WO2015133444A1 - Drain valve driving device - Google Patents

Drain valve driving device Download PDF

Info

Publication number
WO2015133444A1
WO2015133444A1 PCT/JP2015/056131 JP2015056131W WO2015133444A1 WO 2015133444 A1 WO2015133444 A1 WO 2015133444A1 JP 2015056131 W JP2015056131 W JP 2015056131W WO 2015133444 A1 WO2015133444 A1 WO 2015133444A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
reverse rotation
synchronous motor
drain valve
rotor
Prior art date
Application number
PCT/JP2015/056131
Other languages
French (fr)
Japanese (ja)
Inventor
和希 星
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2015133444A1 publication Critical patent/WO2015133444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • F16K31/043Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • the present invention relates to a drain valve driving device, and more particularly to a drain valve driving device provided with a reverse rotation prevention mechanism for preventing reverse rotation of a synchronous motor as a driving source.
  • Patent Document 1 discloses a small motor provided with a rotation direction restricting mechanism that prevents reverse rotation of the rotor 11.
  • the small motor of Patent Document 1 rotates a regulating lever 23 (a reverse rotation preventing member) by a magnetic attraction member 19 that is rotated by the magnetic attraction force of the rotor 11.
  • the rotation portion of the rotor 11 is corrected in the normal rotation direction by bringing the engaging portion 25 of the regulating lever 23 into contact with the engagement piece 18 formed on the rotor 11.
  • the problem to be solved by the present invention is that the reverse rotation prevention member is incorrectly assembled before the product flows into the customer process or the market even if the reverse rotation prevention member is manually attached.
  • An object of the present invention is to provide a drain valve driving device capable of detecting the above.
  • a drain valve driving device of the present invention includes a synchronous motor, a first gear coupled from a rotor of the synchronous motor via a gear train, and the first gear rotatably supported.
  • the support shaft is erected between the first gear and the support portion.
  • the support shaft is rotatably supported by the support shaft, and rotates as the first gear rotates.
  • An anti-reverse member, and the support portion is formed with one or a plurality of position restricting protrusions protruding toward the anti-reverse member, and the position restricting protrusions are arranged in the wrong direction.
  • the gist of the present invention is that it is formed at a position where it comes into contact with the reverse rotation preventing member in the axial direction when it is disposed in the reverse direction.
  • the reverse-prevention member rides on the position-regulating protrusion to recognize that the work result is visually incorrect. It is possible to detect assembly errors at an early stage.
  • a case comprising a lower case that is a case half on the base side of the support shaft, and an upper case that is a case half on the tip end side, is further provided from the upper case side end of the first gear.
  • the torque of the first gear can be reduced, and the first gear can be more reliably secured when the case is forcibly closed. Can be stopped.
  • the upper case and the lower case are fixed by a hook portion that engages an engaging claw, which is an elastic member provided on one side, with a locking portion provided on the other side. Recognition.
  • the first gear further includes a second gear that has a helical tooth portion and is movable in the axial direction, and the first gear is a helical tooth that meshes with the helical gear portion of the second gear.
  • the helical gear portion of the first gear is formed over the entire length of the axial movement area of the helical gear portion of the second gear, Along with the purpose of closing the clearance with the upper case, a mechanism for moving the second gear in the axial direction can be realized, which contributes to the reduction in the number of parts and the assembly process and the miniaturization of the unit.
  • the support portion is a stator core made of a magnetic body of the synchronous motor, and at least one of the position restricting protrusions is a separate member protruding toward the reverse rotation prevention member side from a through hole formed in the stator core.
  • the synchronous motor is an inner rotor type motor
  • the pinion of the synchronous motor and the first gear are directly meshed with each other, and the rotation center of the first gear is provided in the stator core, so that The distance between the shafts of the first gear can be reduced, and the diameter of the first gear can be reduced.
  • a concentric groove portion with respect to the support shaft is formed on the contact surface of the reverse rotation preventing member with the first gear, and on the contact surface of the reverse rotation prevention member with the support portion, Since concentric ribs are formed with respect to the support shaft protruding toward the support portion, the degree of coupling between the first gear and the reverse rotation prevention member is increased by the viscosity of the grease filled in the groove portion. In addition, since the rib reduces the frictional resistance with the support portion due to the rotation, the follow-up accuracy of the reverse rotation preventing member by the first gear is improved.
  • the drain valve driving device even when the reverse rotation prevention member is manually attached, it is possible to detect an erroneous assembly of the reverse rotation prevention member before the product flows into the customer process or the market. Can do.
  • the “original position” refers to the position of each constituent member in a state where the synchronous motor 10 is not driven.
  • the power system of the drain valve driving device 1 includes an output system (first transmission train) that transmits the power of the synchronous motor 10 to the driven body 90, and a clutch operating system that operates the clutch means 30 ( Second transmission train).
  • the clutch means 30 switches the transmission of power by the output system to the “joining” state or the “disconnected” state. That is, if the clutch means 30 is in the “joining” state, the power of the synchronous motor 10 is transmitted to the driven body 90 through the output system.
  • the clutch means 30 If the clutch means 30 is in the “disconnected” state, the output system is disconnected, and the power of the synchronous motor 10 is not transmitted to the driven body 90.
  • the driven body As shown in the figure, in this embodiment, the driven body is used as the power of the clutch operating system for operating the clutch means 30 in this way (the power transmission by the first transmission train is set to the “joining” state). A part of the power of the synchronous motor 10 for driving 90 is used.
  • the reverse rotation prevention mechanism in the present embodiment mainly includes a reverse rotation prevention member 43, a reverse rotation prevention contact portion 411 formed on the rotor 11, and a first gear 42.
  • the reverse rotation preventing member 43 is a plate-like member arranged on the lower surface of the first gear 42 (drive side tooth portion 421).
  • a gear support shaft 85 which is a support shaft that rotatably supports the first gear 42, is erected on the support portion 84.
  • the reverse rotation preventing member 43 is rotatably supported on the gear support shaft 85 between the first gear 42 and the support portion 84, and rotates as the first gear 42 rotates.
  • FIG. 11 is a plan view showing the reverse rotation preventing member 43 arranged correctly in the front and back.
  • the reverse rotation preventing member 43 includes a substantially circular main body portion 431, an abutting portion 432 protruding outward from the main body portion 431, and a rotation preventing portion 433.
  • the contact portion 432 of the reverse rotation prevention member 43 is a portion that contacts the reverse rotation prevention contact portion 411 when the synchronous motor 10 reversely rotates (CCW rotation).
  • the rotation preventing portion 433 is a portion that abuts on a first position restricting protrusion 841 of an erroneous assembly detection structure to be described later when the synchronous motor 10 rotates forward (CW rotation). That is, the first position restricting protrusion 841 also serves as a stopper that prevents the reverse rotation preventing member 43 from rotating more than a certain angle during the normal rotation of the synchronous motor 10.
  • FIG. 12 is a plan view showing an example in which the reverse rotation preventing member 43 is arranged in the wrong direction or upside down. Note that examples in which the reverse rotation preventing member 43 is disposed upside down are (c) to (e).
  • the reverse rotation preventing member 43 rides on the first position restriction protrusion 841 or the second position restriction protrusion 842.
  • the clearance from the upper end of the first gear 42 to the upper case 81 is narrower than the height of the first position restricting protrusion 841 and the second position restricting protrusion 842. That is, when the reverse rotation prevention member 43 rides on the first position restriction protrusion 841 or the second position restriction protrusion 842 and the first gear 42 is pushed upward by the reverse rotation prevention member 43, the first gear 42 and the upper case 81 interferes with the upper case 81 so that it is difficult to close.
  • the upper case 81 and the lower case 82 are hooks including an engaging claw 8011 that is an elastic member provided in the upper case 81 and a locking portion 8012 provided in the lower case 82. It is fixed by the part 801. A plurality of hook portions 801 are provided on the outer peripheral surface of the case 80.
  • the first gear 42 includes a first helical tooth portion 422 that is a helical tooth portion between the driving side tooth portion 421 and the upper case 81.
  • the second gear 44 that is movable in the axial direction has a second helical tooth portion 441 that is a helical tooth portion, and the second helical tooth portion 441 meshes with the first helical tooth portion 422. Is done.
  • the first helical tooth portion 421 is provided over the entire length of the range in which the second helical tooth portion 441 moves in the axial direction.
  • the first gear 42 is provided with the first helical tooth portion 422 using the space from the drive side tooth portion 421 to the upper case 81 in addition to closing the clearance with the upper case 81. The efficiency of the mechanism is improved.
  • the support portion 84 is a stator core made of a magnetic body of the synchronous motor 10, and the second position restricting projection 842 is a part of a bobbin (not shown) protruding upward from a through hole formed in the stator core.
  • the bobbin is a resin-molded member that is easy to process, and the difficulty of cutting the stator core into an arc shape by pressing is eliminated.
  • the synchronous motor 10 is an inner rotor type motor, and the first rotor gear 41 and the first gear 42 which are pinions are directly meshed with each other.
  • the distance between the axes of the first rotor gear 41 and the first gear 42 is reduced, and the diameter of the first gear 42 is reduced.
  • the torque of the first gear 42 is reduced, so that the case 80 remains in a state where the reverse rotation preventing member 43 is erroneously assembled. Is forcibly closed, the rotation of the first gear 42 can be stopped more reliably.
  • the erroneous assembly detection structure in the present embodiment includes two position restricting protrusions, a first position restricting protrusion 841 and a second position restricting protrusion 842, in order to reliably detect an incorrect assembly of the reverse rotation preventing member 43.
  • the position restricting protrusion is composed of only the first position restricting protrusion 841, the effect of detecting the incorrect assembly of the reverse rotation preventing member 43 is recognized.
  • FIG. 14 is a diagram showing another configuration of the erroneous assembly detection structure. 14 is only the first position restricting protrusion 841, and the first position restricting protrusion 841 is extended in the longitudinal direction more than the first position restricting protrusion 841 having the above-described configuration, thereby preventing reverse rotation. It is formed to a position closer to the member 43 side.
  • FIG. 15 is a diagram showing a range of erroneous assembly that can be detected by the first position restricting protrusion 841.
  • (A) to (d) in FIG. 15 are examples that can be detected, and (e) is the only example that cannot be detected.
  • (e) is the only example that cannot be detected.
  • the drain valve driving device in the present embodiment is provided with the above-described erroneous assembly detection structure, thereby detecting erroneous assembly of the reverse rotation preventing member 43 at an early stage and preventing defective products from leaking into the customer process or the market. Yes.
  • the synchronous motor 10 which is a drive source of the drain valve driving device 1 according to the present embodiment is an AC synchronous motor. A motor other than the AC synchronous motor can also be applied.
  • the synchronous motor 10 has a rotating shaft that protrudes from its upper end surface.
  • the first transmission train constitutes an output system that transmits the power of the synchronous motor 10 to the driven body 90.
  • the first transmission train includes the second rotor gear 21, the input side gear 22 meshing with the second rotor gear 21, and the rotation of the input side gear 22 when the clutch means is in the "joint" state.
  • the output side gear 23 that rotates, the composite gear 24 that meshes with the output side gear 23, the cam gear 25 that meshes with the composite gear 24, the pulley 26 that rotates integrally with the cam gear 25, and the pulley 26 is wound up by rotation.
  • the input side gear 22 and the output side gear 23 are also gears constituting clutch means (differential gear mechanism based on a planetary gear train) whose details will be described later.
  • the second rotor gear 21 is a spur gear supported so as to be rotatable on the same axis as the synchronous motor 10 and movable in the axial direction.
  • the second rotor gear 21 is arranged on the first rotor gear 41 rotating integrally with the rotor 11 (rotation). It is supported on the tip side of the shaft.
  • the second rotor gear 21 is urged upward in the axial direction by a coil spring 28.
  • the position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are engaged is referred to as a first position.
  • the position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are not engaged is referred to as a second position.
  • the second rotor gear 21 is moved to the rotor 11 side by an inclined cam 63 (see FIG. 8) of the sector lever 60 described later, and the second rotor gear 21 has an upper engagement portion 212 and a first rotor gear 41 below.
  • the engaging portion 412 is engaged (the second rotor gear 21 is in the first position)
  • the second rotor gear 21 and the first rotor gear 41 rotate integrally. That is, the power of the synchronous motor 10 is also transmitted to the second rotor gear 21.
  • the input side gear 22 meshes with the second rotor gear 21.
  • the input side gear 22 is one gear constituting a planetary gear train.
  • the input side gear 22 has a relatively large diameter large diameter tooth portion 221 and a relatively small diameter small diameter tooth portion 222 which is a so-called sun gear.
  • the large-diameter tooth portion 221 of the input side gear 22 meshes with the second rotor gear 21, and the input side gear 22 rotates as the second rotor gear 21 rotates.
  • a locked projection 223 is formed on the upper surface of the input side gear 22.
  • An input side gear lock projection 62 of the sector lever 60 described later acts on the locked projection 223.
  • the power of the synchronous motor 10 is transmitted to the output side gear 23 via the second rotor gear 21.
  • the output side gear 23 in this embodiment corresponds to the three planetary gears 231 and the planetary support gear 232 that are gears constituting the planetary gear train.
  • the planetary gears 231 are rotatably supported on three planetary gear support shafts that protrude from the upper end surface of the planetary support gear 232 and are provided at equal intervals in the circumferential direction.
  • a retaining ring 233 is fixed to the upper end of the planetary gear support shaft to prevent the planetary gear 231 from falling off.
  • the planetary support gear 232 has a gear portion 2321 on the side opposite to the surface to which the planetary gear 231 is attached.
  • the planetary gear 231 meshes with the small diameter tooth portion 222 of the input side gear 22.
  • the planetary gear 231 revolves around the small-diameter tooth portion 222 of the input side gear 22 as the input side gear 22 rotates.
  • the planetary support gear 232 that supports the planetary gear 231 rotates. In this way, power is transmitted from the input side gear 22 to the output side gear 23.
  • the compound gear 24 meshes with the planetary support gear 232 (output side gear 23).
  • the compound gear 24 has a relatively small diameter tooth portion 241 and a relatively large diameter tooth portion 242, and the large diameter tooth portion 242 meshes with the gear portion 2321 of the planetary support gear 232. .
  • the compound gear 24 rotates as the planetary support gear 232 rotates.
  • the cam gear 25 meshes with the compound gear 24.
  • a gear portion 251 of the cam gear 25 meshes with a small diameter tooth portion 241 of the compound gear 24.
  • the cam gear 25 rotates as the compound gear 24 rotates.
  • a cam groove 252 is formed on the upper end surface of the portion where the gear portion 251 is formed on the outer periphery.
  • a fan-shaped lever 60 described later is engaged with the cam groove 252. The configuration and operation of the sector lever 60 will be described later.
  • a pulley 26 is fixed to the cam gear 25.
  • the fixing method is not particularly limited as long as the pulley 26 rotates integrally with the cam gear 25. Thereby, the pulley 26 rotates with the rotation of the cam gear 25.
  • the pulley 26 is exposed outside the case.
  • a wire groove 261 is formed on the outer periphery of the pulley 26.
  • One end of a wire 27 is fixed to the pulley 26.
  • the fixing method is not particularly limited as long as it can reliably prevent the wire 27 from falling off.
  • the pulley 26 rotates in the direction in which the wire 27 is drawn, the wire 27 is wound up so as to fit into the wire groove 261 of the pulley 26.
  • a driven body 90 (for example, a valve body that opens and closes the drain port) is fixed to the other end side of the wire 27, and the driven body 90 is always returned to the original position (position where the valve body is closed).
  • a load in the direction of pulling out that is, the direction of pulling out the wire 27 is acting.
  • the driven body 90 performs a predetermined operation.
  • the wire 27 is wound around the pulley 26, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the wire 27 is formed of a non-stretchable material.
