WO2015141466A1 - Pump device - Google Patents

Pump device Download PDF

Info

Publication number
WO2015141466A1
WO2015141466A1 PCT/JP2015/056337 JP2015056337W WO2015141466A1 WO 2015141466 A1 WO2015141466 A1 WO 2015141466A1 JP 2015056337 W JP2015056337 W JP 2015056337W WO 2015141466 A1 WO2015141466 A1 WO 2015141466A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
discharge
passage
discharge passage
suction
Prior art date
Application number
PCT/JP2015/056337
Other languages
French (fr)
Japanese (ja)
Inventor
浩一朗 赤塚
藤田 朋之
智行 中川
史恭 加藤
裕希 五味
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Publication of WO2015141466A1 publication Critical patent/WO2015141466A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/06Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
    • F04C14/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Definitions

  • the present invention relates to a pump device.
  • JP2010-14101A discloses a multiple vane pump in which the rotors of the first vane pump and the second vane pump are connected in parallel by being connected by a common drive shaft.
  • a switching valve for switching whether the hydraulic oil discharged from the first vane pump is supplied to the hydraulic device or returned to the suction passage is provided in the discharge passage of the first vane pump.
  • the switching valve described in JP2010-14101A has a pump port communicating with the first vane pump, a discharge port communicating with the hydraulic device side, and a suction side port communicating with the suction passage side.
  • the hydraulic fluid in the pump port is supplied to the hydraulic equipment or returned to the suction passage according to the position of the spool of the switching valve.
  • the pump port communicates with both the discharge port and the suction side port, the pressure of the hydraulic oil supplied to the hydraulic equipment will decrease. If the pump port does not communicate with both the discharge port and the suction side port, the internal pressure of the pump port rises and a surge pressure is generated.
  • An object of the present invention is to stably switch a working fluid discharged from a sub pump in a pump device having a main pump and a sub pump.
  • a pump device that supplies a working fluid to a fluid pressure device, the main pump supplying the working fluid to the fluid pressure device through a first discharge passage, and the first discharge passage.
  • a sub-pump that supplies the working fluid to the fluid pressure device through the second discharge passage, and a reverse pump that is provided in the second discharge passage and allows only the flow of the working fluid from the second discharge passage to the first discharge passage.
  • a switching valve having a blocking position for blocking the return path and an opening position for opening the return path.
  • FIG. 1 is a cross-sectional view of a pump device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a pump cartridge in the pump device according to the embodiment of the present invention.
  • FIG. 3 is a hydraulic circuit diagram of the pump device according to the embodiment of the present invention.
  • the pump device 100 is used as a hydraulic supply source for a hydraulic device mounted on a vehicle, for example, a power steering device or a transmission.
  • This embodiment demonstrates the case where the pump apparatus 100 is the structure where the main pump 101 and the subpump 102 which are two vane pumps were connected in parallel.
  • the rotor 2 of each of the main pump 101 and the sub pump 102 is connected to a common drive shaft 1 to which the power of the engine 22 (see FIG. 3) is transmitted.
  • the rotor 2 is rotated by the rotation of 1.
  • the rotor 2 rotates clockwise in FIG.
  • the hydraulic oil (working fluid) discharged from the main pump 101 is always supplied to the hydraulic equipment (fluid pressure equipment) 21 (see FIG. 3).
  • the hydraulic oil discharged from the sub pump 102 is supplied to the hydraulic equipment 21 or recirculates to the suction side in accordance with the operation of the switching valve 40 (see FIG. 3).
  • the main pump 101 and the sub-pump 102 accommodate a plurality of vanes 3 that are reciprocally movable in the radial direction with respect to the rotor 2, and the vanes 3 on the inner cam surface 4 a as the rotor 2 rotates.
  • tip part slides is provided.
  • slits 16 having openings on the outer peripheral surface are radially formed at predetermined intervals, and the vanes 3 are slidably inserted into the slits 16.
  • a back pressure chamber 17 into which the pump discharge pressure is guided is defined on the base end side of the slit 16.
  • Adjacent back pressure chambers 17 communicate with each other by an arc-shaped groove 2a formed in the rotor 2, and pump discharge pressure is always guided to the groove 2a.
  • the vane 3 is pressed in the direction of coming out of the slit 16 by the pressure of the back pressure chamber 17 and the centrifugal force due to the rotation of the rotor 2, and the tip part comes into contact with the cam surface 4 a on the inner periphery of the cam ring 4.
  • a plurality of pump chambers 7 are defined inside the cam ring 4 by the outer peripheral surface of the rotor 2, the cam surface 4 a of the cam ring, and the adjacent vanes 3.
  • the rotor 2, the vane 3, and the cam ring 4 constitute a pump cartridge 20.
  • the cam ring 4 is an annular member having an inner circumferential cam surface 4 a that is substantially elliptical, and expands the volume of the pump chamber 7 that is partitioned by the vanes 3 that slide on the cam surface 4 a as the rotor 2 rotates.
  • the center plate 5 is disposed between the pump cartridges 20 of the main pump 101 and the sub pump 102, and the side plate 6 is disposed on the side of each pump cartridge 20.
  • the pump cartridge 20 is sandwiched between the center plate 5 and the side plate 6, and the pump chamber 7 is sealed by the center plate 5 and the side plate 6.
  • the center plate 5 is formed with a suction port 8 that opens toward the suction region 4 b of the cam ring 4 and guides hydraulic oil to the pump chamber 7.
  • the side plate 6 is formed with two arc-shaped discharge ports 9 that open toward the discharge region 4c of the cam ring 4 and guide the hydraulic oil discharged from the pump chamber 7.
  • Each pump chamber 7 sucks the working oil through the suction port 8 in the suction region 4 b of the cam ring 4 and makes the sucked hydraulic oil pass through the discharge port 9 in the discharge region 4 c of the cam ring 4 in the process of one rotation of the rotor 2. After that, the hydraulic oil is sucked through the suction port 8 in the suction area 4 b of the cam ring 4, and the sucked hydraulic oil is discharged through the discharge port 9 in the discharge area 4 c of the cam ring 4.
  • each pump chamber 7 expands and contracts with the rotation of the rotor 2, and performs the suction and discharge of the hydraulic oil twice in the process of rotating the rotor 2 once.
  • the drive shaft 1 is rotatably supported by the first pump body 10 and the second pump body 11 via a bush 18.
