WO2015142077A1 - Transparent conductor, method for manufacturing same, and optical display device comprising same - Google Patents

Transparent conductor, method for manufacturing same, and optical display device comprising same Download PDF

Info

Publication number
WO2015142077A1
WO2015142077A1 PCT/KR2015/002678 KR2015002678W WO2015142077A1 WO 2015142077 A1 WO2015142077 A1 WO 2015142077A1 KR 2015002678 W KR2015002678 W KR 2015002678W WO 2015142077 A1 WO2015142077 A1 WO 2015142077A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
transparent conductor
transparent
layer
nanowire dispersion
Prior art date
Application number
PCT/KR2015/002678
Other languages
French (fr)
Korean (ko)
Inventor
심대섭
강경구
구영권
김영훈
신동명
황오현
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201580013693.0A priority Critical patent/CN106104706B/en
Publication of WO2015142077A1 publication Critical patent/WO2015142077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent conductor, a method of manufacturing the same, and an optical display device including the same.
  • the transparent conductor may be used in devices such as touch panels, display devices, e-papers, and solar cells.
  • the devices include an X channel and a Y channel formed of transparent conductors.
  • the X and Y channels must have uniform line resistance.
  • the transparent conductor including the metal nanowires may be manufactured by a roll-to-roll method by wet thin coating of the metal nanowire dispersion liquid containing the metal nanowires on the substrate layer.
  • a line resistance deviation may occur between a direction in which the metal nanowires are coated (MD, machine direction) and a direction perpendicular to the MD (TD).
  • MD machine direction
  • TD direction perpendicular to the MD
  • the metal nanowire solution can be diluted or crude for roll-to-roll coating.
  • an anti-bubble agent or an organic solvent may be blended to remove bubbles.
  • an antifoaming agent or an organic solvent has a limit in improving the channel line resistance uniformity.
  • the technical problem to be solved by the present invention is to provide a transparent conductor with improved channel resistance uniformity.
  • Another technical problem to be solved by the present invention is to provide a transparent conductor having a low sheet resistance by lowering contact resistance between metal nanowires.
  • Another technical problem to be solved by the present invention is to provide an optical display device including the transparent conductor.
  • the transparent conductor of the present invention may include a base layer and a transparent conductive layer formed on the base layer, and the transparent conductive layer may include metal nanowires and metal particles.
  • a metal nanowire dispersion liquid containing a metal nanowire, a viscosity modifier and a metal particle forming agent is coated on a base layer to form a metal nanowire dispersion layer, and the metal nanowire dispersion layer It may comprise the step of curing.
  • the optical display device of the present invention may include the transparent conductor.
  • the present invention provides a transparent conductor with improved channel resistance uniformity.
  • the present invention provides a transparent conductor having low sheet resistance by lowering contact resistance between metal nanowires.
  • the present invention provides an optical display device including the transparent conductor.
  • FIG. 1 is a cross-sectional view of a transparent conductor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a cross section of the transparent conductive layer of FIG. 1.
  • FIG 3 is a cross-sectional view of a transparent conductor according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of an optical display device according to an exemplary embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an optical display device according to another exemplary embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • 11 is a conceptual diagram of measurement of channel line resistance uniformity.
  • spect ratio means the ratio (L / d) of the longest length L of the metal nanowire to the shortest diameter d of the cross section of the metal nanowire.
  • channel wire resistance uniformity value refers to a value calculated by the following Equation 1 for the transparent conductor:
  • R MD ' is the resistance (unit: kPa) of the rectangular first specimen 10 whose long side is the first direction among the transparent conductors, and R TD' is the second side of the transparent conductor in the second direction) Is the resistance of the second specimen 20 of rectangular shape, wherein the first direction and the second direction are orthogonal and R TD ' ? R MD' .
  • the coating direction of the metal nanowire dispersion is MD (machine direction)
  • TD transverse direction
  • the second direction may or may not coincide.
  • 11 illustrates a case where the MD and the first direction coincide with each other and the TD and the second direction coincide with each other.
  • (meth) acryl refers to acrylic and / or methacryl.
  • FIGS. 1 and 2 are cross-sectional views of a transparent conductor according to an embodiment of the present invention
  • Figure 2 is an enlarged view of the cross section of the transparent conductive layer of the transparent conductor of FIG.
  • the transparent conductor 100 may include a base layer 110 and a transparent conductive layer 120.
  • the base layer 110 supports the transparent conductive layer 120 and may include a resin film having transparency.
  • the substrate layer 110 may include a resin film having a transmittance of about 85% to about 100%, more specifically about 88% to about 99% at a wavelength of 550 nm. In this range, the optical properties of the transparent conductor can be improved.
  • the base layer 110 is a polyester, polyolefin, polysulfone, polyimide, silicone, polystyrene, polyacryl, poly, including polycarbonate, cyclic olefin polymer, polyethylene terephthalate, polyethylene naphthalate, and the like. It may be a film formed of one or more of the vinyl chloride resins, but is not limited thereto.
  • FIG. 1 illustrates a transparent conductor in which a base layer 110 includes a film formed of the resin as a single layer.
  • transparent conductors in which the base layer is a multilayer film in which two or more films formed of the resin are bonded by an adhesive or the like may also be included in the scope of the present invention.
  • the base layer 110 may have a thickness of about 10 ⁇ m to about 200 ⁇ m, specifically about 50 ⁇ m to about 150 ⁇ m. In the above range, the base layer can be used for the transparent conductor.
  • a functional layer may be further stacked on one or both surfaces of the substrate layer 110.
  • the functional layer may be a hard coating layer, an anticorrosion layer, an anti-glare coating layer, an adhesion promoting layer, an oligomer elution prevention layer, or the like, but is not limited thereto.
  • the transparent conductive layer 120 may be formed on the base layer 110 to provide conductivity to the transparent conductor 100.
  • FIG. 1 illustrates a transparent conductor in which the transparent conductive layer 120 is formed only on one surface of the base layer 110.
  • a transparent conductor formed on both sides of the base layer 110 by the transparent conductive layer 120 may also be included in the scope of the present invention.
  • the transparent conductive layer 120 may include metal nanowires 121 and metal particles 122. Referring to FIG. 2, the transparent conductive layer 120 will be described in more detail.
  • the transparent conductive layer 120 may include metal nanowires 121 and metal particles 122.
  • the metal nanowires 121 may provide conductivity to the transparent conductive layer 120 by forming a conductive network. Since the metal nanowires 121 have a nanowire shape, the metal nanowires 121 may provide flexibility and flexibility to the transparent conductive layer 120.
  • the metal nanowires 121 may have an aspect ratio of about 10 to about 5,000. Within the above aspect ratio range, a high conductive network may be realized even at a low metal nanowire density, and the sheet resistance of the transparent conductor may be lowered. Specifically, the metal nanowires 121 may have an aspect ratio of about 500 to about 1,000, and more specifically about 500 to about 700. The metal nanowires 121 may have a diameter of more than about 0 nm and about 100 nm or less, specifically about 10 nm to about 100 nm, and more specifically about 10 nm to about 30 nm. In the above range, it is possible to have a high aspect ratio to increase the conductivity of the transparent conductor and lower the sheet resistance.
  • the metal nanowire 121 may have a longest length of about 20 ⁇ m or more, specifically about 20 ⁇ m to about 50 ⁇ m. In the above range, it is possible to have a high aspect ratio to increase the conductivity of the transparent conductor and lower the sheet resistance.
  • the metal nanowires 121 may be included in about 40 wt% or more, specifically about 50 wt% to about 90 wt% of the transparent conductive layer 120. In the above range, the transparent conductor may have high conductivity by sufficiently forming a conductive network.
  • the metal nanowires 121 may be formed of a metal including at least one of silver, copper, aluminum, nickel, and gold. Specifically, the metal nanowires 121 may be formed of silver nanowires or a mixture including the same.
  • the metal particles 122 may significantly lower the contact resistance between the metal nanowires.
  • the metal particles 122 may increase the uniformity of the channel wire resistance of the transparent conductor and increase the reliability of the transparent conductor 100 by lowering the orientation of the metal nanowires, compared to the case where the metal nanowires are coated alone.
  • the "orientation” means the tendency of the metal nanowires to be oriented such that the longitudinal direction of the metal nanowires coincides with a predetermined direction.
  • the MD machine direction
  • the TD transverse direction
  • the metal particles 122 Since the metal particles 122 have the same or significantly smaller particle diameters than the metal nanowires 121, the contact resistance of the conductive network formed of the metal nanowires 121 may be lowered. Therefore, the metal particles 122 may lower the contact resistance of the transparent conductor 100. Specifically, the ratio of the average particle diameter of the metal particles 122 to the diameter of the metal nanowires 121 may be about 1: 4 to about 1: 100. Within this range, the contact resistance of the transparent conductor can be reduced. Specifically, the ratio of the average particle diameter of the metal particles 122 to the diameter of the metal nanowires 121 may be about 1:20 to about 1:50.
  • the metal particles 122 may have an average particle diameter of about 1 nm to about 5 nm. In the above range, the conductive network of the transparent conductive layer can be made high density to reduce the contact resistance, and the transparency of the transparent conductive layer can be increased.
  • the metal particles 122 may include metal particles formed of the same or different types of metals from the metal nanowires 121. Specifically, the metal particles 122 may be formed of the same metal as the metal nanowires 121 to further lower the contact resistance of the metal nanowires 121. In detail, the metal particles 122 may be formed of a metal including at least one of silver, copper, aluminum, nickel, and gold.
  • the metal particles 122 may include particles formed in the reduction of metal cations.
  • the transparent conductive layer 120 may be formed of a metal nanowire dispersion including metal nanowires, a viscosity modifier, and a metal particle former, as described below.
  • Metal particle formers include metal cations.
  • Metal particle formers may produce metal cations.
  • the transparent conductive layer is formed, the metal cations may be reduced by curing or the like to form metal particles.
  • the transparent conductive layer 120 may include metal cations, specifically metal cations formed from metal particle formers.
  • FIG. 1 illustrates a transparent conductor in which metal particles 122 are regularly included in the transparent conductive layer 120.
  • a transparent conductor in which metal particles are irregularly included in the transparent conductive layer may also be included in the scope of the present invention.
  • the transparent conductive layer 120 may further include one or more of a viscosity regulator and a material generated from the viscosity regulator.
  • the resulting material from the viscosity modifier and the viscosity modifier can stabilize the conductive network of the metal nanowires to lower the sheet resistance.
  • the viscosity modifier may include poly (styrenesulfonic acid).
  • the material resulting from the viscosity modifier may comprise poly (styrenesulfonate) ions (PSS ⁇ ).
  • Poly (styrenesulfonate) ions (PSS ⁇ ) are produced by neutralizing poly (styrenesulfonic acid) with a base or metal particle former upon formation of a transparent conductive layer.
  • the transparent conductive layer 120 may have a thickness of about 10 nm to about 1 ⁇ m, specifically about 20 nm to about 500 nm, and more specifically about 30 nm to about 150 nm. In the above range, it can be used as a transparent conductor.
  • the transparent conductor 100 is optically transparent and can be used in an optical display device.
  • the transparent conductor 100 may have a haze of about 1.5% or less, specifically about 0.01% to about 1.15% at a wavelength of about 400 nm to about 700 nm.
  • the transparent conductor 100 may have a light transmittance of about 85% to about 100%, specifically about 88% to about 95% at a wavelength of about 400nm to about 700nm. In the above range, good transparency can be used as a transparent conductor.
  • the transparent conductor 100 may have a thickness of about 10 ⁇ m to about 130 ⁇ m. It can be used as a transparent conductor in the above range.
  • the transparent conductor 100 may have a low sheet resistance by containing the metal nanowires 121 and the metal particles 122. Specifically, the transparent conductor 100 may have a sheet resistance of about 60 k ⁇ / ⁇ or less, more specifically, about 45 k ⁇ / ⁇ to about 60 k ⁇ / ⁇ . In the above range, the sheet resistance of the transparent conductor is low, it can be used as an electrode film for a touch panel, it can be applied to a large area touch panel.
  • a metal nanowire dispersion liquid including a metal nanowire, a viscosity modifier, and a metal particle forming agent is coated on a base layer to form a metal nanowire dispersion layer. Curing the metal nanowire dispersion layer.
  • a metal nanowire dispersion is prepared.
  • the metal nanowire dispersion may include metal nanowires, viscosity modifiers and metal particle formers.
  • the metal nanowires may be added to the metal nanowire dispersion by itself, or may be added to the metal nanowire dispersion as a solution in which the metal nanowires are dispersed in the liquid.
  • the solution in which the metal nanowires are dispersed may use a commercially available product such as Clearohm Ink (Cambrios), but is not limited thereto.
  • the viscosity modifier By adjusting the viscosity of the metal nanowire dispersion, the viscosity modifier lowers the orientation of the metal nanowires and can increase the channel line resistance uniformity of the transparent conductor. Specifically, the viscosity modifier may cause the metal nanowire dispersion to have a viscosity of about 1 cps to about 10 cps at 25 ° C. In the above range, the coating property of the metal nanowire dispersion may be good, and the channel wire resistance uniformity of the transparent conductor may be high.
  • the viscosity modifier may have a molecular weight or weight average molecular weight of about 200 g / mol to about 100,000 g / mol, specifically about 10,000 g / mol to about 100,000 g / mol, more specifically about 10,000 g / mol to about 50,000 g / mol Can be. In the above range, the viscosity can be adjusted when included in the metal nanowire dispersion, it may not increase the sheet resistance of the transparent conductor.
  • the viscosity modifier may be an acid.
  • the viscosity modifier may include polymeric acid, oligomeric acid, and the like. More specifically, the viscosity modifier may use at least one of poly (styrenesulfonic acid), polyethylenedioxythiophene (PEDOT) doped poly (styrenesulfonic acid) (PEDOT-PSS).
  • Poly (styrenesulfonic acid) and poly (styrenesulfonic acid) in combination with polyethylenedioxythiophene may increase the reactivity of the metal nanowire dispersion and increase the conductivity of the transparent conductor.
  • Viscosity modifiers may be included in an aqueous solution of about 0.1% to about 5% by weight acid. In this range, an excess viscosity modifier may be used to prevent the metal nanowires from oxidizing.
  • Viscosity modifiers may be included from about 0.1% to about 3% by weight based on solids in the metal nanowire dispersion. In the above range, it is possible to lower the viscosity of the metal nanowire dispersion.
  • Metal particle formers can include materials that contain or can produce metal cations.
  • the metal cation is reduced by curing or the like to form metal particles, thereby lowering the contact resistance of the transparent conductor.
  • the metal particle former may be Ag 2 O, AgNO 3 or a mixture thereof.
  • Ag 2 O, AgNO 3 can produce Ag + ions.
  • Ag 2 O may react with water in the metal nanowire dispersion to form Ag + ions and OH ⁇ ions, and OH ⁇ ions may neutralize the viscosity regulator, which is an acid.
  • Ag 2 O can facilitate the manufacture of transparent conductors by preventing the metal nanowire dispersion from containing additional bases separately:
  • the metal particle former may be included in an amount of about 0.1 wt% to about 5 wt% based on the solids content of the metal nanowire dispersion. In the above range, the conductivity of the transparent conductor can be improved.
  • Metal nanowire dispersions can be prepared by mixing metal nanowires, viscosity modifiers and metal particle formers.
  • the metal nanowire dispersion can be prepared by simultaneously adding a viscosity modifier and a metal particle former to the metal nanowires.
  • the metal nanowire dispersion can be prepared by first mixing the viscosity modifier and the metal particle former, followed by sequentially mixing the metal nanowires. Sequential mixing of the metal nanowires can prevent the metal nanowires from being oxidized by the acidic viscosity regulator by reacting the viscosity modifier with the metal particle former first to modify the viscosity modifier.
  • the modification of the viscosity modifier may be carried out by mixing the viscosity modifier with the metal particle forming agent and bringing the pH of the resulting mixture to about 4 to about 9 using a base.
  • Bases may include, but are not limited to, one or more of sodium hydroxide (NaOH), potassium hydroxide (KOH).
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • the metal particle forming agent Ag 2 O may allow the pH of the mixed solution to be adjusted to about 4 to about 9 by the scheme 1 without the need to add a base.
  • the viscosity modifier is poly (styrenesulfonic acid) (PSS) and the metal particle forming agent is Ag 2 O
  • PSS poly (styrenesulfonic acid)
  • the metal particle forming agent is Ag 2 O
  • an aqueous solution containing a PSS ⁇ / Ag + salt may be mixed with the metal nanowires to prepare a metal nanowire dispersion.
  • PSS - / Ag + salt may be included as about 0.1% to about 3% by weight by weight based on solid content of the metal nanowires dispersion. In the above range, the viscosity control effect and the metal particle forming effect is excellent, it is possible to prevent the oxidation of the metal nanowire.
  • the metal nanowire dispersion may further include a solvent to increase the coating property of the metal nanowire dispersion.
  • Solvents may include water, alcohols, organic solvents, and the like, but are not limited thereto.
  • the metal nanowire dispersion may further include a binder, an initiator, an additive, and the like.
  • the additives can be dispersants, thickeners and the like.
  • the binder may include one or more of a (meth) acrylate-based monofunctional monomer and a (meth) acrylate-based polyfunctional monomer.
  • the dispersant can increase the dispersion of the metal nanowires and the binder.
  • Thickeners can increase the viscosity of the metal nanowire dispersion.
  • the binder, initiator, and additives as a whole can be included from about 0.1% to about 50% by weight, specifically from about 5% to about 45% by weight solids in the metal nanowire dispersion. In the above range, the optical properties of the transparent conductor may be improved, the contact resistance may be prevented from increasing, and the durability and chemical resistance may be improved.
  • the metal nanowire dispersion may be coated on the substrate layer to form a metal nanowire dispersion layer, and the metal nanowire dispersion layer may be cured to form a transparent conductive layer.
  • Coating may be performed by bar coating, slot die coating, gravure coating, roll-to-roll coating, but is not limited thereto.
  • the coating thickness may be about 10 nm to about 1 ⁇ m, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm.
  • Curing can form a transparent conductive layer and can raise the intensity
  • Curing may include one or more of thermosetting, photocuring.
  • Thermal curing may be performed for about 40 ° C to about 180 ° C, about 1 minute to about 48 hours. Photocuring may be carried out with a UV dose of about 50 mJ / cm 2 to about 1,000 mJ / cm 2 .
  • the metal nanowire dispersion layer may be dried prior to curing the metal nanowire dispersion layer to shorten the curing time. Drying may be performed for about 40 ° C. to about 180 ° C., for about 1 minute to about 48 hours.
  • the transparent conductor 100 ′ may include a base layer 110 and a transparent conductive layer 120 ′. It is substantially the same as the transparent conductor according to the embodiment of the present invention except that the transparent conductive layer 120 ′ is included instead of the transparent conductive layer 120. Thus, hereinafter, the transparent conductive layer 120 'will be described.
  • the transparent conductive layer 120 ′ may include metal nanowires 121, metal particles 122, and a matrix 123.
  • the metal nanowires 121 and the metal particles 122 are impregnated in the matrix 123.
  • the matrix 123 may increase the mechanical strength of the transparent conductive layer 120 ′.
  • the matrix 123 may prevent the sheet resistance of the transparent conductor 100 ′ from being increased by oxidizing the metal nanowires 121 and the metal particles 122 by external moisture and / or air. It is substantially the same as the transparent conductive layer of one embodiment of the present invention, including a matrix 123, except that the metal nanowires 121 and the metal particles 122 are impregnated in the matrix 123.
  • the matrix 123 may be formed on the base layer 110 to strengthen the bond between the base layer 110 and the transparent conductive layer 120 ′.
  • the matrix 123 impregnates the conductive network of the metal nanowires 121 and the metal particles 122 to support the transparent conductive layer 120 ′ and to oxidize the metal nanowires 121 and the metal particles 122. It can prevent the rise of the sheet resistance of the transparent conductor.
  • a portion of the metal nanowire 121 and the metal nanoparticle 122 protrude from the matrix 123 to form a conductive network with another conductor formed on the transparent conductor 100 ′. It can be done.
  • Matrix 123 may be optically transparent.
  • the matrix 123 may have a light transmittance of about 85% or more, specifically about 85% to about 100%, more specifically about 90% to about 95%, at a wavelength of 400 nm to 700 nm. In the above range, it is optically transparent and can be used for the transparent conductor.
  • the matrix 123 may have a thickness of about 10 nm to about 1 ⁇ m, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm. In the above range, it can be used for the transparent conductor.
