WO2015133401A1 - Control unit, storage battery system, battery cell balancing method, and program - Google Patents

Control unit, storage battery system, battery cell balancing method, and program Download PDF

Info

Publication number
WO2015133401A1
WO2015133401A1 PCT/JP2015/055877 JP2015055877W WO2015133401A1 WO 2015133401 A1 WO2015133401 A1 WO 2015133401A1 JP 2015055877 W JP2015055877 W JP 2015055877W WO 2015133401 A1 WO2015133401 A1 WO 2015133401A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage element
battery
charging
battery cell
state
Prior art date
Application number
PCT/JP2015/055877
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 矢野
渡辺 秀
園 駱
潤一 宮本
小林 憲司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016506461A priority Critical patent/JPWO2015133401A1/en
Publication of WO2015133401A1 publication Critical patent/WO2015133401A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery system having a plurality of battery cells, a battery cell balancing method, a program, and the like.
  • the present invention relates to a control unit, a storage battery system, a battery cell balance method, and a program capable of more efficiently balancing cells between battery cells in an active manner.
  • a storage battery system in which a plurality of battery cells are combined has come to be used in various fields as a power source for so-called hybrid cars and electric vehicles, and as a power storage device for home use or commercial facilities.
  • the capacity and voltage of each battery cell may gradually become unbalanced with use.
  • One reason for this is that the electrical characteristics of all the battery cells or the environment during charging / discharging (for example, temperature variations) cannot be made uniform.
  • the state of charge of the storage element is not taken into account when performing the cell balance operation.
  • the cell balance operation is performed under a predetermined condition that is uniformly set regardless of the storage state, the charge transfer from the storage element to the target battery cell is efficient especially in the initial stage of cell balance. (The details will be described later with reference to the drawings).
  • an object of the present invention is to provide a control unit, a storage battery system, a battery cell balance method, and a program capable of more efficiently balancing cells between battery cells in an active manner.
  • a control unit is as follows: 1. In a storage battery system comprising: a plurality of battery cells connected to each other; an auxiliary storage element electrically connected to each of the battery cells; and a switch that switches a connection state between each of the battery cells and the auxiliary storage element.
  • a control unit capable of controlling the operation of the switch, In the storage battery system, (I) a first connection state in which cells other than the battery cell to be balanced among the plurality of battery cells and the auxiliary power storage element are connected; and (ii) the battery cell to be balanced and the auxiliary power storage element.
  • a cell balance operation for switching the second connection state to be connected to make the voltage of the battery cell uniform, Prior to the cell balance operation, a pre-charging operation for charging the auxiliary storage element in the first connection state;
  • a control unit that is configured to cause
  • Battery cell basically refers to an individual storage battery constituting an assembled battery, and in some cases includes a module including a plurality of storage batteries.
  • the timing of the “pre-charge operation” may be immediately before the cell balance operation (including the case where the “cell balance operation” is performed continuously to the “pre-charge operation”), or the pre-charge operation is performed in advance.
  • the cell balance operation may be performed after that.
  • the “parameter relating to the charging state” refers to a parameter that can determine how much charging has progressed based on the parameter. For example, the current flowing through the auxiliary power storage element, the voltage of the auxiliary power storage element, or the charging time may be used.
  • the “steady state in which the charging current and the discharging current of the auxiliary storage element are substantially balanced” means not only a state in which the charging current and the discharging current are completely balanced but also a state in which they are substantially balanced (for example, charging of the auxiliary storage element).
  • the “cell balance operation” is not necessarily limited to one in which the “first connection state” and the “second connection state” are alternately performed.
  • a storage battery system capable of more efficiently balancing cells between battery cells in an active manner.
  • FIG. 1 shows an example of a storage battery system according to an embodiment of the present invention.
  • the storage battery system 1 of FIG. 1 includes battery cells 15a to 15d connected in series (hereinafter also simply referred to as battery cells 15) and a circuit configuration for equalizing the voltages of the battery cells 15a to 15d.
  • battery cells 15 battery cells 15a to 15d connected in series
  • a circuit configuration for equalizing the voltages of the battery cells 15a to 15d Yes.
  • an auxiliary storage element 25 that can be electrically connected to each battery cell 15 and a plurality of switches SW (details below) for switching the connection state between each battery cell 15 and the auxiliary storage element 25.
  • the storage battery system 1 further includes a monitor unit 31 that measures the voltage and the like of each battery cell 15 and a control unit 35 that is electrically connected thereto.
  • the battery cell 15 is not particularly limited, but may be a secondary battery such as a lithium ion battery.
  • a cylindrical shape is shown as an example, but naturally, it may be a thin battery with a laminate and may be a lithium ion secondary battery.
  • four battery cells 15 are arranged in series. However, the number is not limited to this, and the number of battery cells 15 can be changed to any number of two, three, or five or more.
  • auxiliary power storage element 25 a power storage element such as a capacitor or a transformer can be used. Of course, one or a plurality of auxiliary power storage elements 25 may be provided. In the present embodiment, as will be described later, the cell balance condition is determined based on the voltage value and / or current value of the auxiliary power storage element 25. Therefore, the auxiliary power storage element 25 is also provided with means (not shown) for measuring voltage and / or current.
  • first switch groups SW1a to SW1e and second switch groups SW2a to SW2d are provided.
  • the following states are set: (I) A first connection state in which cells other than the battery cells to be balanced (for example, 15b to 15d) among the plurality of battery cells 15a to 15d are connected to the auxiliary storage element 25. (Ii) A second connection state in which a battery cell (15a in one example) to be balanced and the auxiliary storage element 25 are connected.
  • the on / off of each of the switches SW1a to 1e and SW2a to 2d is controlled by the control unit 35.
  • the control unit 35 may be, for example, a microcomputer having one or more processors and a memory. Or the control unit 35 may be comprised with the electric circuit.
  • the switch SW may be controlled, for example, by PWM (Pulse Width Modulation) control of the semiconductor switching element.
  • the control unit 35 may have a display device such as a display in some cases.
  • a program is installed in the memory of the control unit 35, and according to the program, one or more processors are configured to realize various functions of the storage value system, cell balance operation (detailed below), and the like. Also good.
  • the monitor unit 31 has a function as a voltmeter capable of measuring the voltage of each battery cell 15. Moreover, you may grasp
  • the control unit 35 is electrically connected to the monitor unit 31 and performs various arithmetic processes based on the detection result (monitoring result). Conventionally known methods can be used for such battery cell state monitoring and arithmetic processing based on the monitoring (for example, whether or not to start a cell balance operation).
  • the “passive method” uses a resistor and a switch provided in a detour, bypasses a battery cell having a high voltage to a resistor connected in parallel to the battery cell, and discharges the voltage, thereby equalizing the voltage. It is intended.
  • the “active method” a plurality of battery cells are divided into a battery cell group having a high voltage and a battery cell to be balanced having a low voltage, and (i) the battery cell group having a high voltage is sub-storage element. And charging the auxiliary power storage element by connecting to the battery, and (ii) connecting the auxiliary power storage element and the battery cell to be balanced and moving the charge to the battery cell, thereby making the voltage uniform Is intended.
  • the “active method” cell balance method is advantageous from the viewpoint of energy efficiency.
  • the conventional general active cell balance method basically switches the two connection states at a constant period, and thus has the following problems.
  • the auxiliary power storage element will be described as a capacitor.
  • T 2s in one example
  • the horizontal axis indicates time
  • the vertical axis indicates the current value of the charging current.
  • the initial value of the cell balance that is, for a while after the start of the cell balance operation, the current value is on the positive side, and the charging current is significantly larger than the discharging current from the capacitor.
  • the current value gradually shifts to the minus side as time passes, and when the state finally reaches a state as shown in FIG 2B, the charging current and discharging current from the capacitor are balanced. It becomes a steady state.
  • the following cell balance method is performed.
  • the basic technical idea of the method described below is that (i) first, a certain amount of charge is stored in the capacitor (auxiliary storage element) prior to the initial stage of cell balance or cell balance operation, and (ii) as an example Then, after a steady state in which the charging current and the discharging current of the auxiliary power storage element are substantially balanced is obtained, the switching is made to periodic switching (not necessarily limited to a certain period).
  • FIG. 4A is an example of a flowchart in the case of performing cell balance based on the current flowing through the capacitor.
  • step S1 of FIG. 4A the voltage value of each battery cell 15 is acquired (step S1). Specifically, it may be performed by the control unit 35 reading the value measured by the monitor unit 31.
  • step S2 the maximum value of the cell voltage difference is detected (step S2). Thereafter, in step S3, it is determined whether or not a cell balance operation is necessary (step S3).
  • the control unit 35 may compare the voltage values of the battery cells 15 and determine whether or not the maximum value of the difference exceeds a predetermined reference value. When the maximum value of the difference exceeds a predetermined reference value, the control unit 35 determines that the cell balance operation is necessary.
  • this determination is not necessarily limited to that based on the voltage difference. This determination may be made based on some parameter indicating a difference in the charging state of each battery cell, a predetermined threshold value, and the like. As a specific example, it may be determined whether or not a parameter value (for example, a percentage display) representing a state of charge calculated from a charge / discharge history is shifted to a predetermined threshold value or more. Various methods including a known method can be used for determining whether or not the cell balance operation is necessary.
  • step S4 switching conditions (charging conditions) for cell balance are determined (step S4).
  • the determination of the charging condition will be described with reference to the circuit models of FIGS. 3 (A) and 3 (B).
  • the capacitance of the capacitor is C
  • the resistance caused by the circuit element is R
  • the voltage of the cell 4 is Assume that it is in the lowest state.
  • the steady state can be formulated under the condition that the charge current of the capacitor and the balance current from the capacitor to the battery cell are balanced.
  • the storage element current i ter the storage element voltage V ter , and the time required for charging t ter when the capacitor is charged from the state of 0 until the steady state is established can be expressed as follows. Yes (R is the internal resistance of the circuit):
  • the current i ter is determined, and the cell balance operation is performed accordingly (steps S5 and S6).
  • the determination of the current i ter may be performed by the control unit 35 performing a calculation based on the above formula.
  • step S7 the control unit 35, the current i of the capacitor is a judgment of whether or not reached to the current i ter, continues to charge the capacitor to reach the current i ter (step S8), and the current i ter reach After that, go to the next step.
  • step S8 a normal cell balance operation (for example, switching is performed at a constant period) is performed (step S8).
  • Conventionally known techniques may be used for the switching timing and the operation end timing in this step.
  • step S5 As in the flowchart shown in FIG. 4B, it is also possible to perform control based on the capacitor voltage.
  • the capacitor voltage V ter is determined in step S5, and in step S7, it is determined whether or not the capacitor voltage V has reached the voltage V ter and the capacitor charging at the initial stage of cell balance may be performed.
  • Other operations and control can be performed in the same manner as in the case of control with the current.
  • step S5 the time t ter is determined in step S5
  • step S7 it is determined whether or not the capacitor charging time t at the initial stage of cell balance has reached the time t ter .
  • Other operations and control can be performed in the same manner as in the case of control with the current.
  • the current reference control, the voltage reference control, and the time reference control as described above may be used alone or in appropriate combination. 4A to 4C, it is determined whether or not the current value i, the voltage value V, and the time t reach the storage element current i ter , the storage element voltage V ter , and the time t ter required for charging, respectively.
  • the threshold value in this determination does not necessarily need to be exactly i ter , V ter , t ter , an approximate value of these values or a value of 90% or more of these values, for example, 80% It is good also as the above value or a value 70% or more.
  • the calculation based on the mathematical formula has been described. However, when the calculation is difficult, the determination of the charging condition is not necessarily calculated. It is also possible to set a charging condition that can realize a steady state based on actual measurement. In the present invention, at the initial stage of cell balance, first, it is not necessarily limited to a specific calculation process as long as it can be in a steady state in which the charging current and discharging current of the auxiliary storage element are substantially balanced. It is not a thing.
  • FIG. 5 is a result showing the transition of the average balance current when the method of the present embodiment is applied and the capacitor charging time t 1 at the initial stage of cell balance is changed to 2 s, 5 s, and 10 s.
  • the horizontal axis is time (sec), and the vertical axis is the average balance current value.
  • the current value is standardized with a steady state value of 1.
  • a control unit (35) capable of controlling the operation of the switch in a storage battery system (1) comprising: In the storage battery system, (I) a first connection state in which cells other than the battery cell to be balanced among the plurality of battery cells and the auxiliary power storage element are connected; and (ii) the battery cell to be balanced and the auxiliary power storage element.
  • a cell balance operation for switching the second connection state to be connected to make the voltage of the battery cell uniform, Prior to the cell balance operation, a pre-charging operation for charging the auxiliary storage element in the first connection state;
  • a control unit that is configured to cause
  • the parameter for the state of charge is current
  • the pre-charging operation is The above description is performed until the current i flowing through the auxiliary storage element becomes the reference current i ter based on the value of the current i ter flowing through the auxiliary storage element until the steady state is obtained. Control unit.
  • the parameter relating to the state of charge is voltage
  • the pre-charging operation is The above description is performed until the voltage V of the auxiliary storage element becomes the reference voltage V ter based on the value of the reference voltage V ter of the same element when the auxiliary storage element is charged to a state where a steady state is obtained. Controller unit.
  • the parameter for the state of charge is time
  • the pre-charging operation is The control unit as described above, which is performed until the reference time t ter is reached based on a value of a reference time t ter necessary for charging the auxiliary power storage element to a state where a steady state can be obtained.
  • a storage battery system comprising:
  • auxiliary storage element is a capacitor or a transformer.
  • the storage battery system comprising voltage measuring means for measuring the voltage of the auxiliary storage element.
  • the storage battery system according to the above, further comprising current measuring means for measuring a current flowing through the auxiliary power storage element.
  • the pre-charging operation step includes The battery cell balancing method according to the above, which is performed until a parameter relating to a charging state reaches a predetermined threshold value.
  • the pre-charging operation step The battery cell balance method according to the above, wherein the battery cell balance method is performed until a steady state is obtained in which a charging current and a discharging current of the auxiliary power storage element are substantially balanced.
  • a program for causing one or more processors (one or more computers) to perform the battery cell balancing method described above.
  • Such a program may be stored in a storage area of the system. That is, an algorithm for performing the above method may be stored in the storage area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