  • the side plate 6 of the main pump 101 and the pump cartridge 20 are stacked and housed in the pump housing recess 10 a formed in the first pump body 10, and in the pump housing recess 11 a formed in the second pump body 11.
  • the center plate 5 is stacked and accommodated together with the side plate 6 of the sub pump 102 and the pump cartridge 20.
  • the main pump 101 is accommodated in the first pump body 10 and the sub pump 102 is accommodated in the second pump body 11.
  • the first pump body 10 and the second pump body 11 are fastened together with the surfaces having the openings in contact with each other, and the respective pump housing recesses 10a and 11a are sealed.
  • the cam ring 4 and the side plate 6 of the main pump 101 and the sub pump 102 are stopped by two positioning pins 19 that pass through the center plate 5.
  • the positioning pin 19 restricts the relative rotation of the center plate 5 and the side plate 6 with respect to the cam ring 4. Thereby, the positioning of the suction area 4b of the cam ring 4 and the suction port 8 of the center plate 5 and the positioning of the discharge area 4c of the cam ring 4 and the discharge port 9 of the side plate 6 are performed.
  • a high pressure chamber 12 into which hydraulic oil discharged from the discharge port 9 flows is formed.
  • the hydraulic oil in the high pressure chamber 12 is supplied to the hydraulic equipment 21 through the first discharge passage 32 and the second discharge passage 33 (see FIG. 3).
  • the hydraulic oil in the high pressure chamber 12 is guided to the arc-shaped groove 2 a of the rotor 2 through the through hole 6 a formed in the side plate 6 and is guided to each back pressure chamber 17.
  • the suction passage 31 connected to the tank 34 is connected to the suction port 8 of the main pump 101 and the sub pump 102.
  • a first discharge passage 32 is connected to the discharge port 9 of the main pump 101, and a second discharge passage 33 is connected to the discharge port 9 of the sub pump 102.
  • the second discharge passage 33 is provided so as to join the first discharge passage 32.
  • the main pump 101 sucks the hydraulic oil from the tank 34 through the suction passage 31 and supplies the hydraulic oil to the hydraulic device 21 through the first discharge passage 32, and the sub pump 102 passes the hydraulic oil from the tank 34 through the suction passage 31.
  • the hydraulic fluid is supplied to the hydraulic device 21 through the second discharge passage 33.
  • the second discharge passage 33 is provided with a check valve 35 that allows only the flow of hydraulic oil from the second discharge passage 33 to the first discharge passage 32.
  • a return passage 36 is branched and provided upstream of the check valve 35 in the second discharge passage 33.
  • the return passage 36 is for returning the hydraulic oil discharged from the sub pump 102 to the suction side.
  • the return passage 36 is provided with a switching valve 40 for switching whether the hydraulic oil discharged from the sub pump 102 is supplied to the hydraulic equipment 21 or returned to the suction passage 31.
  • the hydraulic oil discharged from the sub pump 102 is selectively guided to either the hydraulic device 21 or the suction passage 31 by switching the switching valve 40.
  • the switching valve 40 has two positions, a blocking position A for blocking the return passage 36 and an opening position B for opening the return passage 36.
  • the switching valve 40 is an electromagnetic switching valve whose position is switched by a control current output from the controller 30.
  • the switching valve 40 is set to the open position B by the biasing force of the spring 42 when the solenoid 41 is not excited, and is set to the blocking position A against the biasing force of the spring 42 when the solenoid 41 is excited.
  • the position of the switching valve 40 is switched according to, for example, the rotational speed of the engine 22 input to the controller 30, that is, the pump rotational speed that is the rotational speed of the rotor 2.
  • the switching valve 40 is not limited to an electromagnetic switching valve, and may be a pilot switching valve that is switched by a pilot hydraulic pressure.
  • the entire amount of hydraulic oil discharged from the main pump 101 is supplied to the hydraulic equipment 21 regardless of the position of the switching valve 40.
  • the switching valve 40 When the switching valve 40 is set to the cutoff position A, the hydraulic oil discharged from the sub pump 102 pushes the check valve 35 open and is supplied to the hydraulic device 21 in its entirety. Thus, even when the switching valve 40 is in the shutoff position A, the check valve 35 is opened, so that the discharge pressure of the sub pump 102 is prevented from increasing and surge pressure is prevented from being generated.
  • the check valve 35 opens, so that the discharge pressure of the sub pump 102 rises and surge pressure is prevented from being generated. Further, since the second discharge passage 33 is provided with a check valve 35 that allows only the flow of hydraulic oil from the second discharge passage 33 to the first discharge passage 32, the hydraulic oil is moved from the main pump 101 side to the sub pump 102 side. Will not flow in. Accordingly, it is possible to prevent the pressure of the hydraulic oil supplied to the hydraulic device 21 from being lowered. As described above, the hydraulic oil discharged from the sub pump 102 can be switched stably.
  • the main pump and the sub pump of the pump device 100 may be configured by one vane pump that performs the suction and discharge of the hydraulic oil twice in the process of rotating the rotor 2 once.
  • the suction region 4b and the discharge region 4c of the cam ring 4 that performs one suction discharge are configured as a main pump
  • the suction region 4b and the discharge region 4c of the cam ring 4 that performs the other suction discharge are configured as a sub pump.
  • the hydraulic circuit same as the hydraulic circuit shown in FIG. 3 can be comprised.
  • the first discharge passage 32 is connected to one discharge port 9 and the second discharge passage 33 is connected to the other discharge port 9.
  • the switching valve 40 is an electromagnetic switching valve having two positions of the cutoff position A and the opening position B.
  • the switching valve 40 may be a linear solenoid valve capable of controlling the flow passage area steplessly between the cutoff position A and the opening position B.
  • the discharge of the sub pump 102 is throttled by the switching valve 40, and the check valve 35 is pushed open by the amount corresponding to the increase of the discharge pressure of the sub pump 102 and flows into the first discharge passage 32 on the main pump 101 side.
  • the flow volume of the hydraulic fluid supplied to the hydraulic equipment 21 can be changed gently, and a pressure fluctuation can be prevented.
  • the generation of surge pressure on the sub pump 102 side can be prevented, and the pressure drop of the hydraulic oil supplied to the hydraulic device 21 can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

