WO2015139104A2 - Stirling engine having a delta configuration - Google Patents

Stirling engine having a delta configuration Download PDF

Info

Publication number
WO2015139104A2
WO2015139104A2 PCT/BR2015/000031 BR2015000031W WO2015139104A2 WO 2015139104 A2 WO2015139104 A2 WO 2015139104A2 BR 2015000031 W BR2015000031 W BR 2015000031W WO 2015139104 A2 WO2015139104 A2 WO 2015139104A2
Authority
WO
WIPO (PCT)
Prior art keywords
working gas
piston
protractor
fins
delta configuration
Prior art date
Application number
PCT/BR2015/000031
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2015139104A3 (en
Inventor
Hirosi Suzuki
Original Assignee
Hirosi Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosi Suzuki filed Critical Hirosi Suzuki
Publication of WO2015139104A2 publication Critical patent/WO2015139104A2/en
Publication of WO2015139104A3 publication Critical patent/WO2015139104A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2255/00Heater tubes
    • F02G2255/20Heater fins

Definitions

  • the present invention relates to an external combustion engine known as the Stirling Engine, which consists of two chambers at different temperatures that alternately heat up in gas, causing cyclic expansions and contractions, which move two pistons connected to a common axis. .
  • the degree of its efficiency depends on the decrease of thermal losses and heating and cooling velocity of the working gas.
  • the incorporation of the Regenerator that the inventors of the Stirling engine called the Economizer was undoubtedly the greatest advance, which is why it is widely used to date.
  • the Stiring engine was conceived in 1816 by the Scottish Reverend. Robert Stiring and his brother railway Engineer who aimed to replace the steam engine, with which the Stiring engine bears great structural and theoretical similarity.
  • the Stiring engine had a common use until the 1920s, when the internal combustion engine and the e-electric motors made it redundant.
  • the Otto engine was invented in 1877 and the diesel engine in 1893, and these presented higher power compared to the Stiring engines of the time.
  • Stiring engines required special attention to their internal combustion. The combination of lower manufacturing cost and higher power generated by internal combustion engines led to the commercial disappearance of the Stiring Engine.
  • the Alpha engine has basically two pistons, one compression and one expansion, and this is 90 ° out of phase. There is a hot side (expansion space) and a cold side (compression space) joined together.
  • the pistons make the gas flow between both spaces, and the same two pistons generate output power.
  • the Alpha configuration is characterized by a simple arrangement of two separate cylinders that are connected in series by a heater and a regenerator.
  • the regenerator is used to store heat for part of the cycle and return it to gas for the remainder of the cycle.
  • the inclusion of this Stirling engine component increases performance, as with its use the cycle becomes closer to the theoretical. Thus, transformations occur at less variable temperatures.
  • the regenerator is formed by a matrix of tubes or a porous metal, or even a single chain of labyrinths of thin metal plates in which the walls of these fins make the heat exchange with the gas.
  • the pistons are connected to a crankshaft (engine component where the blast force is, turning gas expansion into mechanical energy) or a lever system that determines the required performance time for optimal gas flow.
  • the Alpha engine has the disadvantage that both pistons require sealing to contain working gas.
  • Stirling Beta and Gamma engines are called Stirling displacement engine, and the working gas is moved between the high and low temperature space by the displacement piston. Compression and expansion of working gas is done by the working piston.
  • the Gamma configuration is convenient to separate the hot portion of the heat exchanger, which is associated with the compression and expansion workspace displacement piston, associated with the working piston. That is, the working piston and the displacement piston are in separate cylinders in parallel and both are connected to the same flywheel. Thus, the gas is allowed to flow freely between the two cylinders.
  • Beta type Compared to the Beta type its mechanism is simpler, and adjusting the compression ratio and heat transfer area increment is relatively easy to obtain.
  • Figure 1 Profile section view of the Delta Configuration Stirling Engine Assembly.
  • Figure 4 Staple section profile view of the Stirling Engine Delta Configuration in Contraction.
  • Figure 5 Phase profile view of the Stirling Engine Delta Configuration in Transfer (working gas heat to cold source).
  • Stirling Engine Delta Configuration basically consists of a body (1) whose ends, one is heat chamber (2) and the other, cooling chamber (3) where the working gas displacement in the The interior of the body (1) between the two thermal poles is made by means of a protractor (4) which, furthermore, has the function of enhancing the thermal transfer.
  • the fins (5) are inserted with one part of the body into the chamber itself and the other on the outside in order to capture heat from any heat source into it by bringing The advantage of increased heat transfer efficiency and because it is transfer in the axial direction allows for practically the same transfer rate regardless of body diameter size (1).
  • hood (13) in the form of a hollow cylinder with the folding flexible walls surrounding the outer chamber of the piston (8) and fixed to the flap (14) thereof, at one end and the other fixed to the flap (15) of the body (1) to ensure a perfect sealing of the working gas.
  • the thrust bearing (16) allows axial sliding of the piston (8) without deviation and it moves the handwheel (17) through the stem (18) which it is fixed at one joint (19) and the other at the eccentric joint (20) transforming straight movement of the piston (8) into circular motion on the steering wheel (17).
  • Figure 3 shows the compressor (21) and storage tank (22) connected through pipe (23) at the ends of the support (24) of the body (1) to control the amount of working gas inside the body (1). ) and by increasing or decreasing the pressure inside the body (1) vary the engine power, consequently the speed. Thermal insulation (25) between the heat source chamber (2) and the body end (1) serves to prevent heat loss from the source to the body (1).
  • Figure 5 shows phase 1 where the working gas is compressed by the piston (8) and the protractor (4) fully coupled to the fins (6) through the holes (7) and the working gas in contact with the fins ( 5) Forcing your heating more.
  • Figure 7 shows phase 3 with piston (8) at the farthest stroke limit and protractor (4) fully coupled to fins (5) through holes (7) to facilitate heat transfer from heat source (2) and working gas in contact with the fins (6) to force cooling.
  • FIG 8 it shows the last phase of the cycle, phase 4, where the working gas is compressed by the action of the flywheel inertia (17) on the piston (8) and the displacement of the protractor (4). contrary, that is, moving from the hot source to the cold source causing the migration of the working gas and through the holes (7) of the protractor (4) and in this case the working gas receives heat and it contacts the fins (5). ) force heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

