-1 virus infection in human primary CD4+ T lymphocytes and CD4+ T lymphocyte lines such as H9 and SupT1, all of which have good antiviral effects, and further antiviral drugs. The strong theoretical foundation and practical basis provided by R&D have important research and development value and development significance.
  • Figure 1 shows the construction principle of the cell screening model.
  • Figure 2 shows the construction principle of the cell screening model.
  • Figure 3 Antiviral compounds have an effect of inhibiting Vif activity.
  • Figure 4 Antiviral compounds inhibit the replication of wild-type HIV-1 in H9 cells expressing A3G protein and SupT1 cells not expressing A3G protein.
  • Figure 6 Antiviral compounds inhibit the replication of wild-type HIV-1 in H9 cells expressing A3G protein and SupT1 cells not expressing A3G protein.
  • Figure 8 Antiviral compounds inhibit the replication of wild-type HIV-1 in H9 cells expressing A3G protein and SupT1 cells not expressing A3G protein.
  • Vif is one of the essential proteins of HIV and its main function is to antagonize the natural antiviral factor APOBEC3G in the host.
  • APOBEC3G is a major threat to the H IV-1 virus, which is present in HIV-1 natural host cells (such as CD4+ T cells and macrophages) and can be encapsulated into HIV-1 virions for reverse transcription in HIV-1. In the process, it exerts its strong antiviral effect.
  • HIV-1 itself encodes the Vif protein to specifically target the antiviral activity of APOBEC3G, which introduces APOBEC3G into the ubiquitin system and degrades it (Fig. 1). Therefore, how to inactivate Vif is a very important target for the development of anti-HIV-1 drugs.
  • Figure 1 co-transfects a plasmid expressing the HIV Vif protein with a plasmid expressing the APOBEC3G (A3G)-GFP fusion protein, and the VIF protein binds to A3G-GFP while binding to the protein complex E3 composed of Cul5, EloB and EloC.
  • E3 is a ubiquitinating enzyme that will be labeled on the A3G-GFP protein. The ubiquitin label, which mediates the degradation of A3G-GFP into the proteasome, results in no green fluorescence being observed.
  • Figure 2 When a compound library to be screened is added, a compound in the library inhibits the function of Vif.
  • the A3G-GFP fusion protein can be expressed normally, and obvious green fluorescence can be observed.
  • This compound is a Vif inhibitor, which can be further Developed as a lead compound with antiviral activity.
  • a well-grown human kidney cell line 239t cells were seeded in a 96-well clear flat bottom plate with 5 x 104 cells per well.
  • the medium used was complete medium: high glucose DMEM, 10% fetal bovine serum and 1% double antibody, culture conditions were 5% carbon dioxide, 37 ° C;
  • Vif protein plays an important role in the replication of HIV-1 virus.
  • the vif-deficient HIV virus cannot replicate in CD4+ T cells and macrophages, ie it cannot replicate in the above-mentioned "non-permitted"cells;
  • the strain virus can replicate in the above cells.
  • the Vif-deficient strain virus can be reverse transcribed after entering certain target cells, but cannot synthesize proviral DNA.
  • APOBEC3G cytostatic factor
  • APOBEC3G belongs to the intracellular RNA editing enzyme, which deamination of cytosine in mRNA to form uracil, resulting in G And the accumulation of A mutants
  • viral DNA is degraded, and vif blocks the inhibitory activity of APOBEC3G by binding to APOBEC3G to form a complex.
  • APOBEC3G binds to vif protein through ubiquitination system.
  • the compound can inhibit APOBEC3G from being degraded by vif protein, host cells will not be infected by HIV-1; but absent in APOBEC3G In a cell line such as SupT1, HIV-1 protein can normally infect the host cell; then this compound will likely become a compound against the HIV-1 Vif protein.
  • APOBEC3G is a self-protective mechanism of cells, but vif is a protein of HIV-1 virus that counteracts APOBEC3G function, leading to HIV-1 virus escaping the intracellular self-clearing process.
  • HIV-1 virus supernatant the amount of virus is lOng/lx lO 6 cells; (infection with polybrene)
  • the solution was changed, washed three times with PBS, the supernatant was discarded, and cultured in 1640 medium (10% fetal bovine serum, 1% double antibody).