A pump device comprising: a main pump (101) which supplies a working fluid through a first discharge passage (32) to a fluid pressure apparatus (21); a subpump (102) which supplies the working fluid through a second discharge passage (33) to the fluid pressure apparatus, said second discharge passage merging with the first discharge passage; a check valve (35) which is provided to the second discharge passage and only allows the working fluid to flow from the second discharge passage to the first discharge passage; a return passage (36) for returning the working fluid discharged from the subpump to the intake side, said return passage being provided to the second discharge passage in a manner so as to branch from the upstream side of the check valve; and a switching valve (40) which is provided to the return passage and has a blocking position in which the return passage is blocked and an opening position in which the return passage is opened.

Description

ポンプ装置Pump device
 本発明は、ポンプ装置に関するものである。 The present invention relates to a pump device.
 JP2010-14101Aには、第1ベーンポンプと第2ベーンポンプのロータが共通の駆動軸にて連結されることによって並列に接続された多連式ベーンポンプが開示されている。その多連式ベーンポンプでは、第1ベーンポンプの吐出通路に、第1ベーンポンプが吐出する作動油を油圧機器へ供給するか又は吸込通路へ戻すかを切り換える切換弁が設けられる。 JP2010-14101A discloses a multiple vane pump in which the rotors of the first vane pump and the second vane pump are connected in parallel by being connected by a common drive shaft. In the multiple vane pump, a switching valve for switching whether the hydraulic oil discharged from the first vane pump is supplied to the hydraulic device or returned to the suction passage is provided in the discharge passage of the first vane pump.
 JP2010-14101Aに記載の切換弁は、第1ベーンポンプに連通するポンプポートと、油圧機器側に連通する吐出ポートと、吸込通路側に連通する吸込側ポートと、を有する。ポンプポートの作動油は、切換弁のスプールの位置に応じて、油圧機器へ供給されるか又は吸込通路へ戻される。 The switching valve described in JP2010-14101A has a pump port communicating with the first vane pump, a discharge port communicating with the hydraulic device side, and a suction side port communicating with the suction passage side. The hydraulic fluid in the pump port is supplied to the hydraulic equipment or returned to the suction passage according to the position of the spool of the switching valve.
 この種の切換弁では、スプールの位置によっては、ポンプポートが吐出ポートと吸込側ポートの両方に連通するか、或いは、ポンプポートが吐出ポートと吸込側ポートの両方に連通しない瞬間が存在する。 In this type of switching valve, depending on the position of the spool, there is a moment when the pump port communicates with both the discharge port and the suction side port, or when the pump port does not communicate with both the discharge port and the suction side port.
 ポンプポートが吐出ポートと吸込側ポートの両方に連通すると、油圧機器へ供給される作動油の圧力が低下してしまう。また、ポンプポートが吐出ポートと吸込側ポートの両方に連通しないと、ポンプポートの内圧が上昇しサージ圧が発生してしまう。 If the pump port communicates with both the discharge port and the suction side port, the pressure of the hydraulic oil supplied to the hydraulic equipment will decrease. If the pump port does not communicate with both the discharge port and the suction side port, the internal pressure of the pump port rises and a surge pressure is generated.
 本発明は、メインポンプとサブポンプとを有するポンプ装置において、サブポンプから吐出される作動流体の切り換えを安定して行うことを目的とする。 An object of the present invention is to stably switch a working fluid discharged from a sub pump in a pump device having a main pump and a sub pump.
 本発明のある態様によれば、流体圧機器へ作動流体を供給するポンプ装置であって、第1吐出通路を通じて前記流体圧機器へ作動流体を供給するメインポンプと、前記第1吐出通路に合流する第2吐出通路を通じて前記流体圧機器へ作動流体を供給するサブポンプと、前記第2吐出通路に設けられ、前記第2吐出通路から前記第1吐出通路への作動流体の流れのみを許容する逆止弁と、前記第2吐出通路における前記逆止弁の上流側から分岐して設けられ、前記サブポンプから吐出された作動流体を吸込側へと還流させるためのリターン通路と、前記リターン通路に設けられ、前記リターン通路を遮断する遮断位置と前記リターン通路を開通する開通位置とを有する切換弁と、を備える。 According to an aspect of the present invention, there is provided a pump device that supplies a working fluid to a fluid pressure device, the main pump supplying the working fluid to the fluid pressure device through a first discharge passage, and the first discharge passage. A sub-pump that supplies the working fluid to the fluid pressure device through the second discharge passage, and a reverse pump that is provided in the second discharge passage and allows only the flow of the working fluid from the second discharge passage to the first discharge passage. A stop valve, a return passage branched from the upstream side of the check valve in the second discharge passage, and provided in the return passage for returning the working fluid discharged from the sub-pump to the suction side And a switching valve having a blocking position for blocking the return path and an opening position for opening the return path.
図1は、本発明の実施形態に係るポンプ装置の断面図である。FIG. 1 is a cross-sectional view of a pump device according to an embodiment of the present invention. 図2は、本発明の実施形態に係るポンプ装置におけるポンプカートリッジの平面図である。FIG. 2 is a plan view of a pump cartridge in the pump device according to the embodiment of the present invention. 図3は、本発明の実施形態に係るポンプ装置の油圧回路図である。FIG. 3 is a hydraulic circuit diagram of the pump device according to the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態に係るポンプ装置100ついて説明する。 Hereinafter, a pump device 100 according to an embodiment of the present invention will be described with reference to the drawings.
 ポンプ装置100は、車両に搭載される油圧機器、例えば、パワーステアリング装置や変速機等の油圧供給源として用いられるものである。本実施形態では、ポンプ装置100が2つのベーンポンプであるメインポンプ101とサブポンプ102が並列に接続された構造である場合について説明する。 The pump device 100 is used as a hydraulic supply source for a hydraulic device mounted on a vehicle, for example, a power steering device or a transmission. This embodiment demonstrates the case where the pump apparatus 100 is the structure where the main pump 101 and the subpump 102 which are two vane pumps were connected in parallel.