An external combustion engine known as a Stirling engine consists of two chambers having different temperatures for alternatively heating a gas, causing cyclic expansions and contractions, thus moving two plungers linked to a common shaft. The degree of efficiency of the engine depends on reducing thermal losses and on the working gas heating and cooling speeds. The incorporation of the regenerator, which the inventors of the Stirling engine called economiser, was undoubtedly the greatest advance, reason for which it is widely used until today. The replacement of the regenerator or economiser by a heat exchanger and the use of working gas heating and cooling "fins", which is the main subject matter of the invention, makes the Stirling cycle more similar to the Carnot cycle, increasing its efficience and at the same time making it possible to build more powerful engines without compromising their throughput.

Description

Motor Stirling de configuração Delta.  Delta configuration Stirling engine.
Refere-se a presente invenção a um motor de combustão externo conhecido como Motor Stirling, que consiste de duas câmaras em diferentes temperaturas que aquecem em gás de forma alternada, provocando expansões e contrações cíclicas, o que faz movimentar dois êmbolos ligados a um eixo comum. O grau da sua eficiência depende da diminuição das perdas térmicas e velocidade de aquecimento e esfriamento do gás de trabalho. Na ocasião a incorporação do Regenerador que os inventores do motor Stírling chamaram de Economizador foi sem duvida o maior avanço, razão pelo qual é usado largamente até o presente momento. A substituição do Regenerador ou Economizador por um Transferidor de calor" e uso de "aletas" no aquecimento e resfriamento do gás de trabalho, objeto maior dessa invenção, fará com que o ciclo Stiríing aproxime mais do ciclo de Carnot aumentando sua eficiência e ao mesmo tempo viabilizará construir motor de maior potencia sem comprometer no seu rendimento.  The present invention relates to an external combustion engine known as the Stirling Engine, which consists of two chambers at different temperatures that alternately heat up in gas, causing cyclic expansions and contractions, which move two pistons connected to a common axis. . The degree of its efficiency depends on the decrease of thermal losses and heating and cooling velocity of the working gas. At the time, the incorporation of the Regenerator that the inventors of the Stirling engine called the Economizer was undoubtedly the greatest advance, which is why it is widely used to date. The replacement of the Regenerator or Economizer with a "Heat Transfer" and the use of "fins" in the heating and cooling of the working gas, the main object of this invention, will bring the Stiring cycle closer to the Carnot cycle, increasing its efficiency and at the same time. time will make it possible to build a higher power engine without compromising on its performance.
O motor Stiríing foi idealizado em 1816 pelo Reverendo Escocês .Robert Stiríing e seu irmão Engenheiro ferroviário que visavam substituir o motor a vapor ,com o qual o motor Stiríing tem grande semelhança estrutural e teórica.  The Stiring engine was conceived in 1816 by the Scottish Reverend. Robert Stiring and his brother Railway Engineer who aimed to replace the steam engine, with which the Stiring engine bears great structural and theoretical similarity.
No entanto em 1856 durante a guerra, o Engenheiro Sir Henry Bessener conseguiu produzir um aço especial destinado a construções de canhões, revolucionando também a técnica e a fabricação de caldeiras de vapor. As caldeiras fabricadas com esse aço permitiram operar com temperatura mais elevada que além de aumentar a segurança, proporcionou um rendimento maior.  However in 1856 during the war, Engineer Sir Henry Bessener succeeded in producing special steel for cannon construction, also revolutionizing the technique and manufacture of steam boilers. Boilers made of this steel allowed to operate at a higher temperature which, besides increasing safety, provided a higher yield.
Entretanto o motor de Stiríing foi aperfeiçoado com a anexação de um regenerador que o chamou de "economizador" .aumentando sua eficiência muito antes de terem sido estabelecidos as leis da termodinâmica .Os motores de Stiríing são únicos , como "engenhos" térmicos devido ao fato de a eficiência ser próximo a máxima eficiência teórica , conhecido como " eficiência do ciclo Carnot ".  However, the Stiring engine was refined by the attachment of a regenerator that called it an "economizer." It increased its efficiency long before the laws of thermodynamics were established. that efficiency is close to maximum theoretical efficiency, known as "Carnot cycle efficiency".
O motor de Stiríing teve um uso comum até os anos de 1920, quando o motor de combustão interna e os motores eJétricos o tomaram redundante. O motor Otto foi inventado em 1877 e o motor diesel em 1893, e estes apresentaram maiores potencia comparada aos motores Stiríing da época. Além disso, os motores Stiríing requeriam uma atenção especial na sua combustão interna. A combinação de um menor custo de manufatura e uma maior potencia gerada pelos motores de combustão interna levaram ao desaparecimento comercial do Motor Stiríing.  The Stiring engine had a common use until the 1920s, when the internal combustion engine and the e-electric motors made it redundant. The Otto engine was invented in 1877 and the diesel engine in 1893, and these presented higher power compared to the Stiring engines of the time. In addition, Stiring engines required special attention to their internal combustion. The combination of lower manufacturing cost and higher power generated by internal combustion engines led to the commercial disappearance of the Stiring Engine.
Atualmente encontra se 3 tipos de grupos no motor de Stiríing, Alfa, Beta e Gama, de acordo com a configuração dos cilindros e pistões.  There are currently 3 types of groups in the Stiring, Alpha, Beta and Gamma engine, according to the cylinder and piston configuration.