  • the matrix 123 may be formed of a matrix composition including a binder, an initiator, and the like.
  • the binder may include at least one of an ultraviolet curable resin and an ultraviolet curable monomer.
  • UV-curable resins include urethane (meth) acrylates, epoxy (meth) acrylates, poly (meth) acrylates, poly (meth) acrylonitriles, polyvinyl alcohols, polyesters, polycarbonates, phenols, polystyrenes, and polyvinyl toluene It may include, but is not limited to, one or more of polyvinylxylene, polyimide, and polyamide resin.
  • the ultraviolet curable monomer may include one or more functional (meth) acrylic monomers.
  • UV-curable monomers include monofunctional (meth) acrylic monomers, bifunctional (meth) acrylic monomers, trifunctional (meth) acrylic monomers, tetrafunctional (meth) acrylic monomers, and 5-functional (meth) acrylic monomers. It may include one or more of a monomer, a six-functional (meth) acrylic monomer.
  • the ultraviolet curable monomer is a mono (meth) acrylate having a linear or branched alkyl group of 1-20 carbon atoms, a mono (meth) acrylate having a hydroxyl group, alicyclic having 3-20 carbon atoms
  • Monofunctional (meth) acrylates including mono (meth) acrylate having a group, and the like; Hexanediol di (meth) acrylate, trimethylolpropane di (meth) acrylate, ethyleneglycol di (meth) acrylate Bifunctional (meth) acrylates, such as neopentylglycol di (meth) acrylate and cyclodecanedimethanol di (meth) acrylate; Trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate ), Dipentaerythritol tri (meth)
  • the binder may be included alone or in mixture of two or more kinds in the matrix composition.
  • the binder may be included in about 50% to about 91% by weight of the composition for the solid content matrix. Within this range, the metal nanowires and metal particles can be sufficiently impregnated.
  • An initiator hardens a binder and can contain a normal photoinitiator.
  • the initiator may include an alpha-hydroxyketone series including 1-hydroxycyclohexylphenyl ketone and the like.
  • the initiator may be included in about 1% to about 40% by weight of the composition for the solid content matrix.
  • the binder can be sufficiently cured, and a residual amount of initiator can remain to prevent the matrix from inferior in transparency.
  • the composition for the matrix may further include a solvent for coating.
  • the solvent may be included in the remaining amount in the composition for the matrix.
  • the solvent may contain organic solvents such as water and propylene glycol monomethyl ether.
  • the composition for the matrix may further include an additive to improve the performance of the matrix.
  • the additive may include one or more of adhesion promoters and antioxidants.
  • the additive may be included in about 0.01% by weight to about 10% by weight in the composition for a solid content matrix.
  • the antioxidant may prevent oxidation of the metal nanowire network of the transparent conductive layer 120 '.
  • Antioxidant is one of triazole antioxidant, triazine antioxidant, phosphorus antioxidant such as phosphite, HALS (Hinder amine light stabilizer) antioxidant, phenolic antioxidant It may contain the above.
  • the phosphorus antioxidant is tris (2,4-di-tert-butylphenyl) phosphite
  • the phenolic antioxidant is pentaerythritol tetrakis (3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (Pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate)
  • HALS-based antioxidants include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate), bis (2, 2,6,6-tetramethyl-4-piperidinyl) sebacate (bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate), bis (2,2,6,6-tetramethyl- 5-piperidinyl) sebacate (bis (2,2,6,6-tetra
  • Antioxidants may comprise from about 0.01% to about 10% by weight of the solids based matrix composition. Within this range, oxidation of the metal nanowire network can be prevented.
  • An adhesion promoter may enhance adhesion of the metal nanowire 121 to the base layer 110 and at the same time increase the reliability of the transparent conductor 100 ′.
  • the adhesion promoter may use one or more of a silane coupling agent and mono- or tri-functional monomers.
  • the silane coupling agent may use a conventionally known silane coupling agent, and when using a silane coupling agent having an amino group or an epoxy group, adhesion and chemical resistance may be good.
  • 3-glycidoxypropyltrimethoxysilane 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • Silicon compounds having an epoxy structure such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • Polymerizable unsaturated group-containing silicon compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, and (meth) acryloxypropyltrimethoxysilane
  • 3-aminopropyltrimethoxysilane 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane
  • N- (2 amino group-containing silicon compounds such as -aminoethyl) -3-aminopropyl
  • the monofunctional to trifunctional monomers may include monofunctional to trifunctional (meth) acrylate monomers having a (meth) acrylate group.
  • the monofunctional to trifunctional monomers are monofunctional to trifunctional monomers of polyhydric alcohols having 3 to 20 carbon atoms, more specifically methyl (meth) acrylate, isobornyl (meth) acrylate (isobornyl (meth) acrylate), cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane di (meth) acrylate (trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (2-hydroxyethyl) isocyanuate tri (meth) Acrylate (tris (2-hydroxyethyl) isocyanuate tri (meth) Acrylate (tris (2-
  • Adhesion promoters may be included from about 0.01% to about 10% by weight of the solid matrix composition. Within this range, adhesion can be promoted while maintaining the reliability and conductivity of the transparent conductor.
  • the composition for the matrix will comprise from about 50% to 91% by weight of the binder, from about 1% to about 40% by weight of the binder, from about 0.01% to about 10% by weight of the additive, based on solids in the composition for the matrix. Can be.
  • the transparent conductor 100 ′ may have a channel wire resistance uniformity value of about 20% or less. In the above range, the transparent conductor can be used, and when the transparent conductor is patterned and used in the optical display device, the device can be driven well because the variation of the channel resistance (line resistance) of the X and Y channels is low. The lower the channel wire resistance uniformity value, the better the channel wire resistance uniformity. Specifically, the transparent conductor 100 ′ may have a channel wire resistance uniformity value of about 0% to about 20%.
  • the transparent conductor 100 ′ is optically transparent and can be used in an optical display device.
  • the transparent conductor 100 ′ may have a haze of about 1.5% or less, specifically about 0.01% to about 1.15% at a wavelength of about 400 nm to about 700 nm.
  • the transparent conductor 100 ′ may have a light transmittance of about 85% to about 100%, specifically about 88% to about 95% at a wavelength of about 400 nm to about 700 nm. In the above range, good transparency can be used as a transparent conductor.
  • the transparent conductor 100 ′ may have a thickness of about 10 ⁇ m to about 100 ⁇ m. It can be used as a transparent conductor in the above range.
  • the transparent conductor 100 ′ may have low sheet resistance by containing the metal nanowires 121 and the metal particles 122. Specifically, the transparent conductor 100 ′ may have a sheet resistance of about 60 k ⁇ / ⁇ or less, more specifically, about 45 k ⁇ / ⁇ to about 60 k ⁇ / ⁇ . In the above range, the sheet resistance of the transparent conductor is low, it can be used as an electrode film for a touch panel, it can be applied to a large area touch panel.
  • a method of manufacturing a transparent conductor by coating a metal nanowire dispersion comprising a metal nanowire, a viscosity modifier, and a metal particle forming agent on a base layer to form a metal nanowire dispersion layer. Coating the composition for the matrix on the metal nanowire dispersion layer and curing the metal nanowire dispersion layer and the composition for the matrix.
  • the metal nanowire dispersion is coated on a base layer to form a metal nanowire dispersion layer.
  • the composition for the matrix is coated on the metal nanowire dispersion layer, and the metal nanowire dispersion layer and the composition for the matrix are simultaneously cured to form a transparent conductive layer.
  • the coating impregnates the metal nanowires in the composition for the matrix. Coating may be performed by bar coating, slot die coating, gravure coating, roll-to-roll coating, but is not limited thereto.
  • the coating thickness may be about 10 nm to about 1 ⁇ m, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm. Curing can form a transparent conductive layer and can raise the intensity
  • Curing can cure the dispersion layer of the metal nanowires and the composition for the matrix.
  • Curing may include one or more of thermosetting, photocuring. Thermal curing may be performed for about 40 ° C to about 180 ° C, about 1 minute to about 48 hours. Photocuring may be carried out with a UV radiation of about 50 mJ / cm 2 to about 1000 mJ / cm 2 .
  • the metal nanowire dispersion layer may be dried. Drying may be performed for about 40 ° C. to about 180 ° C., for about 1 minute to about 48 hours.
  • FIG. 4 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
  • the transparent conductor 100 ′′ may include a base layer 110 and a transparent conductive layer 120 ′′. It is substantially the same as a transparent conductor according to another embodiment of the present invention except that a transparent conductive layer 120 "is formed instead of the transparent conductive layer 120 '.
  • a transparent conductive layer 120 will be described.
  • the transparent conductive layer 120 ′′ may include the metal nanowires 121, the metal particles 122, and the matrix 123.
  • the metal nanowires 121 and the metal particles 122 may be completely in the matrix 123. It is impregnated and formed only in a part of the matrix 123.
  • the transparent conductive layer 120 "further includes a matrix on the conductive network formed of the metal nanowires 121 and the metal particles 122 in the thickness direction. Formed. Accordingly, the matrix 123 may prevent the sheet resistance of the transparent conductor from being increased by completely suppressing oxidation of the metal nanowire 121 and the metal particles 122 by moisture and / or air.
  • metal nanowires 121 and the metal particles 122 are completely impregnated in the matrix 123 and there are no exposed metal nanowires 121 and the metal particles 122. It is substantially the same as the transparent conductor according to the example.
  • FIG. 5 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
  • the transparent conductor 100 ′′ ′ may include a base layer 110 and a transparent conductive layer 120 ′′ ′. It is substantially the same as a transparent conductor according to another embodiment of the present invention except that it includes a transparent conductive layer 120 "'instead of the transparent conductive layer 120'. Hereinafter, the transparent conductive layer 120 will be described. "') Only.
  • the transparent conductive layer 120 "' may include the conductive layer 120a and the non-conductive layer 120b.
  • the transparent conductive layer 120"' may be patterned by the conductive layer 120a and the non-conductive layer 120b. It is mad.
  • the conductive layer 120a includes a matrix 123 and metal nanowires 121 and metal particles 122 impregnated in the matrix 123.
  • Non-conductive layer 120b includes only matrix 123.
  • the transparent conductive layer 120 "' may be formed by patterning the transparent conductive layer 120' according to another embodiment of the present invention. Patterning may be performed by a conventional method. Specifically, patterning Forms a transparent conductive layer 120 ', forms a photoresist layer on the transparent conductive layer 120', places a patterned mask on the photoresist layer, UV exposure, develops, Baking and etching.
  • FIG. 6 is a cross-sectional view of an optical display device according to an exemplary embodiment of the present invention.
  • an optical display device 200 may include a display unit 210, a polarizer 220, a transparent electrode body 230, a window film 240, and an adhesive layer 250. It includes, the transparent electrode body 230 may be formed of a transparent conductor according to embodiments of the present invention.
  • the display unit 210 is for driving the optical display device 200 and may include an optical element including a substrate and an OLED, an LED, or an LCD element formed on the substrate.
  • the display unit 210 may include a lower substrate, a thin film transistor, an organic light emitting diode, a planarization layer, a protective film, an insulating film.
  • the display unit 210 may include an upper substrate, a lower substrate, a liquid crystal layer positioned between the upper substrate and the lower substrate, and a color filter formed on at least one of the upper substrate and the lower substrate.
  • the polarizing plate 220 may be formed on the display unit 210 to implement polarization of internal light or prevent reflection of external light to implement a display or improve contrast ratio of the display.
  • the polarizer 220 may be a polarizer alone.
  • the polarizing plate 220 may include a polarizer and a protective film formed on one or both sides of the polarizer.
  • the polarizing plate 220 may include a polarizer and a protective coating layer formed on one or both surfaces of the polarizer.
  • the polarizer, the protective film, and the protective coating layer may use a conventional one known to those skilled in the art.
  • a polarizer may be further formed below the display unit 210 to further improve the contrast ratio of the display.
  • the polarizer may be formed on the display unit 210 by an adhesive layer.
  • the transparent electrode body 230 may be formed on the polarizing plate 220, and may generate an electrical signal by detecting a change in capacitance generated when the transparent electrode body 230 is touched by contact or the like.
  • the electrical signal may drive the display unit 210.
  • the transparent electrode body 230 may include a base electrode 110, a first electrode 231 formed on one surface of the base layer 110, a second electrode 232, and a third electrode formed on the other side of the base layer 110 ( 233 and the fourth electrode 234.
  • the first electrode 231 and the second electrode 232 may each be an Rx electrode
  • the third electrode 233 and the fourth electrode 234 may each be a Tx electrode.
  • an optical display device including a transparent electrode body in which the first electrode and the second electrode are each a Tx electrode and the third electrode and the fourth electrode are each an Rx electrode may also be included in the scope of the present invention.
  • the window film 240 may be formed on the outermost side of the optical display device 200 to protect the optical display device 200.
  • the window film 240 may be formed of a glass substrate or a flexible plastic substrate.
  • the adhesive layer 250 is formed between the display unit 210 and the polarizing plate 220, between the polarizing plate 220 and the transparent electrode body 230, and between the transparent electrode body 230 and the window film 240.
  • the bonding between the 210, the polarizing plate 220, the transparent electrode body 230, and the window film 240 may be strengthened.
  • the adhesive layer 250 may be formed of a conventional optically transparent adhesive.
  • the adhesive layer 250 may be formed of a composition including a (meth) acrylic copolymer, a curing agent, and a silane coupling agent, but is not limited thereto.
  • the adhesive layer 250 may be omitted if the display unit 210, the polarizing plate 220, the transparent electrode body 230, and the window film 240 are self-adhesive, the adhesive layer 250 may be omitted.
  • FIG. 7 is a cross-sectional view of an optical display device according to another exemplary embodiment of the present invention.
  • the optical display device 300 may include a display unit 210, a polarizing plate 220, a transparent electrode body 230 ′, a window film 240 ′, and an adhesive layer ( 250, and the transparent electrode body 230 ′ may be formed of a transparent conductor according to embodiments of the present invention.
  • the transparent electrode body 230 ′ includes the base layer 110 and the third electrode 233 and the fourth electrode 234 formed on one surface of the base layer 110, and the window film 240 ′ is the first electrode. It is substantially the same as the optical display device according to the exemplary embodiment of the present invention except that 231 and the second electrode 232 are further formed.
  • the above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • an optical display device 400 may include a display unit 210, a polarizer 220, a transparent electrode body 230 ′′, a window film 240, and an adhesive layer ( 250, and the transparent electrode body 230 ′′ may be formed of a transparent conductor according to embodiments of the present invention.
  • the transparent electrode body 230 ′′ will be described.
  • the transparent electrode body 230 ′′ includes an adhesive layer formed between the first transparent electrode body 230a, the second transparent electrode body 230b, and the first transparent electrode body 230a and the second transparent electrode body 230b. 250).
  • the first transparent electrode body 230a is formed under the window film 240, and forms the base layer 110 and the first electrode 231 and the second electrode 232 formed on one surface of the base layer 110. It may include.
  • the second transparent electrode body 230b is formed on the polarizer 220, and includes a base layer 110 and a third electrode 233 and a fourth electrode 234 formed on one surface of the base layer 110. can do.
  • the adhesive layer 250 may be formed between the first transparent electrode body 230a and the second transparent electrode body 230b to bond the first transparent electrode body 230a and the second transparent electrode body 230b. .
  • the above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • the optical display device 500 may include a display unit 210, a transparent electrode body 230, a polarizer 220, a window film 240, and an adhesive layer 250. ), And the transparent electrode body 230 may be formed of a transparent conductor according to embodiments of the present invention. Except that the transparent electrode body 230 is formed between the display unit 210 and the polarizing plate 220 is substantially the same as the optical display device according to an embodiment of the present invention.
  • FIG 9 illustrates an optical display device in which an adhesive layer 250 is formed between the transparent electrode body 230 and the display unit 210.
  • the transparent electrode body 230 and the display unit 210 may be formed together without the adhesive layer 250.
  • the above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
  • an optical display device 600 includes a display unit 210a, a polarizer 220, a window film 240, and an adhesive layer 250.
  • 210a may include a transparent electrode body, and the transparent electrode body may be formed of a transparent conductor according to embodiments of the present invention.
  • the transparent electrode body is substantially the same as the optical display device according to the exemplary embodiment except that the transparent electrode body is formed inside the display unit 210a.
  • the above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
  • Poly (styrene sulfonic acid) was added to Ag 2 O 5g to 1% by weight aqueous solution of 100ml and stirred for poly (styrene sulfonate) anion and the salt of the cation to prepare an aqueous solution (pH 7) containing the (PSS / Ag + salt) It was. 0.135 g of the prepared aqueous solution was added to 10.97 g of a silver nanowire-containing solution (trade name: Clearohm ink) and stirred to prepare a silver nanowire dispersion. The silver nanowire dispersion contains 0.5% by weight of PSS ⁇ / Ag + salt on a solids basis.
  • the prepared silver nanowire dispersion was coated on a substrate layer (polycarbonate film, thickness: 50 ⁇ m) by spin coating to form a silver nanowire dispersion layer.
  • the silver nanowire dispersion layer was dried in an 80 ° C. oven for at least 2 minutes and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor. At this time, the average particle diameter of the produced silver particle was about 1 nm-5 nm.
  • Poly (styrene sulfonic acid) was added to Ag 2 O 5g to 1% by weight aqueous solution of 100ml and stirred for poly (styrene sulfonate) anion and the salt of the cation to prepare an aqueous solution (pH 7) containing the (PSS / Ag + salt) It was. 0.135 g of the prepared aqueous solution was added to 10.97 g of a silver nanowire solution (product name: Clearohm ink) and stirred to prepare a silver nanowire dispersion. The silver nanowire dispersion contains 0.5% by weight of PSS ⁇ / Ag + salt on a solids basis.
  • TMPTA trimethylolpropane triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • Irganox 1010 and 1.5 g of an initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
  • the silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 ⁇ m) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more.
  • the dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor. At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
  • Example 2 In the PSS is based on solids of the nanowire dispersion-was prepared in a transparent conductor in the same manner except that the changes to the / Ag + to the salt content in Table 1. At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
  • a transparent conductor was prepared in the same manner as in Example 6 except that poly (styrenesulfonic acid) doped with poly (ethylenedioxythiophene) was used instead of poly (styrenesulfonic acid). At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
  • silver nanowire dispersion 30 g was prepared by adding distilled water and PGME (propylene glycol monomethyl ether) to 18.98 g of silver nanowire solution (product name: Clearohm ink).
  • PGME propylene glycol monomethyl ether
  • TMPTA trimethylol propane triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • antioxidant Irganox 0.510 and 10 g of initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
  • the silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 ⁇ m) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more.
  • the dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor.
  • TMPTA trimethylol propane triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • antioxidant Irganox 0.510 and 10 g of initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
  • the silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 ⁇ m) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more.
  • the dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor.
  • Haze and transmittance (%): The transparent conductor was disposed so that the transparent conductive layer faced the light source. Haze and transmittance were measured using a haze meter (NDH-2000) D65 light source at a wavelength of 400 nm to 700 nm.
  • Channel wire resistance uniformity value The coating direction of the silver nanowire dispersion solution for the transparent conductor is called MD and the direction perpendicular to the MD is called TD.
  • the channel wire resistance uniformity value was calculated according to Equation 1 above. The lower the channel line resistance uniformity value, the higher the channel line resistance uniformity.
  • Silver particles include include include include include include include Without Without Silver particle average particle diameter (nm) 1 to 5 1 to 5 1 to 5 1 to 5 1 to 5 1 to 5 - -
  • the transparent conductor of the present invention has a low haze and a high transmittance, is transparent, has a low sheet resistance, and has a significantly low channel resistance uniformity, so that resistance variation between MD and TD may be low even before patterning and patterning. have. Accordingly, the present invention provides a transparent conductor having low sheet resistance by improving channel resistance uniformity and lowering contact resistance between metal nanowires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided are a transparent conductor, a method for manufacturing the same, and an optical display device comprising the same, the transparent conductor comprising: a substrate layer; and a transparent conductive layer formed on the substrate layer and including metal nanowires and metal particles.

Description

투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치Transparent conductor, manufacturing method thereof, and optical display device including the same
본 발명은 투명 도전체, 이의 제조방법 및 이를 포함하는 광학표시장치에 관한 것이다.The present invention relates to a transparent conductor, a method of manufacturing the same, and an optical display device including the same.