In this storage battery system, which is provided with a plurality of battery cells connected to each other, an auxiliary electricity storage element that is electrically connected to the battery cells, and switches, each of which switches a state of connection between each of the battery cells and the auxiliary electricity storage element, this control unit is capable of controlling operations of the switches. The control unit is configured so as to have the storage battery system perform: cell balancing operations for uniformizing voltages of the battery cells by performing switching between (i) a first connection state wherein the auxiliary electricity storage element and cells among the battery cells, said cells excluding the battery cells to be balanced, are connected to each other, and (ii) a second connection state wherein the auxiliary electricity storage element and the battery cells to be balanced are connected to each other; and precharging operations for charging the auxiliary electricity storage element in the first connection state prior to the cell balancing operations.

Description

制御ユニット、蓄電池システム、電池セルバランス方法およびプログラムControl unit, storage battery system, battery cell balance method and program
 本発明は、複数の電池セルを有する蓄電池システム、電池セルバランス方法およびプログラム等に関する。特には、より効率的にアクティブ方式で電池セル間のセルバランスをとることが可能な制御ユニット、蓄電池システム、電池セルバランス方法およびプログラムに関する。 The present invention relates to a storage battery system having a plurality of battery cells, a battery cell balancing method, a program, and the like. In particular, the present invention relates to a control unit, a storage battery system, a battery cell balance method, and a program capable of more efficiently balancing cells between battery cells in an active manner.
 近年、いわゆるハイブリッドカーや電気自動車の電源として、また、家庭用や商業施設用などの蓄電装置として、複数の電池セルを組み合わせた蓄電池システムが多方面で利用されるようになってきている。このような複数の電池セルを接続したシステムにおいては、使用に伴って、徐々に各電池セルの容量や電圧にアンバランスが生じることがある。この理由の1つとしては、全ての電池セルの電気特性あるいは充放電時の環境(例えば、温度のバラツキ)を均一にできないためである。 In recent years, a storage battery system in which a plurality of battery cells are combined has come to be used in various fields as a power source for so-called hybrid cars and electric vehicles, and as a power storage device for home use or commercial facilities. In such a system in which a plurality of battery cells are connected, the capacity and voltage of each battery cell may gradually become unbalanced with use. One reason for this is that the electrical characteristics of all the battery cells or the environment during charging / discharging (for example, temperature variations) cannot be made uniform.
 こうした電池セルのアンバランスを解消する方式として、キャパシタやインダクタンスなどの蓄電素子を用いたアクティブ方式のセルバランス方法が提案されている。従来の方法としては、蓄電素子の充放電をある一定周期で行うものが知られている(例えば特許文献1)。また、電池セルの電圧差に応じて充放電時間周期や充放電時間の比を変化させる方法なども知られている(例えば引用文献2)。 As a method for eliminating such battery cell imbalance, an active cell balance method using a storage element such as a capacitor or an inductance has been proposed. As a conventional method, a method of charging / discharging a power storage element at a certain period is known (for example, Patent Document 1). Moreover, the method etc. which change the ratio of charging / discharging time period and charging / discharging time according to the voltage difference of a battery cell are also known (for example, cited reference 2).
特許3458740号Japanese Patent No. 3458740 特許4181104号Japanese Patent No. 4181104
 しかしながら、上記文献のような方法では、セルバランス動作を行う際に蓄電素子の充電状態が考慮されていない。すなわち、蓄電状態に関わらず一律に予め設定した所定の条件でセルバランス動作を実施するようなものであるため、特にセルバランス初期で、蓄電素子から対象の電池セルへの電荷の移動が効率的に行なわれないという問題があった(詳細については図面を参照して後述する)。 However, in the method as described in the above document, the state of charge of the storage element is not taken into account when performing the cell balance operation. In other words, since the cell balance operation is performed under a predetermined condition that is uniformly set regardless of the storage state, the charge transfer from the storage element to the target battery cell is efficient especially in the initial stage of cell balance. (The details will be described later with reference to the drawings).
 そこで、本発明の目的は、より効率的にアクティブ方式で電池セル間のセルバランスをとることが可能な制御ユニット、蓄電池システム、電池セルバランス方法およびプログラムを提供することにある。 Therefore, an object of the present invention is to provide a control unit, a storage battery system, a battery cell balance method, and a program capable of more efficiently balancing cells between battery cells in an active manner.
 上記目的を達成するための本発明の一形態に係る制御ユニットは下記のとおりである:
1.互いに接続された複数の電池セルと、前記各電池セルに電気的に接続される補助蓄電素子と、前記各電池セルと前記補助蓄電素子との接続状態を切り替える切替器とを備える蓄電池システムにおいて前記切替器の動作を制御可能な制御ユニットであって、
 前記蓄電池システムに、
 (i)前記複数の電池セルのうちバランス対象の前記電池セル以外のセルと前記補助蓄電素子とが接続される第1の接続状態と、(ii)バランス対象の前記電池セルと前記補助蓄電素子とが接続される第2の接続状態とを切り替えて電池セルの電圧の均一化を図るセルバランス動作と、
 前記セルバランス動作に先立って、前記第1の接続状態で前記補助蓄電素子を充電する事前充電動作と、
 を行わせるように構成されている制御ユニット。
In order to achieve the above object, a control unit according to an embodiment of the present invention is as follows:
1. In a storage battery system comprising: a plurality of battery cells connected to each other; an auxiliary storage element electrically connected to each of the battery cells; and a switch that switches a connection state between each of the battery cells and the auxiliary storage element. A control unit capable of controlling the operation of the switch,
In the storage battery system,
(I) a first connection state in which cells other than the battery cell to be balanced among the plurality of battery cells and the auxiliary power storage element are connected; and (ii) the battery cell to be balanced and the auxiliary power storage element. A cell balance operation for switching the second connection state to be connected to make the voltage of the battery cell uniform,
Prior to the cell balance operation, a pre-charging operation for charging the auxiliary storage element in the first connection state;
A control unit that is configured to cause
(用語の定義)
「電池セル」とは、基本的には、組電池を構成する個々の蓄電池のことを言い、場合によっては、複数の蓄電池を含むモジュールをも含む。
「事前充電動作」のタイミングは、セルバランス動作の直前であってもよいし(「セルバランス動作」が「事前充電動作」に連続して行われることも含む)、または、予め事前充電動作を行っておきその後セルバランス動作が行われてもよい。
「充電状態に関するパラメータ」とは、それに基いて充電がどれくらい進行したのかを判定しうるようなパラメータのことをいう。例えば、補助蓄電素子を流れる電流、補助蓄電素子の電圧、または充電時間等であってもよい。
「補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態」とは、充電電流と放電電流とが完全に釣り合う状態だけでなく、実質的に釣り合う状態(例えば、補助蓄電素子の充電電流および/または放電電流の平均値の時間変化率、あるいはその差がある閾値よりも小さくなるような状態。)をも含む。
・「セルバランス動作」では、必ずしも上記「第1の接続状態」と「第2の接続状態」とが交互に行われるものに限定されるものではない。
(Definition of terms)
“Battery cell” basically refers to an individual storage battery constituting an assembled battery, and in some cases includes a module including a plurality of storage batteries.
The timing of the “pre-charge operation” may be immediately before the cell balance operation (including the case where the “cell balance operation” is performed continuously to the “pre-charge operation”), or the pre-charge operation is performed in advance. The cell balance operation may be performed after that.
The “parameter relating to the charging state” refers to a parameter that can determine how much charging has progressed based on the parameter. For example, the current flowing through the auxiliary power storage element, the voltage of the auxiliary power storage element, or the charging time may be used.
The “steady state in which the charging current and the discharging current of the auxiliary storage element are substantially balanced” means not only a state in which the charging current and the discharging current are completely balanced but also a state in which they are substantially balanced (for example, charging of the auxiliary storage element). The rate of time change of the average value of the current and / or discharge current, or a state in which the difference is smaller than a certain threshold value).