O motor tipo Alfa apresenta basicamente dois pistões, sendo um de compressão e um de expansão, e este são defasados de 90°Há um lado quente (espaço de expansão) e um lado frio (espaço de compressão) unido entre si.  The Alpha engine has basically two pistons, one compression and one expansion, and this is 90 ° out of phase. There is a hot side (expansion space) and a cold side (compression space) joined together.
Os pistões fazem o gás fluir entre ambos os espaços, e os mesmos dois pistões geram potencia de salda.  The pistons make the gas flow between both spaces, and the same two pistons generate output power.
A configuração Alfa caracteriza-se por um arranjo simples de dois cilindros em separado que são conectados em série por um aquecedor e um regenerador. O regenerador é utilizado para armazenar o calor durante parte do ciclo e devolvê-lo ao gás durante o restante do ciclo. A inclusão deste componente do motor Stirling aumenta o rendimento, uma vez que com o seu uso o ciclo torna se mais próximo do teórico. Deste modo, as transformações ocorrem em temperaturas menos variáveis. Sendo assim, o regenerador é formado por uma matriz de tubos ou um metal poroso, ou mesmo, uma só cadeia de labirintos de finas placas de metal na qual as paredes destes aletas, fazem as trocas de calor com o gás. The Alpha configuration is characterized by a simple arrangement of two separate cylinders that are connected in series by a heater and a regenerator. The regenerator is used to store heat for part of the cycle and return it to gas for the remainder of the cycle. The inclusion of this Stirling engine component increases performance, as with its use the cycle becomes closer to the theoretical. Thus, transformations occur at less variable temperatures. Thus, the regenerator is formed by a matrix of tubes or a porous metal, or even a single chain of labyrinths of thin metal plates in which the walls of these fins make the heat exchange with the gas.
Os pistões são ligados a um vírabrequim (componente do motor para onde é a força de explosão, transformando a expansão do gás em energia mecânica) ou a um sistema de alavancas que determina o tempo necessário de desempenho para o ideal fluxo do gás.  The pistons are connected to a crankshaft (engine component where the blast force is, turning gas expansion into mechanical energy) or a lever system that determines the required performance time for optimal gas flow.
Embora possua a configuração mais simples, o motor Alfa apresenta a desvantagem de ambos os pistões necessitarem de vedação para conter gás de trabalho.  Although it has the simplest configuration, the Alpha engine has the disadvantage that both pistons require sealing to contain working gas.
Aos motores Stirling Beta e Gama são chamados motor Stirling de deslocamento, sendo que o gás de trabalho é movimentado entre o espaço de alta e baixa Temperatura pelo pistão de deslocamento. A compressão e a expansão do gás de trabalho são feitas pelo pistão de trabalho.  Stirling Beta and Gamma engines are called Stirling displacement engine, and the working gas is moved between the high and low temperature space by the displacement piston. Compression and expansion of working gas is done by the working piston.
Na configuração Beta, os pistões de deslocamento e trabalho estão alinhados em um único cilindro. Pela sobre posição entre cada movimento de ambos os pistões, uma taxa de compressão maior do motor é obtida, e a permitirá maior potencia que o motor Stirling tipo Gama. Entretanto, as hastes do pistão de deslocamento e o de trabalho estão alinhadas, o que toma o mecanismo complicado.  In the Beta configuration, travel and work pistons are aligned on a single cylinder. By over-positioning between each movement of both pistons, a higher engine compression ratio is obtained, which will allow it to be more powerful than the Stirling Gamma engine. However, the displacement piston rods and the work piston rods are aligned, which makes the mechanism complicated.
A configuração Gama tem o conveniente de separar a parte quente do trocador de calor, que ê associada ao pistão de deslocamento do espaço de trabalho de compressão e expansão, associado ao pistão de trabalho. Ou seja, o pistão de trabalho e o pistão de deslocamento encontram-se em cilindro separados paralelamente e ambos são conectados ao mesmo volante.Deste modo, o gás é possibilitado de fluir livremente entre os dois cilindros.  The Gamma configuration is convenient to separate the hot portion of the heat exchanger, which is associated with the compression and expansion workspace displacement piston, associated with the working piston. That is, the working piston and the displacement piston are in separate cylinders in parallel and both are connected to the same flywheel. Thus, the gas is allowed to flow freely between the two cylinders.
Comparando com o tipo Beta o seu mecanismo é mais simples, e ajuste na taxa de compressão e incremento da área de transferência de calor, é relativamente fácil de se obter.  Compared to the Beta type its mechanism is simpler, and adjusting the compression ratio and heat transfer area increment is relatively easy to obtain.
Relativamente a esta energia renovável, podemos salientar os inúmeros aspectos positivos que levam a contemplar este mecanismo uma fonte voltada para um futuro próspero. No entanto, é de salientar que aliado as dificuldades técnicas de construção, os motores acima apresentados ainda alguns ponto negativos corno:  Regarding this renewable energy, we can highlight the many positive aspects that lead to contemplating this mechanism as a source for a prosperous future. However, it should be noted that allied to the technical difficulties of construction, the engines presented above still some negative points as:
• Dificuldade em iniciar o seu movimento e variar a sua velocidade de rotação rapidamente.  • Difficulty starting your movement and varying your rotation speed quickly.