 図1及び2に示すように、ポンプ装置100は、エンジン22(図3参照)の動力が伝達される共通の駆動軸1にメインポンプ101及びサブポンプ102のそれぞれのロータ2が連結され、駆動軸1の回転によってロータ2が回転するものである。ロータ2は、図2中時計方向に回転する。 As shown in FIGS. 1 and 2, in the pump device 100, the rotor 2 of each of the main pump 101 and the sub pump 102 is connected to a common drive shaft 1 to which the power of the engine 22 (see FIG. 3) is transmitted. The rotor 2 is rotated by the rotation of 1. The rotor 2 rotates clockwise in FIG.
 メインポンプ101から吐出される作動油(作動流体)は、常に油圧機器(流体圧機器)21(図3参照)へ供給される。一方、サブポンプ102から吐出される作動油は、切換弁40(図3参照)の作動に応じて、油圧機器21へ供給されるか又は吸込側へと還流する。 The hydraulic oil (working fluid) discharged from the main pump 101 is always supplied to the hydraulic equipment (fluid pressure equipment) 21 (see FIG. 3). On the other hand, the hydraulic oil discharged from the sub pump 102 is supplied to the hydraulic equipment 21 or recirculates to the suction side in accordance with the operation of the switching valve 40 (see FIG. 3).
 メインポンプ101及びサブポンプ102は、ロータ2に対して径方向に往復動自在に設けられる複数のベーン3と、ロータ2を収容すると共にロータ2の回転に伴って内周のカム面4aにベーン3の先端部が摺動するカムリング4と、を備える。 The main pump 101 and the sub-pump 102 accommodate a plurality of vanes 3 that are reciprocally movable in the radial direction with respect to the rotor 2, and the vanes 3 on the inner cam surface 4 a as the rotor 2 rotates. The cam ring 4 with which the front-end | tip part slides is provided.
 ロータ2には、外周面に開口部を有するスリット16が所定間隔をおいて放射状に形成され、ベーン3は、スリット16に摺動自在に挿入される。 In the rotor 2, slits 16 having openings on the outer peripheral surface are radially formed at predetermined intervals, and the vanes 3 are slidably inserted into the slits 16.
 スリット16の基端側には、ポンプの吐出圧が導かれる背圧室17が画成される。隣り合う背圧室17は、ロータ2に形成された円弧状の溝2aによって連通し、この溝2aにはポンプ吐出圧が常時導かれている。ベーン3は、背圧室17の圧力及びロータ2の回転による遠心力によってスリット16から抜け出る方向に押圧され、先端部がカムリング4の内周のカム面4aに当接する。これにより、カムリング4の内部には、ロータ2の外周面、カムリングのカム面4a、及び隣り合うベーン3によって複数のポンプ室7が画成される。ロータ2、ベーン3、及びカムリング4によってポンプカートリッジ20が構成される。 A back pressure chamber 17 into which the pump discharge pressure is guided is defined on the base end side of the slit 16. Adjacent back pressure chambers 17 communicate with each other by an arc-shaped groove 2a formed in the rotor 2, and pump discharge pressure is always guided to the groove 2a. The vane 3 is pressed in the direction of coming out of the slit 16 by the pressure of the back pressure chamber 17 and the centrifugal force due to the rotation of the rotor 2, and the tip part comes into contact with the cam surface 4 a on the inner periphery of the cam ring 4. Thus, a plurality of pump chambers 7 are defined inside the cam ring 4 by the outer peripheral surface of the rotor 2, the cam surface 4 a of the cam ring, and the adjacent vanes 3. The rotor 2, the vane 3, and the cam ring 4 constitute a pump cartridge 20.
 カムリング4は、内周のカム面4aが略楕円形状をした環状の部材であり、ロータ2の回転に伴ってカム面4aを摺動する各ベーン3間によって仕切られるポンプ室7の容積を拡張する吸込領域4bと、ポンプ室7の容積を収縮する吐出領域4cと、を有する。 The cam ring 4 is an annular member having an inner circumferential cam surface 4 a that is substantially elliptical, and expands the volume of the pump chamber 7 that is partitioned by the vanes 3 that slide on the cam surface 4 a as the rotor 2 rotates. A suction region 4b that contracts, and a discharge region 4c that contracts the volume of the pump chamber 7.
 メインポンプ101及びサブポンプ102のポンプカートリッジ20の間にはセンタープレート5が配置されると共に、それぞれのポンプカートリッジ20の側部にはサイドプレート6が配置される。このように、ポンプカートリッジ20は、センタープレート5とサイドプレート6との間に挟持され、ポンプ室7は、センタープレート5とサイドプレート6とによって密閉される。 The center plate 5 is disposed between the pump cartridges 20 of the main pump 101 and the sub pump 102, and the side plate 6 is disposed on the side of each pump cartridge 20. Thus, the pump cartridge 20 is sandwiched between the center plate 5 and the side plate 6, and the pump chamber 7 is sealed by the center plate 5 and the side plate 6.
 センタープレート5には、カムリング4の吸込領域4bに向けて開口し、ポンプ室7に作動油を導く吸込ポート8が形成される。 The center plate 5 is formed with a suction port 8 that opens toward the suction region 4 b of the cam ring 4 and guides hydraulic oil to the pump chamber 7.
 サイドプレート6には、カムリング4の吐出領域4cに向けて開口し、ポンプ室7が吐出する作動油が導かれる円弧状の2つの吐出ポート9が形成される。 The side plate 6 is formed with two arc-shaped discharge ports 9 that open toward the discharge region 4c of the cam ring 4 and guide the hydraulic oil discharged from the pump chamber 7.
 各ポンプ室7は、ロータ2が1回転する過程で、カムリング4の吸込領域4bにて吸込ポート8を通じて作動油を吸込み、その吸込んだ作動油をカムリング4の吐出領域4cにて吐出ポート9を通じて吐出し、その後、カムリング4の吸込領域4bにて吸込ポート8を通じて作動油を吸込み、その吸込んだ作動油をカムリング4の吐出領域4cにて吐出ポート9を通じて吐出する。このように、各ポンプ室7は、ロータ2の回転に伴って拡縮し、ロータ2が1回転する過程で作動油の吸込吐出を2回行う。 Each pump chamber 7 sucks the working oil through the suction port 8 in the suction region 4 b of the cam ring 4 and makes the sucked hydraulic oil pass through the discharge port 9 in the discharge region 4 c of the cam ring 4 in the process of one rotation of the rotor 2. After that, the hydraulic oil is sucked through the suction port 8 in the suction area 4 b of the cam ring 4, and the sucked hydraulic oil is discharged through the discharge port 9 in the discharge area 4 c of the cam ring 4. As described above, each pump chamber 7 expands and contracts with the rotation of the rotor 2, and performs the suction and discharge of the hydraulic oil twice in the process of rotating the rotor 2 once.
 駆動軸1は、第1ポンプボディ10及び第2ポンプボディ11にブッシュ18を介して回転自在に支持される。第1ポンプボディ10に形成されたポンプ収容凹部10a内には、メインポンプ101のサイドプレート6とポンプカートリッジ20が積層して収容され、第2ポンプボディ11に形成されたポンプ収容凹部11a内には、サブポンプ102のサイドプレート6とポンプカートリッジ20と共にセンタープレート5が積層して収容される。このように、第1ポンプボディ10にはメインポンプ101が収容され、第2ポンプボディ11にはサブポンプ102が収容される。 The drive shaft 1 is rotatably supported by the first pump body 10 and the second pump body 11 via a bush 18. The side plate 6 of the main pump 101 and the pump cartridge 20 are stacked and housed in the pump housing recess 10 a formed in the first pump body 10, and in the pump housing recess 11 a formed in the second pump body 11. The center plate 5 is stacked and accommodated together with the side plate 6 of the sub pump 102 and the pump cartridge 20. Thus, the main pump 101 is accommodated in the first pump body 10 and the sub pump 102 is accommodated in the second pump body 11.