  • the clutch means plays a role of switching the power transmission (output system) by the first transmission train to the “joining” state or the “disconnection” state.
  • the operation of the clutch means in the present embodiment includes the input side gear 22 (small gear tooth portion 222 that is a sun gear), the output side gear 23 (the planetary gear 231 and the planetary support gear 232), and the fixed gear 31 (ring gear).
  • the differential gear mechanism based on the planetary gear train is used.
  • the input side gear 22 meshes with the second rotor gear 21 and rotates as the second rotor gear 21 rotates.
  • Three planetary gears 231 arranged at equal intervals in the circumferential direction mesh with the small-diameter tooth portion 222 of the input side gear 22.
  • the planetary gear 231 is supported on the planetary support gear 232.
  • the planetary support gear 232 rotates with the revolution of the planetary gear 231.
  • the fixed gear 31 that is a ring gear constituting the planetary gear train has an outer tooth portion 311 and an inner tooth portion 312.
  • the external tooth portion 311 of the fixed gear 31 is located below the large-diameter tooth portion 221 of the input side gear 22 and meshes with a lock gear 47 that is one gear constituting a second transmission train described later. . That is, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is blocked.
  • the internal gear portion 312 of the fixed gear 31 meshes with the three planetary gears 231.
  • the first transmission train is in the “join” state, and if the rotation of the fixed gear 31 is not blocked, the first transmission train is in the “disconnected” state. . If the first transmission train is in the “joining” state by the clutch means, that is, if the output system is in the “joining” state, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the second transmission train constitutes a clutch operating system that transmits the power of the synchronous motor 10 to the clutch means.
  • the second transmission train includes a first rotor gear 41, a first gear 42 meshing with the first rotor gear 41, a second gear 44 meshing with the first gear 42, and a second gear. It has a lock lever 45 that is pushed down when 44 moves downward in the axial direction, and a lock gear 47 that is locked by the pushed down lock lever 45.
  • the first rotor gear 41 is a spur gear formed integrally with the rotor 11 of the synchronous motor 10. It is provided under the second rotor gear 21 described above (on the main body side of the synchronous motor 10).
  • a first gear 42 meshes with the first rotor gear 41. It has a driving side tooth part 421 and a first helical tooth part 422 having a relatively smaller diameter than the driving side tooth part 421.
  • the first helical tooth portion 422 is a portion formed into a “helical tooth” as described above.
  • the first gear 42 has a drive-side tooth portion 421 meshed with the first rotor gear 41. Therefore, the first gear 42 rotates as the first rotor gear 41 rotates.
  • the second gear 44 meshes with the first gear 42.
  • the second gear 44 includes a second helical tooth portion 441 having a relatively large diameter and a driven side tooth portion 442 having a relatively small diameter.
  • the second gear 44 is supported by the second gear support shaft 86 so as to be rotatable and movable in the axial direction.
  • the second helical tooth portion 441 is a portion formed into a “helical tooth”.
  • the driven side tooth portion 442 is a so-called worm wheel portion that meshes with the worm portion 51 included in the load applying means 50.
  • the driven tooth portion 442 may be a helical tooth or a spur gear.
  • the second gear 44 In the second gear 44, the second helical tooth portion 441 is engaged with the first helical tooth portion 422 of the first gear 42. Therefore, the second gear 44 rotates as the first gear 42 rotates.
  • a load in the direction opposite to the rotation direction is applied to the second gear 44 by the load applying means 50, so that a downward thrust force in the axial direction is generated. Therefore, when the first gear 42 rotates, the second gear 44 moves downward in the axial direction while rotating.
  • the lock lever 45 is a flat member and is disposed under the second gear 44. Specifically, it is supported by a second gear support shaft 86 that is the same as the second gear 44 and is movable in the axial direction. A recess 452 is formed in the lock lever 45, and the recess 452 is engaged with a not-shown protrusion formed along the axial direction inside the side wall of the lower case 82. Due to the engagement between the convex portion and the concave portion 452, the lock lever 45 is supported by the second gear support shaft 86 while being prevented from rotating and movable in the axial direction. At one end portion of the lock lever 45, a lock portion 451 is formed that is thicker than the other portions.
  • a biasing member 46 that biases the lock lever 45 upward is disposed below the lock lever 45. Due to the urging member 46, the lock lever 45 is positioned above the locked portion 471 of the lock gear 47 during normal times (when the synchronous motor 10 is not driven). Further, since the second gear 44 is disposed on the lock lever 45, the second gear 44 is also urged upward in the axial direction.
  • the urging force of the urging member 46 is smaller than the axially downward thrust force generated in the second gear 44 when the second gear 44 rotates as the first gear 42 rotates. That is, when the second gear 44 rotates, the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46.
  • the lock lever 45 underneath also moves downward.
  • the lock portion 451 of the lock lever 45 moved downward is positioned at substantially the same height as the locked portion 471 of the lock gear 47.
  • the lock gear 47 includes a locked portion 471 and a lock tooth portion 472 on a flat plate on which the locked portion 471 is formed.
  • the locked portion 471 is formed so as to protrude outward from the circular flat plate.
  • the lock gear 47 has a brake portion 473 that is a centrifugal brake.
  • the brake unit 473 applies a load in a direction that prevents the lock gear 47 from rotating, and prevents the lock gear 47 from rotating at a higher speed than necessary.
  • action of this brake part 473 is mentioned later.
  • the worm part 51 extending in the direction orthogonal to the axial direction of the second gear 44 meshes with the driven side tooth part 442 (worm wheel part).
  • the worm part 51 is one line, and the driven side tooth part 442 and the worm part 51 constitute a speed increasing gear mechanism (when the driven side tooth part 442 rotates by one tooth, the worm part 51 makes one rotation). Therefore, the rotation of the second gear 44 is increased and transmitted to the worm portion 51.
  • the load part 52 arranged at the tip of the worm part 51 is a centrifugal brake.
  • the weight 52 of the load portion 52 that is movable in the radial direction and is urged inward in the radial direction moves outward in the radial direction against the urging force by centrifugal force, and the rotation speed is increased.
  • it exceeds a certain level it comes into contact with the inner peripheral surface of the drum 531 of the bearing 53.
  • the centrifugal force applied to the weight increases as the rotational speed increases, and the braking force for stopping the rotation due to the friction between the weight and the drum 531 also increases.
  • a sector lever 60 is arranged on the compound gear 24.
  • the sector lever 60 is rotatably supported on the same shaft as the shaft on which the compound gear 24 is rotatably supported.
  • An engaging protrusion 61 is formed on the lower surface of the sector lever 60.
  • the engaging protrusion 61 is engaged with a cam groove 252 formed on the upper surface of the cam gear 25.
  • the sector lever 60 is formed with an input side gear lock projection 62 and an inclined cam 63.
  • the sector lever 60 When the cam gear 25 rotates in the direction in which the wire 27 is wound up, the sector lever 60 is rotated toward the input side gear 22 by the engagement protrusion 61 that engages with the cam groove 252.
  • the input side gear lock projection 62 acts on the locked projection 223 of the input side gear 22 to stop the winding of the wire 27, and the input side The rotation of the gear 22 is prevented.
  • the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 is released and moved upward in the axial direction by the coil spring 28 (the second rotor gear 21 is positioned at the second position). (See FIG. 4).
  • the engagement between the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 is released. That is, the power of the synchronous motor 10 is not transmitted to the second rotor gear 21.
  • the reverse rotation prevention mechanism functions as follows.
  • the first gear 42 is urged downward in the axial direction by the meshing of the helical teeth of the second helical tooth portion 441 and the load of the load applying means 50. That is, the first gear 42 is pressed toward the reverse rotation preventing member 43, and the lower surface of the first gear 42 and the upper surface of the reverse rotation preventing member 43 are in surface contact.
  • the reverse rotation prevention member 43 rotates as the first gear 42 rotates.
  • the first gear 42 and the reverse rotation preventing member 43 that rotates together with the first gear 42 rotate the synchronous motor 10. And rotate in the opposite direction.
  • the contact portion 432 of the reverse rotation prevention member 43 rotated in this direction rotates in a direction approaching the synchronous motor 10 and contacts the reverse rotation prevention contact portion 411 of the synchronous motor 10.
  • the rotation of the synchronous motor 10 is corrected to normal rotation by the impact at the time of contact.
  • the reverse rotation of the synchronous motor 10 is corrected to normal rotation by the function of the reverse rotation prevention mechanism.
  • the rotation direction of the first gear 42 having the driving side tooth portion 421 meshed with the first rotor gear 41 is also switched (forward rotation).
  • the rotation direction of the first gear 42 is switched, an axially upward thrust force is generated in the first gear 42.
  • the reverse rotation preventing member 43 may rotate (forward rotation) in the same direction as the first gear 42 in a state where the reverse rotation preventing member 43 is attached to the first gear 42 due to the viscosity of the grease.
  • a first position restricting projection 841 that also serves as a stopper is erected on the support portion 84 at a position that enters the rotation locus of the rotation preventing portion 433 of the reverse rotation preventing member 43 that normally rotates in this manner. That is, when the reverse rotation preventing member 43 rotates forward, the rotation preventing portion 433 comes into contact with the first position restricting protrusion 841 and the rotation of the reverse rotation preventing member 43 is blocked. This prevents the reverse rotation preventing member 43 from continuing to rotate together with the first gear 42 that rotates in the forward direction.
  • the second gear 44 When the first gear 42 rotates, the second gear 44 having the second helical gear portion 441 that meshes with the first helical gear portion 422 of the first gear 42 rotates.
  • the second gear 44 has a driven side tooth portion 442 (worm wheel portion) meshed with the worm portion 51 of the load applying means 50, and the load portion of the load applying means 50 is rotated by the rotation of the second gear 44. 52 also rotates.
  • a load torque
  • the load is transmitted from the worm portion 51 to the second gear 44 having the driven side tooth portion 442 and the first gear 42 meshing with the second gear 44. In this way, the first gear 42 and the second gear 44 are subjected to loads opposite to their rotational directions.
  • the transmission of power between the first gear 42 and the second gear 44 is based on meshing of “helical teeth”. Therefore, the second gear 44 that has received a load opposite to the rotation direction from the load applying means 50 receives a downward thrust force in the axial direction due to the rotation of the first gear 42. In other words, the second gear 44 moves downward in the axial direction while rotating by a load opposite to the meshing of the “helical teeth” and the rotation direction.
  • the meshing of the second gear 44 and the load applying means 50 is also based on the “helical teeth”, a large axial downward thrust force is generated with respect to the second gear 44. That is, the load generated by the load portion 52 is transmitted to the second gear 44 by meshing between the worm portion 51 and the driven side tooth portion 442, and therefore the axial downward thrust force due to the transmission of the load is also the second. Is generated in the gear 44.
  • the lock lever 45 disposed under the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46.
  • the lock portion 451 provided on the lock lever 45 is substantially the same height as the locked portion 471 of the lock gear 47 and faces the lock gear 47 in the circumferential direction. To position. Accordingly, in this state, the rotation of the lock gear 47 is prevented by the lock portion 451 of the lock lever 45. That is, the lock gear 47 is prevented from rotating.
  • the lock gear 47 has its lock tooth portion 472 meshed with the external tooth portion 311 of the fixed gear 31 constituting the planetary gear train of the clutch means. Therefore, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is also blocked. As a result, the transmission of power by the first transmission train by the clutch means is in the “joint” state, and the power of the synchronous motor 10 can be transmitted to the driven body 90 through the first transmission train. In this way, the second gear 44 moves downward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “joining” state via the clutch means.
  • the second rotor gear 21 that rotates together with the first rotor gear 41 by driving the synchronous motor 10 meshes with the large-diameter tooth portion 221 of the input-side gear 22 that constitutes the planetary gear train. Accordingly, the input side gear 22 rotates with the rotation of the second rotor gear 21.
  • the three planetary gears 231 constituting the output side gear 23 are meshed with the outside of the small-diameter tooth portion 222 of the input side gear 22.
  • An inner tooth portion 312 of the fixed gear 31 meshes with the outside of the planetary gears 231 arranged at equal intervals in the circumferential direction.
  • the fixed gear 31 is prevented from rotating by the lock gear 47. Therefore, when the input side gear 22 rotates, the planetary gear 231 revolves around the small diameter tooth portion 222.
  • the planetary support gear 232 that supports the planetary gear 231 rotates. That is, all the rotational power of the input side gear 22 is transmitted to the output side gear 23.
  • the fixed gear 31 rotates idle via the planetary gear 231. Since the power transmission train after the planetary support gear 232 includes a load on the transmission train itself and a load on the driven body 90, all the rotational power of the input side gear 22 is transmitted to the fixed gear 31 side. It is. As described above, in the present embodiment, the “transmission” state and the “disconnection” state of the first transmission train by the clutch means are switched by the differential gear mechanism using the planetary gear train.
  • the large-diameter tooth portion 242 of the compound gear 24 meshes with the gear portion 2321 of the planetary support gear 232. Therefore, the compound gear 24 rotates as the planetary support gear 232 rotates.
  • the gear portion 251 of the cam gear 25 meshes with the small diameter tooth portion 241 of the composite gear 24. Therefore, the cam gear 25 rotates with the rotation of the compound gear 24.
  • the driven body 90 is fixed to the tip of the wire 27, the driven body 90 operates to be pulled up by the wire 27.
  • the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is pulled up by the wire 27 so that the drain port is opened and drainage is started.
  • the rotational power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the first transmission train is put into the “engaged” state by the clutch means, but a part of the rotational power of the synchronous motor 10 is also used for the power to put the clutch means in the “joined” state.
  • the winding of the wire 27 by the pulley 26 is stopped as follows.
  • the cam gear 25 rotates to a predetermined position (when the wire 27 is wound up by a predetermined amount)
  • the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates toward the input side gear 22.
  • the input side gear lock protrusion 62 of the sector lever 60 contacts the locked protrusion 223 of the input side gear 22 from the circumferential direction. As a result, the input side gear 22 is prevented from rotating.
  • the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 of the sector lever 60 is released and moved upward in the axial direction by the coil spring (the second rotor gear 21 is moved to the second position). To position).
  • the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 are disengaged, and the power of the synchronous motor 10 is transmitted to the second rotor gear 21. It will be in a state that is not.
  • the operation of each member constituting the first transmission train also stops.
  • the winding of the wire 27 by the pulley 26 is stopped, and the pulley 26 is held at the winding position (when the driven body 90 is a valve body that opens and closes the drain of the washing machine, the drain is opened). Is maintained).
  • the synchronous motor 10 continues to be driven, but the power is not transmitted to the second rotor gear 21 (first transmission train). Therefore, the load applied to the synchronous motor 10 is small, and the power consumption can be reduced.
  • the lock lever 45 also moves in this direction and returns to the original position. Since the force of the urging member 46 to return the second gear 44 to the original position is small, the rotation speed of the second gear 44 and the load portion 52 is low, and the weight of the load portion 52 contacts the drum 531. do not do. Therefore, the magnitude of the load acting on the second gear 44 by the load applying means 50 does not increase, and the second gear 44 returns smoothly to the original position.
  • the height direction position of the lock portion 451 of the lock lever 45 becomes higher than the height direction position of the locked portion 471 of the lock gear 47.
  • the lock portion 451 and the locked portion 471 are positioned so as not to overlap in the circumferential direction. Therefore, the state in which the rotation of the lock gear 47 is prevented is eliminated, and the lock gear 47 can be freely rotated. That is, the fixed gear 31 of the clutch means (planetary gear train) can freely rotate, that is, the clutch means is in the “disengaged” state. In this way, the second gear 44 moves upward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “disconnected” state via the clutch means.
  • the driven body 90 is always going to return to its original position by an external load acting on itself.