• Elevado Custo quando se compara o custo/potencia com o motor diesel.  • High Cost when comparing cost / power with diesel engine.
• Perfeita Vedação é a grande dificuldade, pois para obter um motor de alta potencia requer alta pressão e consequentemente alta temperatura do gás de trabalho o que toma mais difícil para evitar contaminação com o lubrificante principalmente o uso do hidrogênio como gás de trabalho cuja molécula é de reduzido tamanho. Com o intuito de prover um motor com o ciclo Stirling viável tanto sob aspecto técnico como económico, desenvolveu-se a presente invenção, um motor Stirling Configuração Delta que poderá ser bem compreendida com a descrição detalhada das figuras em anexo, que de uma forma esquemática e não limitativa, representa: • Perfect sealing is the great difficulty, because to get a high power engine requires high pressure and consequently high working gas temperature which makes it more difficult to avoid lubricant contamination especially the use of hydrogen as working gas whose molecule is small in size. In order to provide a technically and economically viable Stirling cycle engine, the present invention has been developed, a Delta Configuration Stirling engine which can be well understood with the detailed description of the attached figures, which in a schematic manner and not limiting, represents:
Figura 1 - Vista de corte em perfil do Conjunto Motor Stirling Configuração Delta. Figure 1 - Profile section view of the Delta Configuration Stirling Engine Assembly.
Figura 2 - Vista de corte em perfil da fase do Motor Stirling Configuração Delta em Expansão. Figure 2 - Stair section profile view of the Stirling Delta Configuration Expanding Engine.
Figura 3 - Vista de corte em perfil da fase do Motor Stirling Configuração Delta em Transferência (calor da fonte quente para gás de trabalho) Figure 3 - Stirling Phase Profile Section View Delta Configuration in Transfer (Hot Source Heat for Working Gas)
Figura 4 - Vista de corte em perfil da fase do Motor Stirling Configuração Delta em Contração. Figura 5 - Vista de corte em perfil da fase do Motor Stirling Configuração Delta em Transferência (calor do gás de trabalho para fonte fria).  Figure 4 - Staple section profile view of the Stirling Engine Delta Configuration in Contraction. Figure 5 - Phase profile view of the Stirling Engine Delta Configuration in Transfer (working gas heat to cold source).
Com referencia a figura 1, pode se observar que Motor Stirling Configuração Delta basicamente consiste num corpo (1) cujas extremidades, uma é câmara de calor (2) e a outra , câmara de resfriamento (3) onde o deslocamento do gás de trabalho no interior do corpo (1) entre os dois pólos térmicos é realizado através de transferidor (4) que, alem disso, tem a função de potencializar a transferência térmica.  Referring to Figure 1, it can be seen that Stirling Engine Delta Configuration basically consists of a body (1) whose ends, one is heat chamber (2) and the other, cooling chamber (3) where the working gas displacement in the The interior of the body (1) between the two thermal poles is made by means of a protractor (4) which, furthermore, has the function of enhancing the thermal transfer.
Na câmara de calor (2) , as aletas (5) são inseridas com uma parte do corpo para o interior da câmara propriamente dita e a outra na parte externa com a finalidade de captar calor de uma fonte de calor qualquer para o seu interior trazendo vantagem como aumento da eficiência da transferência de calor e por se tratar de uma transferência na direção axial permite praticamente a mesma taxa de transferência independente do tamanho do diâmetro do corpo (1).  In the heat chamber (2), the fins (5) are inserted with one part of the body into the chamber itself and the other on the outside in order to capture heat from any heat source into it by bringing The advantage of increased heat transfer efficiency and because it is transfer in the axial direction allows for practically the same transfer rate regardless of body diameter size (1).
Na figura 2 podemos observar a câmara de resfriamento (3) com as aletas (6) inseridas com uma parte do corpo no interior da câmara propriamente dita e a outra no interior do corpo (1) de maneira que o fluido refrigerante que circula no interior da câmara de resfriamento (3) possa retirar o calor das aletas (6), continuamente por meio de uma bomba (9) que força a circulação dos fluidos refrigerante do reservatório (10) saindo pela tubulação flexível (11) e retornando pela tubulação flexível (12).  In figure 2 we can see the cooling chamber (3) with the fins (6) inserted with one part of the body inside the chamber itself and the other inside the body (1) so that the refrigerant circulating inside from the cooling chamber (3) can remove heat from the fins (6) continuously by means of a pump (9) forcing the circulation of reservoir refrigerant fluids (10) through the flexible tubing (11) and back through the flexible tubing (12).
Ainda na figura 2 podemos observar a coifa (13 ) com a forma de um cilindro oco com as paredes flexível sanfonada envolvendo a câmara externa do pistão (8) e fixa na aba (14) do mesmo, numa extremidade e a outra fixa na aba inferior (15) do corpo (1) para garantir uma perfeita vedação do gás de trabalho.O mancai axial (16) permite deslizamento axial do pistão (8) sem desvio e este movimenta o volante (17) através da haste (18) que é fixa numa articulação (19) e a outra na articulação excêntrica (20) transformando movimento retilínea do pistão (8) em movimento circular no volante (17).  Still in figure 2 we can see the hood (13) in the form of a hollow cylinder with the folding flexible walls surrounding the outer chamber of the piston (8) and fixed to the flap (14) thereof, at one end and the other fixed to the flap (15) of the body (1) to ensure a perfect sealing of the working gas. The thrust bearing (16) allows axial sliding of the piston (8) without deviation and it moves the handwheel (17) through the stem (18) which it is fixed at one joint (19) and the other at the eccentric joint (20) transforming straight movement of the piston (8) into circular motion on the steering wheel (17).