 第1ポンプボディ10と第2ポンプボディ11は、開口部を有する面を互いに当接して一体に締結され、それぞれのポンプ収容凹部10a,11aが封止される。 The first pump body 10 and the second pump body 11 are fastened together with the surfaces having the openings in contact with each other, and the respective pump housing recesses 10a and 11a are sealed.
 メインポンプ101及びサブポンプ102のカムリング4及びサイドプレート6は、センタープレート5を挿通する2つの位置決めピン19によって回り止めされる。位置決めピン19によって、カムリング4に対するセンタープレート5とサイドプレート6の相対回転が規制される。これにより、カムリング4の吸込領域4bとセンタープレート5の吸込ポート8との位置決め、及びカムリング4の吐出領域4cとサイドプレート6の吐出ポート9との位置決めが行われる。 The cam ring 4 and the side plate 6 of the main pump 101 and the sub pump 102 are stopped by two positioning pins 19 that pass through the center plate 5. The positioning pin 19 restricts the relative rotation of the center plate 5 and the side plate 6 with respect to the cam ring 4. Thereby, the positioning of the suction area 4b of the cam ring 4 and the suction port 8 of the center plate 5 and the positioning of the discharge area 4c of the cam ring 4 and the discharge port 9 of the side plate 6 are performed.
 第1ポンプボディ10及び第2ポンプボディ11には、吐出ポート9から吐出された作動油が流入する高圧室12が形成される。高圧室12の作動油は、第1吐出通路32及び第2吐出通路33(図3参照)を通じて油圧機器21へ供給される。また、高圧室12の作動油は、サイドプレート6に形成された貫通孔6aを通じてロータ2の円弧状の溝2aに導かれて各背圧室17へ導かれる。 In the first pump body 10 and the second pump body 11, a high pressure chamber 12 into which hydraulic oil discharged from the discharge port 9 flows is formed. The hydraulic oil in the high pressure chamber 12 is supplied to the hydraulic equipment 21 through the first discharge passage 32 and the second discharge passage 33 (see FIG. 3). The hydraulic oil in the high pressure chamber 12 is guided to the arc-shaped groove 2 a of the rotor 2 through the through hole 6 a formed in the side plate 6 and is guided to each back pressure chamber 17.
 次に、図3を参照して、ポンプ装置100の油圧回路について説明する。 Next, the hydraulic circuit of the pump device 100 will be described with reference to FIG.
 メインポンプ101及びサブポンプ102の吸込ポート8には、タンク34に接続された吸込通路31が接続される。メインポンプ101の吐出ポート9には第1吐出通路32が接続され、サブポンプ102の吐出ポート9には第2吐出通路33が接続される。第2吐出通路33は第1吐出通路32に合流して設けられる。 The suction passage 31 connected to the tank 34 is connected to the suction port 8 of the main pump 101 and the sub pump 102. A first discharge passage 32 is connected to the discharge port 9 of the main pump 101, and a second discharge passage 33 is connected to the discharge port 9 of the sub pump 102. The second discharge passage 33 is provided so as to join the first discharge passage 32.
 このように、メインポンプ101は、吸込通路31を通じてタンク34から作動油を吸い込み、第1吐出通路32を通じて油圧機器21へ作動油を供給し、サブポンプ102は、吸込通路31を通じてタンク34から作動油を吸い込み、第2吐出通路33を通じて油圧機器21へ作動油を供給する。 As described above, the main pump 101 sucks the hydraulic oil from the tank 34 through the suction passage 31 and supplies the hydraulic oil to the hydraulic device 21 through the first discharge passage 32, and the sub pump 102 passes the hydraulic oil from the tank 34 through the suction passage 31. The hydraulic fluid is supplied to the hydraulic device 21 through the second discharge passage 33.
 第2吐出通路33には、第2吐出通路33から第1吐出通路32への作動油の流れのみを許容する逆止弁35が設けられる。 The second discharge passage 33 is provided with a check valve 35 that allows only the flow of hydraulic oil from the second discharge passage 33 to the first discharge passage 32.
 第2吐出通路33における逆止弁35の上流側には、リターン通路36が分岐して設けられる。リターン通路36は、サブポンプ102から吐出された作動油を吸込側へと還流させるためのものである。 A return passage 36 is branched and provided upstream of the check valve 35 in the second discharge passage 33. The return passage 36 is for returning the hydraulic oil discharged from the sub pump 102 to the suction side.
 リターン通路36には、サブポンプ102が吐出する作動油を油圧機器21に供給するか又は吸込通路31へ戻すかを切り換える切換弁40が設けられる。つまり、サブポンプ102から吐出される作動油は、切換弁40の切り換えによって油圧機器21又は吸込通路31のいずれかに選択的に導かれる。 The return passage 36 is provided with a switching valve 40 for switching whether the hydraulic oil discharged from the sub pump 102 is supplied to the hydraulic equipment 21 or returned to the suction passage 31. In other words, the hydraulic oil discharged from the sub pump 102 is selectively guided to either the hydraulic device 21 or the suction passage 31 by switching the switching valve 40.
 切換弁40は、リターン通路36を遮断する遮断位置Aとリターン通路36を開通する開通位置Bとの2ポジションを有する。切換弁40は、コントローラ30から出力される制御電流によってポジションが切り換えられる電磁式切換弁である。切換弁40は、ソレノイド41が非励磁のときにはバネ42の付勢力によって開通位置Bに設定され、ソレノイド41が励磁したときにはバネ42の付勢力に抗して遮断位置Aに設定される。切換弁40は、例えば、コントローラ30に入力されるエンジン22の回転数、つまりロータ2の回転数であるポンプ回転数に応じてポジションが切り換えられる。なお、切換弁40は電磁式切換弁には限られず、パイロット液圧によって切換作動するパイロット式切換弁でもよい。 The switching valve 40 has two positions, a blocking position A for blocking the return passage 36 and an opening position B for opening the return passage 36. The switching valve 40 is an electromagnetic switching valve whose position is switched by a control current output from the controller 30. The switching valve 40 is set to the open position B by the biasing force of the spring 42 when the solenoid 41 is not excited, and is set to the blocking position A against the biasing force of the spring 42 when the solenoid 41 is excited. The position of the switching valve 40 is switched according to, for example, the rotational speed of the engine 22 input to the controller 30, that is, the pump rotational speed that is the rotational speed of the rotor 2. The switching valve 40 is not limited to an electromagnetic switching valve, and may be a pilot switching valve that is switched by a pilot hydraulic pressure.
 次に、ポンプ装置100の動作について説明する。 Next, the operation of the pump device 100 will be described.
 メインポンプ101から吐出される作動油は、切換弁40のポジションに関係なく全量が油圧機器21へ供給される。 The entire amount of hydraulic oil discharged from the main pump 101 is supplied to the hydraulic equipment 21 regardless of the position of the switching valve 40.