  • the driven body 90 is a valve body that opens and closes the drain port of the washing machine, and the valve body is operated in a direction to open the drain port by driving the drain valve driving device 1, the valve body is always drained. It is urged to close the mouth. Therefore, when the clutch means that can freely rotate the fixed gear 31 is in the “disengaged” state, the load applied to the driven body 90 reverses the first transmission train so that the output side gear 23 (planet support) To the gear 232). The energy based on the load applied to the driven body 90 thus transmitted is output (consumed) by the idling of the output side gear 23 because the clutch means is in the “disengaged” state. Thereby, the driven body 90 returns to the original position.
  • the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates in a direction approaching the cam gear 25.
  • the sector lever 60 rotates in this way, the input side gear lock projection 62 of the sector lever 60 is separated from the locked projection 223 of the input side gear 22.
  • the input side gear 22 is allowed to rotate.
  • the second rotor gear 21 urged upward in the axial direction by the coil spring is pressed against the inclined cam 63 and moves downward in the axial direction (the second rotor gear 21 is located at the first position). ).
  • the brake portion 473 of the lock gear 47 brakes the operation of the driven body 90 to return to the original position, and softens the impact applied to the first transmission train. Therefore, it is possible to prevent the power transmission member constituting the first transmission train from being damaged.
  • an impact sound that collides with each other when the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is connected to the drain port. (Impact sound that collides with the surroundings) can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is a drain valve driving device for which it is possible to detect that a backstop member has been improperly installed before an end product is passed on to a customization process or to the commercial marketplace even if the backstop member is manually attached. The invention is provided with a synchronous motor, a first gear coupled to the rotor of the synchronous motor via a gear train, a supporting part in which a supporting shaft for supporting the first gear in a rotatable manner is provided upright, and an backstop member supported in a pivotable manner by the supporting shaft between the first gear and the supporting part so as to turn and pivot in accompaniment with the rotation of the first gear. One or a plurality of position-limiting protrusions that protrude toward the backstop member are formed on the supporting part, and the position-limiting protrusions are formed in positions where contact is made with the backstop member in the axial direction when the backstop member is arranged in the wrong direction or inverted from front to back, whereby it is possible to visually recognize that the backstop member has been improperly installed.

Description

排水弁駆動装置Drain valve drive device
 本発明は排水弁駆動装置に関し、さらに詳しくは、駆動源である同期モータの逆転を防止する逆転防止機構を備えた排水弁駆動装置に関する。 The present invention relates to a drain valve driving device, and more particularly to a drain valve driving device provided with a reverse rotation prevention mechanism for preventing reverse rotation of a synchronous motor as a driving source.
 下記特許文献1には、ロータ11の逆転を阻止する回転方向規制機構を備えた小型モータが開示されている。特許文献1の小型モータは、ロータ11の磁気吸引力によって連れ回される磁気吸引部材19により規制レバー23(逆転防止部材)を回動させる。ロータ11の逆転時には、規制レバー23の係止部25をロータ11に形成された係合片18に当接させることで、ロータ11の回転を正転方向へと修正する。 The following Patent Document 1 discloses a small motor provided with a rotation direction restricting mechanism that prevents reverse rotation of the rotor 11. The small motor of Patent Document 1 rotates a regulating lever 23 (a reverse rotation preventing member) by a magnetic attraction member 19 that is rotated by the magnetic attraction force of the rotor 11. At the time of reverse rotation of the rotor 11, the rotation portion of the rotor 11 is corrected in the normal rotation direction by bringing the engaging portion 25 of the regulating lever 23 into contact with the engagement piece 18 formed on the rotor 11.
特開平6-62546号公報JP-A-6-62546
 特許文献1の各図からは、特許文献1の小型モータを組み立てる際の作業ミスにより、磁気吸引部材19の凸片31が規制レバー23の嵌合孔32に嵌合されず、その後の工程検査でもロータ11が偶然正転してしまった場合、かかる組立ミスを検出することは困難であることが推察される。また、図面のみからでは定かではないが、規制レバー23の配置方向や表裏を逆に取り付けたときに、規制レバー23の係止部25がロータ11に形成された係合片18と当接しない構造となっている場合、かかる組立ミスについても工程検査で検出することができないおそれがある。 From each figure of patent document 1, the convex piece 31 of the magnetic attraction member 19 is not fitted into the fitting hole 32 of the regulating lever 23 due to an operation error when assembling the small motor of patent document 1, and subsequent process inspection is performed. However, when the rotor 11 is rotated forward by accident, it is presumed that it is difficult to detect such an assembly error. Further, although it is not clear from the drawings alone, the locking portion 25 of the restriction lever 23 does not come into contact with the engagement piece 18 formed on the rotor 11 when the arrangement direction of the restriction lever 23 and the front and back are attached reversely. In the case of the structure, there is a possibility that such an assembly error cannot be detected by the process inspection.
 上記問題に鑑み、本発明が解決しようとする課題は、逆転防止部材の取付けが人手により行われる場合であっても、製品が顧客工程や市場に流出する以前にかかる逆転防止部材の誤組付けを検出することができる排水弁駆動装置を提供することにある。 In view of the above problems, the problem to be solved by the present invention is that the reverse rotation prevention member is incorrectly assembled before the product flows into the customer process or the market even if the reverse rotation prevention member is manually attached. An object of the present invention is to provide a drain valve driving device capable of detecting the above.
 上記課題を解決するため、本発明の排水弁駆動装置は、同期モータと、前記同期モータのロータから歯車列を介して連結される第一の歯車と、前記第一の歯車を回転可能に支持する支持軸が立設された支持部と、前記第一の歯車と前記支持部との間で前記支持軸に回動可能に支持され、前記第一の歯車の回転に連れ回って回動する逆転防止部材と、を備え、前記支持部には、前記逆転防止部材側に突出する一又は複数の位置規制突起が形成され、前記位置規制突起は、前記逆転防止部材が誤った向きに配置されたとき及び表裏逆に配置されたときに、前記逆転防止部材と軸方向に接触する位置に形成されていることを要旨とする。 In order to solve the above problems, a drain valve driving device of the present invention includes a synchronous motor, a first gear coupled from a rotor of the synchronous motor via a gear train, and the first gear rotatably supported. The support shaft is erected between the first gear and the support portion. The support shaft is rotatably supported by the support shaft, and rotates as the first gear rotates. An anti-reverse member, and the support portion is formed with one or a plurality of position restricting protrusions protruding toward the anti-reverse member, and the position restricting protrusions are arranged in the wrong direction. The gist of the present invention is that it is formed at a position where it comes into contact with the reverse rotation preventing member in the axial direction when it is disposed in the reverse direction.
 逆転防止部材が誤った方向や位置に配置されたり、表裏が逆に配置されたりした場合に、逆転防止部材が位置規制突起の上に乗り上げることにより、視覚的に作業結果が正しくないことを認識することができ、組立ミスを早期に発見することが可能となる。 When the anti-reverse member is placed in the wrong direction or position, or when the front and back sides are reversed, the reverse-prevention member rides on the position-regulating protrusion to recognize that the work result is visually incorrect. It is possible to detect assembly errors at an early stage.
 また、前記支持軸の根元側のケース半体である下ケースと、先端側のケース半体である上ケースと、からなるケースをさらに備え、前記第一の歯車の前記上ケース側端部から前記上ケースまでのクリアランスを、前記逆転防止部材が前記位置規制突起と軸方向に接触することにより、前記第一の歯車が前記上ケース側へ接近する変位量よりも小さくすることで、ケースが閉まらない、ケースを強引に閉めても第一の歯車が回転しないという明確な不具合を生じさせ、何かしらの組立ミスが存在することを作業者に認識させることで、より確実に逆転防止部材の誤組付けを検出することが可能となる。さらに、前記同期モータのピニオンと前記第一の歯車とを直接噛合させることにより、第一の歯車のトルクを小さくすることができ、ケースを強引に閉めた際に、より確実に第一の歯車の回転を停止させることができる。加えて、前記上ケース及び前記下ケースが、一方が備える弾性部材である係合爪を他方が備える係止部に係合するフック部により固定されることで、ケースが閉まらないという不具合を視覚的に認識することが可能となる。 In addition, a case comprising a lower case that is a case half on the base side of the support shaft, and an upper case that is a case half on the tip end side, is further provided from the upper case side end of the first gear. By making the clearance to the upper case smaller than the amount of displacement by which the first gear approaches the upper case side by the axial contact of the anti-reverse member with the position restricting protrusion, the case It causes a clear problem that the first gear does not rotate even if the case is forcibly closed, and the operator recognizes that there is some kind of assembly error, so that the reverse rotation prevention member can be detected more reliably. Assembling can be detected. Furthermore, by directly meshing the pinion of the synchronous motor and the first gear, the torque of the first gear can be reduced, and the first gear can be more reliably secured when the case is forcibly closed. Can be stopped. In addition, the upper case and the lower case are fixed by a hook portion that engages an engaging claw, which is an elastic member provided on one side, with a locking portion provided on the other side. Recognition.
 また、はす歯部を有し、軸方向に移動可能な歯車である第二の歯車をさらに備え、前記第一の歯車は、前記第二の歯車のはす歯部と噛合するはす歯部を有し、前記第一の歯車のはす歯部が、前記第二の歯車のはす歯部の軸方向の移動域の全長に渡って形成されていることにより、第一の歯車と上ケースとのクリアランスを詰める目的と併せて、第二の歯車の軸方向への移動機構を実現することができ、部品点数や組立工程の削減、ユニットの小型化に資することができる。 The first gear further includes a second gear that has a helical tooth portion and is movable in the axial direction, and the first gear is a helical tooth that meshes with the helical gear portion of the second gear. The helical gear portion of the first gear is formed over the entire length of the axial movement area of the helical gear portion of the second gear, Along with the purpose of closing the clearance with the upper case, a mechanism for moving the second gear in the axial direction can be realized, which contributes to the reduction in the number of parts and the assembly process and the miniaturization of the unit.
 また、前記支持部が、前記同期モータの磁性体からなるステータコアであって、前記位置規制突起のうち少なくとも一つは、前記ステータコアに形成された貫通孔から前記逆転防止部材側に突出した別部材であることにより、磁性体であるステータコアをプレス加工により複雑な形状に切り起こす困難性を排除することができる。 Further, the support portion is a stator core made of a magnetic body of the synchronous motor, and at least one of the position restricting protrusions is a separate member protruding toward the reverse rotation prevention member side from a through hole formed in the stator core. Thus, it is possible to eliminate the difficulty of cutting the stator core, which is a magnetic body, into a complicated shape by pressing.
 また、前記同期モータがインナーロータ型モータの場合、前記同期モータのピニオンと前記第一の歯車とを直接噛合させ、第一の歯車の回転中心をステータコアに設けることにより、同期モータのピニオンと第一の歯車との軸間距離を詰めることができ、第一の歯車の径を小さくすることができる。 In the case where the synchronous motor is an inner rotor type motor, the pinion of the synchronous motor and the first gear are directly meshed with each other, and the rotation center of the first gear is provided in the stator core, so that The distance between the shafts of the first gear can be reduced, and the diameter of the first gear can be reduced.
 また、前記逆転防止部材の前記第一の歯車との当接面には、前記支持軸に対して同心円状の溝部が形成され、前記逆転防止部材の前記支持部との当接面には、前記支持部側に突出した前記支持軸に対して同心円状のリブが形成されていることにより、第一の歯車と逆転防止部材との結合度が、溝部に充填されたグリスの粘性により高められ、また、回動による支持部との摩擦抵抗をリブが低減することから、第一の歯車による逆転防止部材の連れ回り精度が高められる。 Further, a concentric groove portion with respect to the support shaft is formed on the contact surface of the reverse rotation preventing member with the first gear, and on the contact surface of the reverse rotation prevention member with the support portion, Since concentric ribs are formed with respect to the support shaft protruding toward the support portion, the degree of coupling between the first gear and the reverse rotation prevention member is increased by the viscosity of the grease filled in the groove portion. In addition, since the rib reduces the frictional resistance with the support portion due to the rotation, the follow-up accuracy of the reverse rotation preventing member by the first gear is improved.
 本発明にかかる排水弁駆動装置によれば、逆転防止部材の取付けが人手により行われる場合であっても、製品が顧客工程や市場に流出する以前に逆転防止部材の誤組付けを検出することができる。 According to the drain valve driving device according to the present invention, even when the reverse rotation prevention member is manually attached, it is possible to detect an erroneous assembly of the reverse rotation prevention member before the product flows into the customer process or the market. Can do.
本実施形態にかかる排水弁駆動装置の全体(ケースを取り外した状態)を示した図である。It is the figure which showed the whole drain valve drive device concerning this embodiment (state which removed the case). 本実施形態にかかる排水弁駆動装置の動力系統を説明するための系統図である。It is a system diagram for demonstrating the power system of the drain valve drive device concerning this embodiment. モータ動力を被駆動体へ伝達する歯車機構の説明図である。It is explanatory drawing of the gear mechanism which transmits motor motive power to a to-be-driven body. 二つのロータ歯車の係合機構を示す正面図である。It is a front view which shows the engagement mechanism of two rotor gears. クラッチ手段である差動歯車機構の分解斜視図である。It is a disassembled perspective view of the differential gear mechanism which is a clutch means. シフト手段を構成する部材を示す平面図である。It is a top view which shows the member which comprises a shift means. 第二の歯車及びロックレバーの付勢機構を示す正面図である。It is a front view which shows the biasing mechanism of a 2nd gearwheel and a lock lever. 扇形レバーの底面を示す斜視図である。It is a perspective view which shows the bottom face of a sector lever. 負荷付与手段の斜視図(a)及び分解図(b)である。It is the perspective view (a) and exploded view (b) of a load provision means. 逆転防止機構の主要部材の位置関係を示す斜視図である。It is a perspective view which shows the positional relationship of the main members of a reverse rotation prevention mechanism. 正しい向きに表裏正しく配置された逆転防止部材を示す平面図である。It is a top view which shows the reverse rotation prevention member arrange | positioned correctly in the correct direction. 誤った向き又は表裏逆に配置された逆転防止部材を示す平面図である。It is a top view which shows the reverse rotation prevention member arrange | positioned in the wrong direction or reverse side. 位置規制突起と第一の歯車の上ケース側クリアランスとの関係を説明する略図である。It is the schematic explaining the relationship between a position control protrusion and the upper case side clearance of a 1st gearwheel. 誤組検出構造の他の構成を示す平面図である。It is a top view which shows the other structure of an incorrect assembly detection structure. 誤組検出構造の他の構成により検出可能な誤組付けの範囲を示す平面図である。It is a top view which shows the range of the incorrect assembly | attachment which can be detected with the other structure of an incorrect assembly detection structure.
 以下、本発明の実施形態について図面を用いて詳細に説明する。なお、以下の説明における上下とは、図1における上下をいうものとする。また、「原位置」とは、同期モータ10が駆動していない状態における各構成部材の位置をいう。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the upper and lower in the following description shall mean the upper and lower in FIG. The “original position” refers to the position of each constituent member in a state where the synchronous motor 10 is not driven.
