WO2015133408A1 - Nanobeacon and anti-counterfeit technology using same - Google Patents

Nanobeacon and anti-counterfeit technology using same Download PDF

Info

Publication number
WO2015133408A1
WO2015133408A1 PCT/JP2015/055953 JP2015055953W WO2015133408A1 WO 2015133408 A1 WO2015133408 A1 WO 2015133408A1 JP 2015055953 W JP2015055953 W JP 2015055953W WO 2015133408 A1 WO2015133408 A1 WO 2015133408A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
nano
beacon
authentication
reporter molecule
Prior art date
Application number
PCT/JP2015/055953
Other languages
French (fr)
Japanese (ja)
Inventor
福岡隆夫
Original Assignee
福岡隆夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福岡隆夫 filed Critical 福岡隆夫
Priority to JP2016506466A priority Critical patent/JPWO2015133408A1/en
Publication of WO2015133408A1 publication Critical patent/WO2015133408A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a technique for preventing forgery.
  • Non-Patent Document 1 A review by Bansal et al., “Anti-Counterfeit TECH: A Pharmaceutical Industrial Perspective” (Non-Patent Document 1) details the necessity of anti-counterfeiting technology, its characteristics, and desirable technical requirements.
  • the requirements for desirable anti-counterfeiting technologies are: 1) high security that makes copying impossible, 2) availability for various products, 3) speed of authentication, 4) guaranteed Reference materials, 5) Difficult to remove or reapply, 6) Easy confirmation, 7) Automatic certification, 8) Consumer use, 9) Compliance with the law .
  • Patent Document 1 Patent Document 2
  • Non-Patent Document 2 and Non-Patent Document 3 disclose that in surface-enhanced Raman scattering, the greater the intensity of localized plasmon resonance at the laser excitation wavelength and the Raman scattering wavelength of the Raman-active molecule, the greater the observed surface-enhanced Raman scattering. It is described that the strength of is increased.
  • Patent Document 1 and Patent Document 2 disclose a technique for stopping agglomeration at an appropriate timing in the agglomeration process of noble metal nanoparticles, stabilizing the state, and obtaining a well-controlled noble metal nanostructure.
  • Patent Document 3 Patent Literature 4, Patent Literature 5, Non-Patent Literature 4, Non-Patent Literature 5, Non-Patent Literature 6, Non-Patent Literature 7
  • Patent Document 4 well-controlled noble metal nanostructures
  • Non-Patent Document 5 and a suitable reporter molecule Patent Document 4
  • Patent 4772273 “Method for Analyzing Substances” U.S. Patent 7198957 Method for Analyzing Substance US 2011/0228264 A1 SERS NANOTAG WITH IMPROVED BUOYANCY IN LIQUID US 2012/0156491 A1 SERS REPORTER MOLECULES AND METHODS US 2013/635559 A1 WAVELENGTH SELECTIVE SERS NANOTAGS
  • Non-Patent Document 1 a technique that sufficiently satisfies the requirements described in Non-Patent Document 1 has not yet been achieved.
  • encryption and stealth are essential for advanced security that makes duplication impossible, but it has not yet been realized.
  • nano beacons that emit strong surface-enhanced Raman scattering even in very small amounts, the materials and forms of the noble metal nanostructures that make up the nano beacons, the types of reporter molecules, the laser wavelengths used for authentication, and the measuring instruments used for authentication
  • An optical signal that depends on a combination of characteristics of optical components is used as a physical and chemical encryption.
  • FIG. 1 is an example spectrum of authenticating a pharmaceutical tablet with and without nano-beacons.
  • FIG. 2 is a spectrum of an example of authenticating a pharmaceutical tablet with or without nanobeacon after storing the nanobeacon spotted pharmaceutical tablet for 3 weeks at room temperature.
  • Example 3 is an example spectrum of authenticating a pharmaceutical tablet with or without nanobeacon after storing the nanobeacon spotted pharmaceutical tablet for 3 weeks at room temperature.
  • a nano beacon composed of a noble metal nanoparticle aggregate whose structure is controlled, a reporter molecule, and a stabilizer is synthesized.
  • gold nanoparticles are described as noble metal nanoparticles, but are not limited to gold nanoparticles.
