WO2015133398A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2015133398A1
WO2015133398A1 PCT/JP2015/055855 JP2015055855W WO2015133398A1 WO 2015133398 A1 WO2015133398 A1 WO 2015133398A1 JP 2015055855 W JP2015055855 W JP 2015055855W WO 2015133398 A1 WO2015133398 A1 WO 2015133398A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
expansion valve
compressor
refrigeration cycle
Prior art date
Application number
PCT/JP2015/055855
Other languages
English (en)
French (fr)
Inventor
謙作 畑中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016506459A priority Critical patent/JP6188916B2/ja
Priority to EP15759078.7A priority patent/EP3121539B1/en
Publication of WO2015133398A1 publication Critical patent/WO2015133398A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner, and more particularly to a refrigeration cycle apparatus that suppresses an increase in discharge temperature from a compressor while suppressing an increase in the amount of refrigerant charged.
  • HFC refrigerant having no carbon double bond in the composition for example, R32 (CH 2 F 2 ; difluoromethane) having a lower GWP than R410A.
  • a halogenated hydrocarbon having a carbon double bond in the composition which is a kind of HFC refrigerant like R32.
  • HFO-1234yf CF 3 CF ⁇ CH 2 ; tetrafluoropropene
  • HFO-1234ze CF 3 —CH ⁇ CHF
  • an HFC refrigerant having a carbon double bond is changed to an olefin (unsaturated hydrocarbon having a carbon double bond). It is often expressed as “HFO refrigerant” using “O” (called olefin).
  • Such low GWP refrigerants are not as flammable as HC refrigerants such as natural refrigerant R290 (C 3 H 8 ; propane), but are different from non-flammable R410A, It has flammability of a slight burn level.
  • coolant which has flammability even if it is a slight combustion level is called "flammable refrigerant
  • a refrigeration cycle apparatus using a flammable refrigerant R32 refrigerant or a mixed refrigerant with R32 of 70% or more is used, and a target discharge temperature is calculated according to the condensation temperature, evaporation temperature, and opening degree of the supercooling heat exchange expansion valve.
  • a refrigeration apparatus in which the opening of a main expansion valve is adjusted so as to achieve a target discharge temperature (see, for example, Patent Document 1).
  • a refrigeration circuit that uses a refrigerant that may be denatured depending on the temperature in the compressor, branches a part of the refrigerant discharged from the outlet of the condenser, and supplies the branched refrigerant to the inside of the compressor. (For example, refer to Patent Document 2).
  • the present invention has been made to solve the above-described problems, and provides a refrigeration cycle apparatus capable of suppressing an increase in discharge temperature from a compressor while suppressing an increase in the amount of charged refrigerant. With the goal.
  • a refrigeration cycle apparatus includes a main refrigerant circuit to which a compressor, a first heat exchanger, a first expansion valve, and a second heat exchanger are connected, the first heat exchanger, and the first heat exchange.
  • a refrigeration comprising a third expansion valve, a secondary side of the supercooling heat exchanger, and an injection circuit connected to the compressor by an injection pipe branched from the downstream side of the primary side of the refrigerant of the supercooling heat exchanger
  • a cycle device wherein the refrigerant flows through the main refrigerant circuit, the refrigerant flows through the branch circuit and the injection circuit, the supercooling heat exchanger is used, and the supercooling heat exchanger The refrigerant flowing on the secondary side of And a Kosoto temperature operation mode for injecting
  • an increase in the amount of refrigerant charged can be suppressed by suppressing a decrease in the dryness of the inlet of the second heat exchanger that acts as an evaporator during a predetermined normal operation. It is possible to suppress the discharge temperature and suppress the increase in the condensation pressure by injecting into the compressor during the temperature cooling operation.
  • FIG. 1 is a refrigerant circuit configuration diagram schematically showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100A) according to Embodiment 1 of the present invention.
  • refrigeration cycle apparatus 100A a refrigeration cycle apparatus
  • the refrigeration cycle apparatus 100A is assumed to use a combustible refrigerant as a main component, and includes an outdoor unit 1 and an indoor unit 2.
  • the outdoor unit 1 and the indoor unit 2 are connected via a liquid pipe 7 and a gas pipe 9.
  • the connection algebra of the outdoor unit 1 and the indoor unit 2 is not limited to one, and any one or each may be a plurality.
  • the outdoor unit (heat source unit) 1 is an outdoor heat exchanger (first heat exchanger) that exchanges heat between the compressor 3 that compresses the refrigerant and the refrigerant and the air around the outdoor unit 1 that is conveyed by the outdoor fan 5a.
  • a first electronic expansion valve (first expansion valve) 6 that controls the flow rate of the refrigerant
  • an on-off valve 21 that controls the flow of the refrigerant
  • a supercooling heat exchanger 22 that exchanges heat between the refrigerant and the refrigerant
  • a second electronic expansion valve (second expansion valve) 23 that controls the flow rate of the refrigerant
  • a third electronic expansion valve (third expansion valve) 24 that controls the flow rate of the refrigerant.
  • the outdoor heat exchanger 5 has a outdoor blower 5a for supplying air, the outside air temperature sensor T 1 for detecting the outside air temperature, the.
  • a discharge temperature sensor T 2 that detects the temperature of the refrigerant discharged from the compressor 3
  • a discharge pressure sensor P 1 that detects the pressure of the refrigerant discharged from the compressor 3 Is provided.
  • the refrigerant temperature sensor T 3 for detecting the temperature of the refrigerant after passing through the supercooling heat exchanger 22 is provided.
  • the indoor unit (use-side unit) 2 exchanges heat between the refrigerant and the air around the indoor unit 2 conveyed by the indoor blower 8a, and cools or heats the indoor space by, for example, cooling or heating the indoor space.
  • a heat exchanger (second heat exchanger) 8 is provided.
  • the indoor heat exchanger 8 has an indoor blower 8a that supplies air.
  • the compressor 3 for compressing the refrigerant it is preferable to use a positive displacement compressor of a type in which the rotation speed is controlled by an inverter circuit and the capacity is controlled.
  • the positive displacement compressor include a rotary compressor, a scroll compressor, a screw compressor, and a reciprocating compressor.
  • a discharge pipe 3 a is connected to the compressor 3.
  • the outdoor heat exchanger 5 functions as a condenser or an evaporator, and can be constituted by, for example, a cross-fin type fin-and-tube heat exchanger constituted by a heat transfer tube and a large number of fins.
  • the outdoor blower 5a supplies air to the outdoor heat exchanger 5, and is configured to be capable of changing the air flow rate.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the outdoor fan 5a.
  • the opening of the first electronic expansion valve 6 is controlled by a control device 30 to be described later, and the refrigerant flow rate is adjusted while the refrigerant pressure is reduced.
  • the indoor heat exchanger 8 functions as an evaporator or a condenser, and can be constituted by, for example, a cross-fin type fin-and-tube heat exchanger constituted by heat transfer tubes and a large number of fins.
  • the indoor blower 8a supplies air to the indoor heat exchanger 8, and is configured to be capable of changing the air flow rate.
  • a centrifugal fan or a multiblade fan driven by a motor such as a DC fan motor can be used as the indoor fan 8a.
  • the compressor 3, the outdoor heat exchanger 5, the first electronic expansion valve 6, and the indoor heat exchanger 8 are connected by a main refrigerant pipe 31 including the discharge pipe 3 a, the liquid pipe 7, and the gas pipe 9. This constitutes the main refrigerant circuit.
  • the outdoor unit 1 was branched from the main refrigerant pipe 31 between the outdoor heat exchanger 5 and the first electronic expansion valve 6 and connected between the first electronic expansion valve 6 and the indoor heat exchanger 8.
  • a branch pipe 25 is provided.
  • the outdoor heat exchanger 5, the primary side of the supercooling heat exchanger 22 (the refrigerant side flowing through the branch pipe 25), the second electronic expansion valve 23, and the indoor heat exchanger 8 are connected to the branch pipe 25 and the main refrigerant pipe 31.
  • a branch circuit is configured by connecting them with each other.
  • the outdoor unit 1 has an injection pipe 26 branched from a branch pipe 25 between the supercooling heat exchanger 22 and the second electronic expansion valve 23 and connected to the suction side of the compressor 3.
  • the injection side is configured by connecting the third electronic expansion valve 24, the secondary side of the subcooling heat exchanger 22 (the refrigerant side flowing through the injection pipe 26), and the suction side of the compressor 3 through the injection pipe 26. .
  • the on-off valve 21 is provided between the outdoor heat exchanger 5 and the supercooling heat exchanger 22 of the branch pipe 25, and is controlled to be opened and closed by a control device 30 described later to open and close the branch pipe 25.
  • the supercooling heat exchanger 22 performs heat exchange between the refrigerant flowing through the branch pipe 25 and the refrigerant flowing through the injection pipe 26.
  • a microchannel heat exchanger a shell and tube heat exchanger, a heat A pipe heat exchanger, a double pipe heat exchanger, a plate heat exchanger, or the like may be used.
  • the second electronic expansion valve 23 is provided on the downstream side of the subcooling heat exchanger 22 in the branch pipe 25, the opening degree is controlled by a control device 30 described later, and the pressure of the refrigerant flowing through the branch pipe 25 is reduced. It is possible to adjust the flow rate of the refrigerant.
  • the third electronic expansion valve 24 is provided on the upstream side of the supercooling heat exchanger 22 of the injection pipe 26, the opening degree of which is controlled by a control device 30 described later, and the pressure of the refrigerant flowing through the injection pipe 26 is reduced. It is possible to adjust the flow rate of the refrigerant.
  • the refrigeration cycle apparatus 100A includes a control device 30 that performs overall control of the refrigeration cycle apparatus 100A. Based on the detection values from the detectors including the outside air temperature sensor T 1 , the discharge pressure sensor P 1 , the discharge temperature sensor T 2, and the refrigerant temperature sensor T 3 , the controller 30 controls each actuator (compressor 3, outdoor fan 5 a.
  • the first electronic expansion valve 6, the on-off valve 21, the second electronic expansion valve 23, the third electronic expansion valve 24, driving components such as the indoor blower 8 a) are controlled, and each operation mode is carried out.
  • the control device 30 can be configured by hardware such as a circuit device that realizes the function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed thereon.