 切換弁40が遮断位置Aに設定された場合には、サブポンプ102から吐出される作動油は、逆止弁35を押し開いて全量が油圧機器21へ供給される。このように、切換弁40が遮断位置Aであっても、逆止弁35が開くため、サブポンプ102の吐出圧が上昇してサージ圧が発生することが防止される。 When the switching valve 40 is set to the cutoff position A, the hydraulic oil discharged from the sub pump 102 pushes the check valve 35 open and is supplied to the hydraulic device 21 in its entirety. Thus, even when the switching valve 40 is in the shutoff position A, the check valve 35 is opened, so that the discharge pressure of the sub pump 102 is prevented from increasing and surge pressure is prevented from being generated.
 一方、切換弁40が開通位置Bに設定された場合(図3に示す状態)には、サブポンプ102から吐出される作動油の全量又は一部は、リターン通路36を通じて吸込側へと還流する。この際、第1吐出通路32から第2吐出通路33への作動流体の流れは逆止弁35によって遮断されるため、メインポンプ101から吐出される作動油が切換弁40を通じてリターン通路36へ流入することがなく、油圧機器21へ供給される作動油の圧力が低下することが防止される。 On the other hand, when the switching valve 40 is set to the opening position B (the state shown in FIG. 3), all or part of the hydraulic oil discharged from the sub pump 102 returns to the suction side through the return passage 36. At this time, the flow of the working fluid from the first discharge passage 32 to the second discharge passage 33 is blocked by the check valve 35, so that the hydraulic oil discharged from the main pump 101 flows into the return passage 36 through the switching valve 40. Thus, the pressure of the hydraulic oil supplied to the hydraulic device 21 is prevented from decreasing.
 以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are obtained.
 サブポンプ102から吐出される作動油の圧力が第1吐出通路32の圧力よりも大きくなると逆止弁35が開くため、サブポンプ102の吐出圧が上昇してサージ圧が発生することが防止される。また、第2吐出通路33には第2吐出通路33から第1吐出通路32への作動油の流れのみを許容する逆止弁35が設けられるため、メインポンプ101側からサブポンプ102側へ作動油が流入することがない。したがって、油圧機器21へ供給される作動油の圧力が低下することが防止される。以上のように、サブポンプ102から吐出される作動油の切り換えを安定して行うことができる。 When the pressure of the hydraulic oil discharged from the sub pump 102 becomes larger than the pressure of the first discharge passage 32, the check valve 35 opens, so that the discharge pressure of the sub pump 102 rises and surge pressure is prevented from being generated. Further, since the second discharge passage 33 is provided with a check valve 35 that allows only the flow of hydraulic oil from the second discharge passage 33 to the first discharge passage 32, the hydraulic oil is moved from the main pump 101 side to the sub pump 102 side. Will not flow in. Accordingly, it is possible to prevent the pressure of the hydraulic oil supplied to the hydraulic device 21 from being lowered. As described above, the hydraulic oil discharged from the sub pump 102 can be switched stably.
 以下に、上記実施形態の変形例について説明する。 Hereinafter, modifications of the above embodiment will be described.
 (1)上記実施形態では、ポンプ装置100が2つのベーンポンプであるメインポンプ101とサブポンプ102が並列に接続された構造について説明した。これに代わり、ポンプ装置100のメインポンプとサブポンプを、ロータ2が1回転する過程で作動油の吸込吐出を2回行う1つのベーンポンプによって構成するようにしてもよい。具体的には、一方の吸込吐出を行うカムリング4の吸込領域4b及び吐出領域4cをメインポンプとし、他方の吸込吐出を行うカムリング4の吸込領域4b及び吐出領域4cをサブポンプとして構成する。このように構成しても、図3に示す油圧回路と同一の油圧回路を構成することができる。具体的には、ベーンポンプの2つの吐出ポート9のうち、一方の吐出ポート9に第1吐出通路32が接続され、他方の吐出ポート9に第2吐出通路33が接続される。 (1) In the above embodiment, the structure in which the main pump 101 and the sub pump 102 in which the pump device 100 is two vane pumps is connected in parallel has been described. Instead of this, the main pump and the sub pump of the pump device 100 may be configured by one vane pump that performs the suction and discharge of the hydraulic oil twice in the process of rotating the rotor 2 once. Specifically, the suction region 4b and the discharge region 4c of the cam ring 4 that performs one suction discharge are configured as a main pump, and the suction region 4b and the discharge region 4c of the cam ring 4 that performs the other suction discharge are configured as a sub pump. Even if comprised in this way, the hydraulic circuit same as the hydraulic circuit shown in FIG. 3 can be comprised. Specifically, of the two discharge ports 9 of the vane pump, the first discharge passage 32 is connected to one discharge port 9 and the second discharge passage 33 is connected to the other discharge port 9.
 (2)上記実施形態では、切換弁40は、遮断位置Aと開通位置Bとの2ポジションを有する電磁式切換弁である場合について説明した。これに代わり、切換弁40は、遮断位置Aと開通位置Bの間で流路面積を無段階に制御可能なリニアソレノイド弁であってもよい。その場合には、サブポンプ102の吐出が切換弁40によって絞られ、サブポンプ102の吐出圧が上昇した分のみ逆止弁35を押し開けてメインポンプ101側の第1吐出通路32に流入する。これにより、油圧機器21へ供給される作動油の流量を緩やかに変化させることができ、圧力変動を防止することができる。この場合でも、サブポンプ102側のサージ圧の発生を防止することができると共に、油圧機器21へ供給される作動油の圧力低下を防止することができる。 (2) In the above embodiment, the case where the switching valve 40 is an electromagnetic switching valve having two positions of the cutoff position A and the opening position B has been described. Instead of this, the switching valve 40 may be a linear solenoid valve capable of controlling the flow passage area steplessly between the cutoff position A and the opening position B. In that case, the discharge of the sub pump 102 is throttled by the switching valve 40, and the check valve 35 is pushed open by the amount corresponding to the increase of the discharge pressure of the sub pump 102 and flows into the first discharge passage 32 on the main pump 101 side. Thereby, the flow volume of the hydraulic fluid supplied to the hydraulic equipment 21 can be changed gently, and a pressure fluctuation can be prevented. Even in this case, the generation of surge pressure on the sub pump 102 side can be prevented, and the pressure drop of the hydraulic oil supplied to the hydraulic device 21 can be prevented.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2014年3月19日に日本国特許庁に出願された特願2014-056145に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-056145 filed with the Japan Patent Office on March 19, 2014, the entire contents of which are incorporated herein by reference.