The “cell balance operation” is not necessarily limited to one in which the “first connection state” and the “second connection state” are alternately performed.
 本発明によれば、より効率的にアクティブ方式で電池セル間のセルバランスをとることが可能な蓄電池システム、電池セルバランス方法およびプログラムが提供される。 According to the present invention, there are provided a storage battery system, a battery cell balance method, and a program capable of more efficiently balancing cells between battery cells in an active manner.
本発明の一形態に係る蓄電池システムの一例を模式的に示すブロック図である。It is a block diagram showing typically an example of a storage battery system concerning one form of the present invention. 一定周期でスイッチングを行った場合におけるキャパシタの充電電流を示すグラフである(初期)。It is a graph which shows the charging current of the capacitor at the time of switching by a fixed period (initial stage). 一定周期でスイッチングを行った場合におけるキャパシタの充電電流を示すグラフである(終盤、定常状態)。It is a graph which shows the charging current of the capacitor at the time of switching by a fixed period (the last stage and a steady state). 回路モデルを示す図である(キャパシタへ充電)。It is a figure which shows a circuit model (charge to a capacitor). 回路モデルを示す図である(対象電池セルへ充電)。It is a figure which shows a circuit model (charge to an object battery cell). セルバランス方法の一例のフローチャートである。It is a flowchart of an example of a cell balance method. セルバランス方法の他の例のフローチャートである。It is a flowchart of the other example of the cell balance method. セルバランス方法のさらに他の例のフローチャートである。It is a flowchart of the further another example of the cell balance method. 本実施形態の方法を適用し、セルバランス初期のキャパシタの充電時間を変化させた場合の平均バランス電流の推移を示す結果である。It is a result which shows transition of the average balance current at the time of applying the method of this embodiment and changing the charge time of the capacitor of cell balance initial stage.
 次に、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下に説明する構成はあくまで本発明の一例であって、具体的な構成は適宜変更可能である。図1は、本発明の一形態に係る蓄電池システムの一例を示している。 Next, embodiments of the present invention will be described in detail with reference to the drawings. The configuration described below is merely an example of the present invention, and the specific configuration can be changed as appropriate. FIG. 1 shows an example of a storage battery system according to an embodiment of the present invention.
〔システム構成について〕
 図1の蓄電池システム1は、直列に接続された電池セル15a~15d(以下、単に電池セル15ともいう)と、その電池セル15a~15dの電圧を均一化するための回路構成とを備えている。具体的には、各電池セル15に電気的に接続可能な補助蓄電素子25と、各電池セル15とその補助蓄電素子25との接続状態を切り替えるための複数のスイッチSW(詳細下記)とを備えている。蓄電池システム1は、さらに、各電池セル15の電圧等を測定するモニタ部31と、それに電気的に接続された制御ユニット35とを備えている。
[System configuration]
The storage battery system 1 of FIG. 1 includes battery cells 15a to 15d connected in series (hereinafter also simply referred to as battery cells 15) and a circuit configuration for equalizing the voltages of the battery cells 15a to 15d. Yes. Specifically, an auxiliary storage element 25 that can be electrically connected to each battery cell 15 and a plurality of switches SW (details below) for switching the connection state between each battery cell 15 and the auxiliary storage element 25. I have. The storage battery system 1 further includes a monitor unit 31 that measures the voltage and the like of each battery cell 15 and a control unit 35 that is electrically connected thereto.
 電池セル15は、特に限定されるものではないが、例えばリチウムイオン電池等の二次電池であってもよい。図1では、一例として円筒形のものを示しているが、当然ながら、ラミネート外装された薄型の電池であってもよいし、具体的にはリチウムイオン二次電池であってもよい。また、図1では、電池セル15が4直列となっているが、これに限らず、電池セル15は2つ、3つ、または、5つ以上の任意の数に変更可能である。 The battery cell 15 is not particularly limited, but may be a secondary battery such as a lithium ion battery. In FIG. 1, a cylindrical shape is shown as an example, but naturally, it may be a thin battery with a laminate and may be a lithium ion secondary battery. In FIG. 1, four battery cells 15 are arranged in series. However, the number is not limited to this, and the number of battery cells 15 can be changed to any number of two, three, or five or more.
 補助蓄電素子25としては、キャパシタまたはトランス等の蓄電要素を利用することができる。当然ながら、補助蓄電素子25は1つまたは複数であってもよい。本実施形態においては、後述するとおり、この補助蓄電素子25の電圧値および/または電流値に基づいてセルバランス条件の決定を行う。よって、補助蓄電素子25には電圧および/または電流を測定する手段(不図示)も設けられている。 As the auxiliary power storage element 25, a power storage element such as a capacitor or a transformer can be used. Of course, one or a plurality of auxiliary power storage elements 25 may be provided. In the present embodiment, as will be described later, the cell balance condition is determined based on the voltage value and / or current value of the auxiliary power storage element 25. Therefore, the auxiliary power storage element 25 is also provided with means (not shown) for measuring voltage and / or current.
 スイッチSWとしては、第1のスイッチ群SW1a~SW1eと、第2のスイッチ群SW2a~SW2dとが設けられている。これらのスイッチのオン/オフを適宜行うことで、以下のような状態に切替わるように構成されている:
(i)複数の電池セル15a~15dのうちバランス対象の電池セル以外のセル(一例で15b~15d)と補助蓄電素子25とが接続される第1の接続状態。
(ii)バランス対象の電池セル(一例で15a)と補助蓄電素子25とが接続される第2の接続状態。
As the switches SW, first switch groups SW1a to SW1e and second switch groups SW2a to SW2d are provided. By appropriately turning on / off these switches, the following states are set:
(I) A first connection state in which cells other than the battery cells to be balanced (for example, 15b to 15d) among the plurality of battery cells 15a to 15d are connected to the auxiliary storage element 25.
(Ii) A second connection state in which a battery cell (15a in one example) to be balanced and the auxiliary storage element 25 are connected.
 各スイッチSW1a~1e、SW2a~2dのオン/オフは、制御ユニット35により制御される。この制御ユニット35は、例えば、1つまたは複数のプロセッサおよびメモリ等を有するマイクロコンピュータ等であってもよい。または、制御ユニット35は、電気回路で構成されていてもよい。スイッチSWの制御は、例えば、半導体スイッチング素子をPWM(Pulse Width Modulation)制御するものであってもよい。 The on / off of each of the switches SW1a to 1e and SW2a to 2d is controlled by the control unit 35. The control unit 35 may be, for example, a microcomputer having one or more processors and a memory. Or the control unit 35 may be comprised with the electric circuit. The switch SW may be controlled, for example, by PWM (Pulse Width Modulation) control of the semiconductor switching element.
 制御ユニット35は、場合によっては、ディスプレイ等の表示デバイスを有していてもよい。制御ユニット35のメモリにプログラムが実装され、そのプログラムに従って、1つまたは複数のプロセッサにより、蓄電値システムの種々の機能や、セルバランス動作(詳細下記)等が実現されるように構成されていてもよい。 The control unit 35 may have a display device such as a display in some cases. A program is installed in the memory of the control unit 35, and according to the program, one or more processors are configured to realize various functions of the storage value system, cell balance operation (detailed below), and the like. Also good.
 モニタ部31は、各電池セル15の電圧を測定可能な電圧計としての機能を有する。また、電池セルのその他の状態把握を行うものであってもよい。制御ユニット35は、モニタ部31に電気的に接続され、その検出結果(監視結果)に基づいて種々の演算処理を行う。このような、電池セルの状態監視、および、それに基づく演算処理(一例で、セルバランス動作を開始するか否かの判定処理等)については、従来公知の方式を利用可能である。 The monitor unit 31 has a function as a voltmeter capable of measuring the voltage of each battery cell 15. Moreover, you may grasp | ascertain the other state of a battery cell. The control unit 35 is electrically connected to the monitor unit 31 and performs various arithmetic processes based on the detection result (monitoring result). Conventionally known methods can be used for such battery cell state monitoring and arithmetic processing based on the monitoring (for example, whether or not to start a cell balance operation).
〔セルバランスについて〕
 ところで、図1のシステムのように複数の電池セル15を用いる場合、それぞれの電池セルの容量や電圧にアンバランスが生じることがある。このアンバランスを補正して、各電池セルの電圧の均一化を図るためのセルバランス方式としては、大別して、「パッシブ方式」と「アクティブ方式」とが知られている。
[About cell balance]
By the way, when using the some battery cell 15 like the system of FIG. 1, the balance and capacity | capacitance of each battery cell may arise. As a cell balance method for correcting the unbalance and making the voltage of each battery cell uniform, a “passive method” and an “active method” are broadly known.