 本実施形態にかかる排水弁駆動装置1の各構成を説明する前に、排水弁駆動装置1の概略を図2の系統図を参照して簡単に説明する。図2に示すように排水弁駆動装置1の動力系統は、同期モータ10の動力を被駆動体90に伝達する出力系統(第一の伝達列)と、クラッチ手段30を動作させるクラッチ作動系統(第二の伝達列)とからなる。クラッチ手段30は、出力系統による動力の伝達を「継」状態もしくは「断」状態に切り替える。つまり、クラッチ手段30が「継」状態であれば、同期モータ10の動力は出力系統を通じて被駆動体90に伝達される。クラッチ手段30が「断」状態であれば、出力系統は遮断され、同期モータ10の動力は被駆動体90に伝達されない。図示されるように、本実施形態では、このようにクラッチ手段30を動作させる(第一の伝達列による動力の伝達を「継」状態とする)ためのクラッチ作動系統の動力として、被駆動体90を駆動させるための同期モータ10の動力の一部を利用するものである。 Before describing each configuration of the drain valve driving device 1 according to the present embodiment, an outline of the drain valve driving device 1 will be briefly described with reference to the system diagram of FIG. As shown in FIG. 2, the power system of the drain valve driving device 1 includes an output system (first transmission train) that transmits the power of the synchronous motor 10 to the driven body 90, and a clutch operating system that operates the clutch means 30 ( Second transmission train). The clutch means 30 switches the transmission of power by the output system to the “joining” state or the “disconnected” state. That is, if the clutch means 30 is in the “joining” state, the power of the synchronous motor 10 is transmitted to the driven body 90 through the output system. If the clutch means 30 is in the “disconnected” state, the output system is disconnected, and the power of the synchronous motor 10 is not transmitted to the driven body 90. As shown in the figure, in this embodiment, the driven body is used as the power of the clutch operating system for operating the clutch means 30 in this way (the power transmission by the first transmission train is set to the “joining” state). A part of the power of the synchronous motor 10 for driving 90 is used.
(逆転防止機構)
 以下、本実施形態における逆転防止機構について図10および図11を用いて詳細に説明する。本実施形態における逆転防止機構は、主として、逆転防止部材43、ロータ11に形成された逆転防止当接部411、及び第一の歯車42から構成される。
(Reverse rotation prevention mechanism)
Hereinafter, the reverse rotation prevention mechanism in the present embodiment will be described in detail with reference to FIGS. 10 and 11. The reverse rotation prevention mechanism in the present embodiment mainly includes a reverse rotation prevention member 43, a reverse rotation prevention contact portion 411 formed on the rotor 11, and a first gear 42.
 逆転防止部材43は、第一の歯車42(駆動側歯部421)の下面に配された板状の部材である。支持部84には、第一の歯車42を回転可能に支持する支持軸である歯車支持軸85が立設されている。逆転防止部材43は、第一の歯車42と支持部84との間で歯車支持軸85に回動可能に支持されており、第一の歯車42の回転に連れ回って回動する。 The reverse rotation preventing member 43 is a plate-like member arranged on the lower surface of the first gear 42 (drive side tooth portion 421). A gear support shaft 85, which is a support shaft that rotatably supports the first gear 42, is erected on the support portion 84. The reverse rotation preventing member 43 is rotatably supported on the gear support shaft 85 between the first gear 42 and the support portion 84, and rotates as the first gear 42 rotates.
 図11は、正しい向きに表裏正しく配置された逆転防止部材43を示す平面図である。図11に示されるように、逆転防止部材43は略円形の本体部431と、その本体部431から外向きに突出した当接部432と、回転阻止部433と、を有する。逆転防止部材43の当接部432は、同期モータ10が逆転(CCW回転)した際、逆転防止当接部411に当接する部分である。回転阻止部433は、同期モータ10が正転(CW回転)した際、後述する誤組検出構造の第一の位置規制突起841に当接する部分である。つまり第一の位置規制突起841は、同期モータ10の正転時において、逆転防止部材43の一定角度以上の回動を阻止するストッパとしての機能も兼ねている。 FIG. 11 is a plan view showing the reverse rotation preventing member 43 arranged correctly in the front and back. As shown in FIG. 11, the reverse rotation preventing member 43 includes a substantially circular main body portion 431, an abutting portion 432 protruding outward from the main body portion 431, and a rotation preventing portion 433. The contact portion 432 of the reverse rotation prevention member 43 is a portion that contacts the reverse rotation prevention contact portion 411 when the synchronous motor 10 reversely rotates (CCW rotation). The rotation preventing portion 433 is a portion that abuts on a first position restricting protrusion 841 of an erroneous assembly detection structure to be described later when the synchronous motor 10 rotates forward (CW rotation). That is, the first position restricting protrusion 841 also serves as a stopper that prevents the reverse rotation preventing member 43 from rotating more than a certain angle during the normal rotation of the synchronous motor 10.
(誤組検出構造)
 次に、逆転防止部材43の誤った組み付けを検出する誤組検出構造について説明する。逆転防止部材43の近傍には、支持部84から逆転防止部材43側に突出する位置規制突起である第一の位置規制突起841及び第二の位置規制突起842が形成されている。図12は逆転防止部材43が誤った向き又は表裏逆に配置された例を示す平面図である。尚、逆転防止部材43が表裏逆に配置された例はこのうちの(c)乃至(e)である。
(Incorrect assembly detection structure)
Next, an erroneous assembly detection structure for detecting an incorrect assembly of the reverse rotation preventing member 43 will be described. In the vicinity of the reverse rotation prevention member 43, a first position restriction protrusion 841 and a second position restriction protrusion 842 that are position restriction protrusions that protrude from the support portion 84 toward the reverse rotation prevention member 43 are formed. FIG. 12 is a plan view showing an example in which the reverse rotation preventing member 43 is arranged in the wrong direction or upside down. Note that examples in which the reverse rotation preventing member 43 is disposed upside down are (c) to (e).
 図12に示されるように、逆転防止部材43が誤った向き又は表裏逆に配置されたときは、逆転防止部材43が第一の位置規制突起841又は第二の位置規制突起842の上に乗り上げる。図13に示すように、第一の歯車42の上端から上ケース81までのクリアランスは、第一の位置規制突起841や第二の位置規制突起842の高さよりも狭い。つまり、逆転防止部材43が第一の位置規制突起841又は第二の位置規制突起842に乗り上げ、第一の歯車42が逆転防止部材43により上方へ押し上げられると、第一の歯車42と上ケース81とが干渉することから、上ケース81が閉まりにくい状態となる。 As shown in FIG. 12, when the reverse rotation preventing member 43 is disposed in the wrong direction or the reverse side, the reverse rotation preventing member 43 rides on the first position restriction protrusion 841 or the second position restriction protrusion 842. . As shown in FIG. 13, the clearance from the upper end of the first gear 42 to the upper case 81 is narrower than the height of the first position restricting protrusion 841 and the second position restricting protrusion 842. That is, when the reverse rotation prevention member 43 rides on the first position restriction protrusion 841 or the second position restriction protrusion 842 and the first gear 42 is pushed upward by the reverse rotation prevention member 43, the first gear 42 and the upper case 81 interferes with the upper case 81 so that it is difficult to close.
 さらに、図10に示されるように、上ケース81と下ケース82は、上ケース81に設けられた弾性部材である係合爪8011、及び下ケース82に設けられた係止部8012からなるフック部801により固定される。フック部801はケース80の外周面に複数設けられている。上記構造により、逆転防止部材43が誤った向き又は表裏逆に配置されたときは、ケース80が閉まらない、ケース80を強引に閉めたとしても第一の歯車42が上ケース81からの押圧力で回転しない、という明らかな不具合が作業者に示される。これにより、逆転防止部材43の組み付けの誤りを容易に検出することができる。 Furthermore, as shown in FIG. 10, the upper case 81 and the lower case 82 are hooks including an engaging claw 8011 that is an elastic member provided in the upper case 81 and a locking portion 8012 provided in the lower case 82. It is fixed by the part 801. A plurality of hook portions 801 are provided on the outer peripheral surface of the case 80. With the above structure, when the reverse rotation preventing member 43 is disposed in the wrong direction or the reverse, the case 80 does not close, and even if the case 80 is forcibly closed, the first gear 42 is pressed by the upper case 81. The operator is shown the obvious problem of not rotating. Thereby, it is possible to easily detect an error in assembling the reverse rotation preventing member 43.
 尚、第一の歯車42は、駆動側歯部421と上ケース81との間に、はす歯部である第一のはす歯部422を備えている。軸方向に移動可能な第二の歯車44は、はす歯部である第二のはす歯部441を有し、第二のはす歯部441は第一のはす歯部422に噛合される。第一のはす歯部421は、第二のはす歯部441が軸方向に移動する範囲の全長に渡って設けられている。第一の歯車42が、上ケース81とのクリアランスを詰めることと併せて、駆動側歯部421から上ケース81までの空間を利用して第一のはす歯部422を備えていることにより、機構の効率化が図られている。 The first gear 42 includes a first helical tooth portion 422 that is a helical tooth portion between the driving side tooth portion 421 and the upper case 81. The second gear 44 that is movable in the axial direction has a second helical tooth portion 441 that is a helical tooth portion, and the second helical tooth portion 441 meshes with the first helical tooth portion 422. Is done. The first helical tooth portion 421 is provided over the entire length of the range in which the second helical tooth portion 441 moves in the axial direction. The first gear 42 is provided with the first helical tooth portion 422 using the space from the drive side tooth portion 421 to the upper case 81 in addition to closing the clearance with the upper case 81. The efficiency of the mechanism is improved.
 また、支持部84は同期モータ10の磁性体からなるステータコアであり、第二の位置規制突起842は、ステータコアに形成された貫通孔から上側に突出した図示しないボビンの一部である。ボビンは加工が容易な樹脂成形部材であり、ステータコアをプレス加工により円弧形状に切り起こす困難性が排除されている。 Further, the support portion 84 is a stator core made of a magnetic body of the synchronous motor 10, and the second position restricting projection 842 is a part of a bobbin (not shown) protruding upward from a through hole formed in the stator core. The bobbin is a resin-molded member that is easy to process, and the difficulty of cutting the stator core into an arc shape by pressing is eliminated.
 さらに、同期モータ10はインナーロータ型モータであり、ピニオンである第一のロータ歯車41と第一の歯車42は直接噛合されている。第一の歯車42の回転中心がステータコアに設けられることにより、第一のロータ歯車41と第一の歯車42との軸間距離が詰められ、第一の歯車42が小径化されている。さらに、第一のロータ歯車41と第一の歯車42とが直接噛合されていることにより、第一の歯車42のトルクが小さくなることから、逆転防止部材43が誤って組み付けられたままケース80が強引に閉められた場合に、より確実に第一の歯車42の回転を停止させることができる。 Furthermore, the synchronous motor 10 is an inner rotor type motor, and the first rotor gear 41 and the first gear 42 which are pinions are directly meshed with each other. By providing the rotation center of the first gear 42 in the stator core, the distance between the axes of the first rotor gear 41 and the first gear 42 is reduced, and the diameter of the first gear 42 is reduced. Further, since the first rotor gear 41 and the first gear 42 are directly meshed with each other, the torque of the first gear 42 is reduced, so that the case 80 remains in a state where the reverse rotation preventing member 43 is erroneously assembled. Is forcibly closed, the rotation of the first gear 42 can be stopped more reliably.
 尚、本実施形態における誤組検出構造は、逆転防止部材43の誤った組み付けを確実に検出すべく、第一の位置規制突起841および第二の位置規制突起842の二つの位置規制突起を備えているが、位置規制突起が第一の位置規制突起841のみからなる構成であっても、逆転防止部材43の誤組付けの検出効果は認められる。 Note that the erroneous assembly detection structure in the present embodiment includes two position restricting protrusions, a first position restricting protrusion 841 and a second position restricting protrusion 842, in order to reliably detect an incorrect assembly of the reverse rotation preventing member 43. However, even if the position restricting protrusion is composed of only the first position restricting protrusion 841, the effect of detecting the incorrect assembly of the reverse rotation preventing member 43 is recognized.
 図14は誤組検出構造の他の構成を示す図である。図14における位置規制突起は第一の位置規制突起841のみであり、かかる第一の位置規制突起841は先の構成の第一の位置規制突起841よりも長手方向に延長されており、逆転防止部材43側により接近した位置まで形成されている。 FIG. 14 is a diagram showing another configuration of the erroneous assembly detection structure. 14 is only the first position restricting protrusion 841, and the first position restricting protrusion 841 is extended in the longitudinal direction more than the first position restricting protrusion 841 having the above-described configuration, thereby preventing reverse rotation. It is formed to a position closer to the member 43 side.
 図15は上記第一の位置規制突起841により検出可能な誤組付けの範囲を示す図である。図15の(a)乃至(d)は検出可能な例であり、検出不能な例は(e)のみである。このように、第一の位置規制突起841の大きさや位置を最適化することにより、第一の位置規制突起841のみの構成であっても広範な誤組パターンに対応することができる。 FIG. 15 is a diagram showing a range of erroneous assembly that can be detected by the first position restricting protrusion 841. (A) to (d) in FIG. 15 are examples that can be detected, and (e) is the only example that cannot be detected. As described above, by optimizing the size and position of the first position restricting protrusion 841, it is possible to deal with a wide range of misassembly patterns even with the configuration of only the first position restricting protrusion 841.
 本実施形態における排水弁駆動装置は上記誤組検出構造を備えることにより、逆転防止部材43の誤った組み付けを早期に検出し、不具合を有する製品が顧客工程や市場に流出することを防止している。 The drain valve driving device in the present embodiment is provided with the above-described erroneous assembly detection structure, thereby detecting erroneous assembly of the reverse rotation preventing member 43 at an early stage and preventing defective products from leaking into the customer process or the market. Yes.
(同期モータ10)
 本実施形態にかかる排水弁駆動装置1の駆動源である同期モータ10は、AC同期モータである。なお、AC同期モータ以外のモータを適用することも可能である。同期モータ10は、その上端面から突出した回転軸を有する。
(Synchronous motor 10)
The synchronous motor 10 which is a drive source of the drain valve driving device 1 according to the present embodiment is an AC synchronous motor. A motor other than the AC synchronous motor can also be applied. The synchronous motor 10 has a rotating shaft that protrudes from its upper end surface.
(第一の伝達列)
 以下に第一の伝達列について図3~図5を用いて詳細に説明する。第一の伝達列は、同期モータ10の動力を被駆動体90まで伝達する出力系統を構成する。かかる第一の伝達列は、第二のロータ歯車21と、第二のロータ歯車21に噛合する入力側歯車22と、クラッチ手段が「継」の状態のとき入力側歯車22の回転に伴って回転する出力側歯車23と、出力側歯車23に噛合する複合歯車24と、複合歯車24に噛合するカム歯車25と、カム歯車25と一体的に回転するプーリ26と、プーリ26の回転によって巻き上げられるワイヤ27と、を有する。なお、入力側歯車22および出力側歯車23は、詳細を後述するクラッチ手段(遊星歯車列に基づく差動歯車機構)を構成する歯車でもある。
(First transmission line)
Hereinafter, the first transmission train will be described in detail with reference to FIGS. The first transmission train constitutes an output system that transmits the power of the synchronous motor 10 to the driven body 90. The first transmission train includes the second rotor gear 21, the input side gear 22 meshing with the second rotor gear 21, and the rotation of the input side gear 22 when the clutch means is in the "joint" state. The output side gear 23 that rotates, the composite gear 24 that meshes with the output side gear 23, the cam gear 25 that meshes with the composite gear 24, the pulley 26 that rotates integrally with the cam gear 25, and the pulley 26 is wound up by rotation. Wire 27 to be provided. The input side gear 22 and the output side gear 23 are also gears constituting clutch means (differential gear mechanism based on a planetary gear train) whose details will be described later.
