WO2015139337A1 - 一种待机功耗控制电路及力法 - Google Patents

一种待机功耗控制电路及力法 Download PDF

Info

Publication number
WO2015139337A1
WO2015139337A1 PCT/CN2014/074511 CN2014074511W WO2015139337A1 WO 2015139337 A1 WO2015139337 A1 WO 2015139337A1 CN 2014074511 W CN2014074511 W CN 2014074511W WO 2015139337 A1 WO2015139337 A1 WO 2015139337A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
frequency
output
level signal
module
Prior art date
Application number
PCT/CN2014/074511
Other languages
English (en)
French (fr)
Inventor
黎飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/373,345 priority Critical patent/US9671808B2/en
Publication of WO2015139337A1 publication Critical patent/WO2015139337A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric

Definitions

  • the present invention relates to the field of electronics, and in particular, to a standby power control circuit and method. Background technique
  • the technical problem to be solved by the embodiments of the present invention is to provide a standby power consumption control circuit and method, which can reduce the power supply voltage of the household electrical appliance in the standby mode, reduce the power consumption of the key components, and thereby reduce the standby power consumption of the household electrical appliance. purpose.
  • the first technical solution adopted by the present invention is: a standby power consumption control circuit including a main power supply, a transformer, a first switching transistor, a load, a low frequency voltage dividing circuit, and a device system; a transformer having a first input terminal connected to one end of the main power source, a second input terminal connected to the drain of the first switching transistor, an output terminal and a voltage of one end of the device system and the low frequency voltage dividing circuit The input end is connected, and the voltage supplied by the main power source is transformed and output to the a device system and the low frequency voltage dividing circuit;
  • the device system is connected to the signal input end of the low frequency voltage dividing circuit, and is configured to acquire a voltage corresponding to the output of the transformer, and send a corresponding level signal to the low frequency voltage dividing circuit according to a current working mode.
  • the working mode includes a normal working mode and a standby working mode, wherein the level signal corresponding to the normal working mode is a low level signal, and the level signal corresponding to the standby working mode is a high level signal;
  • the low frequency voltage dividing circuit has an output end connected to the first switching transistor gate for receiving a level signal sent by the device system and a voltage output by the transformer, and according to the received level a signal, dividing the received voltage to obtain a divided voltage, and determining a frequency of an output signal output to the first switching transistor according to the obtained divided voltage; wherein the determined output signal
  • the frequency includes a first frequency and a second frequency, when the received level signal is low, the determined output signal has a frequency of the second frequency, and when the received level signal is When the level is high, the frequency of the determined output signal is the first frequency, and the second frequency is greater than the first frequency;
  • the first switching transistor has a source connected to the load for receiving the output signal from the low frequency voltage dividing circuit, and using a current frequency of the output signal as an operating frequency to control the transformer Turning on time to control the power consumption of the transformer.
  • the low frequency voltage dividing circuit includes a voltage dividing circuit, a photoelectric coupling comparison module, and a frequency switching module;
  • the voltage dividing circuit includes a first voltage dividing circuit and a second voltage dividing circuit;
  • the first voltage dividing circuit includes at least one voltage dividing load, one end of which is connected to the output end of the transformer, the other end is connected to the second voltage dividing circuit, and is further connected to the input end of the photoelectric coupling comparison module;
  • the second voltage dividing circuit includes a second switching transistor and at least two divided voltages, the second switching transistor being in series with at least one divided load, and one or more than the divided voltage load in series a voltage dividing load is connected in parallel; wherein, the gate of the second switching transistor is connected to a signal end of the device system, and the source or the drain is connected to at least one voltage dividing load;
  • the voltage dividing circuit is configured to turn on or off the second switching transistor according to a level signal from the device system, and control a voltage from the transformer to be divided and output to the optocoupler comparison module; When the level signal is a low level signal, the second switching transistor is turned off, and when the level signal is a high level signal, the second switching transistor is turned on;
  • the optocoupler comparison module includes a three-terminal adjustable shunt reference source, a photocoupler, and a shunt load for receiving a voltage output by the voltage dividing circuit and a preset reference voltage in the three-terminal adjustable shunt reference source Comparing, the photocoupler outputs a feedback voltage to the frequency switching module according to the comparison result; wherein, the first end of the three-terminal adjustable shunt reference source is an input end of the optocoupler comparison module, and the second The end is connected to the first end of the photocoupler, the third end is grounded; the second end of the photocoupler is connected to the first end of the shunt load, and is also connected to the input end of the frequency switching module; The second end of the shunt load is connected to an external fixed voltage source; the frequency switching module includes a microcontroller, a first switch, a second switch, a first frequency module and a second frequency module, for obtaining the photoelectric Coupling a feedback voltage output by the comparison module, and comparing with a
  • the amplifier is further provided with another input connected to a three-terminal regulator for generating an output voltage.
  • the external fixed voltage source is the transformer, and the second end of the shunt load in the optocoupler comparison module is connected to the output end of the transformer.
  • the microcontroller controls the first switch to be turned on and the second switch to be turned off, selecting the first a frequency module, determining that a frequency of an output signal outputted to the first transistor is a first frequency; and when the obtained feedback voltage is greater than a first comparison voltage preset in the microcontroller, the microcontroller controls The first switch is turned off and the second switch is turned on, and the second frequency module is selected to determine that the frequency of the output signal output to the first transistor is the second frequency.
  • a standby power control circuit including a main power supply, a transformer, a first switching transistor, a load, a voltage dividing circuit, an optocoupler comparison module, and frequency switching Module and equipment system;
  • the transformer has a first input end connected to one end of the main power source, a second input end connected to the drain of the first switching transistor, and an output end connected to one end of the device system and the voltage dividing circuit.
  • the voltage provided by the main power source is transformed and output to the device system and the voltage dividing circuit;
  • the device system is connected to the voltage dividing circuit, and is configured to acquire a voltage corresponding to the output of the transformer, and send a corresponding level signal to the voltage dividing circuit according to a current working mode, where the working The mode includes a normal working mode and a standby working mode, and the normal working mode
  • the corresponding level signal is a low level signal
  • the level signal corresponding to the standby working mode is a high level signal
  • the voltage dividing circuit includes a first voltage dividing circuit and a second voltage dividing circuit;
  • the first voltage dividing circuit includes at least one voltage dividing load, one end of which is connected to the output end of the transformer, the other end is connected to the second voltage dividing circuit, and is further connected to the input end of the photoelectric coupling comparison module;
  • the second voltage dividing circuit includes a second switching transistor and at least two divided voltages, the second switching transistor being in series with at least one divided load, and one or more than the divided voltage load in series a voltage dividing load is connected in parallel; wherein, the gate of the second switching transistor is connected to a signal end of the device system, and the source or the drain is connected to at least one voltage dividing load;
  • the voltage dividing circuit is configured to turn on or off the second switching transistor according to a level signal from the device system, and control a voltage from the transformer to be divided and output to the optocoupler comparison module; When the level signal is a low level signal, the second switching transistor is turned off, and when the level signal is a high level signal, the second switching transistor is turned on;
  • the optocoupler comparison module includes a three-terminal adjustable shunt reference source, a photocoupler, and a shunt load for receiving a voltage output by the voltage dividing circuit and a preset reference voltage in the three-terminal adjustable shunt reference source Comparing, the photocoupler outputs a feedback voltage to the frequency switching module according to the comparison result; wherein, the first end of the three-terminal adjustable shunt reference source is an input end of the optocoupler comparison module, and the second The end is connected to the first end of the photocoupler, the third end is grounded; the second end of the photocoupler is connected to the first end of the shunt load, and is also connected to the input end of the frequency switching module; The second end of the shunt load is connected to an external fixed voltage source; the frequency switching module includes a microcontroller, a first switch, a second switch, a first frequency module and a second frequency module, for obtaining the photoelectric Coupling the feedback voltage of the comparison module output, and Comparing the first comparison voltage
  • the first switching transistor has a source connected to the load, configured to receive the output signal from the frequency switching module, and use a current frequency of the output signal as an operating frequency to control a lead of the transformer The time is passed, thereby controlling the power consumption of the transformer.
  • the standby power consumption control circuit further includes an amplifier, the input end of the amplifier is connected to the second end of the photocoupler in the optocoupler comparison module, and the output end thereof and the input of the microcontroller in the frequency module Connected to the end.
  • the amplifier is further provided with another input connected to a three-terminal regulator for generating an output voltage.
  • the external fixed voltage source is the transformer, and the second end of the shunt load in the optocoupler comparison module is connected to the output end of the transformer.
  • the microcontroller controls the first switch to be turned on and the second switch to be turned off, selecting the first a frequency module, determining that a frequency of an output signal outputted to the first transistor is a first frequency; and when the obtained feedback voltage is greater than a first comparison voltage preset in the microcontroller, the microcontroller controls The first switch is turned off and the second switch is turned on, and the second frequency module is selected to determine that the frequency of the output signal output to the first transistor is the second frequency.
  • the third technical solution adopted by the present invention is: a standby power
  • the consumption control method the method includes:
  • the level signal corresponding to the standby operation mode is a high level signal; and according to the acquired level signal, the voltage obtained from the transformer is divided to obtain a divided voltage, and according to the obtained divided voltage, Determining a frequency of an output signal output to the first switching transistor; wherein the determined output frequency includes a first frequency and a second frequency, when the received level signal is a low level, the determining The frequency of the output signal is the second frequency, when the received level signal is at a high level, the determined output signal has a frequency of the first frequency, and the second frequency is greater than the first Frequency
  • the first switching transistor obtains the output signal, and uses the frequency of the currently obtained output signal as an operating frequency to control the on-time of the transformer, thereby controlling the power consumption of the transformer.
  • the divided voltage obtained is greater than that of the current The divided voltage obtained when the obtained level signal is a high level signal.
  • the feedback voltage obtained when the obtained divided voltage is greater than the preset reference voltage is greater than the feedback voltage obtained when the obtained divided voltage is less than the preset reference voltage, and the obtained feedback voltage is The resulting divided voltage is proportional.
  • step C "the comparison of the obtained feedback voltage with a preset first comparison voltage, and determining the frequency of the output signal output to the first switching transistor according to the comparison result" includes: :
  • the method further includes the following steps:
  • the obtained feedback voltage is compared with a preset second comparison voltage and amplified to obtain an amplification voltage, and the obtained amplified voltage is used as a current feedback voltage.
  • the preset second comparison voltage is a voltage generated by a three-terminal regulator.
  • the low-level signal in the normal working mode is converted into the high-level signal in the standby mode, and the signal frequency determined to be output to the first switching transistor is converted from the second frequency to the first a frequency such that the operating frequency of the first switching transistor is switched from the second frequency to a first frequency less than the second frequency, thereby enabling the first switching transistor to control the on-time of the transformer and reducing the output power of the transformer, such that The standby voltage of the equipment system drops, which reduces the standby power consumption.
  • FIG. 1 is a schematic diagram of connection of a standby power consumption control circuit according to the first and second embodiments of the present invention
  • FIG. 2 is a connection diagram of the low frequency voltage dividing circuit of FIG.
  • FIG. 3 is another connection diagram of the low frequency voltage dividing circuit of FIG. 1;
  • FIG. 4 is a flowchart of a standby power consumption control method according to a third embodiment of the present invention.
  • FIG. 1 to FIG. 3 an embodiment of a standby power consumption control circuit of the present invention is shown.
  • FIG. 1 a connection diagram of a standby power consumption control circuit according to a first embodiment of the present invention is shown.
  • the first input terminal a1 is connected to one end of the main power source
  • the second input terminal a2 is connected to the drain D of the first switching transistor
  • the output terminal a3 is connected to one end of the device system and the voltage input terminal b1 of the low frequency voltage dividing circuit.
  • the voltage supplied by the main power source is transformed and output to the device system and the low frequency voltage dividing circuit;
  • the other end of the device system is connected to the signal input end of the low frequency voltage dividing circuit, and is configured to obtain a voltage corresponding to the output of the transformer, and send a corresponding level signal to the low frequency voltage dividing circuit according to the current working mode, wherein the working mode includes In the normal working mode and the standby working mode, the level signal corresponding to the normal working mode is a low level signal, and the level signal corresponding to the standby working mode is a high level signal;
  • the low frequency voltage dividing circuit has an output terminal b3 connected to the gate G of the first switching transistor for receiving a level signal sent by the device system and a voltage output by the transformer, and performing the received voltage according to the received level signal. Dividing the divided voltage to obtain a divided voltage, and determining a frequency of the output signal outputted to the first switching transistor according to the obtained divided voltage; wherein the frequency of the output signal includes the first frequency And the second frequency, when the received level signal is low level, the frequency of the output signal is the second frequency, and when the received level signal is high level, the frequency of the output signal is the first frequency The second frequency is greater than the first frequency;
  • the first switching transistor has a source S connected to the load for receiving an output signal from the low frequency voltage dividing circuit, and using the current frequency of the output signal as the operating frequency to control the conduction time of the transformer, thereby controlling the power consumption of the transformer.
  • the low frequency voltage dividing circuit comprises a voltage dividing circuit, a photoelectric coupling comparison module and a frequency switching module;
  • the voltage dividing circuit comprises a first voltage dividing circuit and a second voltage dividing circuit; the first voltage dividing circuit comprises at least one voltage dividing load, one end of which is connected to the output end a3 of the transformer, and the other end is connected to the second voltage dividing circuit, and The input ends of the optocoupler comparison module are connected;
  • the second voltage dividing circuit includes a second switching transistor and at least two divided voltage loads, the second switching transistor is connected in series with the at least one divided load, and is connected in parallel with one or more divided voltages other than the series divided load; Wherein the second switching transistor gate G' is connected to the signal terminal s2 of the device system, and the source S' or the drain D' is connected to at least one divided load;
  • the voltage dividing circuit is configured to turn on or off the second switching transistor according to a level signal from the device system, and control the voltage from the transformer to be divided and output to the photoelectric coupling comparison module; wherein, the level signal is a low level When the signal is used, the second switching transistor is turned off, and when the level signal is a high level signal, the second switching transistor is turned on;
  • the optocoupler comparison module includes a three-terminal adjustable shunt reference source, a photocoupler, and a shunt load for receiving the voltage output from the voltage divider circuit and comparing with a preset reference voltage in the three-terminal adjustable shunt reference source, the optocoupler Outputting a feedback voltage to the frequency switching module according to the comparison result; wherein the first end tl of the three-terminal adjustable shunt reference source is an input end of the optocoupler comparison module, that is, the connection Between the first voltage dividing circuit and the second voltage dividing circuit, the second end t2 is connected to the first end gl of the photocoupler, the third end t3 is grounded; the second end g 2 of the photocoupler and the shunt load Connected to one end and connected to the input of the frequency switching module; the second end of the shunt load is connected to an external fixed voltage source;
  • the frequency switching module includes a microcontroller, a first switch, a second switch, a first frequency module and a second frequency module, configured to obtain a feedback voltage output by the optocoupler comparison module, and compare with a preset first in the microcontroller The voltage is compared, the microcontroller controls the opening and closing of the first switch and the second switch according to the comparison result, and the first frequency module or the second frequency module is selected to provide an output signal to the first switching transistor; wherein, the input end of the microcontroller Ml is connected to the second end g 2 of the photocoupler, and the first output end m2 of the micro-controller is connected with the first switch and the first frequency module to form a communication circuit, and the second output end of the micro-controller m3 and the second The switch is connected to the second frequency module to form another connected circuit.
  • the low frequency voltage dividing circuit further comprises an amplifier, wherein the input end of the amplifier is connected to the second end g 2 of the optocoupler in the optocoupler comparison module, and the output end thereof is connected to the input end ml of the microcontroller in the frequency module, The feedback voltage outputted by the photocoupler is amplified and output to the frequency switching module.
  • the amplifier is further provided with another input terminal connected to a three-terminal regulator for generating an output voltage
  • the preset second comparison voltage on the terminal is an output voltage generated by the three-terminal regulator, which is used for Compared with the feedback voltage output from the photocoupler, the voltage obtained after the comparison is amplified as a new feedback voltage output to the frequency switching module.
  • the external fixed voltage source is a transformer
  • the second end of the shunt load in the optocoupler comparison module is connected to the output end a 3 of the transformer.
  • the microcontroller controls the first switch to be turned on and the second switch is turned off, the first frequency module is selected, and the frequency of the output signal outputted to the first transistor is determined to be the first frequency; when the obtained feedback voltage is greater than the preset in the microcontroller When the first comparison voltage is applied, the microcontroller controls the first switch to be turned off and the second switch to be turned on, and the second frequency module is selected to determine that the frequency of the output signal output to the first transistor is the second frequency.
  • the working principle of the standby power consumption control circuit provided in the first embodiment of the present invention is as follows: After receiving the standby instruction, the device system enters the standby working mode from the normal working mode, and converts the transmitted level signal from the low level signal. A high level signal, the second switching transistor in the low frequency voltage dividing circuit receives the high level signal sent by the device system, and is turned on. Since the load of the second voltage dividing circuit has a parallel structure, the impedance is turned off relative to the second switching transistor. When the time is reduced, the voltage U1 across the second voltage dividing circuit is reduced, that is, the voltage output from the transformer is divided by the voltage dividing circuit, and the voltage output to the photoelectric coupling comparison module is lowered;
  • the optocoupler comparison module obtains the reduced voltage U1 across the second voltage dividing circuit
  • the voltage U1 is compared by a three-terminal adjustable shunt reference source (U1 is less than a preset reference voltage), so that the current flow through the optocoupler
  • U1 is less than a preset reference voltage
  • the current of the device increases, resulting in a decrease in the impedance in the photocoupler. Since the photocoupler and the shunt load are connected in series, the voltage U2 across the photocoupler is lowered, that is, the voltage output from the optocoupler comparison module is lowered.