  • the liquid pipe 7 connecting the outdoor unit 1 and the indoor unit 2 is connected via a liquid side stop valve 32.
  • the gas pipe 9 connecting the outdoor unit 1 and the indoor unit 2 is connected via a gas-side stop valve 33. That is, the outdoor unit 1 and the indoor unit 2 can be separated from each other through the liquid side stop valve 32 and the gas side stop valve 33.
  • FIG. 2 shows actuators (here, the on-off valve 21, the first electronic expansion valve 6, the second electronic expansion valve 23, the third electronic expansion valve) by the control device 30 according to the operation mode executed by the refrigeration cycle apparatus 100A. It is explanatory drawing for demonstrating the control pattern of 24). Based on FIG.1 and FIG.2, operation
  • Refrigeration cycle apparatus 100A by the outside air temperature detected by the outside air temperature sensor T 1, is adapted to determine the utilization of the supercooling heat exchanger 22.
  • normal operation mode the operation mode when the subcooling heat exchanger 22 is not used at the normal outside temperature
  • high outside air temperature operation mode the operation mode when the subcooling heat exchanger 22 is used at the high outside temperature.
  • a range of temperature outside air temperature detected by the outside air temperature sensor T 1 is the normal use range of the region that uses a refrigeration cycle apparatus 100A It is assumed that the time is within the range and is predetermined. Further, the time Kosoto temperature, can not be determined the exact temperature range, the outside air temperature is a refrigeration cycle apparatus 100A predetermined normal outside temperature upper temperature limit or more at the time of being detected by the outside air temperature sensor T 1 (For example, 40 degreeC or more) is assumed, and it shall be predetermined.
  • ⁇ Normal operation mode> In the normal operation mode, as shown in FIG. 2, the control device 30 controls the on-off valve 21 to be closed, the second electronic expansion valve 23 to be fully open, and the third electronic expansion valve 24 to be fully closed, and the discharge temperature sensor T 2. Based on the detected result, the temperature of the refrigerant discharged from the compressor 3 is controlled by the first electronic expansion valve 6. That is, at a normal outside air temperature, the refrigeration cycle apparatus 100A suppresses a decrease in the dryness of the inlet of the indoor heat exchanger 8 that functions as an evaporator, and suppresses an increase in the amount of refrigerant necessary for the indoor heat exchanger 8. Therefore, the supercooling heat exchanger 22 is bypassed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant is decompressed by the first electronic expansion valve 6 to become a low-pressure two-phase refrigerant, and the indoor air is cooled by the indoor heat exchanger 8 acting as an evaporator to become a low-pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • ⁇ High outside temperature operation mode> In Kosoto temperature operation mode, as shown in FIG. 2, the control device 30, the on-off valve 21 is opened, the first electronic expansion valve 6 is controlled to fully closed, the second on the basis of the detection result of the discharge temperature sensor T 2
  • the temperature of the refrigerant discharged from the compressor 3 is controlled by the electronic expansion valve 23, and the supercooling degree (SC) of the refrigerant at the outlet of the supercooling heat exchanger 22 is controlled by the third electronic expansion valve 24.
  • the refrigeration cycle apparatus 100A causes the refrigerant to flow through the branch circuit and uses the supercooling heat exchanger 22 to reduce the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator.
  • an increase in the high pressure of the refrigerant discharged from the compressor 3 is suppressed.
  • the refrigeration cycle apparatus 100A injects the refrigerant that has passed through the supercooling heat exchanger 22 into the suction side of the compressor 3 to increase the discharge temperature of the refrigerant discharged from the compressor 3. Suppressed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant flows into the supercooling heat exchanger 22 through the on-off valve 21.
  • This refrigerant is cooled by the low-pressure refrigerant in the supercooling heat exchanger 22 and then depressurized by the second electronic expansion valve 23 to become a low-pressure two-phase refrigerant.
  • the indoor heat exchanger 8 acting as an evaporator the indoor air Is cooled to become a low-pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • the refrigerant in the injection circuit that has flowed into the injection pipe 26 is heated by the high-pressure refrigerant in the supercooling heat exchanger 22 after being depressurized by the third electronic expansion valve 24.
  • This refrigerant is injected into the suction side of the compressor 3 and merges with the refrigerant flowing through the gas pipe 9. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • ⁇ Switching operation mode> The amount of refrigerant charged in the refrigerant circuit is normally determined at the outside temperature. Therefore, in the refrigeration cycle apparatus 100A, the normal operation mode is executed, the supercooling heat exchanger 22 is bypassed, the dryness of the inlet refrigerant of the indoor heat exchanger 8 functioning as an evaporator is kept high, and charging is performed. An increase in the amount of refrigerant is suppressed. On the other hand, since the increase in the refrigerant charging amount is suppressed, there is a possibility that the high pressure will rise in the case of a high outside air temperature.
  • the refrigeration cycle apparatus 100A executes the high outside air temperature operation mode and uses the supercooling heat exchanger 22 to dry the refrigerant at the inlet of the indoor heat exchanger 8 that functions as an evaporator. It is possible to suppress an increase in high pressure by setting the temperature to a low level and holding a large amount of refrigerant in the indoor heat exchanger 8.
  • the refrigerant that has passed through the supercooling heat exchanger 22 is injected into the suction side of the compressor 3 by executing the high outside air temperature operation mode, and the refrigerant discharged from the compressor 3 It is possible to suppress an increase in the discharge temperature.
  • the refrigeration cycle apparatus 100A determines the use of the supercooling heat exchanger 22 depending on whether or not the outside air temperature is a high outside air temperature. Therefore, according to the refrigeration cycle apparatus 100A, the filling amount of the refrigerant sealed in the refrigerant circuit is determined according to the normal operation mode, and the increase in the filling refrigerant amount is suppressed. Further, according to the refrigeration cycle apparatus 100A, the supercooling heat exchanger 22 is used as necessary. Therefore, when the supercooling heat exchanger 22 is not used, the high pressure side of the supercooling heat exchanger 22 is used. The amount of refrigerant charged can be reduced without causing a decrease in pressure.
  • the supercooling heat exchanger 22 and the injection pipe 26 are used by executing the high outside air temperature operation mode at a high outside air temperature where the high pressure may increase.
  • the high pressure may increase.
  • the refrigeration cycle apparatus 100A is assumed to use a refrigerant whose main component is a combustible refrigerant, but is not limited to this.
  • combustible refrigerants include R32, HFO-1234yf, HFO-1234ze, R290 (C 3 H 8 ; propane), R1270 (C 3 H 6 ; propylene), and the like.
  • the content of other refrigerants to be mixed may be a plurality of types of refrigerants), including that the combustible refrigerant exemplified above is used alone, It means that the content of the combustible refrigerant is not exceeded by mass%.
  • a circuit in which the injection pipe 26 is connected to the suction side of the compressor 3 is shown as an example, but an intermediate in which the injection pipe 26 communicates with the intermediate pressure portion of the compressor 3. You may make it connect to a port.
  • the refrigeration cycle apparatus 100A can suppress an increase in discharge temperature while suppressing an increase in the amount of refrigerant charged. Therefore, according to the refrigeration cycle apparatus 100A, the increase in the amount of charged refrigerant is suppressed, so that safety is taken into consideration even when the refrigerant leaks, the influence on global warming can be reduced, and the refrigerant can be reduced by suppressing the increase in discharge temperature. It is possible to continue high-efficiency operation without degeneration.
  • FIG. FIG. 3 is a refrigerant circuit configuration diagram schematically showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100B) according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 100B will be described based on FIG.
  • differences from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the refrigeration cycle apparatus 100B is assumed to use a combustible refrigerant as a main component.
  • the refrigeration cycle apparatus 100B is different from the refrigeration cycle apparatus 100A according to Embodiment 1 in the configuration of the outdoor unit 1. Also.
  • the configuration of the main refrigerant pipe 31 and the branch pipe 25 is different from that of the refrigeration cycle apparatus 100A according to the first embodiment.
  • the outdoor unit (heat source unit) 1 includes a compressor 3, an outdoor heat exchanger 5, a three-way valve 27, a supercooling heat exchanger 22, a second electronic expansion valve 23, and a third electronic expansion valve 24.
  • the refrigeration cycle apparatus 100B includes the three-way valve 27 instead of including the first electronic expansion valve 6 and the on-off valve 21 included in the outdoor unit 1 of the refrigeration cycle apparatus 100A according to Embodiment 1. . Therefore, the second electronic expansion valve 23 functions as the “first electronic expansion valve” of the present invention.
  • the three-way valve 27 has a function as a flow path switching device and is provided on the downstream side of the outdoor heat exchanger 5.
  • the three-way valve switches the refrigerant flow path to either the main refrigerant pipe 31 (main refrigerant circuit) or the branch pipe 25 (branch circuit) under the control of the control device 30.
  • the flow path switching device is the three-way valve 27
  • the flow path switching device is not limited to the three-way valve 27.
  • the flow path switching device only needs to switch the refrigerant flow path.
  • the flow path switching device may be configured by combining two-way valves, or may be configured to close one flow path of the four-way valve. it can.
  • the compressor 3, the outdoor heat exchanger 5, the three-way valve 27, the second electronic expansion valve 23, and the indoor heat exchanger 8 include the discharge pipe 3a, the liquid pipe 7, and the gas pipe 9.
  • the main refrigerant circuit is configured by being connected by the main refrigerant pipe 31.
  • the branch pipe 25 branches from the main refrigerant pipe 31 via the three-way valve 27, passes through the supercooling heat exchanger 22, and is connected between the three-way valve 27 and the second electronic expansion valve 23. .
  • the outdoor heat exchanger 5, the three-way valve 27, the primary side of the supercooling heat exchanger 22 (the refrigerant side flowing through the branch pipe 25), the second electronic expansion valve 23, and the indoor heat exchanger 8 are connected to the branch pipe 25 and A branch circuit is configured by being connected by the main refrigerant pipe 31.
  • the outdoor unit 1 is branched from the branch pipe 25 between the supercooling heat exchanger 22 and the second electronic expansion valve 23, and is sucked into the compressor 3. It has an injection pipe 26 connected to the side.
  • the injection circuit is configured by connecting the third electronic expansion valve 24, the secondary side of the supercooling heat exchanger (the refrigerant side flowing through the injection pipe 26), and the suction side of the compressor 3 through the injection pipe 26.