투명 도전체는 터치패널, 디스플레이 장치, E-paper, 태양전지 등의 장치에 사용될 수 있다. 상기 장치들은 투명 도전체로 형성된 X 채널과 Y 채널을 포함한다. X 채널과 Y 채널은 선 저항이 균일해야 한다.The transparent conductor may be used in devices such as touch panels, display devices, e-papers, and solar cells. The devices include an X channel and a Y channel formed of transparent conductors. The X and Y channels must have uniform line resistance.
금속 나노와이어를 포함하는 투명 도전체는 기재층에 금속 나노와이어를 포함하는 금속 나노와이어 분산액을 습식 박막 코팅하여 롤-투-롤(roll-to-roll) 방법으로 제조될 수 있다. 습식 박막 코팅시, 금속 나노와이어의 나노와이어 형상으로 인하여 금속 나노와이어가 코팅되는 방향(MD, machine direction)과 MD와 수직되는 방향(TD, transverse direction)은 선 저항 편차가 생길 수 있다. 또한, 투명 도전체의 패터닝 후에도 MD와 TD의 선저항의 균일도가 떨어질 수 있다. 롤-투-롤 코팅을 위해 금속 나노와이어 용액을 희석하거나 또는 조액할 수 있다. 이때 생기는 버블(bubble)을 제거하기 위해 소포제(anti-bubble agent) 또는 유기용제를 배합할 수 있다. 그러나, 소포제 또는 유기용제의 첨가는 채널 선저항 균일도 개선에 한계가 있다.The transparent conductor including the metal nanowires may be manufactured by a roll-to-roll method by wet thin coating of the metal nanowire dispersion liquid containing the metal nanowires on the substrate layer. In the wet thin film coating, due to the nanowire shape of the metal nanowire, a line resistance deviation may occur between a direction in which the metal nanowires are coated (MD, machine direction) and a direction perpendicular to the MD (TD). In addition, even after the patterning of the transparent conductor, the uniformity of the line resistance of the MD and the TD may be degraded. The metal nanowire solution can be diluted or crude for roll-to-roll coating. In this case, an anti-bubble agent or an organic solvent may be blended to remove bubbles. However, the addition of an antifoaming agent or an organic solvent has a limit in improving the channel line resistance uniformity.
본 발명이 해결하고자 하는 기술적 과제는 채널 저항 균일도가 개선된 투명 도전체를 제공하는 것이다.The technical problem to be solved by the present invention is to provide a transparent conductor with improved channel resistance uniformity.
본 발명이 해결하고자 하는 다른 기술적 과제는 금속 나노와이어 간의 접촉 저항을 낮추어 면저항이 낮은 투명 도전체를 제공하는 것이다.Another technical problem to be solved by the present invention is to provide a transparent conductor having a low sheet resistance by lowering contact resistance between metal nanowires.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 상기 투명 도전체를 포함하는 광학표시장치를 제공하는 것이다.Another technical problem to be solved by the present invention is to provide an optical display device including the transparent conductor.
본 발명의 투명 도전체는 기재층 및 상기 기재층 상에 형성된 투명 도전층을 포함하고, 상기 투명 도전층은 금속 나노와이어 및 금속 입자를 포함할 수 있다.The transparent conductor of the present invention may include a base layer and a transparent conductive layer formed on the base layer, and the transparent conductive layer may include metal nanowires and metal particles.
본 발명의 투명 도전체의 제조 방법은 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함하는 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성하고, 상기 금속 나노와이어 분산액 층을 경화시키는 단계를 포함할 수 있다.In the method of manufacturing a transparent conductor of the present invention, a metal nanowire dispersion liquid containing a metal nanowire, a viscosity modifier and a metal particle forming agent is coated on a base layer to form a metal nanowire dispersion layer, and the metal nanowire dispersion layer It may comprise the step of curing.
본 발명의 광학표시장치는 상기 투명 도전체를 포함할 수 있다.The optical display device of the present invention may include the transparent conductor.
본 발명은 채널 저항 균일도가 개선된 투명 도전체를 제공하였다.The present invention provides a transparent conductor with improved channel resistance uniformity.
본 발명은 금속 나노와이어 간의 접촉 저항을 낮추어 면저항이 낮은 투명 도전체를 제공하였다.The present invention provides a transparent conductor having low sheet resistance by lowering contact resistance between metal nanowires.
본 발명은 상기 투명 도전체를 포함하는 광학표시장치를 제공하였다.The present invention provides an optical display device including the transparent conductor.
도 1은 본 발명의 일 실시예에 따른 투명 도전체의 단면도이다.1 is a cross-sectional view of a transparent conductor according to an embodiment of the present invention.
도 2는 도 1의 투명 도전층의 단면의 확대도이다.FIG. 2 is an enlarged view of a cross section of the transparent conductive layer of FIG. 1.
도 3은 본 발명의 다른 실시예에 따른 투명 도전체의 단면도이다.3 is a cross-sectional view of a transparent conductor according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 투명 도전체의 단면도이다.4 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 투명 도전체의 단면도이다.5 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 광학표시장치의 단면도이다.6 is a cross-sectional view of an optical display device according to an exemplary embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 광학표시장치의 단면도이다.7 is a cross-sectional view of an optical display device according to another exemplary embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.8 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 9는 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.9 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.10 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 11은 채널 선저항 균일도의 측정 개념도이다.11 is a conceptual diagram of measurement of channel line resistance uniformity.
첨부한 도면을 참고하여 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
본 명세서에서 "상부"와 "하부"는 도면을 기준으로 정의한 것으로서, 시 관점에 따라 "상부"가 "하부"로 "하부"가 "상부"로 변경될 수 있고, "위(on)" 또는 "상(on)"으로 지칭되는 것은 바로 위뿐만 아니라 중간에 다른 구조를 개재한 경우도 포함할 수 있다. 반면, "직접 위(directly on)" 또는 "바로 위"로 지칭되는 것은 중간에 다른 구조를 개재하지 않은 것을 의미한다.In the present specification, "upper" and "lower" are defined based on the drawings, and according to a viewpoint, "upper" may be changed to "lower" and "lower" to "upper", and "on" or What is referred to as “on” may include not only the above but also intervening other structures in the middle. On the other hand, what is referred to as "directly on" or "directly on" means that there is no intervening structure in between.
본 명세서에서 "종횡비(aspect ratio)"는 금속 나노와이어의 단면의 최단 직경(d)에 대한 금속 나노와이어의 최장 길이(L)의 비(L/d)를 의미한다.As used herein, "aspect ratio" means the ratio (L / d) of the longest length L of the metal nanowire to the shortest diameter d of the cross section of the metal nanowire.
본 명세서에서 "채널 선저항 균일도 값"은 도 11을 참조하면, 투명 도전체에 대해 하기 식 1로 계산되는 값을 의미한다:As used herein, the "channel wire resistance uniformity value" refers to a value calculated by the following Equation 1 for the transparent conductor:
<식 1><Equation 1>
채널 선저항 균일도 값(%) = (RTD' - RMD')/RMD' x 100Channel Resistance Resistance (%) = (R TD ' -R MD' ) / R MD ' x 100
(상기 식 1에서, RMD'는 투명 도전체 중 장변이 제1방향인 직사각형의 제1시편(10)의 저항(단위:Ω)이고, RTD'는 투명 도전체 중 장변이 제2방향인 직사각형의 제2시편(20)의 저항(단위:Ω)이고, 이때, 상기 제1방향과 상기 제2방향은 직교하고, RTD' ≥ RMD'이다). 투명 도전층 제조시 금속 나노와이어 분산액의 코팅 방향을 MD(machine direction), MD와 직교하는 방향을 TD(transverse direction)라고 할 때, MD와 상기 제1방향과 일치하거나 일치하지 않을 수 있고, TD와 상기 제2방향은 일치하거나 일치하지 않을 수 있다. 도 11은 MD와 상기 제1방향이 일치하고, TD와 상기 제2방향이 일치하는 경우를 나타낸 것이다.(Equation 1, R MD ' is the resistance (unit: kPa) of the rectangular first specimen 10 whose long side is the first direction among the transparent conductors, and R TD' is the second side of the transparent conductor in the second direction) Is the resistance of the second specimen 20 of rectangular shape, wherein the first direction and the second direction are orthogonal and R TD ' ? R MD' . When manufacturing a transparent conductive layer, the coating direction of the metal nanowire dispersion is MD (machine direction), and a direction orthogonal to MD is a transverse direction (TD), which may or may not coincide with MD and the first direction. And the second direction may or may not coincide. 11 illustrates a case where the MD and the first direction coincide with each other and the TD and the second direction coincide with each other.
본 명세서에서 "(메트)아크릴"은 아크릴 및/또는 메타아크릴을 의미한다.As used herein, "(meth) acryl" refers to acrylic and / or methacryl.
이하, 본 발명의 일 실시예에 따른 투명 도전체를 도 1과 도 2를 참조하여 설명한다. 도 1은 본 발명의 일 실시예에 따른 투명 도전체의 단면도이고, 도 2는 도 1의 투명 도전체 중 투명 도전층의 단면의 확대도이다.Hereinafter, a transparent conductor according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 is a cross-sectional view of a transparent conductor according to an embodiment of the present invention, Figure 2 is an enlarged view of the cross section of the transparent conductive layer of the transparent conductor of FIG.
도 1을 참조하면, 본 발명의 일 실시예에 따른 투명 도전체(100)는 기재층(110) 및 투명 도전층(120)을 포함할 수 있다.Referring to FIG. 1, the transparent conductor 100 according to an embodiment of the present invention may include a base layer 110 and a transparent conductive layer 120.
기재층(110)은 투명 도전층(120)을 지지하는 것으로, 투명성을 갖는 수지 필름을 포함할 수 있다. 구체적으로, 기재층(110)은 파장 550nm에서 투과율이 약 85% 내지 약 100%, 더 구체적으로 약 88% 내지 약 99%인 수지 필름을 포함할 수 있다. 상기 범위에서, 투명 도전체의 광학 특성이 개선될 수 있다. 구체적으로, 기재층(110)은 폴리카보네이트, 시클릭올레핀폴리머, 폴리에틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등을 포함하는 폴리에스테르, 폴리올레핀, 폴리술폰, 폴리이미드, 실리콘(silicone), 폴리스티렌, 폴리아크릴, 폴리비닐클로라이드 수지 중 하나 이상으로 형성된 필름이 될 수 있지만, 이에 제한되지 않는다. The base layer 110 supports the transparent conductive layer 120 and may include a resin film having transparency. Specifically, the substrate layer 110 may include a resin film having a transmittance of about 85% to about 100%, more specifically about 88% to about 99% at a wavelength of 550 nm. In this range, the optical properties of the transparent conductor can be improved. Specifically, the base layer 110 is a polyester, polyolefin, polysulfone, polyimide, silicone, polystyrene, polyacryl, poly, including polycarbonate, cyclic olefin polymer, polyethylene terephthalate, polyethylene naphthalate, and the like. It may be a film formed of one or more of the vinyl chloride resins, but is not limited thereto.
도 1은 기재층(110)이 상기 수지로 형성된 필름이 단일층으로 포함된 투명 도전체를 나타낸 것이다. 그러나, 기재층이 상기 수지로 형성된 필름 2 이상이 접착제 등에 의해 접착된 다중층의 필름인 투명 도전체도 본 발명의 범위에 포함될 수 있다.1 illustrates a transparent conductor in which a base layer 110 includes a film formed of the resin as a single layer. However, transparent conductors in which the base layer is a multilayer film in which two or more films formed of the resin are bonded by an adhesive or the like may also be included in the scope of the present invention.
기재층(110)은 두께가 약 10㎛ 내지 약 200㎛, 구체적으로 약 50㎛ 내지 약 150㎛가 될 수 있다. 상기 범위에서, 기재층은 투명 도전체에 사용될 수 있다.The base layer 110 may have a thickness of about 10 μm to about 200 μm, specifically about 50 μm to about 150 μm. In the above range, the base layer can be used for the transparent conductor.
도 1에서 도시되지 않았지만, 기재층(110)의 일면 또는 양면에는 기능성 층이 더 적층될 수 있다. 기능성 층으로는 하드코팅층, 부식방지층, anti-glare 코팅층, 부착력 증진(adhesion promoting)층, 올리고머 용출 방지층 등이 될 수 있지만, 이에 제한되지 않는다.Although not shown in FIG. 1, a functional layer may be further stacked on one or both surfaces of the substrate layer 110. The functional layer may be a hard coating layer, an anticorrosion layer, an anti-glare coating layer, an adhesion promoting layer, an oligomer elution prevention layer, or the like, but is not limited thereto.
투명 도전층(120)은 기재층(110) 상에 형성되어 투명 도전체(100)에 도전성을 제공할 수 있다. 도 1은 기재층(110)의 일면에만 투명 도전층(120)이 형성된 투명 도전체를 나타낸 것이다. 그러나, 투명 도전층(120)이 기재층(110)의 양면에 형성된 투명 도전체도 본 발명의 범위에 포함될 수 있다.The transparent conductive layer 120 may be formed on the base layer 110 to provide conductivity to the transparent conductor 100. FIG. 1 illustrates a transparent conductor in which the transparent conductive layer 120 is formed only on one surface of the base layer 110. However, a transparent conductor formed on both sides of the base layer 110 by the transparent conductive layer 120 may also be included in the scope of the present invention.
투명 도전층(120)은 금속 나노와이어(121) 및 금속 입자(122)를 포함할 수 있다. 도 2를 참조하여, 투명 도전층(120)을 더 상세하게 설명한다.The transparent conductive layer 120 may include metal nanowires 121 and metal particles 122. Referring to FIG. 2, the transparent conductive layer 120 will be described in more detail.
도 2를 참조하면, 투명 도전층(120)은 금속 나노와이어(121) 및 금속 입자(122)를 포함할 수 있다.Referring to FIG. 2, the transparent conductive layer 120 may include metal nanowires 121 and metal particles 122.
금속 나노와이어(121)는 도전성 네트워크를 형성함으로써, 투명 도전층(120)에 도전성을 제공할 수 있다. 금속 나노와이어(121)는 나노와이어 형상을 가지므로, 투명 도전층(120)에 유연성(flexibility)과 굴곡성을 제공할 수 있다.The metal nanowires 121 may provide conductivity to the transparent conductive layer 120 by forming a conductive network. Since the metal nanowires 121 have a nanowire shape, the metal nanowires 121 may provide flexibility and flexibility to the transparent conductive layer 120.
금속 나노와이어(121)는 종횡비가 약 10 내지 약 5,000이 될 수 있다. 상기 종횡비 범위에서, 낮은 금속 나노와이어 밀도에서도 높은 도전성 네트워크를 구현할 수 있고, 투명 도전체의 면저항이 낮아질 수 있다. 구체적으로, 금속 나노와이어(121)는 종횡비가 약 500 내지 약 1,000, 더 구체적으로 약 500 내지 약 700이 될 수 있다. 금속 나노와이어(121)는 단면의 직경이 약 0nm 초과 약 100nm 이하, 구체적으로 약 10nm 내지 약 100nm, 더 구체적으로 약 10nm 내지 약 30nm가 될 수 있다. 상기 범위에서, 높은 종횡비를 가져 투명 도전체의 전도성을 높이고 면저항을 낮출 수 있다. 금속 나노와이어(121)는 최장 길이가 약 20㎛ 이상, 구체적으로 약 20㎛ 내지 약 50㎛가 될 수 있다. 상기 범위에서, 높은 종횡비를 가져 투명 도전체의 전도성을 높이고 면저항을 낮출 수 있다.The metal nanowires 121 may have an aspect ratio of about 10 to about 5,000. Within the above aspect ratio range, a high conductive network may be realized even at a low metal nanowire density, and the sheet resistance of the transparent conductor may be lowered. Specifically, the metal nanowires 121 may have an aspect ratio of about 500 to about 1,000, and more specifically about 500 to about 700. The metal nanowires 121 may have a diameter of more than about 0 nm and about 100 nm or less, specifically about 10 nm to about 100 nm, and more specifically about 10 nm to about 30 nm. In the above range, it is possible to have a high aspect ratio to increase the conductivity of the transparent conductor and lower the sheet resistance. The metal nanowire 121 may have a longest length of about 20 μm or more, specifically about 20 μm to about 50 μm. In the above range, it is possible to have a high aspect ratio to increase the conductivity of the transparent conductor and lower the sheet resistance.
금속 나노와이어(121)는 투명 도전층(120) 중 약 40중량% 이상, 구체적으로 약 50중량% 내지 약 90중량%로 포함될 수 있다. 상기 범위에서, 도전성 네트워크를 충분히 형성함으로써, 투명 도전체가 도전성이 높을 수 있다.The metal nanowires 121 may be included in about 40 wt% or more, specifically about 50 wt% to about 90 wt% of the transparent conductive layer 120. In the above range, the transparent conductor may have high conductivity by sufficiently forming a conductive network.
금속 나노와이어(121)는 은, 구리, 알루미늄, 니켈, 금 중 하나 이상을 포함하는 금속으로 형성될 수 있다. 구체적으로, 금속 나노와이어(121)는 은 나노와이어 또는 이를 포함하는 혼합물로 형성될 수 있다.The metal nanowires 121 may be formed of a metal including at least one of silver, copper, aluminum, nickel, and gold. Specifically, the metal nanowires 121 may be formed of silver nanowires or a mixture including the same.
금속 입자(122)는 금속 나노와이어들 간의 접촉 저항을 현저하게 낮출 수 있다. 또한, 금속 입자(122)는 금속 나노와이어가 단독으로 코팅되는 경우 대비, 금속 나노와이어의 배향성을 낮춤으로써 투명 도전체의 채널 선저항 균일도를 높이고 투명 도전체(100)의 신뢰성을 높일 수 있다. 금속 나노와이어의 배향성이 높을수록 채널 선저항 균일도가 나빠지게 된다. 상기 "배향성"은 금속 나노와이어의 길이 방향이 일정 방향과 일치되도록 금속 나노와이어가 배향되는 경향을 의미한다. 예를 들면, 투명 도전층 제조시 MD(machine direction)가 금속 나노와이어 분산액의 코팅 방향 즉 기계 방향이고, TD(transverse direction)는 MD와 직교한다고 할 때, 높은 배향성은 금속 나노와이어가 그 길이 방향이 MD와 주로 일치되도록 배향되는 것을 의미한다.The metal particles 122 may significantly lower the contact resistance between the metal nanowires. In addition, the metal particles 122 may increase the uniformity of the channel wire resistance of the transparent conductor and increase the reliability of the transparent conductor 100 by lowering the orientation of the metal nanowires, compared to the case where the metal nanowires are coated alone. The higher the orientation of the metal nanowires, the worse the channel line resistance uniformity. The "orientation" means the tendency of the metal nanowires to be oriented such that the longitudinal direction of the metal nanowires coincides with a predetermined direction. For example, when manufacturing the transparent conductive layer, the MD (machine direction) is the coating direction of the metal nanowire dispersion, that is, the machine direction, and the TD (transverse direction) is orthogonal to the MD. It is meant to be oriented primarily to match this MD.
금속 입자(122)는 금속 나노와이어(121) 대비 입경이 동일 또는 현저하게 작아서, 금속 나노와이어(121)로 형성된 도전성 네트워크의 접촉 저항을 낮출 수 있다. 따라서, 금속 입자(122)는 투명 도전체(100)의 접촉 저항을 낮출 수 있다. 구체적으로, 금속 입자(122)의 평균 입경: 금속 나노와이어(121)의 직경의 비는 약 1:4 내지 약 1:100이 될 수 있다. 상기 범위에서, 투명 도전체의 접촉 저항을 감소시킬 수 있다. 구체적으로, 금속 입자(122)의 평균 입경: 금속 나노와이어(121)의 직경의 비는 약 1:20 내지 약 1:50이 될 수 있다.Since the metal particles 122 have the same or significantly smaller particle diameters than the metal nanowires 121, the contact resistance of the conductive network formed of the metal nanowires 121 may be lowered. Therefore, the metal particles 122 may lower the contact resistance of the transparent conductor 100. Specifically, the ratio of the average particle diameter of the metal particles 122 to the diameter of the metal nanowires 121 may be about 1: 4 to about 1: 100. Within this range, the contact resistance of the transparent conductor can be reduced. Specifically, the ratio of the average particle diameter of the metal particles 122 to the diameter of the metal nanowires 121 may be about 1:20 to about 1:50.
금속 입자(122)는 평균 입경이 약 1nm 내지 약 5nm가 될 수 있다. 상기 범위에서, 투명 도전층 중 도전성 네트워크를 고밀도로 만들어 접촉 저항을 감소시킬 수 있고, 투명 도전층의 투명성을 높일 수 있다.The metal particles 122 may have an average particle diameter of about 1 nm to about 5 nm. In the above range, the conductive network of the transparent conductive layer can be made high density to reduce the contact resistance, and the transparency of the transparent conductive layer can be increased.