 第二のロータ歯車21は、同期モータ10と同軸線上で回転可能かつ軸線方向に移動可能に支持された平歯車であり、ロータ11と一体的に回転する第一のロータ歯車41の上(回転軸の先端側)に支持されている。また、第二のロータ歯車21は、コイルばね28で軸線方向上向きに付勢されている。第二のロータ歯車21の下面には、第二のロータ歯車21がロータ11側(下側)に位置するときには第一のロータ歯車41の下係合部412と係合する上係合部212が形成されている。なお、この下係合部412と上係合部212が係合した状態における第二のロータ歯車21の位置を第一の位置と称する。下係合部412と上係合部212が係合していない状態における第二のロータ歯車21の位置を第二の位置と称する。 The second rotor gear 21 is a spur gear supported so as to be rotatable on the same axis as the synchronous motor 10 and movable in the axial direction. The second rotor gear 21 is arranged on the first rotor gear 41 rotating integrally with the rotor 11 (rotation). It is supported on the tip side of the shaft. The second rotor gear 21 is urged upward in the axial direction by a coil spring 28. On the lower surface of the second rotor gear 21, an upper engagement portion 212 that engages with the lower engagement portion 412 of the first rotor gear 41 when the second rotor gear 21 is positioned on the rotor 11 side (lower side). Is formed. The position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are engaged is referred to as a first position. The position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are not engaged is referred to as a second position.
 後述する扇形レバー60の傾斜カム63(図8参照)によって第二のロータ歯車21がロータ11側に移動し、第二のロータ歯車21の上係合部212と第一のロータ歯車41の下係合部412とが係合した状態(第二のロータ歯車21が第一の位置)にあるとき、第二のロータ歯車21と第一のロータ歯車41は一体的に回転する。すなわち、同期モータ10の動力が第二のロータ歯車21にも伝達される。 The second rotor gear 21 is moved to the rotor 11 side by an inclined cam 63 (see FIG. 8) of the sector lever 60 described later, and the second rotor gear 21 has an upper engagement portion 212 and a first rotor gear 41 below. When the engaging portion 412 is engaged (the second rotor gear 21 is in the first position), the second rotor gear 21 and the first rotor gear 41 rotate integrally. That is, the power of the synchronous motor 10 is also transmitted to the second rotor gear 21.
 第二のロータ歯車21には、入力側歯車22が噛合している。入力側歯車22は、遊星歯車列を構成する一の歯車である。入力側歯車22は、相対的に大径の大径歯部221と相対的に小径のいわゆる太陽歯車である小径歯部222とを有する。入力側歯車22の大径歯部221が第二のロータ歯車21と噛合しており、第二のロータ歯車21の回転に伴って入力側歯車22が回転する。また、入力側歯車22の上面には、被ロック突起223が形成されている。かかる被ロック突起223には、後述する扇形レバー60の入力側歯車ロック突起62が作用する。 The input side gear 22 meshes with the second rotor gear 21. The input side gear 22 is one gear constituting a planetary gear train. The input side gear 22 has a relatively large diameter large diameter tooth portion 221 and a relatively small diameter small diameter tooth portion 222 which is a so-called sun gear. The large-diameter tooth portion 221 of the input side gear 22 meshes with the second rotor gear 21, and the input side gear 22 rotates as the second rotor gear 21 rotates. Further, a locked projection 223 is formed on the upper surface of the input side gear 22. An input side gear lock projection 62 of the sector lever 60 described later acts on the locked projection 223.
 同期モータ10の動力は第二のロータ歯車21を介して、出力側歯車23に伝達される。本実施形態における出力側歯車23には、遊星歯車列を構成する歯車である、三つの遊星歯車231および遊星支持歯車232が該当する。遊星支持歯車232の上端面から突出して周方向等間隔に設けられた三つの遊星歯車支持軸にはそれぞれ遊星歯車231が回転自在に支持されている。遊星歯車支持軸の上端には、抜け止めリング233が固定され、遊星歯車231の脱落が防止されている。遊星支持歯車232は、遊星歯車231が取り付けられた面とは反対側に歯車部2321を有する。遊星歯車231は、入力側歯車22の小径歯部222と噛合している。詳細は後述するが、クラッチ手段が「継」状態にある場合、入力側歯車22の回転に伴って遊星歯車231は入力側歯車22の小径歯部222の周りを公転する。かかる遊星歯車231の公転に伴って、遊星歯車231を支持している遊星支持歯車232が回転する。このようにして、入力側歯車22から出力側歯車23へ動力が伝達される。 The power of the synchronous motor 10 is transmitted to the output side gear 23 via the second rotor gear 21. The output side gear 23 in this embodiment corresponds to the three planetary gears 231 and the planetary support gear 232 that are gears constituting the planetary gear train. The planetary gears 231 are rotatably supported on three planetary gear support shafts that protrude from the upper end surface of the planetary support gear 232 and are provided at equal intervals in the circumferential direction. A retaining ring 233 is fixed to the upper end of the planetary gear support shaft to prevent the planetary gear 231 from falling off. The planetary support gear 232 has a gear portion 2321 on the side opposite to the surface to which the planetary gear 231 is attached. The planetary gear 231 meshes with the small diameter tooth portion 222 of the input side gear 22. Although details will be described later, when the clutch means is in the “joining” state, the planetary gear 231 revolves around the small-diameter tooth portion 222 of the input side gear 22 as the input side gear 22 rotates. With the revolution of the planetary gear 231, the planetary support gear 232 that supports the planetary gear 231 rotates. In this way, power is transmitted from the input side gear 22 to the output side gear 23.
 遊星支持歯車232(出力側歯車23)には、複合歯車24が噛合している。複合歯車24は、相対的に小径の小径歯部241および相対的に大径の大径歯部242を有し、この大径歯部242が遊星支持歯車232の歯車部2321と噛合している。これにより、遊星支持歯車232の回転に伴って複合歯車24が回転する。 The compound gear 24 meshes with the planetary support gear 232 (output side gear 23). The compound gear 24 has a relatively small diameter tooth portion 241 and a relatively large diameter tooth portion 242, and the large diameter tooth portion 242 meshes with the gear portion 2321 of the planetary support gear 232. . As a result, the compound gear 24 rotates as the planetary support gear 232 rotates.
 複合歯車24には、カム歯車25が噛合している。カム歯車25の歯車部251が、複合歯車24の小径歯部241に噛合している。これにより、複合歯車24の回転に伴ってカム歯車25が回転する。外周に歯車部251が形成された部分の上端面には、カム溝252が形成されている。かかるカム溝252には後述する扇形レバー60が係合している。扇形レバー60の構成ならびにその作用については後述する。 The cam gear 25 meshes with the compound gear 24. A gear portion 251 of the cam gear 25 meshes with a small diameter tooth portion 241 of the compound gear 24. As a result, the cam gear 25 rotates as the compound gear 24 rotates. A cam groove 252 is formed on the upper end surface of the portion where the gear portion 251 is formed on the outer periphery. A fan-shaped lever 60 described later is engaged with the cam groove 252. The configuration and operation of the sector lever 60 will be described later.
 カム歯車25には、プーリ26が固定されている。カム歯車25と一体的にプーリ26が回転するものであれば、その固定方法は特に限定されない。これにより、カム歯車25の回転に伴ってプーリ26が回転する。また、プーリ26は、ケース外側に露出している。また、プーリ26の外周には、ワイヤ溝261が形成されている。 A pulley 26 is fixed to the cam gear 25. The fixing method is not particularly limited as long as the pulley 26 rotates integrally with the cam gear 25. Thereby, the pulley 26 rotates with the rotation of the cam gear 25. The pulley 26 is exposed outside the case. A wire groove 261 is formed on the outer periphery of the pulley 26.
 プーリ26には、ワイヤ27の一端が固定されている。ワイヤ27の脱落を確実に防止することができるものであれば、その固定方法は特に限定されない。プーリ26がワイヤ27を引き込む方向に回転すると、ワイヤ27はプーリ26のワイヤ溝261にはまり込むように巻き上げられる。ワイヤ27の他端側には、被駆動体90(例えば排水口を開閉する弁体)が固定されており、被駆動体90には、常に原位置(弁体が閉となる位置)に戻ろうとする方向、つまりワイヤ27を引き出す方向の負荷が作用している。ワイヤ27がプーリ26に巻き上げられることによって、被駆動体90が所定の動作を行う。つまり、ワイヤ27がプーリ26に巻き上げられることにより、同期モータ10の動力が第一の伝達列を介して被駆動体90まで伝達されることになる。なお、被駆動体90を正確に動作させるため、ワイヤ27は伸縮性のない材料で形成されている。 One end of a wire 27 is fixed to the pulley 26. The fixing method is not particularly limited as long as it can reliably prevent the wire 27 from falling off. When the pulley 26 rotates in the direction in which the wire 27 is drawn, the wire 27 is wound up so as to fit into the wire groove 261 of the pulley 26. A driven body 90 (for example, a valve body that opens and closes the drain port) is fixed to the other end side of the wire 27, and the driven body 90 is always returned to the original position (position where the valve body is closed). A load in the direction of pulling out, that is, the direction of pulling out the wire 27 is acting. When the wire 27 is wound around the pulley 26, the driven body 90 performs a predetermined operation. That is, when the wire 27 is wound around the pulley 26, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train. In addition, in order to operate the driven body 90 accurately, the wire 27 is formed of a non-stretchable material.
(クラッチ手段)
 以下にクラッチ手段について図5を用いて詳細に説明する。クラッチ手段は、第一の伝達列による動力の伝達(出力系統)を「継」状態もしくは「断」状態に切り替える役割を果たす。本実施形態におけるクラッチ手段の動作は、入力側歯車22(太陽歯車である小径歯部222)、出力側歯車23(遊星歯車231および遊星支持歯車232)、および、固定歯車31(リング歯車)を有する遊星歯車列に基づく差動歯車機構を利用したものである。
(Clutch means)
Hereinafter, the clutch means will be described in detail with reference to FIG. The clutch means plays a role of switching the power transmission (output system) by the first transmission train to the “joining” state or the “disconnection” state. The operation of the clutch means in the present embodiment includes the input side gear 22 (small gear tooth portion 222 that is a sun gear), the output side gear 23 (the planetary gear 231 and the planetary support gear 232), and the fixed gear 31 (ring gear). The differential gear mechanism based on the planetary gear train is used.
 既に説明したように、入力側歯車22は、第二のロータ歯車21に噛合し、第二のロータ歯車21の回転に伴って回転する。入力側歯車22の小径歯部222には、周方向等間隔に配された三つの遊星歯車231が噛合している。遊星歯車231は、遊星支持歯車232上に支持されている。遊星支持歯車232は、遊星歯車231の公転に伴って回転する。 As already described, the input side gear 22 meshes with the second rotor gear 21 and rotates as the second rotor gear 21 rotates. Three planetary gears 231 arranged at equal intervals in the circumferential direction mesh with the small-diameter tooth portion 222 of the input side gear 22. The planetary gear 231 is supported on the planetary support gear 232. The planetary support gear 232 rotates with the revolution of the planetary gear 231.
 遊星歯車列を構成するリング歯車である固定歯車31は、外歯部311および内歯部312を有する。固定歯車31の外歯部311は、入力側歯車22の大径歯部221の下側に位置し、後述する第二の伝達列を構成する一の歯車であるロック歯車47と噛合している。つまり、ロック歯車47の回転が阻止されている場合、固定歯車31の回転は阻止される。固定歯車31の内歯部312は、三つの遊星歯車231と噛合している。 The fixed gear 31 that is a ring gear constituting the planetary gear train has an outer tooth portion 311 and an inner tooth portion 312. The external tooth portion 311 of the fixed gear 31 is located below the large-diameter tooth portion 221 of the input side gear 22 and meshes with a lock gear 47 that is one gear constituting a second transmission train described later. . That is, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is blocked. The internal gear portion 312 of the fixed gear 31 meshes with the three planetary gears 231.
 かかる構成を備えるクラッチ手段において、遊星歯車231が公転し、遊星支持歯車232が回転するか否かは、固定歯車31の回転が阻止されているか否かによって決まる。固定歯車31の回転が阻止されている場合、入力側歯車22が回転すると、固定歯車31の内歯部312が動くことはないから、かかる内歯部312に沿って入力側歯車22の小径歯部222に噛合する遊星歯車231が公転し、遊星支持歯車232が回転する。一方、固定歯車31の回転が阻止されていない場合、入力側歯車22が回転し、遊星歯車231が公転しようとしても、固定歯車31が空回りするため、遊星支持歯車232が回転することはない。 In the clutch means having such a configuration, whether the planetary gear 231 revolves and the planetary support gear 232 rotates depends on whether the rotation of the fixed gear 31 is blocked. In the case where the rotation of the fixed gear 31 is blocked, when the input side gear 22 rotates, the internal tooth portion 312 of the fixed gear 31 does not move. Therefore, the small diameter tooth of the input side gear 22 along the internal tooth portion 312. The planetary gear 231 meshing with the portion 222 revolves and the planetary support gear 232 rotates. On the other hand, when the rotation of the fixed gear 31 is not blocked, even if the input side gear 22 rotates and the planetary gear 231 tries to revolve, the fixed gear 31 rotates idly, so that the planetary support gear 232 does not rotate.
 つまり、固定歯車31の回転が阻止されていれば、第一の伝達列が「継」状態となり、固定歯車31の回転が阻止されていなければ、第一の伝達列が「断」状態となる。クラッチ手段によって第一の伝達列が「継」状態、すなわち出力系統が「継」状態にあれば、同期モータ10の動力は、第一の伝達列を介して被駆動体90まで伝達される。一方、クラッチ手段によって第一の伝達列が「断」状態、すなわち出力系統が「断」状態にあれば、同期モータ10の動力はクラッチ手段で切断(入力側歯車22と出力側歯車23との間で切断)され、被駆動体90まで伝達されることはない。 That is, if the rotation of the fixed gear 31 is prevented, the first transmission train is in the “join” state, and if the rotation of the fixed gear 31 is not blocked, the first transmission train is in the “disconnected” state. . If the first transmission train is in the “joining” state by the clutch means, that is, if the output system is in the “joining” state, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train. On the other hand, if the first transmission train is in the “disconnected” state by the clutch means, that is, if the output system is in the “disconnected” state, the power of the synchronous motor 10 is disconnected by the clutch means (the input gear 22 and the output gear 23 are And is not transmitted to the driven body 90.
(第二の伝達列)
 以下に第二の伝達列について図6、図7、図9を用いて詳細に説明する。第二の伝達列は、同期モータ10の動力をクラッチ手段まで伝達するクラッチ作動系統を構成する。第二の伝達列は、第一のロータ歯車41と、第一のロータ歯車41に噛合する第一の歯車42と、第一の歯車42に噛合する第二の歯車44と、第二の歯車44が軸線方向下向きに移動すると押し下げられるロックレバー45と、押し下げられたロックレバー45によってロックされるロック歯車47と、を有する。
(Second transmission line)
Hereinafter, the second transmission train will be described in detail with reference to FIGS. 6, 7, and 9. The second transmission train constitutes a clutch operating system that transmits the power of the synchronous motor 10 to the clutch means. The second transmission train includes a first rotor gear 41, a first gear 42 meshing with the first rotor gear 41, a second gear 44 meshing with the first gear 42, and a second gear. It has a lock lever 45 that is pushed down when 44 moves downward in the axial direction, and a lock gear 47 that is locked by the pushed down lock lever 45.
 第一のロータ歯車41は、同期モータ10のロータ11と一体的に形成された平歯車である。上述した第二のロータ歯車21の下(同期モータ10の本体側)に設けられている。 The first rotor gear 41 is a spur gear formed integrally with the rotor 11 of the synchronous motor 10. It is provided under the second rotor gear 21 described above (on the main body side of the synchronous motor 10).
 第一のロータ歯車41には、第一の歯車42が噛合している。駆動側歯部421とこの駆動側歯部421よりも相対的に小径の第一のはす歯部422とを有する。第一のはす歯部422は、上述したように「はす歯」に形成された部分である。第一の歯車42は、その駆動側歯部421が第一のロータ歯車41と噛合している。したがって、第一の歯車42は、第一のロータ歯車41の回転に伴って回転する。 A first gear 42 meshes with the first rotor gear 41. It has a driving side tooth part 421 and a first helical tooth part 422 having a relatively smaller diameter than the driving side tooth part 421. The first helical tooth portion 422 is a portion formed into a “helical tooth” as described above. The first gear 42 has a drive-side tooth portion 421 meshed with the first rotor gear 41. Therefore, the first gear 42 rotates as the first rotor gear 41 rotates.