  • FIG. 4 illustrates a control pattern of each actuator (here, the three-way valve 27, the second electronic expansion valve 23, and the third electronic expansion valve 24) by the control device 30 according to the operation mode executed by the refrigeration cycle apparatus 100B. It is explanatory drawing for doing. Based on FIG.3 and FIG.4, operation
  • Refrigeration cycle apparatus 100B is similar to the refrigeration cycle apparatus 100A according to the first embodiment, the outside air temperature detected by the outside air temperature sensor T 1, is adapted to determine the utilization of the supercooling heat exchanger 22.
  • the definitions of the normal operation mode and the high outside air temperature operation mode are the same as in the first embodiment.
  • ⁇ Normal operation mode> In the normal operation mode, as shown in FIG. 4, the control device 30 switches the three-way valve 27 to connect the outdoor heat exchanger 5 and the second electronic expansion valve 23, and the third electronic expansion valve 24 is fully connected. It is controlled in a closed, temperature of the refrigerant discharged from the compressor 3 at the second electronic expansion valve 23 based on a detection result of the discharge temperature sensor T 2 is adapted to be controlled. That is, at normal outside air temperature, the refrigeration cycle apparatus 100B suppresses a decrease in the dryness of the inlet of the indoor heat exchanger 8 that functions as an evaporator, and suppresses an increase in the amount of refrigerant necessary for the indoor heat exchanger 8. Therefore, the supercooling heat exchanger 22 is bypassed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant flows into the second electronic expansion valve 23 via the three-way valve 27. Then, the pressure is reduced by the second electronic expansion valve 23 to become a low pressure two-phase refrigerant, and the indoor air is cooled by the indoor heat exchanger 8 acting as an evaporator to become a low pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • the refrigeration cycle apparatus 100B causes the refrigerant to flow through the branch circuit and uses the supercooling heat exchanger 22 to reduce the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator.
  • the refrigeration cycle apparatus 100B causes the refrigerant to flow through the branch circuit and uses the supercooling heat exchanger 22 to reduce the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator.
  • the refrigeration cycle apparatus 100B causes the refrigerant to flow through the branch circuit and uses the supercooling heat exchanger 22 to reduce the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator.
  • an increase in the high pressure of the refrigerant discharged from the compressor 3 is suppressed.
  • the refrigeration cycle apparatus 100B injects the refrigerant in the injection circuit that has passed through the supercooling heat exchanger 22 to the suction side of the compressor 3, and the discharge temperature of the refrigerant discharged from the compressor 3 The rise of is suppressed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant flows into the supercooling heat exchanger 22 via the three-way valve 27.
  • This refrigerant is cooled by the low-pressure refrigerant in the supercooling heat exchanger 22 and then depressurized by the second electronic expansion valve 23 to become a low-pressure two-phase refrigerant.
  • the indoor heat exchanger 8 acting as an evaporator the indoor air Is cooled to become a low-pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • the refrigerant that has flowed into the injection pipe 26 is heated by the high-pressure refrigerant in the supercooling heat exchanger 22 after being depressurized by the third electronic expansion valve 24.
  • This refrigerant is injected into the suction side of the compressor 3 and merges with the refrigerant flowing through the gas pipe 9. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • refrigeration cycle apparatus 100B like refrigeration cycle apparatus 100A according to Embodiment 1, suppresses an increase in the amount of charged refrigerant and suppresses an increase in discharge temperature and indoor heat exchange functions as an evaporator. It is possible to suppress the increase in the condensation pressure due to the decrease in the dryness of the refrigerant at the inlet of the vessel 8. Therefore, according to the refrigeration cycle apparatus 100B, safety is taken into consideration even when the refrigerant leaks by suppressing the increase in the amount of refrigerant charged, the effect on global warming can be reduced, and the refrigerant can be reduced by suppressing the increase in discharge temperature. It is possible to continue high-efficiency operation without degeneration.
  • the number of valves can be reduced as compared with the refrigeration cycle apparatus 100A according to the first embodiment.
  • FIG. FIG. 5 is a refrigerant circuit configuration diagram schematically showing an example of a refrigerant circuit configuration of a refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100C) according to Embodiment 3 of the present invention.
  • the refrigeration cycle apparatus 100C will be described based on FIG.
  • differences from the first and second embodiments will be mainly described, and the same parts as those in the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted.
  • the refrigeration cycle apparatus 100C is assumed to use a combustible refrigerant as a main component.
  • the refrigeration cycle apparatus 100C is different from the refrigeration cycle apparatus 100A according to Embodiment 1 in the configuration of the outdoor unit 1. Also.
  • the configuration of the main refrigerant pipe 31 and the branch pipe 25 is different from that of the refrigeration cycle apparatus 100A according to the first embodiment.
  • the outdoor unit (heat source unit) 1 includes a compressor 3, a refrigerant flow switching device 28, an outdoor heat exchanger 5, a fourth electronic expansion valve (fourth expansion valve) 29, and a supercooling heat exchanger 22.
  • the second electronic expansion valve 23 and the third electronic expansion valve 24 are provided. That is, the refrigeration cycle apparatus 100C does not include the first electronic expansion valve 6 and the on-off valve 21 provided in the outdoor unit 1 of the refrigeration cycle apparatus 100A according to Embodiment 1, A fourth electronic expansion valve 29 is provided. Therefore, the fourth electronic expansion valve 29 functions as the “first electronic expansion valve” of the present invention.
  • the branch pipe 25 is not branched from the main refrigerant pipe 31 provided in the outdoor unit 1 of the refrigeration cycle apparatus 100A according to Embodiment 1, and the branch pipe 25 is connected to the main refrigerant pipe 31.
  • the connected structure is adopted.
  • the refrigerant flow switching device 28 is provided on the discharge side of the compressor 3 and switches the flow of the refrigerant under the control of the control device 30.
  • the refrigerant flow switching device 28 can be constituted by a four-way valve, for example, as shown in FIG.
  • the refrigerant flow switching device 28 is not limited to a four-way valve, and a two-way valve or a three-way valve may be combined to form the refrigerant flow switching device 28.
  • the opening degree of the fourth electronic expansion valve 29 is controlled by the control device 30, and the refrigerant flow rate is adjusted while the pressure of the refrigerant is reduced.
  • the fourth electronic expansion valve 29 is provided between the outdoor heat exchanger 5 and the supercooling heat exchanger 22.
  • the compressor 3, the refrigerant flow switching device 28, the outdoor heat exchanger 5, the fourth electronic expansion valve 29, the supercooling heat exchanger 22, and the indoor heat exchanger 8 are connected to the discharge pipe 3a,
  • the main refrigerant circuit is configured by being connected by the main refrigerant pipe 31 including the branch pipe 25, the liquid pipe 7 and the gas pipe 9. That is, the branch pipe 25 constitutes a part of the main refrigerant pipe 31.
  • the outdoor heat exchanger 5, the fourth electronic expansion valve 29, the primary side of the supercooling heat exchanger 22 (the refrigerant side flowing through the branch pipe 25), the second electronic expansion valve 23, and the indoor heat exchanger 8 are
  • the branch circuit is configured by being connected by the branch pipe 25 and the main refrigerant pipe 31.
  • the outdoor unit 1 is branched from the branch pipe 25 between the supercooling heat exchanger 22 and the second electronic expansion valve 23, and is sucked into the compressor 3. It has an injection pipe 26 connected to the side.
  • the injection circuit is configured by connecting the third electronic expansion valve 24, the secondary side of the supercooling heat exchanger (the refrigerant side flowing through the injection pipe 26), and the suction side of the compressor 3 through the injection pipe 26.
  • FIG. 6 shows the control of each actuator (here, the second electronic expansion valve 23, the third electronic expansion valve 24, and the fourth electronic expansion valve 29) by the control device 30 according to the operation mode executed by the refrigeration cycle apparatus 100C. It is explanatory drawing for demonstrating a pattern. Based on FIG.5 and FIG.6, operation
  • Refrigeration cycle apparatus 100C is similar to the refrigeration cycle apparatus 100A according to the first embodiment, the outside air temperature detected by the outside air temperature sensor T 1, is adapted to determine the utilization of the supercooling heat exchanger 22.
  • the definitions of the normal operation mode and the high outside air temperature operation mode are the same as in the first embodiment.
  • the operation mode when the refrigerant flow is reversed by the action of the refrigerant flow switching device 28 is referred to as a “heating operation mode”.
  • ⁇ Normal operation mode> In the normal operation mode, as shown in FIG. 6, the control unit 30, the second electronic expansion valve 23 is fully opened, the third electronic expansion valve 24 is controlled to fully closed, the basis of the detection result of the discharge temperature sensor T 2
  • the temperature of the refrigerant discharged from the compressor 3 is controlled by the 4-electronic expansion valve 29. That is, at normal outside air temperature, the refrigeration cycle apparatus 100C suppresses a decrease in the dryness of the inlet of the indoor heat exchanger 8 that functions as an evaporator, and suppresses an increase in the amount of refrigerant necessary for the indoor heat exchanger 8. Therefore, the supercooling heat exchanger 22 is bypassed.
  • the refrigerant flows through the supercooling heat exchanger 22, but since the refrigerant does not flow through the injection pipe 26, heat exchange between the refrigerants is not performed. Therefore, also in this case, it is expressed that the supercooling heat exchanger 22 is bypassed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant flows into the fourth electronic expansion valve 29.
  • the pressure is reduced by the fourth electronic expansion valve 29 to become a low-pressure two-phase refrigerant, and the indoor air is cooled by the indoor heat exchanger 8 acting as an evaporator to become a low-pressure gas refrigerant.
  • the gas is again sucked into the compressor 3 through the gas pipe 9.
  • ⁇ High outside temperature operation mode> In Kosoto temperature operation mode, as shown in FIG. 6, under the control of the control unit 30, the second electronic expansion valve 23 based on a detection result of the discharge temperature sensor T 2, the temperature of the refrigerant discharged from the compressor 3
  • the third electronic expansion valve 24 controls the degree of supercooling (SC) of the refrigerant at the outlet of the supercooling heat exchanger 22, and the fourth electronic expansion valve 29 is controlled to be fully opened. That is, at the time of high outside air temperature, the refrigeration cycle apparatus 100C causes the refrigerant to flow through the branch circuit and uses the supercooling heat exchanger 22 to reduce the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator. In addition, by holding a large amount of refrigerant in the indoor heat exchanger 8, an increase in the high pressure of the refrigerant discharged from the compressor 3 is suppressed.