  • the optimal particle size and number concentration of gold nanoparticles are experimentally determined by the fact that new local plasmon resonance absorption appears in the near-infrared region when gold nanoparticles are aggregated by appropriate means. That's fine. It is particularly desirable that this localized plasmon resonance wavelength is longer than 600 nm. Therefore, there is no problem even if the particle size distribution is polydisperse. There is no problem even if the particle number concentration is not accurately known.
  • known diffusion-controlled aggregation can be raised. It may also be an aggregation caused by a reporter molecule.
  • the aggregation is stopped at a suitable timing of the aggregation process of the noble metal nanoparticles disclosed in Patent Document 1 and Patent Document 2, and the state is stabilized and well controlled.
  • Technology to obtain a noble metal nanostructure can be used. However, there are the following two points as requirements not described in Patent Document 1 and Patent Document 2. It is particularly desirable that at least three or more gold nanoparticles are bound in a chain. It is particularly desirable to cause aggregation in the presence of reporter molecules. Further, aggregates of noble metal nanoparticles having different materials and different aggregation states can be used in combination.
  • the noble metal nanoparticle aggregates do not necessarily have to be joined linearly, and may have branches or bends. This is because, by measuring the fractal dimension D of the aggregate, the apparent aspect ratio of the aggregate of N gold nanoparticles connected is 2 / (D-1) of N with respect to N in the case of a linear shape. This is because the local plasmon resonance corresponding to this aspect ratio occurs approximately.
  • the reporter molecule is not particularly limited as long as it is a Raman-active molecule that is easily adsorbed on gold nanoparticles.
  • Such molecules are well known heterocyclic compounds such as pyridine, 4,4'-bipyridine, triazole, rhodamine 6G.
  • Patent Document 4 discloses an example of a reporter molecule.
  • stable isotopes of these molecules can be used singly or as a mixture. Since a spectrum different from a single type is shown depending on the mixing ratio, the encryption method is suitable for the purpose of the present invention.
  • reporter molecules may be used.
  • a gold nanostructure having a strong localized plasmon resonance at 785 nm and a gold nanostructure having a strong localized plasmon resonance at 1064 nm are prepared by a method according to the means disclosed in Patent Document 1, and response to 785 nm is made. If gold nanostructure that adsorbs 4,4′-bipyridine and gold nanostructure that responds to a 1064 nm laser adsorbs rhodamine 6G, it is correct unless a predetermined laser wavelength is selected.
  • the encryption method is such that an optical signal cannot be obtained.
  • the amount of the reporter molecule is not particularly limited as long as it is 10 to 1 million molecules per gold nanoparticle based on the known scientific fact that single molecule level measurement is possible.
  • hydrophilic polymers, organic acids, saccharides, and dispersible fine particles disclosed in Patent Document 1 can be used as the stabilizer.
  • Low molecular weight water-soluble organic acids such as citric acid and tartaric acid, sugars having a low molecular weight such as sucrose and trehalose, and dispersible fine particles can be used alone or in combination.
  • it is effective to add saccharides after maintaining and stabilizing the aggregated state with dispersible fine particles.
  • the very small amount of nano-beacon obtained in this way is spotted or applied to the product. As an example, it is sufficient to apply 200 nL containing about 10 ng of gold nanoparticles or 500 nL containing about 30 ng.
  • the method of spotting or coating is not limited, it may be dropped and dried, impregnated on the surface, or injected near the surface with a needle.
  • Raman scattered light sensitized with a measuring instrument is observed at a predetermined laser wavelength. Therefore, a Raman spectrometer can be used as the measuring instrument.
  • the spectrum of the sensitized Raman scattered light depends on the material and form of the noble metal nanostructure, the type of reporter molecule, the laser wavelength used for authentication, and the characteristics of the optical components of the measuring instrument used for authentication. Therefore, by combining these factors, physical and chemical encryption that is difficult to copy by forgery can be performed, so authentication is performed by comparing with a pre-recorded standard spectrum.