  • the designer selects a suitable three-terminal adjustable shunt reference source during design, so that U1 is greater than the preset reference voltage in the low-level signal (normal operation mode), and the current current flowing through the photocoupler is reduced.
  • U1 is lower than the preset reference voltage in the high level signal (standby mode), and the current boosting port currently flowing through the photocoupler:
  • the amplifier receives the voltage U2 across the photocoupler, compares the voltage U2 with a preset second voltage in the amplifier, and amplifies the amplified voltage U0 to the frequency switching module.
  • the second switch turns off and turns on the first switch, switches the second frequency to the first frequency, and works An output signal having a frequency of the first frequency is output to the first switching transistor; wherein, when the designer designs the first voltage of the microcontroller, the U0 is greater than the pre-state when the low-level signal (normal operation mode) is Setting the first voltage, turning off the first switch and turning on the second switch, selecting the second frequency module, the current frequency obtained by the first switching transistor is the second frequency; in the high level signal (standby working mode), U0 is less than the pre- Setting a first voltage, turning on the first switch and turning off the second switch, selecting the first frequency module, the current frequency obtained by the first switching transistor is the first frequency;
  • the first switching transistor takes the frequency of the currently obtained output signal as its operating frequency, thereby realizing that the first switching transistor can control the conduction time of the transformer, thereby reducing the output power of the transformer, so that the standby voltage of the device system is lowered, and the standby power is reduced.
  • the purpose of consumption is the reason for consumption.
  • the voltage obtained by the device system in the normal working mode is 5 volts
  • the output level signal is a low level signal
  • the preset first voltage in the microcontroller is less than k0, the second switch is turned on, and the first switch is turned off.
  • the circuit for reducing the loss of the inductor core includes a main power source, a transformer, a first switching transistor, a load, a voltage dividing circuit, a photoelectric coupling comparison module, a frequency switching module, and a device system;
  • the transformer has a first input terminal a1 connected to one end of the main power source, a second input terminal a2 connected to the drain D of the first switching transistor, and an output terminal a3 connected to one end of the device system and the voltage dividing circuit for providing the main power supply The voltage is transformed and output to the equipment system and the low frequency voltage dividing circuit;
  • the device system is connected to the voltage dividing circuit, and is configured to obtain a voltage corresponding to the output of the transformer, and send a corresponding level signal to the low frequency voltage dividing circuit according to the current working mode, wherein the working mode includes a normal working mode and a standby working mode.
  • the level signal corresponding to the normal working mode is a low level signal
  • the level signal corresponding to the standby working mode is a high level signal
  • the voltage dividing circuit comprises a first voltage dividing circuit and a second voltage dividing circuit; the first voltage dividing circuit comprises at least one voltage dividing load, one end of which is connected to the output end a3 of the transformer, and the other end is connected to the second voltage dividing circuit, and The input ends of the optocoupler comparison module are connected;
  • the second voltage dividing circuit includes a second switching transistor and at least two divided voltage loads, the second switching transistor is connected in series with the at least one divided load, and is connected in parallel with one or more divided voltages other than the series divided load; Wherein the second switching transistor gate G' is connected to the signal terminal s2 of the device system, and the source S' or the drain D' is connected to at least one divided load;
  • the voltage dividing circuit is configured to turn on or off the second switching transistor according to a level signal from the device system, and control the voltage from the transformer to be divided and output to the photoelectric coupling comparison module; wherein, the level signal is a low level When the signal is used, the second switching transistor is turned off, and when the level signal is a high level signal, the second switching transistor is turned on;
  • the optocoupler comparison module includes a three-terminal adjustable shunt reference source, a photocoupler, and a shunt negative Carrying, for receiving the voltage outputted by the voltage dividing circuit and comparing with a preset reference voltage in the three-terminal adjustable shunt reference source, the photocoupler outputs a feedback voltage to the frequency switching module according to the comparison result; wherein the three ends are adjustable
  • the first end t1 of the shunt reference source is an input end of the optocoupler comparison module, that is, connected between the first voltage dividing circuit and the second voltage dividing circuit, and the second end t2 is connected to the first end gl of the photocoupler,
  • the third end t3 is grounded;
  • the second end g 2 of the optocoupler is connected to the first end of the shunt load, and is also connected to the input end of the frequency switching module;
  • the second end of the shunt load is connected to an external fixed voltage source;
  • the frequency switching module includes a microcontroller, a first switch, a second switch, a first frequency module and a second frequency module, configured to obtain a feedback voltage output by the optocoupler comparison module, and compare with a preset first in the microcontroller The voltage is compared, the microcontroller controls the opening and closing of the first switch and the second switch according to the comparison result, and the first frequency module or the second frequency module is selected to provide an output signal to the first switching transistor; wherein, the input end of the microcontroller Ml is connected to the second end g 2 of the photocoupler, and the first output end m2 of the micro-controller is connected with the first switch and the first frequency module to form a communication circuit, and the second output end of the micro-controller m3 and the second The switch is connected to the second frequency module to form another connected circuit;
  • the first switching transistor has a source S connected to the load for receiving an output signal from the frequency switching module, and using the current frequency of the output signal as the operating frequency to control the on-time of the transformer, thereby controlling the power consumption of the transformer.
  • the standby power control circuit further includes an amplifier, wherein the input end of the amplifier is connected to the second end g 2 of the optocoupler in the optocoupler comparison module, and the output end thereof is connected to the input end ml of the microcontroller in the frequency module.
  • the feedback voltage for outputting the photocoupler is amplified and output to the frequency switching module.
  • the amplifier is further provided with a three-terminal regulator that produces an output voltage.
  • An input terminal, the second comparison voltage preset on the terminal is an output voltage generated by the three-terminal regulator, which is used for comparison with the feedback voltage outputted by the photocoupler, and the voltage obtained after the comparison is amplified as a new one.
  • the feedback voltage is output to the frequency switching module.
  • the external fixed voltage source is a transformer
  • the second end of the shunt load in the optocoupler comparison module is connected to the output end a 3 of the transformer.
  • the microcontroller controls the first switch to be turned on and the second switch to be turned off, selecting the first frequency module, determining the output to the first transistor The frequency of the output signal is the first frequency; when the obtained feedback voltage is greater than the first comparison voltage preset in the microcontroller, the microcontroller controls the first switch to be turned off and the second switch to be turned on, selecting the second frequency module, determining the output The frequency of the output signal to the first transistor is the second frequency.
  • the working principle of the standby power consumption control circuit in the second embodiment of the present invention is the same as that of the standby power consumption control circuit in the first embodiment of the present invention, and will not be described again.
  • FIG. 4 it is an embodiment of a standby power control method according to the present invention.
  • the standby power consumption control method in the embodiment of the present invention includes:
  • Step S101 Acquire a corresponding level signal sent by the device system according to a current working mode, where the working mode includes a normal working mode and a standby working mode, and the level signal corresponding to the normal working mode is a low level signal.
  • the level signal corresponding to the standby working mode is a high level signal;
  • Step S102 according to the acquired level signal, dividing a voltage obtained from the transformer to obtain a divided voltage, and determining, according to the obtained divided voltage, output to the first a frequency of an output signal of the switching transistor; wherein the determined output frequency includes a first frequency and a second frequency, and when the received level signal is a low level, the determined output signal has a frequency of the a second frequency, when the received level signal is a high level, the determined output signal frequency is the first frequency, and the second frequency is greater than the first frequency;
  • the specific process includes the following steps:
  • Step a controlling, according to the obtained level signal, a voltage divided by the voltage obtained by the transformer, and obtaining a divided voltage
  • the divided voltage obtained when the obtained level signal is a low level signal is larger than the divided voltage obtained when the obtained level signal is a high level signal.
  • Step b comparing the obtained divided voltage with a preset reference voltage to obtain a feedback voltage
  • step b a feedback voltage obtained when the obtained divided voltage is greater than a preset reference voltage is greater than a feedback voltage obtained when the obtained divided voltage is less than a preset reference voltage, and the obtained The feedback voltage is proportional to the resulting divided voltage.
  • step b After step b, before step c, the steps are further included:
  • Step c comparing the obtained feedback voltage with a preset first comparison voltage, and determining a frequency of an output signal output to the first switching transistor according to the comparison result;
  • the specific process is: when the obtained feedback voltage is less than the preset first comparison voltage, determining that the frequency of the output signal output to the first switching transistor is the first frequency;
  • the frequency of the output signal of the switching transistor is the second frequency.
  • Step S103 The first switching transistor obtains the output signal, and uses the frequency of the currently obtained output signal as an operating frequency to control an on-time of the transformer, thereby controlling power consumption of the transformer.
  • the low-level signal in the normal working mode is converted into the high-level signal in the standby mode, and the signal frequency determined to be output to the first switching transistor is converted from the second frequency to the first a frequency such that the operating frequency of the first switching transistor is switched from the second frequency to a first frequency less than the second frequency, thereby enabling the first switching transistor to control the on-time of the transformer and reducing the output power of the transformer, such that The standby voltage of the equipment system drops, which reduces the standby power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

