WO2015133402A1 - Organic transistor - Google Patents

Organic transistor Download PDF

Info

Publication number
WO2015133402A1
WO2015133402A1 PCT/JP2015/055879 JP2015055879W WO2015133402A1 WO 2015133402 A1 WO2015133402 A1 WO 2015133402A1 JP 2015055879 W JP2015055879 W JP 2015055879W WO 2015133402 A1 WO2015133402 A1 WO 2015133402A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
general formula
organic transistor
ring
Prior art date
Application number
PCT/JP2015/055879
Other languages
French (fr)
Japanese (ja)
Inventor
野村 公篤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016506462A priority Critical patent/JP6302995B2/en
Publication of WO2015133402A1 publication Critical patent/WO2015133402A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Definitions

  • the present invention relates to an organic transistor. More specifically, the present invention relates to an organic transistor in which any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
  • a photoelectric conversion element such as an organic thin film solar cell or a solid-state imaging element using an organic semiconductor material as a photoelectric conversion material, or a non-luminescent property (in the present specification, “The luminous efficiency of 1 lm / W or less is obtained when current is applied to the device at room temperature and a current density of 0.1 mW / cm 2 in the atmosphere.
  • organic An organic transistor (sometimes referred to as an organic thin film transistor) (sometimes referred to as an organic thin film transistor) of an organic transistor (sometimes referred to as an organic thin film transistor) means an organic semiconductor device excluding a light emitting organic semiconductor device such as an electroluminescent element.
  • a device using an organic semiconductor material may be able to produce a large-area element at low temperature and at low cost, as compared to a device using an inorganic semiconductor material. Furthermore, since it is possible to easily change the material properties by changing the molecular structure, the variation of the material is abundant, and functions and elements which can not be achieved with the inorganic semiconductor material can be realized.
  • Organic transistors are expected as future semiconductor technology because they can form semiconductor active layers with a simple apparatus such as a coating system under the atmosphere, but on the other hand, the film forming environment is not under vacuum, and the raw material organic materials are high Since purification is not easy, it is known that impurities are mixed in the semiconductor active layer, and there is known a method of enhancing the characteristics of the organic transistor by reducing the amount of impurities.
  • Patent Document 1 when benzothienobenzothiophene is used as the semiconductor material and the impurity is the hydrazone compound of the semiconductor material main body, the semiconductor active layer is coated with the semiconductor / insulating polymer mixture and the semiconductor / insulating polymer bilayer is applied.
  • Patent Document 2 describes that it is possible to reduce impurities in an organic film such as an organic semiconductor film by performing a cleaning process using a cleaning solution after forming the organic semiconductor film.
  • Patent Document 2 does not have a detailed description about the case where it wash
  • Patent Document 3 when a liquid crystalline organic semiconductor material is used as the semiconductor material and the impurity is a thiophene material, the impurity is removed by electrophoresis to effectively utilize the electron conduction characteristic inherently possessed by the liquid crystal system. It is stated that it can be expressed.
  • Patent Document 4 describes that an organic semiconductor material made of a ⁇ -conjugated polymer and containing 100 ppm or less of impurities is used to suppress the occurrence of leakage current and obtain a good on-off ratio. . Particularly in Patent Document 4, metal ions are mentioned as the impurities.
  • Patent Document 5 describes a method of performing recrystallization using concentration during film formation. Specifically, a condensed polycyclic aromatic compound solution is disposed on a base at 60 to 230 ° C., and an organic semiconductor film exhibiting high mobility is obtained by a method of forming a condensed polycyclic aromatic compound film by concentration. It is stated that it offers.
  • Patent Document 6 by using a condensed polycyclic aromatic compound having a specific structure as the organic semiconductor material of the semiconductor active layer, semiconductor characteristics such as excellent carrier mobility and the like can be produced by a coating method or the like. It has been described to provide a practical organic transistor having excellent stability.
  • the problem to be solved by the present invention is to provide an organic transistor in which any of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved. .
  • the present invention which is a specific means for solving the above problems, has the following configuration.
  • the substrate, the gate electrode, the insulator layer, and the semiconductor active layer are organic transistors having a stacked structure, Organic semiconductor materials in which the semiconductor active layer is a fused aromatic compound, and An organic transistor comprising, as component A, 0.1 to 10 ppm of an ionic substance, water, water, and oxygen and a compound having an aromatic structure identical to that of an organic semiconductor material of 0.5 to 4,000 ppm.
  • the organic transistor according to [1] preferably contains 0.5 to 4000 ppm of a fused aromatic compound having the same aromatic structure as the organic semiconductor material as Component A.
  • the organic transistor described in [1] or [2] is preferably a condensed aromatic compound in which the organic semiconductor material contains a thiophene ring in the condensed ring.
  • the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 1;
  • General formula 1 In the general formula 1, A 1 , B 1 and C 1 each independently represent a benzene ring, an azole ring, a furan ring or a thiophene ring, and plural B 1 s may be the same or different;
  • R 11 and R 12 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 11 and A 1 , or R 12 and C 1 are each independently bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof May be;
  • n1 is an integer of 1 to 5;
  • n11 and n12 are each independently an integer of 1 to 3.
  • the organic transistor according to [4] is preferably a compound in which Component A is represented by the following General Formula 3;
  • General formula 3 In the general formula 3, A 3 , B 3 and C 3 are each independently a benzene ring, an azole ring, a furan ring or a thiophene ring, and a plurality of B 3 may be the same or different;
  • R 31 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom;
  • R 31 and A 3 may be bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof;
  • n3 is an integer of 1 to 5;
  • the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 2;
  • General formula 2 In the general formula 2, Each of A 2 and B 2 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms;
  • R 21 and R 22 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 21 and a benzene ring, or R 22 and a benzene ring may be independently bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof Good.
  • the organic transistor according to [6] is preferably a compound in which Component A is represented by the following General Formula 4;
  • General formula 4 In the general formula 4, A 4 and B 4 are each independently an aromatic hydrocarbon ring having 6 to 14 carbon atoms and an aromatic heterocycle having 4 to 12 carbon atoms;
  • R 41 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 41 and the benzene ring may be bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and a combination thereof;
  • R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group which is not identical in structure to R 22 of the organic semiconductor material.
  • the organic transistor according to any one of [2] to [7] 0.5 to 50 ppm of component A is preferably contained in the organic semiconductor layer.
  • the organic transistor according to [1] preferably contains 0.1 to 10 ppm of an ionic substance as Component A.
  • the organic transistor described in [1] preferably contains water or oxygen as Component A.
  • the organic transistor according to [10] is preferably stored in a gas atmosphere having an oxygen content of 25% or less and a relative humidity of 10% or less for at least one hour or more.
  • an organic transistor in which any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
  • FIG. 1 is a schematic view showing a cross section of the structure of an example of the organic transistor of the present invention.
  • FIG. 2 is a schematic view showing a cross section of the structure of the organic transistor manufactured as a substrate for measuring FET characteristics in the example.
  • a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit and the upper limit.
  • a hydrogen atom in the case where it is used without being particularly distinguished in the description of each general formula means that it also includes isotopes (deuterium atom etc.).
  • atoms constituting a substituent are also meant to include its isotope.
  • aromatic structure refers to a structure having aromaticity in an organic compound. In order for the molecule to have aromaticity, it is necessary to satisfy the two conditions of being a cyclic (4n + 2) ⁇ electron system (Huckel rule) and having a planar structure.
  • the organic transistor of the present invention has an insulator layer on a substrate, has a source electrode and a drain electrode separated from each other on one side of the insulator layer, has a gate electrode on the other side of the insulator layer, An organic transistor having a semiconductor active layer in contact with an electrode, a drain electrode, and an insulator layer, and a substrate, a gate electrode, an insulator layer, and a semiconductor active layer are stacked.
  • the semiconductor active layer is a condensed aromatic compound
  • An organic semiconductor material contains, as component A, 0.1 to 10 ppm of an ionic substance, water, oxygen, and a compound having an aromatic structure identical to that of an organic semiconductor material of 0.5 to 4,000 ppm. With such a configuration, in the organic transistor of the present invention, any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
  • the organic transistor of the present invention preferably has a small change in threshold voltage after repeated driving.
  • the HOMO of the organic semiconductor material is not too shallow and not too deep, the chemical stability of the organic semiconductor material (especially, air oxidation resistance, redox stability), The thermal stability of the film state, a high film density in which air and moisture do not easily enter, and a film quality with few defects in which electric charges do not easily accumulate are required. That is, the organic transistor having a small change in threshold voltage after repeated driving has high chemical stability, film density, and the like in the semiconductor active layer, and can effectively function as a transistor over a long period of time. Further, in the organic transistor of the present invention, it is preferable that variation in threshold voltage change after repeated driving be small.
  • the ⁇ conjugate plane is upright with respect to the substrate.
  • the organic EL element in order to enhance the luminous efficiency, an element having high luminous efficiency and uniform in-plane luminescence is required.
  • organic compounds having high crystallinity cause generation of light emission defects such as in-plane electric field intensity unevenness, light emission unevenness, light emission quenching, etc. Therefore, the material for organic EL devices has low crystallinity and is amorphous High material is desirable. Therefore, even if the organic compound constituting the organic EL element material is diverted as it is to the organic semiconductor material, it is not always possible to obtain good transistor characteristics immediately.
  • those useful as organic photoelectric conversion elements can not immediately be said to be useful as semiconductor materials for organic transistors, for which the required carrier mobility is extremely high.
  • the organic transistor of the present invention includes an organic semiconductor material in which a semiconductor active layer described later is a condensed aromatic compound.
  • organic semiconductor material refers to an organic material that exhibits the characteristics of a semiconductor. Similar to semiconductors made of inorganic materials, there are p-type (hole transporting) organic semiconductor materials conducting holes as carriers and n-type (electron transporting) organic semiconductor materials conducting electrons as carriers.
  • the fused aromatic compound that can be used in the present invention may be used as either a p-type organic semiconductor material or an n-type organic semiconductor material, but is more preferably used as a p-type.
  • the flowability of carriers in the organic semiconductor is represented by carrier mobility ⁇ .
  • the carrier mobility ⁇ is preferably high, and is preferably 1 ⁇ 10 ⁇ 4 cm 2 / Vs or more, more preferably 1 ⁇ 10 ⁇ 2 cm 2 / Vs or more, and 5 ⁇ 10 ⁇ 2 cm 2 It is particularly preferable to be / Vs or more, more preferably 1 ⁇ 10 ⁇ 1 cm 2 / Vs or more, and even more preferably 2 ⁇ 10 ⁇ 1 cm 2 / Vs or more.
  • the carrier mobility ⁇ can be determined by characteristics when a field effect transistor (FET) element is manufactured or a time of flight measurement (TOF) method.
  • FET field effect transistor
  • TOF time of flight measurement
  • fused aromatic structure containing a benzene ring, an azole ring, a furan ring or a thiophene ring in the fused ring is preferable.
  • the fused aromatic compound that can be used in the present invention is more preferably a fused aromatic compound in which the organic semiconductor material contains a thiophene ring in the fused ring, from the viewpoint of improving carrier mobility.
  • the fused aromatic structure of the fused aromatic compound that can be used in the present invention is a fused aromatic structure represented by A 1 , B 1 and C 1 and n 1 in general formula 1 described later, or particularly preferably condensed ring aromatic structure represented by a 2 and B 2 in the general formula 2.
  • fused aromatic structure of the fused aromatic compound which can be used as the organic semiconductor material in the present invention are shown below.
  • the fused aromatic structures which can be used in the present invention should not be construed as being limited by these specific examples.
  • each aromatic ring or each aromatic heterocycle may have an optional substituent, and a halogen atom etc. can be mentioned as this substituent. .
  • the organic semiconductor material is preferably a condensed aromatic compound represented by the following general formula 1 or a condensed aromatic compound represented by the general formula 2.
  • the fused aromatic compound represented by the general formula 1 and the fused aromatic compound represented by the general formula 2 will be described in this order.
  • a 1 , B 1 and C 1 each independently represent a benzene ring, an azole ring, a furan ring or a thiophene ring, and plural B 1 s may be the same or different;
  • R 11 and R 12 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 11 and A 1 , or R 12 and C 1 are each independently bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof May be;
  • n1 is an integer of 1 to 5;
  • n11 and n12 are each independently an integer of 1 to 3.
  • a 1 , B 1 and C 1 are preferably each independently a benzene ring, a furan ring or a thiophene ring, and more preferably a benzene ring or a thiophene ring. More preferably, at least one of A 1 , B 1 and C 1 is a thiophene ring.
  • a 1 , B 1 and C 1 may have a further substituent, and the substituent may include a halogen atom, preferably a fluorine atom.
  • a 1 , B 1 and C 1 have no further substituent.
  • R 11 and R 12 are preferably each independently an alkyl group, an aryl group or a heteroaryl group, and more preferably an alkyl group.
  • the alkyl group represented by R 11 and R 12 preferably has 1 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms.
  • the alkyl group represented by R 11 and R 12 may be linear, branched or cyclic, but is preferably linear or branched, and is linear Is more preferred.
  • the alkenyl group represented by R 11 and R 12 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms.
  • the alkynyl group represented by R 11 and R 12 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms.
  • the alkynyl group represented by R 11 and R 12 preferably further has a substituent, and as this substituent, a trialkylsilyl group (preferably a silyl group trisubstituted with an alkyl group of 1 to 3 carbon atoms) And a substituted or unsubstituted phenyl group, preferably a trialkylsilyl group.
  • the aryl group represented by R 11 and R 12 preferably has 6 to 30 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably a phenyl group.
  • the heteroaryl group represented by R 11 and R 12 preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and particularly preferably 4 carbon atoms, and is a thienyl group Is more
  • each of R 11 and A 1 , or R 12 and C 1 independently represents any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof It may be connected via a chain. That is, the bonding mode of R 11 and A 1 or the bonding mode of R 12 and C 1 is a single bond, an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and the like It is a combination.
  • the bonding mode of R 11 and A 1 or the bonding mode of R 12 and C 1 is preferably a single bond, an oxygen atom or a carbonyl group, and more preferably a single bond.
  • n1 is preferably 1 to 4, and more preferably 2 to 4.
  • n11 and n12 are preferably each independently 1 or 2, and more preferably 1.
  • the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 2.
  • General formula 2 In the general formula 2, Each of A 2 and B 2 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms; R 21 and R 22 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group; R 21 and a benzene ring, or R 22 and a benzene ring may be independently bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof Good.
  • a 2 and B 2 are preferably each independently an aromatic hydrocarbon ring having 6 to 14 carbon atoms, an aromatic heterocycle having 6 to 12 carbon atoms, an azole ring, a furan ring or a thiophene ring More preferably an aromatic hydrocarbon ring having 6 to 14 carbon atoms, an aromatic heterocycle having 6 to 12 carbon atoms, a furan ring or a thiophene ring, and an aromatic hydrocarbon ring having 6 to 14 carbon atoms, the carbon number
  • An aromatic heterocycle or a thiophene ring having 6 to 12 is particularly preferable, and an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 6 to 12 carbon atoms is more preferable, and the carbon number is more preferably Even more particularly preferred are 6 to 14 aromatic hydrocarbon rings.
  • aromatic hydrocarbon ring having 6 to 14 carbon atoms represented by A 2 and B 2 a benzene ring and a naphthylene ring are particularly preferable, and a naphthylene ring is more particularly preferable.
  • the aromatic heterocycle having 4 to 12 carbon atoms represented by A 2 and B 2 is preferably an aromatic heterocycle having 6 to 12 carbon atoms, an azole ring, a furan ring or a thiophene ring, and an aromatic heterocycle having 6 to 12 carbon atoms
  • the hetero ring is more preferable, the aromatic hetero ring having a carbon number of 8 to 12 is particularly preferable, the thienobenzene ring and the thienothiophene ring are more particularly preferable, and the thienobenzene ring is even more preferable.
  • a 2 and B 2 may have a further substituent, and the substituent can include a halogen atom.
  • a 2 and B 2 preferably has no further substituent
  • R 21 and R 22 are preferably each independently an alkynyl group, an alkyl group or an alkenyl group, and more preferably an alkynyl group.
  • the alkyl group represented by R 21 and R 22 preferably has 1 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 4 to 14 carbon atoms.
  • the alkyl group represented by R 21 and R 22 may be linear, branched or cyclic, but is preferably linear or branched, and is linear Is more preferred.
  • the alkenyl group represented by R 21 and R 22 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 4 to 14 carbon atoms.
  • the alkynyl group represented by R 21 and R 22 preferably has 2 to 30 carbon atoms, more preferably 2 to 18 carbon atoms, and particularly preferably 2 to 14 carbon atoms.
  • the alkynyl group represented by R 21 and R 22 preferably further has a substituent, and as this substituent, a trialkylsilyl group (preferably a silyl group substituted by an alkyl group having 1 to 3 carbon atoms) is preferable
  • a trialkylalkyl group preferably a methyl group trisubstituted with an alkyl group having 1 to 3 carbon atoms
  • substituted or unsubstituted phenyl group preferably a trialkylsilyl group.
  • the aryl group represented by R 11 and R 12 preferably has 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably a phenyl group.
  • the heteroaryl group represented by R 11 and R 12 preferably has 2 to 12 carbon atoms, more preferably 3 to 8 carbon atoms, and particularly preferably 4 carbon atoms.
  • R 21 and a benzene ring, or R 22 and a benzene ring are each independently via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof
  • the bonding mode of R 21 and a benzene ring, or the bonding mode of R 22 and a benzene ring is a single bond, an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and the like It is a combination.
  • the bonding mode of R 21 and a benzene ring or the bonding mode of R 22 and a benzene ring is more preferably a single bond.
  • fused aromatic compounds Specific examples of the fused aromatic compound which can be used as the organic semiconductor material in the present invention are shown below.
  • R X1 , A x and R X2 are the structures shown in the following table.
  • “*” represents a bonding position
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group
  • SiMe 3 represents a triethylsilyl group
  • SiEt 3 represents a triethylsilyl group .
  • the fused aromatic fused aromatic compound may have a repeating structure and may be a low molecule or a polymer.
  • the fused aromatic fused aromatic compound is a low molecular weight compound
  • the molecular weight is preferably 3000 or less, more preferably 2000 or less, still more preferably 1000 or less, and 850 or less Is particularly preferred.
  • the solubility in a solvent can be enhanced, which is preferable.
  • the molecular weight is preferably 400 or more, more preferably 450 or more, and still more preferably 500 or more, from the viewpoint of the film quality stability of the film.
  • the weight average molecular weight is preferably 30,000 or more, more preferably 50,000 or more, and 100,000 or more. It is further preferred that When the fused aromatic fused aromatic compound is a polymer compound having a repeating structure, the intermolecular interaction can be enhanced by setting the weight average molecular weight to the above lower limit value, and high mobility is obtained.
  • a fused aromatic fused ring aromatic compound represents at least one or more arylene group or heteroarylene group (thiophene, bithiophene) and exhibits a repeating structure, or a fused ring
  • the polymer main chain polyacrylates, polyvinyls, polysiloxanes and the like are preferable, and as the side chain, there are pendent polymers in which an aromatic fused aromatic compound is bonded to the polymer main chain via a side chain.
  • Alkylene group, polyethylene oxide group and the like are preferable.
  • the fused aromatic fused aromatic compounds are disclosed in JP-A-2013-254874, JP-A-2010-182992, JP-A-4883381, JP-A-2004-83650, JP-A-4788322, JP-A-4581062 and the like. It can be synthesized according to each of the documents described in the examples below. Any reaction conditions may be used in the synthesis of fused aromatic fused aromatic compounds. As a reaction solvent, any solvent may be used. In addition, it is preferable to use an acid or a base to accelerate the ring formation reaction, and it is particularly preferable to use a base. The optimal reaction conditions depend on the structure of the target compound.
  • Synthetic intermediates having various substituents can be synthesized by combining known reactions. Also, each substituent may be introduced at any intermediate stage. After synthesis of the intermediate, purification by column chromatography, recrystallization or the like is preferably performed, followed by purification by sublimation purification. By sublimation purification, not only organic impurities can be separated but also inorganic salts, residual solvents and the like can be effectively removed.
  • the organic transistor according to the present invention is a compound in which the semiconductor active layer described later contains, as component A, an ionic substance of 0.1 to 10 ppm, water, oxygen, and an organic semiconductor material having an aromatic structure of 0.5 to 4000 ppm Contains either.
  • the organic transistor of the present invention is a condensed ring whose semiconductor active layer has the same aromatic structure as an ionic substance of 0.1 to 10 ppm and 0.5 to 4000 ppm as component A. It is preferable to contain any of aromatic compounds, and it is more preferable to contain, as component A, a condensed aromatic compound whose aromatic structure is identical to that of the organic semiconductor material of 0.5 to 4000 ppm.
  • the preferable aspect of the component A is demonstrated.
  • fused aromatic compound having the same aromatic structure as the organic semiconductor material The case where the above-mentioned component A contained in the semiconductor active layer is a fused aromatic compound having the same aromatic structure as the organic semiconductor material will be described. In this case, due to these structural similarities, component A is adsorbed on the crystal surface of the organic semiconductor material, and the crystal growth rate can be controlled to make the crystal size uniform, so that the carrier mobility varies, And, it is considered that variation in threshold voltage change after repeated driving is stabilized.
  • the content of the fused aromatic compound having the same aromatic structure as the organic semiconductor material as the component A contained in the semiconductor active layer is preferably 0.5 to 4000 ppm, and more preferably 0.5 to 500 ppm Is more preferably 0.5 to 50 ppm.
  • the content of the fused aromatic compound having the same aromatic structure as the organic semiconductor material as the component A in the semiconductor active layer is 0.5 from the viewpoint of improving the variation in threshold voltage change after repeated driving. It is more particularly preferred that it is ⁇ 5 ppm and even more particularly preferred that it is 0.5 to 1 ppm.
  • the content of the fused aromatic compound having the same aromatic structure as the above-mentioned organic semiconductor material as the component A in the semiconductor active layer is 1.5 to 50 ppm from the viewpoint of improving the carrier mobility variation. Is more particularly preferred and 5 to 50 ppm is even more particularly preferred.
  • the aromatic structure which is the same as the organic semiconductor material is not particularly limited, but the condensed ring of the fused aromatic compound Aromatic structures can be mentioned.
  • the preferred range of the aromatic structure which is the same as the organic semiconductor material is the same as the preferred range of the fused aromatic structure of the fused aromatic compound described above.
  • the aromatic structure which is the same as the organic semiconductor material that can be used in the present invention is a fused aromatic structure represented by A 1 , B 1 and C 1 and n 1 in general formula 3 described later, or a general structure described later Particularly preferred are fused aromatic structures represented by A 2 and B 2 in the formula 4.
  • component A which is a fused aromatic compound having the same aromatic structure as the organic semiconductor material, is It is preferable that it is a compound represented by following General formula 3.
  • a 3 , B 3 and C 3 are each independently a benzene ring, an azole ring, a furan ring or a thiophene ring, and a plurality of B 3 may be the same or different;
  • R 31 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom;
  • R 31 and A 3 may be bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof;
  • n3 is an integer of 1 to 5;
  • n31 and n32 are each independently an integer of 1 to 3.
  • the preferred ranges of A 3 , B 3 and C 3 in the general formula 3 are the same as the preferred ranges of A 1 , B 1 and C 1 in the general formula 1.
  • the preferred range of R 31 in General Formula 3 is the same as the preferred range of R 11 in General Formula 1.
  • the preferred range of the bonding mode of R 31 and A 3 in the general formula 3 is the same as the preferred range of the bonding mode of R 11 and A 1 in the general formula 1.
  • the preferred range of n3 in the general formula 3 is the same as the preferred range of n1 in the general formula 1.
  • the preferred range of n31 in the general formula 3 is the same as the preferred range of n11 in the general formula 1.
  • R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom, preferably a hydrogen atom, a halogen atom or a substituted oxygen atom, and more preferably a hydrogen atom.
  • the halogen atom R 32 represents a chlorine atom, a bromine atom, it may be mentioned iodine atom, a chlorine atom or a bromine atom.
  • Examples of the substituted phosphorus atom represented by R 32 include diphenyl phosphino group, di-t-butyl phosphino group and diaryl phosphino group.
  • a substituted oxygen atom represented by R 32 As a substituted oxygen atom represented by R 32 , a hydroxyl group, an alkoxy group (preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group), a perfluoroalkylsulfonyloxy group (preferably a trifluoromethylsulfonyloxy group)
  • an alkoxy group preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group
  • a perfluoroalkylsulfonyloxy group preferably a trifluoromethylsulfonyloxy group
  • the hydroxyl group, the alkoxy group, and the trifluoromethyl sulfonyloxy group are preferable.
  • n32 is an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
  • component A which is a fused aromatic compound having the same aromatic structure as the organic semiconductor material, is It is preferable that it is a compound represented by following General formula 4.
  • Each of A 4 and B 4 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 14 carbon atoms;
  • R 41 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
  • R 41 and the benzene ring may be bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and a combination thereof;
  • R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group which is not identical in structure to R 22 of the organic semiconductor material.
  • Preferred ranges of A 4 and B 4 in the general formula 4 are the same as the preferred ranges of A 2 and B 2 in the general formula 2.
  • the preferred range of R 41 in the general formula 4 is the same as the preferred range of R 21 in the general formula 2.
  • the preferred range of the bonding mode of R 41 and the benzene ring in General Formula 4 is the same as the preferred range of the bonding mode of R 21 and the benzene ring in General Formula 2.
  • R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group not having the same structure as R 22 of the organic semiconductor material, more preferably a hydrogen atom.
  • the halogen atom R 42 represents a chlorine atom, a bromine atom, it may be mentioned iodine atom, a chlorine atom or a bromine atom.
  • Examples of the substituted phosphorus atom represented by R 42 include a diphenyl phosphino group, a di-t-butyl phosphino group, and a diaryl phosphino group.
  • the substituted oxygen atom represented by R 42 includes a hydroxyl group, an alkoxy group (preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group), a perfluoroalkylsulfonyloxy group (preferably a trifluoromethylsulfonyloxy group)
  • an alkoxy group preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group
  • a perfluoroalkylsulfonyloxy group preferably a trifluoromethylsulfonyloxy group
  • the hydroxyl group, the alkoxy group, and the trifluoromethyl sulfonyloxy group are preferable.
  • an alkynyl group which is not the same structure as R 22 of the organic semiconductor material represented by R 42 an alkynyl group having 2 to 18 carbon atoms is preferable, an alkynyl group having 2 to 14 carbon atoms is more preferable, and an alkynyl group having 2 carbon atoms is Particularly preferred.
  • the alkynyl group which is not the same structure as R 22 of the organic semiconductor material represented by R 42 may further have a substituent, but is preferably unsubstituted.
  • R A1 , A A and R A2 are structures shown in the following table.
  • “*” represents a bonding position
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group
  • SiMe 3 represents a triethylsilyl group
  • SiEt 3 represents a triethylsilyl group .
  • the semiconductor active layer preferably contains 0.1 to 10 ppm of an ionic substance as Component A, more preferably 0.3 to 5 ppm of an ionic substance. Particular preference is given to embodiments comprising ⁇ 4 ppm of ionic substances.
  • the content of the ionic substance as the component A contained in the semiconductor active layer is a plurality of types, the content of the ionic substance as the component A is such that the total content of the plurality of ionic substances is in the above-mentioned range Is preferred.
  • the method of controlling the content of the ionic substance as component A contained in the semiconductor active layer is not particularly limited, but a method of purifying the organic semiconductor material using a known purification method such as column chromatography, etc. Can be mentioned.
  • the ionic substance is not particularly limited, and examples thereof include sodium ion, potassium ion, magnesium ion, zinc ion, iron ion, palladium ion, platinum ion, gold ion, cesium ion and the like.
  • the semiconductor active layer contains either water or oxygen as the component A.
  • the semiconductor active layer preferably contains 0.1 to 10 ppm of water as the component A, more preferably 0.3 to 5 ppm, and further preferably 0.5 to 4 ppm. Is particularly preferred.
  • the semiconductor active layer preferably contains 0.1 to 10 ppm, more preferably 0.3 to 5 ppm, of oxygen as component A, more preferably 0.5 to 4 ppm. Is particularly preferred.
  • the method for controlling the content of either water or oxygen as the component A contained in the semiconductor active layer is not particularly limited, but a method of storage under a specific gas atmosphere can be mentioned.
  • the semiconductor active layer when the semiconductor active layer contains any of water and oxygen as the component A, it is under a gas atmosphere of oxygen content 25% or less and relative humidity 10% or less for at least one hour or more , Preferably stored.
  • the structure of the organic transistor of the present invention has an insulator layer on a substrate, has a source electrode and a drain electrode separated from each other on one side of the insulator layer, and has a gate electrode on the other side of the insulator layer.
  • the organic transistor of the present invention is preferably used as an organic field effect transistor (Field Effect Transistor, FET), and more preferably used as an insulated gate FET in which the gate and the channel are insulated.
  • FET Field Effect Transistor
  • laminated structure There is no restriction
  • a structure in which an electrode, an insulator layer, a semiconductor active layer (organic semiconductor layer), and two electrodes are arranged in order on the upper surface of the lowermost substrate (bottom gate and top contact type Can be mentioned.
  • the electrode on the upper surface of the lowermost substrate is provided on a part of the substrate, and the insulator layer is arranged to be in contact with the substrate at a portion other than the electrode.
  • the two electrodes provided on the upper surface of the semiconductor active layer are arranged separately from each other.
  • FIG. 1 is a schematic view showing a cross section of the structure of an example of the organic transistor of the present invention.
  • the substrate 11 is disposed in the lowermost layer, the electrode 12 is provided on a part of the upper surface, and the electrode 12 is covered, and the insulator layer is in contact with the substrate 11 in parts other than the electrode 12 13 is provided.
  • a semiconductor active layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are arranged separately on a part of the upper surface.
  • the electrode 12 is a gate, and the electrode 15a and the electrode 15b are a drain or a source, respectively.
  • the organic transistor shown in FIG. 1 is an insulated gate FET in which the channel, which is a current path between the drain and the source, and the gate are insulated.
  • FIG. 2 is a schematic view showing a cross section of the structure of the organic transistor manufactured as a substrate for measuring FET characteristics in the example.
  • the substrate 31 is disposed in the lowermost layer, the electrode 32 is provided on a part of the upper surface, and the electrode 32 is covered, and the insulator layer is in contact with the substrate 31 in parts other than the electrode 32.
  • 33 is provided.
  • a semiconductor active layer 35 is provided on the upper surface of the insulator layer 33, and the electrodes 34a and 34b are under the semiconductor active layer 35.
  • the electrode 32 is a gate
  • the electrode 34a and the electrode 34b are a drain or a source, respectively.
  • the organic transistor shown in FIG. 2 is an insulated gate FET in which the channel, which is a current path between the drain and the source, and the gate are insulated.
  • an insulator As the structure of the organic transistor of the present invention, in addition, an insulator, a top gate / top contact type device having a gate electrode on the upper part of the semiconductor active layer, or a top gate / bottom contact type device can be preferably used.
  • the thickness of the entire transistor is preferably 0.1 to 0.5 ⁇ m.
  • the entire organic transistor element may be a metal sealing can, glass, an inorganic material such as silicon nitride, a polymer material such as parylene, It may be sealed with a low molecular weight material or the like.
  • the organic transistor of the present invention comprises a substrate.
  • the material of the substrate is not particularly limited, and known materials can be used, for example, polyester films such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), cycloolefin polymer films, polycarbonate films, triacetyl cellulose ( And TAC) films, polyimide films, films obtained by bonding these polymer films to ultrathin glass, ceramics, silicon, quartz, glass, etc., and silicon is preferable.
  • the organic transistor of the present invention includes electrodes such as a source electrode, a drain electrode, and a gate electrode.
  • electrodes such as a source electrode, a drain electrode, and a gate electrode.
  • a metal material such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni or Nd, an alloy material of these, or a carbon material, conductive Any known conductive material such as a polymer can be used without particular limitation.
  • the thickness of the electrode is not particularly limited but is preferably 10 to 50 nm.
  • the gate width (or channel width) W and the gate length (or channel length) L are not particularly limited, but the ratio W / L thereof is preferably 10 or more, and more preferably 20 or more.
  • the material constituting the insulating layer is not particularly limited as long as the required insulating effect can be obtained.
  • the insulating materials include epoxy insulating materials, epoxy insulating materials, polyimide insulating materials, polyvinyl phenol resin insulating materials, and polyparaxylylene resin insulating materials.
  • the upper surface of the insulating layer may be surface-treated.
  • an insulating layer obtained by surface-treating a silicon dioxide surface by application of hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) can be preferably used.
  • the thickness of the insulating layer is not particularly limited, but when thinning is desired, the thickness is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm. .
  • the organic transistor of the present invention is an organic semiconductor material in which the semiconductor active layer is a condensed aromatic compound, and as component A, 0.1 to 10 ppm of ionic substance, water, oxygen and 0.5 to 4000 ppm of organic semiconductor It contains any of the compounds whose material and aromatic structure are identical.
  • the semiconductor active layer may be a layer formed of an organic semiconductor material which is a condensed aromatic compound and component A, and further includes a polymer binder described later in addition to the organic semiconductor material which is a ring aromatic compound and component A Layer may be used. Moreover, the residual solvent at the time of film formation may be included.
  • the content of the polymer binder in the semiconductor active layer is not particularly limited, but is preferably in the range of 0 to 95% by mass, more preferably in the range of 10 to 90% by mass, and still more preferably It is used in the range of 20 to 80% by mass, particularly preferably in the range of 30 to 70% by mass.
  • the thickness of the semiconductor active layer is not particularly limited, but when thin film formation is required, the thickness is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm. preferable.
  • examples thereof include coalescent, photoconductive polymers such as polyvinylcarbazole and polysilane, conductive polymers such as polythiophene, polypyrrole, polyaniline and polyparaphenylene vinylene, and semiconductive polymers.
  • the polymer binders may be used alone or in combination of two or more.
  • the organic semiconductor material and the polymer binder may be uniformly mixed, or part or all of them may be phase separated, but from the viewpoint of charge mobility, the organic semiconductor in the film thickness direction in the film
  • the structure in which the binder is phase separated is most preferable without the binder interfering with the charge transfer of the organic semiconductor.
  • a polymer binder having a high glass transition temperature is preferred in consideration of the mechanical strength of the film, and a polymer binder, a photoconductive polymer and a conductive polymer having a structure free of polar groups are preferred in consideration of charge mobility.
  • the amount of the polymer binder used is not particularly limited, but it is preferably in the range of 0 to 95% by mass, more preferably in the range of 10 to 90% by mass in the organic semiconductor film for non-luminescent organic semiconductor devices. And more preferably in the range of 20 to 80% by mass, and particularly preferably in the range of 30 to 70% by mass.
  • the fused aromatic compound has the above-described structure, an organic film with good film quality can be obtained. Specifically, the fused aromatic compound has good crystallinity, so that a sufficient film thickness can be obtained, and the obtained organic semiconductor film for a non-light emitting organic semiconductor device becomes a good quality.
  • the substrate may be heated or cooled, and by changing the temperature of the substrate, it is possible to control the film quality or the packing of molecules in the film.
  • the temperature of the substrate is not particularly limited, but is preferably between 0 ° C. and 200 ° C., more preferably between 15 ° C. and 100 ° C., particularly preferably between 20 ° C. and 95 ° C. preferable.
  • a vacuum process or a solution process it is possible to form a film by a vacuum process or a solution process, and all are preferable.
  • film formation by vacuum process include physical vapor deposition such as vacuum evaporation, sputtering, ion plating, molecular beam epitaxy (MBE), or chemical vapor deposition (CVD) such as plasma polymerization. Method is preferred, and vacuum deposition is particularly preferred.
  • film formation by solution process refers to a method of dissolving in a solvent in which an organic compound can be dissolved and forming a film using the solution.
  • coating methods such as casting method, dip coating method, die coater method, roll coater method, bar coater method, spin coating method, ink jet method, screen printing method, gravure printing method, flexographic printing method, offset printing Methods, various printing methods such as micro contact printing method, and ordinary methods such as Langmuir-Blodgett (LB) method can be used, and casting method, spin coating method, ink jet method, gravure printing method, flexographic printing method, offset It is particularly preferable to use a printing method or a microcontact printing method.
  • LB Langmuir-Blodgett
  • the organic-semiconductor film for nonluminous organic-semiconductor devices was produced by the solution apply
  • the organic semiconductor film for non-luminescent organic semiconductor device contains a polymer binder
  • the material forming the layer and the polymer binder are dissolved or dispersed in an appropriate solvent to form a coating solution, and various coating methods are used. Preferably it is formed.
  • the coating solution for nonluminous organic-semiconductor devices which can be used for film-forming by a solution process is demonstrated.
  • the material forming the layer may be a suitable organic solvent (eg, hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, etc.
  • a suitable organic solvent eg, hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • halogenated hydrocarbons such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene and chlorotoluene System solvents
  • ester solvents such as ethyl acetate, butyl acetate and amyl acetate, for example, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl Alcohol solvents such as cellosolve, ethyl cellosolve, ethylene glycol, ether solvents such as dibutyl ether, tetrahydrofuran, dioxan
  • the film can be formed by various coating methods.
  • the solvents may be used alone or in combination of two or more.
  • hydrocarbon solvents, halogenated hydrocarbon solvents or ether solvents are preferable, toluene, xylene, mesitylene, tetralin, dichlorobenzene or anisole are more preferable, and toluene, xylene, tetralin and anisole are particularly preferable.
  • the concentration of the fused aromatic compound in the coating solution is preferably 0.1 to 80% by mass, more preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 10% by mass. And films of any thickness can be formed.
  • the coating solution for a non-luminescent organic semiconductor device contains a fused aromatic compound, and an embodiment containing no polymer binder is also preferable.
  • the coating solution for non-luminescent organic semiconductor device may contain a fused aromatic compound and a polymer binder.
  • the material for forming the layer and the polymer binder may be dissolved or dispersed in the above-mentioned appropriate solvent to form a coating solution, and a film may be formed by various coating methods.
  • the polymer binder can be selected from those described above.
  • Comparative Example 1 Compound No. 4 in Synthesis Example 2 of Patent No. 4581062
  • the comparative sample 1 which has the following compound 1 as a main component with reference to 16 synthesis was synthesize
  • Comparative Example 2 30 ml of a THF / water mixed solvent in 1 g of the following raw materials 2-1, Organic Synthesis.
  • Excess 9-BBN (9-borabicyclo [3.3.1] nonane) adduct of 1-decene, prepared according to paragraph 71, paragraph 89 of 1993, PdCl 2 (dppf) methylene chloride complex 0.02 equivalents, 1 equivalent of NaOH was added and stirred at 75 ° C. for 20 hours.
  • the reaction solution was washed with water, concentrated and then purified by silica gel column chromatography (methylene chloride-hexane mixed solvent) to obtain a solid.
  • Comparative Example 3 100 ml of methylene chloride is added to 3 g of the following raw material 3-13 synthesized with reference to Organic Letters, 2005, 7 pages, 5301, BF 3 ether complex solution is added, stirred at room temperature for 14 hours, and the reaction solution is washed with water and concentrated The solid gave a solid. The product was washed with methanol, vacuum-dried and purified by ALS Technology sublimation purification apparatus ALS-160H to obtain the corresponding demethylated product. 100 ml of methylene chloride was added to 2 g of this demethylated substance and cooled with ice water.
  • Comparative Example 4 The following raw material 4-1 was synthesized with reference to the description of WO 2012/090462, which was used as a raw material to perform functional group conversion of a methoxy group to a heptyl group in the same manner as Comparative Sample 3, and the corresponding following compound 4 was used as a main component Comparative sample 4 was obtained.
  • Comparative Example 5 A comparative sample 5 containing the following compound 5 as a main component was obtained with reference to Organic Letters, 2002, Vol. 4, page 15.
  • Comparative Example 6 Comparative sample 6 containing the following compound 6 as a main component was obtained with reference to Journal of the American Chemical Society, 2005, vol. 127, p. 4986.
  • the carrier mobility ⁇ was calculated using the following equation representing I d .
  • I d (w / 2 L) ⁇ C i (V g -V th ) 2
  • L represents a gate length
  • W represents a gate width
  • C i represents a capacity per unit area of the insulating layer
  • V g represents a gate voltage
  • V th represents a threshold voltage.
  • the average value of the values of all elements on the substrate was taken as the average carrier mobility.
  • the data width is the difference between the 10th highest carrier mobility value and the 10th lowest carrier mobility value obtained for each element (total 50), and this data width is the average
  • the relative value to the carrier mobility value was taken as carrier mobility variation.
  • the threshold voltage change after 10th repetition drive from the top (50 in total) of the value obtained for each element and the threshold voltage change after 10th repetition drive from the 10th from the bottom The average value of the data width is defined as the width, and the relative value to the threshold voltage change after the repeated drive is regarded as the threshold voltage change variation after the repeated drive.
  • Example 1-1 Comparative sample 1 was purified using a preparative chromatography apparatus FR-360 manufactured by Yamazen Co., Ltd., using a mixed solvent of hexane and methylene chloride as an eluent. Since fractions having different degrees of purification were obtained, each fraction was used as a sample of 1-1a, 1-1b, 1-1c and 1-1d.
  • Organic transistor elements of Example 1-1c and Example 1-1d were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1.
  • the content rate of the following specific compound 1A is obtained by dissolving the organic semiconductor film for a non-luminescent organic semiconductor device used in each example in tetrahydrofuran for HPLC, and using a high performance liquid chromatography prominence system manufactured by Shimadzu Corporation. It measured on the following measurement conditions. Eluent: tetrahydrofuran-water gradient, detection wavelength 254 nm, feed rate 1.0 ml / min, analytical column: Tosoh KK TSKGel ODS-100Z.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • the results in the above table can be considered as follows.
  • the specific compound 1A which is a specific impurity having the same aromatic structure as the main component Compound 1 and the specific compound 1A which is a specific impurity are produced in the final step of the synthesis with respect to the reaction intermediate formed by the oxidative addition of the reaction catalyst to the halogenated compound of the raw material. It is thought that hydrogenation occurred as a side reaction and was generated. Other by-products in the coupling reaction are simultaneously formed, but other by-products are removed in the purification process of the compound. However, it is considered that the specific compound 1A which is very similar in nature to the main component Compound 1 and has the same aromatic structure remains.
  • the effects of the specific compound 1A on carrier mobility variation and threshold voltage variation variation after repeated driving are similar to those of the main component in structure and properties, and thus are adsorbed on the crystal surface at the time of crystal formation of the semiconductor layer, It is believed that the effect was achieved.
  • Embodiment 1-2 In Example 1-1, the same experiment as in Example 1-1 was conducted, except that comparative sample 1 was replaced with comparative sample 2, and fractions 1-2a, 1-2b, 1-2c and 1- having different degrees of purification were used. Samples 2d were obtained, and organic transistor elements of Example 1-2a, Example 1-2b, Example 1-2c, and Example 1-2d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below. From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 2A having the same aromatic structure as that of the main component compound 2. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 2A is below a fixed amount. The content rate of the following specific compound 2A was measured in the same manner as in the specific compound 1A.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • Embodiment 1-3 In Example 1-1, the same experiment as in Example 1-1 was conducted except that comparative sample 1 was replaced with comparative sample 3, and fractions 1-3a, 1-3b, 1-3c and 1- having different degrees of purification were used. Samples 3d were obtained, and organic transistor devices of Examples 1-3a, 1-3b, 1-3c, and 1-3d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below. From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 3A having the same aromatic structure as that of the main component, compound 3. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 3A is below a fixed amount. The content rate of the following specific compound 3A was measured in the same manner as the specific compound 1A.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • Embodiment 1-4 In Example 1-1, the same experiment as in Example 1-1 was conducted, except that Comparative sample 1 was replaced with Comparative sample 4, and fractions 1-4a, 1-4b, 1-4c and 1- with different degrees of purification were used. Samples 4d were obtained, and organic transistor elements of Example 1-4a, Example 1-4b, Example 1-4c, and Example 1-4d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below. From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • Example 1-5 The same experiment as in Example 1-1 is carried out except that comparative sample 1 is replaced with comparative sample 5 in Example 1-1, and fractions 1-5a, 1-5b, 1-5c and 1- having different degrees of purification are carried out. Samples 5d were obtained, and the organic transistor devices of Examples 1-5a, 1-5b, 1-5c, and 1-5d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below. From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 5A having the same aromatic structure as that of the main component compound 5. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 5A is below fixed amount. The content rate of the following specific compound 5A was measured in the same manner as in the specific compound 1A.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • the structure of the specific compound 5A was a structure of a system different from that of the specific compounds 1A to 4A contained as the specific impurities in Examples 1-1 to 1-4.
  • This particular compound 5A can be presumed to be a compound formed by cleavage of a relatively weak C—Si bond during the reaction or purification.
  • Example 1-6 In Example 1-1, the same experiment as in Example 1-1 was conducted, except that comparative sample 1 was replaced with comparative sample 6, and fractions 1-6a, 1-6b, 1-6c and 1- having different degrees of purification were used. Samples 6d were obtained, and organic transistor devices of Examples 1-6a, 1-6b, 1-6c and 1-6d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below. From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 6A having the same aromatic structure as that of the main component, compound 6. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 6A is below fixed amount. The content rate of the following specific compound 6A was measured in the same manner as in the specific compound 1A.
  • the notation of relative carrier mobility in the above table is as follows. A: 1.2 times or more of the reference value (improved) B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
  • Example 2-1 In order to investigate the influence of ionic substances, Comparative Sample 1 was purified using a column chromatography using a commercially available glass chromatography column and a chloroform-tetrahydrofuran-n-hexane gradient as an eluent. I got a sample. In particular, after the second purification, all devices to be used were previously washed with dilute hydrochloric acid and further ultrapure and washed. The amount of the ionic substance in Comparative Sample 1 and the samples of each purification number was determined by ashing and acid-dissolving the organic semiconductor film for non-luminescent organic semiconductor device used in each example, and using ICP-MS HP7700 manufactured by Agilent It quantified using.
  • Example 2-1 the sum of sodium ion, potassium ion and magnesium ion was determined in ppm.
  • the organic transistor element of Example 2-1 for measuring the FET characteristics was obtained in the same manner as in Comparative Examples 1 to 6 using Comparative Sample 1 except that the samples having the respective purification times were used.
  • the transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1.
  • Example 2-1 and Examples 2-2 to 2-6 described below since the carrier mobility itself differs depending on the main component compound, an unpurified comparative sample containing the corresponding main component compound was used.
  • the carrier mobility of the organic transistor devices of Comparative Examples 1 to 6 was taken as the reference value of the carrier mobility of the organic transistor device of each example.
  • Examples 2-2 to 2-6 The organic compounds of Examples 2-2 to 2-6 are used in the same manner as in Example 2-1 except that, in Example 2-1, Comparative Samples 2 to 6 are used instead of Comparative Sample 1 and purification is performed twice. It was a transistor element.
  • the amounts of ionic substances in the two-fold purification samples used in Comparative Samples 2 to 6 and Examples 2-2 to 2-6 were measured in the same manner as Example 2-1.
  • the transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1. The obtained results are shown in the following table.
  • Example 3-1 In order to investigate the effects of water and oxygen, 24-hour storage and characterization of the organic transistors were performed under a gas atmosphere as shown in the following table.
  • the oxygen content is the relative amount (%) of oxygen in the gas atmosphere.
  • the atmosphere gas was prepared by preparing a nitrogen-oxygen mixed gas using a gas cylinder and subjecting this to a certain amount of humidification. The storage of the transistor was performed for 24 hours under a gas atmosphere.
  • the organic transistor elements of Example 3-1d, Example 3-1e and Example 3-1f were obtained.
  • Example 3-1 and Examples 3-2 to 3-6 described below since the threshold voltage change itself after repeated driving differs depending on the compound as the main component, the comparison of unrefined containing the compound as the corresponding main component The threshold voltage change after repeated driving of the organic transistor elements of Comparative Examples 1 to 6 using the sample was taken as the reference value of the threshold voltage change after repeated driving of the organic transistor of each example.
  • Example 3-1f Comparative Samples 2 to 6 were used instead of Comparative Sample 1, and the others were the same as Example 3-1f, to obtain the organic transistor elements of Examples 3-2 to 3-6.
  • the transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1. The obtained results are shown in the following table.
  • substrate 12 gate electrode 13 insulator layer 14 semiconductor active layer (organic layer, organic semiconductor layer) 15a, 15b Source electrode and drain electrode 31
  • Substrate 32 Gate electrode 33 Insulator layer 34a, 34b Source electrode and drain electrode 35
  • Semiconductor active layer (organic layer, organic semiconductor layer)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

An organic transistor which comprises: an insulating layer on a substrate; a source electrode and a drain electrode arranged at a distance from each other on one side of the insulating layer; a gate electrode arranged on the other side of the insulating layer; and a semiconductor active layer that is in contact with the source electrode, the drain electrode and the insulating layer. This organic transistor has a structure wherein the substrate, the gate electrode, the insulating layer and the semiconductor active layer are laminated. The semiconductor active layer contains an organic semiconductor material, which is a fused aromatic compound, while containing, as a component (A), any one of 0.1-10 ppm of an ionic substance, water, oxygen and 0.5-4,000 ppm of a compound that has the same aromatic structure as the organic semiconductor material. Consequently, this organic transistor has improved carrier mobility, improved carrier mobility variation, improved threshold voltage change after repeated driving or improved threshold voltage change variation after repeated driving.