 第一の歯車42には、第二の歯車44が噛合している。第二の歯車44は、相対的に大径の第二のはす歯部441と、相対的に小径の従動側歯部442を有する。第二の歯車44は、第二の歯車支持軸86に回転自在かつ軸線方向に移動可能に支持されている。上述したように、第二のはす歯部441は「はす歯」に形成された部分である。従動側歯部442は、負荷付与手段50が有するウォーム部51と噛合するいわゆるウォームホイール部である。なお、従動側歯部442ははす歯であってもよいし、平歯車であってもよい。 The second gear 44 meshes with the first gear 42. The second gear 44 includes a second helical tooth portion 441 having a relatively large diameter and a driven side tooth portion 442 having a relatively small diameter. The second gear 44 is supported by the second gear support shaft 86 so as to be rotatable and movable in the axial direction. As described above, the second helical tooth portion 441 is a portion formed into a “helical tooth”. The driven side tooth portion 442 is a so-called worm wheel portion that meshes with the worm portion 51 included in the load applying means 50. The driven tooth portion 442 may be a helical tooth or a spur gear.
 第二の歯車44は、その第二のはす歯部441が、第一の歯車42の第一のはす歯部422と噛合している。したがって、第二の歯車44は、第一の歯車42の回転に伴って回転する。同期モータ10が正転したとき、第二の歯車44には、負荷付与手段50により、その回転方向と反対方向の負荷が掛かるため、軸線方向下向きのスラスト力が発生する。よって、第一の歯車42が回転すると、第二の歯車44は回転しつつ軸線方向下向きに移動する。 In the second gear 44, the second helical tooth portion 441 is engaged with the first helical tooth portion 422 of the first gear 42. Therefore, the second gear 44 rotates as the first gear 42 rotates. When the synchronous motor 10 rotates in the forward direction, a load in the direction opposite to the rotation direction is applied to the second gear 44 by the load applying means 50, so that a downward thrust force in the axial direction is generated. Therefore, when the first gear 42 rotates, the second gear 44 moves downward in the axial direction while rotating.
 ロックレバー45は、平板状の部材であり、第二の歯車44の下に配されている。詳しくは、軸線方向に移動可能な状態で、第二の歯車44と同じ第二の歯車支持軸86に支持されている。ロックレバー45には、凹部452が形成されており、この凹部452が下ケース82の側壁の内側に軸線方向に沿って形成された図示されない凸部に係合されている。かかる凸部と凹部452の係合により、ロックレバー45は、回転が阻止されるとともに軸線方向に移動可能な状態で第二の歯車支持軸86に支持されている。ロックレバー45の一方の端部には、他の部分に比べて肉厚に形成されたロック部451が形成されている。ロックレバー45の下には、ロックレバー45を上向きに付勢する付勢部材46(コイルばね)が配されている。この付勢部材46により、通常時(同期モータ10が駆動していないとき)には、ロックレバー45はロック歯車47の被ロック部471より上に位置する。また、ロックレバー45の上には第二の歯車44が配されているため、第二の歯車44も軸線方向上向きに付勢された状態にある。付勢部材46の付勢力は、第一の歯車42の回転に伴って第二の歯車44が回転する際に、第二の歯車44に発生する軸線方向下向きのスラスト力より小さい。つまり、第二の歯車44が回転すると、付勢部材46の付勢力に抗して、第二の歯車44は軸線方向下向きに移動する。第二の歯車44が軸線方向下向きに移動すると、その下にあるロックレバー45も下向きに移動する。下向きに移動したロックレバー45のロック部451は、ロック歯車47の被ロック部471と略同じ高さに位置する。 The lock lever 45 is a flat member and is disposed under the second gear 44. Specifically, it is supported by a second gear support shaft 86 that is the same as the second gear 44 and is movable in the axial direction. A recess 452 is formed in the lock lever 45, and the recess 452 is engaged with a not-shown protrusion formed along the axial direction inside the side wall of the lower case 82. Due to the engagement between the convex portion and the concave portion 452, the lock lever 45 is supported by the second gear support shaft 86 while being prevented from rotating and movable in the axial direction. At one end portion of the lock lever 45, a lock portion 451 is formed that is thicker than the other portions. A biasing member 46 (coil spring) that biases the lock lever 45 upward is disposed below the lock lever 45. Due to the urging member 46, the lock lever 45 is positioned above the locked portion 471 of the lock gear 47 during normal times (when the synchronous motor 10 is not driven). Further, since the second gear 44 is disposed on the lock lever 45, the second gear 44 is also urged upward in the axial direction. The urging force of the urging member 46 is smaller than the axially downward thrust force generated in the second gear 44 when the second gear 44 rotates as the first gear 42 rotates. That is, when the second gear 44 rotates, the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46. When the second gear 44 moves downward in the axial direction, the lock lever 45 underneath also moves downward. The lock portion 451 of the lock lever 45 moved downward is positioned at substantially the same height as the locked portion 471 of the lock gear 47.
 ロック歯車47は、被ロック部471と、その被ロック部471が形成された平板上のロック歯部472とを有する。被ロック部471は、円形の平板から外向きに突出するように形成されている。ロックレバー45が下向きに移動すると、ロックレバー45のロック部451とロック歯車47の被ロック部471とが向かい合うように位置するため、ロック歯車47の回転が所定位置(ロック部451と被ロック部471とが当接する位置)で阻止される。一方、ロック歯部472は、クラッチ手段を構成する固定歯車31の外歯部311と噛合している。したがって、ロック歯車47の回転が阻止されると、それに噛合する固定歯車31の回転も阻止される。なお、本実施形態では、ロック歯車47は遠心ブレーキであるブレーキ部473を有する。ブレーキ部473は、ロック歯車47の回転を妨げる方向に負荷を掛け、ロック歯車47が必要以上に高速で回転しないようにする。かかるブレーキ部473の作用については後述する。 The lock gear 47 includes a locked portion 471 and a lock tooth portion 472 on a flat plate on which the locked portion 471 is formed. The locked portion 471 is formed so as to protrude outward from the circular flat plate. When the lock lever 45 moves downward, the lock portion 451 of the lock lever 45 and the locked portion 471 of the lock gear 47 are positioned so as to face each other, so that the rotation of the lock gear 47 is at a predetermined position (the lock portion 451 and the locked portion). At a position where the 471 is in contact). On the other hand, the lock tooth portion 472 meshes with the external tooth portion 311 of the fixed gear 31 constituting the clutch means. Accordingly, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 meshing with the lock gear 47 is also blocked. In the present embodiment, the lock gear 47 has a brake portion 473 that is a centrifugal brake. The brake unit 473 applies a load in a direction that prevents the lock gear 47 from rotating, and prevents the lock gear 47 from rotating at a higher speed than necessary. The effect | action of this brake part 473 is mentioned later.
 第二の歯車44の軸線方向と直交する方向に延びるウォーム部51は、従動側歯部442(ウォームホイール部)と噛合している。ウォーム部51は一条であり、従動側歯部442とウォーム部51とは、増速歯車機構を構成する(従動側歯部442が一歯分回転するとウォーム部51が一回転する)。よって、第二の歯車44の回転は増速されてウォーム部51に伝達される。 The worm part 51 extending in the direction orthogonal to the axial direction of the second gear 44 meshes with the driven side tooth part 442 (worm wheel part). The worm part 51 is one line, and the driven side tooth part 442 and the worm part 51 constitute a speed increasing gear mechanism (when the driven side tooth part 442 rotates by one tooth, the worm part 51 makes one rotation). Therefore, the rotation of the second gear 44 is increased and transmitted to the worm portion 51.
 ウォーム部51の先端に配置された負荷部52は遠心ブレーキである。ウォーム部51が回転すると、負荷部52の、径方向に移動可能で径方向内向きに付勢されたおもりが、遠心力によって付勢力に抗して径方向外向きに移動し、回転速度が一定以上になると軸受53のドラム531の内周面と接触するというものである。回転速度が大きくなるほどおもりにかかる遠心力が大きくなり、おもりとドラム531の摩擦による回転を停止させようとするブレーキ力も大きくなるという構成となっている。 The load part 52 arranged at the tip of the worm part 51 is a centrifugal brake. When the worm portion 51 rotates, the weight 52 of the load portion 52 that is movable in the radial direction and is urged inward in the radial direction moves outward in the radial direction against the urging force by centrifugal force, and the rotation speed is increased. When it exceeds a certain level, it comes into contact with the inner peripheral surface of the drum 531 of the bearing 53. The centrifugal force applied to the weight increases as the rotational speed increases, and the braking force for stopping the rotation due to the friction between the weight and the drum 531 also increases.
(その他の構成)
 図1、図8に示すように、複合歯車24の上には、扇形レバー60が配されている。扇形レバー60は、複合歯車24が回転自在に支持された軸と同じ軸に回転自在に支持されている。扇形レバー60の下面には、係合突起61が形成されている。かかる係合突起61は、カム歯車25の上面に形成されたカム溝252に係合している。また、同じく扇形レバー60には入力側歯車ロック突起62と、傾斜カム63が形成されている。かかる係合突起61、カム溝252、入力側歯車ロック突起62、および、傾斜カム63の詳細については省略するが、各部材の機能は次の通りである。カム歯車25がワイヤ27を巻き上げる方向へ回転すると、カム溝252に係合する係合突起61によって扇形レバー60が入力側歯車22側へ回動する。扇形レバー60が所定位置まで動く(ワイヤ27を所定位置まで巻き上げる)と、ワイヤ27の巻き込みを停止すべく、入力側歯車ロック突起62が入力側歯車22の被ロック突起223に作用し、入力側歯車22の回転を阻止する。これと同時に傾斜カム63によって軸線方向下向きに押さえつけられていた第二のロータ歯車21が解放され、コイルばね28によって軸線方向上向きに移動する(第二のロータ歯車21が第二の位置に位置する)(図4参照)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412の係合が解かれる。つまり、同期モータ10の動力が第二のロータ歯車21に伝達されない状態となる。
(Other configurations)
As shown in FIGS. 1 and 8, a sector lever 60 is arranged on the compound gear 24. The sector lever 60 is rotatably supported on the same shaft as the shaft on which the compound gear 24 is rotatably supported. An engaging protrusion 61 is formed on the lower surface of the sector lever 60. The engaging protrusion 61 is engaged with a cam groove 252 formed on the upper surface of the cam gear 25. Similarly, the sector lever 60 is formed with an input side gear lock projection 62 and an inclined cam 63. Although details of the engagement protrusion 61, the cam groove 252, the input side gear lock protrusion 62, and the inclined cam 63 are omitted, the function of each member is as follows. When the cam gear 25 rotates in the direction in which the wire 27 is wound up, the sector lever 60 is rotated toward the input side gear 22 by the engagement protrusion 61 that engages with the cam groove 252. When the sector lever 60 moves to a predetermined position (the wire 27 is wound up to a predetermined position), the input side gear lock projection 62 acts on the locked projection 223 of the input side gear 22 to stop the winding of the wire 27, and the input side The rotation of the gear 22 is prevented. At the same time, the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 is released and moved upward in the axial direction by the coil spring 28 (the second rotor gear 21 is positioned at the second position). (See FIG. 4). As a result, the engagement between the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 is released. That is, the power of the synchronous motor 10 is not transmitted to the second rotor gear 21.
(モータユニットの動作)
 以上の構成を備える排水弁駆動装置1の通常動作について以下詳細に説明する。以下の説明では、原位置にある被駆動体90に対し同期モータ10の動力を伝達する1)動力伝達動作と、同期モータ10の動力の伝達を遮断し被駆動体90を原位置に戻す2)動力遮断動作に分けて説明する。
(Operation of motor unit)
The normal operation of the drain valve driving device 1 having the above configuration will be described in detail below. In the following description, the power of the synchronous motor 10 is transmitted to the driven body 90 in the original position. ) The explanation will be divided into the power cut-off operation.
1)動力伝達動作
 被駆動体90が原位置にある状態(ワイヤ27がプーリ26に巻き上げられていない状態、すなわち、同期モータ10の動力が被駆動体90に作用していない状態)から同期モータ10を一方に駆動させる(正転させる)と、第二のロータ歯車21および第一のロータ歯車41が回転する。このとき、同期モータ10が逆転した場合には、逆転防止機構が働き、即座に同期モータ10は正転する。同期モータ10が駆動すると、第一のロータ歯車41の回転により、その第一のロータ歯車41に噛合する駆動側歯部421を有する第一の歯車42が回転する。
1) Power transmission operation Synchronous motor from a state where the driven body 90 is in the original position (a state where the wire 27 is not wound around the pulley 26, that is, a state where the power of the synchronous motor 10 does not act on the driven body 90) When 10 is driven in one direction (forward rotation), the second rotor gear 21 and the first rotor gear 41 rotate. At this time, when the synchronous motor 10 rotates in the reverse direction, the reverse rotation prevention mechanism works and the synchronous motor 10 immediately rotates in the normal direction. When the synchronous motor 10 is driven, the rotation of the first rotor gear 41 causes the first gear 42 having the drive-side tooth portion 421 that meshes with the first rotor gear 41 to rotate.
 上記逆転防止機構は、次のように機能する。同期モータ10が逆転したとき、第二のはす歯部441のはす歯同士の噛合および負荷付与手段50の負荷によって、第一の歯車42は軸線方向下向きに付勢される。すなわち、第一の歯車42は、逆転防止部材43側に押圧された状態となり、第一の歯車42の下面と逆転防止部材43の上面が面接触する。この面接触することによる摩擦力、逆転防止部材43の上面に形成された溝部4311に充填されたグリスの粘性、及び逆転防止部材43の下面に形成されたリブ4312による支持部84との摩擦低減効果により(図12参照)、逆転防止部材43は、第一の歯車42の回転に連れ回って回転する。本実施形態では、第一の歯車42の駆動側歯部421は第一のロータ歯車41に噛合しているから、第一の歯車42およびそれとともに回転する逆転防止部材43は同期モータ10の回転と逆方向に回転する。かかる方向に回転した逆転防止部材43の当接部432は、同期モータ10に近づく方向に回転し、同期モータ10の逆転防止当接部411に当接する。この当接したときの衝撃によって、同期モータ10の回転は正転に修正される。このような逆転防止機構の働きにより、同期モータ10の逆転が正転に修正される。 上 記 The reverse rotation prevention mechanism functions as follows. When the synchronous motor 10 rotates in the reverse direction, the first gear 42 is urged downward in the axial direction by the meshing of the helical teeth of the second helical tooth portion 441 and the load of the load applying means 50. That is, the first gear 42 is pressed toward the reverse rotation preventing member 43, and the lower surface of the first gear 42 and the upper surface of the reverse rotation preventing member 43 are in surface contact. The frictional force caused by the surface contact, the viscosity of the grease filled in the groove 4311 formed on the upper surface of the reverse rotation preventing member 43, and the friction reduction with the support portion 84 by the rib 4312 formed on the lower surface of the reverse rotation preventing member 43. Due to the effect (see FIG. 12), the reverse rotation prevention member 43 rotates as the first gear 42 rotates. In the present embodiment, since the drive side tooth portion 421 of the first gear 42 meshes with the first rotor gear 41, the first gear 42 and the reverse rotation preventing member 43 that rotates together with the first gear 42 rotate the synchronous motor 10. And rotate in the opposite direction. The contact portion 432 of the reverse rotation prevention member 43 rotated in this direction rotates in a direction approaching the synchronous motor 10 and contacts the reverse rotation prevention contact portion 411 of the synchronous motor 10. The rotation of the synchronous motor 10 is corrected to normal rotation by the impact at the time of contact. The reverse rotation of the synchronous motor 10 is corrected to normal rotation by the function of the reverse rotation prevention mechanism.