A figura 3 mostra o compressor (21) e o tanque de armazenamento (22) conectados através de tubo (23) nas extremidades do suporte (24) do corpo (1) para controlar a quantidade de gás de trabalho no interior do corpo(1) e ao aumentar ou diminuir a pressão no interior do corpo (1) variar a potencia do motor .consequentemente a velocidade. Isolante térmico (25) entre a câmara da fonte de calor (2) e a extremidade do corpo (1) serve para evitar perdas de calor da fonte para o corpo (1).  Figure 3 shows the compressor (21) and storage tank (22) connected through pipe (23) at the ends of the support (24) of the body (1) to control the amount of working gas inside the body (1). ) and by increasing or decreasing the pressure inside the body (1) vary the engine power, consequently the speed. Thermal insulation (25) between the heat source chamber (2) and the body end (1) serves to prevent heat loss from the source to the body (1).
Na figura 4 podemos observar o mecanismo responsável pelo deslocamento sincronizado do transferidor (4) com o pistão (8) em direçôes opostas que, consiste de pares de haste (27) e haste (26), uma de cada fado.sendo que a haste (27) é fixa numa extremidade a pinos ( 32) do transferidor (4) e a outra extremidade a pino (29) da guia (28) enquanto que a haste (26) é fixa numa extremidade a pino (30) da guia (28) e a outra extremidade a pino (31) da câmara de resfriamento (3) que faz conjunto com o pistão (8).A guia (29) pode deslizar ao longo do suporte (24) e o pino (29) , pino (30) , pino (31) e pino (32) permite que as haste (27) e haste (26) possa ser articulados nas extremidades. De modo que quando o pistão (8) desce arrastando a haste (26) ,de ambos os lado para baixo .força a guia (28) a deslizarem para interior do corpo (1) ,que por sua vez força, ambas as haste (27) ,a se deslocar elevando o transferidor (4) e assim vice versa .quando o pistão (8) sobe .o transferidor (4) desce. In figure 4 we can see the mechanism responsible for the synchronized displacement of the protractor (4) with the piston (8) in opposite directions that, consists of pairs of shank (27) and shank (26), one from each liver. The shank (27) is fixed at one end to pins (32) of the protractor (4) and the other to pin end (29) of the guide (28) while the rod (26) is fixed at one pin end (30) of the guide (28) and the other pin end (31) of the cooling chamber (3) which is in conjunction with the piston (8) .The guide (29) can slide along the bracket (24) and the pin (29), pin (30), pin (31) and pin (32) allows the rod (27) and rod (26) to be articulated at the ends. So that when the piston (8) pulls down the rod (26) from both sides downward, it forces the guide (28) to slide into the body (1), which in turn forces both rod ( 27), moving by elevating the protractor (4) and so vice versa when the piston (8) rises. The protractor (4) descends.
A figura 5 .figura 6 .figura 7 e figura 8 servirá para observar as 4 etapas do ciclo da Motor Stirling Configuração Deita para sua melhor compreensão.  Figure 5 .figure 6 .figure 7 and figure 8 will serve to observe the 4 steps of the Stirling Engine Configuration Lay cycle for your better understanding.
A figura 5 mostra a fase 1 onde o gás de trabalho encontra se comprimido pelo pistão(8) e o transferidor (4) totalmente acoplado às aletas (6) através dos furos (7) e o gás de trabalho em contato com as aletas (5), forçando mais o seu aquecimento.  Figure 5 shows phase 1 where the working gas is compressed by the piston (8) and the protractor (4) fully coupled to the fins (6) through the holes (7) and the working gas in contact with the fins ( 5) Forcing your heating more.
Já na figura 6 é a fase 2 onde o aquecimento do gás de trabalho aumenta a pressão e empurra o pistão (8) e ao mesmo instante o deslocamento em direção oposta do transferidor (4) provoca a migração do gás de trabalho para a câmara do resfriamento (3) atravessando pelos furos (7) e transferindo parte do calor ,e em contato com as aletas (6) forçando mais o resfriamento.  Already in Figure 6 is the phase 2 where the heating of the working gas increases the pressure and pushes the piston (8) and at the same time the displacement in opposite direction of the protractor (4) causes the migration of the working gas to the chamber of the cooling (3) by passing through the holes (7) and transferring part of the heat, and in contact with the fins (6) further forcing the cooling.
A figura 7 mostra a fase 3 com pistão (8) no limite mais distante do curso e o transferidor (4 ) totalmente acoplado às aletas (5) através dos furos (7) para facilitar a transferência do calor da fonte de calor (2) e o gás de trabalho em contato com as aletas( 6) para forçar o resfriamento.  Figure 7 shows phase 3 with piston (8) at the farthest stroke limit and protractor (4) fully coupled to fins (5) through holes (7) to facilitate heat transfer from heat source (2) and working gas in contact with the fins (6) to force cooling.
E por fim na figura 8 , mostra a ultima fase do ciclo ,fase 4 ,onde o gás de trabalho é comprimido pela ação da inércia do volante (17) no pistão (8) e o deslocamento do transferidor (4) .agora em direção contraria ,ou seja deslocando da fonte quente para fonte fria provocando a migração do gás de trabalho e atravessando os furos (7) do transferidor (4) e sendo que nesse caso o gás de trabalho recebe calor e este em contato com as aletas (5) força o aquecimento  And finally in figure 8, it shows the last phase of the cycle, phase 4, where the working gas is compressed by the action of the flywheel inertia (17) on the piston (8) and the displacement of the protractor (4). contrary, that is, moving from the hot source to the cold source causing the migration of the working gas and through the holes (7) of the protractor (4) and in this case the working gas receives heat and it contacts the fins (5). ) force heating