  • the refrigeration cycle apparatus 100C injects the refrigerant in the injection circuit that has passed through the supercooling heat exchanger 22 to the suction side of the compressor 3, and the discharge temperature of the refrigerant discharged from the compressor 3 The rise of is suppressed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the outdoor heat exchanger 5 acting as a condenser, and dissipates heat to the outdoor air blown by the outdoor blower 5a.
  • This refrigerant flows into the supercooling heat exchanger 22 through the fourth electronic expansion valve 29.
  • This refrigerant is cooled by the low-pressure refrigerant in the supercooling heat exchanger 22 and then depressurized by the second electronic expansion valve 23 to become a low-pressure two-phase refrigerant.
  • the indoor heat exchanger 8 acting as an evaporator the indoor air Is cooled to become a low-pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • the refrigerant that has flowed into the injection pipe 26 is heated by the high-pressure refrigerant in the supercooling heat exchanger 22 after being depressurized by the third electronic expansion valve 24.
  • This refrigerant is injected into the suction side of the compressor 3 and merges with the refrigerant flowing through the gas pipe 9. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • ⁇ Heating operation mode> In the heating operation mode, as shown in FIG. 6, under the control of the control unit 30, the fourth electronic expansion valve 29 based on the detection result of the discharge temperature sensor T 2, the temperature of the refrigerant discharged from the compressor 3 is controlled Thus, the degree of supercooling (SC) of the refrigerant at the outlet of the supercooling heat exchanger 22 is controlled by the third electronic expansion valve 24, and the second electronic expansion valve 23 is controlled to be fully opened.
  • SC supercooling
  • the refrigeration cycle apparatus 100C uses the supercooling heat exchanger 22 to lower the inlet dryness of the indoor heat exchanger 8 that functions as an evaporator, and the indoor heat exchanger 8 By holding a large amount of refrigerant, the increase in the high pressure of the refrigerant discharged from the compressor 3 is suppressed.
  • the refrigeration cycle apparatus 100C injects the refrigerant that has passed through the supercooling heat exchanger 22 into the suction side of the compressor 3 to increase the discharge temperature of the refrigerant discharged from the compressor 3. Suppressed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 flows into the indoor heat exchanger 8 acting as a condenser via the refrigerant flow switching device 28 and dissipates heat to the outdoor air blown by the indoor blower 8a.
  • This refrigerant flows into the supercooling heat exchanger 22 via the second electronic expansion valve 23.
  • This refrigerant is cooled by the low-pressure refrigerant in the supercooling heat exchanger 22 and then reduced in pressure by the fourth electronic expansion valve 29 to become a low-pressure two-phase refrigerant.
  • the outdoor heat exchanger 5 acting as an evaporator the outdoor air Is cooled to become a low-pressure gas refrigerant. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • the refrigerant that has flowed into the injection pipe 26 is heated by the high-pressure refrigerant in the supercooling heat exchanger 22 after being depressurized by the third electronic expansion valve 24.
  • This refrigerant is injected into the suction side of the compressor 3 and merges with the refrigerant flowing through the gas pipe 9. Thereafter, the gas is again sucked into the compressor 3 through the gas pipe 9.
  • refrigeration cycle apparatus 100C like refrigeration cycle apparatus 100A according to Embodiment 1, suppresses an increase in the amount of refrigerant charged, suppresses an increase in discharge temperature, and performs indoor heat exchange that functions as an evaporator. It is possible to suppress the increase in the condensation pressure due to the decrease in the dryness of the refrigerant at the inlet of the vessel 8. Therefore, according to the refrigeration cycle apparatus 100C, safety is taken into consideration even when refrigerant leaks by suppressing an increase in the amount of charged refrigerant, the effect on global warming can be reduced, and refrigerant can be reduced by suppressing an increase in discharge temperature. It is possible to continue high-efficiency operation without degeneration.
  • the refrigeration cycle apparatus 100C compared with the refrigeration cycle apparatus 100A according to Embodiment 1, it is possible to suppress an increase in discharge temperature due to injection of the refrigerant that has passed through the supercooling heat exchanger 22 in the heating operation mode. become. Furthermore, according to the refrigeration cycle apparatus 100C, the two-phase refrigerant of the liquid pipe 7 can be realized even in the heating operation mode, which contributes to the reduction of the charged refrigerant amount.
  • the refrigeration cycle apparatus described in each embodiment is applied to an apparatus equipped with a refrigeration cycle, such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.
  • a refrigeration cycle such as an air conditioner (for example, a refrigeration apparatus, a room air conditioner, a packaged air conditioner, a multi air conditioner for buildings), a heat pump water heater, and the like. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 冷凍サイクル装置100Aは、通常外気温時の温度以上の高外気温時のとき、分岐回路お及びインジェクション回路に冷媒を流し、過冷却熱交換器(22)を利用するとともに、過冷却熱交換器(22)の2次側を流れた冷媒を圧縮機(3)にインジェクションするものである。

Description

冷凍サイクル装置
 本発明は、空気調和装置に関し、特に充填冷媒量の増加を抑制しつつ、圧縮機からの吐出温度の上昇を抑制するようにした冷凍サイクル装置に関するものである。