Claims (4)

  1.  流体圧機器へ作動流体を供給するポンプ装置であって、
     第1吐出通路を通じて前記流体圧機器へ作動流体を供給するメインポンプと、
     前記第1吐出通路に合流する第2吐出通路を通じて前記流体圧機器へ作動流体を供給するサブポンプと、
     前記第2吐出通路に設けられ、前記第2吐出通路から前記第1吐出通路への作動流体の流れのみを許容する逆止弁と、
     前記第2吐出通路における前記逆止弁の上流側から分岐して設けられ、前記サブポンプから吐出された作動流体を吸込側へと還流させるためのリターン通路と、
     前記リターン通路に設けられ、前記リターン通路を遮断する遮断位置と前記リターン通路を開通する開通位置とを有する切換弁と、
    を備えるポンプ装置。
    A pump device for supplying a working fluid to a fluid pressure device,
    A main pump for supplying a working fluid to the fluid pressure device through a first discharge passage;
    A subpump for supplying a working fluid to the fluid pressure device through a second discharge passage that merges with the first discharge passage;
    A check valve provided in the second discharge passage and allowing only a flow of the working fluid from the second discharge passage to the first discharge passage;
    A return path that is branched from the upstream side of the check valve in the second discharge path, and returns the working fluid discharged from the sub pump to the suction side;
    A switching valve provided in the return passage, having a shut-off position for blocking the return passage and an opening position for opening the return passage;
    A pump device comprising:
  2.  請求項1に記載のポンプ装置であって、
     前記メインポンプ及び前記サブポンプは、それぞれのロータが共通の駆動軸にて連結されることによって並列に接続された2つのベーンポンプであるポンプ装置。
    The pump device according to claim 1,
    The main pump and the sub pump are pump devices that are two vane pumps connected in parallel by connecting respective rotors with a common drive shaft.
  3.  請求項1に記載のポンプ装置であって、
     前記メインポンプ及び前記サブポンプは、ロータが1回転する過程で作動油の吸込吐出を2回行う1つのベーンポンプによって構成され、
     前記メインポンプは、一方の吸込吐出を行うカムリングの吸込領域及び吐出領域によって構成され、
     前記サブポンプは、他方の吸込吐出を行うカムリングの吸込領域及び吐出領域によって構成されるポンプ装置。
    The pump device according to claim 1,
    The main pump and the sub pump are constituted by one vane pump that performs suction and discharge of hydraulic oil twice in the course of one rotation of the rotor,
    The main pump is constituted by a suction region and a discharge region of a cam ring that performs one suction and discharge,
    The said sub pump is a pump apparatus comprised by the suction area | region and discharge area | region of the cam ring which performs the other suction discharge.
  4.  請求項1に記載のポンプ装置であって、
     前記切換弁は、リニアソレノイド弁であって、前記遮断位置と前記開通位置の間で流路面積を無段階に制御可能であるポンプ装置。
    The pump device according to claim 1,
    The said switching valve is a linear solenoid valve, Comprising: The pump apparatus which can control a flow path area continuously between the said interruption | blocking position and the said opening position.
PCT/JP2015/056337 2014-03-19 2015-03-04 Pump device WO2015141466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056145A JP2015178791A (en) 2014-03-19 2014-03-19 pump device
JP2014-056145 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141466A1 true WO2015141466A1 (en) 2015-09-24