Abstract

[Problem] To provide a "stealth" nanobeacon enabling encryption essential for high security that makes reproduction impossible. [Solution] Proposed is an anti-counterfeit technology with which to observe encrypted optical signals from a minute, imperceptible noble metal nanostructure.

Description

ナノビーコンおよびそれを用いた偽造防止技術Nano-beacon and anti-counterfeiting technology using it
 医薬品や食品をはじめとする多様な商品がネット販売でグローバルに流通する社会環境のなかで、偽造品の増加による商品の正当性や安全性の維持が困難になっている。本発明は、偽造を防止するための技術に関する。 In a social environment where various products such as pharmaceuticals and foods are distributed globally through online sales, it is difficult to maintain the legitimacy and safety of products due to the increase in counterfeit products. The present invention relates to a technique for preventing forgery.
 特に偽造医薬品は生命に係わる重要な問題であるので、偽造医薬品を代表例として説明する。D.Bansalらの総説「Anti-Counterfeit Technologie: A Pharmaceutical Industry Perspective」( 非特許文献1)には、偽造防止技術の必要性、その特性、望ましい技術の要件について詳述されている。 In particular, counterfeit medicine is an important issue related to life, so counterfeit medicine will be explained as a representative example. D. A review by Bansal et al., “Anti-Counterfeit Technologie: A Pharmaceutical Industrial Perspective” (Non-Patent Document 1) details the necessity of anti-counterfeiting technology, its characteristics, and desirable technical requirements.
 この非特許文献1によれば、望ましい偽造防止技術の要件には、1)複製を不可能とさせる高度はセキュリティ、2)多様な製品に利用できること、3)認証のスピード、4)保証された標準物質、5)除去あるいは再適用が困難なこと、6)簡便に確認できること、7)認証が自動でできること、8)消費者が活用できること、9)法律を遵守していること、があげられる。このような要件を満たす偽造防止技術の開発が急がれている。 According to this non-patent document 1, the requirements for desirable anti-counterfeiting technologies are: 1) high security that makes copying impossible, 2) availability for various products, 3) speed of authentication, 4) guaranteed Reference materials, 5) Difficult to remove or reapply, 6) Easy confirmation, 7) Automatic certification, 8) Consumer use, 9) Compliance with the law . There is an urgent need to develop anti-counterfeiting technology that meets these requirements.
 近年のナノテクノロジーの発達により、極微量の貴金属ナノ構造体がナノビーコンとして有用であると考えられている。これらの技術では、良く制御された金ナノ粒子の集合体あるいは銀ナノ粒子の集合体には集合体表面近傍のラマン活性分子のラマン散乱強度を著しく増強させる表面増強ラマン散乱などの表面増強効果を利用している(特許文献1、特許文献2)。 Due to the recent development of nanotechnology, it is considered that a very small amount of noble metal nanostructures are useful as nanobeacons. With these techniques, well-controlled gold nanoparticle aggregates or silver nanoparticle aggregates have surface enhancement effects such as surface-enhanced Raman scattering that significantly enhance the Raman scattering intensity of Raman-active molecules near the aggregate surface. (Patent Document 1, Patent Document 2).
 貴金属ナノ構造体における局在プラズモン共鳴の状態が最適となるように、貴金属ナノ構造体が良く制御されていることが重要である。 非特許文献2および非特許文献3には、表面増強ラマン散乱において、レーザー励起波長およびラマン活性分子のラマン散乱波長における局在プラズモン共鳴の強さが大きければ大きいほど、観察される表面増強ラマン散乱の強度が大きくなることが記述されている。 It is important that the noble metal nanostructure is well controlled so that the localized plasmon resonance state in the noble metal nanostructure is optimized. Non-Patent Document 2 and Non-Patent Document 3 disclose that in surface-enhanced Raman scattering, the greater the intensity of localized plasmon resonance at the laser excitation wavelength and the Raman scattering wavelength of the Raman-active molecule, the greater the observed surface-enhanced Raman scattering. It is described that the strength of is increased.
 特許文献1および特許文献2においては、貴金属ナノ粒子の凝集過程の適したタイミングで凝集を停止させその状態を安定化し、良く制御された貴金属ナノ構造を得る技術が開示されている。 Patent Document 1 and Patent Document 2 disclose a technique for stopping agglomeration at an appropriate timing in the agglomeration process of noble metal nanoparticles, stabilizing the state, and obtaining a well-controlled noble metal nanostructure.
 貴金属ナノ粒子をラマン活性分子であるリポーター分子とともに周辺をシリカ系物質で包んだマイクロカプセルにして、そのリポーター分子の表面増強ラマン散乱を利用するナノタグがNatanらにより考案されている(特許文献3、特許文献4、特許文献5、非特許文献4、非特許文献5、非特許文献6、非特許文献7)。一連のナノタグの研究開発において、当初は単一の貴金属ナノ粒子を用いていたが、最近の研究では特許文献1および特許文献2と同じように、良く制御された貴金属ナノ構造( 非特許文献4、非特許文献5)および適したリポーター分子(特許文献4)についても言及されるようになった。 Natan et al. Have devised a nano tag that makes a noble metal nanoparticle a microcapsule that is surrounded by a silica-based substance together with a reporter molecule that is a Raman active molecule, and uses surface enhanced Raman scattering of the reporter molecule (Patent Document 3, (Patent Literature 4, Patent Literature 5, Non-Patent Literature 4, Non-Patent Literature 5, Non-Patent Literature 6, Non-Patent Literature 7). In the research and development of a series of nanotags, a single noble metal nanoparticle was initially used. However, in recent research, as well as Patent Document 1 and Patent Document 2, well-controlled noble metal nanostructures (Non-Patent Document 4) are used. Non-Patent Document 5) and a suitable reporter molecule (Patent Document 4) have come to be mentioned.