Claims

REIVINDICAÇÕES
1. Motor Stirling Configuração Delta, caracterizado por ser constituído de corpo (1) cujas extremidades, uma é câmara de calor (2) e a outra, câmara de resfriamento (3) onde o deslocamento do gás de trabatho no interior do corpo (1) entre os dois pólos térmicos é realizado através de transferidor (4) que, alem disso, tem a função de potencializar a transferência térmica.  1. Stirling engine Delta configuration, characterized in that it consists of a body (1) whose ends, one is a heat chamber (2) and the other, a cooling chamber (3) where the displacement of the working gas inside the body (1) ) between the two thermal poles is carried out by means of a protractor (4) which, furthermore, has the function of enhancing the thermal transfer.
2. Motor Stirling Configuração Delta de acordo com a reivindicação 1, caracterizado em possuir câmara de calor (2) , com as aletas (5) inseridas com uma parte do corpo para o interior da câmara propriamente dita e a outra na parte externa com a finalidade de captar calor de uma fonte de calor qualquer para o seu interior trazendo vantagem como aumento da eficiência da transferência de calor I possibilitando manter a mesma taxa de transferência independente do tamanho do diâmetro do corpo (1).  Delta Configuration Stirling Engine according to Claim 1, characterized in that it has a heat chamber (2), with the fins (5) inserted with one part of the body into the chamber itself and the other outside with the the purpose of capturing heat from any heat source to its interior, having the advantage of increasing the heat transfer efficiency I, allowing the same transfer rate to be maintained regardless of the body diameter size (1).
3. Motor Stirling Configuração Delta de acordo com a reivindicação 1, câmara de resfriamento (3) com as aletas (6) inseridas com uma parte do corpo no interior da câmara propriamente dita e a outra no interior do corpo (1) de maneira que o fluido refrigerante que circula no interior da câmara de resfriamento (3) possa retirar o calor das aletas (6), continuamente por meio de uma bomba (9) que força a circulação dos fluidos refrigerante do reservatório (10) saindo pela tubulação flexível (11) e retornando pela tubulação flexível (12).  Delta Configuration Stirling Engine according to claim 1, cooling chamber (3) with fins (6) inserted with one body part inside the chamber itself and the other inside the body (1) such that the refrigerant circulating inside the cooling chamber (3) can remove heat from the fins (6) continuously by means of a pump (9) that forces the circulation of the refrigerant from the reservoir (10) through the flexible tubing ( 11) and returning through the flexible tubing (12).
4. Motor Stirling Configuração Delta de acordo com a reivindicação 1, coifa (13 ) com a forma de um cilindro oco com as paredes flexível sanfonada envolvendo a câmara externa do pistão (8) e fixa na aba (14) do mesmo, numa extremidade e a outra fixa na aba inferior (15) do corpo (1) garante uma perfeita vedação do gás de trabalho.O mancai axial (16) permite deslizamento axial do pistão (8) sem desvio e este movimenta o volante (17) através da haste (18) que é fixa numa articulação (19) e a outra na articulação excêntrica (20) transformando movimento retilínea do pistão (8) em movimento circular no volante Delta Configuration Stirling engine according to claim 1, a hollow cylinder (13) in the form of a hollow cylinder with the folding flexible walls surrounding the outer piston chamber (8) and fixed to the flange (14) thereof at one end and the other fixed to the lower flap (15) of the body (1) ensures a perfect seal of the working gas. The axial bearing (16) allows axial sliding of the piston (8) without deviation and it moves the flywheel (17) through the rod (18) that is fixed to one joint (19) and the other to the eccentric joint (20) transforming straight movement of the piston (8) into circular motion on the flywheel
5. Motor Stirling Configuração Delta de acordo com a reivindicação 1, o compressor (21) e o tanque de armazenamento (22) conectados através de tubo (23) nas extremidades do suporte (24) do corpo (1) serve para controlar a quantidade de gás de trabalho no interior do corpo(1) e aumentar ou diminuir a pressão no interior do corpo (1) para variar a potencia do motor .consequentemente a velocidade. Delta Configuration Stirling Engine According to claim 1, the compressor (21) and the storage tank (22) connected via pipe (23) at the ends of the support (24) of the body (1) serve to control the amount working gas inside the body (1) and increasing or decreasing the pressure inside the body (1) to vary the engine power, and consequently the speed.
6. Motor Stirling Configuração Delta de acordo com a reivindicação 1, Isolante térmico (25) entre a câmara da fonte de calor (2) e a extremidade do corpo (1) serve para evitar perdas de calor da fonte para o corpo (1).  Delta Configuration Stirling Engine according to claim 1, Thermal insulation (25) between the heat source chamber (2) and the body end (1) serves to prevent heat loss from the source to the body (1) .