  • the medium was 200 ⁇ l per well, and the compound was added in 2 ⁇ l per well to a final concentration of 50 ⁇ M. , 5 ⁇ , 0.5 ⁇ , 0.05 ⁇ , 0.005 ⁇ , 0.0005 ⁇ , ⁇ ;
  • MTS (3-(4,5-dimethylthiazol-2-yl)-5(3-carboymethoyphenyl)-2-(4-sulfopheny)-2H-tet razolium, inner salt) is a newly synthesized tetrazole compound. It is applied in the same way as MTT, that is, it is reduced to various colored formazan products by various dehydrogenases in living cell mitochondria, and its color depth is highly correlated with the number of living cells of some sensitive cell lines within a certain range. According to the measured absorbance value (OD value) of 490 ⁇ , the number of living cells is judged. The larger the OD value, the stronger the cell activity, indicating the toxicity of the drug. 1) Inoculate the cells, prepare 293t into a single cell suspension in DMEM containing 10% fetal calf serum, and inoculate 1000 cells per well into a 96-well plate at a volume of 200ul per well.
  • the compounds of the invention are less cytotoxic.
  • R is 4-N(Et) 2 and R is
  • SPR Surface Plasmon Resonance: When incident light is incident at a critical angle on two different refractive index media interfaces (such as gold or silver plating on the glass surface), it can cause resonance of metal free electrons, which cause electrons to absorb light due to resonance. The energy, so that the reflected light is greatly reduced within a certain angle. Among them, the incident angle at which the reflected light completely disappears within a certain angle is referred to as an SPR angle. SPR varies with surface refractive index, which in turn is proportional to the mass of biomolecules bound to the metal surface. Therefore, a specific signal of interaction between biomolecules can be obtained by obtaining dynamic changes in the SPR angle during the biological reaction.
  • Biomolecular interaction analysis is a novel biosensing analysis technology based on the SPR principle. It does not require labeling and does not require purification of various biological components.
  • the interaction process between various biomolecules such as peptides, proteins, oligonucleotides, oligosaccharides, and viruses, bacteria, cells, and small molecule compounds is measured in real time, in situ, and dynamically by sensor chips.