 従来、不燃性であるR410Aのような「HFC冷媒」を使用して冷凍サイクルを実行する冷凍サイクル装置が存在している。このR410Aは、従来のR22のような「HCFC冷媒」と異なり、オゾン層破壊係数(以下「ODP」と称す)がゼロであって、オゾン層を破壊することはないが、地球温暖化係数(以下「GWP」と称す)が高いという性質を有している。そのため、地球の温暖化防止の一環として、R410AのようなGWPが高いHFC冷媒から、GWPが低い冷媒(以下「低GWP冷媒」と称す)への変更の検討が進められている。
 低GWP冷媒の候補として、組成中に炭素の二重結合を持たないHFC冷媒、例えばR410AよりもGWPが低いR32(CH;ジフルオロメタン)が存在している。また、同じような候補冷媒として、R32と同様にHFC冷媒の一種であって、組成中に炭素の二重結合を有するハロゲン化炭化水素が存在している。このようなハロゲン化炭化水素としては、例えばHFO-1234yf(CFCF=CH;テトラフルオロプロペン)やHFO-1234ze(CF-CH=CHF)が知られている。なお、R32のように組成中に炭素の二重結合を持たないHFC冷媒と区別するために、炭素の二重結合を持つHFC冷媒を、オレフィン(炭素の二重結合を持つ不飽和炭化水素がオレフィンと呼ばれる)の「O」を使って、「HFO冷媒」と表現することが多い。
 このような低GWP冷媒(HFC冷媒、HFO冷媒)は、自然冷媒であるR290(C;プロパン)のようなHC冷媒ほど強燃性ではないものの、不燃性であるR410Aとは異なり、微燃レベルの可燃性を有している。これより以降、微燃レベルであっても可燃性を有する冷媒のことを「可燃性冷媒」と称する。
 これらの可燃性冷媒を冷凍サイクル装置に用いる場合、安全性を考慮して充填冷媒量の増加を抑制することが望ましい。一方で、冷凍サイクル装置の効率についても考慮する必要がある。
 可燃性冷媒を使用した冷凍サイクル装置として、R32冷媒またはR32を70%以上の混合冷媒を用い、凝縮温度、蒸発温度、過冷却熱交膨張弁の開度にしたがって目標吐出温度を算出し、この目標吐出温度となるように主膨張弁の開度を調整するようにした冷凍装置が提案されている(例えば、特許文献1参照)。
 また、圧縮機内の温度により変性の可能性を有する冷媒を使用し、凝縮器出口から排出される冷媒の一部を分岐して、前記圧縮機の内部に供給するようにした冷凍回路が提案されている(例えば、特許文献2参照)。
特許第3440910号公報 特開2010-19457号公報
 しかしながら、特許文献1に記載されているような技術では、圧縮機からの吐出温度の上昇を抑制することは可能であるが、過冷却熱交換器を運転条件に関わらず使用するため、凝縮器出口に設置された熱交換器の容積増加と蒸発器入口乾き度の低下により、充填冷媒量が増加してしまう。そのため、冷媒が漏洩した場合に、安全性に欠けるだけでなく、地球温暖化に影響を及ぼすことになる。
 また、特許文献2に記載されているような技術では、高外気温高負荷の冷房運転時に、圧縮機からの吐出温度の上昇を抑制することは可能であるが、蒸発器入口の乾き度を低減できない。そのため、蒸発器に冷媒を保持できず、凝縮圧力が上昇してしまい、凝縮圧力の上昇の影響により、冷媒が変性してしまう可能性がある。冷媒が変性してしまうと、本来の能力を発揮することができなくなってしまう。
 本発明は、上記のような課題を解決するためになされたもので、充填冷媒量の増加を抑制しつつ、圧縮機からの吐出温度の上昇を抑制することができる冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機、第1熱交換器、第1膨張弁、及び、第2熱交換器を接続した主冷媒回路と、前記第1熱交換器、前記第1熱交換器を凝縮器として作用させたときの冷媒の流れ下流側に設置された過冷却熱交換器の1次側、第2膨張弁、及び、前記第2熱交換器を接続した分岐回路と、前記過冷却熱交換器の冷媒の1次側の下流側から分岐させたインジェクション配管で第3膨張弁、前記過冷却熱交換器の2次側、前記圧縮機を接続したインジェクション回路と、を備える冷凍サイクル装置であって、前記主冷媒回路に前記冷媒を流す通常運転モードと、前記分岐回路及び前記インジェクション回路に前記冷媒を流し、前記過冷却熱交換器を利用するとともに、前記過冷却熱交換器の2次側を流れた前記冷媒を前記圧縮機にインジェクションする高外気温運転モードとを有し、外気温度が予め定めた温度以上の場合、前記高外気温運転モードを実施するものである。
 本発明に係る冷凍サイクル装置によれば、予め定めた通常運転時において蒸発器として作用する第2熱交換器の入口乾き度の低下を抑制することにより充填冷媒量の増加を抑制でき、高外気温冷房運転時において圧縮機にインジェクションすることによる吐出温度の抑制及び凝縮圧力増加の抑制が可能になる。
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。 本発明の実施の形態1に係る冷凍サイクル装置が実行する運転モードに応じた各アクチュエータの制御パターンを説明するための説明図である。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。 本発明の実施の形態2に係る冷凍サイクル装置が実行する運転モードに応じた各アクチュエータの制御パターンを説明するための説明図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。 本発明の実施の形態3に係る冷凍サイクル装置が実行する運転モードに応じた各アクチュエータの制御パターンを説明するための説明図である。
 以下、図面を適宜参照しながら本発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100Aと称する)の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。図1に基づいて、冷凍サイクル装置100Aについて説明する。
 冷凍サイクル装置100Aは、可燃性冷媒を主成分として使用することを想定したものであり、室外機1と、室内機2と、を有している。室外機1と室内機2とは、液配管7及びガス配管9を介して接続されている。なお、室外機1及び室内機2の接続代数を1台に限定するものではなく、いずれかまたはそれぞれを複数台としてもよい。
 室外機(熱源機)1は、冷媒を圧縮する圧縮機3と、冷媒と室外送風機5aによって搬送される室外機1の周囲の空気とで熱交換する室外熱交換器(第1熱交換器)5と、冷媒の流量を制御する第1電子膨張弁(第1膨張弁)6と、冷媒の流れを制御する開閉弁21、冷媒と冷媒とで熱交換する過冷却熱交換器22と、冷媒の流量を制御する第2電子膨張弁(第2膨張弁)23と、冷媒の流量を制御する第3電子膨張弁(第3膨張弁)24とを備えている。また、室外熱交換器5は、空気を供給する室外送風機5aと、外気温度を検出する外気温度センサTと、を有している。また、圧縮機3の吐出側には、圧縮機3から吐出される冷媒の温度を検出する吐出温度センサTと、圧縮機3から吐出される冷媒の圧力を検出する吐出圧力センサPとが設けられている。さらに、過冷却熱交換器22の一端には、過冷却熱交換器22を通過した後の冷媒の温度を検出する冷媒温度センサTが設けられている。
 室内機(利用側機)2は、冷媒と室内送風機8aによって搬送される室内機2の周囲の空気とで熱交換し、例えば室内空間の冷却又は加熱を行うことで冷房又は暖房を実現する室内熱交換器(第2熱交換器)8を備えている。室内熱交換器8は、空気を供給する室内送風機8aを有する。
 冷媒を圧縮する圧縮機3としては、インバータ回路により回転数が制御され容量制御されるタイプの容積式圧縮機を用いるとよい。容積式圧縮機には、例えば、ロータリ圧縮機、スクロール圧縮機、スクリュー圧縮機、往復圧縮機等がある。圧縮機3には、吐出配管3aが接続されている。
 室外熱交換器5は、凝縮器又は蒸発器として機能し、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。
 室外送風機5aは、室外熱交換器5に空気を供給するものであり、空気の流量を可変することが可能なもので構成されている。例えば、室外送風機5aとして、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等を使用することができる。 
 第1電子膨張弁6は、後述する制御装置30により開度が制御され、冷媒の圧力を減圧しつつ、冷媒流量の調節等を行うよう構成されている。
 室内熱交換器8は、蒸発器又は凝縮器として機能し、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器で構成することができる。
 室内送風機8aは、室内熱交換器8に空気を供給するものであり、空気の流量を可変することが可能なもので構成されている。例えば、室内送風機8aとして、DCファンモータなどのモータによって駆動される遠心ファンや多翼ファン等を使用することができる。
 そして、圧縮機3、室外熱交換器5、第1電子膨張弁6、及び、室内熱交換器8が、吐出配管3a、液配管7及びガス配管9を含めた主冷媒配管31で接続されることで主冷媒回路を構成する。
 また、室外機1は、室外熱交換器5と第1電子膨張弁6との間における主冷媒配管31から分岐させ、第1電子膨張弁6と室内熱交換器8との間に接続させた分岐配管25を有している。室外熱交換器5、過冷却熱交換器22の1次側(分岐配管25を流れる冷媒側)、第2電子膨張弁23、及び、室内熱交換器8が、分岐配管25及び主冷媒配管31で接続されることで分岐回路を構成する。
 さらに、室外機1は、過冷却熱交換器22と第2電子膨張弁23との間における分岐配管25から分岐させ、圧縮機3の吸入側に接続させたインジェクション配管26を有している。第3電子膨張弁24、及び、過冷却熱交換器22の2次側(インジェクション配管26を流れる冷媒側)、圧縮機3の吸入側が、インジェクション配管26で接続されることでインジェクション回路を構成する。
 開閉弁21は、分岐配管25の室外熱交換器5と過冷却熱交換器22との間に設けられ、後述する制御装置30により開閉が制御され、分岐配管25を開閉するものである。
 過冷却熱交換器22は、分岐配管25を流れる冷媒とインジェクション配管26を流れる冷媒との間で熱交換を行うものであり、例えば、マイクロチャネル熱交換器、シェルアンドチューブ式熱交換器、ヒートパイプ式熱交換器、二重管式熱交換器、プレート熱交換器等で構成するとよい。
 第2電子膨張弁23は、分岐配管25の過冷却熱交換器22の下流側に設けられ、後述する制御装置30により開度が制御され、分岐配管25を流れる冷媒の圧力を減圧しつつ、冷媒の流量の調節等が行うことが可能なものである。
 第3電子膨張弁24は、インジェクション配管26の過冷却熱交換器22の上流側に設けられ、後述する制御装置30により開度が制御され、インジェクション配管26を流れる冷媒の圧力を減圧しつつ、冷媒の流量の調節等が行うことが可能なものである。
 また、冷凍サイクル装置100Aは、冷凍サイクル装置100Aを統括制御する制御装置30を備えている。制御装置30は、外気温度センサT、吐出圧力センサP、吐出温度センサTおよび冷媒温度センサTを含む各検知器からの検出値に基づき、各アクチュエータ(圧縮機3、室外送風機5a、第1電子膨張弁6、開閉弁21、第2電子膨張弁23、第3電子膨張弁24、室内送風機8a等の駆動部品)の制御を行い、各運転モードを実施する。制御装置30は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。
 なお、室外機1と室内機2とを接続している液配管7は、液側ストップバルブ32を介して接続されている。
 同様に、室外機1と室内機2とを接続しているガス配管9は、ガス側ストップバルブ33を介して接続されている。
 つまり、液側ストップバルブ32及びガス側ストップバルブ33を介して、室外機1と室内機2とを切り離すことが可能になっている。
 図2は、冷凍サイクル装置100Aが実行する運転モードに応じた、制御装置30による各アクチュエータ(ここでは、開閉弁21、第1電子膨張弁6、第2電子膨張弁23、第3電子膨張弁24)の制御パターンを説明するための説明図である。図1及び図2に基づいて、冷凍サイクル装置100Aの動作について説明する。
 冷凍サイクル装置100Aは、外気温度センサTで検出される外気温度によって、過冷却熱交換器22の利用を決定するようになっている。以下の説明において、通常外気温時における過冷却熱交換器22を利用しないときの運転モードを「通常運転モード」と称し、高外気温時における過冷却熱交換器22を利用するときの運転モードを「高外気温運転モード」と称する。
 なお、通常外気温時とは、厳密な温度範囲を定めることはできないが、外気温度センサTで検出される外気温度が冷凍サイクル装置100Aを使用する地域の通常の使用範囲される温度の範囲内であるときを想定しており、予め定められているものとする。
 また、高外気温時とは、厳密な温度範囲を定めることはできないが、外気温度センサTで検出される外気温度が冷凍サイクル装置100Aの予め定められた通常外気温時の温度の上限以上(例えば、40℃以上)のときを想定しており、予め定められているものとする。
<通常運転モード>