7. Motor Stiriing Configuração Delta de acordo com a reivindicação 1, o mecanismo responsável pelo deslocamento sincronizado do transferidor (4) com o pistão (8) em direções opostas, consiste de pares de haste (27) e haste (26),uma de cada lado,sendo que a haste (27) é fixa numa extremidade a pinos ( 32) do transferidor (4) e a outra extremidade a pino (29) da guia (28) enquanto que a haste (26) é fixa numa extremidade a pino (30) da guia (28) e a outra extremidade a pino (31) da câmara de resfriamento (3) que faz conjunto com o pistão (8).A guia (29) pode deslizar ao iongo do suporte (24) e o pino (29) , pino (30) , pino (31) e pino (32) permite que as haste (27) e haste (26) possa ser articulados nas extremidades. De modo que quando o pistão (8) desce arrastando a haste (26) ,de ambos os lado para baixo ,força a guia (28) a deslizarem para interior do corpo (1) ,que por sua vez força, ambas as haste (27) ,a se deslocar elevando o transferidor (4) e assim vice versa quando o pistão (8) sobe o transferidor (4) desce.  The Delta Configuration Stiriing Engine according to claim 1, the mechanism responsible for synchronously displacing the protractor (4) with the piston (8) in opposite directions consists of rod pairs (27) and rod (26), one of each side, with the rod (27) being fixed at one end to pins (32) of the protractor (4) and the other to the pin end (29) of the guide (28) while the rod (26) is fixed at one end to pin (30) of the guide (28) and the other pinned end (31) of the cooling chamber (3) which makes up with the piston (8) .The guide (29) can slide into the bracket (24) and pin (29), pin (30), pin (31) and pin (32) allow rod (27) and rod (26) to be pivotable at the ends. So that when the piston (8) pulls down the rod (26) from both sides downwards, it forces the guide (28) to slide into the body (1), which in turn forces both rod ( 27), moving by elevating the protractor (4) and thus vice versa when the piston (8) rises the protractor (4) descends.
8. Motor Stiriing Configuração Delta de acordo com a reivindicação 1 ,2,3,4,5,6 e 7 na fase 1 iniciai o gás de trabalho encontra se comprimido pelo pistão(8) e o transferidor (4) totalmente acoplado às aletas (6) através dos furos (7) e o gás de trabalho em contato com as aletas (5), para forçar mais o seu aquecimento.  Delta Configuration Stiriing Engine according to claim 1, 2,3,4,5,6 and 7 in phase 1 start working gas is compressed by piston (8) and protractor (4) fully coupled to fins (6) through the holes (7) and working gas in contact with the fins (5) to further force their heating.
9. Motor Stiriing Configuração Delta de acordo com a reivindicação 1,2,3,4,5,6 e7 , o aquecimento do gás de trabalho aumenta a pressão e empurra o pistão (8) e ao mesmo instante o deslocamento em direção oposta do transferidor (4) provoca a migração do gás de trabalho para a câmara do resfriamento (3) atravessando pelos furos (7) e transferindo parte do calor ,e em contato com as aletas (6) para forçar mais o resfriamento. 9. Delta Configuration Stiriing Engine According to claim 1,2,3,4,5,6 e7, heating of the working gas increases the pressure and pushes the piston (8) and at the same time the displacement in the opposite direction of the The protractor (4) causes the working gas to migrate to the cooling chamber (3) through the holes (7) and transfer heat, and contact the fins (6) to further force cooling.
10. Motor Stirling Configuração Delta de acordo com a reivindicação 1,2,3/4,5,6 e 7 , com pistão (8) no limite mais distante do curso e o transferidor (4 ) totalmente acoplado às aletas (5) através dos furos (7) para facilitar a transferência do calor da fonte de calor (2) e o gás de trabalho em contato com as aletas( 6) para forçar o resfriamento. Delta configuration Stirling engine according to claim 1,2,3 / 4,5,6 and 7, with piston (8) at the farthest stroke limit and the protractor (4) fully coupled to the fins (5) through holes (7) to facilitate heat transfer from the heat source (2) and working gas in contact with the fins (6) to force cooling.
11. Motor Stirling Configuração Delta de acordo com a reivindicação 1,2,3,4,5,6 e 7 ,a ultima fase do ciclo ,fase 4 ,onde o gás de trabalho é comprimido pela ação da inércia do volante (17) no pistão (8) e o deslocamento do transferidor (4) , agora em direção contraria ,ou seja deslocando da fonte quente para fonte fria provocando a migração do gás de trabalho e atravessando os furos (7) do transferidor (4) e sendo que nesse caso o gás de trabalho recebe calor e este em contato com as aletas (5) força o aquecimento  Delta Configuration Stirling Engine according to claim 1,2,3,4,5,6 and 7, the last phase of the cycle, phase 4, where the working gas is compressed by the flywheel inertia (17) at the piston (8) and the displacement of the protractor (4), now in the opposite direction, ie moving from the hot source to the cold source causing the working gas to migrate and through the holes (7) of the protractor (4) and being In this case, the working gas receives heat and it, in contact with the fins (5), forces the heating
PCT/BR2015/000031 2014-03-21 2015-03-17 Stirling engine having a delta configuration WO2015139104A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102014006851 2014-03-21
BR1020140068511 2014-03-21