Family

ID=54144440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056337 WO2015141466A1 (en) 2014-03-19 2015-03-04 Pump device

Country Status (2)

Country Link
JP (1) JP2015178791A (en)
WO (1) WO2015141466A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6672560B2 (en) * 2016-04-06 2020-03-25 株式会社 神崎高級工機製作所 Hydraulic pump unit for clutch hydraulic oil supply
KR102112756B1 (en) * 2018-11-05 2020-05-20 명화공업주식회사 Hydraulic pump device
US11519407B2 (en) * 2020-10-23 2022-12-06 Hamilton Sundstrand Corporation Dual vane pump with pre-pressurization passages

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833285B2 (en) * 1991-09-17 1998-12-09 トヨタ自動車株式会社 Variable displacement pump
JP2002070757A (en) * 2000-08-31 2002-03-08 Tokico Ltd Variable displacement gear pump
JP2009203811A (en) * 2008-02-26 2009-09-10 Toyota Industries Corp Variable displacement type gear pump
JP2009236074A (en) * 2008-03-28 2009-10-15 Shimadzu Corp Double gear pump
JP2010014101A (en) * 2008-06-05 2010-01-21 Kayaba Ind Co Ltd Multiple vane pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028335A (en) * 2001-07-11 2003-01-29 Aisin Seiki Co Ltd Linear solenoid valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2833285B2 (en) * 1991-09-17 1998-12-09 トヨタ自動車株式会社 Variable displacement pump
JP2002070757A (en) * 2000-08-31 2002-03-08 Tokico Ltd Variable displacement gear pump
JP2009203811A (en) * 2008-02-26 2009-09-10 Toyota Industries Corp Variable displacement type gear pump
JP2009236074A (en) * 2008-03-28 2009-10-15 Shimadzu Corp Double gear pump
JP2010014101A (en) * 2008-06-05 2010-01-21 Kayaba Ind Co Ltd Multiple vane pump

Also Published As

Publication number Publication date
JP2015178791A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP2010014101A (en) Multiple vane pump
WO2015141466A1 (en) Pump device
US20110176909A1 (en) Vehicle hydraulic control unit
JP5371795B2 (en) Variable displacement vane pump
WO2016194933A1 (en) Pump device
WO2013141001A1 (en) Variable-capacity vane pump
JP6411228B2 (en) Transmission device
WO2016031767A1 (en) Pump device
JP6708534B2 (en) Vane oil pump
JP5438554B2 (en) Variable displacement vane pump
JP5553204B2 (en) Vane pump
JP5933305B2 (en) Vane pump
JP2009275537A (en) Variable displacement vane pump
JP6094077B2 (en) Oil pump system
US20140294650A1 (en) Vane pump
US20170074263A1 (en) Vehicle hydraulic device
WO2016043055A1 (en) Pump device
JP2010090807A (en) Double vane pump
JP2015203385A (en) Vehicle hydraulic control device
JP2012202268A (en) Vane pump
WO2017043392A1 (en) Vane pump
WO2016175090A1 (en) Variable displacement vane pump
JP2017067218A (en) hydraulic unit
JP2015059523A (en) Variable displacement vane pump
JP2016065485A (en) Pump device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765383

Country of ref document: EP

Kind code of ref document: A1