 通常運転モードでは、図2に示すように、制御装置30によって、開閉弁21が閉、第2電子膨張弁23が全開、第3電子膨張弁24が全閉に制御され、吐出温度センサTの検出結果に基づき第1電子膨張弁6で圧縮機3からの吐出冷媒の温度が制御されるようになっている。つまり、通常外気温時においては、冷凍サイクル装置100Aは、蒸発器として機能する室内熱交換器8の入口乾き度の低下を抑制し、室内熱交換器8への必要冷媒量の増加を抑制するため、過冷却熱交換器22をバイパスさせる。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、第1電子膨張弁6にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
<高外気温運転モード>
 高外気温運転モードでは、図2に示すように、制御装置30によって、開閉弁21が開、第1電子膨張弁6が全閉に制御され、吐出温度センサTの検出結果に基づき第2電子膨張弁23で圧縮機3からの吐出冷媒の温度が制御され、第3電子膨張弁24で過冷却熱交換器22の出口における冷媒の過冷却度(SC)が制御されるようになっている。つまり、高外気温時においては、冷凍サイクル装置100Aは、分岐回路に冷媒を流し、過冷却熱交換器22を利用して、蒸発器として機能する室内熱交換器8の入口乾き度を低い状態にし、室内熱交換器8に冷媒を多く保持することで、圧縮機3からの吐出冷媒の高圧の上昇を抑制している。
 また、高外気温時においては、冷凍サイクル装置100Aは、過冷却熱交換器22を通過した冷媒を圧縮機3の吸入側にインジェクションして、圧縮機3からの吐出冷媒の吐出温度の上昇を抑制している。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、開閉弁21を介して過冷却熱交換器22に流入する。この冷媒は、過冷却熱交換器22にて低圧冷媒により冷却された後、第2電子膨張弁23にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 一方、インジェクション配管26に流れたインジェクション回路の冷媒は、第3電子膨張弁24での減圧後に過冷却熱交換器22にて高圧冷媒により加熱される。この冷媒は、圧縮機3の吸入側にインジェクションされ、ガス配管9を流れてきた冷媒と合流する。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 なお、過冷却熱交換器22の出口における冷媒の過冷却度(SC)は、吐出圧力センサPにより検出される圧縮機3の吐出圧力から求められる冷媒の高圧側の飽和温度と、冷媒温度センサTによって検出される過冷却熱交換器22を通過後の冷媒の温度と、の差で算出することができる。
<運転モードの切り替え>
 冷媒回路へ封入する冷媒の充填量は、通常外気温時に定める。そのため、冷凍サイクル装置100Aでは、通常運転モードを実行し、過冷却熱交換器22をバイパスして、蒸発器として機能する室内熱交換器8の入口冷媒の乾き度を高い状態に保持し、充填冷媒量の増加を抑制するようにしている。一方、冷媒充填量の増加を抑制しているので、高外気温の場合には、高圧が上昇してしまう可能性がある。
 そこで、高外気温時においては、冷凍サイクル装置100Aは、高外気温運転モードを実行し、過冷却熱交換器22を利用して、蒸発器として機能する室内熱交換器8の入口冷媒の乾き度を低い状態にし、室内熱交換器8に冷媒を多く保持することで、高圧の上昇を抑制することを可能にしている。加えて、冷凍サイクル装置100Aでは、高外気温運転モードを実行することにより、過冷却熱交換器22を通過した冷媒を圧縮機3の吸入側にインジェクションして、圧縮機3から吐出される冷媒の吐出温度の上昇を抑制することを可能にしている。
 このように、冷凍サイクル装置100Aは、外気温度が高外気温度かどうかによって、過冷却熱交換器22の利用を決定するようになっている。そのため、冷凍サイクル装置100Aによれば、冷媒回路へ封入する冷媒の充填量を通常運転モードに合わせて定め、充填冷媒量の増加を抑制している。また、冷凍サイクル装置100Aによれば、必要に応じて過冷却熱交換器22を利用することになるので、過冷却熱交換器22を利用しない場合には、過冷却熱交換器22の高圧側の圧力の低下を招くことなく、充填冷媒量の削減が可能になる。すなわち、冷凍サイクル装置100Aでは、可燃性冷媒を主成分として使用することを想定しているため、充填冷媒量の増加の抑制により、冷媒漏洩時においても安全性に配慮したものとなり、地球温暖化に与える影響を小さくすることができる。
 更に、冷凍サイクル装置100Aによれば、高圧が上昇してしまう可能性がある高外気温時においては、高外気温運転モードを実行することにより、過冷却熱交換器22及びインジェクション配管26を利用して、吐出温度の上昇の抑制、及び、蒸発器として機能する室内熱交換器8の入口冷媒の乾き度の低下による凝縮圧力増加の抑制を図ることができる。そのため、冷凍サイクル装置100Aでは、高外気温時においても、高効率な運転を継続することが可能になる。
 次に、冷凍サイクル装置100Aに使用する冷媒について説明する。
 冷凍サイクル装置100Aは、可燃性冷媒を主成分とした冷媒を使用することを想定しているが、これに限定されるものではない。可燃性冷媒としては、R32、HFO-1234yf、HFO-1234ze、R290(C;プロパン)、R1270(C;プロピレン)等が知られている。
 なお、可燃性冷媒を主成分とするとは、上記に例示した可燃性冷媒が単体で使用されることも含め、混合させる他の冷媒(複数種類の冷媒であってもよい)の含有量が、可燃性冷媒の含有量を質量%で超えないことを意味する。また、実施の形態1を含め以下の実施の形態では、インジェクション配管26を圧縮機3の吸入側に接続した回路を例に示すが、インジェクション配管26を圧縮機3の中間圧力部に連通する中間ポートに接続するようにしてもよい。
 以上のように、冷凍サイクル装置100Aは、充填冷媒量の増加を抑制しつつ、吐出温度の上昇の抑制を図ることが可能になっている。そのため、冷凍サイクル装置100Aによれば、充填冷媒量の増加の抑制により冷媒漏洩時においても安全性に配慮したものとなり、地球温暖化に与える影響を小さくでき、吐出温度の上昇の抑制により冷媒を変性させることがなく、高効率な運転を継続することが可能になる。
実施の形態2.
 図3は、本発明の実施の形態2に係る冷凍サイクル装置(以下、冷凍サイクル装置100Bと称する)の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。図3に基づいて、冷凍サイクル装置100Bについて説明する。なお、実施の形態2では実施の形態1との相違点を中心に説明し、実施の形態1と同一部分には、同一符号を付して説明を省略するものとする。
 冷凍サイクル装置100Bは、実施の形態1に係る冷凍サイクル装置100Aと同様に、可燃性冷媒を主成分として使用することを想定したものである。冷凍サイクル装置100Bは、室外機1の構成が、実施の形態1に係る冷凍サイクル装置100Aと相違している。また。冷凍サイクル装置100Bでは、主冷媒配管31と分岐配管25の構成が、実施の形態1に係る冷凍サイクル装置100Aと相違している。
 室外機(熱源機)1は、圧縮機3と、室外熱交換器5と、三方弁27と、過冷却熱交換器22と、第2電子膨張弁23と、第3電子膨張弁24とを備えている。つまり、冷凍サイクル装置100Bは、実施の形態1に係る冷凍サイクル装置100Aの室外機1が備えている第1電子膨張弁6および開閉弁21を備えていない代わりに、三方弁27を備えている。そのため、第2電子膨張弁23が、本発明の「第1電子膨張弁」として機能する。
 三方弁27は、流路切替装置としての機能を有し、室外熱交換器5の下流側に設けられる。三方弁は、制御装置30の制御の下、主冷媒配管31(主冷媒回路)と分岐配管25(分岐回路)とのいずれかに冷媒流路を切り替えるものである。ここでは、流路切替装置が三方弁27である場合を例に説明するが、流路切替装置を三方弁27に限定するものではない。例えば、流路切替装置は、冷媒流路を切り替えられるものであればよく、例えば、二方弁を組み合わせて構成したり、四方弁の1つ流路を閉塞する等として構成したりすることができる。
 冷凍サイクル装置100Bでは、圧縮機3、室外熱交換器5、三方弁27、第2電子膨張弁23、及び、室内熱交換器8が、吐出配管3a、液配管7及びガス配管9を含めた主冷媒配管31で接続されることで主冷媒回路を構成する。
 また、分岐配管25は、三方弁27を介して主冷媒配管31から分岐し、過冷却熱交換器22を経由した後、三方弁27と第2電子膨張弁23との間に接続している。室外熱交換器5、三方弁27、過冷却熱交換器22の1次側(分岐配管25を流れる冷媒側)、第2電子膨張弁23、及び、室内熱交換器8が、分岐配管25及び主冷媒配管31で接続されることで分岐回路を構成する。
 なお、実施の形態1に係る冷凍サイクル装置100Aと同様に、室外機1は、過冷却熱交換器22と第2電子膨張弁23との間における分岐配管25から分岐させ、圧縮機3の吸入側に接続させたインジェクション配管26を有している。第3電子膨張弁24、及び、過冷却熱交換器の2次側(インジェクション配管26を流れる冷媒側)、圧縮機3の吸入側が、インジェクション配管26で接続されることでインジェクション回路を構成する。
 図4は、冷凍サイクル装置100Bが実行する運転モードに応じた、制御装置30による各アクチュエータ(ここでは、三方弁27、第2電子膨張弁23、第3電子膨張弁24)の制御パターンを説明するための説明図である。図3及び図4に基づいて、冷凍サイクル装置100Bの動作について説明する。
 冷凍サイクル装置100Bは、実施の形態1に係る冷凍サイクル装置100Aと同様に、外気温度センサTで検出される外気温度によって、過冷却熱交換器22の利用を決定するようになっている。なお、通常運転モード、高外気温運転モードの定義については、実施の形態1と同様である。
<通常運転モード>
 通常運転モードでは、図4に示すように、制御装置30によって、三方弁27が室外熱交換器5と第2電子膨張弁23とを接続するように切り替えられ、第3電子膨張弁24が全閉に制御され、吐出温度センサTの検出結果に基づき第2電子膨張弁23で圧縮機3からの吐出冷媒の温度が制御されるようになっている。つまり、通常外気温時においては、冷凍サイクル装置100Bは、蒸発器として機能する室内熱交換器8の入口乾き度の低下を抑制し、室内熱交換器8への必要冷媒量の増加を抑制するため、過冷却熱交換器22をバイパスさせる。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、三方弁27を介して第2電子膨張弁23に流入する。そして、第2電子膨張弁23にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
<高外気温運転モード>
 高外気温運転モードでは、図4に示すように、制御装置30によって、三方弁27が室外熱交換器5と過冷却熱交換器22とを接続するように切り替えられ、吐出温度センサTの検出結果に基づき第2電子膨張弁23で圧縮機3からの吐出冷媒の温度が制御される。また、制御装置30によって、第3電子膨張弁24で過冷却熱交換器22の出口における冷媒の過冷却度(SC)が制御されるようになっている。つまり、高外気温時においては、冷凍サイクル装置100Bは、分岐回路に冷媒を流し、過冷却熱交換器22を利用して、蒸発器として機能する室内熱交換器8の入口乾き度を低い状態にし、室内熱交換器8に冷媒を多く保持することで、圧縮機3からの吐出冷媒の高圧の上昇を抑制している。
 また、高外気温時においては、冷凍サイクル装置100Bは、過冷却熱交換器22を通過したインジェクション回路の冷媒を圧縮機3の吸入側にインジェクションして、圧縮機3からの吐出冷媒の吐出温度の上昇を抑制している。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、三方弁27を介して過冷却熱交換器22に流入する。この冷媒は、過冷却熱交換器22にて低圧冷媒により冷却された後、第2電子膨張弁23にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 一方、インジェクション配管26に流れた冷媒は、第3電子膨張弁24での減圧後に過冷却熱交換器22にて高圧冷媒により加熱される。この冷媒は、圧縮機3の吸入側にインジェクションされ、ガス配管9を流れてきた冷媒と合流する。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 以上のように、冷凍サイクル装置100Bは、実施の形態1に係る冷凍サイクル装置100Aと同様に、充填冷媒量の増加を抑制しつつ、吐出温度の上昇の抑制及び蒸発器として機能する室内熱交換器8の入口冷媒の乾き度の低下による凝縮圧力増加の抑制を図ることが可能になっている。そのため、冷凍サイクル装置100Bによれば、充填冷媒量の増加の抑制により冷媒漏洩時においても安全性に配慮したものとなり、地球温暖化に与える影響を小さくでき、吐出温度の上昇の抑制により冷媒を変性させることがなく、高効率な運転を継続することが可能になる。
 また、冷凍サイクル装置100Bによれば、実施の形態1に係る冷凍サイクル装置100Aに比べて、バルブの数を少なくすることができる。
実施の形態3.