特許4772273 「物質の分析方法」Patent 4772273 “Method for Analyzing Substances” U.S. Patent 7198957 Method for Analyzing SubstanceU.S. Patent 7198957 Method for Analyzing Substance US 2011/0228264 A1 SERS NANOTAG WITH IMPROVED BUOYANCY IN LIQUIDUS 2011/0228264 A1 SERS NANOTAG WITH IMPROVED BUOYANCY IN LIQUID US 2012/0156491 A1 SERS REPORTER MOLECULES AND METHODSUS 2012/0156491 A1 SERS REPORTER MOLECULES AND METHODS US 2013/635559 A1 WAVELENGTH SELECTIVE SERS NANOTAGSUS 2013/635559 A1 WAVELENGTH SELECTIVE SERS NANOTAGS
 これらの先行技術は、表面増強ラマン散乱を発する極微量の貴金属ナノ構造体とラマン活性分子(リポーター分子)からなるナノビーコンが、偽造防止技術に応用できる可能性を予見させるものである。しかしながら、非特許文献1に記述された要件を十分に満たす技術はまだ達成されていない。特に、複製を不可能とさせる高度なセキュリティには暗号化とステルス性が不可欠だが、まだ実現されていない。 These prior arts predict the possibility that nanobeacons consisting of a trace amount of noble metal nanostructures that emit surface-enhanced Raman scattering and Raman-active molecules (reporter molecules) can be applied to anti-counterfeiting technology. However, a technique that sufficiently satisfies the requirements described in Non-Patent Document 1 has not yet been achieved. In particular, encryption and stealth are essential for advanced security that makes duplication impossible, but it has not yet been realized.
 微小で視認困難な貴金属ナノ構造体からの暗号化された光信号を観察することによる偽造防止技術を提案する。 We propose anti-counterfeiting technology by observing encrypted optical signals from noble metal nanostructures that are very difficult to see.
 極めて微少量であっても強い表面増強ラマン散乱を発するナノビーコンを用い、ナノビーコンを構成する貴金属ナノ構造体の材質および形態、リポーター分子の種類、認証に用いるレーザー波長、認証に用いる測定器の光学部品の特性の組み合わせに依存した光信号を、物理的、化学的な暗号として用いる。 Using nano beacons that emit strong surface-enhanced Raman scattering even in very small amounts, the materials and forms of the noble metal nanostructures that make up the nano beacons, the types of reporter molecules, the laser wavelengths used for authentication, and the measuring instruments used for authentication An optical signal that depends on a combination of characteristics of optical components is used as a physical and chemical encryption.
 極めて微少量であるので第三者に気づかれず、貴金属を原料としながら低コストであり、認証には数秒もかからず、物理的、化学的に多様な暗号なので、偽造複製が著しく困難な偽造防止技術が実現する。 Because it is extremely small amount, it is not noticed by third parties, it is low cost while using precious metal as a raw material, authentication does not take several seconds, and it is a physically and chemically diverse code, so counterfeiting is extremely difficult to forge Prevention technology is realized.
図1はナノビーコンのあるなしによって医薬品錠剤を認証した実例のスペクトルである。(実施例1)FIG. 1 is an example spectrum of authenticating a pharmaceutical tablet with and without nano-beacons. (Example 1) 図2はナノビーコン点着後の医薬品錠剤を室温で3週間保管したのちに ナノビーコンのあるなしによって医薬品錠剤を認証した実例のスペクトルである。(実施例3)FIG. 2 is a spectrum of an example of authenticating a pharmaceutical tablet with or without nanobeacon after storing the nanobeacon spotted pharmaceutical tablet for 3 weeks at room temperature. (Example 3)
 まず、構造制御された貴金属ナノ粒子集合体とリポーター分子と安定剤からなる、ナノビーコンを合成する。説明の簡略化のため、貴金属ナノ粒子として金ナノ粒子について記すが金ナノ粒子に限定されるものではない。 First, a nano beacon composed of a noble metal nanoparticle aggregate whose structure is controlled, a reporter molecule, and a stabilizer is synthesized. For simplicity of description, gold nanoparticles are described as noble metal nanoparticles, but are not limited to gold nanoparticles.
 最適な金ナノ粒子の粒子径と個数濃度は、金ナノ粒子を適切な手段で凝集させたときに、近赤外領域に新たな局在プラズモン共鳴による吸収が現れることなどで実験的に決定すればよい。この局在プラズモン共鳴波長が600 nmよりも長波長にあることが特に望ましい。したがって粒子径の分布が多分散であっても問題はない。また粒子個数濃度が正確にわからなくても問題はない。 The optimal particle size and number concentration of gold nanoparticles are experimentally determined by the fact that new local plasmon resonance absorption appears in the near-infrared region when gold nanoparticles are aggregated by appropriate means. That's fine. It is particularly desirable that this localized plasmon resonance wavelength is longer than 600 nm. Therefore, there is no problem even if the particle size distribution is polydisperse. There is no problem even if the particle number concentration is not accurately known.