一种待机功耗控制电路,包括主电源、变压器、第一开关晶体管、负载、低频分压电路以及设备***;变压器分别连接主电源和第一开关晶体管漏极,还连接设备***一端和低频分压电路电压输入端;设备***用于根据工作模式向低频分压电路发送电平信号并获取变压器的供电电压;电平信号包括正常模式的低电平和待机模式的高电平;低频分压电路输出端连接第一开关晶体管栅极,用于根据电平信号,对获得的供电电压进行分压并确定输出信号的频率;低电平的第二频率大于高电平的第一频率;第一开关晶体管源极连接负载,用于获得输出信号的频率作为工作频率,控制变压器的导通时间。从而降低待机模式下的供电电压,降低家电设备待机功耗。

Description

一种待机功耗控制电路及方法
本申请要求于 2014 年 3 月 18 日提交中国专利局、 申请号为 201410099625. 8 , 发明名称为 "一种待机功耗控制电路及方法" 的中国专利 申请的优先权, 上述专利的全部内容通过引用结合在本申请中。 技术领域
本发明涉及电子领域, 尤其涉及一种待机功耗控制电路及方法。 背景技术
低碳生活是当今社会的发展趋势, 节能减排是社会各界共同的话题。 在 日常生活中的家电设备, 很多时候都是没有拔下插头的, 即在很长的一段时 间内, 这些电器均处于待机状态。 现有技术中, 家电设备中的部分负载供电 在待机状态下, 会得到某些关键部件(如变压器)的持续供电, 但是由于该 关键部件自身消耗的功率较大,因此使得待机状态下的功耗较大,亟需改进。 发明内容
本发明实施例所要解决的技术问题在于,提供一种待机功耗控制电路及 方法, 可以降低家电设备在待机模式下的供电电压, 减少关键部件的功耗, 从而达到降低家电设备待机功耗的目的。 为了解决上述技术问题, 本发明釆用的第一种技术方案为: 一种待机功 耗控制电路, 包括主电源、 变压器、 第一开关晶体管、 负载、 低频分压电路 以及设备***; 其中, 所述变压器, 其第一输入端与所述主电源的一端相连, 第二输入端与所 述第一开关晶体管漏极相连,输出端与所述设备***的一端和所述低频分压 电路的电压输入端相连, 用于将所述主电源提供的电压经变压后输出给所述 设备***和所述低频分压电路;
所述设备***, 其另一端与所述低频分压电路的信号输入端相连, 用于 获取所述变压器对应输出的电压, 并根据当前工作模式向所述低频分压电路 发送对应的电平信号, 其中, 所述工作模式包括正常工作模式和待机工作模 式, 所述正常工作模式对应的电平信号为低电平信号, 所述待机工作模式对 应的电平信号为高电平信号;
所述低频分压电路, 其输出端与所述第一开关晶体管栅极相连, 用于接 收所述设备***发送的电平信号和所述变压器输出的电压,且根据所述接收 到的电平信号, 对所述接收到的电压进行分压得到分压电压, 并根据所述得 到的分压电压, 确定输出给所述第一开关晶体管的输出信号的频率; 其中, 所述确定的输出信号的频率包括第一频率和第二频率, 当所述接收到的电平 信号为低电平时, 所述确定的输出信号的频率为所述第二频率, 当所述接收 到的电平信号为高电平时, 所述确定的输出信号的频率为所述第一频率, 所 述第二频率大于所述第一频率;
所述第一开关晶体管, 其源极与所述负载相连, 用于接收所述来自所述 低频分压电路的输出信号, 并将所述输出信号的当前频率作为工作频率, 控 制所述变压器的导通时间, 从而控制所述变压器的功耗。
其中, 所述低频分压电路包括分压电路、 光电耦合比较模块以及频率切 换模块; 其中,
所述分压电路包括第一分压电路和第二分压电路; 其中,
所述第一分压电路包括至少一个分压负载,其一端与所述变压器的输出 端相连, 另一端与所述第二分压电路相连, 还与所述光电耦合比较模块的输 入端相连; 所述第二分压电路包括第二开关晶体管和至少两个分压负载, 所述第二 开关晶体管与至少一个分压负载串联, 并与除所述串联的分压负载之外的一 个或多个分压负载并联; 其中, 所述第二开关晶体管栅极与所述设备***的 信号端相连, 源极或漏极与至少一个分压负载相连;
所述分压电路, 用于根据来自所述设备***的电平信号打开或关闭所述 第二开关晶体管,控制将来自所述变压器的电压经过分压后输出给所述光电 耦合比较模块; 其中, 所述电平信号为低电平信号时, 所述第二开关晶体管 关闭, 所述电平信号为高电平信号时, 所述第二开关晶体管导通;
所述光电耦合比较模块包括三端可调分流基准源、光电耦合器以及分流 负载, 用于接收所述分压电路输出的电压并与所述三端可调分流基准源中预 设的基准电压进行比较, 所述光电耦合器根据比较结果输出一反馈电压给所 述频率切换模块; 其中, 所述三端可调分流基准源的第一端为所述光电耦合 比较模块的输入端, 第二端与所述光电耦合器的第一端相连, 第三端接地; 所述光电耦合器的第二端与所述分流负载的第一端相连,还与所述频率切换 模块的输入端相连; 所述分流负载的第二端与一外部固定电压源相连; 所述频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块 和第二频率模块, 用于获得所述光电耦合比较模块输出的反馈电压, 并与所 述微控制器中预设的第一比较电压进行比较, 所述微控制器根据比较结果控 制所述第一开关及第二开关的开启与关闭,选择所述第一频率模块或第二频 率模块提供输出信号给所述第一开关晶体管; 其中, 所述微控制器的输入端 与所述光电耦合器的第二端相连, 所述微控制器的第一输出端与所述第一开 关和所述第一频率模块相连, 形成一连通电路, 所述微控制器的第二输出端 与所述第二开关和所述第二频率模块相连, 形成另一连通电路。 其中, 所述低频分压电路还包括放大器, 所述放大器的输入端与所述光 电耦合比较模块中光电耦合器的第二端相连, 其输出端与所述频率模块中微 控制器的输入端相连。
其中, 所述放大器还设置有与一产生输出电压的三端稳压器相连的另一 输入端。
其中, 所述外部固定电压源为所述变压器, 所述光电耦合比较模块中分 流负载的第二端与所述变压器的输出端相连。
其中, 当所述获得的反馈电压小于所述微控制器中预设的第一比较电压 时, 所述微控制器控制所述第一开关打开且所述第二开关关闭, 选择所述第 一频率模块, 确定输出给所述第一晶体管的输出信号的频率为第一频率; 当 所述获得的反馈电压大于所述微控制器中预设的第一比较电压时, 所述微控 制器控制所述第一开关关闭且所述第二开关打开, 选择所述第二频率模块, 确定输出给所述第一晶体管的输出信号的频率为第二频率。
为了解决上述技术问题, 本发明釆用的第二种技术方案为: 一种待机功 耗控制电路, 包括主电源、 变压器、 第一开关晶体管、 负载、 分压电路、 光 电耦合比较模块、 频率切换模块以及设备***; 其中,
所述变压器, 其第一输入端与所述主电源的一端相连, 第二输入端与所 述第一开关晶体管漏极相连,输出端与所述设备***的一端和所述分压电路 相连, 用于将所述主电源提供的电压经变压后输出给所述设备***和所述分 压电路;
所述设备***, 其另一端与所述分压电路相连, 用于获取所述变压器对 应输出的电压, 并根据当前工作模式向所述分压电路发送对应的电平信号, 其中, 所述工作模式包括正常工作模式和待机工作模式, 所述正常工作模式 对应的电平信号为低电平信号, 所述待机工作模式对应的电平信号为高电平 信号;
所述分压电路包括第一分压电路和第二分压电路; 其中,
所述第一分压电路包括至少一个分压负载,其一端与所述变压器的输出 端相连, 另一端与所述第二分压电路相连, 还与所述光电耦合比较模块的输 入端相连;
所述第二分压电路包括第二开关晶体管和至少两个分压负载, 所述第二 开关晶体管与至少一个分压负载串联, 并与除所述串联的分压负载之外的一 个或多个分压负载并联; 其中, 所述第二开关晶体管栅极与所述设备***的 信号端相连, 源极或漏极与至少一个分压负载相连;
所述分压电路, 用于根据来自所述设备***的电平信号打开或关闭所述 第二开关晶体管,控制将来自所述变压器的电压经过分压后输出给所述光电 耦合比较模块; 其中, 所述电平信号为低电平信号时, 所述第二开关晶体管 关闭, 所述电平信号为高电平信号时, 所述第二开关晶体管导通;
所述光电耦合比较模块包括三端可调分流基准源、光电耦合器以及分流 负载, 用于接收所述分压电路输出的电压并与所述三端可调分流基准源中预 设的基准电压进行比较, 所述光电耦合器根据比较结果输出一反馈电压给所 述频率切换模块; 其中, 所述三端可调分流基准源的第一端为所述光电耦合 比较模块的输入端, 第二端与所述光电耦合器的第一端相连, 第三端接地; 所述光电耦合器的第二端与所述分流负载的第一端相连,还与所述频率切换 模块的输入端相连; 所述分流负载的第二端与一外部固定电压源相连; 所述频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块 和第二频率模块, 用于获得所述光电耦合比较模块输出的反馈电压, 并与所 述微控制器中预设的第一比较电压进行比较, 所述微控制器根据比较结果控 制所述第一开关及第二开关的开启与关闭,选择所述第一频率模块或第二频 率模块提供输出信号给所述第一开关晶体管; 其中, 所述微控制器的输入端 与所述光电耦合器的第二端相连, 所述微控制器的第一输出端与所述第一开 关和所述第一频率模块相连, 形成一连通电路, 所述微控制器的第二输出端 与所述第二开关和所述第二频率模块相连, 形成另一连通电路;
所述第一开关晶体管, 其源极与所述负载相连, 用于接收所述来自所述 频率切换模块的输出信号, 并将所述输出信号的当前频率作为工作频率, 控 制所述变压器的导通时间, 从而控制所述变压器的功耗。
其中, 所述待机功耗控制电路还包括放大器, 所述放大器的输入端与所 述光电耦合比较模块中光电耦合器的第二端相连,其输出端与所述频率模块 中微控制器的输入端相连。
其中, 所述放大器还设置有与一产生输出电压的三端稳压器相连的另一 输入端。
其中, 所述外部固定电压源为所述变压器, 所述光电耦合比较模块中分 流负载的第二端与所述变压器的输出端相连。
其中, 当所述获得的反馈电压小于所述微控制器中预设的第一比较电压 时, 所述微控制器控制所述第一开关打开且所述第二开关关闭, 选择所述第 一频率模块, 确定输出给所述第一晶体管的输出信号的频率为第一频率; 当 所述获得的反馈电压大于所述微控制器中预设的第一比较电压时, 所述微控 制器控制所述第一开关关闭且所述第二开关打开, 选择所述第二频率模块, 确定输出给所述第一晶体管的输出信号的频率为第二频率。
为了解决上述技术问题, 本发明釆用的第三种技术方案为: 一种待机功 耗控制方法, 所述方法包括:
获取所述设备***根据当前工作模式发送的对应的电平信号, 其中, 所 述工作模式包括正常工作模式和待机工作模式, 所述正常工作模式对应的电 平信号为低电平信号, 所述待机工作模式对应的电平信号为高电平信号; 根据所述获取的电平信号,对从所述变压器获得的电压进行分压后得到 分压电压, 并根据所述得到的分压电压, 确定输出给所述第一开关晶体管的 输出信号的频率; 其中, 所述确定的输出频率包括第一频率和第二频率, 当 所述接收到的电平信号为低电平时, 所述确定的输出信号的频率为所述第二 频率, 当所述接收到的电平信号为高电平时, 所述确定的输出信号的频率为 所述第一频率, 所述第二频率大于所述第一频率;
所述第一开关晶体管获得所述输出的信号, 并将当前所述获得的输出信 号的频率作为工作频率, 控制所述变压器的导通时间, 从而控制所述变压器 的功耗。
其中, 所述根据所述获取的电平信号, 对从所述变压器获得的电压进行 分压后得到分压电压, 并根据所述得到的分压电压, 确定输出给所述第一开 关晶体管的输出信号的频率的具体步骤包括:
a、 根据所述获得的电平信号, 控制从所述变压器获得的电压进过分压 后, 得到分压电压;
b、 将所述得到的分压电压与预设的基准电压进行比较后, 获得反馈电 压;
c、 将所述获得的反馈电压与预设的第一比较电压进行比较, 并根据比 较结果, 确定输出给所述第一开关晶体管的输出信号的频率。
其中, 当所述获得的电平信号为低电平信号时得到的分压电压大于当所 述获得的电平信号为高电平信号时得到的分压电压。
其中, 当所述得到的分压电压大于预设的基准电压时获得的反馈电压大 于当所述得到的分压电压小于预设的基准电压时获得的反馈电压,且所述获 得的反馈电压与所述得到的分压电压成正比。
其中, 所述步骤 C中 "将所述获得的反馈电压与预设的第一比较电压进 行比较, 并根据比较结果, 确定输出给所述第一开关晶体管的输出信号的频 率" 的具体步骤包括:
当所述获得的反馈电压小于预设的第一比较电压,确定输出给所述第一 开关晶体管的输出信号的频率为第一频率;
当所述获得的反馈电压大于预设的第一比较电压,确定输出给所述第一 开关晶体管的输出信号的频率为第二频率。
其中, 在所述步骤 b之后, 所述步骤 c之前, 还包括步骤:
将所述获得的反馈电压与预设的第二比较电压比较后进行放大,得到放 大电压, 并将所述得到的放大电压作为当前反馈电压。
其中, 所述预设的第二比较电压为通过一三端稳压器产生的电压。
实施本发明实施例, 具有如下有益效果:
由于设备***在接收到待机指令后,将正常工作模式下低电平信号转换 成待机模式下的高电平信号,通过处理后确定输出给第一开关晶体管的信号 频率从第二频率转换成第一频率,使得第一开关晶体管的工作频率从第二频 率切换到小于第二频率的第一频率上, 因此能够实现第一开关晶体管可控制 变压器的导通时间,减少了变压器的输出功率,使得设备***待机电压下降, 达到降低待机功耗的目的。
附图说明 图 1为本发明第一、第二实施例提供的待机功耗控制电路的连接示意图; 图 2为图 1中低频分压电路的一连接示意图;
图 3为图 1中低频分压电路的另一连接示意图;
图 4为本发明第三实施例提供的待机功耗控制方法的流程图。
具体实施方式
下面参考附图对本发明的优选实施例进行描述。
结合参见图 1至图 3 , 为本发明待机功耗控制电路的实施例。
如图 1所示, 为本发明第一实施例提供的待机功耗控制电路的连接示意 图。 本发明实施例中待机功耗控制电路主电源、 变压器、 第一开关晶体管、 负载、 低频分压电路以及设备***; 其中,
变压器, 其第一输入端 al与主电源的一端相连, 第二输入端 a2与第一 开关晶体管漏极 D相连, 输出端 a3与设备***的一端和低频分压电路的电 压输入端 bl相连, 用于将主电源提供的电压经变压后输出给设备***和低 频分压电路;
设备***, 其另一端与所述低频分压电路的信号输入端相连, 用于获取 变压器对应输出的电压, 并根据当前工作模式向低频分压电路发送对应的电 平信号, 其中, 工作模式包括正常工作模式和待机工作模式, 正常工作模式 对应的电平信号为低电平信号, 待机工作模式对应的电平信号为高电平信 号;
低频分压电路, 其输出端 b3与第一开关晶体管栅极 G相连, 用于接收 设备***发送的电平信号和变压器输出的电压, 且根据接收到的电平信号, 对接收到的电压进行分压得到分压电压, 并根据得到的分压电压, 确定输出 给第一开关晶体管的输出信号的频率; 其中, 输出信号的频率包括第一频率 和第二频率, 当接收到的电平信号为低电平时, 输出信号的频率为所述第二 频率, 当接收到的电平信号为高电平时, 输出信号的频率为所述第一频率, 第二频率大于第一频率;
第一开关晶体管, 其源极 S与负载相连, 用于接收来自低频分压电路的 输出信号,并将输出信号的当前频率作为工作频率,控制变压器的导通时间, 从而控制变压器的功耗。
更进一步的, 低频分压电路包括分压电路、 光电耦合比较模块以及频率 切换模块; 其中,
分压电路包括第一分压电路和第二分压电路; 第一分压电路包括至少一 个分压负载, 其一端与变压器的输出端 a3相连, 另一端与第二分压电路相 连, 还与光电耦合比较模块的输入端相连;
第二分压电路包括第二开关晶体管和至少两个分压负载, 第二开关晶体 管与至少一个分压负载串联, 并与除串联的分压负载之外的一个或多个分压 负载并联; 其中, 第二开关晶体管栅极 G' 与设备***的信号端 s2相连, 源极 S' 或漏极 D' 与至少一个分压负载相连;
所述分压电路, 用于根据来自设备***的电平信号打开或关闭第二开关 晶体管, 控制将来自变压器的电压经过分压后输出给光电耦合比较模块; 其 中, 电平信号为低电平信号时, 第二开关晶体管关闭, 电平信号为高电平信 号时, 第二开关晶体管导通;
光电耦合比较模块包括三端可调分流基准源、 光电耦合器以及分流负 载,用于接收分压电路输出的电压并与三端可调分流基准源中预设的基准电 压进行比较, 光电耦合器根据比较结果输出一反馈电压给频率切换模块; 其 中,三端可调分流基准源的第一端 tl为光电耦合比较模块的输入端, 即连接 在第一分压电路和第二分压电路之间, 第二端 t2与光电耦合器的第一端 gl 相连, 第三端 t3接地; 光电耦合器的第二端 g2与分流负载的第一端相连, 还与频率切换模块的输入端相连; 分流负载的第二端与一外部固定电压源相 连;
频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块和第 二频率模块, 用于获得光电耦合比较模块输出的反馈电压, 并与微控制器中 预设的第一比较电压进行比较,微控制器根据比较结果控制第一开关及第二 开关的开启与关闭,选择第一频率模块或第二频率模块提供输出信号给第一 开关晶体管; 其中, 微控制器的输入端 ml与光电耦合器的第二端 g2相连, 微控制器的第一输出端 m2与第一开关和第一频率模块相连, 形成一连通电 路, 微控制器的第二输出端 m3与第二开关和第二频率模块相连, 形成另一 连通电路。
更进一步的, 低频分压电路还包括放大器, 放大器的输入端与光电耦合 比较模块中光电耦合器的第二端 g2相连, 其输出端与频率模块中微控制器 的输入端 ml相连, 用于将光电耦合器输出的反馈电压放大后输出给频率切 换模块。
更进一步的,放大器还设置有与一产生输出电压的三端稳压器相连的另 一输入端, 该端上预设的第二比较电压为三端稳压器产生的输出电压, 会用 于与光电耦合器输出的反馈电压比较, 并将比较后获得的电压进行放大作为 新的反馈电压输出给频率切换模块。
更进一步的, 外部固定电压源为变压器, 光电耦合比较模块中分流负载 的第二端与变压器的输出端 a3相连。
更进一步的, 当获得的反馈电压小于微控制器中预设的第一比较电压 时, 微控制器控制第一开关打开且第二开关关闭, 选择第一频率模块, 确定 输出给第一晶体管的输出信号的频率为第一频率; 当获得的反馈电压大于微 控制器中预设的第一比较电压时,微控制器控制第一开关关闭且第二开关打 开, 选择第二频率模块, 确定输出给第一晶体管的输出信号的频率为第二频 率。
本发明第一实施例中提供的一种待机功耗控制电路的工作原理为: 设备 ***接收到待机指令后, 从正常工作模式进入待机工作模式, 将发送的电平 信号由低电平信号转换成高电平信号,低频分压电路中的第二开关晶体管接 收到设备***发送的高电平信号后导通, 由于第二分压电路的负载存在并联 结构, 阻抗相对于第二开关晶体管关闭时降低了, 所以使得第二分压电路两 端的电压 U1减少,即通过分压电路将从变压器获得的输出电压进行分压后, 输出给光电耦合比较模块的电压降低了;
光电耦合比较模块得到降低了的第二分压电路两端的电压 U1后, 将该 电压 U1经过三端可调分流基准源进行比较处理(U1小于预设的基准电压 ), 使得当前流过光电耦合器的电流增加, 从而导致光电耦合器中的阻抗减少, 又由于光电耦合器与分流负载为串联结构, 所以光电耦合器两端的电压 U2 就会降低, 即光电耦合比较模块输出的电压就会降低; 其中, 设计人员在设 计时会选择合适的三端可调分流基准源, 使得 U1在低电平信号 (正常工作 模式) 时大于预设的基准电压, 当前流过光电耦合器的电流减少, U1 在高 电平信号(待机工作模式)时小于预设的基准电压, 当前流过光电耦合器的 电流增力口:
放大器接收到光电耦合器两端的电压 U2,并将该电压 U2与放大器中预 设的第二电压进行比较之后放大,将放大后的电压 U0输出给频率切换模块, 在频率切换模块中将放大后的电压 U0与微控制器中预设的第一电压进行比 较后, 第二开关关闭并打开第一开关, 将第二频率切换到第一频率上, 并将 工作频率为第一频率的输出信号输出给第一开关晶体管; 其中, 设计人员在 设计微控制器的预设的第一电压时, 会使得在低电平信号 (正常工作模式) 时, U0 大于预设的第一电压, 关闭第一开关并打开第二开关, 选择第二频 率模块, 第一开关晶体管获得的当前频率为第二频率; 在高电平信号(待机 工作模式) 时, U0 小于预设的第一电压, 打开第一开关并关闭第二开关, 选择第一频率模块, 第一开关晶体管获得的当前频率为第一频率;
第一开关晶体管将当前获得的输出信号的频率作为其工作频率,从而实 现第一开关晶体管可控制变压器的导通时间, 从而减少了变压器的输出功 率, 使得设备***待机电压下降, 达到降低待机功耗的目的。
例如: 设备***在正常工作模式时获得的电压为 5伏, 输出的电平信号 为低电平信号, 在低频分压电路中第二分压电路两端的电压 Ul=kl , 微控制 器获得的光电耦合器两端的电压 U2=k2, 将 U2的电压进行比较后放大得到 U0=k0,此时, 微控制器中预设的第一电压小于 k0, 第二开关打开、 第一开关 关闭,第一开关晶体管的工作频率为第二频率模块提供的第二频率 =65赫兹; 在接收到待机指令后, 设备***工作模式切换到待机工作模式, 输出的 电平信号转换成高电平信号,在低频分压电路中由于第二分压电路中第二开 关晶体管的导通, 使得第二分压电路两端的电压 Ul=jl 小于 kl , 微控制器 获得的光电耦合器两端的电压 U2=j2小于 k2,因此放大得到 U0=j0小于 k0, 此时, 微控制器中预设的第一电压大于 j0, 第一开关打开、 第二开关关闭, 第一开关晶体管的工作频率从第二频率模块提供的第二频率 =65赫兹切换到 第一频率模块提供的第一频率 =10赫兹, 降低了变压器的输出功率, 使得设 备***在待机工作模式时获得的电压为 3.3伏(小于正常工作模式时的 5伏)。 本发明第二实施例提供的降低电感磁芯损耗的电路包括主电源、 变压 器、 第一开关晶体管、 负载、 分压电路、 光电耦合比较模块、 频率切换模块 以及设备***; 其中,
变压器, 其第一输入端 al与主电源的一端相连, 第二输入端 a2与第一 开关晶体管漏极 D相连, 输出端 a3与设备***的一端和分压电路相连, 用 于将主电源提供的电压经变压后输出给设备***和低频分压电路;
设备***,其另一端与分压电路相连,用于获取变压器对应输出的电压, 并根据当前工作模式向低频分压电路发送对应的电平信号, 其中, 工作模式 包括正常工作模式和待机工作模式,正常工作模式对应的电平信号为低电平 信号, 待机工作模式对应的电平信号为高电平信号;
分压电路包括第一分压电路和第二分压电路; 第一分压电路包括至少一 个分压负载, 其一端与变压器的输出端 a3相连, 另一端与第二分压电路相 连, 还与光电耦合比较模块的输入端相连;
第二分压电路包括第二开关晶体管和至少两个分压负载, 第二开关晶体 管与至少一个分压负载串联, 并与除串联的分压负载之外的一个或多个分压 负载并联; 其中, 第二开关晶体管栅极 G' 与设备***的信号端 s2相连, 源极 S' 或漏极 D' 与至少一个分压负载相连;
所述分压电路, 用于根据来自设备***的电平信号打开或关闭第二开关 晶体管, 控制将来自变压器的电压经过分压后输出给光电耦合比较模块; 其 中, 电平信号为低电平信号时, 第二开关晶体管关闭, 电平信号为高电平信 号时, 第二开关晶体管导通;
光电耦合比较模块包括三端可调分流基准源、 光电耦合器以及分流负 载,用于接收分压电路输出的电压并与三端可调分流基准源中预设的基准电 压进行比较, 光电耦合器根据比较结果输出一反馈电压给频率切换模块; 其 中,三端可调分流基准源的第一端 tl为光电耦合比较模块的输入端, 即连接 在第一分压电路和第二分压电路之间, 第二端 t2与光电耦合器的第一端 gl 相连, 第三端 t3接地; 光电耦合器的第二端 g2与分流负载的第一端相连, 还与频率切换模块的输入端相连; 分流负载的第二端与一外部固定电压源相 连;
频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块和第 二频率模块, 用于获得光电耦合比较模块输出的反馈电压, 并与微控制器中 预设的第一比较电压进行比较,微控制器根据比较结果控制第一开关及第二 开关的开启与关闭,选择第一频率模块或第二频率模块提供输出信号给第一 开关晶体管; 其中, 微控制器的输入端 ml与光电耦合器的第二端 g2相连, 微控制器的第一输出端 m2与第一开关和第一频率模块相连, 形成一连通电 路, 微控制器的第二输出端 m3与第二开关和第二频率模块相连, 形成另一 连通电路;
第一开关晶体管, 其源极 S与负载相连, 用于接收来自频率切换模块的 输出信号,并将输出信号的当前频率作为工作频率,控制变压器的导通时间, 从而控制变压器的功耗。
更进一步的, 待机功耗控制电路还包括放大器, 放大器的输入端与光电 耦合比较模块中光电耦合器的第二端 g2相连, 其输出端与频率模块中微控 制器的输入端 ml相连, 用于将光电耦合器输出的反馈电压放大后输出给频 率切换模块。
更进一步的,放大器还设置有与一产生输出电压的三端稳压器相连的另 一输入端, 该端上预设的第二比较电压为三端稳压器产生的输出电压, 会用 于与光电耦合器输出的反馈电压比较, 并将比较后获得的电压进行放大作为 新的反馈电压输出给频率切换模块。
更进一步的, 外部固定电压源为变压器, 光电耦合比较模块中分流负载 的第二端与变压器的输出端 a3相连。
更进一步的, 当获得的反馈电压小于微控制器中预设的第一比较电压 时, 微控制器控制第一开关打开且第二开关关闭, 选择第一频率模块, 确定 输出给第一晶体管的输出信号的频率为第一频率; 当获得的反馈电压大于微 控制器中预设的第一比较电压时,微控制器控制第一开关关闭且第二开关打 开, 选择第二频率模块, 确定输出给第一晶体管的输出信号的频率为第二频 率。
本发明第二实施例中待机功耗控制电路的工作原理与本发明第一实施 例中的待机功耗控制电路的工作原理相同, 在此不再——赘述。
结合参见图 4, 为本发明待机功耗控制方法的实施例。
如图 4所示, 为本发明第三实施例提供的待机功耗控制方法的流程图。 相应于本发明待机功耗控制电路, 本发明实施例中的待机功耗控制方法包 括:
步骤 S101、 获取所述设备***根据当前工作模式发送的对应的电平信 号, 其中, 所述工作模式包括正常工作模式和待机工作模式, 所述正常工作 模式对应的电平信号为低电平信号, 所述待机工作模式对应的电平信号为高 电平信号;
步骤 S102、 根据所述获取的电平信号, 对从所述变压器获得的电压进 行分压后得到分压电压, 并根据所述得到的分压电压, 确定输出给所述第一 开关晶体管的输出信号的频率; 其中, 所述确定的输出频率包括第一频率和 第二频率, 当所述接收到的电平信号为低电平时, 所述确定的输出信号的频 率为所述第二频率, 当所述接收到的电平信号为高电平时, 所述确定的输出 信号的频率为所述第一频率, 所述第二频率大于所述第一频率;
具体过程为, 包括以下步骤:
步骤 a、 根据所述获得的电平信号, 控制从所述变压器获得的电压进过 分压后, 得到分压电压;
在步骤 a中, 当所述获得的电平信号为低电平信号时得到的分压电压大 于当所述获得的电平信号为高电平信号时得到的分压电压。
步骤 b、 将所述得到的分压电压与预设的基准电压进行比较后, 获得反 馈电压;
在步骤 b中, 当所述得到的分压电压大于预设的基准电压时获得的反馈 电压大于当所述得到的分压电压小于预设的基准电压时获得的反馈电压,且 所述获得的反馈电压与所述得到的分压电压成正比。
在步骤 b之后, 步骤 c之前, 还包括步骤:
将所述获得的反馈电压与预设的第二比较电压比较后进行放大,得到放 大电压, 并将所述得到的放大电压作为当前反馈电压; 其中, 所述预设的第 二比较电压为通过一三端稳压器产生的电压。
步骤 c、 将所述获得的反馈电压与预设的第一比较电压进行比较, 并根 据比较结果, 确定输出给所述第一开关晶体管的输出信号的频率;
具体过程为, 当所述获得的反馈电压小于预设的第一比较电压, 确定输 出给所述第一开关晶体管的输出信号的频率为第一频率;
当所述获得的反馈电压大于预设的第一比较电压,确定输出给所述第一 开关晶体管的输出信号的频率为第二频率。
步骤 S103、 所述第一开关晶体管获得所述输出的信号, 并将当前所述 获得的输出信号的频率作为工作频率, 控制所述变压器的导通时间, 从而控 制所述变压器的功耗。
实施本发明实施例, 具有如下有益效果:
由于设备***在接收到待机指令后,将正常工作模式下低电平信号转换 成待机模式下的高电平信号,通过处理后确定输出给第一开关晶体管的信号 频率从第二频率转换成第一频率,使得第一开关晶体管的工作频率从第二频 率切换到小于第二频率的第一频率上, 因此能够实现第一开关晶体管可控制 变压器的导通时间,减少了变压器的输出功率,使得设备***待机电压下降, 达到降低待机功耗的目的。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计算 机可读取存储介质中, 所述的存储介质, 如 ROM/RAM、 磁盘、 光盘等。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1、 一种待机功耗控制电路, 其中, 包括主电源、 变压器、 第一开关晶 体管、 负载、 低频分压电路以及设备***; 其中,
所述变压器, 其第一输入端与所述主电源的一端相连, 第二输入端与所 述第一开关晶体管漏极相连,输出端与所述设备***的一端和所述低频分压 电路的电压输入端相连, 用于将所述主电源提供的电压经变压后输出给所述 设备***和所述低频分压电路;
所述设备***, 其另一端与所述低频分压电路的信号输入端相连, 用于 获取所述变压器对应输出的电压, 并根据当前工作模式向所述低频分压电路 发送对应的电平信号, 其中, 所述工作模式包括正常工作模式和待机工作模 式, 所述正常工作模式对应的电平信号为低电平信号, 所述待机工作模式对 应的电平信号为高电平信号;
所述低频分压电路, 其输出端与所述第一开关晶体管栅极相连, 用于接 收所述设备***发送的电平信号和所述变压器输出的电压,且根据所述接收 到的电平信号, 对所述接收到的电压进行分压得到分压电压, 并根据所述得 到的分压电压, 确定输出给所述第一开关晶体管的输出信号的频率; 其中, 所述确定的输出信号的频率包括第一频率和第二频率, 当所述接收到的电平 信号为低电平时, 所述确定的输出信号的频率为所述第二频率, 当所述接收 到的电平信号为高电平时, 所述确定的输出信号的频率为所述第一频率, 所 述第二频率大于所述第一频率;
所述第一开关晶体管, 其源极与所述负载相连, 用于接收所述来自所述 低频分压电路的输出信号, 并将所述输出信号的当前频率作为工作频率, 控 制所述变压器的导通时间, 从而控制所述变压器的功耗。
2、 如权利要求 1所述的电路, 其中, 所述低频分压电路包括分压电路、 光电耦合比较模块以及频率切换模块; 其中,
所述分压电路包括第一分压电路和第二分压电路; 其中,
所述第一分压电路包括至少一个分压负载,其一端与所述变压器的输出 端相连, 另一端与所述第二分压电路相连, 还与所述光电耦合比较模块的输 入端相连;
所述第二分压电路包括第二开关晶体管和至少两个分压负载, 所述第二 开关晶体管与至少一个分压负载串联, 并与除所述串联的分压负载之外的一 个或多个分压负载并联; 其中, 所述第二开关晶体管栅极与所述设备***的 信号端相连, 源极或漏极与至少一个分压负载相连;
所述分压电路, 用于根据来自所述设备***的电平信号打开或关闭所述 第二开关晶体管,控制将来自所述变压器的电压经过分压后输出给所述光电 耦合比较模块; 其中, 所述电平信号为低电平信号时, 所述第二开关晶体管 关闭, 所述电平信号为高电平信号时, 所述第二开关晶体管导通;
所述光电耦合比较模块包括三端可调分流基准源、光电耦合器以及分流 负载, 用于接收所述分压电路输出的电压并与所述三端可调分流基准源中预 设的基准电压进行比较, 所述光电耦合器根据比较结果输出一反馈电压给所 述频率切换模块; 其中, 所述三端可调分流基准源的第一端为所述光电耦合 比较模块的输入端, 第二端与所述光电耦合器的第一端相连, 第三端接地; 所述光电耦合器的第二端与所述分流负载的第一端相连,还与所述频率切换 模块的输入端相连; 所述分流负载的第二端与一外部固定电压源相连;
所述频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块 和第二频率模块, 用于获得所述光电耦合比较模块输出的反馈电压, 并与所 述微控制器中预设的第一比较电压进行比较, 所述微控制器根据比较结果控 制所述第一开关及第二开关的开启与关闭,选择所述第一频率模块或第二频 率模块提供输出信号给所述第一开关晶体管; 其中, 所述微控制器的输入端 与所述光电耦合器的第二端相连, 所述微控制器的第一输出端与所述第一开 关和所述第一频率模块相连, 形成一连通电路, 所述微控制器的第二输出端 与所述第二开关和所述第二频率模块相连, 形成另一连通电路。
3、 如权利要求 2所述的电路, 其中, 所述低频分压电路还包括放大器, 所述放大器的输入端与所述光电耦合比较模块中光电耦合器的第二端相连, 其输出端与所述频率模块中微控制器的输入端相连。
4、 如权利要求 3所述的电路, 其中, 所述放大器还设置有与一产生输 出电压的三端稳压器相连的另一输入端。
5、 如权利要求 2所述的电路, 其中, 所述外部固定电压源为所述变压 器, 所述光电耦合比较模块中分流负载的第二端与所述变压器的输出端相 连。
6、 如权利要求 2所述的电路, 其中, 当所述获得的反馈电压小于所述 微控制器中预设的第一比较电压时, 所述微控制器控制所述第一开关打开且 所述第二开关关闭, 选择所述第一频率模块, 确定输出给所述第一晶体管的 输出信号的频率为第一频率; 当所述获得的反馈电压大于所述微控制器中预 设的第一比较电压时, 所述微控制器控制所述第一开关关闭且所述第二开关 打开, 选择所述第二频率模块, 确定输出给所述第一晶体管的输出信号的频 率为第二频率。
7、 一种待机功耗控制电路, 其中, 包括主电源、 变压器、 第一开关晶 体管、 负载、 分压电路、 光电耦合比较模块、 频率切换模块以及设备***; 其中,
所述变压器, 其第一输入端与所述主电源的一端相连, 第二输入端与所 述第一开关晶体管漏极相连,输出端与所述设备***的一端和所述分压电路 相连, 用于将所述主电源提供的电压经变压后输出给所述设备***和所述分 压电路;
所述设备***, 其另一端与所述分压电路相连, 用于获取所述变压器对 应输出的电压, 并根据当前工作模式向所述分压电路发送对应的电平信号, 其中, 所述工作模式包括正常工作模式和待机工作模式, 所述正常工作模式 对应的电平信号为低电平信号, 所述待机工作模式对应的电平信号为高电平 信号;
所述分压电路包括第一分压电路和第二分压电路; 其中,
所述第一分压电路包括至少一个分压负载,其一端与所述变压器的输出 端相连, 另一端与所述第二分压电路相连, 还与所述光电耦合比较模块的输 入端相连;
所述第二分压电路包括第二开关晶体管和至少两个分压负载, 所述第二 开关晶体管与至少一个分压负载串联, 并与除所述串联的分压负载之外的一 个或多个分压负载并联; 其中, 所述第二开关晶体管栅极与所述设备***的 信号端相连, 源极或漏极与至少一个分压负载相连;
所述分压电路, 用于根据来自所述设备***的电平信号打开或关闭所述 第二开关晶体管,控制将来自所述变压器的电压经过分压后输出给所述光电 耦合比较模块; 其中, 所述电平信号为低电平信号时, 所述第二开关晶体管 关闭, 所述电平信号为高电平信号时, 所述第二开关晶体管导通;
所述光电耦合比较模块包括三端可调分流基准源、光电耦合器以及分流 负载, 用于接收所述分压电路输出的电压并与所述三端可调分流基准源中预 设的基准电压进行比较, 所述光电耦合器根据比较结果输出一反馈电压给所 述频率切换模块; 其中, 所述三端可调分流基准源的第一端为所述光电耦合 比较模块的输入端, 第二端与所述光电耦合器的第一端相连, 第三端接地; 所述光电耦合器的第二端与所述分流负载的第一端相连,还与所述频率切换 模块的输入端相连; 所述分流负载的第二端与一外部固定电压源相连; 所述频率切换模块包括微控制器、 第一开关、 第二开关、 第一频率模块 和第二频率模块, 用于获得所述光电耦合比较模块输出的反馈电压, 并与所 述微控制器中预设的第一比较电压进行比较, 所述微控制器根据比较结果控 制所述第一开关及第二开关的开启与关闭,选择所述第一频率模块或第二频 率模块提供输出信号给所述第一开关晶体管; 其中, 所述微控制器的输入端 与所述光电耦合器的第二端相连, 所述微控制器的第一输出端与所述第一开 关和所述第一频率模块相连, 形成一连通电路, 所述微控制器的第二输出端 与所述第二开关和所述第二频率模块相连, 形成另一连通电路;
所述第一开关晶体管, 其源极与所述负载相连, 用于接收所述来自所述 频率切换模块的输出信号, 并将所述输出信号的当前频率作为工作频率, 控 制所述变压器的导通时间, 从而控制所述变压器的功耗。
8、 如权利要求 7所述的电路, 其中, 所述待机功耗控制电路还包括放 大器, 所述放大器的输入端与所述光电耦合比较模块中光电耦合器的第二端 相连, 其输出端与所述频率模块中微控制器的输入端相连。
9、 如权利要求 8所述的电路, 其中, 所述放大器还设置有与一产生输 出电压的三端稳压器相连的另一输入端。
10、 如权利要求 7所述的电路, 其中, 所述外部固定电压源为所述变压 器, 所述光电耦合比较模块中分流负载的第二端与所述变压器的输出端相 连。
11、 如权利要求 7所述的电路, 其中, 当所述获得的反馈电压小于所述 微控制器中预设的第一比较电压时, 所述微控制器控制所述第一开关打开且 所述第二开关关闭, 选择所述第一频率模块, 确定输出给所述第一晶体管的 输出信号的频率为第一频率; 当所述获得的反馈电压大于所述微控制器中预 设的第一比较电压时, 所述微控制器控制所述第一开关关闭且所述第二开关 打开, 选择所述第二频率模块, 确定输出给所述第一晶体管的输出信号的频 率为第二频率。
12、 一种待机功耗控制方法, 其中, 所述方法包括:
获取所述设备***根据当前工作模式发送的对应的电平信号, 其中, 所 述工作模式包括正常工作模式和待机工作模式, 所述正常工作模式对应的电 平信号为低电平信号, 所述待机工作模式对应的电平信号为高电平信号; 根据所述获取的电平信号,对从所述变压器获得的电压进行分压后得到 分压电压, 并根据所述得到的分压电压, 确定输出给所述第一开关晶体管的 输出信号的频率; 其中, 所述确定的输出频率包括第一频率和第二频率, 当 所述接收到的电平信号为低电平时, 所述确定的输出信号的频率为所述第二 频率, 当所述接收到的电平信号为高电平时, 所述确定的输出信号的频率为 所述第一频率, 所述第二频率大于所述第一频率;
所述第一开关晶体管获得所述输出的信号, 并将当前所述获得的输出信 号的频率作为工作频率, 控制所述变压器的导通时间, 从而控制所述变压器 的功耗。
13、 如权利要求 12所述的方法, 其中, 所述根据所述获取的电平信号, 对从所述变压器获得的电压进行分压后得到分压电压, 并根据所述得到的分 压电压, 确定输出给所述第一开关晶体管的输出信号的频率的具体步骤包 括:
a、 根据所述获得的电平信号, 控制从所述变压器获得的电压进过分压 后, 得到分压电压;
b、 将所述得到的分压电压与预设的基准电压进行比较后, 获得反馈电 压;
c、 将所述获得的反馈电压与预设的第一比较电压进行比较, 并根据比 较结果, 确定输出给所述第一开关晶体管的输出信号的频率。
14、 如权利要求 13所述的方法, 其中, 当所述获得的电平信号为低电 平信号时得到的分压电压大于当所述获得的电平信号为高电平信号时得到 的分压电压。
15、 如权利要求 14所述的方法, 其中, 当所述得到的分压电压大于预 设的基准电压时获得的反馈电压大于当所述得到的分压电压小于预设的基 准电压时获得的反馈电压,且所述获得的反馈电压与所述得到的分压电压成 正比。
16、 如权利要求 13所述的方法, 其中, 所述步骤 c中 "将所述获得的 反馈电压与预设的第一比较电压进行比较, 并根据比较结果, 确定输出给所 述第一开关晶体管的输出信号的频率" 的具体步骤包括:
当所述获得的反馈电压小于预设的第一比较电压,确定输出给所述第一 开关晶体管的输出信号的频率为第一频率;
当所述获得的反馈电压大于预设的第一比较电压,确定输出给所述第一 开关晶体管的输出信号的频率为第二频率。
17、 如权利要求 13所述的方法, 其中, 在所述步骤 b之后, 所述步骤 c 之前, 还包括步骤:
将所述获得的反馈电压与预设的第二比较电压比较后进行放大,得到放 大电压, 并将所述得到的放大电压作为当前反馈电压。
18、 如权利要求 17所述的方法, 其中, 所述预设的第二比较电压为通 过一三端稳压器产生的电压。
PCT/CN2014/074511 2014-03-18 2014-04-01 一种待机功耗控制电路及力法 WO2015139337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/373,345 US9671808B2 (en) 2014-03-18 2014-04-01 Circuit and method for controlling standyby power consumption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410099625.8A CN103872885B (zh) 2014-03-18 2014-03-18 一种待机功耗控制电路及方法
CN201410099625.8 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015139337A1 true WO2015139337A1 (zh) 2015-09-24

Family

ID=50911103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074511 WO2015139337A1 (zh) 2014-03-18 2014-04-01 一种待机功耗控制电路及力法

Country Status (3)

Country Link
US (1) US9671808B2 (zh)
CN (1) CN103872885B (zh)
WO (1) WO2015139337A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125818B (zh) * 2016-08-24 2017-11-14 泰利美信(苏州)医疗科技有限公司 一种电源供给电路及其控制方法
CN107844186B (zh) * 2016-09-18 2019-12-06 鸿富锦精密工业(武汉)有限公司 电源供电***
CN113249931B (zh) * 2021-05-28 2023-11-03 海信冰箱有限公司 电控板电路、控制方法、洗衣机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045759A (ja) * 1999-08-04 2001-02-16 Canon Inc 自励式スイッチング電源装置
KR20060036812A (ko) * 2004-10-26 2006-05-02 엘지전자 주식회사 스위칭 모드 전원장치의 대기전력 저감장치 및 방법
CN101127495A (zh) * 2006-08-16 2008-02-20 昂宝电子(上海)有限公司 用于为开关式电源提供控制的***和方法
CN101419434A (zh) * 2007-10-26 2009-04-29 王海 具有微功耗待机功能的容开电源
CN103078478A (zh) * 2013-01-23 2013-05-01 成都启臣微电子有限公司 一种开关电源控制器及开关电源

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9202295A (nl) * 1992-12-30 1993-05-03 Koninkl Philips Electronics Nv Voedingsschakeling en stuurschakeling voor toepassing in een voedingsschakeling.
DE4437459C1 (de) * 1994-10-19 1995-11-23 Siemens Ag Schaltnetzteil
US5916313A (en) * 1996-10-31 1999-06-29 Dell U. S. A., L.P. Low cost power converter for a computer
KR100204238B1 (ko) * 1996-12-12 1999-06-15 구자홍 영상표시기기에서의 에스엠피에스 트랜스 구동주파수 제어장치
KR200215119Y1 (ko) * 1997-12-01 2001-03-02 윤종용 절전동작모드를위한기준신호발생회로를구비하는전원공급장치
TWI275232B (en) * 2002-04-25 2007-03-01 Quanta Comp Inc Dual frequency pulse-width-modulation voltage regulation device
KR100823084B1 (ko) * 2006-07-12 2008-04-18 한국전기연구원 Smps 제어장치
JP2008160904A (ja) * 2006-12-21 2008-07-10 Rohm Co Ltd スイッチングレギュレータ
DK177105B1 (en) * 2009-08-14 2011-09-05 Zzzero Aps Low power switch mode power supply and use of the power supply
CN201781416U (zh) * 2009-09-08 2011-03-30 博大科技股份有限公司 可降低待机损耗的电源转换器
JP5703671B2 (ja) * 2010-10-05 2015-04-22 富士通セミコンダクター株式会社 電源コントローラ、および電子機器
JP5785710B2 (ja) * 2010-12-14 2015-09-30 ローム株式会社 Dc/dcコンバータならびにそれを用いた電源装置および電子機器
US8259472B2 (en) * 2011-01-07 2012-09-04 Iwatt Inc. Switching power converter having optimal dynamic load response with ultra-low no load power consumption
CN102685420A (zh) * 2011-03-08 2012-09-19 青岛海信电器股份有限公司 一种待机控制模块及电视机
WO2014006838A1 (ja) * 2012-07-06 2014-01-09 パナソニック株式会社 スイッチング電源装置および半導体装置
CN103633949B (zh) * 2012-08-21 2020-04-03 唯捷创芯(天津)电子技术股份有限公司 多模功率放大器、多模切换方法及其移动终端
TWI586205B (zh) * 2012-11-26 2017-06-01 魏慶德 Led驅動電路之直流核心電路
CN103066853B (zh) * 2012-12-24 2015-02-04 成都芯源***有限公司 控制电路、开关电源及其控制方法
CN104038082B (zh) * 2013-03-04 2017-12-12 比亚迪股份有限公司 开关电源、开关电源的控制方法及控制芯片

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045759A (ja) * 1999-08-04 2001-02-16 Canon Inc 自励式スイッチング電源装置
KR20060036812A (ko) * 2004-10-26 2006-05-02 엘지전자 주식회사 스위칭 모드 전원장치의 대기전력 저감장치 및 방법
CN101127495A (zh) * 2006-08-16 2008-02-20 昂宝电子(上海)有限公司 用于为开关式电源提供控制的***和方法
CN101419434A (zh) * 2007-10-26 2009-04-29 王海 具有微功耗待机功能的容开电源
CN103078478A (zh) * 2013-01-23 2013-05-01 成都启臣微电子有限公司 一种开关电源控制器及开关电源

Also Published As

Publication number Publication date
CN103872885A (zh) 2014-06-18
US9671808B2 (en) 2017-06-06
US20150301545A1 (en) 2015-10-22
CN103872885B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
US9065343B2 (en) Resonant converter with auxiliary resonant components and holdup time control circuitry
US10985663B2 (en) Power converter responsive to device connection status
WO2018068452A1 (zh) 降低电源功耗的方法、自动降低功耗的电源及电视机
KR101411433B1 (ko) 대기 전력 절감 회로
CN103650315B (zh) 开关模式电源单元、操作方法和开关模式电源单元在计算机中的用途
CN103368360B (zh) 一种开关电源控制方法、开关电源控制电路和开关电源
CN104868737A (zh) 用于开关电源的***和方法
CN103887984A (zh) 隔离式变换器及应用其的开关电源
JP6804454B2 (ja) パワーコンバータにおける高速モード遷移
TW200511698A (en) Power supply having efficient low power standby mode
CN101645655A (zh) 一种准谐振控制的开关稳压电路及方法
TWI327421B (en) Method for stabling voltage, pulse frequency modulating circuit and power supply using the same
TW202046610A (zh) 電壓轉換器中交叉傳導保護
WO2015139337A1 (zh) 一种待机功耗控制电路及力法
CN108696133B (zh) 控制装置及控制方法
CN209488469U (zh) 比较器型的单边调整器和调整***
CN105471247A (zh) 一种低功耗待机控制电路、大功率开关电源及用电设备
US20130308791A1 (en) Apparatus and method for reducing audible noise of power supply
TW201933713A (zh) 自動偵測待機電流的節能裝置
CN111049384A (zh) 用于控制面板的低功耗电力转换电路
CN207459981U (zh) 开关电源控制电路和开关电源
US20080042631A1 (en) Switching power supply
TWI698076B (zh) 能夠降低輕載功耗之電源供應電路
CN111404383B (zh) 一种供电控制装置、空调及其供电控制方法
EP3195457B1 (en) Constant on-time (cot) control in isolated converter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14373345

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886345

Country of ref document: EP

Kind code of ref document: A1