 図5は、本発明の実施の形態3に係る冷凍サイクル装置(以下、冷凍サイクル装置100Cと称する)の冷媒回路構成の一例を概略的に示す冷媒回路構成図である。図5に基づいて、冷凍サイクル装置100Cについて説明する。なお、実施の形態3では実施の形態1、2との相違点を中心に説明し、実施の形態1、2と同一部分には、同一符号を付して説明を省略するものとする。
 冷凍サイクル装置100Cは、実施の形態1に係る冷凍サイクル装置100Aと同様に、可燃性冷媒を主成分として使用することを想定したものである。冷凍サイクル装置100Cは、室外機1の構成が、実施の形態1に係る冷凍サイクル装置100Aと相違している。また。冷凍サイクル装置100Cでは、主冷媒配管31と分岐配管25の構成が、実施の形態1に係る冷凍サイクル装置100Aと相違している。
 室外機(熱源機)1は、圧縮機3と、冷媒流路切替装置28と、室外熱交換器5と、第4電子膨張弁(第4膨張弁)29と、過冷却熱交換器22と、第2電子膨張弁23と、第3電子膨張弁24とを備えている。つまり、冷凍サイクル装置100Cは、実施の形態1に係る冷凍サイクル装置100Aの室外機1が備えている第1電子膨張弁6および開閉弁21を備えていない代わりに、冷媒流路切替装置28および第4電子膨張弁29を備えている。そのため、第4電子膨張弁29が、本発明の「第1電子膨張弁」として機能する。
 また、冷凍サイクル装置100Cでは、実施の形態1に係る冷凍サイクル装置100Aの室外機1が備えている主冷媒配管31から分岐配管25を分岐させておらず、主冷媒配管31に分岐配管25を連結させた構成を採用している。
 冷媒流路切替装置28は、圧縮機3の吐出側に設けられ、制御装置30の制御の下、冷媒の流れを切り替えるものである。冷媒流路切替装置28は、例えば図5に示すように四方弁で構成することができる。ただし、冷媒流路切替装置28を四方弁に限定するものではなく、二方弁や三方弁を組み合わせて冷媒流路切替装置28としてもよい。
 第4電子膨張弁29は、制御装置30により開度が制御され、冷媒の圧力を減圧しつつ、冷媒流量の調節等が行うよう構成されている。第4電子膨張弁29は、室外熱交換器5と過冷却熱交換器22との間に設けられている。
 冷凍サイクル装置100Cでは、圧縮機3、冷媒流路切替装置28、室外熱交換器5、第4電子膨張弁29、過冷却熱交換器22、及び、室内熱交換器8が、吐出配管3a、分岐配管25、液配管7及びガス配管9を含めた主冷媒配管31で接続されることで主冷媒回路を構成する。つまり、分岐配管25が、主冷媒配管31の一部を構成している。
 そのため、室外熱交換器5、第4電子膨張弁29、過冷却熱交換器22の1次側(分岐配管25を流れる冷媒側)、第2電子膨張弁23、及び、室内熱交換器8が、分岐配管25及び主冷媒配管31で接続されることで分岐回路を構成する。
 なお、実施の形態1に係る冷凍サイクル装置100Aと同様に、室外機1は、過冷却熱交換器22と第2電子膨張弁23との間における分岐配管25から分岐させ、圧縮機3の吸入側に接続させたインジェクション配管26を有している。第3電子膨張弁24、及び、過冷却熱交換器の2次側(インジェクション配管26を流れる冷媒側)、圧縮機3の吸入側が、インジェクション配管26で接続されることでインジェクション回路を構成する。
 図6は、冷凍サイクル装置100Cが実行する運転モードに応じた、制御装置30による各アクチュエータ(ここでは、第2電子膨張弁23、第3電子膨張弁24、第4電子膨張弁29)の制御パターンを説明するための説明図である。図5及び図6に基づいて、冷凍サイクル装置100Cの動作について説明する。
 冷凍サイクル装置100Cは、実施の形態1に係る冷凍サイクル装置100Aと同様に、外気温度センサTによって検出される外気温度によって、過冷却熱交換器22の利用を決定するようになっている。なお、通常運転モード、高外気温運転モードの定義については、実施の形態1と同様である。また、冷凍サイクル装置100Cは、冷媒流路切替装置28の作用によって冷媒の流れを反転されたときの運転モードを「暖房運転モード」と称する。
<通常運転モード>
 通常運転モードでは、図6に示すように、制御装置30によって、第2電子膨張弁23が全開、第3電子膨張弁24が全閉に制御され、吐出温度センサTの検出結果に基づき第4電子膨張弁29で圧縮機3からの吐出冷媒の温度が制御されるようになっている。つまり、通常外気温時においては、冷凍サイクル装置100Cは、蒸発器として機能する室内熱交換器8の入口乾き度の低下を抑制し、室内熱交換器8への必要冷媒量の増加を抑制するため、過冷却熱交換器22をバイパスさせる。
 なお、冷凍サイクル装置100Cでは、過冷却熱交換器22を冷媒が流れているが、インジェクション配管26を冷媒が流れないため、冷媒同士の熱交換が実行されない。そのため、この場合も、過冷却熱交換器22をバイパスすると表現している。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、第4電子膨張弁29に流入する。そして、第4電子膨張弁29にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
<高外気温運転モード>
 高外気温運転モードでは、図6に示すように、制御装置30による制御の下、第2電子膨張弁23によって、吐出温度センサTの検出結果に基づき、圧縮機3からの吐出冷媒の温度が制御され、第3電子膨張弁24によって過冷却熱交換器22の出口における冷媒の過冷却度(SC)が制御され、第4電子膨張弁29は全開に制御されるようになっている。つまり、高外気温時においては、冷凍サイクル装置100Cは、分岐回路に冷媒を流し、過冷却熱交換器22を利用して、蒸発器として機能する室内熱交換器8の入口乾き度を低い状態にし、室内熱交換器8に冷媒を多く保持することで、圧縮機3からの吐出冷媒の高圧の上昇を抑制している。
 また、高外気温時においては、冷凍サイクル装置100Cは、過冷却熱交換器22を通過したインジェクション回路の冷媒を圧縮機3の吸入側にインジェクションして、圧縮機3からの吐出冷媒の吐出温度の上昇を抑制している。
 圧縮機3から吐出した高温・高圧のガス冷媒は、凝縮器として作用する室外熱交換器5に流入し、室外送風機5aにより送風される室外空気に放熱する。この冷媒は、第4電子膨張弁29を介して過冷却熱交換器22に流入する。この冷媒は、過冷却熱交換器22にて低圧冷媒により冷却された後、第2電子膨張弁23にて減圧され低圧二相冷媒となり、蒸発器として作用する室内熱交換器8にて室内空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 一方、インジェクション配管26に流れた冷媒は、第3電子膨張弁24での減圧後に過冷却熱交換器22にて高圧冷媒により加熱される。この冷媒は、圧縮機3の吸入側にインジェクションされ、ガス配管9を流れてきた冷媒と合流する。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
<暖房運転モード>
 暖房運転モードでは、図6に示すように、制御装置30による制御の下、第4電子膨張弁29によって、吐出温度センサTの検出結果に基づき、圧縮機3からの吐出冷媒の温度が制御され、第3電子膨張弁24によって過冷却熱交換器22の出口における冷媒の過冷却度(SC)が制御され、第2電子膨張弁23は全開に制御されるようになっている。つまり、暖房運転モード時においては、冷凍サイクル装置100Cは、過冷却熱交換器22を利用して、蒸発器として機能する室内熱交換器8の入口乾き度を低い状態にし、室内熱交換器8に冷媒を多く保持することで、圧縮機3からの吐出冷媒の高圧の上昇を抑制している。
 また、暖房運転モード時においては、冷凍サイクル装置100Cは、過冷却熱交換器22を通過した冷媒を圧縮機3の吸入側にインジェクションして、圧縮機3からの吐出冷媒の吐出温度の上昇を抑制している。
 圧縮機3から吐出した高温・高圧のガス冷媒は、冷媒流路切替装置28を介して凝縮器として作用する室内熱交換器8に流入し、室内送風機8aにより送風される室外空気に放熱する。この冷媒は、第2電子膨張弁23を介して過冷却熱交換器22に流入する。この冷媒は、過冷却熱交換器22にて低圧冷媒により冷却された後、第4電子膨張弁29にて減圧され低圧二相冷媒となり、蒸発器として作用する室外熱交換器5にて室外空気を冷却して低圧ガス冷媒となる。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 一方、インジェクション配管26に流れた冷媒は、第3電子膨張弁24での減圧後に過冷却熱交換器22にて高圧冷媒により加熱される。この冷媒は、圧縮機3の吸入側にインジェクションされ、ガス配管9を流れてきた冷媒と合流する。その後、ガス配管9を経由して、再び圧縮機3に吸入される。
 以上のように、冷凍サイクル装置100Cは、実施の形態1に係る冷凍サイクル装置100Aと同様に、充填冷媒量の増加を抑制しつつ、吐出温度の上昇の抑制及び蒸発器として機能する室内熱交換器8の入口冷媒の乾き度の低下による凝縮圧力増加の抑制を図ることが可能になっている。そのため、冷凍サイクル装置100Cによれば、充填冷媒量の増加の抑制により冷媒漏洩時においても安全性に配慮したものとなり、地球温暖化に与える影響を小さくでき、吐出温度の上昇の抑制により冷媒を変性させることがなく、高効率な運転を継続することが可能になる。
 また、冷凍サイクル装置100Cによれば、実施の形態1に係る冷凍サイクル装置100Aに比べて、暖房運転モード時に過冷却熱交換器22を通過した冷媒をインジェクションすることによる吐出温度上昇の抑制が可能になる。さらに、冷凍サイクル装置100Cによれば、暖房運転モード時においても、液配管7の二相冷媒化を実現でき、充填冷媒量の削減に寄与している。
 なお、各実施の形態で説明した冷凍サイクル装置は、空気調和装置(例えば、冷凍装置、ルームエアコン、パッケージエアコン、ビル用マルチエアコン等)、ヒートポンプ給湯機等、冷凍サイクルを備えた装置に適用して利用することができる。
 1 室外機、2 室内機、3 圧縮機、3a 吐出配管、5 室外熱交換器、5a 室外送風機、6 第1電子膨張弁、7 液配管、8 室内熱交換器、8a 室内送風機、9 ガス配管、21 開閉弁、22 過冷却熱交換器、23 第2電子膨張弁、24 第3電子膨張弁、25 分岐配管、26 インジェクション配管、27 三方弁、28 冷媒流路切替装置、29 第4電子膨張弁、30 制御装置、31 主冷媒配管、32 液側ストップバルブ、33 ガス側ストップバルブ、100A 冷凍サイクル装置、100B 冷凍サイクル装置、100C 冷凍サイクル装置、T 外気温度センサ、T 吐出温度センサ、T 冷媒温度センサ、P 吐出圧力センサ。

Claims (7)

  1.  圧縮機、第1熱交換器、第1膨張弁、及び、第2熱交換器を接続した主冷媒回路と、
     前記第1熱交換器、前記第1熱交換器を凝縮器として作用させたときの冷媒の流れ下流側に設置された過冷却熱交換器の1次側、第2膨張弁、及び、前記第2熱交換器を接続した分岐回路と、
     前記過冷却熱交換器の冷媒の1次側の下流側から分岐させたインジェクション配管で第3膨張弁、前記過冷却熱交換器の2次側、前記圧縮機を接続したインジェクション回路と、を備える冷凍サイクル装置であって、
     前記主冷媒回路に前記冷媒を流す通常運転モードと、
     前記分岐回路及び前記インジェクション回路に前記冷媒を流し、前記過冷却熱交換器を利用するとともに、前記過冷却熱交換器の2次側を流れた前記冷媒を前記圧縮機にインジェクションする高外気温運転モードと、を有し、
     外気温度が予め定めた温度以上の場合、前記高外気温運転モードを実施する
     冷凍サイクル装置。
  2.  前記主冷媒回路、前記分岐回路および前記インジェクション回路を制御して、前記通常運転モード及び前記高外気温運転モードを実施する制御装置をさらに備える
     請求項1に記載の冷凍サイクル装置。
  3.  前記第1熱交換器と前記過冷却熱交換器との間に設けられた開閉弁をさらに備え、
     前記制御装置は、
     前記通常運転モードにおいて、
     前記開閉弁を閉、前記第2膨張弁を全開、前記第3膨張弁を全閉にし、前記第1膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、
     前記高外気温運転モードにおいて、
     前記開閉弁を開、前記第1膨張弁を全閉にし、前記第2膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、前記第3膨張弁で前記過冷却熱交換器の出口における冷媒の過冷却度を制御する
     請求項2に記載の冷凍サイクル装置。
  4.  前記第1熱交換器と前記過冷却熱交換器との間に設けられ、前記主冷媒回路又は前記分岐回路に冷媒流路を切り替える流路切替装置をさらに備え、
     前記制御装置は、
     前記通常運転モードにおいて、
     前記流路切替装置を前記第1熱交換器と前記第2膨張弁とを接続するように切り替えて前記第2膨張弁を前記第1膨張弁として機能させ、前記第3膨張弁を全閉、前記第2膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、
     前記高外気温運転モードにおいて、
     前記流路切替装置を前記第1熱交換器と前記過冷却熱交換器とを接続するように切り替え、前記第2膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、前記第3膨張弁で前記過冷却熱交換器の出口における冷媒の過冷却度を制御する
     請求項2に記載の冷凍サイクル装置。
  5.  前記第1熱交換器と前記過冷却熱交換器との間に設けられた第4膨張弁をさらに備え、
     前記制御装置は、
     前記通常運転モードにおいて、
     前記第2膨張弁を全開、前記第3膨張弁を全閉にし、前記第4膨張弁を前記第1膨張弁として機能させて前記第4膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、
     前記高外気温運転モードにおいて、
     前記第4膨張弁を全開にし、前記第2膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、前記第3膨張弁で前記過冷却熱交換器の出口における冷媒の過冷却度を制御し、
     前記第1熱交換器を蒸発器とて作用させたときの運転において、
     前記第2膨張弁は全開にし、前記第4膨張弁を前記第1膨張弁として機能させて前記第4膨張弁で前記圧縮機からの吐出冷媒の温度を制御し、前記第3膨張弁で前記過冷却熱交換器の出口における冷媒の過冷却度を制御する
     請求項2に記載の冷凍サイクル装置。
  6.  前記圧縮機の吐出側に設けられた冷媒流路切替装置をさらに備え、
     前記冷媒流路切替装置によって、前記第1熱交換器を凝縮器又は蒸発器として機能させる
     請求項5に記載の冷凍サイクル装置。
  7.  圧縮機、第1熱交換器、第1膨張弁、及び、第2熱交換器を接続した主冷媒回路と、
     前記第1熱交換器、前記第1熱交換器を凝縮器として作用させたときの冷媒の流れ下流側に設置された過冷却熱交換器、第2膨張弁、及び、前記第2熱交換器を接続した分岐回路と、
     を備える冷凍サイクル装置であって、
     前記主冷媒回路に前記冷媒を流す通常運転モードと、
     前記分岐回路に前記冷媒を流し、前記過冷却熱交換器を利用する高外気温運転モードと、を有し、
     外気温度が予め定めた温度以上の場合、前記高外気温運転モードを実施する
     冷凍サイクル装置。
PCT/JP2015/055855 2014-03-07 2015-02-27 冷凍サイクル装置 WO2015133398A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016506459A JP6188916B2 (ja) 2014-03-07 2015-02-27 冷凍サイクル装置
EP15759078.7A EP3121539B1 (en) 2014-03-07 2015-02-27 Refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/056024 2014-03-07
PCT/JP2014/056024 WO2015132967A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2015133398A1 true WO2015133398A1 (ja) 2015-09-11

Family

ID=54054799

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/056024 WO2015132967A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置
PCT/JP2015/055855 WO2015133398A1 (ja) 2014-03-07 2015-02-27 冷凍サイクル装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056024 WO2015132967A1 (ja) 2014-03-07 2014-03-07 冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP3121539B1 (ja)
JP (1) JP6188916B2 (ja)
WO (2) WO2015132967A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187789A4 (en) * 2015-10-27 2018-03-21 GD Midea Heating & Ventilating Equipment Co., Ltd. Enhanced vapor injection air conditioning system
US20220042727A1 (en) * 2019-09-13 2022-02-10 Carrier Corporation Hvac unit with expansion device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3171096A4 (en) * 2014-07-16 2018-03-14 Mitsubishi Electric Corporation Refrigerating and air conditioning device
JP6787482B2 (ja) * 2017-03-31 2020-11-18 ダイキン工業株式会社 空気調和装置
CN109442835A (zh) * 2018-10-17 2019-03-08 广东也节能科技有限公司 一种液化天然气冷能回收利用***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2012021744A (ja) * 2010-07-16 2012-02-02 Daikin Industries Ltd 冷凍装置
JP2012117708A (ja) * 2010-11-30 2012-06-21 Fujitsu General Ltd 空気調和機
JP2012207844A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd ヒートポンプ装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302111A (ja) * 2002-04-08 2003-10-24 Mitsubishi Electric Corp 空気調和装置
JP3966262B2 (ja) * 2003-09-29 2007-08-29 三菱電機株式会社 冷凍冷蔵庫
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
US7114349B2 (en) * 2004-12-10 2006-10-03 Carrier Corporation Refrigerant system with common economizer and liquid-suction heat exchanger
JP5881282B2 (ja) * 2010-09-30 2016-03-09 三菱重工業株式会社 ターボ冷凍装置、その制御装置及びその制御方法
JP6404539B2 (ja) * 2012-04-09 2018-10-10 三菱電機株式会社 空気調和機
JP5516712B2 (ja) * 2012-05-28 2014-06-11 ダイキン工業株式会社 冷凍装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2012021744A (ja) * 2010-07-16 2012-02-02 Daikin Industries Ltd 冷凍装置
JP2012117708A (ja) * 2010-11-30 2012-06-21 Fujitsu General Ltd 空気調和機
JP2012207844A (ja) * 2011-03-29 2012-10-25 Fujitsu General Ltd ヒートポンプ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187789A4 (en) * 2015-10-27 2018-03-21 GD Midea Heating & Ventilating Equipment Co., Ltd. Enhanced vapor injection air conditioning system
US20220042727A1 (en) * 2019-09-13 2022-02-10 Carrier Corporation Hvac unit with expansion device

Also Published As

Publication number Publication date
EP3121539B1 (en) 2018-12-19
JPWO2015133398A1 (ja) 2017-04-06
EP3121539A4 (en) 2017-12-27
JP6188916B2 (ja) 2017-08-30
WO2015132967A1 (ja) 2015-09-11
EP3121539A1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6266089B2 (ja) 空気調和装置
JP6328245B2 (ja) 空気調和装置
KR101810809B1 (ko) 공기 조화 장치
US10126026B2 (en) Refrigeration cycle apparatus
JP6188916B2 (ja) 冷凍サイクル装置
JP6901044B2 (ja) 空気調和機
JP6223546B2 (ja) 冷凍サイクル装置
JP5847366B1 (ja) 空気調和装置
WO2015059792A1 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
JP6038382B2 (ja) 空気調和装置
WO2014049673A1 (ja) 空調給湯複合システム
WO2016071955A1 (ja) 空気調和装置
WO2016121068A1 (ja) 冷凍サイクル装置
WO2014129361A1 (ja) 空気調和装置
JP5277854B2 (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
JP6758506B2 (ja) 空気調和装置
JPWO2015029220A1 (ja) 空気調和装置
US10852007B2 (en) Heat pump device
JP6288146B2 (ja) 冷凍装置
JP5245510B2 (ja) 空調システム及び空調システムの室外ユニット
JP6238202B2 (ja) 空気調和機
WO2018042490A1 (ja) 冷凍サイクル装置
JP2022150675A (ja) ヒートポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015759078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759078

Country of ref document: EP