 「パッシブ方式」とは、迂回路に設けられた抵抗とスイッチとを利用し、電圧の高い電池セルを該電池セルに並列に接続した抵抗にバイパスさせて放電させることで、電圧の均一化を図るというものである。一方、「アクティブ方式」とは、複数の電池セルを、電圧の高い電池セル群と、電圧の低い、バランス対象となる電池セルとに分け、(i)電圧の高い電池セル群を補助蓄電素子に接続して補助蓄電素子の充電を行うことと、(ii)補助蓄電素子とバランス対象の電池セルとを接続して電荷を当該電池セルに移動させることとを繰り返すことで、電圧の均一化を図るものである。 The “passive method” uses a resistor and a switch provided in a detour, bypasses a battery cell having a high voltage to a resistor connected in parallel to the battery cell, and discharges the voltage, thereby equalizing the voltage. It is intended. On the other hand, in the “active method”, a plurality of battery cells are divided into a battery cell group having a high voltage and a battery cell to be balanced having a low voltage, and (i) the battery cell group having a high voltage is sub-storage element. And charging the auxiliary power storage element by connecting to the battery, and (ii) connecting the auxiliary power storage element and the battery cell to be balanced and moving the charge to the battery cell, thereby making the voltage uniform Is intended.
 上記2つの方式のうち、エネルギー効率の観点からは「アクティブ方式」のセルバランス方法が有利である。しかしながら、従来一般的なアクティブ式セルバランス方法では、基本的には、一定の周期で上記2つの接続状態をスイッチングするものであったため、下記のような問題があった。以下、図2(A)、(B)を参照して説明する。なお、以下では、補助蓄電素子をキャパシタとして説明する。 Among the above two methods, the “active method” cell balance method is advantageous from the viewpoint of energy efficiency. However, the conventional general active cell balance method basically switches the two connection states at a constant period, and thus has the following problems. Hereinafter, a description will be given with reference to FIGS. Hereinafter, the auxiliary power storage element will be described as a capacitor.
 図2(A)は、一定周期(一例でT=2s)でスイッチングを行った場合におけるキャパシタの充電電流を示すグラフである(セルバランス初期)。横軸が時間を示し、縦軸が充電電流の電流値を示している。このグラフから分かるように、セルバランスの初期(つまり、セルバランス動作開始後しばらくの間は、電流値がプラス側に位置しており、キャパシタからの放電電流に比べて充電電流の方が著しく大きくなっている。電流値は、時間の経過とともに、徐々にマイナス側に移っていき、ある程度時間が経ってようやく図2(B)のような状態になると、キャパシタからの充電電流と放電電流が釣り合う定常状態となる。 FIG. 2A is a graph showing the charging current of the capacitor when switching is performed at a constant period (T = 2s in one example) (cell balance initial stage). The horizontal axis indicates time, and the vertical axis indicates the current value of the charging current. As can be seen from this graph, the initial value of the cell balance (that is, for a while after the start of the cell balance operation, the current value is on the positive side, and the charging current is significantly larger than the discharging current from the capacitor. The current value gradually shifts to the minus side as time passes, and when the state finally reaches a state as shown in FIG 2B, the charging current and discharging current from the capacitor are balanced. It becomes a steady state.
 すなわち、上記のように一定周期でスイッチングを行う方法では、図2Aのようなセルバランス初期において、キャパシタに十分な量が蓄電されず、放電よりも充電が優先する状態がしばらく継続することとなる。したがって、この状態では、キャパシタからバランス対象の電池セルに移動する電荷量が少なく充電効率が低くなり、その結果、最終的にセルバランスが完了するまでの時間が長くなる。 That is, in the method of switching at a constant cycle as described above, a sufficient amount is not stored in the capacitor at the initial stage of cell balance as shown in FIG. 2A, and the state where charging is prioritized over discharging continues for a while. . Therefore, in this state, the amount of charge moving from the capacitor to the battery cell to be balanced is small and the charging efficiency is low, and as a result, the time until the cell balance is finally completed becomes long.
 そこで、本実施形態では、こうした問題点を解決してセルバランス初期の電池セルの充電効率を改善するため、次のようなセルバランス方法を行うようにしている。なお、以下に説明する方法の基本的な技術的思想は、セルバランス初期あるいはセルバランス動作に先立って、(i)先ずキャパシタ(補助蓄電素子)にある程度の電荷を蓄め、(ii)一例として、補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態が得られる状態としてから周期的な(かならずしも一定周期に限定されない)スイッチングに移行する点にある。 Therefore, in the present embodiment, in order to solve these problems and improve the charging efficiency of the battery cell in the initial stage of cell balance, the following cell balance method is performed. The basic technical idea of the method described below is that (i) first, a certain amount of charge is stored in the capacitor (auxiliary storage element) prior to the initial stage of cell balance or cell balance operation, and (ii) as an example Then, after a steady state in which the charging current and the discharging current of the auxiliary power storage element are substantially balanced is obtained, the switching is made to periodic switching (not necessarily limited to a certain period).
 こうすることで、セルバランス開始直後から効率的に充電を実施することができるものとなる(詳しくは図5等も参照して後述する)。基準とするパラメータとしては、キャパシタを流れる電流に基づく場合、キャパシタの電圧に基づく場合、時間に基づく場合等が想定される。以下、順に説明する。 In this way, charging can be efficiently performed immediately after the start of cell balance (details will be described later with reference to FIG. 5 and the like). As a reference parameter, a case where it is based on a current flowing through a capacitor, a case where it is based on a voltage of the capacitor, a case where it is based on time, etc. are assumed. Hereinafter, it demonstrates in order.
(電流で制御)
 図3A、図3Bは、図1のシステムの回路モデルである。図4Aは、キャパシタを流れる電流を基準としてセルバランスを行う場合のフローチャートの一例である。
(Controlled by current)
3A and 3B are circuit models of the system of FIG. FIG. 4A is an example of a flowchart in the case of performing cell balance based on the current flowing through the capacitor.
 まず、図4AのステップS1において、各電池セル15の電圧値を取得する(ステップS1)。具体的には、モニタ部31によって測定された値を制御ユニット35が読み込むことによって行われるものであってもよい。 First, in step S1 of FIG. 4A, the voltage value of each battery cell 15 is acquired (step S1). Specifically, it may be performed by the control unit 35 reading the value measured by the monitor unit 31.
 次いで、ステップS2において、セル電圧差の最大値の検出を行う(ステップS2)。その後、ステップS3において、セルバランス動作が必要か否かの判定を行う(ステップS3)。例えば、制御ユニット35が、各電池セル15の電圧値を比較し、その差の最大値が所定の基準値を超えているか否かを判定するものであってもよい。その差の最大値が所定の基準値を超えていた場合、制御ユニット35は、セルバランス動作が必要と判定する。 Next, in step S2, the maximum value of the cell voltage difference is detected (step S2). Thereafter, in step S3, it is determined whether or not a cell balance operation is necessary (step S3). For example, the control unit 35 may compare the voltage values of the battery cells 15 and determine whether or not the maximum value of the difference exceeds a predetermined reference value. When the maximum value of the difference exceeds a predetermined reference value, the control unit 35 determines that the cell balance operation is necessary.
 なお、セルバランス動作が必要か否かの判定について説明を加えると、この判定は必ずしも電圧差に基づくものに限定されるものではない。この判定は、各電池セルの充電状態の違いを示す何らかのパラメータおよび所定の閾値等に基づいて行われるものであってもよい。具体的な一例として、充放電履歴から算出された充電状態を表すパラメータ値(例えばパーセント表示であってもよい)が、所定の閾値以上にずれているか否かを判定するようなものとしてもよい。セルバランス動作が必要か否かの判定に関しては公知の方法を含め種々の方法を利用可能である。 It should be noted that if the determination as to whether or not the cell balance operation is necessary is added, this determination is not necessarily limited to that based on the voltage difference. This determination may be made based on some parameter indicating a difference in the charging state of each battery cell, a predetermined threshold value, and the like. As a specific example, it may be determined whether or not a parameter value (for example, a percentage display) representing a state of charge calculated from a charge / discharge history is shifted to a predetermined threshold value or more. . Various methods including a known method can be used for determining whether or not the cell balance operation is necessary.
 次いで、ステップS4において、セルバランスのためのスイッチング条件(充電条件)を決定する(ステップS4)。図3(A)、(B)の回路モデルを参照して、この充電条件の決定について説明する。ここで、キャパシタの容量をC、回路素子に起因する抵抗をR、それぞれの電池セルの電圧をVi(i=1~4)とし、セル4(図1の電池セル15dに対応)の電圧が最も低い状態にあるものと仮定する。 Next, in step S4, switching conditions (charging conditions) for cell balance are determined (step S4). The determination of the charging condition will be described with reference to the circuit models of FIGS. 3 (A) and 3 (B). Here, the capacitance of the capacitor is C, the resistance caused by the circuit element is R, the voltage of each battery cell is Vi (i = 1 to 4), and the voltage of the cell 4 (corresponding to the battery cell 15d in FIG. 1) is Assume that it is in the lowest state.
 周期Tでキャパシタの充放電スイッチングを行うとき、キャパシタの充電電流と、キャパシタからの電池セルへのバランス電流とが釣り合うという条件で、定常状態を定式化することができる。すなわち、キャパシタの電荷が0の状態から、定常状態が成立するまで充電したときの、蓄電素子電流iter、蓄電素子電圧Vter、および充電に要する時間tterはそれぞれ次のように表すことができる(Rは回路の内部抵抗): When charge / discharge switching of the capacitor is performed at the period T, the steady state can be formulated under the condition that the charge current of the capacitor and the balance current from the capacitor to the battery cell are balanced. In other words, the storage element current i ter , the storage element voltage V ter , and the time required for charging t ter when the capacitor is charged from the state of 0 until the steady state is established can be expressed as follows. Yes (R is the internal resistance of the circuit):
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、 here,
Figure JPOXMLDOC01-appb-M000004
 である。
Figure JPOXMLDOC01-appb-M000004
It is.
 キャパシタ電流による制御の場合には、上記電流iterを決定しそれにしたがってセルバランス動作を実施する(ステップS5、S6)。電流iterの決定は、制御ユニット35が上記式に基づいて計算を行って実施してもよい。 In the case of the control by the capacitor current, the current i ter is determined, and the cell balance operation is performed accordingly (steps S5 and S6). The determination of the current i ter may be performed by the control unit 35 performing a calculation based on the above formula.
 ステップS7では、制御ユニット35が、キャパシタの電流iが電流iterに達したか否かの判定を行い、電流iterに達するまでキャパシタの充電を継続し(ステップS8)、電流iterに達した後は、次のステップに移行する。 In step S7, the control unit 35, the current i of the capacitor is a judgment of whether or not reached to the current i ter, continues to charge the capacitor to reach the current i ter (step S8), and the current i ter reach After that, go to the next step.
 ステップS8では、通常のセルバランス動作(一例として一定周期でスイッチングを行う)を行う(ステップS8)。このステップにおけるスイッチングのタイミングおよび動作終了のタイミング等については、従来公知の技術を利用してもよい。 In step S8, a normal cell balance operation (for example, switching is performed at a constant period) is performed (step S8). Conventionally known techniques may be used for the switching timing and the operation end timing in this step.
 このような方法は、上記のとおり、セルバランス初期に、先ず、キャパシタの充放電電流の定常状態が得られるようにキャパシタに電荷を蓄電してから、周期的なスイッチングに移行するものである。したがって、セルバランス初期における効率を向上させることができ、ひいてはセルバランス完了までに必要な時間も短縮することが可能となる。 As described above, in such a method, at the initial stage of cell balance, first, a charge is stored in the capacitor so that a steady state of the charge / discharge current of the capacitor is obtained, and then the switching is performed periodically. Therefore, the efficiency at the initial stage of cell balance can be improved, and as a result, the time required to complete cell balance can be shortened.
(電圧で制御)
 図4Bに示すフローチャートのように、キャパシタ電圧を基準として制御を行うことも可能である。この場合、ステップS5でキャパシタの電圧Vterを決定し、ステップS7では、キャパシタの電圧Vがその電圧Vterに達したか否かの判定を行い、セルバランス初期のキャパシタ充電を行えばよい。その他の動作、制御については、上記電流での制御の場合と同様に実施可能である。
(Controlled by voltage)
As in the flowchart shown in FIG. 4B, it is also possible to perform control based on the capacitor voltage. In this case, the capacitor voltage V ter is determined in step S5, and in step S7, it is determined whether or not the capacitor voltage V has reached the voltage V ter and the capacitor charging at the initial stage of cell balance may be performed. Other operations and control can be performed in the same manner as in the case of control with the current.
(時間で制御)
 キャパシタの電流や電圧ではなく、図4Cに示すフローチャートのように、時間を基準として制御を行うことも可能である。この場合、ステップS5で時間tterを決定し、ステップS7では、セルバランス初期のキャパシタ充電の時間tがその時間tterに達したか否かの判定が行われることとなる。その他の動作、制御については、上記電流での制御の場合と同様に実施可能である。
(Controlled by time)
Instead of the current and voltage of the capacitor, it is possible to control based on time as in the flowchart shown in FIG. 4C. In this case, the time t ter is determined in step S5, and in step S7, it is determined whether or not the capacitor charging time t at the initial stage of cell balance has reached the time t ter . Other operations and control can be performed in the same manner as in the case of control with the current.
 上記のような電流基準の制御、電圧基準の制御、および時間基準の制御は、それぞれ単独で利用してもよいし、適宜組合せて利用してもよい。また、図4A~図4Cでは、電流値i、電圧値V、時間tが、それぞれ、蓄電素子電流iter、蓄電素子電圧Vter、および充電に要する時間tterに達するか否かの判定を行う例を示しているが、この判定における閾値は必ずしも正確にiter、Vter、tterである必要はなく、これらの値の近似値もしくはこれらの値の例えば90%以上の値、80%以上の値、または70%以上の値などとしてもよい。 The current reference control, the voltage reference control, and the time reference control as described above may be used alone or in appropriate combination. 4A to 4C, it is determined whether or not the current value i, the voltage value V, and the time t reach the storage element current i ter , the storage element voltage V ter , and the time t ter required for charging, respectively. Although an example of performing is shown, the threshold value in this determination does not necessarily need to be exactly i ter , V ter , t ter , an approximate value of these values or a value of 90% or more of these values, for example, 80% It is good also as the above value or a value 70% or more.
 また、上記では数式に基づいて算出することを説明したが、計算が困難な場合は充電条件の決定は必ずしも算出による必要はない。定常状態を実現可能な充電条件を実測に基づき設定することも可能である。本発明においては、セルバランス初期に、先ず、補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態とすることができるようなものであれば、必ずしも特定の演算処理に限定されるものではない。 In the above description, the calculation based on the mathematical formula has been described. However, when the calculation is difficult, the determination of the charging condition is not necessarily calculated. It is also possible to set a charging condition that can realize a steady state based on actual measurement. In the present invention, at the initial stage of cell balance, first, it is not necessarily limited to a specific calculation process as long as it can be in a steady state in which the charging current and discharging current of the auxiliary storage element are substantially balanced. It is not a thing.
 図5は、本実施形態の方法を適用し、セルバランス初期のキャパシタの充電時間tを、2s、5s、10sと変化させた場合の、平均バランス電流の推移を示す結果である。横軸が時間(sec)であり、縦軸が平均バランス電流値である。なお、電流値は定常状態の値を1として標準化している。 FIG. 5 is a result showing the transition of the average balance current when the method of the present embodiment is applied and the capacitor charging time t 1 at the initial stage of cell balance is changed to 2 s, 5 s, and 10 s. The horizontal axis is time (sec), and the vertical axis is the average balance current value. The current value is standardized with a steady state value of 1.
 図5において、t=2sというのは、セルバランス初期におけるキャパシタの充電時間を特に長くせず、例えばT=2sの周期でスイッチングを行うことを意味している。これに対して、t=5s、10sというのは、セルバランス初期におけるキャパシタの充電時間がT=2sの周期よりも長めに設定されていることを意味する。 In FIG. 5, t 1 = 2s means that the capacitor charging time in the initial stage of cell balance is not particularly lengthened, and switching is performed at a period of T = 2s, for example. On the other hand, t 1 = 5 s, 10 s means that the capacitor charging time at the initial stage of cell balance is set longer than the period of T = 2 s.
 一定周期のスイッチングのみを行った場合(t=2s)、バランス電流の立ち上がりカーブは緩やかであり、定常状態に至るのに時間が必要であることが分かる。一方、セルバランス初期にキャパシタの充電を行った場合(t=5s、10s)、それぞれ、5sまたは10sまでの間は当然ながら電流値はゼロであるものの、その後は、バランス電流のカーブはほぼ垂直に立ち上がり、t=2sの場合と比べて、セルバランス初期の段階から大きなバランス電流が得られている。特にt=10sの方がより顕著な改善効果がみられ、一定周期のスイッチングのみの場合と比較して、定常状態に至るまでの間の電荷移動効率を16%改善させることができた。 When only switching with a fixed period is performed (t 1 = 2s), the rising curve of the balance current is gentle, and it can be seen that time is required to reach a steady state. On the other hand, when the capacitor is charged in the initial stage of cell balance (t 1 = 5 s, 10 s), the current value is naturally zero until 5 s or 10 s, respectively, but thereafter the balance current curve is almost Compared to the case of rising vertically and t 1 = 2s, a large balance current is obtained from the initial stage of cell balance. In particular, when t 1 = 10 s, a more remarkable improvement effect was observed, and the charge transfer efficiency up to the steady state could be improved by 16% as compared with the case of only switching with a constant period.
 本出願は下記発明を開示する。
1.互いに接続された複数の電池セル(15)と、前記各電池セルに電気的に接続される補助蓄電素子(25)と、前記各電池セルと前記補助蓄電素子との接続状態を切り替える切替器(SW、切替回路)と、を備える蓄電池システム(1)において前記切替器の動作を制御可能な制御ユニット(35)であって、
 前記蓄電池システムに、
 (i)前記複数の電池セルのうちバランス対象の前記電池セル以外のセルと前記補助蓄電素子とが接続される第1の接続状態と、(ii)バランス対象の前記電池セルと前記補助蓄電素子とが接続される第2の接続状態とを切り替えて電池セルの電圧の均一化を図るセルバランス動作と、
 前記セルバランス動作に先立って、前記第1の接続状態で前記補助蓄電素子を充電する事前充電動作と、
 を行わせるように構成されている制御ユニット。
This application discloses the following invention.
1. A plurality of battery cells (15) connected to each other, an auxiliary storage element (25) electrically connected to each of the battery cells, and a switcher for switching a connection state between each of the battery cells and the auxiliary storage element ( A control unit (35) capable of controlling the operation of the switch in a storage battery system (1) comprising:
In the storage battery system,
(I) a first connection state in which cells other than the battery cell to be balanced among the plurality of battery cells and the auxiliary power storage element are connected; and (ii) the battery cell to be balanced and the auxiliary power storage element. A cell balance operation for switching the second connection state to be connected to make the voltage of the battery cell uniform,
Prior to the cell balance operation, a pre-charging operation for charging the auxiliary storage element in the first connection state;
A control unit that is configured to cause
2.前記事前充電動作が、充電状態に関するパラメータが所定の閾値に達するまで行われる、上記記載の制御ユニット。 2. The control unit as described above, wherein the pre-charging operation is performed until a parameter related to a charging state reaches a predetermined threshold value.
3.前記事前充電動作が、前記補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態が得られる状態となるまで行われる、請求項1または2に記載の制御ユニット。 3. The control unit according to claim 1 or 2, wherein the precharging operation is performed until a steady state is obtained in which a charging current and a discharging current of the auxiliary power storage element are substantially balanced.
4.充電状態に関する前記パラメータが電流であって、
 前記事前充電動作は、
 前記補助蓄電素子を定常状態が得られる状態まで充電した場合の同素子に流れる電流iterの値に基づき、前記補助蓄電素子を流れる電流iが前記基準電流iterとなるまで行われる、上記記載の制御ユニット。
4). The parameter for the state of charge is current,
The pre-charging operation is
The above description is performed until the current i flowing through the auxiliary storage element becomes the reference current i ter based on the value of the current i ter flowing through the auxiliary storage element until the steady state is obtained. Control unit.
5.充電状態に関する前記パラメータが電圧であって、
 前記事前充電動作は、
 前記補助蓄電素子を定常状態が得られる状態まで充電した場合の同素子の基準電圧Vterの値に基づき、前記補助蓄電素子の電圧Vが前記基準電圧Vterとなるまで行われる、上記記載の制御ユニット。
5. The parameter relating to the state of charge is voltage,
The pre-charging operation is
The above description is performed until the voltage V of the auxiliary storage element becomes the reference voltage V ter based on the value of the reference voltage V ter of the same element when the auxiliary storage element is charged to a state where a steady state is obtained. Controller unit.
6.充電状態に関する前記パラメータが時間であって、
 前記事前充電動作は、
 前記補助蓄電素子を定常状態が得られる状態まで充電するのに必要な基準時間tterの値に基づき、前記基準時間tterとなるまで行われる、上記記載の制御ユニット。
6). The parameter for the state of charge is time,
The pre-charging operation is
The control unit as described above, which is performed until the reference time t ter is reached based on a value of a reference time t ter necessary for charging the auxiliary power storage element to a state where a steady state can be obtained.
7.互いに接続された複数の電池セルと、
 前記各電池セルに電気的に接続される補助蓄電素子と、
 前記各電池セルと前記補助蓄電素子との接続状態を切り替える切替器(切替回路)と、
 上記記載の制御ユニットと、
 を備える蓄電池システム。
7). A plurality of battery cells connected to each other;
An auxiliary energy storage device electrically connected to each of the battery cells;
A switcher (switching circuit) for switching the connection state between each battery cell and the auxiliary storage element;
A control unit as described above;
A storage battery system comprising:
8.前記補助蓄電素子が、キャパシタまたはトランスである、上記記載の蓄電池システム。 8). The storage battery system as described above, wherein the auxiliary storage element is a capacitor or a transformer.
9.前記電池セルが、リチウムイオン電池である、上記記載の蓄電池システム。 9. The storage battery system as described above, wherein the battery cell is a lithium ion battery.
10.さらに、
 前記補助蓄電素子の電圧を測定する電圧測定手段を備える、上記に記載の蓄電池システム。
10. further,
The storage battery system according to the above, comprising voltage measuring means for measuring the voltage of the auxiliary storage element.
11.さらに、
 前記補助蓄電素子を流れる電流を測定する電流測定手段を備える、上記記載の蓄電池システム。
11. further,
The storage battery system according to the above, further comprising current measuring means for measuring a current flowing through the auxiliary power storage element.
12.互いに接続された複数の電池セルの電圧をセルバランス動作により均一化するために、
(i)前記複数の電池セルのうちバランス対象の電池セル以外のセルと補助蓄電素子とが接続される第1の接続状態で前記補助蓄電素子を充電することと、(ii)バランス対象の前記電池セルと前記補助蓄電素子とが接続される第2の接続状態に切り替えてバランス対象の前記電池セルを充電することとを行うセルバランス動作ステップと、
 前記セルバランス動作ステップに先立って、前記第1の接続状態で前記補助蓄電素子を充電する事前充電動作ステップと、
 有する電池セルバランス方法。
12 In order to equalize the voltage of a plurality of battery cells connected to each other by cell balance operation,
(I) charging the auxiliary power storage element in a first connection state in which a cell other than the battery cell to be balanced and the auxiliary power storage element are connected among the plurality of battery cells; and (ii) the balance target A cell balance operation step of switching to a second connection state in which the battery cell and the auxiliary storage element are connected to charge the battery cell to be balanced;
Prior to the cell balance operation step, a pre-charge operation step of charging the auxiliary storage element in the first connection state;
A battery cell balance method.
13.前記事前充電動作ステップを、
 充電状態に関するパラメータが所定の閾値に達するまで行う、上記記載の電池セルバランス方法。
13. The pre-charging operation step includes
The battery cell balancing method according to the above, which is performed until a parameter relating to a charging state reaches a predetermined threshold value.
14.前記事前充電動作ステップを、
 前記補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態が得られる状態となるまで行う、上記記載の電池セルバランス方法。
14 The pre-charging operation step,
The battery cell balance method according to the above, wherein the battery cell balance method is performed until a steady state is obtained in which a charging current and a discharging current of the auxiliary power storage element are substantially balanced.
15.1つまたは複数のプロセッサ(1つまたは複数のコンピュータ)に、上記記載の電池セルバランス方法を実施させるためのプログラム。 15. A program for causing one or more processors (one or more computers) to perform the battery cell balancing method described above.
 このようなプログラムはシステムの記憶領域に格納されていてもよい。すなわち上記方法を実施するためのアルゴリズムが記憶領域に格納されていてもよい。 Such a program may be stored in a storage area of the system. That is, an algorithm for performing the above method may be stored in the storage area.
  1 蓄電池システム
  15a~15d 電池セル(蓄電池、二次電池)
  25 キャパシタ(補助蓄電素子)
  31 モニタ部
  35 制御ユニット(制御回路)
  SW1a~1e、2a~2d スイッチ
1 Storage battery system 15a to 15d Battery cell (storage battery, secondary battery)
25 Capacitor (auxiliary storage element)
31 Monitor 35 Control unit (control circuit)
SW1a ~ 1e, 2a ~ 2d switch

Claims (15)

  1.  互いに接続された複数の電池セルと、前記各電池セルに電気的に接続される補助蓄電素子と、前記各電池セルと前記補助蓄電素子との接続状態を切り替える切替器と、を備える蓄電池システムにおいて前記切替器の動作を制御可能な制御ユニットであって、
     前記蓄電池システムに、
     (i)前記複数の電池セルのうちバランス対象の前記電池セル以外のセルと前記補助蓄電素子とが接続される第1の接続状態と、(ii)バランス対象の前記電池セルと前記補助蓄電素子とが接続される第2の接続状態とを切り替えて電池セルの電圧の均一化を図るセルバランス動作と、
     前記セルバランス動作に先立って、前記第1の接続状態で前記補助蓄電素子を充電する事前充電動作と、
     を行わせるように構成されている制御ユニット。
    In a storage battery system comprising: a plurality of battery cells connected to each other; an auxiliary power storage element electrically connected to each battery cell; and a switch that switches a connection state between each battery cell and the auxiliary power storage element. A control unit capable of controlling the operation of the switch,
    In the storage battery system,
    (I) a first connection state in which cells other than the battery cell to be balanced among the plurality of battery cells and the auxiliary power storage element are connected; and (ii) the battery cell to be balanced and the auxiliary power storage element. A cell balance operation for switching the second connection state to be connected to make the voltage of the battery cell uniform,
    Prior to the cell balance operation, a pre-charging operation for charging the auxiliary storage element in the first connection state;
    A control unit that is configured to cause
  2.  前記事前充電動作が、充電状態に関するパラメータが所定の閾値に達するまで行われる、請求項1に記載の制御ユニット。 The control unit according to claim 1, wherein the pre-charging operation is performed until a parameter relating to a charging state reaches a predetermined threshold value.
  3.  前記事前充電動作が、前記補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態が得られる状態となるまで行われる、請求項1または2に記載の制御ユニット。 The control unit according to claim 1 or 2, wherein the precharging operation is performed until a steady state is obtained in which a charging current and a discharging current of the auxiliary storage element are substantially balanced.
  4.  充電状態に関する前記パラメータが電流であって、
     前記事前充電動作は、
     前記補助蓄電素子を定常状態が得られる状態まで充電した場合の同素子に流れる電流iterの値に基づき、前記補助蓄電素子を流れる電流iが前記基準電流iterとなるまで行われる、請求項2または3に記載の制御ユニット。
    The parameter for the state of charge is current,
    The pre-charging operation is
    The process is performed until the current i flowing through the auxiliary power storage element becomes the reference current i ter based on the value of the current i ter flowing through the auxiliary power storage element in a state where a steady state is obtained. The control unit according to 2 or 3.
  5.  充電状態に関する前記パラメータが電圧であって、
     前記事前充電動作は、
     前記補助蓄電素子を定常状態が得られる状態まで充電した場合の同素子の基準電圧Vterの値に基づき、前記補助蓄電素子の電圧Vが前記基準電圧Vterとなるまで行われる、請求項2または3に記載の制御ユニット。
    The parameter relating to the state of charge is voltage,
    The pre-charging operation is
    The process is performed until the voltage V of the auxiliary storage element becomes the reference voltage V ter based on the value of the reference voltage V ter of the same element when the auxiliary storage element is charged to a state where a steady state is obtained. Or the control unit of 3.
  6.  充電状態に関する前記パラメータが時間であって、
     前記事前充電動作は、
     前記補助蓄電素子を定常状態が得られる状態まで充電するのに必要な基準時間tterの値に基づき、前記基準時間tterとなるまで行われる、請求項2または3に記載の制御ユニット。
    The parameter for the state of charge is time,
    The pre-charging operation is
    4. The control unit according to claim 2, wherein the control unit is performed until the reference time t ter is reached based on a value of a reference time t ter necessary for charging the auxiliary power storage element to a state where a steady state is obtained.
  7.  互いに接続された複数の電池セルと、
     前記各電池セルに電気的に接続される補助蓄電素子と、
     前記各電池セルと前記補助蓄電素子との接続状態を切り替える切替器と、
     請求項1~6のいずれか一項に記載の制御ユニットと、
     を備える蓄電池システム。
    A plurality of battery cells connected to each other;
    An auxiliary energy storage device electrically connected to each of the battery cells;
    A switch for switching the connection state between each battery cell and the auxiliary storage element;
    A control unit according to any one of claims 1 to 6;
    A storage battery system comprising:
  8.  前記補助蓄電素子が、キャパシタまたはトランスである、請求項7に記載の蓄電池システム。 The storage battery system according to claim 7, wherein the auxiliary storage element is a capacitor or a transformer.
  9.  前記電池セルが、リチウムイオン電池である、請求項7または8に記載の蓄電池システム。 The storage battery system according to claim 7 or 8, wherein the battery cell is a lithium ion battery.
  10.  さらに、
     前記補助蓄電素子の電圧を測定する電圧測定手段を備える、請求項7~9のいずれか一項に記載の蓄電池システム。
    further,
    The storage battery system according to any one of claims 7 to 9, further comprising voltage measuring means for measuring a voltage of the auxiliary storage element.
  11.  さらに、
     前記補助蓄電素子を流れる電流を測定する電流測定手段を備える、請求項7~10のいずれか一項に記載の蓄電池システム。
    further,
    The storage battery system according to any one of claims 7 to 10, further comprising current measuring means for measuring a current flowing through the auxiliary storage element.
  12.  互いに接続された複数の電池セルの電圧をセルバランス動作により均一化するために、
    (i)前記複数の電池セルのうちバランス対象の電池セル以外のセルと補助蓄電素子とが接続される第1の接続状態で前記補助蓄電素子を充電することと、(ii)バランス対象の前記電池セルと前記補助蓄電素子とが接続される第2の接続状態に切り替えてバランス対象の前記電池セルを充電することとを行うセルバランス動作ステップと、
     前記セルバランス動作ステップに先立って、前記第1の接続状態で前記補助蓄電素子を充電する事前充電動作ステップと、
     有する電池セルバランス方法。
    In order to equalize the voltage of a plurality of battery cells connected to each other by cell balance operation,
    (I) charging the auxiliary power storage element in a first connection state in which a cell other than the battery cell to be balanced and the auxiliary power storage element are connected among the plurality of battery cells; and (ii) the balance target A cell balance operation step of switching to a second connection state in which the battery cell and the auxiliary storage element are connected to charge the battery cell to be balanced;
    Prior to the cell balance operation step, a pre-charge operation step of charging the auxiliary storage element in the first connection state;
    A battery cell balance method.
  13.  前記事前充電動作ステップを、
     充電状態に関するパラメータが所定の閾値に達するまで行う、請求項12に記載の電池セルバランス方法。
    The pre-charging operation step,
    The battery cell balancing method according to claim 12, wherein the battery cell balancing method is performed until a parameter relating to a charge state reaches a predetermined threshold.
  14.  前記事前充電動作ステップを、
     前記補助蓄電素子の充電電流と放電電流とが実質的に釣り合う定常状態が得られる状態となるまで行う、請求項12または13に記載の電池セルバランス方法。
    The pre-charging operation step,
    The battery cell balance method according to claim 12, wherein the battery cell balance method is performed until a steady state is obtained in which a charging current and a discharging current of the auxiliary storage element are substantially balanced.
  15.  1つまたは複数のプロセッサに、請求項12~14のいずれか一項に記載の電池セルバランス方法を実施させるためのプログラム。 A program for causing one or more processors to perform the battery cell balancing method according to any one of claims 12 to 14.
PCT/JP2015/055877 2014-03-03 2015-02-27 Control unit, storage battery system, battery cell balancing method, and program WO2015133401A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506461A JPWO2015133401A1 (en) 2014-03-03 2015-02-27 Control unit, storage battery system, battery cell balance method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014040595 2014-03-03
JP2014-040595 2014-03-03

Publications (1)

Publication Number Publication Date
WO2015133401A1 true WO2015133401A1 (en) 2015-09-11

Family

ID=54055208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055877 WO2015133401A1 (en) 2014-03-03 2015-02-27 Control unit, storage battery system, battery cell balancing method, and program

Country Status (2)

Country Link
JP (1) JPWO2015133401A1 (en)
WO (1) WO2015133401A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994651A (en) * 2017-12-27 2018-05-04 湖南金杯新能源发展有限公司 Battery equalizing circuit and method
KR20190088630A (en) * 2018-01-19 2019-07-29 주식회사 엘지화학 Apparatus for managing battery
CN113472031A (en) * 2021-06-21 2021-10-01 天津津航计算技术研究所 Charging management method and device
US11415632B2 (en) 2018-03-08 2022-08-16 Isuzu Motors Limited Execution frequency setting device and execution frequency setting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355966A (en) * 1998-04-09 1999-12-24 Toyota Central Res & Dev Lab Inc Charger and discharger for battery pack
JP2001028839A (en) * 1999-07-12 2001-01-30 Denso Corp Voltage regulator of battery pack
JP2001136669A (en) * 1999-11-01 2001-05-18 Toyota Central Res & Dev Lab Inc Storage device
JP2003134684A (en) * 2001-10-19 2003-05-09 Yazaki Corp Method and device for adjusting charging condition of battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355966A (en) * 1998-04-09 1999-12-24 Toyota Central Res & Dev Lab Inc Charger and discharger for battery pack
JP2001028839A (en) * 1999-07-12 2001-01-30 Denso Corp Voltage regulator of battery pack
JP2001136669A (en) * 1999-11-01 2001-05-18 Toyota Central Res & Dev Lab Inc Storage device
JP2003134684A (en) * 2001-10-19 2003-05-09 Yazaki Corp Method and device for adjusting charging condition of battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994651A (en) * 2017-12-27 2018-05-04 湖南金杯新能源发展有限公司 Battery equalizing circuit and method
KR20190088630A (en) * 2018-01-19 2019-07-29 주식회사 엘지화학 Apparatus for managing battery
KR102385616B1 (en) 2018-01-19 2022-04-11 주식회사 엘지에너지솔루션 Apparatus for managing battery
US11415632B2 (en) 2018-03-08 2022-08-16 Isuzu Motors Limited Execution frequency setting device and execution frequency setting system
CN113472031A (en) * 2021-06-21 2021-10-01 天津津航计算技术研究所 Charging management method and device

Also Published As

Publication number Publication date
JPWO2015133401A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
Ren et al. Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation
US10505375B2 (en) Method for controlling an energy storage system
JP5477448B1 (en) Voltage equalization device
CN104079016B (en) Battery pack balancing system and its balance control method
JP5868499B2 (en) Battery control device
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
US20130147434A1 (en) Method for Balancing States of Charge of a Battery having a Plurality of Battery Cells as well as a Corresponding Battery Management System and a Battery
JP6405942B2 (en) Battery pack abnormality determination device
JP5623629B2 (en) Remaining life judgment method
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
CN105814768A (en) Electric storage system
JP2019514332A5 (en)
US20160187427A1 (en) Method and apparatus for estimating current
WO2015178075A1 (en) Battery control device
WO2015133401A1 (en) Control unit, storage battery system, battery cell balancing method, and program
JP2012524517A (en) Charger, electrical system, and rechargeable battery charging method
WO2013114696A1 (en) Balancing device
JP2013121242A (en) Soc estimation device and battery pack
JP6377959B2 (en) Secondary battery control device
JP2013188100A (en) Charge/discharge control device of battery pack
JP6018169B2 (en) Storage device failure determination method
KR101745633B1 (en) Apparatus for Cell Balancing by Connecting Reference Battery in Consecutive Order and Method thereof
JP6242516B1 (en) Battery management device
CN103262382B (en) Discharge controller
JP5502183B1 (en) Battery management device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758949

Country of ref document: EP

Kind code of ref document: A1