금속 입자(122)는 금속 나노와이어(121) 대비 동일 또는 이종의 금속으로 형성된 금속 입자를 포함할 수 있다. 구체적으로, 금속 입자(122)는 금속 나노와이어(121)와 동일한 금속으로 형성됨으로써 금속 나노와이어(121)의 접촉 저항을 더 낮출 수 있다. 구체적으로, 금속 입자(122)는 은, 구리, 알루미늄, 니켈, 금 중 하나 이상을 포함하는 금속으로 형성될 수 있다.The metal particles 122 may include metal particles formed of the same or different types of metals from the metal nanowires 121. Specifically, the metal particles 122 may be formed of the same metal as the metal nanowires 121 to further lower the contact resistance of the metal nanowires 121. In detail, the metal particles 122 may be formed of a metal including at least one of silver, copper, aluminum, nickel, and gold.
금속 입자(122)는 금속 양이온의 환원에 형성된 입자를 포함할 수 있다. 투명 도전층(120)은 하기에서 상술되는 바와 같이, 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함하는 금속 나노와이어 분산액으로 형성될 수 있다. 금속 입자 형성제는 금속 양이온을 포함한다. 금속 입자 형성제는 금속 양이온을 생성할 수 있다. 투명 도전층 형성시 금속 양이온이 경화 등에 의해 환원되면서 금속 입자를 형성할 수 있다. 도 2에서 도시되지 않았지만, 투명 도전층(120)은 금속 양이온, 구체적으로 금속 입자 형성제로부터 형성된 금속 양이온을 포함할 수도 있다.The metal particles 122 may include particles formed in the reduction of metal cations. The transparent conductive layer 120 may be formed of a metal nanowire dispersion including metal nanowires, a viscosity modifier, and a metal particle former, as described below. Metal particle formers include metal cations. Metal particle formers may produce metal cations. When the transparent conductive layer is formed, the metal cations may be reduced by curing or the like to form metal particles. Although not shown in FIG. 2, the transparent conductive layer 120 may include metal cations, specifically metal cations formed from metal particle formers.
도 1은 금속 입자(122)가 투명 도전층(120)에 규칙적으로 포함된 투명 도전체를 나타낸 것이다. 그러나, 금속 입자가 투명 도전층에 불규칙적으로 포함되는 투명 도전체도 본 발명의 범위에 포함될 수 있다.1 illustrates a transparent conductor in which metal particles 122 are regularly included in the transparent conductive layer 120. However, a transparent conductor in which metal particles are irregularly included in the transparent conductive layer may also be included in the scope of the present invention.
도 2에서 도시되지 않았지만, 투명 도전층(120)은 점도 조절제, 점도 조절제로부터 생성되는 물질 중 하나 이상을 더 포함할 수 있다. 점도 조절제 및 점도 조절제로부터 생성되는 물질은 금속 나노와이어의 도전성 네트워크를 안정화시켜 면저항을 낮출 수 있다. 구체적으로, 점도 조절제는 폴리(스티렌술폰산)(poly(styrenesulfonic acid))을 포함할 수 있다. 구체적으로, 점도 조절제로부터 생성되는 물질은 폴리(스티렌술포네이트) 이온(PSS-)을 포함할 수 있다. 폴리(스티렌술포네이트) 이온(PSS-)은 투명 도전층 형성시 폴리(스티렌술폰산)을 염기 또는 금속 입자 형성제로 중화시킴으로써 생성된다.Although not shown in FIG. 2, the transparent conductive layer 120 may further include one or more of a viscosity regulator and a material generated from the viscosity regulator. The resulting material from the viscosity modifier and the viscosity modifier can stabilize the conductive network of the metal nanowires to lower the sheet resistance. Specifically, the viscosity modifier may include poly (styrenesulfonic acid). Specifically, the material resulting from the viscosity modifier may comprise poly (styrenesulfonate) ions (PSS ). Poly (styrenesulfonate) ions (PSS ) are produced by neutralizing poly (styrenesulfonic acid) with a base or metal particle former upon formation of a transparent conductive layer.
투명 도전층(120)은 두께가 약 10nm 내지 약 1㎛, 구체적으로 약 20nm 내지 약 500nm, 더 구체적으로 약 30nm 내지 약 150nm가 될 수 있다. 상기 범위에서, 투명 도전체로 사용될 수 있다.The transparent conductive layer 120 may have a thickness of about 10 nm to about 1 μm, specifically about 20 nm to about 500 nm, and more specifically about 30 nm to about 150 nm. In the above range, it can be used as a transparent conductor.
투명 도전체(100)는 광학적으로 투명하여, 광학표시장치에 사용될 수 있다. 구체적으로, 투명 도전체(100)는 파장 약 400nm 내지 약 700nm에서 헤이즈가 약 1.5% 이하, 구체적으로 약 0.01% 내지 약 1.15%가 될 수 있다. 구체적으로, 투명 도전체(100)는 파장 약 400nm 내지 약 700nm에서 광 투과도가 약 85% 내지 약 100%, 구체적으로 약 88% 내지 약 95%가 될 수 있다. 상기 범위에서, 투명성이 좋아 투명 도전체로 사용될 수 있다.The transparent conductor 100 is optically transparent and can be used in an optical display device. Specifically, the transparent conductor 100 may have a haze of about 1.5% or less, specifically about 0.01% to about 1.15% at a wavelength of about 400 nm to about 700 nm. Specifically, the transparent conductor 100 may have a light transmittance of about 85% to about 100%, specifically about 88% to about 95% at a wavelength of about 400nm to about 700nm. In the above range, good transparency can be used as a transparent conductor.
투명 도전체(100)는 두께가 약 10㎛ 내지 약 130㎛가 될 수 있다. 상기 범위에서 투명 도전체로 사용될 수 있다.The transparent conductor 100 may have a thickness of about 10 μm to about 130 μm. It can be used as a transparent conductor in the above range.
투명 도전체(100)는 금속 나노와이어(121) 및 금속 입자(122)를 함유함으로써, 면저항이 낮을 수 있다. 구체적으로, 투명 도전체(100)는 면저항이 약 60Ω/□ 이하, 더 구체적으로 약 45Ω/□ 내지 약 60Ω/□이 될 수 있다. 상기 범위에서, 투명 도전체의 면저항이 낮아 터치패널용 전극 필름으로 사용할 수 있고, 대면적 터치패널에 적용될 수 있다.The transparent conductor 100 may have a low sheet resistance by containing the metal nanowires 121 and the metal particles 122. Specifically, the transparent conductor 100 may have a sheet resistance of about 60 kΩ / □ or less, more specifically, about 45 kΩ / □ to about 60 kΩ / □. In the above range, the sheet resistance of the transparent conductor is low, it can be used as an electrode film for a touch panel, it can be applied to a large area touch panel.
이하, 본 발명의 일 실시예에 따른 투명 도전체의 제조 방법을 설명한다.Hereinafter, a method of manufacturing a transparent conductor according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 투명 도전체의 제조 방법은 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함하는 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성하고, 상기 금속 나노와이어 분산액 층을 경화시키는 단계를 포함할 수 있다.In the method of manufacturing a transparent conductor according to an embodiment of the present invention, a metal nanowire dispersion liquid including a metal nanowire, a viscosity modifier, and a metal particle forming agent is coated on a base layer to form a metal nanowire dispersion layer. Curing the metal nanowire dispersion layer.
먼저, 금속 나노와이어 분산액을 제조한다.First, a metal nanowire dispersion is prepared.
금속 나노와이어 분산액은 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함할 수 있다.The metal nanowire dispersion may include metal nanowires, viscosity modifiers and metal particle formers.
금속 나노와이어는 금속 나노와이어 자체로 금속 나노와이어 분산액에 첨가되거나 또는 금속 나노와이어가 액체에 분산된 용액으로 금속 나노와이어 분산액에 첨가될 수도 있다. 금속 나노와이어가 분산된 용액은 시판되는 Clearohm Ink(Cambrios사) 등의 제품을 사용할 수 있지만, 이에 제한되지 않는다.The metal nanowires may be added to the metal nanowire dispersion by itself, or may be added to the metal nanowire dispersion as a solution in which the metal nanowires are dispersed in the liquid. The solution in which the metal nanowires are dispersed may use a commercially available product such as Clearohm Ink (Cambrios), but is not limited thereto.
점도 조절제는 금속 나노와이어 분산액의 점도를 조절함으로써, 금속 나노와이어의 배향성을 낮추어, 투명 도전체의 채널 선저항 균일도를 높일 수 있다. 구체적으로, 점도 조절제는 금속 나노와이어 분산액이 25℃에서 점도가 약 1cps 내지 약 10cps가 되게 할 수 있다. 상기 범위에서, 금속 나노와이어 분산액의 코팅성이 좋고, 투명 도전체의 채널 선저항 균일도가 높을 수 있다.By adjusting the viscosity of the metal nanowire dispersion, the viscosity modifier lowers the orientation of the metal nanowires and can increase the channel line resistance uniformity of the transparent conductor. Specifically, the viscosity modifier may cause the metal nanowire dispersion to have a viscosity of about 1 cps to about 10 cps at 25 ° C. In the above range, the coating property of the metal nanowire dispersion may be good, and the channel wire resistance uniformity of the transparent conductor may be high.
점도 조절제는 분자량 또는 중량평균분자량이 약 200g/mol 내지 약 100,000g/mol, 구체적으로 약 10,000g/mol 내지 약 100,000g/mol, 보다 구체적으로 약 10,000g/mol 내지 약 50,000g/mol 이 될 수 있다. 상기 범위에서, 금속 나노와이어 분산액에 포함시 점도를 조절할 수 있고, 투명 도전체의 면저항을 높이지 않을 수 있다.The viscosity modifier may have a molecular weight or weight average molecular weight of about 200 g / mol to about 100,000 g / mol, specifically about 10,000 g / mol to about 100,000 g / mol, more specifically about 10,000 g / mol to about 50,000 g / mol Can be. In the above range, the viscosity can be adjusted when included in the metal nanowire dispersion, it may not increase the sheet resistance of the transparent conductor.
점도 조절제는 산(acid)이 될 수 있다. 구체적으로, 점도 조절제는 폴리머릭산(polymeric acid), 올리고머릭산(oligomeric acid) 등을 포함할 수 있다. 더 구체적으로, 점도 조절제는 폴리(스티렌술폰산), 폴리에틸렌디옥시티오펜(PEDOT)이 도핑된 폴리(스티렌술폰산)(PEDOT-PSS) 중 하나 이상을 사용할 수 있다. 폴리(스티렌술폰산), 폴리에틸렌디옥시티오펜이 결합된 폴리(스티렌술폰산)은 금속 나노와이어 분산액의 반응성을 높이고, 투명 도전체의 도전성을 더 높일 수 있다.The viscosity modifier may be an acid. Specifically, the viscosity modifier may include polymeric acid, oligomeric acid, and the like. More specifically, the viscosity modifier may use at least one of poly (styrenesulfonic acid), polyethylenedioxythiophene (PEDOT) doped poly (styrenesulfonic acid) (PEDOT-PSS). Poly (styrenesulfonic acid) and poly (styrenesulfonic acid) in combination with polyethylenedioxythiophene may increase the reactivity of the metal nanowire dispersion and increase the conductivity of the transparent conductor.
점도 조절제는 약 0.1중량% 내지 약 5중량%의 산 수용액으로 포함될 수 있다. 상기 범위에서, 과량의 점도 조절제가 사용되어 금속 나노와이어가 산화되는 것을 막을 수 있다.Viscosity modifiers may be included in an aqueous solution of about 0.1% to about 5% by weight acid. In this range, an excess viscosity modifier may be used to prevent the metal nanowires from oxidizing.
점도 조절제는 금속 나노와이어 분산액 중 고형분 기준으로 약 0.1중량% 내지 약 3중량%로 포함될 수 있다. 상기 범위에서, 금속 나노와이어 분산액의 점도를 낮출 수 있다.Viscosity modifiers may be included from about 0.1% to about 3% by weight based on solids in the metal nanowire dispersion. In the above range, it is possible to lower the viscosity of the metal nanowire dispersion.
금속 입자 형성제는 금속 양이온을 함유하거나 금속 양이온을 생성할 수 있는 물질을 포함할 수 있다. 금속 양이온은 경화 등에 의해 환원되어 금속 입자를 형성함으로써, 투명 도전체의 접촉 저항을 낮출 수 있다.Metal particle formers can include materials that contain or can produce metal cations. The metal cation is reduced by curing or the like to form metal particles, thereby lowering the contact resistance of the transparent conductor.
구체적으로, 금속 입자 형성제는 Ag2O, AgNO3 또는 이들의 혼합물이 될 수 있다. Ag2O, AgNO3는 Ag+ 이온을 생성할 수 있다. 예를 들면, 하기 반응식 1에서와 같이, Ag2O는 금속 나노와이어 분산액 중 물과 반응하여 Ag+ 이온과 OH- 이온을 형성하고, OH- 이온은 산인 점도 조절제를 중화시킬 수 있다. 따라서, Ag2O는 금속 나노와이어 분산액이 별도로 염기를 더 포함하지 않도록 함으로써, 투명 도전체를 손쉽게 제조하게 할 수 있다:Specifically, the metal particle former may be Ag 2 O, AgNO 3 or a mixture thereof. Ag 2 O, AgNO 3 can produce Ag + ions. For example, as shown in Scheme 1 below, Ag 2 O may react with water in the metal nanowire dispersion to form Ag + ions and OH ions, and OH ions may neutralize the viscosity regulator, which is an acid. Thus, Ag 2 O can facilitate the manufacture of transparent conductors by preventing the metal nanowire dispersion from containing additional bases separately:
<반응식 1><Scheme 1>
Ag2O + H2O → 2Ag+ + 2OH- Ag 2 O + H 2 O → 2Ag + + 2OH -
금속 입자 형성제는 금속 나노와이어 분산액 중 고형분 기준으로 약 0.1중량% 내지 약 5중량%로 포함될 수 있다. 상기 범위에서, 투명 도전체의 도전성이 좋아질 수 있다.The metal particle former may be included in an amount of about 0.1 wt% to about 5 wt% based on the solids content of the metal nanowire dispersion. In the above range, the conductivity of the transparent conductor can be improved.
금속 나노와이어 분산액은 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 혼합하여 제조될 수 있다. 일 구체예에서, 금속 나노와이어 분산액은 금속 나노와이어에 점도 조절제와 금속 입자 형성제를 동시에 첨가하여 제조될 수 있다. 다른 구체예에서, 금속 나노와이어 분산액은 점도 조절제와 금속 입자 형성제를 먼저 혼합하고, 그 다음에 금속 나노와이어를 순차로 혼합함으로써 제조될 수 있다. 금속 나노와이어를 순차로 혼합하는 것은 점도 조절제와 금속 입자 형성제를 먼저 반응시켜 점도 조절제를 변형시킴으로써 금속 나노와이어가 산인 점도 조절제에 의해 산화되는 것을 막을 수 있다.Metal nanowire dispersions can be prepared by mixing metal nanowires, viscosity modifiers and metal particle formers. In one embodiment, the metal nanowire dispersion can be prepared by simultaneously adding a viscosity modifier and a metal particle former to the metal nanowires. In another embodiment, the metal nanowire dispersion can be prepared by first mixing the viscosity modifier and the metal particle former, followed by sequentially mixing the metal nanowires. Sequential mixing of the metal nanowires can prevent the metal nanowires from being oxidized by the acidic viscosity regulator by reacting the viscosity modifier with the metal particle former first to modify the viscosity modifier.
점도 조절제의 변형은 점도 조절제와 금속 입자 형성제를 혼합하고, 얻은 혼합액의 pH를 염기를 사용하여 약 4 내지 약 9가 되도록 함으로써 수행될 수 있다. 염기는 수산화나트륨(NaOH), 수산화칼륨(KOH) 중 하나 이상을 포함할 수 있지만, 이에 제한되지 않는다. 그러나, 금속 입자 형성제 Ag2O는 염기를 첨가할 필요 없이 상기 반응식 1에 의해 상기 혼합액의 pH가 약 4 내지 약 9로 조절되도록 할 수 있다.The modification of the viscosity modifier may be carried out by mixing the viscosity modifier with the metal particle forming agent and bringing the pH of the resulting mixture to about 4 to about 9 using a base. Bases may include, but are not limited to, one or more of sodium hydroxide (NaOH), potassium hydroxide (KOH). However, the metal particle forming agent Ag 2 O may allow the pH of the mixed solution to be adjusted to about 4 to about 9 by the scheme 1 without the need to add a base.
점도 조절제가 폴리(스티렌술폰산)(PSS)이고, 금속 입자 형성제가 Ag2O인 경우, PSS-/Ag+ 염을 포함하는 수용액을 금속 나노와이어와 혼합하여 금속 나노와이어 분산액을 제조할 수 있다. 그 결과 점도 조절 효과와 금속 입자 형성 효과를 얻을 수 있고, 금속 나노와이어가 점도 조절제에 의해 산화되는 것도 막을 수 있다. 이때, PSS-/Ag+ 염은 금속 나노와이어 분산액 중 고형분 기준으로 약 0.1중량% 내지 약 3중량%로 포함될 수 있다. 상기 범위에서, 점도조절 효과 및 금속 입자 형성 효과가 우수하고, 금속 나노와이어의 산화를 방지할 수 있다.When the viscosity modifier is poly (styrenesulfonic acid) (PSS) and the metal particle forming agent is Ag 2 O, an aqueous solution containing a PSS / Ag + salt may be mixed with the metal nanowires to prepare a metal nanowire dispersion. As a result, a viscosity control effect and a metal particle formation effect can be acquired, and metal nanowires can be prevented from being oxidized by a viscosity modifier. At this time, PSS - / Ag + salt may be included as about 0.1% to about 3% by weight by weight based on solid content of the metal nanowires dispersion. In the above range, the viscosity control effect and the metal particle forming effect is excellent, it is possible to prevent the oxidation of the metal nanowire.
금속 나노와이어 분산액은 금속 나노와이어 분산액의 코팅성을 높이기 위해 용제를 더 포함할 수 있다. 용제는 물, 알코올, 유기 용매 등을 포함할 수 있지만, 이에 제한되지 않는다.The metal nanowire dispersion may further include a solvent to increase the coating property of the metal nanowire dispersion. Solvents may include water, alcohols, organic solvents, and the like, but are not limited thereto.
금속 나노와이어 분산액은 바인더, 개시제, 첨가제 등을 더 포함할 수도 있다. 첨가제는 분산제, 증점제 등이 될 수 있다. 바인더는 (메트)아크릴레이트계 단관능 모노머, (메트)아크릴레이트계 다관능 모노머 중 하나 이상을 포함할 수 있다. 분산제는 금속 나노와이어, 바인더의 분산을 높일 수 있다. 증점제는 금속 나노와이어 분산액의 점도를 높일 수 있다. 바인더, 개시제, 및 첨가제 전체는 금속 나노와이어 분산액 중 고형분 기준으로 약 0.1중량% 내지 약 50중량%, 구체적으로 약 5중량% 내지 약 45중량%로 포함될 수 있다. 상기 범위에서, 투명 도전체의 광 특성 향상, 접촉 저항 증가 방지, 내구성 및 내 화학성이 개선될 수 있다.The metal nanowire dispersion may further include a binder, an initiator, an additive, and the like. The additives can be dispersants, thickeners and the like. The binder may include one or more of a (meth) acrylate-based monofunctional monomer and a (meth) acrylate-based polyfunctional monomer. The dispersant can increase the dispersion of the metal nanowires and the binder. Thickeners can increase the viscosity of the metal nanowire dispersion. The binder, initiator, and additives as a whole can be included from about 0.1% to about 50% by weight, specifically from about 5% to about 45% by weight solids in the metal nanowire dispersion. In the above range, the optical properties of the transparent conductor may be improved, the contact resistance may be prevented from increasing, and the durability and chemical resistance may be improved.