  • Biacore CM5 sensor core Tablet and amine coupling kits were purchased directly from GE.
  • A3G-His protein was premixed with DMSO, 14, 26 for 30 min, then passed through CM5 chip at a flow rate of 30 ul/min.
  • the interaction time with vif-his protein was controlled at 120 s, and the separation time of each cycle was controlled at 200 s.
  • R is 4-N(Et) 2 and R is
  • the injection volume is Omg/kg (PBS), 500mg/kg, 1000mg/kg, 3 mice per group.
  • mice Two weeks later, the blood samples of the mice were taken to detect liver function and renal function, and the experimental results showed normal.
  • mice After sacrifice, samples of mouse heart, liver, spleen, lung and kidney were taken and stained with HE to observe whether there was an organogenesis. The results showed that the 1000 mg/kg dose of the compound was non-toxic and safe to mice.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • AIDS & HIV (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供一种化合物在制备抗HIV-1药物中的应用,该化合物具有泛素化降解A3G蛋白的功能,能够抑制Vif蛋白降解A3G的活性,野生型HIV-1病毒感染实验证实,具有较好的抗病毒活性。

Description

一种抗病毒化合物在抗 HIV-1病毒药物中的应用 技术领域
本发明涉及一种新的化合物, 更具体地, 涉及一种抗病毒化合物及其应用。 背景技术
HIV-1病毒最初发现于 1981年在美国发现, 由一系列不明原因的, 以细胞 免疫缺陷为特征的综合征出现以后, 研究人员开始了对其致病源的寻找。 1983 年法国研究小组从一淋巴肿大综合征病人的***中, 分离出 HIV-1病毒。它是 一种感染人类免疫***细胞的慢病毒, 该病毒破坏人体的免疫力, 导致免疫*** 失去抵抗力, 而导致各种疾病以及癌症得以在人体内生存, 从而导致获得性免疫 缺陷综合症一一艾滋病。 目前, 由于对艾滋病教育的普及不充分, 全球的 HIV 感染仍呈上升趋势, 尤其在中国更是进入了快速增长期。尽快阻止艾滋病在我国 的流行已成了一件刻不容缓的大事。因此, 继续扩大我们对 HIV-1致病机制的认 识, 开发出更有效, 更经济, 更少副作用的抗病毒药物以完全清除残余的 HIV-1 复制, 以及开发出强有力而又长效的抗 HIV-1的疫苗以保护易感人群, 仍将是我 们能否最终战胜艾滋病的关键。
发明内容
本发明提供一种抗病毒化合物在抗 HIV-1病毒药物中的应用,所述的抗病毒 化合物的结构式如式 I所示:
Figure imgf000003_0001
式 I
所述的 R为 4-N(Me)2、 4-N(Et)2、 4-N(Pr)2、 4-N(i-Pr)2、 3-OH、 4-OMe、 2-OH
Figure imgf000003_0002
再提供一种抗病毒化合物在抗 HIV-1病毒药物中的应用, 所述的抗病毒化 合物的结构式如式 I所示:
Figure imgf000004_0001
式 I
所述的 R为 3-OH和 4-OMe。
提供一种抗病毒化合物在抗 HIV-1病毒药物中的应用, 所述的抗病毒化合 物的结构式如式 I所示:
Figure imgf000004_0002
式 I 所述的 R为 2-OH和 4-N(Et)2。
再提供一种抗病毒化合物在抗 HIV-1病毒药物中的应用, 所述的抗病毒化 合物的结构式如式 I所示:
Figure imgf000004_0003
(式 II)
X为 0或8。
更具需求再一种抗病毒化合物在抗 HIV-1病毒药物中的应用, 其特征在于, 所述的抗病毒化合物的结构式如式 III、 式 IV或式 V所示:
Figure imgf000005_0001
式 III
Ri为 Cl、 CF3、 OCF3、 COOMe、 Me、 t-ButyK OMe、 N(Me)2或 SMe,
Figure imgf000005_0002
优选, 所述的 Ri和 R2同时为 Me或 CI 优选, 当 R2为 H时, Ri为 CF3、 OCF3 COOMe、 t-ButyK OMe、 N(Me)2 或 SMe。
所述的抗病毒化合物还包括所述化合物可接受的药用盐。
所述的药用盐为钠盐、 钾盐或钙盐。
本发明具有以下优点:
运用 HIV-1 Vif蛋白可以通过泛素化降解 A3G蛋白的功能特性,证实上述通 式的抗病毒化合物能够抑制 Vif蛋白降解 A3G的活性, 导致筛选***中绿色荧 光蛋白的表达量将回升。 通过在人的原代 CD4+ T淋巴细胞以及 H9、 SupT l等 CD4+ T淋巴细胞系中进行野生型 HIV-1病毒的感染实验证实, 他们均具有较好 的抗病毒作用, 为进一步的抗病毒药物研发提供的强有力的理论基础和实践基 础, 具有重要的研发价值和开发意义。
附图说明
图 1为细胞筛选模型的构建原理。
图 2为细胞筛选模型的构建原理。 图 3 : 抗病毒化合物具有抑制 Vif活性的作用。
图 4: 抗病毒化合物在表达 A3G蛋白的 H9细胞和不表达 A3G蛋白的 SupTl细 胞中抑制野生型 HIV-1的复制效果。
图 5: 抗病毒化合物具有抑制 Vif活性的作用。
图 6: 抗病毒化合物在表达 A3G蛋白的 H9细胞和不表达 A3G蛋白的 SupTl细 胞中抑制野生型 HIV-1的复制效果。
图 7: 抗病毒化合物具有抑制 Vif活性的作用。
图 8: 抗病毒化合物在表达 A3G蛋白的 H9细胞和不表达 A3G蛋白的 SupTl细 胞中抑制野生型 HIV-1的复制效果。
具体实 ¾ ^式
下面结合具体实施例进一步详细说明本发明。除非特别说明, 本发明采用的 试剂、 设备和方法为本技术领域常规市购的试剂、 设备和常规使用的方法。 实施例 1
Vif是 HIV的必需蛋白之一, 其主要功能是拮抗宿主中天然的抗病毒因子 APOBEC3G。 APOBEC3G是 H IV-1病毒的一大威胁, 它存在于 HIV-1天然的宿 主细胞(如 CD4+ T细胞和巨噬细胞)中, 能被包裹入 HIV-1病毒颗粒,在 HIV-1 逆转录过程中发挥其极强的抗病毒作用。为此, HIV-1 自身编码了 Vif蛋白来特 异性对抗 APOBEC3G的抗病毒活性, 它可将 APOBEC3G导入泛素***并将其 降解 (图 1 )。 因此, 如何灭活 Vif, 是研发抗 HIV-1病毒药物的一个十分重要的 靶标。
根据 Vif拮抗 APOBEC3G的分子机理, 筛选出若干可让 HIV的 Vif无法降 解 APOBEC3G的小分子药物。 为此我们将建立一种简便的活细胞筛选***,如 图 2所示,将表达 APOBEC3G-GFP融合蛋白和表达 Vif的 质粒共转染到细胞中。 以 APOBEC3G-GFP融合蛋白是否被降解为指标。 只要某种化合物在 Vif存在的 情况下还能使 APOBEC3G-GFP融合蛋白不被降解 (即 GFP荧光还在), 该化合 物就是 Vif的抑制剂。 通过对 Vif靶标的进一步鉴定, 确认化合物是作用于宿主 细胞还是作用在病毒蛋白的 Vif上。
图 1将表达 HIV Vif 蛋白 的质粒和表达 APOBEC3G (A3G) -GFP融合 蛋白的质粒共转染细胞, VIF蛋白会结合 A3G-GFP, 同时结合由 Cul5、 EloB和 EloC构成的蛋白质复合体 E3。 E3是一个泛素化酶, 会在 A3G-GFP蛋白上打上 泛素标签,从而介导 A3G-GFP进入蛋白酶体发生降解,导致观察不到绿色荧光。 图 2 当加入待筛的化合物库后,库中的某种化合物抑制了 Vif 的功能, A3G-GFP融合蛋白能正常表达,可观察到明显的绿色荧光,该种化合物就是 Vif 抑制剂, 可进一步开发成为有抗病毒活性的先导化合物。 1) 取生长良好的人肾上细胞株 239t细胞, 接种于 96孔透明平底板中, 每 孔 5 X 104细胞。 使用的培养基是完全培养基: 高糖 DMEM, 10%胎牛血清以及 1%双抗, 培养条件是 5%二氧化碳、 37°C ;
2) 24h贴壁后, 共转染 PEGFP-A3G和 pcDNA3.1-Vif两种质粒。 转染采用 脂质体包裹转染, 试剂使用 lipo2000, 转染液 20 μ 1。 3) 转染 4h后, 加入待筛选的化合物, 每孔 2 μ 1, 终浓度为 50 μ Μ。
4) 培养 48h后, 检测绿色荧光蛋白 GFP的表达情况。 如果出现绿色荧光 蛋白 GFP表达上升的情形, 该化合物可能成为抗病毒候选药物。 实验结果如图 3、 5和 7所示, 从实验结果可以看出, 抗病毒化合物均具有 抑制 Vif活性的作用。 实施例 2
Vif蛋白在 HIV-1病毒复制过程中具有重要作用, vif缺陷的 HIV病毒不能 在 CD4+T细胞、 巨噬细胞内复制, 即不能在上述 "非允许"细胞内复制; 而含 有 vif基因的野生株病毒可在上述细胞内复制。 Vif缺失株病毒进入某些靶细胞后 可进行反转录, 但不能合成前病毒 DNA。 研究显示 HIV复制处决于一种细胞抑 制因子的出现或缺失,这种内源性的抑制因子是 APOBEC3G,它属于细胞内 RNA 编辑酶,能使 mRNA中的胞嘧啶脱氨基形成尿嘧啶,导致 G和 A突变体的累积, 进而是病毒 DNA降解, vif通过与 APOBEC3G结合形成复合物阻断 APOBEC3G 的抑制活性。 在 APOBEC3G存在的细胞系如 H9细胞中, APOBEC3G与 vif蛋 白结合通过泛素化***降解, 如果化合物能够抑制 APOBEC3G被 vif蛋白降解, 宿主细胞将不能够被 HIV-1感染; 而在 APOBEC3G不存在的情细胞系如 SupTl 细胞中, HIV-1蛋白可以正常感染该宿主细胞; 那么这个化合物将有可能成为抗 HIV-1 Vif蛋白的化合物。