 同期モータ10の回転が正転に切り替わると、第一のロータ歯車41に噛合した駆動側歯部421を有する第一の歯車42の回転方向も切り替わる(正転する)。第一の歯車42の回転方向が切り替わると、第一の歯車42には軸線方向上向きのスラスト力が生じる。これにより第一の歯車42と逆転防止部材43が離れると、第一の歯車42は独立して(逆転防止部材43とは別個に)回転する。ただし、グリスの粘性などにより、逆転防止部材43が第一の歯車42にくっついた状態で第一の歯車42と同じ方向に回転(正転)することもある。支持部84には、このように正転する逆転防止部材43の回転阻止部433の回転軌跡に入り込む位置にストッパを兼ねる第一の位置規制突起841が起立形成されている。すなわち、逆転防止部材43が正転すると、この第一の位置規制突起841に回転阻止部433が当接し、逆転防止部材43の回転が阻止される。これにより、正転する第一の歯車42とともに逆転防止部材43が回転し続けることが防止される。 When the rotation of the synchronous motor 10 is switched to normal rotation, the rotation direction of the first gear 42 having the driving side tooth portion 421 meshed with the first rotor gear 41 is also switched (forward rotation). When the rotation direction of the first gear 42 is switched, an axially upward thrust force is generated in the first gear 42. As a result, when the first gear 42 and the reverse rotation prevention member 43 are separated, the first gear 42 rotates independently (separately from the reverse rotation prevention member 43). However, the reverse rotation preventing member 43 may rotate (forward rotation) in the same direction as the first gear 42 in a state where the reverse rotation preventing member 43 is attached to the first gear 42 due to the viscosity of the grease. A first position restricting projection 841 that also serves as a stopper is erected on the support portion 84 at a position that enters the rotation locus of the rotation preventing portion 433 of the reverse rotation preventing member 43 that normally rotates in this manner. That is, when the reverse rotation preventing member 43 rotates forward, the rotation preventing portion 433 comes into contact with the first position restricting protrusion 841 and the rotation of the reverse rotation preventing member 43 is blocked. This prevents the reverse rotation preventing member 43 from continuing to rotate together with the first gear 42 that rotates in the forward direction.
 第一の歯車42が回転すると、第一の歯車42の第一のはす歯部422と噛合する第二のはす歯部441を有する第二の歯車44が回転する。この第二の歯車44は、その従動側歯部442(ウォームホイール部)に、負荷付与手段50のウォーム部51が噛合しており、第二の歯車44の回転によって負荷付与手段50の負荷部52も回転する。負荷部52が回転し、その速度が大きくなると、回転を停止させようとする方向に負荷(トルク)が生ずる。かかる負荷は、ウォーム部51から従動側歯部442を有する第二の歯車44およびそれに噛合する第一の歯車42に伝達される。このようにして、第一の歯車42および第二の歯車44は、その回転方向とは反対の負荷を受ける。 When the first gear 42 rotates, the second gear 44 having the second helical gear portion 441 that meshes with the first helical gear portion 422 of the first gear 42 rotates. The second gear 44 has a driven side tooth portion 442 (worm wheel portion) meshed with the worm portion 51 of the load applying means 50, and the load portion of the load applying means 50 is rotated by the rotation of the second gear 44. 52 also rotates. When the load unit 52 rotates and its speed increases, a load (torque) is generated in a direction in which the rotation is stopped. The load is transmitted from the worm portion 51 to the second gear 44 having the driven side tooth portion 442 and the first gear 42 meshing with the second gear 44. In this way, the first gear 42 and the second gear 44 are subjected to loads opposite to their rotational directions.
 上述のように、第一の歯車42と第二の歯車44の間の動力の伝達は、「はす歯」の噛合によるものである。したがって、負荷付与手段50から回転方向とは反対の負荷を受けた第二の歯車44は、第一の歯車42の回転により、軸線方向下向きのスラスト力を受ける。つまり、第二の歯車44は、「はす歯」の噛合および回転方向とは反対の負荷により、回転しながら軸線方向下向きに移動する。 As described above, the transmission of power between the first gear 42 and the second gear 44 is based on meshing of “helical teeth”. Therefore, the second gear 44 that has received a load opposite to the rotation direction from the load applying means 50 receives a downward thrust force in the axial direction due to the rotation of the first gear 42. In other words, the second gear 44 moves downward in the axial direction while rotating by a load opposite to the meshing of the “helical teeth” and the rotation direction.
 また、本実施形態では、第二の歯車44と負荷付与手段50の噛合も「はす歯」によるものであるため、第二の歯車44に対し大きな軸線方向下向きのスラスト力が発生する。つまり、負荷部52によって発生した負荷は、ウォーム部51と従動側歯部442の噛合によって第二の歯車44に伝達されるものであるため、当該負荷の伝達による軸線方向下向きのスラスト力も第二の歯車44に発生する。 Further, in this embodiment, since the meshing of the second gear 44 and the load applying means 50 is also based on the “helical teeth”, a large axial downward thrust force is generated with respect to the second gear 44. That is, the load generated by the load portion 52 is transmitted to the second gear 44 by meshing between the worm portion 51 and the driven side tooth portion 442, and therefore the axial downward thrust force due to the transmission of the load is also the second. Is generated in the gear 44.
 第二の歯車44が軸線方向下向きに移動すると、その下に配されたロックレバー45が付勢部材46の付勢力に抗して軸線方向下向きに移動する。このようにしてロックレバー45が押し下げられると、ロックレバー45に設けられたロック部451は、ロック歯車47の被ロック部471と略同じ高さで、ロック歯車47の周方向で対向するように位置する。したがって、この状態になると、ロック歯車47の回転はロックレバー45のロック部451によって妨げられる。つまり、ロック歯車47の回転が阻止された状態となる。 When the second gear 44 moves downward in the axial direction, the lock lever 45 disposed under the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46. When the lock lever 45 is pushed down in this way, the lock portion 451 provided on the lock lever 45 is substantially the same height as the locked portion 471 of the lock gear 47 and faces the lock gear 47 in the circumferential direction. To position. Accordingly, in this state, the rotation of the lock gear 47 is prevented by the lock portion 451 of the lock lever 45. That is, the lock gear 47 is prevented from rotating.
 ロック歯車47は、そのロック歯部472が、クラッチ手段の遊星歯車列を構成する固定歯車31の外歯部311に噛合している。したがって、ロック歯車47の回転が阻止されると、固定歯車31の回転も阻止される。これにより、クラッチ手段によって第一の伝達列による動力の伝達が「継」状態となり、同期モータ10の動力が第一の伝達列を介して被駆動体90まで伝達可能な状態となる。このように、第二の歯車44は、その軸線方向下向きに移動することで、クラッチ手段を介して、第一の伝達列による動力の伝達を「継」状態とする。 The lock gear 47 has its lock tooth portion 472 meshed with the external tooth portion 311 of the fixed gear 31 constituting the planetary gear train of the clutch means. Therefore, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is also blocked. As a result, the transmission of power by the first transmission train by the clutch means is in the “joint” state, and the power of the synchronous motor 10 can be transmitted to the driven body 90 through the first transmission train. In this way, the second gear 44 moves downward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “joining” state via the clutch means.
 一方、同期モータ10の駆動によって第一のロータ歯車41とともに回転する第二のロータ歯車21は、遊星歯車列を構成する入力側歯車22の大径歯部221と噛合している。したがって、第二のロータ歯車21の回転に伴い、入力側歯車22が回転する。 On the other hand, the second rotor gear 21 that rotates together with the first rotor gear 41 by driving the synchronous motor 10 meshes with the large-diameter tooth portion 221 of the input-side gear 22 that constitutes the planetary gear train. Accordingly, the input side gear 22 rotates with the rotation of the second rotor gear 21.
 入力側歯車22の小径歯部222の外側には、出力側歯車23を構成する三つの遊星歯車231が噛合している。周方向に等間隔に並んだ遊星歯車231の外側には、固定歯車31の内歯部312が噛合している。上述のように、固定歯車31は、ロック歯車47によって回転が阻止された状態にある。したがって、入力側歯車22が回転すると、その小径歯部222の周りを遊星歯車231が公転する。遊星歯車231が公転すると、遊星歯車231を支持する遊星支持歯車232が回転する。つまり、入力側歯車22の回転動力が、全て出力側歯車23に伝達される。 The three planetary gears 231 constituting the output side gear 23 are meshed with the outside of the small-diameter tooth portion 222 of the input side gear 22. An inner tooth portion 312 of the fixed gear 31 meshes with the outside of the planetary gears 231 arranged at equal intervals in the circumferential direction. As described above, the fixed gear 31 is prevented from rotating by the lock gear 47. Therefore, when the input side gear 22 rotates, the planetary gear 231 revolves around the small diameter tooth portion 222. When the planetary gear 231 revolves, the planetary support gear 232 that supports the planetary gear 231 rotates. That is, all the rotational power of the input side gear 22 is transmitted to the output side gear 23.
 なお、仮に、固定歯車31の回転が阻止された状態にない場合に入力側歯車22が回転すると、遊星歯車231を介して固定歯車31が空回りする。遊星支持歯車232以降の動力伝達列には、伝達列自体の負荷や、被駆動体90にかかる負荷が存在するため、入力側歯車22の回転動力が全て固定歯車31側に伝達されてしまうからである。このように本実施形態では、遊星歯車列を利用した差動歯車機構により、クラッチ手段による第一の伝達列の「継」状態と「断」状態を切り替えている。 If the input side gear 22 rotates when the rotation of the fixed gear 31 is not blocked, the fixed gear 31 rotates idle via the planetary gear 231. Since the power transmission train after the planetary support gear 232 includes a load on the transmission train itself and a load on the driven body 90, all the rotational power of the input side gear 22 is transmitted to the fixed gear 31 side. It is. As described above, in the present embodiment, the “transmission” state and the “disconnection” state of the first transmission train by the clutch means are switched by the differential gear mechanism using the planetary gear train.
 遊星支持歯車232の歯車部2321には、複合歯車24の大径歯部242が噛合している。したがって、遊星支持歯車232の回転に伴い、複合歯車24が回転する。 The large-diameter tooth portion 242 of the compound gear 24 meshes with the gear portion 2321 of the planetary support gear 232. Therefore, the compound gear 24 rotates as the planetary support gear 232 rotates.
 複合歯車24の小径歯部241には、カム歯車25の歯車部251が噛合している。したがって、複合歯車24の回転に伴い、カム歯車25が回転する。 The gear portion 251 of the cam gear 25 meshes with the small diameter tooth portion 241 of the composite gear 24. Therefore, the cam gear 25 rotates with the rotation of the compound gear 24.
 カム歯車25が回転すると、カム歯車25の上端に固定されたプーリ26が回転する。プーリ26が回転すると、プーリ26に固定されたワイヤ27がワイヤ溝261に沿って巻き上げられる。ワイヤ27の先端には、被駆動体90が固定されているため、被駆動体90はワイヤ27に引き上げられるように動作する。例えば、被駆動体90が洗濯機の排水口を開閉する弁体である場合には、ワイヤ27によって弁体が引き上げられることで排水口が開放され、排水が開始される。 When the cam gear 25 rotates, the pulley 26 fixed to the upper end of the cam gear 25 rotates. When the pulley 26 rotates, the wire 27 fixed to the pulley 26 is wound up along the wire groove 261. Since the driven body 90 is fixed to the tip of the wire 27, the driven body 90 operates to be pulled up by the wire 27. For example, when the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is pulled up by the wire 27 so that the drain port is opened and drainage is started.
 このように、同期モータ10の回転動力は、第一の伝達列を介して被駆動体90に伝達される。第一の伝達列はクラッチ手段によって「継」状態とされるが、そのクラッチ手段を「継」状態とする動力にも同期モータ10の回転動力の一部が利用される。 Thus, the rotational power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train. The first transmission train is put into the “engaged” state by the clutch means, but a part of the rotational power of the synchronous motor 10 is also used for the power to put the clutch means in the “joined” state.
 なお、プーリ26によるワイヤ27の巻き上げは次のように停止する。カム歯車25が所定位置まで回転すると(ワイヤ27が所定量巻き上げられると)、カム溝252に係合する係合突起61を有する扇形レバー60が入力側歯車22側に回動する。このように扇形レバー60が回動すると、扇形レバー60が有する入力側歯車ロック突起62が、入力側歯車22の被ロック突起223に周方向から当接する。これにより、入力側歯車22の回転が阻止された状態となる。また、扇形レバー60の傾斜カム63によって軸線方向下向きに押さえつけられていた第二のロータ歯車21が解放され、コイルばねによって軸線方向上向きに移動する(第二のロータ歯車21が第二の位置に位置する)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412の係合が解かれ、同期モータ10の動力が第二のロータ歯車21に伝達されない状態となる。入力側歯車22の回転が停止すると、第一の伝達列を構成する各部材の動作も停止する。すなわち、プーリ26によるワイヤ27の巻き上げが停止し、当該巻き上げ位置でプーリ26が保持された状態(被駆動体90が洗濯機の排水口を開閉する弁体である場合には、排水口の開放が維持される状態)となる。このように、排水口の開放が維持された状態では、同期モータ10は駆動し続けているが、その動力は第二のロータ歯車21(第一の伝達列)に伝わらない状態である。したがって、同期モータ10にかかる負荷が小さく、消費電力を低減できる。 The winding of the wire 27 by the pulley 26 is stopped as follows. When the cam gear 25 rotates to a predetermined position (when the wire 27 is wound up by a predetermined amount), the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates toward the input side gear 22. When the sector lever 60 rotates in this manner, the input side gear lock protrusion 62 of the sector lever 60 contacts the locked protrusion 223 of the input side gear 22 from the circumferential direction. As a result, the input side gear 22 is prevented from rotating. Further, the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 of the sector lever 60 is released and moved upward in the axial direction by the coil spring (the second rotor gear 21 is moved to the second position). To position). As a result, the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 are disengaged, and the power of the synchronous motor 10 is transmitted to the second rotor gear 21. It will be in a state that is not. When the rotation of the input side gear 22 stops, the operation of each member constituting the first transmission train also stops. That is, the winding of the wire 27 by the pulley 26 is stopped, and the pulley 26 is held at the winding position (when the driven body 90 is a valve body that opens and closes the drain of the washing machine, the drain is opened). Is maintained). Thus, in the state where the drain opening is maintained, the synchronous motor 10 continues to be driven, but the power is not transmitted to the second rotor gear 21 (first transmission train). Therefore, the load applied to the synchronous motor 10 is small, and the power consumption can be reduced.
 このようにして、被駆動体90に対し同期モータ10の動力を伝達する動力伝達動作が完了する。 In this way, the power transmission operation for transmitting the power of the synchronous motor 10 to the driven body 90 is completed.