그런 다음, 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성하고, 상기 금속 나노와이어 분산액 층을 경화시킴으로써 투명 도전층을 형성할 수 있다. 코팅은 바 코팅, 슬롯 다이 코팅, 그라비아 코팅, 롤-투-롤(roll-to-roll) 코팅으로 수행될 수 있지만, 이에 제한되지 않는다. 코팅 두께는 약 10nm 내지 약 1㎛, 구체적으로 약 20nm 내지 약 500nm, 더 구체적으로 약 30nm 내지 약 150nm가 될 수 있다. 경화는 투명 도전층을 형성하고 투명 도전층의 강도를 높일 수 있다. 경화는 금속 양이온을 환원시켜 금속 입자를 형성할 수 있다. 경화는 열경화, 광경화 중 하나 이상을 포함할 수 있다. 열경화는 약 40℃ 내지 약 180℃, 약 1분 내지 약 48시간 동안 수행될 수 있다. 광경화는 UV 조사량 약 50 mJ/cm2 내지 약 1,000mJ/cm2으로 수행될 수 있다. 금속 나노와이어 분산액 층을 경화시키기 전에 금속 나노와이어 분산액 층을 건조시켜, 경화 시간을 단축시킬 수 있다. 건조는 약 40℃ 내지 약 180℃, 약 1분 내지 약 48시간 동안 수행될 수 있다.Thereafter, the metal nanowire dispersion may be coated on the substrate layer to form a metal nanowire dispersion layer, and the metal nanowire dispersion layer may be cured to form a transparent conductive layer. Coating may be performed by bar coating, slot die coating, gravure coating, roll-to-roll coating, but is not limited thereto. The coating thickness may be about 10 nm to about 1 μm, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm. Curing can form a transparent conductive layer and can raise the intensity | strength of a transparent conductive layer. Curing may reduce metal cations to form metal particles. Curing may include one or more of thermosetting, photocuring. Thermal curing may be performed for about 40 ° C to about 180 ° C, about 1 minute to about 48 hours. Photocuring may be carried out with a UV dose of about 50 mJ / cm 2 to about 1,000 mJ / cm 2 . The metal nanowire dispersion layer may be dried prior to curing the metal nanowire dispersion layer to shorten the curing time. Drying may be performed for about 40 ° C. to about 180 ° C., for about 1 minute to about 48 hours.
이하, 본 발명의 다른 실시예에 따른 투명 도전체를 도 3을 참고하여 설명한다. Hereinafter, a transparent conductor according to another embodiment of the present invention will be described with reference to FIG. 3.
도 3을 참고하면, 본 발명의 다른 실시예에 따른 투명 도전체(100')는 기재층(110) 및 투명 도전층(120')을 포함할 수 있다. 투명 도전층(120) 대신에 투명 도전층(120')을 포함하는 점을 제외하고는 본 발명의 일 실시예에 따른 투명 도전체와 실질적으로 동일하다. 이에, 이하에서는 투명 도전층(120')에 대해서 설명한다.Referring to FIG. 3, the transparent conductor 100 ′ according to another embodiment of the present invention may include a base layer 110 and a transparent conductive layer 120 ′. It is substantially the same as the transparent conductor according to the embodiment of the present invention except that the transparent conductive layer 120 ′ is included instead of the transparent conductive layer 120. Thus, hereinafter, the transparent conductive layer 120 'will be described.
투명 도전층(120')은 금속 나노와이어(121), 금속 입자(122) 및 매트릭스(123)를 포함할 수 있다. 금속 나노와이어(121)와 금속 입자(122)는 매트릭스(123)에 함침되어 있다. 매트릭스(123)는 투명 도전층(120')의 기계적 강도를 높일 수 있다. 매트릭스(123)는 금속 나노와이어(121)와 금속 입자(122)가 외부의 수분 및/또는 공기에 의해 산화됨으로써 투명 도전체(100')의 면저항이 상승되는 것을 막을 수 있다. 매트릭스(123)를 포함하고, 금속 나노와이어(121)와 금속 입자(122)가 매트릭스(123)에 함침된 것을 제외하고는 본 발명의 일 실시예의 투명 도전층과 실질적으로 동일하다.The transparent conductive layer 120 ′ may include metal nanowires 121, metal particles 122, and a matrix 123. The metal nanowires 121 and the metal particles 122 are impregnated in the matrix 123. The matrix 123 may increase the mechanical strength of the transparent conductive layer 120 ′. The matrix 123 may prevent the sheet resistance of the transparent conductor 100 ′ from being increased by oxidizing the metal nanowires 121 and the metal particles 122 by external moisture and / or air. It is substantially the same as the transparent conductive layer of one embodiment of the present invention, including a matrix 123, except that the metal nanowires 121 and the metal particles 122 are impregnated in the matrix 123.
매트릭스(123)는 기재층(110) 상에 형성되어, 기재층(110)과 투명 도전층(120')의 결합을 강하게 할 수 있다. 매트릭스(123)는 금속 나노와이어(121)의 도전성 네트워크와 금속 입자(122)를 함침시켜, 투명 도전층(120')을 지지하고, 금속 나노와이어(121)와 금속 입자(122)의 산화를 방지하여 투명 도전체의 면저항 상승을 막을 수 있다.The matrix 123 may be formed on the base layer 110 to strengthen the bond between the base layer 110 and the transparent conductive layer 120 ′. The matrix 123 impregnates the conductive network of the metal nanowires 121 and the metal particles 122 to support the transparent conductive layer 120 ′ and to oxidize the metal nanowires 121 and the metal particles 122. It can prevent the rise of the sheet resistance of the transparent conductor.
도 3에서 도시되지 않았지만, 금속 나노와이어(121), 금속 나노입자(122)의 일부는 매트릭스(123)로부터 돌출되어, 투명 도전체(100') 상에 형성되는 다른 도전체와 도전성 네트워크를 형성하게 할 수 있다.Although not shown in FIG. 3, a portion of the metal nanowire 121 and the metal nanoparticle 122 protrude from the matrix 123 to form a conductive network with another conductor formed on the transparent conductor 100 ′. It can be done.
매트릭스(123)는 광학적으로 투명할 수 있다. 구체적으로, 매트릭스(123)는 파장 400nm 내지 700nm에서 광 투과도가 약 85% 이상, 구체적으로 약 85% 내지 약100%, 더 구체적으로 약 90% 내지 약 95%가 될 수 있다. 상기 범위에서, 광학적으로 투명하여 투명 도전체에 사용될 수 있다. Matrix 123 may be optically transparent. In detail, the matrix 123 may have a light transmittance of about 85% or more, specifically about 85% to about 100%, more specifically about 90% to about 95%, at a wavelength of 400 nm to 700 nm. In the above range, it is optically transparent and can be used for the transparent conductor.
매트릭스(123)는 두께가 약 10nm 내지 약 1㎛, 구체적으로 약 20nm 내지 약 500nm, 더 구체적으로 약 30nm 내지 약 150nm가 될 수 있다. 상기 범위에서, 투명 도전체에 사용될 수 있다.The matrix 123 may have a thickness of about 10 nm to about 1 μm, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm. In the above range, it can be used for the transparent conductor.
매트릭스(123)는 바인더 및 개시제 등을 포함하는 매트릭스용 조성물로 형성될 수 있다.The matrix 123 may be formed of a matrix composition including a binder, an initiator, and the like.
바인더는 자외선 경화형 수지, 자외선 경화형 모노머 중 하나 이상을 포함할 수 있다.The binder may include at least one of an ultraviolet curable resin and an ultraviolet curable monomer.
자외선 경화형 수지는 우레탄 (메트)아크릴레이트, 에폭시 (메트)아크릴레이트, 폴리 (메트)아크릴레이트, 폴리(메트)아크릴로니트릴, 폴리비닐알코올, 폴리에스테르, 폴리카보네이트, 페놀, 폴리스티렌, 폴리비닐톨루엔, 폴리비닐크실렌, 폴리이미드, 폴리아미드 수지 중 하나 이상을 포함할 수 있지만, 이에 제한되지 않는다. UV-curable resins include urethane (meth) acrylates, epoxy (meth) acrylates, poly (meth) acrylates, poly (meth) acrylonitriles, polyvinyl alcohols, polyesters, polycarbonates, phenols, polystyrenes, and polyvinyl toluene It may include, but is not limited to, one or more of polyvinylxylene, polyimide, and polyamide resin.
자외선 경화형 모노머는 1관능 이상의 (메트)아크릴계 모노머를 포함할 수 있다. 구체적으로, 자외선 경화형 모노머는 1관능의 (메트)아크릴계 모노머, 2관능의 (메트)아크릴계 모노머, 3관능의 (메트)아크릴계 모노머, 4관능의 (메트)아크릴계 모노머, 5관능의 (메트)아크릴계 모노머, 6관능의 (메트)아크릴계 모노머 중 하나 이상을 포함할 수 있다.The ultraviolet curable monomer may include one or more functional (meth) acrylic monomers. Specifically, UV-curable monomers include monofunctional (meth) acrylic monomers, bifunctional (meth) acrylic monomers, trifunctional (meth) acrylic monomers, tetrafunctional (meth) acrylic monomers, and 5-functional (meth) acrylic monomers. It may include one or more of a monomer, a six-functional (meth) acrylic monomer.
더 구체적으로, 자외선 경화형 모노머는 선형 또는 분지형의 탄소수 1-20의 알킬기를 갖는 모노(메타)아크릴레이트, 히드록시기를 갖는 탄소수 1-20의 모노(메트)아크릴레이트, 탄소수 3-20의 지환족기를 갖는 모노(메트)아크릴레이트 등을 포함하는 1관능 (메트)아크릴레이트; 헥산디올 디(메트)아크릴레이트(hexanediol di(meth)acrylate), 트리메틸올프로판 디(메트)아크릴레이트(trimethylolpropane di(meth)acrylate), 에틸렌글리콜 디(메트)아크릴레이트(ethyleneglycol di(meth)acrylate), 네오펜틸글리콜 디(메트)아크릴레이트(neopentylglycol di(meth)acrylate), 사이클로데칸디메탄올 디(메타)아크릴레이트(cyclodecanedimethanol di(meth)acrylate) 등의 2관능 (메트)아크릴레이트; 트리메틸올프로판 트리(메트)아크릴레이트(trimethylolpropane tri(meth)acrylate), 글리세롤 트리(메트)아크릴레이트(glycerol tri(meth)acrylate), 펜타에리트리톨 트리(메트)아크릴레이트(pentaerythritol tri(meth)acrylate), 디펜타에리트리톨 트리(메트)아크릴레이트(dipentaerythritol tri(meth)acrylate), 트리스(2-히드록시에틸)이소시아누레이트 트리(메타)아크릴레이트(tris(2-hydroxyethyl)isocyanurate) 등의 3관능 (메트)아크릴레이트; 디(트리메틸올프로판) 테트라(메트)아크릴레이트(di(trimethylolpropane) tetra(meth)acrylate), 펜타에리트리톨 테트라(메타)아크릴레이트(pentaerythritol tetra(meth)acrylate) 등의 4관능 (메트)아크릴레이트; 디펜타에리트리톨 펜타(메트)아크릴레이트(dipentaerythritol penta(meth)acrylate), 카프로락톤 변성 디펜타에리트리톨펜타(메트)아크릴레이트(caprolactone-modified dipentaerythritol penta(meth)acrylate) 등의 5관능 (메트)아크릴레이트; 디펜타에리트리톨 헥사(메트)아크릴레이트(dipentaerythritol hexa(meth)acrylate), 카프로락톤 변성 디펜타에리트리톨헥사(메트)아크릴레이트(caprolactone-modified dipentaerythritol hexa(meth)acrylate) 등의 6관능 (메트)아크릴레이트 등을 포함할 수 있다.More specifically, the ultraviolet curable monomer is a mono (meth) acrylate having a linear or branched alkyl group of 1-20 carbon atoms, a mono (meth) acrylate having a hydroxyl group, alicyclic having 3-20 carbon atoms Monofunctional (meth) acrylates including mono (meth) acrylate having a group, and the like; Hexanediol di (meth) acrylate, trimethylolpropane di (meth) acrylate, ethyleneglycol di (meth) acrylate Bifunctional (meth) acrylates, such as neopentylglycol di (meth) acrylate and cyclodecanedimethanol di (meth) acrylate; Trimethylolpropane tri (meth) acrylate, glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate ), Dipentaerythritol tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate (tris (2-hydroxyethyl) isocyanurate) Trifunctional (meth) acrylates; Tetrafunctional (meth) acrylates such as di (trimethylolpropane) tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate ; 5-functional (meth) such as dipentaerythritol penta (meth) acrylate and caprolactone-modified dipentaerythritol penta (meth) acrylate (caprolactone-modified dipentaerythritol penta (meth) acrylate) Acrylates; 6-functional (meth) such as dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate (caprolactone-modified dipentaerythritol hexa (meth) acrylate) Acrylates and the like.
바인더는 단독 또는 2종 이상 혼합하여 매트릭스용 조성물에 포함될 수 있다.The binder may be included alone or in mixture of two or more kinds in the matrix composition.
바인더는 고형분 기준 매트릭스용 조성물 중 약 50중량% 내지 약 91중량%로 포함될 수 있다. 상기 범위에서, 금속 나노와이어와 금속 입자를 충분히 함침시킬 수 있다.The binder may be included in about 50% to about 91% by weight of the composition for the solid content matrix. Within this range, the metal nanowires and metal particles can be sufficiently impregnated.
개시제는 바인더를 경화시키는 것으로, 통상의 광중합 개시제를 포함할 수 있다. 구체적으로, 개시제는 1-히드록시시클로헥실페닐케톤 등을 포함하는 알파-히드록시케톤 계열을 포함할 수 있다.An initiator hardens a binder and can contain a normal photoinitiator. Specifically, the initiator may include an alpha-hydroxyketone series including 1-hydroxycyclohexylphenyl ketone and the like.
개시제는 고형분 기준 매트릭스용 조성물 중 약 1중량% 내지 약 40중량%로 포함될 수 있다. 상기 범위에서, 바인더를 충분히 경화시킬 수 있고, 잔량의 개시제가 남아서 매트릭스의 투명성이 떨어지는 것을 막을 수 있다.The initiator may be included in about 1% to about 40% by weight of the composition for the solid content matrix. In the above range, the binder can be sufficiently cured, and a residual amount of initiator can remain to prevent the matrix from inferior in transparency.
매트릭스용 조성물은 코팅성을 위해 용제를 더 포함할 수 있다. 용제는 매트릭스용 조성물 중 잔량으로 포함될 수 있다. 용제는 물, 프로필렌글리콜모노메틸에테르 등의 유기 용제 등을 포함할 수 있다.The composition for the matrix may further include a solvent for coating. The solvent may be included in the remaining amount in the composition for the matrix. The solvent may contain organic solvents such as water and propylene glycol monomethyl ether.
매트릭스용 조성물은 매트릭스의 성능 개선을 위해 첨가제를 더 포함할 수 있다. 첨가제는 부착 증진제, 산화방지제 중 하나 이상 포함할 수 있다. 첨가제는 고형분 기준 매트릭스용 조성물 중 약 0.01중량% 내지 약 10중량%로 포함될 수 있다.The composition for the matrix may further include an additive to improve the performance of the matrix. The additive may include one or more of adhesion promoters and antioxidants. The additive may be included in about 0.01% by weight to about 10% by weight in the composition for a solid content matrix.
산화방지제는 투명 도전층(120')의 금속 나노와이어 네트워크의 산화를 방지할 수 있다. 산화방지제는 트리아졸(triazole)계 산화방지제, 트리아진(triazine)계 산화방지제, 포스파이트(phosphite)계 등의 인계 산화방지제, HALS(Hinder amine light stabilizer)계 산화방지제, 페놀계 산화방지제 중 하나 이상을 포함할 수 있다.The antioxidant may prevent oxidation of the metal nanowire network of the transparent conductive layer 120 '. Antioxidant is one of triazole antioxidant, triazine antioxidant, phosphorus antioxidant such as phosphite, HALS (Hinder amine light stabilizer) antioxidant, phenolic antioxidant It may contain the above.
구체적으로, 인계 산화방지제는 트리스(2,4-디-터트-부틸페닐)포스파이트(tris(2,4-di-tert-butylphenyl)phosphite), 페놀계 산화방지제는 펜타에리트리톨테트라키스(3-(3,5-디-터트-부틸-4-히드록시페닐)프로피오네이트(Pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate))가 될 수 있고, HALS계 산화방지제는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트(bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate), 비스(2,2,6,6-테트라메틸-4-피페리디닐)세바케이트(bis(2,2,6,6-tetramethyl-4-piperidinyl)sebacate), 비스(2,2,6,6-테트라메틸-5-피페리디닐)세바케이트(bis(2,2,6,6-tetramethyl-5-piperidinyl)sebacate), 4-히드록시-2,2,6,6-테트라메틸-1-피페리딘-에탄올을 갖는 디메틸숙시네이트 공중합체(Copolymer of dimethyl succinate and 4-hydroxy-2,2,6,6- tetramethyl-1-piperidine ethanol),2,4-비스[N-부틸-N-(1-시클로헥실옥시-2,2,6,6-테트라메틸피페리딘-4-일)아미노]-6-(2-히드록시에틸아민)-1,3,5-트리아진(2,4-bis[N-butyl-n-(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidine-4-yl)amino]-6-(2-hydroxyethylamine)-1,3,5-triazine) 등을 포함할 수 있지만, 이에 제한되지 않는다.Specifically, the phosphorus antioxidant is tris (2,4-di-tert-butylphenyl) phosphite, the phenolic antioxidant is pentaerythritol tetrakis (3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (Pentaerythritol tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate)), HALS-based antioxidants include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate), bis (2, 2,6,6-tetramethyl-4-piperidinyl) sebacate (bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate), bis (2,2,6,6-tetramethyl- 5-piperidinyl) sebacate (bis (2,2,6,6-tetramethyl-5-piperidinyl) sebacate), 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine- Copolymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine ethanol, 2,4-bis [N-butyl-N- (1-cyclo) Hexyloxy-2,2,6,6-tetrame Piperidin-4-yl) amino] -6- (2-hydroxyethylamine) -1,3,5-triazine (2,4-bis [N-butyl-n- (1-cyclohexyloxy-2, 2,6,6-tetramethylpiperidine-4-yl) amino] -6- (2-hydroxyethylamine) -1,3,5-triazine) and the like, but is not limited thereto.
산화방지제는 고형분 기준 매트릭스 조성물 중 약 0.01중량% 내지 약 10중량% 로 포함될 수 있다. 상기 범위 내에서 금속 나노와이어 네트워크의 산화를 방지할 수 있다.Antioxidants may comprise from about 0.01% to about 10% by weight of the solids based matrix composition. Within this range, oxidation of the metal nanowire network can be prevented.
부착 증진제는 금속 나노와이어(121)의 기재층(110)에 대한 부착성을 증진시킴과 동시에 투명 도전체(100')의 신뢰성을 높일 수 있다. An adhesion promoter may enhance adhesion of the metal nanowire 121 to the base layer 110 and at the same time increase the reliability of the transparent conductor 100 ′.
부착 증진제는 실란커플링제, 1 관능 내지 3관능 모노머 중 하나 이상을 사용할 수 있다. 실란커플링제는 통상의 알려진 실란커플링제를 사용할 수 있는데, 아미노기 또는 에폭시기를 갖는 실란 커플링제를 사용하는 경우 부착성 및 내화학성이 양호할 수 있다. 구체적으로 3-글리시드옥시프로필트리메톡시실란(3-glycidoxypropyltrimethoxysilane), 3-글리시드옥시프로필메틸디메톡시실란(3-glycidoxypropylmethyldimethoxysilane), 2-(3,4-에폭시시클로헥실)에틸트리메톡실란(2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane) 등의 에폭시 구조를 갖는 규소 화합물; 비닐 트리메톡시실란(vinyltrimethoxysilane), 비닐트리에톡시실란(vinyltriethoxysilane), (메트)아크릴옥시프로필트리메톡시실란((meth)acryloxypropyltrimethoxysilane) 등의 중합성 불포화기 함유 규소 화합물; 3-아미노프로필트리메톡시실란(3-aminopropyltrimethoxysilane), 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane), N-(2-아미노에틸)-3-아미노프로필트리메톡시실란(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane), N-(2-아미노에틸)-3-아미노프로필메틸디메톡시실란(N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane) 등의 아미노기 함유 규소 화합물; 및 3-클로로프로필 트리메톡시실란(3-chloropropyltrimethoxysilane)중 하나 이상을 사용할 수 있다. 1 관능 내지 3 관능 모노머는 산 에스테르(acid ester)계 모노머를 사용하는 경우 부착성이 양호하다. 예를 들어 1 관능 내지 3 관능 모노머는 (메트)아크릴레이트기를 갖는 1관능 내지 3관능 (메트)아크릴레이트 모노머를 포함할 수 있다. 구체적으로, 1 관능 내지 3 관능 모노머는 탄소수 3 내지 20의 다가알코올의 1관능 내지 3관능 모노머, 보다 구체적으로 메틸 (메트)아크릴레이트(methyl (meth)acrylate), 이소보르닐 (메트)아크릴레이트(isobornyl(meth)acrylate), 사이클로펜틸 (메트)아크릴레이트(cyclopentyl(meth)acrylate), 사이클로헥실 (메트)아크릴레이트(cyclohexyl(meth)acrylate), 트리메틸올프로판 디(메트)아크릴레이트(trimethylolpropane tri(meth)acrylate), 트리메틸올프로판 트리(메트)아크릴레이트, 펜타에리트리톨 트리(메트)아크릴레이트(pentaerythritol tri(meth)acrylate), 트리스(2-히드록시에틸)이소시아누에이트 트리(메트)아크릴레이트(tris(2-hydroxyethyl)isocyanuate tri(meth)acrylate), 글리세롤 트리(메트)아크릴레이트(glycerol tri(meth)acrylate), 에틸렌글리콜 디(메트)아크릴레이트(ethyleneglycol di(meth)acrylate), 네오펜틸글리콜 디(메트)아크릴레이트(neopentylglycol di(meth)acrylate), 헥산디올 디(메트)아크릴레이트(hexanediol di(meth)acrylate), 사이클로데칸 디메탄올 디(메트)아크릴레이트(cyclodecane dimethanol di(meth)acrylate) 중 하나 이상을 포함할 수 있지만, 이에 제한되지 않는다.The adhesion promoter may use one or more of a silane coupling agent and mono- or tri-functional monomers. The silane coupling agent may use a conventionally known silane coupling agent, and when using a silane coupling agent having an amino group or an epoxy group, adhesion and chemical resistance may be good. Specifically, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane ( Silicon compounds having an epoxy structure such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane); Polymerizable unsaturated group-containing silicon compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, and (meth) acryloxypropyltrimethoxysilane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane (N- (2 amino group-containing silicon compounds such as -aminoethyl) -3-aminopropyltrimethoxysilane) and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane (N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane); And 3-chloropropyltrimethoxysilane. Monofunctional to trifunctional monomers have good adhesion when an acid ester monomer is used. For example, the monofunctional to trifunctional monomers may include monofunctional to trifunctional (meth) acrylate monomers having a (meth) acrylate group. Specifically, the monofunctional to trifunctional monomers are monofunctional to trifunctional monomers of polyhydric alcohols having 3 to 20 carbon atoms, more specifically methyl (meth) acrylate, isobornyl (meth) acrylate (isobornyl (meth) acrylate), cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylolpropane di (meth) acrylate (trimethylolpropane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris (2-hydroxyethyl) isocyanuate tri (meth) Acrylate (tris (2-hydroxyethyl) isocyanuate tri (meth) acrylate), glycerol tri (meth) acrylate, ethyleneglycol di (meth) acrylate, Neopentylglycol di ( In neopentylglycol di (meth) acrylate, hexanediol di (meth) acrylate and cyclodecane dimethanol di (meth) acrylate. It may include one or more, but is not limited thereto.
부착증진제는 고형분 기준 매트릭스 조성물 중 약 0.01중량% 내지 약 10중량%로 포함될 수 있다. 상기 범위 내에서 투명 도전체의 신뢰성 및 도전성을 유지하면서 부착성을 증진시킬 수 있다.Adhesion promoters may be included from about 0.01% to about 10% by weight of the solid matrix composition. Within this range, adhesion can be promoted while maintaining the reliability and conductivity of the transparent conductor.
일 구체예에서, 매트릭스용 조성물은 매트릭스용 조성물 중 고형분 기준으로 바인더 약 50중량% 내지 91중량%, 개시제 약 1중량% 내지 약 40중량%, 첨가제 약 0.01중량% 내지 약 10중량%를 포함할 수 있다. In one embodiment, the composition for the matrix will comprise from about 50% to 91% by weight of the binder, from about 1% to about 40% by weight of the binder, from about 0.01% to about 10% by weight of the additive, based on solids in the composition for the matrix. Can be.
투명 도전체(100')는 채널 선저항 균일도 값이 약 20% 이하일 수 있다. 상기 범위에서, 투명 도전체로 사용할 수 있고, 투명 도전체를 패턴화하여 광학표시장치에 사용시 X 채널과 Y 채널의 채널 저항(선 저항)의 편차가 낮아서 장치 구동이 잘 될 수 있다. 채널 선저항 균일도 값이 낮을수록 채널 선저항 균일도가 좋다는 것을 의미한다. 구체적으로, 투명 도전체(100')는 채널 선저항 균일도 값이 약 0% 내지 약 20%가 될 수 있다.The transparent conductor 100 ′ may have a channel wire resistance uniformity value of about 20% or less. In the above range, the transparent conductor can be used, and when the transparent conductor is patterned and used in the optical display device, the device can be driven well because the variation of the channel resistance (line resistance) of the X and Y channels is low. The lower the channel wire resistance uniformity value, the better the channel wire resistance uniformity. Specifically, the transparent conductor 100 ′ may have a channel wire resistance uniformity value of about 0% to about 20%.
투명 도전체(100')는 광학적으로 투명하여, 광학표시장치에 사용될 수 있다. 구체적으로, 투명 도전체(100')는 파장 약 400nm 내지 약 700nm에서 헤이즈가 약 1.5% 이하, 구체적으로 약 0.01% 내지 약 1.15%가 될 수 있다. 구체적으로, 투명 도전체(100')는 파장 약 400nm 내지 약 700nm에서 광 투과도가 약 85% 내지 약 100%, 구체적으로 약 88% 내지 약 95%가 될 수 있다. 상기 범위에서, 투명성이 좋아 투명 도전체로 사용될 수 있다.The transparent conductor 100 ′ is optically transparent and can be used in an optical display device. Specifically, the transparent conductor 100 ′ may have a haze of about 1.5% or less, specifically about 0.01% to about 1.15% at a wavelength of about 400 nm to about 700 nm. Specifically, the transparent conductor 100 ′ may have a light transmittance of about 85% to about 100%, specifically about 88% to about 95% at a wavelength of about 400 nm to about 700 nm. In the above range, good transparency can be used as a transparent conductor.
투명 도전체(100')는 두께가 약 10㎛ 내지 약 100㎛가 될 수 있다. 상기 범위에서 투명 도전체로 사용될 수 있다.The transparent conductor 100 ′ may have a thickness of about 10 μm to about 100 μm. It can be used as a transparent conductor in the above range.
투명 도전체(100')는 금속 나노와이어(121)와 금속 입자(122)를 함유함으로써, 면저항이 낮을 수 있다. 구체적으로, 투명 도전체(100')는 면저항이 약 60Ω/□ 이하, 더 구체적으로 약 45Ω/□ 내지 약 60Ω/□이 될 수 있다. 상기 범위에서, 투명 도전체의 면저항이 낮아 터치패널용 전극 필름으로 사용할 수 있고, 대면적 터치패널에 적용될 수 있다.The transparent conductor 100 ′ may have low sheet resistance by containing the metal nanowires 121 and the metal particles 122. Specifically, the transparent conductor 100 ′ may have a sheet resistance of about 60 kΩ / □ or less, more specifically, about 45 kΩ / □ to about 60 kΩ / □. In the above range, the sheet resistance of the transparent conductor is low, it can be used as an electrode film for a touch panel, it can be applied to a large area touch panel.
이하, 본 발명의 다른 실시예에 따른 투명 도전체의 제조방법을 설명한다.Hereinafter, a method of manufacturing a transparent conductor according to another embodiment of the present invention.
본 발명의 다른 실시예에 따른 투명 도전체의 제조 방법은 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함하는 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성하고, 상기 금속 나노와이어 분산액 층 상에 매트릭스용 조성물을 코팅하고 상기 금속 나노와이어 분산액 층과 매트릭스용 조성물을 경화시키는 단계를 포함할 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a transparent conductor, by coating a metal nanowire dispersion comprising a metal nanowire, a viscosity modifier, and a metal particle forming agent on a base layer to form a metal nanowire dispersion layer. Coating the composition for the matrix on the metal nanowire dispersion layer and curing the metal nanowire dispersion layer and the composition for the matrix.
본 발명의 일 실시예에 따른 투명 도전체의 제조방법에서와 같이, 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성한다.As in the method of manufacturing a transparent conductor according to an embodiment of the present invention, the metal nanowire dispersion is coated on a base layer to form a metal nanowire dispersion layer.
그런 다음, 금속 나노와이어 분산액 층 상에 매트릭스용 조성물을 코팅하고, 금속 나노와이어 분산액 층과 매트릭스용 조성물을 동시에 경화시켜 투명 도전층을 형성한다. 코팅은 매트릭스용 조성물에 금속 나노와이어를 함침시킨다. 코팅은 바 코팅, 슬롯 다이 코팅, 그라비아 코팅, 롤-투-롤(roll-to-roll) 코팅으로 수행될 수 있지만, 이에 제한되지 않는다. 코팅 두께는 약 10nm 내지 약 1㎛, 구체적으로 약 20nm 내지 약 500nm, 더 구체적으로 약 30nm 내지 약 150nm가 될 수 있다. 경화는 투명 도전층을 형성하고 투명 도전층의 강도를 높일 수 있다. 경화는 금속 양이온을 환원시켜 금속 입자를 형성할 수 있다. 경화는 금속 나노와이어의 분산액 층과 매트릭스용 조성물을 경화시킬 수 있다. 경화는 열경화, 광경화 중 하나 이상을 포함할 수 있다. 열경화는 약 40℃ 내지 약 180℃, 약 1분 내지 약 48시간 동안 수행될 수 있다. 광경화는 UV 조사량 약 50 mJ/cm2 내지 약 1000mJ/cm2으로 수행될 수 있다. 매트릭스용 조성물을 코팅하기 전에, 금속 나노와이어 분산액 층을 건조시킬 수도 있다. 건조는 약 40℃ 내지 약 180℃, 약 1분 내지 약 48시간 동안 수행될 수 있다.Then, the composition for the matrix is coated on the metal nanowire dispersion layer, and the metal nanowire dispersion layer and the composition for the matrix are simultaneously cured to form a transparent conductive layer. The coating impregnates the metal nanowires in the composition for the matrix. Coating may be performed by bar coating, slot die coating, gravure coating, roll-to-roll coating, but is not limited thereto. The coating thickness may be about 10 nm to about 1 μm, specifically about 20 nm to about 500 nm, more specifically about 30 nm to about 150 nm. Curing can form a transparent conductive layer and can raise the intensity | strength of a transparent conductive layer. Curing may reduce metal cations to form metal particles. Curing can cure the dispersion layer of the metal nanowires and the composition for the matrix. Curing may include one or more of thermosetting, photocuring. Thermal curing may be performed for about 40 ° C to about 180 ° C, about 1 minute to about 48 hours. Photocuring may be carried out with a UV radiation of about 50 mJ / cm 2 to about 1000 mJ / cm 2 . Before coating the composition for the matrix, the metal nanowire dispersion layer may be dried. Drying may be performed for about 40 ° C. to about 180 ° C., for about 1 minute to about 48 hours.
이하, 본 발명의 또 다른 실시예에 따른 투명 도전체를 도 4를 참고하여 설명한다. 도 4는 본 발명의 또 다른 실시예에 따른 투명 도전체의 단면도이다.Hereinafter, a transparent conductor according to another embodiment of the present invention will be described with reference to FIG. 4. 4 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
도 4를 참조하면, 본 발명의 또 다른 실시예에 따른 투명 도전체(100")는 기재층(110) 및 투명 도전층(120")을 포함할 수 있다. 투명 도전층(120') 대신에 투명 도전층(120")이 형성된 점을 제외하고는 본 발명의 다른 실시예에 따른 투명 도전체와 실질적으로 동일하다. 이에, 이하에서는 투명 도전층(120")에 대해서 설명한다.Referring to FIG. 4, the transparent conductor 100 ″ according to another embodiment of the present invention may include a base layer 110 and a transparent conductive layer 120 ″. It is substantially the same as a transparent conductor according to another embodiment of the present invention except that a transparent conductive layer 120 "is formed instead of the transparent conductive layer 120 '. Hereinafter, the transparent conductive layer 120" will be described. ) Will be described.
투명 도전층(120")은 금속 나노와이어(121), 금속 입자(122) 및 매트릭스(123)를 포함할 수 있다. 금속 나노와이어(121)와 금속 입자(122)는 매트릭스(123)에 완전히 함침되어 있고, 매트릭스(123)의 일부에만 형성되어 있다. 투명 도전층(120")은 두께 방향을 기준으로 금속 나노와이어(121)와 금속 입자(122)로 형성된 도전성 네트워크 상에 매트릭스가 추가로 형성되어 있다. 따라서, 매트릭스(123)는 금속 나노와이어(121)와 금속 입자(122)의 외부의 수분 및/또는 공기에 의한 산화를 완전히 억제함으로써 투명 도전체의 면저항이 상승되는 것을 막을 수 있다. 금속 나노와이어(121)와 금속 입자(122)가 매트릭스(123)에 완전히 함침되고, 외부로 노출된 금속 나노와이어(121)와 금속 입자(122)가 없는 점을 제외하고는 본 발명의 다른 실시예에 따른 투명 도전체와 실질적으로 동일하다.The transparent conductive layer 120 ″ may include the metal nanowires 121, the metal particles 122, and the matrix 123. The metal nanowires 121 and the metal particles 122 may be completely in the matrix 123. It is impregnated and formed only in a part of the matrix 123. The transparent conductive layer 120 "further includes a matrix on the conductive network formed of the metal nanowires 121 and the metal particles 122 in the thickness direction. Formed. Accordingly, the matrix 123 may prevent the sheet resistance of the transparent conductor from being increased by completely suppressing oxidation of the metal nanowire 121 and the metal particles 122 by moisture and / or air. Other embodiments of the present invention except that the metal nanowires 121 and the metal particles 122 are completely impregnated in the matrix 123 and there are no exposed metal nanowires 121 and the metal particles 122. It is substantially the same as the transparent conductor according to the example.
이하, 본 발명의 또 다른 실시예에 따른 투명 도전체를 도 5를 참고하여 설명한다. 도 5는 본 발명의 또 다른 실시예에 따른 투명 도전체의 단면도이다.Hereinafter, a transparent conductor according to another embodiment of the present invention will be described with reference to FIG. 5. 5 is a cross-sectional view of a transparent conductor according to still another embodiment of the present invention.
도 5를 참고하면, 본 발명의 또 다른 실시예에 따른 투명 도전체(100"')는 기재층(110) 및 투명 도전층(120"')을 포함할 수 있다. 투명 도전층(120') 대신에 투명 도전층(120"')을 포함하는 것을 제외하고는 본 발명의 다른 실시예에 따른 투명 도전체와 실질적으로 동일하다. 이에, 이하에서는 투명 도전층(120"')에 대해서만 설명한다.Referring to FIG. 5, the transparent conductor 100 ″ ′ according to another embodiment of the present invention may include a base layer 110 and a transparent conductive layer 120 ″ ′. It is substantially the same as a transparent conductor according to another embodiment of the present invention except that it includes a transparent conductive layer 120 "'instead of the transparent conductive layer 120'. Hereinafter, the transparent conductive layer 120 will be described. "') Only.
투명 도전층(120"')은 도전성층(120a)과 비도전성층(120b)를 포함할 수 있다. 투명 도전층(120"')은 도전성층(120a)과 비도전성층(120b)으로 패턴화되어 있다. 도전성층(120a)은 매트릭스(123) 및 매트릭스(123)에 함침된 금속 나노와이어(121)와 금속 입자(122)를 포함한다. 비도전성층(120b)은 매트릭스(123)만 포함한다.The transparent conductive layer 120 "'may include the conductive layer 120a and the non-conductive layer 120b. The transparent conductive layer 120"' may be patterned by the conductive layer 120a and the non-conductive layer 120b. It is mad. The conductive layer 120a includes a matrix 123 and metal nanowires 121 and metal particles 122 impregnated in the matrix 123. Non-conductive layer 120b includes only matrix 123.
투명 도전층(120"')은 본 발명의 다른 실시예에 따른 투명 도전층(120')을 패턴화하여 형성될 수 있다. 패턴화는 통상의 방법으로 수행될 수 있다. 구체적으로, 패턴화는 투명 도전층(120')을 형성하고, 투명 도전층(120') 상에 포토레지스트(photoresist)층을 형성하고, 패턴이 형성된 마스크를 포토레지스트층 상에 놓고, UV 노광하고, 현상하고, 베이킹하고, 에칭하는 단계를 포함할 수 있다.The transparent conductive layer 120 "'may be formed by patterning the transparent conductive layer 120' according to another embodiment of the present invention. Patterning may be performed by a conventional method. Specifically, patterning Forms a transparent conductive layer 120 ', forms a photoresist layer on the transparent conductive layer 120', places a patterned mask on the photoresist layer, UV exposure, develops, Baking and etching.
이하, 도 6을 참고하여 본 발명의 일 실시예에 따른 광학표시장치를 설명한다. 도 6은 본 발명의 일 실시예에 따른 광학표시장치의 단면도이다.Hereinafter, an optical display device according to an exemplary embodiment of the present invention will be described with reference to FIG. 6. 6 is a cross-sectional view of an optical display device according to an exemplary embodiment of the present invention.
도 6을 참고하면, 본 발명의 일 실시예에 따른 광학표시장치(200)는 디스플레이부(210), 편광판(220), 투명 전극체(230), 윈도우 필름(240) 및 점착층(250)을 포함하고, 투명 전극체(230)는 본 발명의 실시예들에 따른 투명 도전체로 형성될 수 있다.Referring to FIG. 6, an optical display device 200 according to an exemplary embodiment of the present invention may include a display unit 210, a polarizer 220, a transparent electrode body 230, a window film 240, and an adhesive layer 250. It includes, the transparent electrode body 230 may be formed of a transparent conductor according to embodiments of the present invention.
디스플레이부(210)는 광학표시장치(200)를 구동시키기 위한 것으로, 기판 및 기판 상에 형성된 OLED, LED 또는 LCD 소자를 포함하는 광학소자를 포함할 수 있다. 일 구체예에서, 디스플레이부(210)는 하부기판, 박막 트랜지스터, 유기발광다이오드, 평탄화층, 보호막, 절연막을 포함할 수 있다. 다른 구체예에서, 디스플레이부(210)는 상부기판, 하부기판, 상부 기판과 하부 기판 사이에 위치된 액정층, 및 상부기판, 하부기판 중 하나 이상에 형성된 칼라필터를 포함할 수 있다.The display unit 210 is for driving the optical display device 200 and may include an optical element including a substrate and an OLED, an LED, or an LCD element formed on the substrate. In one embodiment, the display unit 210 may include a lower substrate, a thin film transistor, an organic light emitting diode, a planarization layer, a protective film, an insulating film. In another embodiment, the display unit 210 may include an upper substrate, a lower substrate, a liquid crystal layer positioned between the upper substrate and the lower substrate, and a color filter formed on at least one of the upper substrate and the lower substrate.
편광판(220)은 디스플레이부(210) 상에 형성되어, 내광의 편광을 구현하거나 또는 외광의 반사를 방지하여 디스플레이를 구현하거나 디스플레이의 명암비를 좋게 할 수 있다. 편광판(220)은 편광자 단독이 될 수 있다. 또는, 편광판(220)은 편광자 및 편광자의 일면 또는 양면에 형성된 보호필름을 포함할 수 있다. 또는, 편광판(220)은 편광자 및 편광자의 일면 또는 양면에 형성된 보호코팅층을 포함할 수 있다. 편광자, 보호필름, 보호코팅층은 당업자에게 알려진 통상의 것을 사용할 수 있다.The polarizing plate 220 may be formed on the display unit 210 to implement polarization of internal light or prevent reflection of external light to implement a display or improve contrast ratio of the display. The polarizer 220 may be a polarizer alone. Alternatively, the polarizing plate 220 may include a polarizer and a protective film formed on one or both sides of the polarizer. Alternatively, the polarizing plate 220 may include a polarizer and a protective coating layer formed on one or both surfaces of the polarizer. The polarizer, the protective film, and the protective coating layer may use a conventional one known to those skilled in the art.
도 6에서 도시되지 않았지만, 디스플레이부(210)의 하부에도 편광판이 더 형성되어, 디스플레이의 명암비를 더 좋게 할 수 있다. 이때, 편광판은 점착층에 의해 디스플레이부(210)에 형성될 수 있다.Although not shown in FIG. 6, a polarizer may be further formed below the display unit 210 to further improve the contrast ratio of the display. In this case, the polarizer may be formed on the display unit 210 by an adhesive layer.
투명 전극체(230)는 편광판(220) 상에 형성되어, 접촉 등에 의해 투명 전극체(230)가 터치될 때 발생되는 커패시턴스의 변화를 감지하여 전기적 신호를 발생시킬 수 있다. 전기적 신호는 디스플레이부(210)를 구동시킬 수 있다. The transparent electrode body 230 may be formed on the polarizing plate 220, and may generate an electrical signal by detecting a change in capacitance generated when the transparent electrode body 230 is touched by contact or the like. The electrical signal may drive the display unit 210.
투명 전극체(230)는 기재층(110), 기재층(110)의 일면에 형성된 제1전극(231)과 제2전극(232), 기재층(110)의 다른 일면에 형성된 제3전극(233)과 제4전극(234)을 포함할 수 있다. 도 6에서 도시되지 않았지만, 제1전극(231)과 제2전극(232)은 각각 Rx전극이 될 수 있고, 제3전극(233)과 제4전극(234)은 각각 Tx 전극이 될 수 있다. 그러나, 제1전극과 제2전극이 각각 Tx전극이고, 제3전극과 제4전극이 각각 Rx 전극인 투명 전극체를 포함하는 광학표시장치도 본 발명의 범위에 포함될 수 있다.The transparent electrode body 230 may include a base electrode 110, a first electrode 231 formed on one surface of the base layer 110, a second electrode 232, and a third electrode formed on the other side of the base layer 110 ( 233 and the fourth electrode 234. Although not shown in FIG. 6, the first electrode 231 and the second electrode 232 may each be an Rx electrode, and the third electrode 233 and the fourth electrode 234 may each be a Tx electrode. . However, an optical display device including a transparent electrode body in which the first electrode and the second electrode are each a Tx electrode and the third electrode and the fourth electrode are each an Rx electrode may also be included in the scope of the present invention.
윈도우 필름(240)은 광학표시장치(200)의 최 외곽에 형성되어 광학표시장치(200)를 보호할 수 있다. 윈도우 필름(240)은 유리 기판, 또는 유연성이 있는 플라스틱 기판으로 형성될 수 있다.The window film 240 may be formed on the outermost side of the optical display device 200 to protect the optical display device 200. The window film 240 may be formed of a glass substrate or a flexible plastic substrate.
점착층(250)은 디스플레이부(210)와 편광판(220) 사이, 편광판(220)과 투명 전극체(230) 사이, 투명 전극체(230)와 윈도우 필름(240) 사이에 형성되어, 디스플레이부(210), 편광판(220), 투명 전극체(230), 윈도우 필름(240) 간의 결합을 강하게 할 수 있다. 점착층(250)은 통상의 광학적으로 투명한 점착제로 형성될 수 있다. 구체적으로, 점착층(250)은 (메트)아크릴계 공중합체, 경화제, 실란커플링제를 포함하는 조성물로 형성될 수 있지만, 이에 제한되지 않는다. 그러나, 디스플레이부(210), 편광판(220), 투명 전극체(230), 윈도우 필름(240)이 자체 점착성이 있다면, 점착층(250)은 생략될 수 있다.The adhesive layer 250 is formed between the display unit 210 and the polarizing plate 220, between the polarizing plate 220 and the transparent electrode body 230, and between the transparent electrode body 230 and the window film 240. The bonding between the 210, the polarizing plate 220, the transparent electrode body 230, and the window film 240 may be strengthened. The adhesive layer 250 may be formed of a conventional optically transparent adhesive. Specifically, the adhesive layer 250 may be formed of a composition including a (meth) acrylic copolymer, a curing agent, and a silane coupling agent, but is not limited thereto. However, if the display unit 210, the polarizing plate 220, the transparent electrode body 230, and the window film 240 are self-adhesive, the adhesive layer 250 may be omitted.
이하, 도 7을 참고하여, 본 발명의 다른 실시예에 따른 광학표시장치를 설명한다. 도 7은 본 발명의 다른 실시예에 따른 광학표시장치의 단면도이다.Hereinafter, an optical display device according to another exemplary embodiment of the present invention will be described with reference to FIG. 7. 7 is a cross-sectional view of an optical display device according to another exemplary embodiment of the present invention.
도 7을 참고하면, 본 발명의 다른 실시예에 따른 광학표시장치(300)는 디스플레이부(210), 편광판(220), 투명 전극체(230'), 윈도우 필름(240') 및 점착층(250)을 포함하고, 투명 전극체(230')는 본 발명의 실시예들에 따른 투명 도전체로 형성될 수 있다.Referring to FIG. 7, the optical display device 300 according to another exemplary embodiment of the present invention may include a display unit 210, a polarizing plate 220, a transparent electrode body 230 ′, a window film 240 ′, and an adhesive layer ( 250, and the transparent electrode body 230 ′ may be formed of a transparent conductor according to embodiments of the present invention.
투명 전극체(230')가 기재층(110), 기재층(110)의 일면에 형성된 제3전극(233)과 제4전극(234)을 포함하고, 윈도우 필름(240')이 제1전극(231)과 제2전극(232)이 더 형성된 것을 제외하고는 본 발명의 일 실시예에 따른 광학표시장치와 실질적으로 동일하다.The transparent electrode body 230 ′ includes the base layer 110 and the third electrode 233 and the fourth electrode 234 formed on one surface of the base layer 110, and the window film 240 ′ is the first electrode. It is substantially the same as the optical display device according to the exemplary embodiment of the present invention except that 231 and the second electrode 232 are further formed.
본 발명의 다른 실시예에 따른 광학표시장치에도 상술한 편광판이 더 형성될 수 있다.The above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
이하, 도 8을 참고하여, 본 발명의 또 다른 실시예에 따른 광학표시장치를 설명한다. 도 8은 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.Hereinafter, an optical display device according to still another embodiment of the present invention will be described with reference to FIG. 8. 8 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 8을 참고하면, 본 발명의 또 다른 실시예에 따른 광학표시장치(400)는 디스플레이부(210), 편광판(220), 투명 전극체(230"), 윈도우 필름(240) 및 점착층(250)을 포함하고, 투명 전극체(230")는 본 발명의 실시예들에 따른 투명 도전체로 형성될 수 있다. 투명 전극체(230")가 제1투명 전극체(230a), 제2투명 전극체(230b), 및 점착층(250)을 포함하는 점을 제외하고는 본 발명의 일 실시예에 따른 광학표시장치와 실질적으로 동일하다. 이에, 이하에서는 투명 전극체(230")에 대해서만 설명한다.Referring to FIG. 8, an optical display device 400 according to another embodiment of the present invention may include a display unit 210, a polarizer 220, a transparent electrode body 230 ″, a window film 240, and an adhesive layer ( 250, and the transparent electrode body 230 ″ may be formed of a transparent conductor according to embodiments of the present invention. Optical display according to an embodiment of the present invention except that the transparent electrode body 230 ″ includes the first transparent electrode body 230a, the second transparent electrode body 230b, and the adhesive layer 250. It is substantially the same as the apparatus. Hereinafter, only the transparent electrode body 230 ″ will be described.
투명 전극체(230")는 제1투명 전극체(230a), 제2투명 전극체(230b), 및 제1투명 전극체(230a), 제2투명 전극체(230b) 사이에 형성된 점착층(250)을 포함할 수 있다.The transparent electrode body 230 ″ includes an adhesive layer formed between the first transparent electrode body 230a, the second transparent electrode body 230b, and the first transparent electrode body 230a and the second transparent electrode body 230b. 250).
제1투명 전극체(230a)는 윈도우 필름(240)의 하부에 형성되고, 기재층(110), 및 기재층(110)의 일면에 형성된 제1전극(231)과 제2전극(232)을 포함할 수 있다. 제2투명 전극체(230b)는 편광판(220)의 상부에 형성되고, 기재층(110), 및 기재층(110)의 일면에 형성된 제3전극(233)과 제4전극(234)을 포함할 수 있다. 점착층(250)은 제1투명 전극체(230a)와 제2투명 전극체(230b) 사이에 형성되어, 제1투명 전극체(230a)와 제2투명 전극체(230b)를 결합시킬 수 있다.The first transparent electrode body 230a is formed under the window film 240, and forms the base layer 110 and the first electrode 231 and the second electrode 232 formed on one surface of the base layer 110. It may include. The second transparent electrode body 230b is formed on the polarizer 220, and includes a base layer 110 and a third electrode 233 and a fourth electrode 234 formed on one surface of the base layer 110. can do. The adhesive layer 250 may be formed between the first transparent electrode body 230a and the second transparent electrode body 230b to bond the first transparent electrode body 230a and the second transparent electrode body 230b. .
본 발명의 또 다른 실시예에 따른 광학표시장치에도 상술한 편광판이 더 형성될 수 있다.The above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
이하, 도 9를 참고하여 본 발명의 또 다른 실시예에 따른 광학표시장치를 설명한다. 도 9는 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.Hereinafter, an optical display device according to still another embodiment of the present invention will be described with reference to FIG. 9. 9 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 9를 참고하면, 본 발명의 또 다른 실시예에 따른 광학표시장치(500)는 디스플레이부(210), 투명 전극체(230), 편광판(220), 윈도우 필름(240) 및 점착층(250)을 포함하고, 투명 전극체(230)는 본 발명의 실시예들에 따른 투명 도전체로 형성될 수 있다. 투명 전극체(230)가 디스플레이부(210)와 편광판(220) 사이에 형성된 것을 제외하고는 본 발명의 일 실시예에 따른 광학표시장치와 실질적으로 동일하다. Referring to FIG. 9, the optical display device 500 according to another exemplary embodiment may include a display unit 210, a transparent electrode body 230, a polarizer 220, a window film 240, and an adhesive layer 250. ), And the transparent electrode body 230 may be formed of a transparent conductor according to embodiments of the present invention. Except that the transparent electrode body 230 is formed between the display unit 210 and the polarizing plate 220 is substantially the same as the optical display device according to an embodiment of the present invention.
도 9는 투명 전극체(230)와 디스플레이부(210) 사이에 점착층(250)이 형성된 광학표시장치를 나타낸 것이다. 그러나, 점착층(250) 없이 투명 전극체(230)와 디스플레이부(210)가 함께 형성될 수도 있다.9 illustrates an optical display device in which an adhesive layer 250 is formed between the transparent electrode body 230 and the display unit 210. However, the transparent electrode body 230 and the display unit 210 may be formed together without the adhesive layer 250.
본 발명의 또 다른 실시예에 따른 광학표시장치에도 상술한 편광판이 더 형성될 수 있다.The above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
이하, 도 10을 참고하여, 본 발명의 또 다른 실시예에 따른 광학표시장치를 설명한다. 도 10은 본 발명의 또 다른 실시예에 따른 광학표시장치의 단면도이다.Hereinafter, an optical display device according to still another embodiment of the present invention will be described with reference to FIG. 10. 10 is a cross-sectional view of an optical display device according to still another embodiment of the present invention.
도 10을 참고하면, 본 발명의 또 다른 실시예에 따른 광학표시장치(600)는 디스플레이부(210a), 편광판(220), 윈도우 필름(240) 및 점착층(250)을 포함하고, 디스플레이부(210a)는 투명 전극체를 포함하고, 투명 전극체는 본 발명의 실시예들에 따른 투명 도전체로 형성될 수 있다. 투명 전극체가 디스플레이부(210a)의 내부에 형성된 것을 제외하고는 본 발명의 일 실시예에 따른 광학표시장치와 실질적으로 동일하다.Referring to FIG. 10, an optical display device 600 according to another embodiment of the present invention includes a display unit 210a, a polarizer 220, a window film 240, and an adhesive layer 250. 210a may include a transparent electrode body, and the transparent electrode body may be formed of a transparent conductor according to embodiments of the present invention. The transparent electrode body is substantially the same as the optical display device according to the exemplary embodiment except that the transparent electrode body is formed inside the display unit 210a.
본 발명의 또 다른 실시예에 따른 광학표시장치에도 상술한 편광판이 더 형성될 수 있다.The above-described polarizing plate may be further formed in the optical display device according to another exemplary embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예 1Example 1
폴리(스티렌술폰산) 1중량% 수용액 100ml에 Ag2O 5g을 첨가하고 교반하여 폴리(스티렌술포네이트) 음이온과 은 양이온의 염(PSS-/Ag+ 염)을 포함하는 수용액(pH 7)을 제조하였다. 제조한 수용액 0.135g을 은 나노와이어 함유 용액(제품명:Clearohm ink) 10.97g에 첨가하고 교반하여 은 나노와이어 분산액을 제조하였다. 은 나노와이어 분산액은 고형분 기준으로 PSS-/Ag+ 염을 0.5중량%로 포함하고 있다.Poly (styrene sulfonic acid) was added to Ag 2 O 5g to 1% by weight aqueous solution of 100ml and stirred for poly (styrene sulfonate) anion and the salt of the cation to prepare an aqueous solution (pH 7) containing the (PSS / Ag + salt) It was. 0.135 g of the prepared aqueous solution was added to 10.97 g of a silver nanowire-containing solution (trade name: Clearohm ink) and stirred to prepare a silver nanowire dispersion. The silver nanowire dispersion contains 0.5% by weight of PSS / Ag + salt on a solids basis.
상기 제조한 은 나노와이어 분산액을 기재층(폴리카보네이트 필름, 두께:50㎛)에 스핀 코팅 방법으로 코팅하여 은 나노와이어 분산액 층을 형성하였다. 은 나노와이어 분산액 층을 80℃ 오븐에서 2분 이상 건조하고, UV 경화기에서 500mJ/cm2으로 경화시켜, 투명 도전체를 제조하였다. 이 때, 생성된 은 입자의 평균입경은 약 1nm 내지 5nm 였다.The prepared silver nanowire dispersion was coated on a substrate layer (polycarbonate film, thickness: 50 μm) by spin coating to form a silver nanowire dispersion layer. The silver nanowire dispersion layer was dried in an 80 ° C. oven for at least 2 minutes and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor. At this time, the average particle diameter of the produced silver particle was about 1 nm-5 nm.
실시예 2Example 2
폴리(스티렌술폰산) 1중량% 수용액 100ml에 Ag2O 5g을 첨가하고 교반하여 폴리(스티렌술포네이트) 음이온과 은 양이온의 염(PSS-/Ag+ 염)을 포함하는 수용액(pH 7)을 제조하였다. 제조한 수용액 0.135g을 은 나노와이어 용액(제품명:Clearohm ink) 10.97g에 첨가하고 교반하여 은 나노와이어 분산액을 제조하였다. 은 나노와이어 분산액은 고형분 기준으로 PSS-/Ag+ 염을 0.5중량%로 포함하고 있다.Poly (styrene sulfonic acid) was added to Ag 2 O 5g to 1% by weight aqueous solution of 100ml and stirred for poly (styrene sulfonate) anion and the salt of the cation to prepare an aqueous solution (pH 7) containing the (PSS / Ag + salt) It was. 0.135 g of the prepared aqueous solution was added to 10.97 g of a silver nanowire solution (product name: Clearohm ink) and stirred to prepare a silver nanowire dispersion. The silver nanowire dispersion contains 0.5% by weight of PSS / Ag + salt on a solids basis.
프로필렌글리콜모노메틸에테르 190g에 3관능 (메트)아크릴계 모노머인 TMPTA(트리메틸올프로판트리아크릴레이트) 0.72g, 6관능 (메트)아크릴계 모노머인 DPHA(디펜타에리트리톨헥사아크릴레이트) 2.28g, 산화 방지제 Irganox 1010 0.5g, 개시제 Irgacure 184(CIBA사) 1.5g을 혼합하여 매트릭스용 조성물을 제조하였다.0.72 g of trimethylolpropane triacrylate (TMPTA) which is a trifunctional (meth) acrylic monomer, 190 g of propylene glycol monomethyl ether, 2.28 g of DPHA (dipentaerythritol hexaacrylate) which is a 6 functional (meth) acrylic monomer, antioxidant 0.5 g of Irganox 1010 and 1.5 g of an initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
기재층(폴리카보네이트 필름, 두께:50㎛) 일면에 은 나노와이어 분산액을 스핀 코팅 방법으로 코팅하여 은 나노와이어 분산액 층을 형성하고 80℃ 오븐에서 2분 이상 건조시켰다. 상기 건조된 은 나노와이어 분산액 층에 상기 제조한 매트릭스용 조성물을 스핀 코팅으로 코팅하고 UV 경화기에서 500mJ/cm2으로 경화시켜, 투명 도전체를 제조하였다. 이 때, 형성된 은 입자의 직경은 약 1nm 내지 5nm 였다. The silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 μm) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more. The dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor. At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
실시예 3 내지 실시예 6Examples 3-6
실시예 2에서 은 나노와이어 분산액 중 고형분 기준으로 PSS-/Ag+ 염의 함량을 하기 표 1과 같이 변경한 것을 제외하고는 동일한 방법으로 투명 도전체를 제조하였다. 이 때, 형성된 은 입자의 직경은 약 1nm 내지 5nm 였다. Example 2 In the PSS is based on solids of the nanowire dispersion-was prepared in a transparent conductor in the same manner except that the changes to the / Ag + to the salt content in Table 1. At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
실시예 7Example 7
실시예 6에서 폴리(스티렌술폰산) 대신에 폴리(에틸렌디옥시티오펜)으로 도핑된 폴리(스티렌술폰산)을 사용한 것을 제외하고는 동일한 방법으로 투명도전체를 제조하였다. 이 때, 형성된 은 입자의 직경은 약 1nm 내지 5nm 였다. A transparent conductor was prepared in the same manner as in Example 6 except that poly (styrenesulfonic acid) doped with poly (ethylenedioxythiophene) was used instead of poly (styrenesulfonic acid). At this time, the diameter of the silver particle formed was about 1 nm-5 nm.
비교예 1Comparative Example 1
은 나노와이어 용액(제품명:Clearohm ink) 18.98g에 증류수 및 PGME(프로필렌 글리콜 모노메틸 에테르)를 첨가하여 은 나노와이어 분산액 30g을 제조하였다.30 g of silver nanowire dispersion was prepared by adding distilled water and PGME (propylene glycol monomethyl ether) to 18.98 g of silver nanowire solution (product name: Clearohm ink).
프로필렌글리콜모노메틸에테르에 3관능 (메트)아크릴계 모노머인 TMPTA(트리메틸올프로판트리아크릴레이트) 0.72g, 6관능 (메트)아크릴계 모노머인 DPHA(디펜타에리트리톨헥사아크릴레이트) 2.28g, 산화 방지제 Irganox 1010 0.5g, 개시제 Irgacure 184(CIBA사) 1.5g을 혼합하여 매트릭스용 조성물을 제조하였다.0.72 g of TMPTA (trimethylol propane triacrylate) which is a trifunctional (meth) acrylic monomer to propylene glycol monomethyl ether, 2.28 g of DPHA (dipentaerythritol hexaacrylate) which is a 6 functional (meth) acrylic monomer, and antioxidant Irganox 0.510 and 10 g of initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
기재층(폴리카보네이트 필름, 두께:50㎛) 일면에 은 나노와이어 분산액을 스핀 코팅 방법으로 코팅하여 은 나노와이어 분산액 층을 형성하고 80℃ 오븐에서 2분 이상 건조시켰다. 상기 건조된 은 나노와이어 분산액 층에 상기 제조한 매트릭스용 조성물을 스핀 코팅으로 코팅하고 UV 경화기에서 500mJ/cm2으로 경화시켜, 투명 도전체를 제조하였다. The silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 μm) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more. The dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor.
비교예 2Comparative Example 2
은 나노와이어 용액(제품명:Clearohm ink) 18.98g에 증류수를 첨가하여 은 나노와이어 분산액 30g을 제조하였다.30 g of silver nanowire dispersion was prepared by adding distilled water to 18.98 g of a silver nanowire solution (product name: Clearohm ink).
프로필렌글리콜모노메틸에테르에 3관능 (메트)아크릴계 모노머인 TMPTA(트리메틸올프로판트리아크릴레이트) 0.72g, 6관능 (메트)아크릴계 모노머인 DPHA(디펜타에리트리톨헥사아크릴레이트) 2.28g, 산화 방지제 Irganox 1010 0.5g, 개시제 Irgacure 184(CIBA사) 1.5g을 혼합하여 매트릭스용 조성물을 제조하였다.0.72 g of TMPTA (trimethylol propane triacrylate) which is a trifunctional (meth) acrylic monomer to propylene glycol monomethyl ether, 2.28 g of DPHA (dipentaerythritol hexaacrylate) which is a 6 functional (meth) acrylic monomer, and antioxidant Irganox 0.510 and 10 g of initiator Irgacure 184 (CIBA) were mixed to prepare a composition for a matrix.
기재층(폴리카보네이트 필름, 두께:50㎛) 일면에 은 나노와이어 분산액을 스핀 코팅 방법으로 코팅하여 은 나노와이어 분산액 층을 형성하고 80℃ 오븐에서 2분 이상 건조시켰다. 상기 건조된 은 나노와이어 분산액 층에 상기 제조한 매트릭스용 조성물을 스핀 코팅으로 코팅하고 UV 경화기에서 500mJ/cm2으로 경화시켜, 투명 도전체를 제조하였다. The silver nanowire dispersion liquid was coated on one surface of the substrate layer (polycarbonate film, thickness: 50 μm) by spin coating to form a silver nanowire dispersion layer, and dried in an 80 ° C. oven for 2 minutes or more. The dried silver nanowire dispersion layer was coated with the composition for matrix prepared by spin coating, and cured at 500 mJ / cm 2 in a UV curing machine to prepare a transparent conductor.
실시예와 비교예에서 제조한 투명 도전체에 대해 하기 물성 (1) 내지 (4)를 평가하고, 그 결과를 하기 표 1에 나타내었다.The following physical properties (1) to (4) were evaluated for the transparent conductors prepared in Examples and Comparative Examples, and the results are shown in Table 1 below.
(1)헤이즈와 투과율(%): 투명 도전층이 광원을 향하도록 투명 도전체를 배치하였다. 파장 400nm 내지 700nm에서 헤이즈미터(NDH-2000) D65광원을 사용하여 헤이즈와 투과율을 측정하였다.(1) Haze and transmittance (%): The transparent conductor was disposed so that the transparent conductive layer faced the light source. Haze and transmittance were measured using a haze meter (NDH-2000) D65 light source at a wavelength of 400 nm to 700 nm.
(2)면저항(Ω/□): 비접촉식 면저항 측정기(R-CHEK RC2175, EDTM사)를 사용하여 투명 도전체 표면에 대한 면저항을 측정하였다.(2) Surface resistance (Ω / □): The sheet resistance on the surface of the transparent conductor was measured using a non-contact sheet resistance measuring instrument (R-CHEK RC2175, EDTM).
(3)채널 선저항 균일도 값: 투명 도전체에 대해 은 나노와이어 분산 용액의 코팅 방향을 MD, MD에 수직인 방향을 TD라고 한다. MD가 장변이 되는 장변 x 단변(70mm x 4mm)의 직사각형의 제1시편을 커팅하여 얻었다. 또한, TD 가 장변이 되는 장변 x 단변(70mm x 4mm)의 직사각형의 제2시편을 커팅하여 얻었다. 제1시편과 제2시편 각각에 대해 멀티미터(multimeter, Sanwa社, CD800a)를 사용하여 시편 양단에서 선저항을 각각 측정하여 MD 선저항(RMD')과 TD 선저항(RTD')을 구하였다. 상기 식 1에 따라 채널 선저항 균일도 값을 계산하였다. 채널 선저항 균일도 값이 낮을수록 채널 선저항 균일도가 높다.(3) Channel wire resistance uniformity value: The coating direction of the silver nanowire dispersion solution for the transparent conductor is called MD and the direction perpendicular to the MD is called TD. The rectangular first specimen of the long side x short side (70 mm x 4 mm) in which MD is the long side was cut and obtained. In addition, a second rectangular specimen of long side x short side (70 mm x 4 mm) in which TD is a long side was cut and obtained. For each of the first and second specimens, measure the wire resistance across the specimen using a multimeter (multimeter, Sanwa, CD800a) and measure the MD wire resistance (R MD ' ) and TD wire resistance (R TD' ). Obtained. The channel wire resistance uniformity value was calculated according to Equation 1 above. The lower the channel line resistance uniformity value, the higher the channel line resistance uniformity.
(4)은 입자 포함 여부 및 은 입자의 평균 입경: 투명 도전층에서 HR-TEM(high resolution transmission electron microscopy)로 은 입자가 포함되는지 여부를 관찰하였다. 투명 도전체를 microtome 또는 FIB(focused ion beam)로 cross cutting 하여 HR-TEM 시편을 제조하였다. 시편에 대해 배율을 100K 내지 1000K 정도에서 관찰하여 은 입자가 있는지를 평가하고, 은 입자의 평균 입경을 구하였다.(4) Silver particles were included and the average particle diameter of silver particles: It was observed whether silver particles were included by high resolution transmission electron microscopy (HR-TEM) in the transparent conductive layer. HR-TEM specimens were prepared by cross cutting the transparent conductor with a microtome or a focused ion beam (FIB). The magnification of the specimen was observed at about 100K to 1000K to evaluate the presence of silver particles, and the average particle diameter of the silver particles was obtained.
표 1
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7 비교예1 비교예2
PSS-/Ag+염 (중량%) 0.5 0.5 1 1.5 2.5 3 - - -
PEDOT-PSS-/Ag+염(중량%) - - - - - - 3 - -
헤이즈(%) 0.98 1.13 1.02 1.05 1.04 1.02 0.97 1.17 1.11
투과율(%) 88.18 90.18 90.06 90.18 90.15 90.03 90.04 90.82 90.97
면저항(Ω/□) 45.60 47.58 52.18 48.56 53.29 57.68 46.44 56 54.71
채널선저항균일도 값(%) - 17.35 17.88 3.57 4.85 2.3 19 146.5 20.55
은 입자 포함 포함 포함 포함 포함 포함 포함 미포함 미포함
은 입자 평균 입경(nm) 1 내지 5 1 내지 5 1 내지 5 1 내지 5 1 내지 5 1 내지 5 1 내지 5 - -
Table 1
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Comparative Example 1 Comparative Example 2
PSS - / Ag + salt (wt.%) 0.5 0.5 One 1.5 2.5 3 - - -
PEDOT-PSS - / Ag + salt (wt.%) - - - - - - 3 - -
Haze (%) 0.98 1.13 1.02 1.05 1.04 1.02 0.97 1.17 1.11
Transmittance (%) 88.18 90.18 90.06 90.18 90.15 90.03 90.04 90.82 90.97
Sheet resistance (Ω / □) 45.60 47.58 52.18 48.56 53.29 57.68 46.44 56 54.71
Channel line resistance uniformity value (%) - 17.35 17.88 3.57 4.85 2.3 19 146.5 20.55
Silver particles include include include include include include include Without Without
Silver particle average particle diameter (nm) 1 to 5 1 to 5 1 to 5 1 to 5 1 to 5 1 to 5 1 to 5 - -
상기 표 1과 같이, 본 발명의 투명도전체는 헤이즈가 낮고 투과율이 높아 투명하고, 면저항이 낮으며, 채널 저항 균일도 값이 현저하게 낮아 패턴화전, 패턴화된 후에도 MD, TD 간의 저항 편차가 낮을 수 있다. 따라서, 본 발명은 채널 저항 균일도가 개선되고 금속 나노와이어 간의 접촉 저항을 낮추어 면저항이 낮은 투명도전체를 제공하였다.As shown in Table 1, the transparent conductor of the present invention has a low haze and a high transmittance, is transparent, has a low sheet resistance, and has a significantly low channel resistance uniformity, so that resistance variation between MD and TD may be low even before patterning and patterning. have. Accordingly, the present invention provides a transparent conductor having low sheet resistance by improving channel resistance uniformity and lowering contact resistance between metal nanowires.
PSS-/Ag+를 포함하지 않는 비교예 2와 PSS-/Ag+ 대신에 종전 유기용제 PGME를 포함하는 비교예 1은 패턴화된 후 채널 저항 균일도 값이 현저하게 높아, MD, TD 간의 채널 저항 균일도가 낮음을 확인하였다.PSS - Comparative Example 1 after a patterned increased considerably channel resistance uniformity value, a channel between the MD, TD resist / Ag + instead of including a conventional organic solvent, PGME - / Ag + Comparative Example 2 and the PSS does not contain the It was confirmed that the uniformity was low.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (16)

  1. 기재층 및 Substrate layer and
    상기 기재층 상에 형성된 투명 도전층을 포함하고,It includes a transparent conductive layer formed on the base layer,
    상기 투명 도전층은 금속 나노와이어 및 금속 입자를 포함하는 것인, 투명 도전체.The transparent conductive layer is a transparent conductor, which comprises metal nanowires and metal particles.
  2. 제1항에 있어서, 상기 투명 도전체는 하기 식 1의 채널 선저항 균일도 값이 약 20% 이하인 것인, 투명 도전체:The transparent conductor of claim 1, wherein the transparent conductor has a channel wire resistance uniformity value of about 20% or less.
    <식 1><Equation 1>
    채널 선저항 균일도 값(%) = (RTD' - RMD')/RMD' x 100Channel line resistance uniformity value (%) = (R TD ' - R MD') / R MD 'x 100
    (상기 식 1에서, RMD'는 투명 도전체 중 장변이 제1방향인 직사각형의 제1시편의 저항(단위:Ω)이고, RTD'는 투명 도전체 중 장변이 제2방향인 직사각형의 제2시편의 저항(단위:Ω)이고, 이때, 상기 제1방향과 상기 제2방향은 직교하고, RTD' ≥ RMD'이다).(Equation 1, R MD ' is the resistance (unit: 의) of the first specimen of the rectangular long side of the transparent conductor in the first direction, R TD' is the rectangular of the long side of the transparent conductor in the second direction) Resistance of the second specimen (unit: kPa), wherein the first direction and the second direction are orthogonal and R TD ' ? R MD' ).
  3. 제1항에 있어서, 상기 금속 입자의 평균입경: 상기 금속 나노와이어의 직경의 비는 약 1:4 내지 약 1:100인 것인, 투명도전체.The transparent conductor of claim 1, wherein the ratio of the average particle diameter of the metal particles to the diameter of the metal nanowire is about 1: 4 to about 1: 100.
  4. 제1항에 있어서, 상기 금속 입자는 평균입경이 약 1nm 내지 약 5nm인 것인, 투명 도전체.The transparent conductor of claim 1, wherein the metal particles have an average particle diameter of about 1 nm to about 5 nm.
  5. 제1항에 있어서, 상기 금속 나노와이어는 은 나노와이어를 포함하는 것인, 투명 도전체.The transparent conductor of claim 1, wherein the metal nanowires comprise silver nanowires.
  6. 제5항에 있어서, 상기 투명 도전층은 폴리(스티렌술포네이트) 음이온을 더 포함하며, 상기 금속입자는 은 입자인, 투명 도전체.The transparent conductor of claim 5, wherein the transparent conductive layer further comprises a poly (styrenesulfonate) anion, and the metal particles are silver particles.
  7. 제6항에 있어서, 상기 폴리(스티렌술포네이트) 음이온은 폴리(에틸렌디옥시티오펜)이 도핑된 것인, 투명 도전체.The transparent conductor of claim 6, wherein the poly (styrenesulfonate) anion is doped with poly (ethylenedioxythiophene).
  8. 제1항에 있어서, 상기 투명 도전층은 매트릭스를 더 포함하고,The method of claim 1, wherein the transparent conductive layer further comprises a matrix,
    상기 금속 나노와이어와 상기 금속 입자는 상기 매트릭스에 함침된 것인, 투명 도전체.And the metal nanowires and the metal particles are impregnated in the matrix.
  9. 금속 나노와이어, 점도 조절제 및 금속 입자 형성제를 포함하는 금속 나노와이어 분산액을 기재층 상에 코팅하여 금속 나노와이어 분산액 층을 형성하고,A metal nanowire dispersion comprising a metal nanowire, a viscosity modifier and a metal particle former is coated on the substrate layer to form a metal nanowire dispersion layer,
    상기 금속 나노와이어 분산액 층을 경화시키는 것을 포함하는 투명 도전체의 제조 방법.The method of manufacturing a transparent conductor comprising curing the metal nanowire dispersion layer.
  10. 제9항에 있어서, 상기 금속 나노와이어 분산액은 점도가 25℃에서 약 1cps 내지 약 10cps인 것인, 투명 도전체의 제조방법.The method of claim 9, wherein the metal nanowire dispersion has a viscosity of about 1 cps to about 10 cps at 25 ° C. 11.
  11. 제9항에 있어서, 상기 점도 조절제는 폴리(스티렌술폰산), 폴리(에틸렌디옥시티오펜)으로 도핑된 폴리(스티렌술폰산) 중 하나 이상을 포함하는 것인, 투명 도전체의 제조방법.The method of claim 9, wherein the viscosity modifier comprises at least one of poly (styrenesulfonic acid) and poly (styrenesulfonic acid) doped with poly (ethylenedioxythiophene).
  12. 제9항에 있어서, 상기 금속 입자 형성제는 Ag+ 이온을 제공하는 물질을 포함하는 것인, 투명 도전체의 제조방법.10. The method of claim 9, wherein the metal particle forming agent comprises a material that provides Ag + ions.
  13. 제9항에 있어서, 상기 금속 나노와이어 분산액은 폴리(스티렌술포네이트) 음이온(PSS-)과 은 양이온(Ag+)의 염을 포함하는 것인, 투명 도전체의 제조방법.The method of claim 9, wherein the metal nanowire dispersion comprises a salt of a poly (styrenesulfonate) anion (PSS ) and a silver cation (Ag + ).
  14. 제13항에 있어서, 상기 폴리(스티렌술포네이트) 음이온(PSS-)과 은 양이온(Ag+)의 염은 상기 금속 나노와이어 분산액 중 고형분 기준으로 약 0.1중량% 내지 약 3중량%로 포함되는 것인, 투명 도전체의 제조방법.The salt of claim 13, wherein the salt of the poly (styrenesulfonate) anion (PSS ) and silver cation (Ag + ) is included in an amount of about 0.1 wt% to about 3 wt% based on solids in the metal nanowire dispersion. The manufacturing method of phosphorus and a transparent conductor.
  15. 제9항에 있어서, 상기 금속 나노와이어 분산액 층을 형성한 후,The method of claim 9, wherein after forming the metal nanowire dispersion layer,
    상기 금속 나노와이어 분산액 층 상에 매트릭스용 조성물을 코팅하고,Coating a composition for a matrix on the metal nanowire dispersion layer,
    상기 금속 나노와이어 분산액 층과 상기 매트릭스용 조성물을 경화시키는 것을 포함하는 것인, 투명 도전체의 제조방법.The method of manufacturing a transparent conductor, comprising curing the metal nanowire dispersion layer and the composition for the matrix.
  16. 제1항 내지 제8항 중 어느 한 항의 투명 도전체를 포함하는 광학표시장치.An optical display device comprising the transparent conductor of any one of claims 1 to 8.
PCT/KR2015/002678 2014-03-19 2015-03-19 Transparent conductor, method for manufacturing same, and optical display device comprising same WO2015142077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580013693.0A CN106104706B (en) 2014-03-19 2015-03-19 Transparent conductor, its manufacturing method and the optical display devices including it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140032382A KR101780528B1 (en) 2014-03-19 2014-03-19 Transparent conductor, method for preparing the same and optical display apparatus comprising the same
KR10-2014-0032382 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015142077A1 true WO2015142077A1 (en) 2015-09-24

Family

ID=54144963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002678 WO2015142077A1 (en) 2014-03-19 2015-03-19 Transparent conductor, method for manufacturing same, and optical display device comprising same

Country Status (3)

Country Link
KR (1) KR101780528B1 (en)
CN (1) CN106104706B (en)
WO (1) WO2015142077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10575370B2 (en) * 2015-09-25 2020-02-25 Samsung Electronics Co., Ltd. Electrical conductors, electrically conductive structures, and electronic devices including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358834A1 (en) * 2017-02-06 2018-08-08 Samsung Electronics Co., Ltd. Display device
KR102234230B1 (en) * 2017-05-29 2021-04-01 주식회사 에스지플렉시오 Transparent Conductive Film and the Fabrication Method Thereof
CN110459341B (en) * 2019-07-10 2021-04-06 南京邮电大学 Semitransparent electrode based on metal nano composite structure
US11652051B2 (en) * 2021-01-22 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same
US11652052B2 (en) * 2021-03-29 2023-05-16 Tpk Advanced Solutions Inc. Contact structure and electronic device having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112626A (en) * 2006-10-12 2009-10-28 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and applications thereof
WO2010010838A1 (en) * 2008-07-25 2010-01-28 コニカミノルタホールディングス株式会社 Transparent electrode and production method of same
KR20120036870A (en) * 2009-06-30 2012-04-18 디아이씨 가부시끼가이샤 Method for forming pattern for transparent conductive layer
JP2013155440A (en) * 2013-03-04 2013-08-15 Konica Minolta Inc Method for manufacturing metal nanowire
JP2013246975A (en) * 2012-05-25 2013-12-09 Panasonic Corp Conductive optical member and electronic device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009302A (en) * 2009-06-23 2011-01-13 Komuratekku:Kk Method of forming back electrode for thin film solar cell
JP5499617B2 (en) * 2009-10-15 2014-05-21 コニカミノルタ株式会社 Transparent electrode and organic electroluminescence device
KR101940591B1 (en) * 2012-02-16 2019-01-21 오꾸라 고교 가부시키가이샤 Transparent electrically conductive substrate and manufacturing method thereof
JP5569607B2 (en) * 2013-02-01 2014-08-13 コニカミノルタ株式会社 Transparent conductive film, transparent conductive film, and flexible transparent electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090112626A (en) * 2006-10-12 2009-10-28 캄브리오스 테크놀로지즈 코포레이션 Nanowire-based transparent conductors and applications thereof
WO2010010838A1 (en) * 2008-07-25 2010-01-28 コニカミノルタホールディングス株式会社 Transparent electrode and production method of same
KR20120036870A (en) * 2009-06-30 2012-04-18 디아이씨 가부시끼가이샤 Method for forming pattern for transparent conductive layer
JP2013246975A (en) * 2012-05-25 2013-12-09 Panasonic Corp Conductive optical member and electronic device including the same
JP2013155440A (en) * 2013-03-04 2013-08-15 Konica Minolta Inc Method for manufacturing metal nanowire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10575370B2 (en) * 2015-09-25 2020-02-25 Samsung Electronics Co., Ltd. Electrical conductors, electrically conductive structures, and electronic devices including the same

Also Published As

Publication number Publication date
CN106104706B (en) 2019-02-15
CN106104706A (en) 2016-11-09
KR20150109222A (en) 2015-10-01
KR101780528B1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2015142077A1 (en) Transparent conductor, method for manufacturing same, and optical display device comprising same
WO2013103283A1 (en) Encapsulation film
WO2016089021A1 (en) Composition for window film, flexible window film formed therefrom, and flexible display device comprising same
WO2017126773A1 (en) Composition for window film, flexible window film formed therefrom, and display device comprising same
WO2012157960A2 (en) Multi-layer plastic substrate and method for manufacturing same
WO2017065446A1 (en) Window film and method for preparing same
WO2018110830A2 (en) Window film, manufacturing method thereof, and display device including same
US9754698B2 (en) Transparent conductor, method for preparing the same, and optical display including the same
WO2016060476A1 (en) Optical film coating composition and optical film comprising same
WO2015080346A1 (en) Adhesive composition, adhesive film formed therefrom, and optical display device comprising same
WO2016021862A1 (en) Touch window
WO2017022987A1 (en) Composition for window film, flexible window film formed therefrom, and flexible display device comprising same
WO2018221872A1 (en) Polarizing plate and liquid crystal display device including same
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2016105088A1 (en) Composition for window film, flexible window film formed therefrom, and flexible display device comprising same
WO2016089089A1 (en) Composition for window film, flexible window film formed therefrom, and flexible display device comprising same
WO2021167378A1 (en) Multilayer film and laminate comprising same
WO2018004072A1 (en) Composition for window film and flexible window film formed thereof
WO2017018734A1 (en) Window film composition, flexible window film formed therefrom and flexible display device containing same
WO2016159664A1 (en) Transparent conductor, method for preparing same and optical display device comprising same
WO2017217609A1 (en) Composition for window film, window film formed therefrom, and flexible display device comprising same
KR102004026B1 (en) Transparent conductor and display apparatus comprising the same
WO2021177648A1 (en) Flexible window film and display device comprising same
WO2019160296A1 (en) Flexible touch sensor having color filter integrated therein, and manufacturing method therefor
WO2018062664A1 (en) Window film composition and flexible window film formed therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765629

Country of ref document: EP

Kind code of ref document: A1