APOBEC3G是细胞的自我保护机制, 但 vif是 HIV-1病毒对抗 APOBEC3G 功能的蛋白, 导致 HIV-1病毒逃避细胞内自我清除过程。利用 HIV-1的允许细胞 和不允许细胞中的抗病毒实验的效果比较,从而能进一步在野生型病毒实验中确 定靶标化合物可以拮抗 HIV-1的 Vif蛋白, 抑制 HIV-1病毒的复制。
1 ) 取生长良好的淋巴细胞系 H9和 Supt l , 细胞用量为 2 X 105/孔, 分别感 染包装好的 HIV-1病毒上清, 病毒用量为 lOng/Ι Χ ΙΟ6细胞; (感染时使 用促感染试剂 polybrene)
2) 感染 3h后换液, 使用 PBS清洗三次, 弃上清, 使用 1640培养基 (10% 胎牛血清, 1%双抗) 培养, 培养基每孔 200 μ 1, 化合物每孔 2 μ 1 (终浓 度 50 μ Μ);
3 ) 使用 2%Triton -100处理收样的上清,收培养了 4day的细胞上清,测 P24 Elisa。
实验结果如图 4、 6和 8所示。 从实验结果可以看出, 抗病毒化合物在 H9 细胞中具有良好的抗 HIV-1病毒作用, 而在 SupTl细胞中没有效果。 实施例 3
1 ) 取生长良好的淋巴细胞系 H9, 细胞用量为 2χ 105/孔, 感染包装好的
HIV-1病毒上清, 病毒用量为 lOng/l x lO6细胞; (感染时使用促感染试剂 polybrene)
感染 3h后换液,使用 PBS清洗三次,弃上清,使用 1640培养基( 10% 胎牛血清, 1%双抗) 培养, 培养基每孔 200μ1, 加入化合物每孔 2μ1,终 浓度分别为 50μΜ, 5μΜ, 0.5μΜ, 0.05μΜ, 0.005μΜ, 0.0005μΜ, ΟμΜ;
3 ) 使用 2%Triton -100处理收样的上清, 收样 4day, 测 P24 Elisa。 实验结果如表 1、 2和 3所示。 从实验结果可以看出, 抗病毒化合物均具有 较好的抑制病毒的效果
表 1抑制病毒的效果
Figure imgf000009_0001
Compd. R IC50( )' No.
Figure imgf000009_0002
2 4-N(Et): 0.00295 3 4-N(Pr)2 1.09
Figure imgf000010_0001
4
6 3-OH, 4-OMe 0.0685
Figure imgf000010_0002
表 2抑制病毒的效果
Figure imgf000010_0003
No.
1 0 2.38
2 s 5.92 表 3抑制病毒的效果
Figure imgf000010_0004
Compd ID Ri R2 IC50 C"M)
1 CI CI 1.25
2 CF3 H 1.13
3 OCF3 H 1.35
4 COOMe H 1.68
5 Me Me 1.64
6 /-Butyl H 1.04
7 OMe H 4.42
8 N(Me)2 H 2.68
9 SMe H 0.75
Figure imgf000011_0001
Figure imgf000011_0002
实施例 4
MTS(3-(4,5-dimethylthiazol-2-yl)-5(3-carboymethoyphenyl)-2-(4-sulfopheny)-2H-tet razolium, inner salt)是一种新合成的四唑类化合物, 它与 MTT的应用原理相同, 即被活细胞线粒体中的多种脱氢酶还原成各自有色的甲瓒产物,其颜色深浅与某 些敏感细胞株的活细胞数在一定范围内呈高度相关。 根据测得的 490η的吸光度 值 (OD值), 来判断活细胞数量, OD值越大, 细胞活性越强, 则表示药物毒性 1 ) 接种细胞, 用含 10%胎小牛血清的 DMEM培养液将 293t配成单个细胞 悬液, 以每孔 1000个细胞接种到 96孔板, 每孔体积 200ul
2) 24h贴壁后加入化合物, 每孔 2μ1, 终浓度分别为 50μΜ, 5μΜ, 0.5μΜ,
0.05μΜ, 0.005μΜ, 0.0005μΜ, ΟμΜ
3 ) 培养 48h后, 每孔加 MTS溶液 20ul, 继续在培养箱中孵育 2~4 h
4)选择 490nm波长, 在酶联免疫监测仪上测定各孔光吸收值, 观察化合物 对 293t细胞的细胞毒性
实验结果如表 4、 5和 6所示。 从实验结果可以看出, 抗病毒化合物毒性较 低, 在 293t细胞中均呈现成无细胞毒现象。
表 4细胞毒性实验
Figure imgf000012_0001
Compd. R CC5o( M)a No.
4-N(Me)2 >50
4-N(Et)2 >50 3 4-N(Pr)2 >50
Figure imgf000013_0001
4
6 3 -OH, 4-OMe >50
Figure imgf000013_0002
表 5细胞毒性实验
Figure imgf000013_0003
Compd. CCso ( M)
X
No.
1 0 >50
2 s >50 表 6细胞毒性实验
Figure imgf000013_0004
Compd ID Ri R2 CC50 (μΜ)
1 CI CI >50
2 CF3 H >50
3 OCF3 H >50
4 COOMe H >50
5 Me Me >50
6 /-Butyl H >50
7 OMe H >50
8 N(Me)2 H >50
9 SMe H >50
Figure imgf000014_0001
Figure imgf000014_0002
本发明的化合物的细胞毒性较低。
实施例 5
Figure imgf000014_0003
R为 4-N(Et)2和 R为
3-OH和 4-OMe, 两种化合物。 51. 取生长良好的淋巴细胞系 H9,细胞用量为 2x l05/孔,感染包装好的 HIV-1 病毒上清, 病毒用量为 lOng/l x lO6细胞; (感染时使用促感染试剂 polybrene)
52. 感染 3h后换液, 使用 PBS清洗三次, 弃上清, 使用 1640培养基(10% 胎牛血清, 1%双抗) 培养, 培养基每孔 200μ1, 加入化合物每孔 2μ1, 终浓度分 别为 50μΜ, 5μΜ, 0.5μΜ, 0.05μΜ, 0.005μΜ, ΟμΜ;
53. 使用 2%Triton X-100处理收样的上清, 收样 4day, 测 P24 Elisa。 结果如图 9和图 10所示。
实施例 6
Figure imgf000015_0001
R为 4-N(Et)2和 R为 3-OH和 4-OMe, 两种化合物进行 SPR测试, 结果分别由图 11和图 12所示。
SPR ( Surface Plasmon Resonance): 当入射光以临界角入射到两种不同折射 率的介质界面 (比如玻璃表面的金或银镀层) 时, 可引起金属自由电子的共振, 由于共振致使电子吸收了光能量, 从而使反射光在一定角度内大大减弱。 其中, 使反射光在一定角度内完全消失的入射角称为 SPR角。 SPR随表面折射率的变 化而变化, 而折射率的变化又和结合在金属表面的生物分子质量成正比。 因此可 以通过获取生物反应过程中 SPR角的动态变化, 得到生物分子之间相互作用的 特异性信号。 生物分子相互作用分析是基于 SPR原理的新型生物传感分析技术, 无须进行标记, 也可以无须纯化各种生物组分。在天然条件下通过传感器芯片实 时、 原位和动态测量各种生物分子如多肽、 蛋白质、 寡核苷酸、 寡聚糖, 以及病 毒、 细菌、 细胞、 小分子化合物之间的相互作用过程。
基于这一原理, 我们利用 GE Healthcare公司的 Biacore T100仪器来分析, 小分 子化合物对于 A3G蛋白和 Vif蛋白之间的相互作用的影响。 Biacore CM5传感芯 片和胺偶联试剂盒直接从 GE公司购买。
1 )在 Pet-32a载体上*** Vif或者 A3G的基因片段, 构建可以表达带 his-标签的 的原核表达质粒,然后将 pet-32a-vif和 pet-32a-A3G转化到 E.coli BL21感受态细 胞中
2) 摇菌, 用 ImM的 IPTG诱导带有目的基因的大肠杆菌的表达 4h, 随后收菌, PBS溶液重悬并超声裂解
3 ) 裂解后 10000g离心 10min, 取上清过 Ni柱纯化 vif和 A3G蛋白
4) 在 Biacore仪器上摸索 vif蛋白固定到芯片上的条件, 最后确定为 PH=4 , 浓 度为 100 g/mL溶于 10 mM醋酸盐溶液中, 注射时间为 7min
5 ) A3G-His蛋白分别与 DMSO, 14, 26预混 30min, 然后以 30ul/min的流速通过 CM5芯片, 跟 vif-his蛋白相互作用的时间控制在 120s, 每个循环的分离时间控 制在 200s
6) 分析 Biacore T100的实验结果, 说明了 14和 26都可以影响 vif蛋白和 A3G 蛋白之间的相互作用
实施例 7 小鼠急性毒性实验
Figure imgf000016_0001
R为 4-N(Et)2和 R为
3-OH和 4-OMe, 两种化合物进行小鼠急性毒性测试, 结果分别由图 13和图 14 所示。
1 )在中山大学动物实验中心订购 4-6周大小的雄性 Balb/c小鼠 18只。 随机 的将他们分成 6组, 每组 3只。 其中 3组用来检测 14的急毒实验, 3组用来检 测 26的急毒实验
2) 合成化合物 14, 26, 具体方法如下: 2 i^E^s^ a2&i-2-yl-3^4~< y mi» i r^e (M), lbs ile n'j s
《dieiiii5i3iaias¾eszg^de 5ide ½iste4 of 4- meE¾y €i5Bsde¾yd*. Yield: 4Q%. lH HR MHz- D¾SSO-i¾): S 12.73 {¼· s, !¾ S.ll , !H V.S¾ (d. /= Si Hz, 2H}: 7,56 (¾r 2H). ?-22-?.l§ (as. 2H), g.8
Figure imgf000017_0001
w¾s ¾ymiie¾iss<l accaidsa to ¾¾e 'sceitee of s? ia 'c poassi ύ escejsi 4- ;¾kosy-3- meS5!5S5¾¾5zai;<fe¾5-£fe msi rad ef 4.fflehy aiZ2l ¾fe. ΥΐεΜ: 33% JB R.:(5Xi MHz.∑¾.iSO-i¾i:: S I2.9¾ (¾■ s:— I¾ !0:.21 ( s: s. IB), S.23 {s 1¾7.?4 (; J =: Hz, 1H):.7. (¾. IWi 7.54 s:. 1¾ 7Λ1 ( . J= 2.0 sssl Si Bz,. !.H 124 (¾ Sj 20}:.6.98- J= S. H¾ !El 3.S? (s. SH). HRMS ESI ifi¾ csisd fear C:S7HM I¾ W: 292 ISSa. Fcssid; S^.iCs?? f Λ = -Q.M ppm).
3) 以灌胃的方式将化合物 14,26注入小鼠体内, 注射量分别为 Omg/kg(PBS), 500mg/kg, 1000mg/kg, 每组 3只小鼠
4) 两周后, 取小鼠血样检测肝功能和肾功能, 实验结果显示正常
5)处死后, 取小鼠心肝脾肺肾各个组织样本, HE染色, 观测是否有器官发生病 变, 实验结果显示, 1000mg/kg剂量的化合物对小鼠是无毒安全的。

Claims

权 利 要 求 书
1. 一种抗病毒化合物在抗 fflV-1病毒药物中的应用, 其特征在于, 所述的抗病 毒化合物的结构式如式 I所示:
Figure imgf000018_0001
式 I
所述的 R为 4-N(Me)2、 4-N(Et)2、 4-N(Pr)2、 4-N(i-Pr)2、 3 -OH, 4-OMe、 2-OH
Figure imgf000018_0002
2. 一种抗病毒化合物在抗 fflV-1病毒药物中的应用, 其特征在于, 所述的抗病 毒化合物的结构式如式 I所示:
Figure imgf000018_0003
式 I
所述的 R为 3 -OH和 4-OMe。
3. 一种抗病毒化合物在抗 fflV-1病毒药物中的应用, 其特征在于, 所述的抗病 毒化合物的结构式如式 I所示:
Figure imgf000018_0004
所述的 R为 2-OH和 4-N(Et)2。
4. 一种抗病毒化合物在抗 fflV-1病毒药物中的应用, 其特征在于, 所述的抗病 毒化合物的结构式如式 I所示:
Figure imgf000019_0001
(式 II)
X为 0或8。
5. 一种抗病毒化合物在抗 fflV-1病毒药物中的应用, 其特征在于, 所述的抗病 毒化 I、 式 II或式 III所示:
Figure imgf000019_0002
式 III
Ri为 Cl、 CF3、 OCF3、 COOMe、 Me、 t-ButyK OMe、 N(Me)2或 SMe,
IV;
Figure imgf000019_0003
式 V。
6. 根据权利要求 5所述的应用, 其特征在于, 所述的 和 同时为 Me或 Cl。
7. 根据权利要求 5所述的应用, 其特征在于, 当 R2为 H时, 为。?3、 OCF3、 COOMe、 t-ButyK OMe、 N(Me)2或 SMe。
8. 根据权利要求 1~7任一所述的应用, 其特征在于, 所述的抗病毒化合物还包 括所述化合物可接受的药用盐。
9. 根据权利要求 4所述的应用, 其特征在于, 所述的药用盐为钠盐、 钾盐或钙
PCT/CN2014/074231 2014-03-27 2014-03-27 一种抗病毒化合物在抗hiv-1病毒药物中的应用 WO2015143683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074231 WO2015143683A1 (zh) 2014-03-27 2014-03-27 一种抗病毒化合物在抗hiv-1病毒药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074231 WO2015143683A1 (zh) 2014-03-27 2014-03-27 一种抗病毒化合物在抗hiv-1病毒药物中的应用

Publications (1)

Publication Number Publication Date
WO2015143683A1 true WO2015143683A1 (zh) 2015-10-01

Family

ID=54193920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074231 WO2015143683A1 (zh) 2014-03-27 2014-03-27 一种抗病毒化合物在抗hiv-1病毒药物中的应用

Country Status (1)

Country Link
WO (1) WO2015143683A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094235A1 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Fused heterocyclic compounds and their use as sirtuin modulators
WO2009065028A2 (en) * 2007-11-14 2009-05-22 University Of Kansas Brca1-based breast or ovarian cancer prevention agents and methods of use
CN101481355A (zh) * 2009-02-20 2009-07-15 中山大学 一种2-取代苯并咪唑的制备方法
FR2989377A1 (fr) * 2012-04-12 2013-10-18 Ecole Norm Superieure Lyon Fluorophores organiques emettant a l'etat solide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094235A1 (en) * 2005-03-03 2006-09-08 Sirtris Pharmaceuticals, Inc. Fused heterocyclic compounds and their use as sirtuin modulators
WO2009065028A2 (en) * 2007-11-14 2009-05-22 University Of Kansas Brca1-based breast or ovarian cancer prevention agents and methods of use
CN101481355A (zh) * 2009-02-20 2009-07-15 中山大学 一种2-取代苯并咪唑的制备方法
FR2989377A1 (fr) * 2012-04-12 2013-10-18 Ecole Norm Superieure Lyon Fluorophores organiques emettant a l'etat solide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAUHARI, P. K. ET AL.: "Synthesis of some novel 2-substituted benzoxazoles as anticancer, antifungal, and antimicrobial agents.", MEDICINAL CHEMISTRY RESEARCH, vol. 17, 10 January 2008 (2008-01-10), pages 412 - 424, XP019631115 *
RIDA, S. M. ET AL.: "Synthesis and Biological Investigations of Some New Thiazolylbenzimidazoles and Benzimidazolylthiazolo [3, 2-a] pyridines.", ARCH. PHARM. ( WEINHEIM, vol. 328, 31 December 1995 (1995-12-31), pages 325 - 328, XP055225343 *

Similar Documents

Publication Publication Date Title
Pécheur et al. The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses
JP2009512716A (ja) Hiv−1キャプシド構築の低分子阻害剤
Elsebai et al. Pan-genotypic hepatitis C virus inhibition by natural products derived from the wild Egyptian artichoke
Yi et al. Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1
Hartman et al. The continuing evolution of HIV‐1 therapy: identification and development of novel antiretroviral agents targeting viral and cellular targets
Chamoun et al. PD 404,182 is a virocidal small molecule that disrupts hepatitis C virus and human immunodeficiency virus
Setz et al. Inhibitors of deubiquitinating enzymes block HIV-1 replication and augment the presentation of gag-derived MHC-I epitopes
Pereira et al. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19
Bastian et al. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions
WO2020024719A1 (zh) 二盐酸小檗胺在制备埃博拉病毒抑制剂中的应用
Nascimbeni et al. Kinetics of antiviral activity and intracellular pharmacokinetics of human immunodeficiency virus type 1 protease inhibitors in tissue culture
CN106580980B (zh) 芳香酯类化合物在制备抗肠道病毒71型药物中的应用
Geronikaki et al. Anti-HIV agents: current status and recent trends
Mediouni et al. Potent suppression of HIV-1 cell attachment by Kudzu root extract
Meunier et al. A photoactivable natural product with broad antiviral activity against enveloped viruses, including highly pathogenic coronaviruses
CN106668013B (zh) 吡啶芳香酯类化合物在制备抗肠道病毒71型药物中的应用
Urvashi et al. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives
Hetrick et al. Development of a hybrid alphavirus-SARS-CoV-2 pseudovirion for rapid quantification of neutralization antibodies and antiviral drugs
Sharifi et al. Cullin4A and cullin4B are interchangeable for HIV Vpr and Vpx action through the CRL4 ubiquitin ligase complex
Bandaru et al. Clinical progress of therapeutics and vaccines: Rising hope against COVID-19 treatment
JP2009242247A (ja) ヒト免疫不全ウイルス感染阻害剤およびエイズの治療薬または予防薬
Zhang et al. Wikstroelide M potently inhibits HIV replication by targeting reverse transcriptase and integrase nuclear translocation
WO2014074628A1 (en) Compounds for treating hiv and methods for using the compounds
Rashad et al. Bifunctional Chimera That Coordinately Targets Human Immunodeficiency Virus 1 Envelope gp120 and the Host-Cell CCR5 Coreceptor at the Virus–Cell Interface
WO2015143683A1 (zh) 一种抗病毒化合物在抗hiv-1病毒药物中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886799

Country of ref document: EP

Kind code of ref document: A1