Description

有機トランジスタOrganic transistor
 本発明は、有機トランジスタに関する。より詳しくは、本発明は、キャリア移動度、キャリア移動度ばらつき、繰り返し駆動後の閾値電圧変化および繰り返し駆動後の閾値電圧変化ばらつきのいずれかが改善された有機トランジスタに関する。 The present invention relates to an organic transistor. More specifically, the present invention relates to an organic transistor in which any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
 有機半導体材料を用いたデバイスは、従来のシリコンなどの無機半導体材料を用いたデバイスと比較して、様々な優位性が見込まれているため、高い関心を集めている。有機半導体材料を用いたデバイスの例としては、有機半導体材料を光電変換材料として用いた有機薄膜太陽電池や固体撮像素子などの光電変換素子や、非発光性(本明細書中、「非発光性」とは、室温、大気下0.1mW/cmの電流密度でデバイスに電流を流した場合に、1lm/W以下の発光効率のことを言う。非発光性有機半導体デバイスと言えば、有機電界発光素子などの発光性有機半導体デバイスを除く有機半導体デバイスを意味する)の有機トランジスタ(有機薄膜トランジスタと言われることもある)の有機トランジスタ(有機薄膜トランジスタと言われることもある)が挙げられる。有機半導体材料を用いたデバイスは、無機半導体材料を用いたデバイスと比べて低温、低コストで大面積の素子を作製できる可能性がある。さらに分子構造を変化させることで容易に材料特性を変化させることが可能であるため材料のバリエーションが豊富であり、無機半導体材料ではなし得なかったような機能や素子を実現することができる。 Devices using organic semiconductor materials are attracting a great deal of interest because they are expected to have various advantages over devices using inorganic semiconductor materials such as conventional silicon. As an example of a device using an organic semiconductor material, a photoelectric conversion element such as an organic thin film solar cell or a solid-state imaging element using an organic semiconductor material as a photoelectric conversion material, or a non-luminescent property (in the present specification, “The luminous efficiency of 1 lm / W or less is obtained when current is applied to the device at room temperature and a current density of 0.1 mW / cm 2 in the atmosphere. Speaking of non-luminescent organic semiconductor devices, organic An organic transistor (sometimes referred to as an organic thin film transistor) (sometimes referred to as an organic thin film transistor) of an organic transistor (sometimes referred to as an organic thin film transistor) means an organic semiconductor device excluding a light emitting organic semiconductor device such as an electroluminescent element. A device using an organic semiconductor material may be able to produce a large-area element at low temperature and at low cost, as compared to a device using an inorganic semiconductor material. Furthermore, since it is possible to easily change the material properties by changing the molecular structure, the variation of the material is abundant, and functions and elements which can not be achieved with the inorganic semiconductor material can be realized.
 有機トランジスタは大気下塗布系のような簡便な装置で半導体活性層が形成できることから将来の半導体技術として期待されているが、一方で製膜環境が真空下ではないこと、原料の有機材料の高純度化が簡単ではないことから、半導体活性層には不純物が混入することが知られており、不純物量を低減することによって有機トランジスタの特性を高める方法が知られている。例えば、特許文献1には、半導体材料としてベンゾチエノベンゾチオフェンを用い、不純物は半導体材料本体のヒドラゾン化合物である場合に、半導体活性層を半導体/絶縁ポリマーの混合物塗布により半導体/絶縁ポリマーの2層構造とすることで不純物による特性劣化が小さくなると記載されている。
 特許文献2には、有機半導体膜を形成した後に洗浄溶液によって洗浄処理を行うことで、有機半導体膜などの有機膜における不純物を低減することが可能と記載されている。ただし、特許文献2には実施例で具体的に洗浄した場合について詳細な記載が無い。
 特許文献3には、半導体材料として液晶性有機半導体材料を用い、不純物はチオフェン系材料である場合に、不純物を電気泳動で除くことにより、液晶系が本来的に有する電子電導特性を効果的に発現させ得ると記載されている。
 特許文献4には、π共役系ポリマーからなり、含有される不純物の量が100ppm以下である有機半導体材料により、リーク電流の発生を抑え、良好なオン-オフ比を得ることが記載されている。特に特許文献4では、不純物として金属イオンが挙げられている。
 特許文献5には、製膜時の濃縮を利用して再結晶を行う方法が記載されている。具体的には、縮合多環芳香族化合物溶液を、60~230℃のベース上に配し、濃縮により縮合多環芳香族化合物膜を形成する方法により、高い移動度を発現する有機半導体膜を提供することが記載されている。
Organic transistors are expected as future semiconductor technology because they can form semiconductor active layers with a simple apparatus such as a coating system under the atmosphere, but on the other hand, the film forming environment is not under vacuum, and the raw material organic materials are high Since purification is not easy, it is known that impurities are mixed in the semiconductor active layer, and there is known a method of enhancing the characteristics of the organic transistor by reducing the amount of impurities. For example, in Patent Document 1, when benzothienobenzothiophene is used as the semiconductor material and the impurity is the hydrazone compound of the semiconductor material main body, the semiconductor active layer is coated with the semiconductor / insulating polymer mixture and the semiconductor / insulating polymer bilayer is applied. It is described that the characteristic deterioration due to impurities is reduced by the structure.
Patent Document 2 describes that it is possible to reduce impurities in an organic film such as an organic semiconductor film by performing a cleaning process using a cleaning solution after forming the organic semiconductor film. However, patent document 2 does not have a detailed description about the case where it wash | cleans concretely by the Example.
In Patent Document 3, when a liquid crystalline organic semiconductor material is used as the semiconductor material and the impurity is a thiophene material, the impurity is removed by electrophoresis to effectively utilize the electron conduction characteristic inherently possessed by the liquid crystal system. It is stated that it can be expressed.
Patent Document 4 describes that an organic semiconductor material made of a π-conjugated polymer and containing 100 ppm or less of impurities is used to suppress the occurrence of leakage current and obtain a good on-off ratio. . Particularly in Patent Document 4, metal ions are mentioned as the impurities.
Patent Document 5 describes a method of performing recrystallization using concentration during film formation. Specifically, a condensed polycyclic aromatic compound solution is disposed on a base at 60 to 230 ° C., and an organic semiconductor film exhibiting high mobility is obtained by a method of forming a condensed polycyclic aromatic compound film by concentration. It is stated that it offers.
 一方、特許文献6には、半導体活性層の有機半導体材料として特定の構造の縮合多環芳香族化合物を用いることで、塗布法などによる作製が可能で、かつ優れたキャリア移動度などの半導体特性を有し、安定性に優れた実用的な有機トランジスタを提供することが記載されている。 On the other hand, in Patent Document 6, by using a condensed polycyclic aromatic compound having a specific structure as the organic semiconductor material of the semiconductor active layer, semiconductor characteristics such as excellent carrier mobility and the like can be produced by a coating method or the like. It has been described to provide a practical organic transistor having excellent stability.
特開2013-254874号公報JP 2013-254874 A 特開2010-182992号公報JP, 2010-182992, A 特許第4883381号Patent No. 4883381 特開2004-83650号公報JP 2004-83650 A 特許第4783282号Patent No. 4783282 特許第4581062号Patent No. 4581062
 このような状況のもと、本発明者がこれらの文献に記載されている半導体活性層を用いた有機トランジスタを検討したところ、さらなる特性の向上が求められることがわかった。
 特に、特許文献4に記載の有機半導体材料を用いた有機トランジスタは、移動度が低いものであることがわかった。また、特許文献6に記載の有機トランジスタは、性能のバラツキが大きいことがわかった。
Under these circumstances, when the present inventor examined an organic transistor using a semiconductor active layer described in these documents, it was found that a further improvement in characteristics is required.
In particular, it was found that the organic transistor using the organic semiconductor material described in Patent Document 4 has low mobility. Moreover, it turned out that the variation of performance is large in the organic transistor described in Patent Document 6.
 さらに、本発明者がこれらの文献に記載されている半導体活性層を用いた有機トランジスタを検討したところ、繰り返し駆動した場合、閾値電圧の変化が大きくなることも本発明者らの検討により明らかになった。閾値電圧の変化が大きくなると、トランジスタとしての信頼性が低下し、半導体として長期間使用することができなくなってしまうという問題がある。
 また、繰り返し駆動後の閾値電圧変化についても、素子ごとに性能のバラツキが大きいことがわかった。
Furthermore, when the present inventor examined the organic transistor using the semiconductor active layer described in these documents, it is clear that the threshold voltage change is large when the transistor is driven repeatedly. became. When the change in threshold voltage is large, the reliability as a transistor is lowered, and there is a problem that the semiconductor can not be used for a long time.
In addition, it was also found that the variation in performance of each element is large also with respect to the threshold voltage change after repeated driving.
 そこで本発明者は、このような従来技術の課題を解決するために検討を進めた。本発明が解決しようとする課題は、キャリア移動度、キャリア移動度ばらつき、繰り返し駆動後の閾値電圧変化および繰り返し駆動後の閾値電圧変化ばらつきのいずれかが改善された有機トランジスタを提供することである。 Therefore, the present inventors have made investigations in order to solve the problems of the prior art. The problem to be solved by the present invention is to provide an organic transistor in which any of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved. .
 上記の課題を解決するために鋭意検討を行った結果、半導体活性層には不純物は少ないと性能が良くなるとの考え方が常識的であったが、これに反し、特定の化合物が適量あるとキャリア移動度、キャリア移動度ばらつき、繰り返し駆動後の閾値電圧変化および繰り返し駆動後の閾値電圧変化ばらつきのいずれかが改善されることを見出し、本発明に至った。
 上記課題を解決するための具体的な手段である本発明は、以下の構成を有する。
As a result of intensive investigations to solve the above problems, it was common sense that the semiconductor active layer would have better performance if there are few impurities, contrary to this, if there is an appropriate amount of a specific compound, the carrier It has been found that mobility, carrier mobility variation, threshold voltage change after repeated driving, or threshold voltage change variation after repeated driving can be improved, and the present invention has been achieved.
The present invention, which is a specific means for solving the above problems, has the following configuration.
[1] 基板上に
 絶縁体層を有し、
 絶縁体層の片側にお互いに離間したソース電極およびドレイン電極を有し、
 絶縁体層のもう片側にゲート電極を有し、
 ソース電極、ドレイン電極および絶縁体層に接した半導体活性層を有し、
 基板、ゲート電極、絶縁体層および半導体活性層は積層した構造の有機トランジスタであり、
 半導体活性層が
  縮環芳香族化合物である有機半導体材料、ならびに、
  成分Aとして、0.1~10ppmのイオン性物質、水、酸素および0.5~4000ppmの有機半導体材料と芳香族構造が同一である化合物のいずれかを含有する有機トランジスタ。
[2] [1]に記載の有機トランジスタは、成分Aとして有機半導体材料と芳香族構造が同一である縮環芳香族化合物を0.5~4000ppm含有することが好ましい。
[3] [1]または[2]に記載の有機トランジスタは、有機半導体材料がチオフェン環を縮環中に含む縮環芳香族化合物であることが好ましい。
[4] [1]~[3]のいずれか一つに記載の有機トランジスタは、有機半導体材料が下記一般式1で表される縮環芳香族化合物であることが好ましい;
一般式1
Figure JPOXMLDOC01-appb-C000005
一般式1中、
 A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
 R11およびR12はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R11とA、または、R12とCは、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
 n1は1~5の整数である;
 n11およびn12はそれぞれ独立に1~3の整数である。
[5] [4]に記載の有機トランジスタは、成分Aが下記一般式3で表される化合物であることが好ましい;
一般式3
Figure JPOXMLDOC01-appb-C000006
一般式3中、
 A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
 R31はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R32は水素原子、ハロゲン原子、置換リン原子または置換酸素原子であり;
 R31とAは、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
 n3は1~5の整数である;
 n31およびn32はそれぞれ独立に1~3の整数である。
[6] [1]~[3]のいずれか一つに記載の有機トランジスタは、有機半導体材料が下記一般式2で表される縮環芳香族化合物であることが好ましい;
一般式2
Figure JPOXMLDOC01-appb-C000007
一般式2中、
 AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環または炭素数4~12の芳香族ヘテロ環であり;
 R21およびR22はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R21とベンゼン環、または、R22とベンゼン環は、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい。
[7] [6]に記載の有機トランジスタは、成分Aが下記一般式4で表される化合物であることが好ましい;
一般式4
Figure JPOXMLDOC01-appb-C000008
一般式4中、
 AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環、炭素数4~12の芳香族ヘテロ環であり;
 R41はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R41とベンゼン環は、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい;
 R42は水素原子、ハロゲン原子、置換リン原子、置換酸素原子または有機半導体材料のR22と同一構造ではないアルキニル基である。
[8] [2]~[7]のいずれか一つに記載の有機トランジスタは、成分Aが有機半導体層に0.5~50ppm含まれることが好ましい。
[9] [1]に記載の有機トランジスタは、成分Aとして、イオン性物質を0.1~10ppm含有することが好ましい。
[10] [1]に記載の有機トランジスタは、成分Aとして、水または酸素を含有することが好ましい。
[11] [10]に記載の有機トランジスタは、少なくとも1時間以上、酸素含率25%以下、かつ、相対湿度10%以下のガス雰囲気下で、保管されてなることが好ましい。
[1] with insulator layer on substrate,
Having source and drain electrodes spaced apart from one another on one side of the insulator layer,
With the gate electrode on the other side of the insulator layer,
A semiconductor active layer in contact with the source electrode, the drain electrode and the insulator layer,
The substrate, the gate electrode, the insulator layer, and the semiconductor active layer are organic transistors having a stacked structure,
Organic semiconductor materials in which the semiconductor active layer is a fused aromatic compound, and
An organic transistor comprising, as component A, 0.1 to 10 ppm of an ionic substance, water, water, and oxygen and a compound having an aromatic structure identical to that of an organic semiconductor material of 0.5 to 4,000 ppm.
[2] The organic transistor according to [1] preferably contains 0.5 to 4000 ppm of a fused aromatic compound having the same aromatic structure as the organic semiconductor material as Component A.
[3] The organic transistor described in [1] or [2] is preferably a condensed aromatic compound in which the organic semiconductor material contains a thiophene ring in the condensed ring.
[4] In the organic transistor according to any one of [1] to [3], the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 1;
General formula 1
Figure JPOXMLDOC01-appb-C000005
In the general formula 1,
A 1 , B 1 and C 1 each independently represent a benzene ring, an azole ring, a furan ring or a thiophene ring, and plural B 1 s may be the same or different;
R 11 and R 12 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 11 and A 1 , or R 12 and C 1 are each independently bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof May be;
n1 is an integer of 1 to 5;
n11 and n12 are each independently an integer of 1 to 3.
[5] The organic transistor according to [4] is preferably a compound in which Component A is represented by the following General Formula 3;
General formula 3
Figure JPOXMLDOC01-appb-C000006
In the general formula 3,
A 3 , B 3 and C 3 are each independently a benzene ring, an azole ring, a furan ring or a thiophene ring, and a plurality of B 3 may be the same or different;
R 31 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom;
R 31 and A 3 may be bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof;
n3 is an integer of 1 to 5;
n31 and n32 are each independently an integer of 1 to 3.
[6] In the organic transistor according to any one of [1] to [3], the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 2;
General formula 2
Figure JPOXMLDOC01-appb-C000007
In the general formula 2,
Each of A 2 and B 2 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms;
R 21 and R 22 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 21 and a benzene ring, or R 22 and a benzene ring may be independently bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof Good.
[7] The organic transistor according to [6] is preferably a compound in which Component A is represented by the following General Formula 4;
General formula 4
Figure JPOXMLDOC01-appb-C000008
In the general formula 4,
A 4 and B 4 are each independently an aromatic hydrocarbon ring having 6 to 14 carbon atoms and an aromatic heterocycle having 4 to 12 carbon atoms;
R 41 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 41 and the benzene ring may be bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and a combination thereof;
R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group which is not identical in structure to R 22 of the organic semiconductor material.
[8] In the organic transistor according to any one of [2] to [7], 0.5 to 50 ppm of component A is preferably contained in the organic semiconductor layer.
[9] The organic transistor according to [1] preferably contains 0.1 to 10 ppm of an ionic substance as Component A.
[10] The organic transistor described in [1] preferably contains water or oxygen as Component A.
[11] The organic transistor according to [10] is preferably stored in a gas atmosphere having an oxygen content of 25% or less and a relative humidity of 10% or less for at least one hour or more.
 本発明によれば、キャリア移動度、キャリア移動度ばらつき、繰り返し駆動後の閾値電圧変化および繰り返し駆動後の閾値電圧変化ばらつきのいずれかが改善された有機トランジスタを提供することができる。 According to the present invention, it is possible to provide an organic transistor in which any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
図1は、本発明の有機トランジスタの一例の構造の断面を示す概略図である。FIG. 1 is a schematic view showing a cross section of the structure of an example of the organic transistor of the present invention. 図2は、実施例でFET特性測定用基板として製造した有機トランジスタの構造の断面を示す概略図である。FIG. 2 is a schematic view showing a cross section of the structure of the organic transistor manufactured as a substrate for measuring FET characteristics in the example.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、各一般式の説明において特に区別されずに用いられている場合における水素原子は同位体(重水素原子等)も含んでいることを表す。さらに、置換基を構成する原子は、その同位体も含んでいることを表す。
 本発明において、「芳香族構造」とは、有機化合物における芳香族性をもつ構造のことを言う。分子が芳香族性をもつためには、環状(4n+2)π電子系(Huckel則)であり、かつ、平面構造をもつという二つの条件を満たすことが必要となる。
Hereinafter, the present invention will be described in detail. The description of the configuration requirements described below may be made based on typical embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented using “to” means a range including the numerical values described before and after “to” as the lower limit and the upper limit.
In the present invention, a hydrogen atom in the case where it is used without being particularly distinguished in the description of each general formula means that it also includes isotopes (deuterium atom etc.). Furthermore, atoms constituting a substituent are also meant to include its isotope.
In the present invention, "aromatic structure" refers to a structure having aromaticity in an organic compound. In order for the molecule to have aromaticity, it is necessary to satisfy the two conditions of being a cyclic (4n + 2) π electron system (Huckel rule) and having a planar structure.
[有機トランジスタ]
 本発明の有機トランジスタは、基板上に絶縁体層を有し、絶縁体層の片側にお互いに離間したソース電極およびドレイン電極を有し、絶縁体層のもう片側にゲート電極を有し、ソース電極、ドレイン電極および絶縁体層に接した半導体活性層を有し、基板、ゲート電極、絶縁体層および半導体活性層は積層した構造の有機トランジスタであり、半導体活性層が縮環芳香族化合物である有機半導体材料、ならびに、成分Aとして、0.1~10ppmのイオン性物質、水、酸素および0.5~4000ppmの有機半導体材料と芳香族構造が同一である化合物のいずれかを含有する。
 このような構成により、本発明の有機トランジスタは、キャリア移動度、キャリア移動度ばらつき、繰り返し駆動後の閾値電圧変化および繰り返し駆動後の閾値電圧変化ばらつきのいずれかが改善される。
[Organic transistor]
The organic transistor of the present invention has an insulator layer on a substrate, has a source electrode and a drain electrode separated from each other on one side of the insulator layer, has a gate electrode on the other side of the insulator layer, An organic transistor having a semiconductor active layer in contact with an electrode, a drain electrode, and an insulator layer, and a substrate, a gate electrode, an insulator layer, and a semiconductor active layer are stacked. The semiconductor active layer is a condensed aromatic compound An organic semiconductor material contains, as component A, 0.1 to 10 ppm of an ionic substance, water, oxygen, and a compound having an aromatic structure identical to that of an organic semiconductor material of 0.5 to 4,000 ppm.
With such a configuration, in the organic transistor of the present invention, any one of carrier mobility, carrier mobility variation, threshold voltage change after repeated driving and threshold voltage change variation after repeated driving is improved.
 本発明の有機トランジスタは、繰り返し駆動後の閾値電圧変化が小さいことが好ましい。繰り返し駆動後の閾値電圧変化を小さくするためには、有機半導体材料のHOMOが浅すぎずかつ深すぎないこと、有機半導体材料の化学的安定性(特に耐空気酸化性、酸化還元安定性)、膜状態の熱安定性、空気や水分が入りこみにくい高い膜密度、電荷がたまりにくい欠陥の少ない膜質、等が必要である。すなわち、繰り返し駆動後の閾値電圧変化が小さい有機トランジスタは、半導体活性層が高い化学的安定性や膜密度等を有し、長期間に渡ってトランジスタとして有効に機能し得る。
 また、本発明の有機トランジスタは、繰り返し駆動後の閾値電圧変化ばらつきも小さいことが好ましい。
The organic transistor of the present invention preferably has a small change in threshold voltage after repeated driving. In order to reduce the threshold voltage change after repeated driving, the HOMO of the organic semiconductor material is not too shallow and not too deep, the chemical stability of the organic semiconductor material (especially, air oxidation resistance, redox stability), The thermal stability of the film state, a high film density in which air and moisture do not easily enter, and a film quality with few defects in which electric charges do not easily accumulate are required. That is, the organic transistor having a small change in threshold voltage after repeated driving has high chemical stability, film density, and the like in the semiconductor active layer, and can effectively function as a transistor over a long period of time.
Further, in the organic transistor of the present invention, it is preferable that variation in threshold voltage change after repeated driving be small.
 なお、有機EL素子材料として有用なものが、ただちに有機トランジスタ用半導体材料として有用であると言うことはできない。これは、有機EL素子と有機トランジスタでは、有機化合物に求められる特性が異なるためである。有機EL素子では通常膜の膜厚方向(通常数nm~数100nm)に電荷を輸送する必要があるのに対し、有機トランジスタでは膜面方向の電極間(通常数μm~数100μm)の長距離を電荷(キャリア)輸送する必要がある。このため、求められるキャリア移動度が格段に高い。そのため、有機トランジスタ用半導体材料としては、分子の配列秩序が高い、結晶性が高い有機化合物が求められている。また、高いキャリア移動度発現のため、π共役平面は基板に対して直立していることが好ましい。一方、有機EL素子では、発光効率を高めるため、発光効率が高く、面内での発光が均一な素子が求められている。通常、結晶性の高い有機化合物は、面内の電界強度不均一、発光不均一、発光クエンチ等、発光欠陥を生じさせる原因となるため、有機EL素子用材料は結晶性を低くし、アモルファス性の高い材料が望まれる。このため、有機EL素子材料を構成する有機化合物を有機半導体材料にそのまま転用しても、ただちに良好なトランジスタ特性を得ることができる訳ではない。
 また、同様に有機光電変換素子として有用なものも、ただちには、求められるキャリア移動度が格段に高い有機トランジスタ用半導体材料として有用であると言うことはできない。
In addition, it can not be said that what is useful as an organic EL element material is immediately useful as a semiconductor material for organic transistors. This is because the characteristics required of the organic compound are different between the organic EL element and the organic transistor. In the organic EL element, it is usually necessary to transport the charge in the film thickness direction (usually several nm to several hundreds of nm), whereas in the organic transistor, a long distance between the electrodes in the film surface direction (usually several μm to several hundred μm) Needs to be transported by charge (carrier). For this reason, the required carrier mobility is extremely high. Therefore, as a semiconductor material for an organic transistor, an organic compound having high molecular order and high crystallinity is required. Also, for high carrier mobility expression, it is preferable that the π conjugate plane is upright with respect to the substrate. On the other hand, in the organic EL element, in order to enhance the luminous efficiency, an element having high luminous efficiency and uniform in-plane luminescence is required. Usually, organic compounds having high crystallinity cause generation of light emission defects such as in-plane electric field intensity unevenness, light emission unevenness, light emission quenching, etc. Therefore, the material for organic EL devices has low crystallinity and is amorphous High material is desirable. Therefore, even if the organic compound constituting the organic EL element material is diverted as it is to the organic semiconductor material, it is not always possible to obtain good transistor characteristics immediately.
Similarly, those useful as organic photoelectric conversion elements can not immediately be said to be useful as semiconductor materials for organic transistors, for which the required carrier mobility is extremely high.
 以下、本発明の有機トランジスタの好ましい態様を説明する。 Hereinafter, the preferable aspect of the organic transistor of this invention is demonstrated.
<縮環芳香族化合物である有機半導体材料>
 本発明の有機トランジスタは、後述の半導体活性層が縮環芳香族化合物である有機半導体材料を含む。
<Organic semiconductor material that is a fused aromatic compound>
The organic transistor of the present invention includes an organic semiconductor material in which a semiconductor active layer described later is a condensed aromatic compound.
 本明細書において、「有機半導体材料」とは、半導体の特性を示す有機材料のことである。無機材料からなる半導体と同様に、正孔をキャリアとして伝導するp型(ホール輸送性)有機半導体材料と、電子をキャリアとして伝導するn型(電子輸送性)有機半導体材料がある。
 本発明に用いることができる縮環芳香族化合物はp型有機半導体材料、n型の有機半導体材料のどちらとして用いてもよいが、p型として用いることがより好ましい。有機半導体中のキャリアの流れやすさはキャリア移動度μで表される。キャリア移動度μは高い方がよく、1×10-4cm/Vs以上であることが好ましく、1×10-2cm/Vs以上であることがより好ましく、5×10-2cm/Vs以上であることが特に好ましく、1×10-1cm/Vs以上であることがより特に好ましく、2×10-1cm/Vs以上であることがよりさらに特に好ましい。キャリア移動度μは電界効果トランジスタ(FET)素子を作製したときの特性や飛行時間計測(TOF)法により求めることができる。
As used herein, "organic semiconductor material" refers to an organic material that exhibits the characteristics of a semiconductor. Similar to semiconductors made of inorganic materials, there are p-type (hole transporting) organic semiconductor materials conducting holes as carriers and n-type (electron transporting) organic semiconductor materials conducting electrons as carriers.
The fused aromatic compound that can be used in the present invention may be used as either a p-type organic semiconductor material or an n-type organic semiconductor material, but is more preferably used as a p-type. The flowability of carriers in the organic semiconductor is represented by carrier mobility μ. The carrier mobility μ is preferably high, and is preferably 1 × 10 −4 cm 2 / Vs or more, more preferably 1 × 10 −2 cm 2 / Vs or more, and 5 × 10 −2 cm 2 It is particularly preferable to be / Vs or more, more preferably 1 × 10 −1 cm 2 / Vs or more, and even more preferably 2 × 10 −1 cm 2 / Vs or more. The carrier mobility μ can be determined by characteristics when a field effect transistor (FET) element is manufactured or a time of flight measurement (TOF) method.
 本発明に用いることができる縮環芳香族化合物の縮環芳香族構造としては特に制限は無く、公知の縮環芳香族構造を挙げることができる。 There is no restriction | limiting in particular as a condensed ring aromatic structure of the condensed ring aromatic compound which can be used for this invention, A well-known condensed ring aromatic structure can be mentioned.
 縮環芳香族構造の中でも、ベンゼン環、アゾール環、フラン環またはチオフェン環を縮環中に含む縮環芳香族構造が好ましい。
 本発明に用いることができる縮環芳香族化合物は、有機半導体材料がチオフェン環を縮環中に含む縮環芳香族化合物であることが、キャリア移動度を改善する観点から、より好ましい。
 本発明に用いることができる縮環芳香族化合物の縮環芳香族構造は、後述の一般式1におけるA、BおよびCならびにn1で表される縮環芳香族構造、あるいは、後述の一般式2におけるAおよびBで表される縮環芳香族構造であることが特に好ましい。
Among the fused aromatic structures, a fused aromatic structure containing a benzene ring, an azole ring, a furan ring or a thiophene ring in the fused ring is preferable.
The fused aromatic compound that can be used in the present invention is more preferably a fused aromatic compound in which the organic semiconductor material contains a thiophene ring in the fused ring, from the viewpoint of improving carrier mobility.
The fused aromatic structure of the fused aromatic compound that can be used in the present invention is a fused aromatic structure represented by A 1 , B 1 and C 1 and n 1 in general formula 1 described later, or particularly preferably condensed ring aromatic structure represented by a 2 and B 2 in the general formula 2.
 本発明における有機半導体材料として用いることができる縮環芳香族化合物の縮環芳香族構造の好ましい例を以下に示す。本発明で用いることができる縮環芳香族構造は、これらの具体例により限定的に解釈されるべきものではない。また、縮環芳香族化合物の縮環芳香族構造は、各芳香環または各芳香族ヘテロ環が任意の置換基を有していてもよく、この置換基としてはハロゲン原子などを挙げることができる。 Preferred examples of the fused aromatic structure of the fused aromatic compound which can be used as the organic semiconductor material in the present invention are shown below. The fused aromatic structures which can be used in the present invention should not be construed as being limited by these specific examples. Further, in the fused aromatic structure of the fused aromatic compound, each aromatic ring or each aromatic heterocycle may have an optional substituent, and a halogen atom etc. can be mentioned as this substituent. .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明の有機トランジスタは、有機半導体材料が後述の一般式1で表される縮環芳香族化合物または一般式2で表される縮環芳香族化合物であることが好ましい。
 以下において、一般式1で表される縮環芳香族化合物と、一般式2で表される縮環芳香族化合物について、この順に説明する。
In the organic transistor of the present invention, the organic semiconductor material is preferably a condensed aromatic compound represented by the following general formula 1 or a condensed aromatic compound represented by the general formula 2.
Hereinafter, the fused aromatic compound represented by the general formula 1 and the fused aromatic compound represented by the general formula 2 will be described in this order.
(一般式1で表される縮環芳香族化合物)
一般式1
Figure JPOXMLDOC01-appb-C000012
一般式1中、
 A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
 R11およびR12はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R11とA、または、R12とCは、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
 n1は1~5の整数である;
 n11およびn12はそれぞれ独立に1~3の整数である。
(Condensed aromatic compound represented by the general formula 1)
General formula 1
Figure JPOXMLDOC01-appb-C000012
In the general formula 1,
A 1 , B 1 and C 1 each independently represent a benzene ring, an azole ring, a furan ring or a thiophene ring, and plural B 1 s may be the same or different;
R 11 and R 12 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 11 and A 1 , or R 12 and C 1 are each independently bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof May be;
n1 is an integer of 1 to 5;
n11 and n12 are each independently an integer of 1 to 3.
 一般式1中、A、BおよびCはそれぞれ独立にベンゼン環、フラン環またはチオフェン環であることが好ましく、ベンゼン環またはチオフェン環であることがより好ましい。A、BおよびCのうち、少なくとも一つはチオフェン環であることがより好ましい。
 一般式1中、A、BおよびCはさらなる置換基を有していてもよく、この置換基としてはハロゲン原子を挙げることができ、フッ素原子が好ましい。一般式1中、A、BおよびCはさらなる置換基を有さないことが好ましい。
In the general formula 1, A 1 , B 1 and C 1 are preferably each independently a benzene ring, a furan ring or a thiophene ring, and more preferably a benzene ring or a thiophene ring. More preferably, at least one of A 1 , B 1 and C 1 is a thiophene ring.
In the general formula 1, A 1 , B 1 and C 1 may have a further substituent, and the substituent may include a halogen atom, preferably a fluorine atom. In the general formula 1, preferably, A 1 , B 1 and C 1 have no further substituent.
 一般式1中、R11およびR12はそれぞれ独立にアルキル基、アリール基、ヘテロアリール基であることが好ましく、アルキル基であることがより好ましい。
 R11およびR12が表すアルキル基は、炭素数1~30であることが好ましく、炭素数3~18であることがより好ましく、炭素数5~14であることが特に好ましい。また、R11およびR12が表すアルキル基は直鎖であっても、分枝であっても、環状であってもよいが、直鎖または分枝であることが好ましく、直鎖であることがより好ましい。
 R11およびR12が表すアルケニル基は、炭素数2~30であることが好ましく、炭素数3~18であることがより好ましく、炭素数5~14であることが特に好ましい。
 R11およびR12が表すアルキニル基は、炭素数2~30であることが好ましく、炭素数3~18であることがより好ましく、炭素数5~14であることが特に好ましい。R11およびR12が表すアルキニル基はさらに置換基を有していることも好ましく、この置換基としてはトリアルキルシリル基(好ましくは炭素数1~3のアルキル基で3置換されたシリル基)、置換または無置換のフェニル基を挙げることができ、トリアルキルシリル基が好ましい。
 R11およびR12が表すアリール基は、炭素数6~30であることが好ましく、炭素数6~14であることがより好ましく、フェニル基であることが特に好ましい。
 R11およびR12が表すヘテロアリール基は、炭素数3~12であることが好ましく、炭素数4~8であることがより好ましく、炭素数4であることが特に好ましく、チエニル基であることがより特に好ましい。
In the general formula 1, R 11 and R 12 are preferably each independently an alkyl group, an aryl group or a heteroaryl group, and more preferably an alkyl group.
The alkyl group represented by R 11 and R 12 preferably has 1 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms. The alkyl group represented by R 11 and R 12 may be linear, branched or cyclic, but is preferably linear or branched, and is linear Is more preferred.
The alkenyl group represented by R 11 and R 12 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms.
The alkynyl group represented by R 11 and R 12 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 5 to 14 carbon atoms. The alkynyl group represented by R 11 and R 12 preferably further has a substituent, and as this substituent, a trialkylsilyl group (preferably a silyl group trisubstituted with an alkyl group of 1 to 3 carbon atoms) And a substituted or unsubstituted phenyl group, preferably a trialkylsilyl group.
The aryl group represented by R 11 and R 12 preferably has 6 to 30 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably a phenyl group.
The heteroaryl group represented by R 11 and R 12 preferably has 3 to 12 carbon atoms, more preferably 4 to 8 carbon atoms, and particularly preferably 4 carbon atoms, and is a thienyl group Is more particularly preferred.
 一般式1中、R11とA、または、R12とCは、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい。すなわち、R11とAの結合様式、または、R12とCの結合様式は、単結合、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせである。R11とAの結合様式、または、R12とCの結合様式は、単結合、酸素原子またはカルボニル基であることが好ましく、単結合であることがより好ましい。 In the general formula 1, each of R 11 and A 1 , or R 12 and C 1 independently represents any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof It may be connected via a chain. That is, the bonding mode of R 11 and A 1 or the bonding mode of R 12 and C 1 is a single bond, an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and the like It is a combination. The bonding mode of R 11 and A 1 or the bonding mode of R 12 and C 1 is preferably a single bond, an oxygen atom or a carbonyl group, and more preferably a single bond.
 一般式1中、n1は1~4であることが好ましく、2~4であることがより好ましい。 In the general formula 1, n1 is preferably 1 to 4, and more preferably 2 to 4.
 一般式1中、n11およびn12はそれぞれ独立に1または2であることが好ましく、1であることがより好ましい。 In the general formula 1, n11 and n12 are preferably each independently 1 or 2, and more preferably 1.
(一般式2で表される縮環芳香族化合物)
 本発明の有機トランジスタは、有機半導体材料が下記一般式2で表される縮環芳香族化合物であることが好ましい。
一般式2
Figure JPOXMLDOC01-appb-C000013
一般式2中、
 AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環または炭素数4~12の芳香族ヘテロ環であり;
 R21およびR22はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R21とベンゼン環、または、R22とベンゼン環は、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい。
(Condensed aromatic compound represented by the general formula 2)
In the organic transistor of the present invention, the organic semiconductor material is preferably a fused aromatic compound represented by the following general formula 2.
General formula 2
Figure JPOXMLDOC01-appb-C000013
In the general formula 2,
Each of A 2 and B 2 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms;
R 21 and R 22 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 21 and a benzene ring, or R 22 and a benzene ring may be independently bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof Good.
 一般式2中、AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環、炭素数6~12の芳香族ヘテロ環、アゾール環、フラン環またはチオフェン環であることが好ましく、炭素数6~14の芳香族炭化水素環、炭素数6~12の芳香族ヘテロ環、フラン環もしくはチオフェン環であることがより好ましく、炭素数6~14の芳香族炭化水素環、炭素数6~12の芳香族ヘテロ環またはチオフェン環であることが特に好ましく、炭素数6~14の芳香族炭化水素環または炭素数6~12の芳香族ヘテロ環であることがより特に好ましく、炭素数6~14の芳香族炭化水素環であることがさらにより特に好ましい。
 AおよびBが表す炭素数6~14の芳香族炭化水素環としては、ベンゼン環、ナフチレン環が特に好ましく、ナフチレン環がより特に好ましい。
 AおよびBが表す炭素数4~12の芳香族ヘテロ環としては、炭素数6~12の芳香族ヘテロ環、アゾール環、フラン環またはチオフェン環が好ましく、炭素数6~12の芳香族ヘテロ環がより好ましく、炭素数8~12の芳香族ヘテロ環が特に好ましく、チエノベンゼン環、チエノチオフェン環がより特に好ましく、チエノベンゼン環がさらにより特に好ましい。
 一般式2中、AおよびBはさらなる置換基を有していてもよく、この置換基としてはハロゲン原子を挙げることができる。一般式2中、AおよびBはさらなる置換基を有さないことが好ましい。
In the general formula 2, A 2 and B 2 are preferably each independently an aromatic hydrocarbon ring having 6 to 14 carbon atoms, an aromatic heterocycle having 6 to 12 carbon atoms, an azole ring, a furan ring or a thiophene ring More preferably an aromatic hydrocarbon ring having 6 to 14 carbon atoms, an aromatic heterocycle having 6 to 12 carbon atoms, a furan ring or a thiophene ring, and an aromatic hydrocarbon ring having 6 to 14 carbon atoms, the carbon number An aromatic heterocycle or a thiophene ring having 6 to 12 is particularly preferable, and an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 6 to 12 carbon atoms is more preferable, and the carbon number is more preferably Even more particularly preferred are 6 to 14 aromatic hydrocarbon rings.
As the aromatic hydrocarbon ring having 6 to 14 carbon atoms represented by A 2 and B 2 , a benzene ring and a naphthylene ring are particularly preferable, and a naphthylene ring is more particularly preferable.
The aromatic heterocycle having 4 to 12 carbon atoms represented by A 2 and B 2 is preferably an aromatic heterocycle having 6 to 12 carbon atoms, an azole ring, a furan ring or a thiophene ring, and an aromatic heterocycle having 6 to 12 carbon atoms The hetero ring is more preferable, the aromatic hetero ring having a carbon number of 8 to 12 is particularly preferable, the thienobenzene ring and the thienothiophene ring are more particularly preferable, and the thienobenzene ring is even more preferable.
In the general formula 2, A 2 and B 2 may have a further substituent, and the substituent can include a halogen atom. In the Formula 2, A 2 and B 2 preferably has no further substituents.
 一般式2中、R21およびR22はそれぞれ独立にアルキニル基、アルキル基、アルケニル基であることが好ましく、アルキニル基であることがより好ましい。
 R21およびR22が表すアルキル基は、炭素数1~30であることが好ましく、炭素数3~18であることがより好ましく、炭素数4~14であることが特に好ましい。また、R21およびR22が表すアルキル基は直鎖であっても、分枝であっても、環状であってもよいが、直鎖または分枝であることが好ましく、直鎖であることがより好ましい。
 R21およびR22が表すアルケニル基は、炭素数2~30であることが好ましく、炭素数3~18であることがより好ましく、炭素数4~14であることが特に好ましい。
 R21およびR22が表すアルキニル基は、炭素数2~30であることが好ましく、炭素数2~18であることがより好ましく、炭素数2~14であることが特に好ましい。R21およびR22が表すアルキニル基はさらに置換基を有していることも好ましく、この置換基としてはトリアルキルシリル基(好ましくは炭素数1~3のアルキル基で3置換されたシリル基)、トリアルキルアルキル基(好ましくは炭素数1~3のアルキル基で3置換されたメチル基)置換または無置換のフェニル基を挙げることができ、トリアルキルシリル基が好ましい。
 R11およびR12が表すアリール基は、炭素数6~30であることが好ましく、炭素数6~18であることがより好ましく、フェニル基であることが特に好ましい。
 R11およびR12が表すヘテロアリール基は、炭素数2~12であることが好ましく、炭素数3~8であることがより好ましく、炭素数4であることが特に好ましい。
In the general formula 2, R 21 and R 22 are preferably each independently an alkynyl group, an alkyl group or an alkenyl group, and more preferably an alkynyl group.
The alkyl group represented by R 21 and R 22 preferably has 1 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 4 to 14 carbon atoms. The alkyl group represented by R 21 and R 22 may be linear, branched or cyclic, but is preferably linear or branched, and is linear Is more preferred.
The alkenyl group represented by R 21 and R 22 preferably has 2 to 30 carbon atoms, more preferably 3 to 18 carbon atoms, and particularly preferably 4 to 14 carbon atoms.
The alkynyl group represented by R 21 and R 22 preferably has 2 to 30 carbon atoms, more preferably 2 to 18 carbon atoms, and particularly preferably 2 to 14 carbon atoms. The alkynyl group represented by R 21 and R 22 preferably further has a substituent, and as this substituent, a trialkylsilyl group (preferably a silyl group substituted by an alkyl group having 1 to 3 carbon atoms) is preferable And a trialkylalkyl group (preferably a methyl group trisubstituted with an alkyl group having 1 to 3 carbon atoms) substituted or unsubstituted phenyl group, preferably a trialkylsilyl group.
The aryl group represented by R 11 and R 12 preferably has 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably a phenyl group.
The heteroaryl group represented by R 11 and R 12 preferably has 2 to 12 carbon atoms, more preferably 3 to 8 carbon atoms, and particularly preferably 4 carbon atoms.
 一般式2中、R21とベンゼン環、または、R22とベンゼン環は、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい。すなわち、R21とベンゼン環の結合様式、または、R22とベンゼン環の結合様式は、単結合、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせである。R21とベンゼン環の結合様式、または、R22とベンゼン環の結合様式は、単結合であることがより好ましい。 In General Formula 2, R 21 and a benzene ring, or R 22 and a benzene ring are each independently via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof You may combine. That is, the bonding mode of R 21 and a benzene ring, or the bonding mode of R 22 and a benzene ring is a single bond, an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and the like It is a combination. The bonding mode of R 21 and a benzene ring or the bonding mode of R 22 and a benzene ring is more preferably a single bond.
(縮環芳香族化合物の具体的化合物例)
 本発明における有機半導体材料として用いることができる縮環芳香族化合物の具体的化合物例を以下に示す。
(Specific examples of fused aromatic compounds)
Specific examples of the fused aromatic compound which can be used as the organic semiconductor material in the present invention are shown below.
一般式(X)
Figure JPOXMLDOC01-appb-C000014
General formula (X)
Figure JPOXMLDOC01-appb-C000014
 一般式(X)中、RX1、AおよびRX2は下記表中に示す構造である。
 下記表中「*」は結合位置を表し、Meはメチル基を表し、Etはエチル基を表し、Phはフェニル基を表し、SiMeはトリエチルシリル基を表し、SiEtはトリエチルシリル基を表す。
In the general formula (X), R X1 , A x and R X2 are the structures shown in the following table.
In the following table, “*” represents a bonding position, Me represents a methyl group, Et represents an ethyl group, Ph represents a phenyl group, SiMe 3 represents a triethylsilyl group, and SiEt 3 represents a triethylsilyl group .
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記縮環芳香族縮環芳香族化合物は、繰り返し構造をとってもよく、低分子でも高分子でもよい。縮環芳香族縮環芳香族化合物が低分子化合物の場合は、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、850以下であることが特に好ましい。分子量を上記上限値以下とすることにより、溶媒への溶解性を高めることができるため好ましい。
 一方で、膜の膜質安定性の観点からは、分子量は400以上であることが好ましく、450以上であることがより好ましく、500以上であることがさらに好ましい。
 また、縮環芳香族縮環芳香族化合物が繰り返し構造を有する高分子化合物の場合は、重量平均分子量が3万以上であることが好ましく、5万以上であることがより好ましく、10万以上であることがさらに好ましい。縮環芳香族縮環芳香族化合物が繰り返し構造を有する高分子化合物である場合に、重量平均分子量を上記下限値以上とすることにより、分子間相互作用を高めることができ、高い移動度が得られるため好ましい。
 繰り返し構造を有する高分子化合物としては、縮環芳香族縮環芳香族化合物が少なくとも1つ以上のアリーレン基、ヘテロアリーレン基(チオフェン、ビチオフェン)を表して繰り返し構造を示すπ共役ポリマーや、縮環芳香族縮環芳香族化合物が高分子主鎖に側鎖を介して結合したペンダント型ポリマーがあげられ、高分子主鎖としては、ポリアクリレート、ポリビニル、ポリシロキサンなどが好ましく、側鎖としては、アルキレン基、ポリエチレンオキシド基などが好ましい。
The fused aromatic fused aromatic compound may have a repeating structure and may be a low molecule or a polymer. When the fused aromatic fused aromatic compound is a low molecular weight compound, the molecular weight is preferably 3000 or less, more preferably 2000 or less, still more preferably 1000 or less, and 850 or less Is particularly preferred. By setting the molecular weight to the upper limit value or less, the solubility in a solvent can be enhanced, which is preferable.
On the other hand, the molecular weight is preferably 400 or more, more preferably 450 or more, and still more preferably 500 or more, from the viewpoint of the film quality stability of the film.
When the fused aromatic fused aromatic compound is a polymer compound having a repeating structure, the weight average molecular weight is preferably 30,000 or more, more preferably 50,000 or more, and 100,000 or more. It is further preferred that When the fused aromatic fused aromatic compound is a polymer compound having a repeating structure, the intermolecular interaction can be enhanced by setting the weight average molecular weight to the above lower limit value, and high mobility is obtained. Because it is
As a polymer compound having a repeating structure, a π-conjugated polymer in which a fused aromatic fused ring aromatic compound represents at least one or more arylene group or heteroarylene group (thiophene, bithiophene) and exhibits a repeating structure, or a fused ring As the polymer main chain, polyacrylates, polyvinyls, polysiloxanes and the like are preferable, and as the side chain, there are pendent polymers in which an aromatic fused aromatic compound is bonded to the polymer main chain via a side chain. Alkylene group, polyethylene oxide group and the like are preferable.
 縮環芳香族縮環芳香族化合物は、特開2013-254874号公報、特開2010-182992号公報、特許第4883381号、特開2004-83650号公報、特許第4783282号、特許第4581062号および後述の実施例に記載の各文献に従って合成することができる。
 縮環芳香族縮環芳香族化合物の合成において、いかなる反応条件を用いてもよい。反応溶媒としては、いかなる溶媒を用いてもよい。また、環形成反応促進のために、酸または塩基を用いることが好ましく、特に塩基を用いることが好ましい。最適な反応条件は、目的とする化合物の構造により異なる。
The fused aromatic fused aromatic compounds are disclosed in JP-A-2013-254874, JP-A-2010-182992, JP-A-4883381, JP-A-2004-83650, JP-A-4788322, JP-A-4581062 and the like. It can be synthesized according to each of the documents described in the examples below.
Any reaction conditions may be used in the synthesis of fused aromatic fused aromatic compounds. As a reaction solvent, any solvent may be used. In addition, it is preferable to use an acid or a base to accelerate the ring formation reaction, and it is particularly preferable to use a base. The optimal reaction conditions depend on the structure of the target compound.
 各種置換基を有する合成中間体は公知の反応を組み合わせて合成することができる。また、各置換基はいずれの中間体の段階で導入してもよい。中間体の合成後は、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製する事が好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。 Synthetic intermediates having various substituents can be synthesized by combining known reactions. Also, each substituent may be introduced at any intermediate stage. After synthesis of the intermediate, purification by column chromatography, recrystallization or the like is preferably performed, followed by purification by sublimation purification. By sublimation purification, not only organic impurities can be separated but also inorganic salts, residual solvents and the like can be effectively removed.
<成分A>
 本発明の有機トランジスタは、後述の半導体活性層が成分Aとして、0.1~10ppmのイオン性物質、水、酸素および0.5~4000ppmの有機半導体材料と芳香族構造が同一である化合物のいずれかを含有する。
 これらの成分Aの中でも、本発明の有機トランジスタは、半導体活性層が成分Aとして0.1~10ppmのイオン性物質および0.5~4000ppmの有機半導体材料と芳香族構造が同一である縮環芳香族化合物のいずれかを含有することが好ましく、成分Aとして0.5~4000ppmの有機半導体材料と芳香族構造が同一である縮環芳香族化合物を含有することがより好ましい。
 以下、成分Aの好ましい態様について説明する。
<Component A>
The organic transistor according to the present invention is a compound in which the semiconductor active layer described later contains, as component A, an ionic substance of 0.1 to 10 ppm, water, oxygen, and an organic semiconductor material having an aromatic structure of 0.5 to 4000 ppm Contains either.
Among these components A, the organic transistor of the present invention is a condensed ring whose semiconductor active layer has the same aromatic structure as an ionic substance of 0.1 to 10 ppm and 0.5 to 4000 ppm as component A. It is preferable to contain any of aromatic compounds, and it is more preferable to contain, as component A, a condensed aromatic compound whose aromatic structure is identical to that of the organic semiconductor material of 0.5 to 4000 ppm.
Hereinafter, the preferable aspect of the component A is demonstrated.
(有機半導体材料と芳香族構造が同一である縮環芳香族化合物)
 半導体活性層中に含まれる上述の成分Aが、有機半導体材料と芳香族構造が同一である縮環芳香族化合物である場合について説明する。この場合、これらの構造類似性のため、成分Aが有機半導体材料の結晶表面に吸着し、結晶成長速度を制御することにより、結晶サイズを均一化させることができるために、キャリア移動度ばらつき、および、繰り返し駆動後の閾値電圧変化ばらつきが安定化すると考えられる。
 半導体活性層中に含まれる上述の成分Aとしての有機半導体材料と芳香族構造が同一である縮環芳香族化合物の含有量は、0.5~4000ppmであることが好ましく、0.5~500ppmであることがより好ましく、0.5~50ppmであることが特に好ましい。
 半導体活性層中、上述の成分Aとしての有機半導体材料と芳香族構造が同一である縮環芳香族化合物の含有量は、繰り返し駆動後の閾値電圧変化ばらつきを改善する観点からは、0.5~5ppmであることがより特に好ましく、0.5~1ppmであることがさらにより特に好ましい。
 一方、半導体活性層中、上述の成分Aとしての有機半導体材料と芳香族構造が同一である縮環芳香族化合物の含有量は、キャリア移動度ばらつきを改善する観点からは、1.5~50ppmであることがより特に好ましく、5~50ppmであることがさらにより特に好ましい。
(Fused-ring aromatic compound having the same aromatic structure as the organic semiconductor material)
The case where the above-mentioned component A contained in the semiconductor active layer is a fused aromatic compound having the same aromatic structure as the organic semiconductor material will be described. In this case, due to these structural similarities, component A is adsorbed on the crystal surface of the organic semiconductor material, and the crystal growth rate can be controlled to make the crystal size uniform, so that the carrier mobility varies, And, it is considered that variation in threshold voltage change after repeated driving is stabilized.
The content of the fused aromatic compound having the same aromatic structure as the organic semiconductor material as the component A contained in the semiconductor active layer is preferably 0.5 to 4000 ppm, and more preferably 0.5 to 500 ppm Is more preferably 0.5 to 50 ppm.
The content of the fused aromatic compound having the same aromatic structure as the organic semiconductor material as the component A in the semiconductor active layer is 0.5 from the viewpoint of improving the variation in threshold voltage change after repeated driving. It is more particularly preferred that it is ~ 5 ppm and even more particularly preferred that it is 0.5 to 1 ppm.
On the other hand, the content of the fused aromatic compound having the same aromatic structure as the above-mentioned organic semiconductor material as the component A in the semiconductor active layer is 1.5 to 50 ppm from the viewpoint of improving the carrier mobility variation. Is more particularly preferred and 5 to 50 ppm is even more particularly preferred.
 半導体活性層中に含まれる、成分Aとしての有機半導体材料と芳香族構造が同一である縮環芳香族化合物の含有量を制御する方法としては特に制限はないが、分取クロマトグラフィーなどの公知の精製方法を用いて、合成された有機半導体材料を精製し、所望の有機半導体材料と芳香族構造が同一である縮環芳香族化合物の含有量のフラクションを得る方法などを挙げることができる。 There is no particular limitation on the method of controlling the content of the fused aromatic compound having the same aromatic structure as the organic semiconductor material as the component A contained in the semiconductor active layer, but known methods such as preparative chromatography A method of purifying the synthesized organic semiconductor material using the purification method of to obtain a fraction of the content of the fused aromatic compound having the same aromatic structure as the desired organic semiconductor material can be mentioned.
 有機半導体材料と芳香族構造が同一である縮環芳香族化合物である成分A中、有機半導体材料と同一である芳香族構造としては特に制限はないが、上述の縮環芳香族化合物の縮環芳香族構造を挙げることができる。有機半導体材料と同一である芳香族構造の好ましい範囲は、上述の縮環芳香族化合物の縮環芳香族構造の好ましい範囲と同様である。
 本発明に用いることができる有機半導体材料と同一である芳香族構造は、後述の一般式3におけるA、BおよびCならびにn1で表される縮環芳香族構造、あるいは、後述の一般式4におけるAおよびBで表される縮環芳香族構造であることが特に好ましい。
In the component A which is a fused aromatic compound in which the organic semiconductor material and the aromatic structure are identical, the aromatic structure which is the same as the organic semiconductor material is not particularly limited, but the condensed ring of the fused aromatic compound Aromatic structures can be mentioned. The preferred range of the aromatic structure which is the same as the organic semiconductor material is the same as the preferred range of the fused aromatic structure of the fused aromatic compound described above.
The aromatic structure which is the same as the organic semiconductor material that can be used in the present invention is a fused aromatic structure represented by A 1 , B 1 and C 1 and n 1 in general formula 3 described later, or a general structure described later Particularly preferred are fused aromatic structures represented by A 2 and B 2 in the formula 4.
 本発明の有機トランジスタは、有機半導体材料が上述の一般式1で表される縮環芳香族化合物である場合、有機半導体材料と芳香族構造が同一である縮環芳香族化合物である成分Aが下記一般式3で表される化合物であることが好ましい。
一般式3
Figure JPOXMLDOC01-appb-C000021
一般式3中、
 A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
 R31はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R32は水素原子、ハロゲン原子、置換リン原子または置換酸素原子であり;
 R31とAは、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
 n3は1~5の整数である;
 n31およびn32はそれぞれ独立に1~3の整数である。
In the organic transistor of the present invention, when the organic semiconductor material is a fused aromatic compound represented by the above-mentioned general formula 1, component A, which is a fused aromatic compound having the same aromatic structure as the organic semiconductor material, is It is preferable that it is a compound represented by following General formula 3.
General formula 3
Figure JPOXMLDOC01-appb-C000021
In the general formula 3,
A 3 , B 3 and C 3 are each independently a benzene ring, an azole ring, a furan ring or a thiophene ring, and a plurality of B 3 may be the same or different;
R 31 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom;
R 31 and A 3 may be bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof;
n3 is an integer of 1 to 5;
n31 and n32 are each independently an integer of 1 to 3.
 一般式3中におけるA、BおよびCの好ましい範囲は、一般式1中におけるA、BおよびCの好ましい範囲と同様である。
 一般式3中におけるR31の好ましい範囲は、一般式1中におけるR11の好ましい範囲と同様である。
 一般式3中におけるR31とAの結合様式の好ましい範囲は、一般式1中におけるR11とAの結合様式の好ましい範囲と同様である。
 一般式3中におけるn3の好ましい範囲は、一般式1中におけるn1の好ましい範囲と同様である。
 一般式3中におけるn31の好ましい範囲は、一般式1中におけるn11の好ましい範囲と同様である。
The preferred ranges of A 3 , B 3 and C 3 in the general formula 3 are the same as the preferred ranges of A 1 , B 1 and C 1 in the general formula 1.
The preferred range of R 31 in General Formula 3 is the same as the preferred range of R 11 in General Formula 1.
The preferred range of the bonding mode of R 31 and A 3 in the general formula 3 is the same as the preferred range of the bonding mode of R 11 and A 1 in the general formula 1.
The preferred range of n3 in the general formula 3 is the same as the preferred range of n1 in the general formula 1.
The preferred range of n31 in the general formula 3 is the same as the preferred range of n11 in the general formula 1.
 一般式3中、R32は水素原子、ハロゲン原子、置換リン原子または置換酸素原子であり、水素原子、ハロゲン原子または置換酸素原子であることが好ましく、水素原子であることがより好ましい。
 R32が表すハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子または臭素原子が好ましい。
 R32が表す置換リン原子としては、ジフェニルホスフィノ基、ジーt-ブチルフォスフィノ基、ジアリールホスフィノ基を挙げることができる。
 R32が表す置換酸素原子としては、ヒドロキシル基、アルコキシ基(好ましくは炭素数1~18のアルコキシ基、より好ましくはメチル基)、パーフルオロアルキルスルホニルオキシ基(好ましくはトリフルオロメチルスルホニルオキシ基)を挙げることができ、ヒドロキシル基、アルコキシ基、トリフルオロメチルスルホニルオキシ基が好ましい。
In the general formula 3, R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom, preferably a hydrogen atom, a halogen atom or a substituted oxygen atom, and more preferably a hydrogen atom.
The halogen atom R 32 represents a chlorine atom, a bromine atom, it may be mentioned iodine atom, a chlorine atom or a bromine atom.
Examples of the substituted phosphorus atom represented by R 32 include diphenyl phosphino group, di-t-butyl phosphino group and diaryl phosphino group.
As a substituted oxygen atom represented by R 32 , a hydroxyl group, an alkoxy group (preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group), a perfluoroalkylsulfonyloxy group (preferably a trifluoromethylsulfonyloxy group) The hydroxyl group, the alkoxy group, and the trifluoromethyl sulfonyloxy group are preferable.
 一般式3中、n32は1~3の整数であり、1または2であることが好ましく、1であることがより好ましい。 In the general formula 3, n32 is an integer of 1 to 3, preferably 1 or 2, and more preferably 1.
 本発明の有機トランジスタは、有機半導体材料が上述の一般式2で表される縮環芳香族化合物である場合、有機半導体材料と芳香族構造が同一である縮環芳香族化合物である成分Aが下記一般式4で表される化合物であることが好ましい。
一般式4
Figure JPOXMLDOC01-appb-C000022
一般式4中、
 AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環または炭素数4~14の芳香族ヘテロ環であり;
 R41はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
 R41とベンゼン環は、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい;
 R42は水素原子、ハロゲン原子、置換リン原子、置換酸素原子または有機半導体材料のR22と同一構造ではないアルキニル基である。
In the organic transistor according to the present invention, when the organic semiconductor material is a fused aromatic compound represented by the above general formula 2, component A, which is a fused aromatic compound having the same aromatic structure as the organic semiconductor material, is It is preferable that it is a compound represented by following General formula 4.
General formula 4
Figure JPOXMLDOC01-appb-C000022
In the general formula 4,
Each of A 4 and B 4 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 14 carbon atoms;
R 41 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
R 41 and the benzene ring may be bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and a combination thereof;
R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group which is not identical in structure to R 22 of the organic semiconductor material.
 一般式4中におけるAおよびBの好ましい範囲は、一般式2中におけるAおよびBの好ましい範囲と同様である。
 一般式4中におけるR41の好ましい範囲は、一般式2中におけるR21の好ましい範囲と同様である。
 一般式4中におけるR41とベンゼン環の結合様式の好ましい範囲は、一般式2中におけるR21とベンゼン環の結合様式の好ましい範囲と同様である。
Preferred ranges of A 4 and B 4 in the general formula 4 are the same as the preferred ranges of A 2 and B 2 in the general formula 2.
The preferred range of R 41 in the general formula 4 is the same as the preferred range of R 21 in the general formula 2.
The preferred range of the bonding mode of R 41 and the benzene ring in General Formula 4 is the same as the preferred range of the bonding mode of R 21 and the benzene ring in General Formula 2.
 一般式4中、R42は水素原子、ハロゲン原子、置換リン原子、置換酸素原子または有機半導体材料のR22と同一構造ではないアルキニル基であり、水素原子であることがより好ましい。
 R42が表すハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子または臭素原子が好ましい。
 R42が表す置換リン原子としては、ジフェニルホスフィノ基、ジーt-ブチルフォスフィノ基、ジアリールホスフィノ基を挙げることができる。
 R42が表す置換酸素原子としては、ヒドロキシル基、アルコキシ基(好ましくは炭素数1~18のアルコキシ基、より好ましくはメチル基)、パーフルオロアルキルスルホニルオキシ基(好ましくはトリフルオロメチルスルホニルオキシ基)を挙げることができ、ヒドロキシル基、アルコキシ基、トリフルオロメチルスルホニルオキシ基が好ましい。
 R42が表す有機半導体材料のR22と同一構造ではないアルキニル基としては、炭素数2~18のアルキニル基が好ましく、炭素数2~14のアルキニル基がより好ましく、炭素数2のアルキニル基が特に好ましい。R42が表す有機半導体材料のR22と同一構造ではないアルキニル基はさらに置換基を有していてもよいが、無置換であることが好ましい。
In the general formula 4, R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group not having the same structure as R 22 of the organic semiconductor material, more preferably a hydrogen atom.
The halogen atom R 42 represents a chlorine atom, a bromine atom, it may be mentioned iodine atom, a chlorine atom or a bromine atom.
Examples of the substituted phosphorus atom represented by R 42 include a diphenyl phosphino group, a di-t-butyl phosphino group, and a diaryl phosphino group.
The substituted oxygen atom represented by R 42 includes a hydroxyl group, an alkoxy group (preferably an alkoxy group having 1 to 18 carbon atoms, more preferably a methyl group), a perfluoroalkylsulfonyloxy group (preferably a trifluoromethylsulfonyloxy group) The hydroxyl group, the alkoxy group, and the trifluoromethyl sulfonyloxy group are preferable.
As an alkynyl group which is not the same structure as R 22 of the organic semiconductor material represented by R 42 , an alkynyl group having 2 to 18 carbon atoms is preferable, an alkynyl group having 2 to 14 carbon atoms is more preferable, and an alkynyl group having 2 carbon atoms is Particularly preferred. The alkynyl group which is not the same structure as R 22 of the organic semiconductor material represented by R 42 may further have a substituent, but is preferably unsubstituted.
 成分Aとして用いることができる、有機半導体材料と芳香族構造が同一である縮環芳香族化合物の例を示す。 The example of the condensed aromatic compound which can be used as component A and whose organic semiconductor material and aromatic structure are the same is shown.
一般式(A)
Figure JPOXMLDOC01-appb-C000023
General formula (A)
Figure JPOXMLDOC01-appb-C000023
 一般式(A)中、RA1、AおよびRA2は下記表中に示す構造である。
 下記表中「*」は結合位置を表し、Meはメチル基を表し、Etはエチル基を表し、Phはフェニル基を表し、SiMeはトリエチルシリル基を表し、SiEtはトリエチルシリル基を表す。
In general formula (A), R A1 , A A and R A2 are structures shown in the following table.
In the following table, “*” represents a bonding position, Me represents a methyl group, Et represents an ethyl group, Ph represents a phenyl group, SiMe 3 represents a triethylsilyl group, and SiEt 3 represents a triethylsilyl group .
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
(イオン性物質)
 半導体活性層中に含まれる上述の成分Aが、イオン性物質である場合について説明する。この場合、キャリア散乱量が少ない状態への収斂が起こるためにキャリア移動度ばらつきが安定化すると考えられ、ドープ量が少ない状態への収斂が起こるために繰り返し駆動後の閾値電圧変化ばらつきが安定化すると考えられる。
 本発明の有機トランジスタは、半導体活性層が、成分Aとして、0.1~10ppmのイオン性物質を含む態様が好ましく、0.3~5ppmのイオン性物質を含む態様がより好ましく、0.5~4ppmのイオン性物質を含む態様が特に好ましい。
 半導体活性層中に含まれる、成分Aとしてのイオン性物質が複数種である場合、成分Aとしてのイオン性物質の含有量は、複数種のイオン性物質の合計含有量が上述の範囲であることが好ましい。
(Ionic substance)
The case where the above-mentioned component A contained in the semiconductor active layer is an ionic substance will be described. In this case, it is thought that carrier mobility variation is stabilized because convergence to a state where the carrier scattering amount is small occurs, and convergence to a state where the doping amount is small occurs and threshold voltage change variation after repeated driving is stabilized. It is thought that.
In the organic transistor of the present invention, the semiconductor active layer preferably contains 0.1 to 10 ppm of an ionic substance as Component A, more preferably 0.3 to 5 ppm of an ionic substance. Particular preference is given to embodiments comprising ̃4 ppm of ionic substances.
When the ionic substance as the component A contained in the semiconductor active layer is a plurality of types, the content of the ionic substance as the component A is such that the total content of the plurality of ionic substances is in the above-mentioned range Is preferred.
 半導体活性層中に含まれる、成分Aとしてのイオン性物質の含有量を制御する方法としては特に制限はないが、カラムクロマトグラフィーなどの公知の精製方法を用いて有機半導体材料を精製する方法などを挙げることができる。 The method of controlling the content of the ionic substance as component A contained in the semiconductor active layer is not particularly limited, but a method of purifying the organic semiconductor material using a known purification method such as column chromatography, etc. Can be mentioned.
 イオン性物質としては特に制限はないが、ナトリウムイオン、カリウムイオン、マグネシウムイオン、亜鉛イオン、鉄イオン、パラジウムイオン、白金イオン、金イオン、セシウムイオンなどを挙げることができる。 The ionic substance is not particularly limited, and examples thereof include sodium ion, potassium ion, magnesium ion, zinc ion, iron ion, palladium ion, platinum ion, gold ion, cesium ion and the like.
(水、酸素)
 半導体活性層中に含まれる上述の成分Aが、水および酸素のいずれかである場合について説明する。この場合、トラップ量が少ない状態への収斂が起こるためにキャリア移動度ばらつきが安定化すると考えられ、ドープ量が少ない状態への収斂が起こるために繰り返し駆動後の閾値電圧変化ばらつきが安定化すると考えられる。
 本発明の有機トランジスタは、半導体活性層が、成分Aとして、水および酸素のいずれかを含む態様が好ましい。
 半導体活性層が成分Aとして水を含む態様では、半導体活性層が成分Aとして水を0.1~10ppm含むことが好ましく、0.3~5ppm含むことがより好ましく、0.5~4ppm含むことが特に好ましい。
 半導体活性層が成分Aとして酸素を含む態様では、半導体活性層が成分Aとして酸素を0.1~10ppm含むことが好ましく、0.3~5ppm含むことがより好ましく、0.5~4ppm含むことが特に好ましい。
(Water, oxygen)
The case where the above-mentioned component A contained in the semiconductor active layer is either water or oxygen will be described. In this case, convergence to a state where the trap amount is small occurs and carrier mobility variation is considered to be stabilized, and convergence to a state where the doping amount is small occurs and threshold voltage change variation after repeated driving is stabilized. Conceivable.
In the organic transistor of the present invention, the aspect in which the semiconductor active layer contains either water or oxygen as the component A is preferable.
In the embodiment where the semiconductor active layer contains water as the component A, the semiconductor active layer preferably contains 0.1 to 10 ppm of water as the component A, more preferably 0.3 to 5 ppm, and further preferably 0.5 to 4 ppm. Is particularly preferred.
In the embodiment in which the semiconductor active layer contains oxygen as component A, the semiconductor active layer preferably contains 0.1 to 10 ppm, more preferably 0.3 to 5 ppm, of oxygen as component A, more preferably 0.5 to 4 ppm. Is particularly preferred.
 半導体活性層中に含まれる、成分Aとしての水および酸素のいずれかの含有量を制御する方法としては特に制限はないが、特定のガス雰囲気下で保管する方法などを挙げることができる。本発明の有機トランジスタは、半導体活性層が、成分Aとして、水および酸素のいずれかを含む場合、少なくとも1時間以上、酸素含率25%以下、かつ、相対湿度10%以下のガス雰囲気下で、保管されてなることが好ましい。 The method for controlling the content of either water or oxygen as the component A contained in the semiconductor active layer is not particularly limited, but a method of storage under a specific gas atmosphere can be mentioned. In the organic transistor of the present invention, when the semiconductor active layer contains any of water and oxygen as the component A, it is under a gas atmosphere of oxygen content 25% or less and relative humidity 10% or less for at least one hour or more , Preferably stored.
<有機トランジスタの構造>
 本発明の有機トランジスタの構造は、基板上に絶縁体層を有し、絶縁体層の片側にお互いに離間したソース電極およびドレイン電極を有し、絶縁体層のもう片側にゲート電極を有し、ソース電極、ドレイン電極および絶縁体層に接した半導体活性層を有し、基板、ゲート電極、絶縁体層および半導体活性層は積層した構造の有機トランジスタである。
 本発明の有機トランジスタは、有機電界効果トランジスタ(Field Effect Transistor、FET)として用いられることが好ましく、ゲート-チャンネル間が絶縁されている絶縁ゲート型FETとして用いられることがより好ましい。
 以下、本発明の有機トランジスタの好ましい構造の態様について、図面を用いて詳しく説明するが、本発明はこれらの態様に限定されるものではない。
<Structure of organic transistor>
The structure of the organic transistor of the present invention has an insulator layer on a substrate, has a source electrode and a drain electrode separated from each other on one side of the insulator layer, and has a gate electrode on the other side of the insulator layer. An organic transistor having a semiconductor active layer in contact with a source electrode, a drain electrode, and an insulator layer, and a substrate, a gate electrode, an insulator layer, and a semiconductor active layer being stacked.
The organic transistor of the present invention is preferably used as an organic field effect transistor (Field Effect Transistor, FET), and more preferably used as an insulated gate FET in which the gate and the channel are insulated.
Hereafter, although the aspect of the preferable structure of the organic transistor of this invention is demonstrated in detail using drawing, this invention is not limited to these aspects.
(積層構造)
 有機電界効果トランジスタの積層構造としては特に制限はなく、公知の様々な構造のものとすることができる。
 本発明の有機トランジスタの構造の一例としては、最下層の基板の上面に、電極、絶縁体層、半導体活性層(有機半導体層)、2つの電極を順に配置した構造(ボトムゲート・トップコンタクト型)を挙げることができる。この構造では、最下層の基板の上面の電極は基板の一部に設けられ、絶縁体層は、電極以外の部分で基板と接するように配置される。また、半導体活性層の上面に設けられる2つの電極は、互いに隔離して配置される。
 ボトムゲート・トップコンタクト型素子の構成を図1に示す。図1は、本発明の有機トランジスタの一例の構造の断面を示す概略図である。図1の有機トランジスタは、最下層に基板11を配置し、その上面の一部に電極12を設け、さらにこの電極12を覆い、かつ電極12以外の部分で基板11と接するように絶縁体層13を設けている。さらに絶縁体層13の上面に半導体活性層14を設け、その上面の一部に2つの電極15aと15bとを隔離して配置している。
 図1に示した有機トランジスタは、電極12がゲートであり、電極15aと電極15bはそれぞれドレインまたはソースである。また、図1に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
(Laminated structure)
There is no restriction | limiting in particular as laminated structure of an organic field effect transistor, It can be set as a thing of well-known various structures.
As an example of the structure of the organic transistor of the present invention, a structure in which an electrode, an insulator layer, a semiconductor active layer (organic semiconductor layer), and two electrodes are arranged in order on the upper surface of the lowermost substrate (bottom gate and top contact type Can be mentioned. In this structure, the electrode on the upper surface of the lowermost substrate is provided on a part of the substrate, and the insulator layer is arranged to be in contact with the substrate at a portion other than the electrode. Also, the two electrodes provided on the upper surface of the semiconductor active layer are arranged separately from each other.
The configuration of the bottom gate top contact device is shown in FIG. FIG. 1 is a schematic view showing a cross section of the structure of an example of the organic transistor of the present invention. In the organic transistor of FIG. 1, the substrate 11 is disposed in the lowermost layer, the electrode 12 is provided on a part of the upper surface, and the electrode 12 is covered, and the insulator layer is in contact with the substrate 11 in parts other than the electrode 12 13 is provided. Furthermore, a semiconductor active layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are arranged separately on a part of the upper surface.
In the organic transistor shown in FIG. 1, the electrode 12 is a gate, and the electrode 15a and the electrode 15b are a drain or a source, respectively. The organic transistor shown in FIG. 1 is an insulated gate FET in which the channel, which is a current path between the drain and the source, and the gate are insulated.
 本発明の有機トランジスタの構造の一例としては、ボトムゲート・ボトムコンタクト型素子を挙げることができる。
 ボトムゲート・ボトムコンタクト型素子の構成を図2に示す。図2は実施例でFET特性測定用基板として製造した有機トランジスタの構造の断面を示す概略図である。図2の有機トランジスタは、最下層に基板31を配置し、その上面の一部に電極32を設け、さらにこの電極32を覆い、かつ電極32以外の部分で基板31と接するように絶縁体層33を設けている。さらに絶縁体層33の上面に半導体活性層35を設け、電極34aと34bが半導体活性層35の下部にある。
 図2に示した有機トランジスタは、電極32がゲートであり、電極34aと電極34bはそれぞれドレインまたはソースである。また、図2に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
As an example of the structure of the organic transistor of the present invention, a bottom gate / bottom contact type device can be mentioned.
The configuration of the bottom gate bottom contact type device is shown in FIG. FIG. 2 is a schematic view showing a cross section of the structure of the organic transistor manufactured as a substrate for measuring FET characteristics in the example. In the organic transistor of FIG. 2, the substrate 31 is disposed in the lowermost layer, the electrode 32 is provided on a part of the upper surface, and the electrode 32 is covered, and the insulator layer is in contact with the substrate 31 in parts other than the electrode 32. 33 is provided. Further, a semiconductor active layer 35 is provided on the upper surface of the insulator layer 33, and the electrodes 34a and 34b are under the semiconductor active layer 35.
In the organic transistor shown in FIG. 2, the electrode 32 is a gate, and the electrode 34a and the electrode 34b are a drain or a source, respectively. The organic transistor shown in FIG. 2 is an insulated gate FET in which the channel, which is a current path between the drain and the source, and the gate are insulated.
 本発明の有機トランジスタの構造としては、その他、絶縁体、ゲート電極が半導体活性層の上部にあるトップゲート・トップコンタクト型素子や、トップゲート・ボトムコンタクト型素子も好ましく用いることができる。 As the structure of the organic transistor of the present invention, in addition, an insulator, a top gate / top contact type device having a gate electrode on the upper part of the semiconductor active layer, or a top gate / bottom contact type device can be preferably used.
(厚さ)
 本発明の有機トランジスタは、より薄いトランジスタとする必要がある場合には、例えばトランジスタ全体の厚さを0.1~0.5μmとすることが好ましい。
(thickness)
In the case where the organic transistor of the present invention needs to be a thinner transistor, for example, the thickness of the entire transistor is preferably 0.1 to 0.5 μm.
(封止)
 有機トランジスタ素子を大気や水分から遮断し、有機トランジスタ素子の保存性を高めるために、有機トランジスタ素子全体を金属の封止缶やガラス、窒化ケイ素などの無機材料、パリレンなどの高分子材料や、低分子材料などで封止してもよい。
 以下、本発明の有機トランジスタの各層の好ましい態様について説明するが、本発明はこれらの態様に限定されるものではない。
(Sealing)
In order to shield the organic transistor element from the air and moisture and to improve the storage stability of the organic transistor element, the entire organic transistor element may be a metal sealing can, glass, an inorganic material such as silicon nitride, a polymer material such as parylene, It may be sealed with a low molecular weight material or the like.
Hereinafter, although the preferable aspect of each layer of the organic transistor of this invention is demonstrated, this invention is not limited to these aspects.
<基板>
(材料)
 本発明の有機トランジスタは、基板を含む。
 基板の材料としては特に制限はなく、公知の材料を用いることができ、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、シクロオレフィンポリマーフィルム、ポリカーボネートフィルム、トリアセチルセルロース(TAC)フィルム、ポリイミドフィルム、およびこれらポリマーフィルムを極薄ガラスに貼り合わせたもの、セラミック、シリコン、石英、ガラス、などを挙げることができ、シリコンが好ましい。
<Board>
(material)
The organic transistor of the present invention comprises a substrate.
The material of the substrate is not particularly limited, and known materials can be used, for example, polyester films such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), cycloolefin polymer films, polycarbonate films, triacetyl cellulose ( And TAC) films, polyimide films, films obtained by bonding these polymer films to ultrathin glass, ceramics, silicon, quartz, glass, etc., and silicon is preferable.
<電極>
(材料)
 本発明の有機トランジスタは、ソース電極、ドレイン電極およびゲート電極などの電極を含む。
 電極の構成材料としては、例えば、Cr、Al、Ta、Mo、Nb、Cu、Ag、Au、Pt、Pd、In、NiあるいはNdなどの金属材料やこれらの合金材料、あるいはカーボン材料、導電性高分子などの既知の導電性材料であれば特に制限することなく使用できる。
<Electrode>
(material)
The organic transistor of the present invention includes electrodes such as a source electrode, a drain electrode, and a gate electrode.
As a constituent material of the electrode, for example, a metal material such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni or Nd, an alloy material of these, or a carbon material, conductive Any known conductive material such as a polymer can be used without particular limitation.
(厚さ)
 電極の厚さは特に制限はないが、10~50nmとすることが好ましい。
 ゲート幅(またはチャンネル幅)Wとゲート長(またはチャンネル長)Lに特に制限はないが、これらの比W/Lが10以上であることが好ましく、20以上であることがより好ましい。
(thickness)
The thickness of the electrode is not particularly limited but is preferably 10 to 50 nm.
The gate width (or channel width) W and the gate length (or channel length) L are not particularly limited, but the ratio W / L thereof is preferably 10 or more, and more preferably 20 or more.
<絶縁層>
(材料)
 絶縁層を構成する材料は必要な絶縁効果が得られれば特に制限はないが、例えば、二酸化ケイ素、窒化ケイ素、PTFE、CYTOP等のフッ素ポリマー系絶縁材料、ポリエステル絶縁材料、ポリカーボネート絶縁材料、アクリルポリマー系絶縁材料、エポキシ樹脂系絶縁材料、ポリイミド絶縁材料、ポリビニルフェノール樹脂系絶縁材料、ポリパラキシリレン樹脂系絶縁材料などが挙げられる。
 絶縁層の上面は表面処理がなされていてもよく、例えば、二酸化ケイ素表面をヘキサメチルジシラザン(HMDS)やオクタデシルトリクロロシラン(OTS)の塗布により表面処理した絶縁層を好ましく用いることができる。
<Insulating layer>
(material)
The material constituting the insulating layer is not particularly limited as long as the required insulating effect can be obtained. For example, silicon dioxide, silicon nitride, PTFE, fluoropolymer insulating material such as CYTOP, polyester insulating material, polycarbonate insulating material, acrylic polymer The insulating materials include epoxy insulating materials, epoxy insulating materials, polyimide insulating materials, polyvinyl phenol resin insulating materials, and polyparaxylylene resin insulating materials.
The upper surface of the insulating layer may be surface-treated. For example, an insulating layer obtained by surface-treating a silicon dioxide surface by application of hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) can be preferably used.
(厚さ)
 絶縁層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、20~200nmとすることがより好ましく、50~200nmとすることが特に好ましい。
(thickness)
The thickness of the insulating layer is not particularly limited, but when thinning is desired, the thickness is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm. .
<半導体活性層>
(材料)
 本発明の有機トランジスタは、半導体活性層が縮環芳香族化合物である有機半導体材料、ならびに、成分Aとして、0.1~10ppmのイオン性物質、水、酸素および0.5~4000ppmの有機半導体材料と芳香族構造が同一である化合物のいずれかを含有する。
 半導体活性層は、縮環芳香族化合物である有機半導体材料および成分Aからなる層であってもよく、環芳香族化合物である有機半導体材料および成分Aに加えて後述のポリマーバインダーがさらに含まれた層であってもよい。また、成膜時の残留溶媒が含まれていてもよい。
 半導体活性層中におけるポリマーバインダーの含有量は、特に制限はないが、好ましくは0~95質量%の範囲内で用いられ、より好ましくは10~90質量%の範囲内で用いられ、さらに好ましくは20~80質量%の範囲内で用いられ、特に好ましくは30~70質量%の範囲内で用いられる。
<Semiconductor active layer>
(material)
The organic transistor of the present invention is an organic semiconductor material in which the semiconductor active layer is a condensed aromatic compound, and as component A, 0.1 to 10 ppm of ionic substance, water, oxygen and 0.5 to 4000 ppm of organic semiconductor It contains any of the compounds whose material and aromatic structure are identical.
The semiconductor active layer may be a layer formed of an organic semiconductor material which is a condensed aromatic compound and component A, and further includes a polymer binder described later in addition to the organic semiconductor material which is a ring aromatic compound and component A Layer may be used. Moreover, the residual solvent at the time of film formation may be included.
The content of the polymer binder in the semiconductor active layer is not particularly limited, but is preferably in the range of 0 to 95% by mass, more preferably in the range of 10 to 90% by mass, and still more preferably It is used in the range of 20 to 80% by mass, particularly preferably in the range of 30 to 70% by mass.
(厚さ)
 半導体活性層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、10~200nmとすることがより好ましく、10~100nmとすることが特に好ましい。
(thickness)
The thickness of the semiconductor active layer is not particularly limited, but when thin film formation is required, the thickness is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm. preferable.
 ポリマーバインダーとしては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレンなどの絶縁性ポリマー、およびこれらの共重合体、ポリビニルカルバゾール、ポリシランなどの光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレンなどの導電性ポリマー、半導体ポリマーを挙げることができる。
 ポリマーバインダーは、単独で使用してもよく、あるいは複数併用してもよい。
 また、有機半導体材料とポリマーバインダーとは均一に混合していてもよく、一部または全部が相分離していてもよいが、電荷移動度の観点では、膜中で膜厚方向に有機半導体とバインダーが相分離した構造が、バインダーが有機半導体の電荷移動を妨げず最も好ましい。
 膜の機械的強度を考慮するとガラス転移温度の高いポリマーバインダーが好ましく、電荷移動度を考慮すると極性基を含まない構造のポリマーバインダーや光伝導性ポリマー、導電性ポリマーが好ましい。
 ポリマーバインダーの使用量は、特に制限はないが、非発光性有機半導体デバイス用有機半導体膜中、好ましくは0~95質量%の範囲内で用いられ、より好ましくは10~90質量%の範囲内で用いられ、さらに好ましくは20~80質量%の範囲内で用いられ、特に好ましくは30~70質量%の範囲内で用いられる。
As the polymer binder, polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, polypropylene, and other insulating polymers, and their coweights Examples thereof include coalescent, photoconductive polymers such as polyvinylcarbazole and polysilane, conductive polymers such as polythiophene, polypyrrole, polyaniline and polyparaphenylene vinylene, and semiconductive polymers.
The polymer binders may be used alone or in combination of two or more.
The organic semiconductor material and the polymer binder may be uniformly mixed, or part or all of them may be phase separated, but from the viewpoint of charge mobility, the organic semiconductor in the film thickness direction in the film The structure in which the binder is phase separated is most preferable without the binder interfering with the charge transfer of the organic semiconductor.
A polymer binder having a high glass transition temperature is preferred in consideration of the mechanical strength of the film, and a polymer binder, a photoconductive polymer and a conductive polymer having a structure free of polar groups are preferred in consideration of charge mobility.
The amount of the polymer binder used is not particularly limited, but it is preferably in the range of 0 to 95% by mass, more preferably in the range of 10 to 90% by mass in the organic semiconductor film for non-luminescent organic semiconductor devices. And more preferably in the range of 20 to 80% by mass, and particularly preferably in the range of 30 to 70% by mass.
 さらに、縮環芳香族化合物が上述した構造をとることにより、膜質の良い有機膜を得ることができる。具体的には、縮環芳香族化合物は、結晶性が良いため、十分な膜厚を得ることができ、得られた非発光性有機半導体デバイス用有機半導体膜は良質なものとなる。 Furthermore, when the fused aromatic compound has the above-described structure, an organic film with good film quality can be obtained. Specifically, the fused aromatic compound has good crystallinity, so that a sufficient film thickness can be obtained, and the obtained organic semiconductor film for a non-light emitting organic semiconductor device becomes a good quality.
(成膜方法)
 縮環芳香族化合物を基板上に成膜する方法はいかなる方法でもよい。
 成膜の際、基板を加熱または冷却してもよく、基板の温度を変化させることで膜質や膜中での分子のパッキングを制御することが可能である。基板の温度としては特に制限はないが、0℃から200℃の間であることが好ましく、15℃~100℃の間であることがより好ましく、20℃~95℃の間であることが特に好ましい。
 縮環芳香族化合物を基板上に成膜するとき、真空プロセスあるいは溶液プロセスにより成膜することが可能であり、いずれも好ましい。
(Deposition method)
Any method may be used to form the fused aromatic compound on the substrate.
At the time of film formation, the substrate may be heated or cooled, and by changing the temperature of the substrate, it is possible to control the film quality or the packing of molecules in the film. The temperature of the substrate is not particularly limited, but is preferably between 0 ° C. and 200 ° C., more preferably between 15 ° C. and 100 ° C., particularly preferably between 20 ° C. and 95 ° C. preferable.
When forming a condensed aromatic compound on a substrate, it is possible to form a film by a vacuum process or a solution process, and all are preferable.
 真空プロセスによる成膜の具体的な例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子ビームエピタキシー(MBE)法などの物理気相成長法あるいはプラズマ重合などの化学気相蒸着(CVD)法が挙げられ、真空蒸着法を用いることが特に好ましい。 Specific examples of film formation by vacuum process include physical vapor deposition such as vacuum evaporation, sputtering, ion plating, molecular beam epitaxy (MBE), or chemical vapor deposition (CVD) such as plasma polymerization. Method is preferred, and vacuum deposition is particularly preferred.
 溶液プロセスによる成膜とは、ここでは有機化合物を溶解させることができる溶媒中に溶解させ、その溶液を用いて成膜する方法をさす。具体的には、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法などの塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法などの各種印刷法、Langmuir-Blodgett(LB)法などの通常の方法を用いることができ、キャスト法、スピンコート法、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法を用いることが特に好ましい。
 非発光性有機半導体デバイス用有機半導体膜は、溶液塗布法により作製されたことが好ましい。また、非発光性有機半導体デバイス用有機半導体膜がポリマーバインダーを含有する場合、層を形成する材料とポリマーバインダーとを適当な溶媒に溶解させ、または分散させて塗布液とし、各種の塗布法により形成されることが好ましい。
 以下、溶液プロセスによる成膜に用いることができる、非発光性有機半導体デバイス用塗布溶液について説明する。
Here, film formation by solution process refers to a method of dissolving in a solvent in which an organic compound can be dissolved and forming a film using the solution. Specifically, coating methods such as casting method, dip coating method, die coater method, roll coater method, bar coater method, spin coating method, ink jet method, screen printing method, gravure printing method, flexographic printing method, offset printing Methods, various printing methods such as micro contact printing method, and ordinary methods such as Langmuir-Blodgett (LB) method can be used, and casting method, spin coating method, ink jet method, gravure printing method, flexographic printing method, offset It is particularly preferable to use a printing method or a microcontact printing method.
It is preferable that the organic-semiconductor film for nonluminous organic-semiconductor devices was produced by the solution apply | coating method. When the organic semiconductor film for non-luminescent organic semiconductor device contains a polymer binder, the material forming the layer and the polymer binder are dissolved or dispersed in an appropriate solvent to form a coating solution, and various coating methods are used. Preferably it is formed.
Hereinafter, the coating solution for nonluminous organic-semiconductor devices which can be used for film-forming by a solution process is demonstrated.
 溶液プロセスを用いて基板上に成膜する場合、層を形成する材料を適当な有機溶媒(例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチルー2-ピロリドン、1-メチルー2-イミダゾリジノン等のアミド・イミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、アセトニトリルなどのニトリル系溶媒)および/または水に溶解、または分散させて塗布液とし、各種の塗布法により膜を形成することができる。溶媒は単独で用いてもよく、複数組み合わせて用いてもよい。これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒またはエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、ジクロロベンゼンまたはアニソールがより好ましく、トルエン、キシレン、テトラリン、アニソールが特に好ましい。その塗布液中の縮環芳香族化合物の濃度は、好ましくは、0.1~80質量%、より好ましくは0.1~10質量%、特に好ましくは0.5~10質量%とすることにより、任意の厚さの膜を形成できる。 When forming a film on a substrate using a solution process, the material forming the layer may be a suitable organic solvent (eg, hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, 1-methylnaphthalene, etc. hydrocarbons) For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, for example, halogenated hydrocarbons such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene and chlorotoluene System solvents, for example, ester solvents such as ethyl acetate, butyl acetate and amyl acetate, for example, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl Alcohol solvents such as cellosolve, ethyl cellosolve, ethylene glycol, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2- A coating solution is prepared by dissolving or dispersing in an amide / imide type solvent such as pyrrolidone, 1-methyl-2-imidazolidinone, a sulfoxide type solvent such as dimethyl sulfoxide, a nitrile type solvent such as acetonitrile, and / or water. The film can be formed by various coating methods. The solvents may be used alone or in combination of two or more. Among these, hydrocarbon solvents, halogenated hydrocarbon solvents or ether solvents are preferable, toluene, xylene, mesitylene, tetralin, dichlorobenzene or anisole are more preferable, and toluene, xylene, tetralin and anisole are particularly preferable. The concentration of the fused aromatic compound in the coating solution is preferably 0.1 to 80% by mass, more preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 10% by mass. And films of any thickness can be formed.
 溶液プロセスで成膜するためには、上記で挙げた溶媒などに材料が溶解することが必要であるが、単に溶解するだけでは不十分である。通常、真空プロセスで成膜する材料でも、溶媒にある程度溶解させることができる。しかし、溶液プロセスでは、材料を溶媒に溶解させて塗布した後で、溶媒が蒸発して膜が形成する過程があり、溶液プロセス成膜に適さない材料は結晶性が高いものが多いため、この過程で不適切に結晶化(凝集)してしまい良好な膜を形成させることが困難である。縮環芳香族化合物は、このような結晶化(凝集)が起こりにくい点でも優れている。 In order to form a film by a solution process, it is necessary for the material to be dissolved in the above-mentioned solvents and the like, but it is not sufficient to simply dissolve it. In general, even materials formed into a film by a vacuum process can be dissolved to some extent in a solvent. However, in the solution process, the material is dissolved in a solvent and applied, and then the solvent is evaporated to form a film, and many materials unsuitable for solution process film formation have high crystallinity. In the process, crystallization (aggregation) becomes inappropriate and it is difficult to form a good film. The fused aromatic compound is also excellent in that such crystallization (aggregation) hardly occurs.
 非発光性有機半導体デバイス用塗布溶液は、縮環芳香族化合物を含み、ポリマーバインダーを含有しない態様も好ましい。
 また、非発光性有機半導体デバイス用塗布溶液は、縮環芳香族化合物とポリマーバインダーを含有してもよい。この場合、層を形成する材料とポリマーバインダーとを前述の適当な溶媒に溶解させ、または分散させて塗布液とし、各種の塗布法により膜を形成することができる。ポリマーバインダーとしては、上述したものから選択することができる。
The coating solution for a non-luminescent organic semiconductor device contains a fused aromatic compound, and an embodiment containing no polymer binder is also preferable.
In addition, the coating solution for non-luminescent organic semiconductor device may contain a fused aromatic compound and a polymer binder. In this case, the material for forming the layer and the polymer binder may be dissolved or dispersed in the above-mentioned appropriate solvent to form a coating solution, and a film may be formed by various coating methods. The polymer binder can be selected from those described above.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be more specifically described below with reference to examples and comparative examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below.
[比較例1]
(合成)
 特許第4581062号の合成例2における化合物No.16の合成を参考にして、下記化合物1を主成分とする比較サンプル1を、以下の手順にしたがって合成した。
Figure JPOXMLDOC01-appb-C000030
Comparative Example 1
(Composition)
Compound No. 4 in Synthesis Example 2 of Patent No. 4581062 The comparative sample 1 which has the following compound 1 as a main component with reference to 16 synthesis was synthesize | combined according to the following procedures.
Figure JPOXMLDOC01-appb-C000030
[比較例2]
 下記原料2-1 1gにTHF/水混合溶媒30ml、Organic Synthesis. 1993年, 71号, 89項に従って調製した1-デセンの9-BBN(9-borabicyclo[3.3.1]nonane)付加体過剰量、PdCl(dppf)塩化メチレン錯体 0.02等量、NaOH 1等量を加え、75℃で20時間攪拌した。反応液を水洗、濃縮後シリカゲルカラムクロマトグラフィー(塩化メチレン-へキサン混合溶媒)により精製し、固体を得た。このうち500mgを、Pd/C 100mg、トルエン-酢酸混合溶媒20mLに加え、水素雰囲気下で、14時間攪拌した。反応液をろ過、濃縮、シリカゲルカラムクロマトグラフィー(塩化メチレン-ヘキサン混合溶媒)により精製し、下記化合物2を主成分とする比較サンプル2を得た。
Figure JPOXMLDOC01-appb-C000031
Comparative Example 2
30 ml of a THF / water mixed solvent in 1 g of the following raw materials 2-1, Organic Synthesis. Excess 9-BBN (9-borabicyclo [3.3.1] nonane) adduct of 1-decene, prepared according to paragraph 71, paragraph 89 of 1993, PdCl 2 (dppf) methylene chloride complex 0.02 equivalents, 1 equivalent of NaOH was added and stirred at 75 ° C. for 20 hours. The reaction solution was washed with water, concentrated and then purified by silica gel column chromatography (methylene chloride-hexane mixed solvent) to obtain a solid. Of these, 500 mg was added to 100 mg of Pd / C and 20 mL of a toluene-acetic acid mixed solvent, and the mixture was stirred for 14 hours under a hydrogen atmosphere. The reaction solution was filtered, concentrated, and purified by silica gel column chromatography (methylene chloride-hexane mixed solvent) to obtain a comparative sample 2 mainly containing the following compound 2.
Figure JPOXMLDOC01-appb-C000031
[比較例3]
 Organic Letters, 2005年, 7巻, 5301頁を参考に合成した下記原料3-1 3gに塩化メチレン100mlを加え、BFエーテル錯体溶液を加え、室温で14時間攪拌し、反応液を水洗、濃縮することで固体物を得た。これを、メタノールで洗浄し、真空乾燥後、ALSテクノロジー製昇華精製装置ALS-160Hで精製し、対応する脱メチル体を得た。この脱メチル体2gに塩化メチレン100mlを加え氷水で冷却した。これに過剰量の無水トリフルオロメタンスルホン酸とピリジンを加え、14時間攪拌し、反応液を水洗、濃縮することで固体物を得た。これを、塩化メチレンに溶解し、エタノールを加えることで結晶を析出させ、濾別、洗浄、乾燥することで対応するトリフラート体を得た。得られたトリフラート体に比較サンプル2と同様に1-ヘキシンの9-BBN付加体と反応させることで、下記化合物3を主成分とする比較サンプル3を得た。
Figure JPOXMLDOC01-appb-C000032
Comparative Example 3
100 ml of methylene chloride is added to 3 g of the following raw material 3-13 synthesized with reference to Organic Letters, 2005, 7 pages, 5301, BF 3 ether complex solution is added, stirred at room temperature for 14 hours, and the reaction solution is washed with water and concentrated The solid gave a solid. The product was washed with methanol, vacuum-dried and purified by ALS Technology sublimation purification apparatus ALS-160H to obtain the corresponding demethylated product. 100 ml of methylene chloride was added to 2 g of this demethylated substance and cooled with ice water. An excess of trifluoromethanesulfonic acid anhydride and pyridine were added thereto, and the mixture was stirred for 14 hours, and the reaction solution was washed with water and concentrated to obtain a solid. This was dissolved in methylene chloride, and ethanol was added to precipitate crystals, which were separated by filtration, washed and dried to obtain the corresponding triflate. The obtained triflate was reacted with a 9-BBN adduct of 1-hexyne in the same manner as in Comparative Sample 2 to obtain Comparative Sample 3 containing the following compound 3 as a main component.
Figure JPOXMLDOC01-appb-C000032
[比較例4]
 WO2012/090462号の記載を参考に下記原料4-1を合成し、これを原料に比較サンプル3と同様にメトキシ基をヘプチル基に官能基変換を行い、対応する下記化合物4を主成分とする比較サンプル4を得た。
Figure JPOXMLDOC01-appb-C000033
Comparative Example 4
The following raw material 4-1 was synthesized with reference to the description of WO 2012/090462, which was used as a raw material to perform functional group conversion of a methoxy group to a heptyl group in the same manner as Comparative Sample 3, and the corresponding following compound 4 was used as a main component Comparative sample 4 was obtained.
Figure JPOXMLDOC01-appb-C000033
[比較例5]
 Organic Letters, 2002年、4巻、15頁を参考に下記化合物5を主成分とする比較サンプル5を得た。
Figure JPOXMLDOC01-appb-C000034
Comparative Example 5
A comparative sample 5 containing the following compound 5 as a main component was obtained with reference to Organic Letters, 2002, Vol. 4, page 15.
Figure JPOXMLDOC01-appb-C000034
[比較例6]
 Journal OF THE American Chemical Society, 2005年、127巻、4986ページを参考に下記化合物6を主成分とする比較サンプル6を得た。
Figure JPOXMLDOC01-appb-C000035
Comparative Example 6
Comparative sample 6 containing the following compound 6 as a main component was obtained with reference to Journal of the American Chemical Society, 2005, vol. 127, p. 4986.
Figure JPOXMLDOC01-appb-C000035
[有機トランジスタの作製)]
 比較サンプル1~6(各1mg)とトルエン(1mL)を混合し、100℃に加熱したものを、非発光性有機半導体デバイス用塗布溶液とした。この塗布溶液を窒素雰囲気下、90℃に加熱したFET特性測定用基板上にキャストすることで、非発光性有機半導体デバイス用有機半導体膜を形成し、FET特性測定用の比較例1~6の有機トランジスタ素子を得た。FET特性測定用基板としては、ソースおよびドレイン電極としてくし型に配置されたクロム/金、絶縁体層としてSiO(膜厚180nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板(図2に構造の概略図を示した)を用いた。各基板にはゲート幅W=100μm、200μm、400μm、ゲート長L=100μm、75μm、50μmの3x3の組み合わせからなる9素子のセットを二組用意し、1基板で18素子を持つものである。
 得られた有機トランジスタ素子を、比較例1~6の有機トランジスタとした。
[Fabrication of Organic Transistor]
Comparative samples 1 to 6 (1 mg each) and toluene (1 mL) were mixed, and heated at 100 ° C. to obtain a coating solution for non-luminescent organic semiconductor devices. The coating solution is cast on a substrate for measuring FET characteristics heated to 90 ° C. in a nitrogen atmosphere to form an organic semiconductor film for a non-light emitting organic semiconductor device, and the comparative examples 1 to 6 of Comparative Examples 1 to 6 for measuring FET characteristics. An organic transistor element was obtained. As a substrate for measuring FET characteristics, a silicon substrate of bottom gate and bottom contact structure (FIG. 2) provided with chromium / gold disposed in a comb as source and drain electrodes and SiO 2 (film thickness 180 nm) as an insulator layer. A schematic of the structure is shown). In each substrate, two sets of nine elements consisting of combinations of gate widths W = 100 μm, 200 μm and 400 μm, gate lengths L = 100 μm, 75 μm and 50 μm 3 × 3 are prepared, and one substrate has 18 elements.
The obtained organic transistor element was used as the organic transistor of Comparative Examples 1 to 6.
(評価)
 比較例1~6および後述の各実施例の有機トランジスタ素子のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧・窒素雰囲気下で、下記の各特性について測定を行った。
 得られた結果を下記表に示す。
(Evaluation)
The FET characteristics of the organic transistor devices of Comparative Examples 1 to 6 and each of the following examples were measured using a semiconductor parameter analyzer (Agilent, 4156C) connected with a semi-auto prober (Axicon, manufactured by Vector Semicon) under normal pressure · Under the atmosphere, the following characteristics were measured.
The obtained results are shown in the following table.
(a)キャリア移動度、キャリア移動度ばらつき
 各有機トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-70Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させ、ドレイン電流Iを表わす下記式を用いてキャリア移動度μを算出した。
=(w/2L)μC(V-Vth
 式中、Lはゲート長、Wはゲート幅、Cは絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧を表す。基板上すべての素子の値の平均値を平均キャリア移動度とした。
 基板ごとに、個々の素子について得られた値(合計50個)の上位から10番目のキャリア移動度値と、下位から10番目のキャリア移動度値の差をデータ幅とし、このデータ幅の平均キャリア移動度値に対する相対値を、キャリア移動度ばらつきとした。
(A) Carrier mobility, carrier mobility variation A voltage of -70 V is applied between the source electrode and the drain electrode of each organic transistor element (FET element) to change the gate voltage in the range of 20 V to -100 V, and drain current The carrier mobility μ was calculated using the following equation representing I d .
I d = (w / 2 L) μC i (V g -V th ) 2
In the equation, L represents a gate length, W represents a gate width, C i represents a capacity per unit area of the insulating layer, V g represents a gate voltage, and V th represents a threshold voltage. The average value of the values of all elements on the substrate was taken as the average carrier mobility.
For each substrate, the data width is the difference between the 10th highest carrier mobility value and the 10th lowest carrier mobility value obtained for each element (total 50), and this data width is the average The relative value to the carrier mobility value was taken as carrier mobility variation.
(b)繰り返し駆動後の閾値電圧変化、繰り返し駆動後の閾値電圧変化ばらつき
 各有機トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-70Vの電圧を印加し、ゲート電圧を+20V~-100Vの範囲で100回スイープし、その前後の閾値電圧V後の差(繰り返し駆動前の閾値電圧Vと繰り返し駆動後の閾値電圧Vの差、|V-V|)を基板上の全ての素子の値の平均の平均値を求めた。この値は小さいほど良い。
 基板ごとに、個々の素子について得られた値(合計50個)の上位から10番目の繰り返し駆動後の閾値電圧変化値と、下位から10番目の値の繰り返し駆動後の閾値電圧変化差をデータ幅とし、このデータ幅の平均値繰り返し駆動後の閾値電圧変化に対する相対値を、繰り返し駆動後の閾値電圧変化ばらつきとした。
(B) Threshold voltage change after repeated driving, threshold voltage change variation after repeated driving A voltage of -70 V is applied between the source electrode and the drain electrode of each organic transistor element (FET element), and the gate voltage is +20 V to -100 V Sweep in the range of 100, and the difference after and after threshold voltage V (the difference between before threshold voltage V before repetitive driving and after threshold voltage V after repetitive driving, | V after- V before |) on the substrate The average value of the values of all the elements was determined. The smaller the value, the better.
For each substrate, the threshold voltage change after 10th repetition drive from the top (50 in total) of the value obtained for each element and the threshold voltage change after 10th repetition drive from the 10th from the bottom The average value of the data width is defined as the width, and the relative value to the threshold voltage change after the repeated drive is regarded as the threshold voltage change variation after the repeated drive.
[実施例1-1]
 比較サンプル1を、山善(株)製の分取クロマト装置FR-360を使用し、溶離液としてヘキサン-塩化メチレン混合溶媒を用いて精製した。精製度の異なるフラクションが得られたため、各フラクションをそれぞれ1-1a、1-1b、1-1cおよび1-1dのサンプルとした。これらの1-1a、1-1b、1-1cおよび1-1dのサンプルを用いた以外は比較サンプル1と同様にして、FET特性測定用の実施例1-1a、実施例1-1b、実施例1-1cおよび実施例1-1dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。
 その結果、下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、下記の特定化合物1Aが含まれることがわかった。また、下記特定化合物1Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物1Aの含率は、各実施例に用いた非発光性有機半導体デバイス用有機半導体膜をHPLC用テトラヒドロフランに溶解し、島津製作所(株)社製、高速液体クロマトグラフィープロミネンスシステムを用いて、以下の測定条件で測定した。
 溶離液:テトラヒドロフランー水グラジエント、検出波長254nm、送液速度1.0ml/分、分析カラム:東ソー(株)製TSKGel ODS-100Z。
Figure JPOXMLDOC01-appb-C000036
Example 1-1
Comparative sample 1 was purified using a preparative chromatography apparatus FR-360 manufactured by Yamazen Co., Ltd., using a mixed solvent of hexane and methylene chloride as an eluent. Since fractions having different degrees of purification were obtained, each fraction was used as a sample of 1-1a, 1-1b, 1-1c and 1-1d. Example 1-1a, Example 1-1b, and Example for FET characteristic measurement in the same manner as Comparative Sample 1 except that the samples 1-1a, 1-1b, 1-1c, and 1-1d were used. Organic transistor elements of Example 1-1c and Example 1-1d were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1.
As a result, from the following table, a large difference was observed regarding the carrier mobility variation and the threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that the following specific compound 1A was contained. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 1A is below fixed amount.
The content rate of the following specific compound 1A is obtained by dissolving the organic semiconductor film for a non-luminescent organic semiconductor device used in each example in tetrahydrofuran for HPLC, and using a high performance liquid chromatography prominence system manufactured by Shimadzu Corporation. It measured on the following measurement conditions.
Eluent: tetrahydrofuran-water gradient, detection wavelength 254 nm, feed rate 1.0 ml / min, analytical column: Tosoh KK TSKGel ODS-100Z.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
 上記表の結果については、以下のように考えられる。主成分である化合物1と芳香族構造が同一である特定不純物である特定化合物1Aは合成の最終工程において、原料のハロゲン化化合物に反応触媒が酸化的付加を行って生成する反応中間体に対して、副反応として水素化が起こり生成したと考えられる。カップリング反応におけるその他の副生成物も同時に生成するが、その他の副生成物は化合物の精製工程において除かれる。だが、主成分である化合物1と性質が酷似し、芳香族構造が同一である特定化合物1Aは残留したものと考えられる。
 キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに対する特定化合物1Aの効果は、主成分と構造および性質が酷似しているため、半導体層の結晶形成時に結晶表面に吸着し、結晶成長制御材としての効果を奏したと考えられる。
The results in the above table can be considered as follows. The specific compound 1A which is a specific impurity having the same aromatic structure as the main component Compound 1 and the specific compound 1A which is a specific impurity are produced in the final step of the synthesis with respect to the reaction intermediate formed by the oxidative addition of the reaction catalyst to the halogenated compound of the raw material. It is thought that hydrogenation occurred as a side reaction and was generated. Other by-products in the coupling reaction are simultaneously formed, but other by-products are removed in the purification process of the compound. However, it is considered that the specific compound 1A which is very similar in nature to the main component Compound 1 and has the same aromatic structure remains.
The effects of the specific compound 1A on carrier mobility variation and threshold voltage variation variation after repeated driving are similar to those of the main component in structure and properties, and thus are adsorbed on the crystal surface at the time of crystal formation of the semiconductor layer, It is believed that the effect was achieved.
[実施例1-2]
 実施例1-1において、比較サンプル1を比較サンプル2に置き換えた以外は実施例1-1と同様な実験を行い、精製度の異なるフラクション1-2a、1-2b、1-2cおよび1-2dのサンプルを得て、これらを用いたFET特性測定用の実施例1-2a、実施例1-2b、実施例1-2cおよび実施例1-2dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。以下に結果を示す。
 下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、主成分である化合物2と芳香族構造が同一である下記の特定化合物2Aが含まれることがわかった。また、下記特定化合物2Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物2Aの含率は、特定化合物1Aと同様に測定した。
Figure JPOXMLDOC01-appb-C000038
Embodiment 1-2
In Example 1-1, the same experiment as in Example 1-1 was conducted, except that comparative sample 1 was replaced with comparative sample 2, and fractions 1-2a, 1-2b, 1-2c and 1- having different degrees of purification were used. Samples 2d were obtained, and organic transistor elements of Example 1-2a, Example 1-2b, Example 1-2c, and Example 1-2d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below.
From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 2A having the same aromatic structure as that of the main component compound 2. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 2A is below a fixed amount.
The content rate of the following specific compound 2A was measured in the same manner as in the specific compound 1A.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
[実施例1-3]
 実施例1-1において、比較サンプル1を比較サンプル3に置き換えた以外は実施例1-1と同様な実験を行い、精製度の異なるフラクション1-3a、1-3b、1-3cおよび1-3dのサンプルを得て、これらを用いたFET特性測定用の実施例1-3a、実施例1-3b、実施例1-3cおよび実施例1-3dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。以下に結果を示す。
 下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、主成分である化合物3と芳香族構造が同一である下記の特定化合物3Aが含まれることがわかった。また、下記特定化合物3Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物3Aの含率は特定化合物1Aと同様に測定した。
Figure JPOXMLDOC01-appb-C000040
Embodiment 1-3
In Example 1-1, the same experiment as in Example 1-1 was conducted except that comparative sample 1 was replaced with comparative sample 3, and fractions 1-3a, 1-3b, 1-3c and 1- having different degrees of purification were used. Samples 3d were obtained, and organic transistor devices of Examples 1-3a, 1-3b, 1-3c, and 1-3d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below.
From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 3A having the same aromatic structure as that of the main component, compound 3. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 3A is below a fixed amount.
The content rate of the following specific compound 3A was measured in the same manner as the specific compound 1A.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
[実施例1-4]
 実施例1-1において、比較サンプル1を比較サンプル4に置き換えた以外は実施例1-1と同様な実験を行い、精製度の異なるフラクション1-4a、1-4b、1-4cおよび1-4dのサンプルを得て、これらを用いたFET特性測定用の実施例1-4a、実施例1-4b、実施例1-4cおよび実施例1-4dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。以下に結果を示す。
 下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、主成分である化合物4と芳香族構造が同一である下記の特定化合物4Aが含まれることがわかった。また、下記特定化合物4Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物4Aの含率は特定化合物1Aと同様に測定した。
Figure JPOXMLDOC01-appb-C000042
Embodiment 1-4
In Example 1-1, the same experiment as in Example 1-1 was conducted, except that Comparative sample 1 was replaced with Comparative sample 4, and fractions 1-4a, 1-4b, 1-4c and 1- with different degrees of purification were used. Samples 4d were obtained, and organic transistor elements of Example 1-4a, Example 1-4b, Example 1-4c, and Example 1-4d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below.
From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 4A having the same aromatic structure as that of the main component, compound 4: Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 4A is below fixed amount.
The content rate of the following specific compound 4A was measured in the same manner as in the specific compound 1A.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
[実施例1-5]
 実施例1-1において、比較サンプル1を比較サンプル5に置き換えた以外は実施例1-1と同様な実験を行い、精製度の異なるフラクション1-5a、1-5b、1-5cおよび1-5dのサンプルを得て、これらを用いたFET特性測定用の実施例1-5a、実施例1-5b、実施例1-5cおよび実施例1-5dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。以下に結果を示す。
 下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、主成分である化合物5と芳香族構造が同一である下記の特定化合物5Aが含まれることがわかった。また、下記特定化合物5Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物5Aの含率は特定化合物1Aと同様に測定した。
Figure JPOXMLDOC01-appb-C000044
[Example 1-5]
The same experiment as in Example 1-1 is carried out except that comparative sample 1 is replaced with comparative sample 5 in Example 1-1, and fractions 1-5a, 1-5b, 1-5c and 1- having different degrees of purification are carried out. Samples 5d were obtained, and the organic transistor devices of Examples 1-5a, 1-5b, 1-5c, and 1-5d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below.
From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 5A having the same aromatic structure as that of the main component compound 5. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 5A is below fixed amount.
The content rate of the following specific compound 5A was measured in the same manner as in the specific compound 1A.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
 本実施例1-5においては、特定化合物5Aの構造は実施例1-1~1-4で特定不純物として含まれていた特定化合物1A~4Aとは異なった系統の構造であった。この特定化合物5Aは、比較的弱い結合であるC-Si結合が反応中もしくは精製中に切断されて生成した化合物であると推定できる。 In the present Example 1-5, the structure of the specific compound 5A was a structure of a system different from that of the specific compounds 1A to 4A contained as the specific impurities in Examples 1-1 to 1-4. This particular compound 5A can be presumed to be a compound formed by cleavage of a relatively weak C—Si bond during the reaction or purification.
[実施例1-6]
 実施例1-1において、比較サンプル1を比較サンプル6に置き換えた以外は実施例1-1と同様な実験を行い、精製度の異なるフラクション1-6a、1-6b、1-6cおよび1-6dのサンプルを得て、これらを用いたFET特性測定用の実施例1-6a、実施例1-6b、実施例1-6cおよび実施例1-6dの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較例1と同様に評価した。以下に結果を示す。
 下記表より、キャリア移動度ばらつきおよび繰り返し駆動後の閾値電圧変化ばらつきに関しては大きな差が見られた。各フラクションの成分分析および不純物の同定を行ったところ、主成分である化合物6と芳香族構造が同一である下記の特定化合物6Aが含まれることがわかった。また、下記特定化合物6Aの含率が一定量以下である場合、より良好な結果が得られることが分かった。
 下記特定化合物6Aの含率は特定化合物1Aと同様に測定した。
Figure JPOXMLDOC01-appb-C000046
[Example 1-6]
In Example 1-1, the same experiment as in Example 1-1 was conducted, except that comparative sample 1 was replaced with comparative sample 6, and fractions 1-6a, 1-6b, 1-6c and 1- having different degrees of purification were used. Samples 6d were obtained, and organic transistor devices of Examples 1-6a, 1-6b, 1-6c and 1-6d for measuring FET characteristics using these samples were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Example 1. The results are shown below.
From the following table, a large difference was seen regarding carrier mobility variation and threshold voltage variation variation after repeated driving. Component analysis of each fraction and identification of impurities revealed that it contained the following specific compound 6A having the same aromatic structure as that of the main component, compound 6. Moreover, it turned out that a better result is obtained when the content rate of the following specific compound 6A is below fixed amount.
The content rate of the following specific compound 6A was measured in the same manner as in the specific compound 1A.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 上記表における相対キャリア移動度の表記は下記のとおり。
A:基準値に対し1.2倍以上(良化)
B:基準値に対し0.5倍以上、1.2倍未満
C:基準値に対し0.5倍未満
The notation of relative carrier mobility in the above table is as follows.
A: 1.2 times or more of the reference value (improved)
B: 0.5 times or more and 1.2 times or less of the reference value C: 0.5 times or less of the reference value
[実施例2-1]
 イオン性物質の影響を調査するために、比較サンプル1を市販のガラス製クロマト用カラムを使用し、溶離液にクロロホルム-テトラヒドロフラン-n-ヘキサングラジエントを用いてカラムクロマトグラフィーを用いて精製度の異なるサンプルを得た。特に精製回数2回目以降は使用する全ての器具をあらかじめ希塩酸で洗浄し、さらに超純粋で洗浄したものを用いた。
 比較サンプル1および各精製回数のサンプル中のイオン性物質の量は、各実施例に用いた非発光性有機半導体デバイス用有機半導体膜を灰化・酸溶解し、アジレント社製ICP-MS HP7700を用いて定量した。具体的には、ナトリウムイオン、カリウムイオン、マグネシウムイオンの総和をppm単位で求めた。
 これらの各精製回数のサンプルを用いた以外は比較サンプル1を用いた比較例1~6と同様にして、FET特性測定用の実施例2-1の有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較サンプル1と同様に評価した。
 実施例2-1および後述の実施例2-2~2-6において、キャリア移動度そのものは主成分である化合物によって異なるため、対応する主成分である化合物を含む未精製の比較サンプルを用いた比較例1~6の有機トランジスタ素子のキャリア移動度を、各実施例の有機トランジスタ素子のキャリア移動度の基準値とした。
Example 2-1
In order to investigate the influence of ionic substances, Comparative Sample 1 was purified using a column chromatography using a commercially available glass chromatography column and a chloroform-tetrahydrofuran-n-hexane gradient as an eluent. I got a sample. In particular, after the second purification, all devices to be used were previously washed with dilute hydrochloric acid and further ultrapure and washed.
The amount of the ionic substance in Comparative Sample 1 and the samples of each purification number was determined by ashing and acid-dissolving the organic semiconductor film for non-luminescent organic semiconductor device used in each example, and using ICP-MS HP7700 manufactured by Agilent It quantified using. Specifically, the sum of sodium ion, potassium ion and magnesium ion was determined in ppm.
The organic transistor element of Example 2-1 for measuring the FET characteristics was obtained in the same manner as in Comparative Examples 1 to 6 using Comparative Sample 1 except that the samples having the respective purification times were used. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1.
In Example 2-1 and Examples 2-2 to 2-6 described below, since the carrier mobility itself differs depending on the main component compound, an unpurified comparative sample containing the corresponding main component compound was used. The carrier mobility of the organic transistor devices of Comparative Examples 1 to 6 was taken as the reference value of the carrier mobility of the organic transistor device of each example.
[実施例2-2~2-6]
 実施例2-1において、比較サンプル1の代わりに比較サンプル2~6を用い、精製は2回とした以外は実施例2-1と同様にして、実施例2-2~2-6の有機トランジスタ素子とした。
 比較サンプル2~6および実施例2-2~2-6で用いた精製回数2回のサンプル中のイオン性物質の量を、実施例2-1と同様に測定した。
 これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較サンプル1と同様に評価した。
 得られた結果を下記表に示した。
[Examples 2-2 to 2-6]
The organic compounds of Examples 2-2 to 2-6 are used in the same manner as in Example 2-1 except that, in Example 2-1, Comparative Samples 2 to 6 are used instead of Comparative Sample 1 and purification is performed twice. It was a transistor element.
The amounts of ionic substances in the two-fold purification samples used in Comparative Samples 2 to 6 and Examples 2-2 to 2-6 were measured in the same manner as Example 2-1.
The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1.
The obtained results are shown in the following table.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
 上記表より、いずれの実施例においても対応する比較例に対し、相対キャリア移動に改善が認められる。イオン性物質の含量は1ppm付近が良好であることが分かる。 From the above table, improvement in relative carrier movement is observed in any of the examples relative to the corresponding comparative example. The content of the ionic substance is found to be good around 1 ppm.
[実施例3-1]
 水および酸素の影響を調査するために、有機トランジスタの24時間保管および特性評価を下記表に示すようなガス雰囲気下で行った。酸素含率はガス雰囲気における酸素の相対量(%)である。雰囲気ガスはガスボンベを用いて窒素-酸素混合ガスを調製し、これに一定量の加湿を行うことで調製した。トランジスタの保管はガス雰囲気下で24時間とした。
 これらの各精製回数のサンプルを用いた以外は比較サンプル1を用いた比較例1~6と同様にして、FET特性測定用の実施例3-1a、実施例3-1b、実施例3-1c、実施例3-1d、実施例3-1eおよび実施例3-1fの有機トランジスタ素子を得た。これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較サンプル1と同様に評価した。
 実施例3-1および後述の実施例3-2~3-6において、繰り返し駆動後の閾値電圧変化そのものは主成分である化合物によって異なるため、対応する主成分である化合物を含む未精製の比較サンプルを用いた比較例1~6の有機トランジスタ素子の繰り返し駆動後の閾値電圧変化を、各実施例の有機トランジスタの繰り返し駆動後の閾値電圧変化の基準値とした。
Example 3-1
In order to investigate the effects of water and oxygen, 24-hour storage and characterization of the organic transistors were performed under a gas atmosphere as shown in the following table. The oxygen content is the relative amount (%) of oxygen in the gas atmosphere. The atmosphere gas was prepared by preparing a nitrogen-oxygen mixed gas using a gas cylinder and subjecting this to a certain amount of humidification. The storage of the transistor was performed for 24 hours under a gas atmosphere.
Example 3-1a, Example 3-1b, and Example 3-1c for FET characteristic measurement in the same manner as Comparative Examples 1 to 6 using Comparative Sample 1 except that samples of each of the purification times were used. The organic transistor elements of Example 3-1d, Example 3-1e and Example 3-1f were obtained. The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1.
In Example 3-1 and Examples 3-2 to 3-6 described below, since the threshold voltage change itself after repeated driving differs depending on the compound as the main component, the comparison of unrefined containing the compound as the corresponding main component The threshold voltage change after repeated driving of the organic transistor elements of Comparative Examples 1 to 6 using the sample was taken as the reference value of the threshold voltage change after repeated driving of the organic transistor of each example.
[実施例3-2~3-6]
 実施例3-1fにおいて、比較サンプル1の代わりに比較サンプル2~6を用い、その他は実施例3-1fと同様にして実施例、3-2~3-6の有機トランジスタ素子とした。
 これらの各実施例の有機トランジスタ素子のトランジスタ特性を比較サンプル1と同様に評価した。
 得られた結果を下記表に示した。
[Examples 3-2 to 3-6]
In Example 3-1f, Comparative Samples 2 to 6 were used instead of Comparative Sample 1, and the others were the same as Example 3-1f, to obtain the organic transistor elements of Examples 3-2 to 3-6.
The transistor characteristics of the organic transistor element of each of these Examples were evaluated in the same manner as Comparative Sample 1.
The obtained results are shown in the following table.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 上記表より、いずれの実施例においても対応する比較例に対し、繰り返し駆動後の閾値電圧変化に改善が認められる。
 有機トランジスタ素子の保管時のガス雰囲気における酸素含率は低い方が好ましいことがわかる。
 有機トランジスタ素子の保管時のガス雰囲気における相対湿度は低い方が好ましいことがわかる。
From the above table, improvement in the threshold voltage change after repeated driving can be recognized for any of the corresponding comparative examples.
It is understood that the lower the oxygen content in the gas atmosphere at the time of storage of the organic transistor element, the better.
It is understood that the lower the relative humidity in the gas atmosphere at the time of storage of the organic transistor element, the better.
 なお、トランジスタ活性層中の酸素含量および水含量の定量を検討したが、環境因子との分離が困難で実施できなかった。 Although the determination of the oxygen content and the water content in the transistor active layer was examined, it could not be carried out because separation from environmental factors was difficult.
11 基板
12 ゲート電極
13 絶縁体層
14 半導体活性層(有機物層、有機半導体層)
15a、15b ソース電極およびドレイン電極
31 基板
32 ゲート電極
33 絶縁体層
34a、34b ソース電極およびドレイン電極
35 半導体活性層(有機物層、有機半導体層)
11 substrate 12 gate electrode 13 insulator layer 14 semiconductor active layer (organic layer, organic semiconductor layer)
15a, 15b Source electrode and drain electrode 31 Substrate 32 Gate electrode 33 Insulator layer 34a, 34b Source electrode and drain electrode 35 Semiconductor active layer (organic layer, organic semiconductor layer)

Claims (11)

  1.  基板上に
     絶縁体層を有し、
     前記絶縁体層の片側にお互いに離間したソース電極およびドレイン電極を有し、
     前記絶縁体層のもう片側にゲート電極を有し、
     前記ソース電極、前記ドレイン電極および前記絶縁体層に接した半導体活性層を有し、
     前記基板、前記ゲート電極、前記絶縁体層および前記半導体活性層は積層した構造の有機トランジスタであり、
     前記半導体活性層が
      縮環芳香族化合物である有機半導体材料、ならびに、
      成分Aとして、0.1~10ppmのイオン性物質、水、酸素および0.5~4000ppmの前記有機半導体材料と芳香族構造が同一である化合物のいずれかを含有する有機トランジスタ。
    Has an insulator layer on the substrate,
    Having source and drain electrodes spaced apart from each other on one side of the insulator layer;
    Having a gate electrode on the other side of the insulator layer,
    A semiconductor active layer in contact with the source electrode, the drain electrode, and the insulator layer;
    The substrate, the gate electrode, the insulator layer, and the semiconductor active layer are organic transistors having a stacked structure,
    An organic semiconductor material wherein the semiconductor active layer is a fused aromatic compound, and
    An organic transistor comprising, as component A, 0.1 to 10 ppm of an ionic substance, water, oxygen, and oxygen and a compound having an aromatic structure identical to that of the organic semiconductor material of 0.5 to 4,000 ppm.
  2.  前記成分Aとして前記有機半導体材料と芳香族構造が同一である縮環芳香族化合物を0.5~4000ppm含有する請求項1に記載の有機トランジスタ。 The organic transistor according to claim 1, wherein the component A contains 0.5 to 4000 ppm of a fused aromatic compound having the same aromatic structure as the organic semiconductor material.
  3.  前記有機半導体材料がチオフェン環を縮環中に含む縮環芳香族化合物である請求項1または2に記載の有機トランジスタ。 The organic transistor according to claim 1 or 2, wherein the organic semiconductor material is a fused aromatic compound containing a thiophene ring in a fused ring.
  4.  前記有機半導体材料が下記一般式1で表される縮環芳香族化合物である請求項1~3のいずれか一項に記載の有機トランジスタ;
    一般式1
    Figure JPOXMLDOC01-appb-C000001
    一般式1中、
     A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
     R11およびR12はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
     R11とA、または、R12とCは、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
     n1は1~5の整数である;
     n11およびn12はそれぞれ独立に1~3の整数である。
    The organic transistor according to any one of claims 1 to 3, wherein the organic semiconductor material is a fused aromatic compound represented by the following general formula 1;
    General formula 1
    Figure JPOXMLDOC01-appb-C000001
    In the general formula 1,
    A 1 , B 1 and C 1 each independently represent a benzene ring, an azole ring, a furan ring or a thiophene ring, and plural B 1 s may be the same or different;
    R 11 and R 12 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
    R 11 and A 1 , or R 12 and C 1 are each independently bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof May be;
    n1 is an integer of 1 to 5;
    n11 and n12 are each independently an integer of 1 to 3.
  5.  前記成分Aが下記一般式3で表される化合物である請求項4に記載の有機トランジスタ;
    一般式3
    Figure JPOXMLDOC01-appb-C000002
    一般式3中、
     A、BおよびCはそれぞれ独立にベンゼン環、アゾール環、フラン環またはチオフェン環であり、複数のBは同一であっても異なってもよい;
     R31はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
     R32は水素原子、ハロゲン原子、置換リン原子または置換酸素原子であり;
     R31とAは、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせのいずれかを介して結合してもよい;
     n3は1~5の整数である;
     n31およびn32はそれぞれ独立に1~3の整数である。
    The organic transistor according to claim 4, wherein the component A is a compound represented by the following general formula 3;
    General formula 3
    Figure JPOXMLDOC01-appb-C000002
    In the general formula 3,
    A 3 , B 3 and C 3 are each independently a benzene ring, an azole ring, a furan ring or a thiophene ring, and a plurality of B 3 may be the same or different;
    R 31 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
    R 32 is a hydrogen atom, a halogen atom, a substituted phosphorus atom or a substituted oxygen atom;
    R 31 and A 3 may be bonded via any of an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof;
    n3 is an integer of 1 to 5;
    n31 and n32 are each independently an integer of 1 to 3.
  6.  前記有機半導体材料が下記一般式2で表される縮環芳香族化合物である請求項1~3のいずれか一項に記載の有機トランジスタ;
    一般式2
    Figure JPOXMLDOC01-appb-C000003
    一般式2中、
     AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環または炭素数4~12の芳香族ヘテロ環であり;
     R21およびR22はそれぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
     R21とベンゼン環、または、R22とベンゼン環は、それぞれ独立に酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい。
    The organic transistor according to any one of claims 1 to 3, wherein the organic semiconductor material is a fused aromatic compound represented by the following general formula 2;
    General formula 2
    Figure JPOXMLDOC01-appb-C000003
    In the general formula 2,
    Each of A 2 and B 2 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms;
    R 21 and R 22 each independently represent an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
    R 21 and a benzene ring, or R 22 and a benzene ring may be independently bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group and a combination thereof Good.
  7.  前記成分Aが下記一般式4で表される化合物である請求項6に記載の有機トランジスタ;
    一般式4
    Figure JPOXMLDOC01-appb-C000004
    一般式4中、
     AおよびBはそれぞれ独立に炭素数6~14の芳香族炭化水素環または炭素数4~12の芳香族ヘテロ環であり;
     R41はアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基であり;
     R41とベンゼン環は、酸素原子、硫黄原子、二価の置換アミノ基、カルボニル基、スルホキシド基、スルホン基およびこれらの組み合わせを介して結合してもよい;
     R42は水素原子、ハロゲン原子、置換リン原子、置換酸素原子または前記有機半導体材料のR22と同一構造ではないアルキニル基である。
    The organic transistor according to claim 6, wherein the component A is a compound represented by the following general formula 4;
    General formula 4
    Figure JPOXMLDOC01-appb-C000004
    In the general formula 4,
    Each of A 4 and B 4 independently represents an aromatic hydrocarbon ring having 6 to 14 carbon atoms or an aromatic heterocycle having 4 to 12 carbon atoms;
    R 41 is an alkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group;
    R 41 and the benzene ring may be bonded via an oxygen atom, a sulfur atom, a divalent substituted amino group, a carbonyl group, a sulfoxide group, a sulfone group, and a combination thereof;
    R 42 is a hydrogen atom, a halogen atom, a substituted phosphorus atom, a substituted oxygen atom or an alkynyl group having the same structure as R 22 of the organic semiconductor material.
  8.  前記成分Aが有機半導体層に0.5~50ppm含まれる請求項2~7のいずれか一項に記載の有機トランジスタ。 The organic transistor according to any one of claims 2 to 7, wherein 0.5 to 50 ppm of the component A is contained in the organic semiconductor layer.
  9.  前記成分Aとして、前記イオン性物質を0.1~10ppm含有する請求項1に記載の有機トランジスタ。 The organic transistor according to claim 1, wherein the component A contains 0.1 to 10 ppm of the ionic substance.
  10.  前記成分Aとして、水または酸素を含有する請求項1に記載の有機トランジスタ。 The organic transistor according to claim 1, wherein the component A contains water or oxygen.
  11.  少なくとも1時間以上、酸素含率25%以下、かつ、相対湿度10%以下のガス雰囲気下で、保管されてなる請求項10に記載の有機トランジスタ。 The organic transistor according to claim 10, which is stored under a gas atmosphere of oxygen content of 25% or less and relative humidity of 10% or less for at least one hour or more.
PCT/JP2015/055879 2014-03-03 2015-02-27 Organic transistor WO2015133402A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506462A JP6302995B2 (en) 2014-03-03 2015-02-27 Organic transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040568 2014-03-03
JP2014-040568 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133402A1 true WO2015133402A1 (en) 2015-09-11

Family

ID=54055209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055879 WO2015133402A1 (en) 2014-03-03 2015-02-27 Organic transistor

Country Status (2)

Country Link
JP (1) JP6302995B2 (en)
WO (1) WO2015133402A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2542346A (en) * 2015-09-14 2017-03-22 Cambridge Display Tech Ltd Anthrathiophene derivatives with transverse solubilising units and their applications as organic semiconductors
JPWO2017175665A1 (en) * 2016-04-07 2019-02-21 富士フイルム株式会社 Organic thin film transistor element, composition for forming organic semiconductor film, method for producing organic semiconductor film, and organic semiconductor film
JPWO2017212882A1 (en) * 2016-06-09 2019-04-04 株式会社ダイセル Composition for manufacturing an organic semiconductor device
WO2019193953A1 (en) 2018-04-03 2019-10-10 富士フイルム株式会社 Organic semiconductor element, composition, method of purifying compound, and application thereof
JP2020053706A (en) * 2019-12-19 2020-04-02 純一 竹谷 Organic field effect transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (en) * 2002-05-27 2003-12-05 Konica Minolta Holdings Inc Method of refining organic semiconductor material, organic semiconductor material obtained by this refining method, and semiconductor device using the same
JP2004083650A (en) * 2002-08-23 2004-03-18 Konica Minolta Holdings Inc Organic semiconductor material and thin film transistor element using the same
JP2007204721A (en) * 2006-02-06 2007-08-16 Fuji Xerox Co Ltd Method of processing organic polymer electronic material, method of producing organic polymer electronic material, organic electroluminescence element, electrophotografic organic photoreceptor, image forming apparatus, organic semiconductor transistor device and method of manufacturing the same, and semiconductor apparatus
WO2008047896A1 (en) * 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Field-effect transistor
JP2011134757A (en) * 2009-12-22 2011-07-07 Tosoh Corp Organic semiconductor material
JP2012209329A (en) * 2011-03-29 2012-10-25 Tosoh Corp Dithienobenzodithiophene derivative solution and organic semiconductor layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347624A (en) * 2002-05-27 2003-12-05 Konica Minolta Holdings Inc Method of refining organic semiconductor material, organic semiconductor material obtained by this refining method, and semiconductor device using the same
JP2004083650A (en) * 2002-08-23 2004-03-18 Konica Minolta Holdings Inc Organic semiconductor material and thin film transistor element using the same
JP2007204721A (en) * 2006-02-06 2007-08-16 Fuji Xerox Co Ltd Method of processing organic polymer electronic material, method of producing organic polymer electronic material, organic electroluminescence element, electrophotografic organic photoreceptor, image forming apparatus, organic semiconductor transistor device and method of manufacturing the same, and semiconductor apparatus
WO2008047896A1 (en) * 2006-10-20 2008-04-24 Nippon Kayaku Kabushiki Kaisha Field-effect transistor
JP2011134757A (en) * 2009-12-22 2011-07-07 Tosoh Corp Organic semiconductor material
JP2012209329A (en) * 2011-03-29 2012-10-25 Tosoh Corp Dithienobenzodithiophene derivative solution and organic semiconductor layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2542346A (en) * 2015-09-14 2017-03-22 Cambridge Display Tech Ltd Anthrathiophene derivatives with transverse solubilising units and their applications as organic semiconductors
WO2017046554A1 (en) * 2015-09-14 2017-03-23 Cambridge Display Technology Limited Anthrathiophene derivatives with transverse solubilising units and their applications as organic semiconductors
JPWO2017175665A1 (en) * 2016-04-07 2019-02-21 富士フイルム株式会社 Organic thin film transistor element, composition for forming organic semiconductor film, method for producing organic semiconductor film, and organic semiconductor film
JPWO2017212882A1 (en) * 2016-06-09 2019-04-04 株式会社ダイセル Composition for manufacturing an organic semiconductor device
WO2019193953A1 (en) 2018-04-03 2019-10-10 富士フイルム株式会社 Organic semiconductor element, composition, method of purifying compound, and application thereof
JPWO2019193953A1 (en) * 2018-04-03 2021-03-25 富士フイルム株式会社 Methods for Purifying Organic Semiconductor Devices, Compositions, Compounds and Their Applications
JP7001815B2 (en) 2018-04-03 2022-02-04 富士フイルム株式会社 Methods for Purifying Organic Semiconductor Devices, Compositions, Compounds and Their Applications
JP2020053706A (en) * 2019-12-19 2020-04-02 純一 竹谷 Organic field effect transistor

Also Published As

Publication number Publication date
JPWO2015133402A1 (en) 2017-04-06
JP6302995B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
KR101714282B1 (en) Organic thin-film transistor, organic semiconductor thin film and organic semiconductor material
JP6091151B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP5975834B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
WO2015133402A1 (en) Organic transistor
TWI606053B (en) Organic thin film transistor, compound, organic semiconductor thin film,organic semiconductor material,material for organic thin film transistor,and coating solution for organic semiconductor element
KR20150046260A (en) Organic thin-film transistor, organic semiconductor thin film and organic semiconductor material
JP6061886B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP5897050B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP5940104B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
JP6306460B2 (en) Composition for forming organic semiconductor film, organic semiconductor material for non-luminescent organic semiconductor device, organic film transistor material, coating solution for non-luminescent organic semiconductor device, ink for non-luminescent organic semiconductor device, non-luminescent organic semiconductor Organic semiconductor films, organic film transistors and oligomers for devices
WO2014123214A1 (en) Organic thin film transistor, organic semiconductor thin film, and organic semiconductor material
EP3101705B1 (en) Organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor device, material for organic transistor, coating solution for non-light-emitting organic semiconductor device, and organic semiconductor film for non-light-emitting organic semiconductor device
US20160322588A1 (en) Organic Transistor, Compound, Organic Semiconductor Material for Non-Light-Emitting Organic Semiconductor Device, Material for Organic Transistor, Coating Solution for Non-Light-Emitting Organic Semiconductor Device, and Organic Semiconductor Film for Non-Light-Emitting Organic Semiconductor Device
US20160343958A1 (en) Organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor device, material for organic transistor, coating solution for non-light-emitting organic semiconductor device, and organic semiconductor film for non-light-emitting organic semiconductor device
WO2015105059A1 (en) Organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor devices, material for organic transistors, coating solution for non-light-emitting organic semiconductor devices, and organic semiconductor film for non-light-emitting organic semiconductor devices
JP6179837B2 (en) Composition, organic semiconductor material for non-luminescent organic semiconductor device, organic transistor material, coating solution for non-luminescent organic semiconductor device, organic semiconductor for non-luminescent organic semiconductor device, organic transistor, polycyclic fused aromatic compound
JP6184234B2 (en) Organic thin film transistor, organic semiconductor thin film and organic semiconductor material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757684

Country of ref document: EP

Kind code of ref document: A1