 金ナノ粒子を凝集させる適切な手段としては、公知の拡散律速凝集が上げられる。またリポーター分子によって起こされる凝集であってもよい。 As a suitable means for aggregating the gold nanoparticles, known diffusion-controlled aggregation can be raised. It may also be an aggregation caused by a reporter molecule.
 構造制御された貴金属ナノ粒子集合体を得る手段としては、特許文献1および特許文献2に開示の、貴金属ナノ粒子の凝集過程の適したタイミングで凝集を停止させその状態を安定化し、良く制御された貴金属ナノ構造を得る技術が利用できる。ただし、特許文献1および特許文献2に未記載の要件としては次の二点がある。少なくとも3個以上の金ナノ粒子が鎖状に結合していることが特に望ましい。リポーター分子の存在下で凝集を行わせしめることが特に望ましい。また、異なる材質、異なる凝集状態の貴金属ナノ粒子集合体を同時に組み合わせて利用することができる。 As a means of obtaining a structure-controlled noble metal nanoparticle aggregate, the aggregation is stopped at a suitable timing of the aggregation process of the noble metal nanoparticles disclosed in Patent Document 1 and Patent Document 2, and the state is stabilized and well controlled. Technology to obtain a noble metal nanostructure can be used. However, there are the following two points as requirements not described in Patent Document 1 and Patent Document 2. It is particularly desirable that at least three or more gold nanoparticles are bound in a chain. It is particularly desirable to cause aggregation in the presence of reporter molecules. Further, aggregates of noble metal nanoparticles having different materials and different aggregation states can be used in combination.
 貴金属ナノ粒子集合体は必ずしも直線状に結合している必要はなく、分岐や曲がりがあっても良い。なぜならば集合体のフラクタル次元Dを測定することにより、N個の金ナノ粒子が連結した集合体の見かけのアスペクト比は、直線状の場合のN に対してN の2/(D-1)乗と補正できるのであり、近似的にはこのアスペクト比に応じた局在プラズモン共鳴が生じるからである。 The noble metal nanoparticle aggregates do not necessarily have to be joined linearly, and may have branches or bends. This is because, by measuring the fractal dimension D of the aggregate, the apparent aspect ratio of the aggregate of N gold nanoparticles connected is 2 / (D-1) of N with respect to N in the case of a linear shape. This is because the local plasmon resonance corresponding to this aspect ratio occurs approximately.
 リポーター分子はラマン活性で金ナノ粒子に吸着しやすい分子であれば特に限定されない。このような分子はピリジン、4,4‘ービピリジン、トリアゾール、ローダミン6Gなどの複素環化合物が良く知られている。特許文献4にリポーター分子の例が開示されている。またこれら分子の安定同位体を単一であるいは混合して用いることができる。混合比によって単一種類と違ったスペクトルを示すので、本発明の目的にかなった暗号方式になる。 The reporter molecule is not particularly limited as long as it is a Raman-active molecule that is easily adsorbed on gold nanoparticles. Such molecules are well known heterocyclic compounds such as pyridine, 4,4'-bipyridine, triazole, rhodamine 6G. Patent Document 4 discloses an example of a reporter molecule. In addition, stable isotopes of these molecules can be used singly or as a mixture. Since a spectrum different from a single type is shown depending on the mixing ratio, the encryption method is suitable for the purpose of the present invention.
 リポーター分子は複数種用いても良い。例えば、785nmに強い局在プラズモン共鳴をもつ金ナノ構造体と1064nmに強い局在プラズモン共鳴をもつ金ナノ構造体を特許文献1に開示の手段に準じた方法で用意しておき、785nmに応答する金ナノ構造体には 4,4‘ービピリジンを吸着させておき、1064nmのレーザーに応答する金ナノ構造体にはローダミン6Gを吸着させておけば、定められたレーザー波長を選択しなければ正しい光信号が得られないという暗号方式になる。 Multiple types of reporter molecules may be used. For example, a gold nanostructure having a strong localized plasmon resonance at 785 nm and a gold nanostructure having a strong localized plasmon resonance at 1064 nm are prepared by a method according to the means disclosed in Patent Document 1, and response to 785 nm is made. If gold nanostructure that adsorbs 4,4′-bipyridine and gold nanostructure that responds to a 1064 nm laser adsorbs rhodamine 6G, it is correct unless a predetermined laser wavelength is selected. The encryption method is such that an optical signal cannot be obtained.
 リポーター分子の量は、一分子レベル計測が可能である公知の科学的事実を踏まえて金ナノ粒子1個に対して10分子から100万分子あれば十分であり特に限定されない。 The amount of the reporter molecule is not particularly limited as long as it is 10 to 1 million molecules per gold nanoparticle based on the known scientific fact that single molecule level measurement is possible.
 安定剤には、親水性ポリマー、有機酸、糖類、特許文献1に開示の分散性微粒子が利用できる。クエン酸や酒石酸などの低分子水溶性有機酸、ショ糖やトレハロースなどの分子量の大きくない糖類、および分散性微粒子は単独あるいは複数で利用できる。特に分散性微粒子で凝集状態を保持安定化したのちに糖類を添加するのが効果的である。 As the stabilizer, hydrophilic polymers, organic acids, saccharides, and dispersible fine particles disclosed in Patent Document 1 can be used. Low molecular weight water-soluble organic acids such as citric acid and tartaric acid, sugars having a low molecular weight such as sucrose and trehalose, and dispersible fine particles can be used alone or in combination. In particular, it is effective to add saccharides after maintaining and stabilizing the aggregated state with dispersible fine particles.
 こうして得られたナノビーコンの極微量を製品に点着あるいは塗布する。一例として金ナノ粒子の約10ngを含む200nLあるいは約30ngを含む500nLを塗布すれば十分である。点着または塗布の方法は限定されないが、滴下して乾燥する、表面に含浸させる、針で表面近傍に注入するなどによっても良い。 The very small amount of nano-beacon obtained in this way is spotted or applied to the product. As an example, it is sufficient to apply 200 nL containing about 10 ng of gold nanoparticles or 500 nL containing about 30 ng. Although the method of spotting or coating is not limited, it may be dropped and dried, impregnated on the surface, or injected near the surface with a needle.
 認証には、あらかじめ定められたレーザー波長で、測定器を用いて増感されたラマン散乱光を観察する。ゆえに測定器にはラマン分光器が利用できる。このとき、増感されたラマン散乱光のスペクトルは、貴金属ナノ構造体の材質および形態、リポーター分子の種類、認証に用いるレーザー波長、認証に用いる測定器の光学部品の特性に依存する。
 したがって、これらの要因を組み合わせることで、偽造による複製が困難な物理的、化学的な暗号化ができるので、あらかじめ記録された標準スペクトルと比較することにより認証を行う。
For authentication, Raman scattered light sensitized with a measuring instrument is observed at a predetermined laser wavelength. Therefore, a Raman spectrometer can be used as the measuring instrument. At this time, the spectrum of the sensitized Raman scattered light depends on the material and form of the noble metal nanostructure, the type of reporter molecule, the laser wavelength used for authentication, and the characteristics of the optical components of the measuring instrument used for authentication.
Therefore, by combining these factors, physical and chemical encryption that is difficult to copy by forgery can be performed, so authentication is performed by comparing with a pre-recorded standard spectrum.
 田中貴金属工業製の金ナノ粒子(粒子径40nm)の44μL、リポーター分子として1μMの4,4‘ービピリジン水溶液3μL、1M塩化ナトリウム水溶液3μLを混合し、安定化剤としてスメクタイトを特許文献1の手法に準じて添加して凝集を停止させた。その200nL、500nLをムコダイン錠剤に滴下して乾燥させた。785nm(100mW)のレーザーを備えたラムダビジョン製RAM100Sで点着部位周辺からのラマン散乱スペクトルを100ms測定した。対比として、錠剤そのもの(control)およびリポーター分子を加えない金ナノ粒子凝集(free)を滴下したものも測定した。図1から本ナノビーコンによる識別認証が可能であることがわかった。また認証に要する時間は一秒かからなかった。 44 μL of Tanaka Kikinzoku Kogyo gold nanoparticles (particle size 40 nm), 1 μM 4,4′-bipyridine aqueous solution 3 μL as a reporter molecule, 3 μL 1 M sodium chloride aqueous solution are mixed, and smectite is used as a stabilizer in the method of Patent Document 1. Addition was similarly made to stop aggregation. 200 nL and 500 nL were dropped onto mucodyne tablets and dried. A Raman scattering spectrum from the periphery of the spotted site was measured for 100 ms with a Lambda Vision RAM100S equipped with a 785 nm (100 mW) laser. In contrast, the tablet itself (control) and the one in which gold nanoparticle aggregation (free) without adding a reporter molecule was dropped were also measured. From FIG. 1, it was found that identification and authentication by this nano beacon is possible. Also, it took less than a second to authenticate.
 実施例1のように調製し、200nL、500nL、1μLを錠剤に点着し目視での観察を行った。それぞれの金ナノ粒子の量は、約10ng,約30ng、約50ngである。白色のムコダイン錠剤は注意深く見ると500nL、1μLでは点着されていることがかろうじてわかった。200nLでは視認が難しかった。一方、着色されているフィッシャーマンズフレンドのような錠剤では500nLでも視認できなかった。本ナノビーコンのステルス性が確認できた。 Preparation as in Example 1, 200 nL, 500 nL, and 1 μL were spotted on a tablet and visually observed. The amount of each gold nanoparticle is about 10 ng, about 30 ng, and about 50 ng. The white mucodyne tablets were barely found to be spotted at 500 nL, 1 μL when viewed carefully. Visual recognition was difficult at 200 nL. On the other hand, with a colored tablet such as Fisherman's Friend, it was not visible even at 500 nL. The stealth property of this nano beacon was confirmed.
 実施例1で作成したムコダイン錠剤に滴下して乾燥させた試料を、室温で3週間保管したのちに、 785nm(10mW)のレーザーを備えたラムダビジョン製RAM200/785で点着部位周辺からのラマン散乱スペクトルを100ms測定した。図2から時間経過しても本ナノビーコンによる識別認証が可能であることがわかった。また分光器の特性が異なると同じリポーター分子でのスペクトルのパターンが異なることがわかった。 After the sample dropped and dried on the mucodyne tablet prepared in Example 1 was stored at room temperature for 3 weeks, Raman from the periphery of the spotted site was obtained using RAM200 / 785 manufactured by Lambda Vision equipped with a laser of 785 nm (10 mW). The scattering spectrum was measured for 100 ms. It was found from FIG. 2 that identification and authentication by this nano beacon is possible even after a lapse of time. It was also found that the spectrum pattern of the same reporter molecule is different when the spectroscopic characteristics are different.
 極めて微少量であるので第三者に気づかれず、貴金属を原料としながら低コストであり、認証には数秒もかからず、物理的、化学的に多様な暗号なので、偽造複製が著しく困難な偽造防止技術が実現する。 Because it is extremely small amount, it is not noticed by third parties, it is low cost while using precious metal as a raw material, authentication does not take several seconds, and it is a physically and chemically diverse code, so counterfeiting is extremely difficult to forge Prevention technology is realized.

Claims (4)

  1.  貴金属ナノ粒子集合体が、下記(a)から(e)までの工程を含む手順によって、少なくとも3個以上の貴金属ナノ粒子が鎖状に結合している貴金属ナノ粒子集合体が多数となるように構造制御された貴金属ナノ粒子集合体とリポーター分子と安定剤からなるナノビーコン、およびナノビーコンを用いる認証方法。
     (a)貴金属ナノ粒子を液相に分散させる工程。
     (b)貴金属ナノ粒子にリポーター分子を加え、塩等の凝集剤などによって貴金属ナノ粒子を集合化させる工程。
     (c)(b)の工程の後に、スメクタイトに代表される分散性微粒子を、集合化させ た貴金属ナノ粒子の周囲を覆うに十分にたる濃度となるように加える工程。
     (d)(e)の工程の後に、液相で得られた貴金属ナノ粒子集合体をナノビーコンの分散液として保管し、さらにその極微量を認証されるべき品物にナノビーコンとして点着する工程。
     (e)(d)の工程の後に、認証されるべき品物のナノビーコンを含む領域にレーザーを照射し、ナノビーコンから生じるラマン散乱光を観察することにより認証を行う工程。
    In order for the noble metal nanoparticle aggregate to have a large number of noble metal nanoparticle aggregates in which at least three or more noble metal nanoparticles are linked in a chain by the procedure including the following steps (a) to (e): A nano-beacon comprising a structure-controlled noble metal nanoparticle aggregate, a reporter molecule, and a stabilizer, and an authentication method using the nano-beacon.
    (A) A step of dispersing noble metal nanoparticles in a liquid phase.
    (B) A step of adding a reporter molecule to the noble metal nanoparticles and assembling the noble metal nanoparticles with an aggregating agent such as a salt.
    (C) A step of adding dispersible fine particles typified by smectite to a concentration sufficient to cover the aggregates of the aggregated noble metal nanoparticles after the step (b).
    (D) After the step (e), storing the noble metal nanoparticle aggregate obtained in the liquid phase as a nanobeacon dispersion and spotting the trace amount of the nanobeacon on the item to be certified .
    (E) The process of authenticating by irradiating the area | region containing the nano beacon of the goods which should be authenticated after the process of (d), and observing the Raman scattered light which arises from a nano beacon.
  2.  リポーター分子が、ピリジン、4,4‘ービピリジン、トリアゾール、ローダミン6Gなどの複素環化合物およびその安定同位体からなる群から選ばれる少なくとも一種類以上の分子である請求項1に記載のナノビーコンおよび認証方法。 The nano beacon and authentication according to claim 1, wherein the reporter molecule is at least one molecule selected from the group consisting of heterocyclic compounds such as pyridine, 4,4'-bipyridine, triazole, rhodamine 6G, and stable isotopes thereof. Method.
  3.  安定剤が、親水性ポリマー、クエン酸や酒石酸などの低分子水溶性有機酸、ショ糖やトレハロースなどの分子量の大きくない糖類、および分散性微粒子からなる群から選ばれる少なくとも一種類以上の物質であって、請求項1に記載の工程(a)から(d)までのいずれかの工程において、安定剤が存在することを特徴とする請求項1に記載のナノビーコンおよび認証方法。 The stabilizer is at least one substance selected from the group consisting of hydrophilic polymers, low-molecular water-soluble organic acids such as citric acid and tartaric acid, saccharides having a low molecular weight such as sucrose and trehalose, and dispersible fine particles. The nano beacon and authentication method according to claim 1, wherein a stabilizer is present in any of steps (a) to (d) according to claim 1.
  4.  認証方法が、 ナノビーコンを構成する貴金属ナノ構造体の材質および形態、リポーター分子の種類、認証に用いるレーザー波長、認証に用いる測定器の光学部品の特性の組み合わせに依存したラマン散乱の光信号を、物理的、化学的な暗号として用いることを特徴とする請求項1に記載のナノビーコンおよび認証方法。 The authentication method uses a Raman scattering light signal that depends on the combination of the material and form of the noble metal nanostructures that make up the nanobeacon, the type of reporter molecule, the laser wavelength used for authentication, and the characteristics of the optical components of the measuring instrument used for authentication. The nano beacon and authentication method according to claim 1, wherein the nano beacon is used as a physical and chemical encryption.
PCT/JP2015/055953 2014-03-01 2015-02-27 Nanobeacon and anti-counterfeit technology using same WO2015133408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506466A JPWO2015133408A1 (en) 2014-03-01 2015-02-27 Nano-beacon and anti-counterfeiting technology using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-400000 2014-03-01
JP2014400000 2014-03-01

Publications (1)

Publication Number Publication Date
WO2015133408A1 true WO2015133408A1 (en) 2015-09-11

Family

ID=54055215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055953 WO2015133408A1 (en) 2014-03-01 2015-02-27 Nanobeacon and anti-counterfeit technology using same

Country Status (2)

Country Link
JP (1) JPWO2015133408A1 (en)
WO (1) WO2015133408A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772273B2 (en) * 2001-03-09 2011-09-14 福岡 隆夫 Method for analyzing substances
WO2011158829A1 (en) * 2010-06-15 2011-12-22 日産化学工業株式会社 Metal particles for surface-enhanced raman scattering and molecular sensing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772273B2 (en) * 2001-03-09 2011-09-14 福岡 隆夫 Method for analyzing substances
WO2011158829A1 (en) * 2010-06-15 2011-12-22 日産化学工業株式会社 Metal particles for surface-enhanced raman scattering and molecular sensing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUOKA TAKAO-SHI: "Tanaka Kikinzoku Group Kikinzoku ni Kakawaru Kenkyu Joseikin de Gold- sho Jusho", 8 May 2013 (2013-05-08), University of Hyogo NewSUBARU Synchrotron Radiation Facility, Retrieved from the Internet <URL:http://www.lasti.u-hyogo.ac.jp/NS/news/detail.php?id=20130508115736> [retrieved on 20150713] *

Also Published As

Publication number Publication date
JPWO2015133408A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
Olesiak-Banska et al. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters
Barbosa et al. Tuning size and sensing properties in colloidal gold nanostars
Webb et al. Geometry-dependent plasmonic tunability and photothermal characteristics of multibranched gold nanoantennas
Sanz-Ortiz et al. Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells
Khlebtsov et al. Surface-enhanced Raman scattering inside Au@ Ag core/shell nanorods
Radziuk et al. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells
Bao et al. Interband absorption enhanced optical activity in discrete Au@ Ag core–shell nanocuboids: probing extended helical conformation of chemisorbed cysteine molecules
Mahtab et al. Temperature-and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”− DNA interactions
Pastoriza-Santos et al. Synthesis of silver nanoprisms in DMF
Yang et al. Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides
Yaffe et al. Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids
Khlebtsov et al. Au@ Ag core/shell cuboids and dumbbells: Optical properties and SERS response
Sánchez-Iglesias et al. Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates
Fu et al. Super-resolving the distance-dependent plasmon-enhanced fluorescence of single dye and fluorescent protein molecules
Aldeanueva‐Potel et al. Spiked Gold Beads as Substrates for Single‐Particle SERS
Amin et al. Solution-based SERS detection of weak surficial affinity molecules using cysteamine-modified Au bipyramids
Zhang et al. Surface-enhanced Raman scattering inside metal nanoshells
Saloga et al. High-speed but not magic: microwave-assisted synthesis of ultra-small silver nanoparticles
Khlebtsov et al. Tip-functionalized Au@ Ag nanorods as ultrabright surface-enhanced Raman scattering probes for bioimaging in off-resonance mode
Tian et al. Plasmonic Heterodimers with Binding Site‐Dependent Hot Spot for Surface‐Enhanced Raman Scattering
Gullace et al. Universal Fabrication of Highly Efficient Plasmonic Thin‐Films for Label‐Free SERS Detection
Semenova et al. Nanostructured silver materials for noninvasive medical diagnostics by surface-enhanced Raman spectroscopy
Juodėnas et al. Effect of Ag nanocube optomechanical modes on plasmonic surface lattice resonances
Abbas et al. Molecular linker-mediated self-assembly of gold nanoparticles: understanding and controlling the dynamics
Kurouski et al. Unraveling the near-and far-field relationship of 2D surface-enhanced Raman spectroscopy substrates using wavelength-scan surface-enhanced Raman excitation spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016506466

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15759106

Country of ref document: EP

Kind code of ref document: A1