Publications (2)

Publication Number Publication Date
WO2015139104A2 true WO2015139104A2 (en) 2015-09-24
WO2015139104A3 WO2015139104A3 (en) 2015-10-22

Family

ID=54145434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2015/000031 WO2015139104A2 (en) 2014-03-21 2015-03-17 Stirling engine having a delta configuration

Country Status (1)

Country Link
WO (1) WO2015139104A2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118046A (en) * 1985-11-18 1987-05-29 Matsushita Electric Ind Co Ltd Stirling engine
AT411844B (en) * 2000-05-29 2004-06-25 Kocsisek Karl HOT GAS ENGINE
GB0020012D0 (en) * 2000-08-15 2000-10-04 Bg Intellectual Pty Ltd Heat transfer head for a stirling engine
US8479508B2 (en) * 2006-02-28 2013-07-09 Precision Combustion, Inc. Catalytic burner apparatus for stirling engine
WO2011070787A1 (en) * 2009-12-09 2011-06-16 株式会社eスター Stirling engine and method of removing impurities in a heat-transfer tube group in a power device or a power-generating device which uses a stirling engine
TW201213654A (en) * 2010-09-24 2012-04-01 Marketech Int Corp High-temperature-zone thermal transfer structure of Stirling engine
US9382873B2 (en) * 2012-07-24 2016-07-05 Alan Carl HOLSAPPLE Stirling engine with regenerator internal to the displacer piston and integral geometry for heat transfer and fluid flow

Also Published As

Publication number Publication date
WO2015139104A3 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
US9234480B2 (en) Isothermal machines, systems and methods
CA2869006C (en) Heat pump with electromechanically-actuated displacers
BR112016016149B1 (en) ELECTRIC COMPRESSOR WITH ALTERNATING MOTION MOTOR, SYSTEM AND METHOD OF DRIVING AN ELECTRIC COMPRESSOR WITH ALTERNATING MOTION
US9945321B2 (en) Hot gas engine
BR112016016078B1 (en) SYSTEM AND METHOD FOR DRIVING AN ALTERNATE COMPRESSOR
US20100186405A1 (en) Heat engine and method of operation
WO2015139104A2 (en) Stirling engine having a delta configuration
BR112017000919B1 (en) PRESSURE WAVE SUPERFEEDER
BR112018002719B1 (en) THERMODYNAMIC ENGINE
CN104389694A (en) Cold and hot cavity independent power piston Stirling engine
EP2864592A1 (en) Expander for a heat engine
WO2005108769A1 (en) Reciprocating engine with cyclical displacement of working medium
RU146383U1 (en) EXTERNAL HEATING ENGINE WITH V-PISTON POSITION
CN102562357A (en) Stirling engine with center shaft elliptical rotor
JP5995342B1 (en) Variable displacement pump
CN102418621A (en) Stirling engine with eccentric shaft rolling rotation ring
ES2659999B1 (en) Machine and thermal cycle of polytropic and adiabatic processes
RU167598U1 (en) Stirling engine using a liquid-gas phase transition of a working fluid
RU175182U1 (en) HEAT MOTOR
ES2660206B1 (en) Thermal machine with cycle of two polytropic and two isothermal processes
WO2020026215A1 (en) Integrated internal-combustion engine formed by an otto-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine
IT201900001821A1 (en) Hot air motor
RU117517U1 (en) EXTERNAL HEATING ENGINE
WO2020024034A1 (en) Integrated internal-combustion engine formed by a diesel-cycle main unit and a secondary unit with pistons and control process for the thermodynamic cycle of the engine
RU107551U1 (en) ROLLER-VAN ENGINE WITH EXTERNAL HEAT SUPPLY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764879

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764879

Country of ref document: EP

Kind code of ref document: A2