2)動力遮断動作
 上記動力伝達動作が完了した状態から被駆動体90を原位置に戻す場合、同期モータ10の駆動を停止(同期モータ10への通電を停止)する。そうすると、第一のロータ歯車41、第一の歯車42の回転が停止するため、第二の歯車44の回転も停止する。第二の歯車44の回転が停止すると、「はす歯」の噛合および負荷付与手段50が与える負荷によって生じていた、第二の歯車44に対する軸線方向下向きのスラスト力が消滅する。第二の歯車44は、その下に配されたロックレバー45とともに付勢部材46によって軸線方向上向きに付勢されているから、当該スラスト力が消滅すると第二の歯車44は回転しながら軸線方向上向きに移動し、原位置に戻る。当然ロックレバー45も当該方向に移動し、原位置に戻る。なお、付勢部材46による第二の歯車44を原位置に戻そうとする力は小さいから、第二の歯車44および負荷部52の回転速度は低く、負荷部52のおもりはドラム531に接触しない。そのため、負荷付与手段50によって第二の歯車44に作用する負荷の大きさは大きくならず、第二の歯車44がスムーズに原位置に戻る。
2) Power cut-off operation When the driven body 90 is returned to the original position after the power transmission operation is completed, the drive of the synchronous motor 10 is stopped (the energization to the synchronous motor 10 is stopped). Then, since the rotation of the first rotor gear 41 and the first gear 42 is stopped, the rotation of the second gear 44 is also stopped. When the rotation of the second gear 44 is stopped, the axial downward thrust force with respect to the second gear 44 generated by the engagement of the “helical teeth” and the load applied by the load applying means 50 disappears. Since the second gear 44 is urged upward in the axial direction by the urging member 46 together with the lock lever 45 arranged thereunder, the second gear 44 rotates while the second gear 44 rotates in the axial direction. Move upward and return to the original position. Of course, the lock lever 45 also moves in this direction and returns to the original position. Since the force of the urging member 46 to return the second gear 44 to the original position is small, the rotation speed of the second gear 44 and the load portion 52 is low, and the weight of the load portion 52 contacts the drum 531. do not do. Therefore, the magnitude of the load acting on the second gear 44 by the load applying means 50 does not increase, and the second gear 44 returns smoothly to the original position.
 ロックレバー45が付勢部材46によって上向きに移動すると、ロックレバー45のロック部451の高さ方向位置は、ロック歯車47の被ロック部471の高さ方向位置より高くなる。具体的には、ロック部451と被ロック部471とは周方向で重ならないように位置する。したがって、ロック歯車47の回転が阻止された状態は解消され、ロック歯車47は自在に回転することができる状態となる。つまり、クラッチ手段(遊星歯車列)の固定歯車31が自在に回転することができる状態、すなわちクラッチ手段が「断」状態となる。このように、第二の歯車44は、その軸線方向上向きに移動することで、クラッチ手段を介して、第一の伝達列による動力の伝達を「断」状態とする。 When the lock lever 45 is moved upward by the urging member 46, the height direction position of the lock portion 451 of the lock lever 45 becomes higher than the height direction position of the locked portion 471 of the lock gear 47. Specifically, the lock portion 451 and the locked portion 471 are positioned so as not to overlap in the circumferential direction. Therefore, the state in which the rotation of the lock gear 47 is prevented is eliminated, and the lock gear 47 can be freely rotated. That is, the fixed gear 31 of the clutch means (planetary gear train) can freely rotate, that is, the clutch means is in the “disengaged” state. In this way, the second gear 44 moves upward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “disconnected” state via the clutch means.
 被駆動体90は、自身に作用する外部負荷により、常に原位置に戻ろうとしている。例えば、被駆動体90が洗濯機の排水口を開閉する弁体であって、排水弁駆動装置1の駆動により排水口を開放する方向に弁体を動作させる場合には、弁体は常に排水口を閉鎖する方向に付勢されている。したがって、固定歯車31が自在に回転することができるクラッチ手段が「断」状態となると、被駆動体90にかかる負荷は、第一の伝達列を逆行するようにして出力側歯車23(遊星支持歯車232)まで伝達される。このようにして伝達された被駆動体90にかかる負荷に基づくエネルギは、クラッチ手段が「断」状態となっているため、出力側歯車23の空転によって出力(消費)される。これにより、被駆動体90は原位置に戻る。 The driven body 90 is always going to return to its original position by an external load acting on itself. For example, when the driven body 90 is a valve body that opens and closes the drain port of the washing machine, and the valve body is operated in a direction to open the drain port by driving the drain valve driving device 1, the valve body is always drained. It is urged to close the mouth. Therefore, when the clutch means that can freely rotate the fixed gear 31 is in the “disengaged” state, the load applied to the driven body 90 reverses the first transmission train so that the output side gear 23 (planet support) To the gear 232). The energy based on the load applied to the driven body 90 thus transmitted is output (consumed) by the idling of the output side gear 23 because the clutch means is in the “disengaged” state. Thereby, the driven body 90 returns to the original position.
 さらに、カム歯車25が原位置に戻ると、カム溝252に係合する係合突起61を有する扇形レバー60がカム歯車25に近づく方向に回動する。このように扇形レバー60が回動すると、扇形レバー60が有する入力側歯車ロック突起62が、入力側歯車22の被ロック突起223から離れる。これにより、入力側歯車22の回転が許容された状態となる。また、コイルばねで軸線方向上向きに付勢されていた第二のロータ歯車21は、傾斜カム63に押さえつけられ、軸線方向下向きに移動する(第二のロータ歯車21が第一の位置に位置する)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412が係合し、同期モータ10の動力が第二のロータ歯車21にも伝達される状態となる。 Further, when the cam gear 25 returns to the original position, the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates in a direction approaching the cam gear 25. When the sector lever 60 rotates in this way, the input side gear lock projection 62 of the sector lever 60 is separated from the locked projection 223 of the input side gear 22. As a result, the input side gear 22 is allowed to rotate. Further, the second rotor gear 21 urged upward in the axial direction by the coil spring is pressed against the inclined cam 63 and moves downward in the axial direction (the second rotor gear 21 is located at the first position). ). As a result, the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 are engaged, and the power of the synchronous motor 10 is also transmitted to the second rotor gear 21. It becomes a state.
 この際、ロック歯車47のブレーキ部473は、被駆動体90が原位置に戻ろうとする動作にブレーキをかけ、第一の伝達列にかかる衝撃をやわらげる。そのため、第一の伝達列を構成する動力伝達部材の破損を防ぐことができる。また、被駆動体90が原位置に戻る際、度当たりに衝突する衝撃音(被駆動体90が、洗濯機の排水口を開閉する弁体である場合には、かかる弁体が排水口の周囲に衝突する衝撃音)を低減することができる。 At this time, the brake portion 473 of the lock gear 47 brakes the operation of the driven body 90 to return to the original position, and softens the impact applied to the first transmission train. Therefore, it is possible to prevent the power transmission member constituting the first transmission train from being damaged. In addition, when the driven body 90 returns to the original position, an impact sound that collides with each other (when the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is connected to the drain port. (Impact sound that collides with the surroundings) can be reduced.
 このように、同期モータ10を停止すれば、付勢部材46の作用によって遊星歯車列を構成する固定歯車31のロックが解除され、クラッチ手段が第一の伝達列を「断」状態とする。これにより、被駆動体90は原位置に戻る。 Thus, when the synchronous motor 10 is stopped, the locking of the fixed gear 31 constituting the planetary gear train is released by the action of the urging member 46, and the clutch means places the first transmission train in the “disconnected” state. Thereby, the driven body 90 returns to the original position.
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 The embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
1 排水弁駆動装置
10 同期モータ
21 第二のロータ歯車
41 第一のロータ歯車
411 逆転防止当接部
43 逆転防止部材
22 入力側歯車
23 出力側歯車
231 遊星歯車
24 複合歯車
25 カム歯車
42 第一の歯車
44 第二の歯車
45 ロックレバー
47 ロック歯車
50 負荷付与手段
60 扇形レバー
80 ケース
841 第一の位置規制突起
842 第二の位置規制突起
DESCRIPTION OF SYMBOLS 1 Drain valve drive device 10 Synchronous motor 21 2nd rotor gear 41 1st rotor gear 411 Reverse rotation prevention contact part 43 Reverse rotation prevention member 22 Input side gear 23 Output side gear 231 Planetary gear 24 Compound gear 25 Cam gear 42 First Gear 44 second gear 45 lock lever 47 lock gear 50 load applying means 60 fan lever 80 case 841 first position restricting protrusion 842 second position restricting protrusion

Claims (8)

  1.  同期モータと、
     前記同期モータのロータから歯車列を介して連結される第一の歯車と、
     前記第一の歯車を回転可能に支持する支持軸が立設された支持部と、
     前記第一の歯車と前記支持部との間で前記支持軸に回動可能に支持され、前記第一の歯車の回転に連れ回って回動する逆転防止部材と、を備え、
     前記支持部には、前記逆転防止部材側に突出する一又は複数の位置規制突起が形成され、
     前記位置規制突起は、前記逆転防止部材が誤った向きに配置されたとき及び表裏逆に配置されたときに、前記逆転防止部材と軸方向に接触する位置に形成されていることを特徴とする排水弁駆動装置。
    A synchronous motor;
    A first gear coupled via a gear train from the rotor of the synchronous motor;
    A support portion provided with a support shaft that rotatably supports the first gear;
    A reverse rotation preventing member that is rotatably supported by the support shaft between the first gear and the support portion, and that rotates with the rotation of the first gear;
    The support portion is formed with one or a plurality of position restricting protrusions protruding toward the reverse rotation preventing member side,
    The position restricting protrusion is formed at a position where it comes into contact with the reverse rotation preventing member in the axial direction when the reverse rotation preventing member is disposed in an incorrect direction and when the reverse rotation preventing member is disposed reversely. Drain valve drive device.
  2.  前記支持軸の根元側のケース半体である下ケースと、前記支持軸の先端側のケース半体である上ケースと、からなるケースをさらに備え、
     前記第一の歯車の前記上ケース側端部から前記上ケースまでのクリアランスは、前記逆転防止部材が前記位置規制突起と軸方向に接触することにより、前記第一の歯車が前記上ケース側へ接近する変位量よりも小さいことを特徴とする請求項1に記載の排水弁駆動装置。
    A lower case which is a case half on the base side of the support shaft, and an upper case which is a case half on the tip side of the support shaft,
    The clearance from the upper case side end of the first gear to the upper case is such that the reverse rotation preventing member contacts the position restricting projection in the axial direction so that the first gear moves toward the upper case. The drain valve driving device according to claim 1, wherein the drain valve driving device is smaller than an approaching displacement amount.
  3.  前記同期モータのピニオンと前記第一の歯車とは直接噛合されることを特徴とする請求項2に記載の排水弁駆動装置。 The drain valve driving device according to claim 2, wherein the pinion of the synchronous motor and the first gear are directly meshed with each other.
  4.  はす歯部を有し、軸方向に移動可能な歯車である第二の歯車をさらに備え、
     前記第一の歯車は、前記第二の歯車のはす歯部と噛合するはす歯部を有し、
     前記第一の歯車のはす歯部は、前記第二の歯車のはす歯部の軸方向の移動域の全長に渡って形成されていることを特徴とする請求項2又は請求項3に記載の排水弁駆動装置。
    A second gear which is a gear having a helical tooth portion and movable in the axial direction;
    The first gear has a helical tooth portion that meshes with a helical tooth portion of the second gear,
    The helical gear portion of the first gear is formed over the entire length of the axial movement region of the helical gear portion of the second gear. The drain valve driving device described.
  5.  前記上ケース及び前記下ケースは、一方が備える弾性部材である係合爪を他方が備える係止部に係合するフック部により固定されることを特徴とする請求項2から請求項4のいずれか一項に記載の排水弁駆動装置。 The said upper case and the said lower case are fixed by the hook part which engages with the latching | locking part with which the other is provided with the engaging claw which is an elastic member with which one is provided. The drain valve drive device according to claim 1.
  6.  前記支持部は、前記同期モータの磁性体からなるステータコアであって、
     前記位置規制突起のうち少なくとも一つは、前記ステータコアに形成された貫通孔から前記逆転防止部材側に突出した別部材であることを特徴とする請求項1から請求項5のいずれか一項に記載の排水弁駆動装置。
    The support portion is a stator core made of a magnetic body of the synchronous motor,
    The at least one of the position restricting protrusions is a separate member protruding toward the reverse rotation preventing member from a through hole formed in the stator core. The drain valve driving device described.
  7.  前記同期モータはインナーロータ型モータであり、
     前記同期モータのピニオンと前記第一の歯車とは直接噛合されることを特徴とする請求項6に記載の排水弁駆動装置。
    The synchronous motor is an inner rotor type motor,
    The drain valve driving device according to claim 6, wherein the pinion of the synchronous motor and the first gear are directly meshed with each other.
  8.  前記逆転防止部材の前記第一の歯車との当接面には、前記支持軸に対して同心円状の溝部が形成され、
     前記逆転防止部材の前記支持部との当接面には、前記支持部側に突出した前記支持軸に対して同心円状のリブが形成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の排水弁駆動装置。
    On the contact surface of the reverse rotation preventing member with the first gear, a concentric groove is formed with respect to the support shaft,
    The concentric rib with respect to the said support shaft protruded in the said support part side is formed in the contact surface with the said support part of the said reverse rotation prevention member, The Claim 1-7 characterized by the above-mentioned. The drain valve driving device according to any one of the above.
PCT/JP2015/056131 2014-03-04 2015-03-03 Drain valve driving device WO2015133444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014041327 2014-03-04
JP2014-041327 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133444A1 true WO2015133444A1 (en) 2015-09-11

Family

ID=54055250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056131 WO2015133444A1 (en) 2014-03-04 2015-03-03 Drain valve driving device

Country Status (1)

Country Link
WO (1) WO2015133444A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150181A1 (en) * 2016-03-04 2017-09-08 日本電産サンキョー株式会社 Geared motor and drain valve drive device
WO2017150182A1 (en) * 2016-03-04 2017-09-08 日本電産サンキョー株式会社 Geared motor and drain valve drive device
CN111457056A (en) * 2019-01-22 2020-07-28 日本电产三协株式会社 Cold air damper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662546A (en) * 1992-08-06 1994-03-04 Nakagawa Electric Ind Co Ltd Mechanism for restricting rotational direction of small motor
EP2387133A1 (en) * 2010-05-13 2011-11-16 Aktiebolaget SKF A control unit for the starting of a synchronous electric motor
JP2013031240A (en) * 2011-07-27 2013-02-07 Nidec Sankyo Corp Motor unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662546A (en) * 1992-08-06 1994-03-04 Nakagawa Electric Ind Co Ltd Mechanism for restricting rotational direction of small motor
EP2387133A1 (en) * 2010-05-13 2011-11-16 Aktiebolaget SKF A control unit for the starting of a synchronous electric motor
JP2013031240A (en) * 2011-07-27 2013-02-07 Nidec Sankyo Corp Motor unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150181A1 (en) * 2016-03-04 2017-09-08 日本電産サンキョー株式会社 Geared motor and drain valve drive device
WO2017150182A1 (en) * 2016-03-04 2017-09-08 日本電産サンキョー株式会社 Geared motor and drain valve drive device
CN111457056A (en) * 2019-01-22 2020-07-28 日本电产三协株式会社 Cold air damper

Similar Documents

Publication Publication Date Title
JP5751971B2 (en) Motor unit
JP6025704B2 (en) Motor actuator
JP6382599B2 (en) Door opener for refrigerator
KR100978495B1 (en) one way transmission for motor
WO2015133444A1 (en) Drain valve driving device
JP5514139B2 (en) Electric tool
JP2013233000A (en) Motor actuator
JP2015175404A (en) Drain valve driving device
CN102310397A (en) Electric tool
JP6636780B2 (en) Opening / closing member driving device and opening / closing member driving device unit
JP2009041679A (en) Actuator, range change-over device for automatic transmission, and parking device
WO2017150182A1 (en) Geared motor and drain valve drive device
KR101673074B1 (en) Motor unit
JP2015177558A (en) motor unit
WO2017086152A1 (en) Automatic closing device and automatic closing device unit
JP2015195637A (en) Drain valve driving device
KR20100109127A (en) One motor type coaxial damper for bidet
JP5751970B2 (en) Motor actuator
JP2016005411A (en) Actuator
JP2013232997A (en) Motor actuator
JP5764158B2 (en) transmission
JP4603826B2 (en) Motor driven drain valve
JP2013232999A (en) Motor actuator
JP2017155901A (en) Clutch mechanism and drain valve driving device
JP3279871B2 (en) Motor drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP