WO2015133133A1 - Molding device for finishing material for forged crank shaft for v-type six cylinder engine, and production method for forged crank shaft for v-type six cylinder engine using the same - Google Patents

Molding device for finishing material for forged crank shaft for v-type six cylinder engine, and production method for forged crank shaft for v-type six cylinder engine using the same Download PDF

Info

Publication number
WO2015133133A1
WO2015133133A1 PCT/JP2015/001144 JP2015001144W WO2015133133A1 WO 2015133133 A1 WO2015133133 A1 WO 2015133133A1 JP 2015001144 W JP2015001144 W JP 2015001144W WO 2015133133 A1 WO2015133133 A1 WO 2015133133A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
journal
coarse
axial direction
rough
Prior art date
Application number
PCT/JP2015/001144
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 大久保
憲司 田村
邦裕 吉田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016506140A priority Critical patent/JP6172376B2/en
Publication of WO2015133133A1 publication Critical patent/WO2015133133A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/08Making machine elements axles or shafts crankshafts

Definitions

  • the present invention relates to a technique for manufacturing a crankshaft for a V-type 6-cylinder engine (hereinafter also referred to as “forged crankshaft”) by hot forging.
  • a V-shape including a forming apparatus for forming a finishing material to be used for finishing punching for shaping the final shape of the forged crankshaft, and a preforming process using the forming apparatus
  • the present invention relates to a method for manufacturing a forged crankshaft for a six-cylinder engine.
  • crankshaft is a basic part of a reciprocating engine that extracts the power by converting the reciprocating motion of the piston into a rotational motion, and is roughly divided into those manufactured by forging and those manufactured by casting.
  • V-type 6-cylinder engines of automobiles such as passenger cars, freight cars, and special work vehicles, high strength and rigidity are required for the crankshaft, and forged crankshafts that are superior to the demand are frequently used.
  • Forged crankshafts are also used in V-type 6-cylinder engines such as motorcycles, agricultural machines, and ships.
  • a forged crankshaft for a V-6 engine uses a billet having a round or square cross section and a constant cross sectional area over the entire length as a raw material, and performs the steps of preforming, die forging, deburring, twisting and shaping. Manufactured sequentially.
  • the preforming step includes roll forming and bending steps
  • the die forging step includes roughing and finish punching steps.
  • FIG. 1 is a schematic diagram for explaining a manufacturing process of a conventional general forged crankshaft for a V-type 6-cylinder engine.
  • a crankshaft 1 illustrated in FIG. 1 is mounted on a V-type 6-cylinder engine, and includes four journal portions J1 to J4, six pin portions P1 to P6, a front portion Fr, a flange portion Fl, and a journal portion. It consists of nine crank arm portions (hereinafter also simply referred to as “arm portions”) A1 to A9 that connect J1 to J4 and pin portions P1 to P6.
  • the crankshaft 1 includes, among the nine arm portions A1 to A6, the first and second arm portions A1 and A2 connected to the first pin portion P1 at the front end, and the eighth pin connected to the sixth pin portion P6 at the rear end. And a crankshaft of a V-type 6-cylinder-5-counter weight having a balance weight in the ninth arm portion A8, A9 and the central fifth arm portion A5.
  • the journal portions J1 to J4, the pin portions P1 to P6, and the arm portions A1 to A9 are collectively referred to as “J” for the journal portion, “P” for the pin portion, and “A” for the arm portion. .
  • the forged crankshaft 1 is manufactured as follows. First, the billet 2 shown in FIG. 1A cut in advance to a predetermined length is heated by a heating furnace, and then roll forming is performed. In the roll forming step, for example, the billet 2 is rolled with a perforated roll and the volume thereof is distributed in the longitudinal direction while being drawn, thereby forming the roll rough ground 103 as an intermediate material (see FIG. 1B). Next, in the bending process, the roll rough ground 103 obtained by roll forming is partially pressed down from the direction perpendicular to the longitudinal direction to distribute its volume, and a bent rough ground 104 as a further intermediate material is formed. (See FIG. 1 (c)).
  • the bent rough ground 104 obtained by bending is press-forged using a pair of upper and lower dies, and the approximate shape of the crankshaft (final forged product) is removed except for the arrangement angle of the pin portion P.
  • Is formed into a forged material 105 see FIG. 1D.
  • a rough forging material 105 obtained by roughing is provided, and the rough forging material 105 is press-forged using a pair of upper and lower molds, and the crankshaft and the shaft shaft are removed except for the arrangement angle of the pin portion P.
  • a forging material 106 having a matching shape is formed (see FIG. 1E).
  • the forged material 106 with the burr 106a obtained by finish punching is held by a die from above and below, and the burr 106a is punched and removed with a blade tool (see FIG. 1 (f)).
  • the first and second pin portions, the third and fourth pin portions, and the fifth and sixth pin portions are individually held by the mold from above and below with respect to the crankshaft 107 after deburring. To do. And in the state which fixed the metal mold
  • the main parts of the forged crankshaft 1 after twisting (for example, the shaft portion such as the journal portion J, the pin portion P, the front portion Fr, the flange portion Fl, or the arm portion A in some cases) are viewed from above and below. Press slightly with mold and correct to desired dimensions. Thus, the forged crankshaft 1 is manufactured.
  • the manufacturing process shown in FIG. 1 is not limited to the crankshaft of the V-type 6-cylinder-five counterweight illustrated, but the crank of the V-type six-cylinder-9-counterweight having balance weights in all nine arm portions A The same applies to the shaft.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-155275 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-161696 (Patent Document 2) manufacture a crankshaft in which a journal portion and a pin portion are formed, and an arm portion is also formed as it is.
  • the technology to do is disclosed.
  • a stepped round bar in which portions corresponding to a journal portion and a pin portion of a crankshaft are individually constricted is used as a material.
  • interposes a pin part equivalent part is each hold
  • a simple round bar is used as a material. Then, one of the ends of the round bar material is held by a fixed type and the other is held by a movable type, the journal part of the round bar material is journal type, and the pin part is pin type. Retain each. From this state, the movable die, the journal die and the pin die are moved in the axial direction toward the fixed die to give the round bar material a compressive deformation. Simultaneously with this deformation application, the pin mold is moved in the eccentric direction perpendicular to the axial direction, and the portion corresponding to the pin portion is eccentric.
  • the arm portion is a portion corresponding to the pin portion of the round bar material and free expansion in a direction perpendicular to the axial direction accompanying the axial deformation of the round bar material. It is shaped by the tensile deformation accompanying the eccentric movement. For this reason, the contour shape of the arm portion tends to be indefinite, and dimensional accuracy cannot be ensured.
  • An object of the present invention is to form a final shape of a forged crankshaft in the manufacturing process of the forged crankshaft in order to produce a forged crankshaft for a V-type 6-cylinder engine with high yield and high dimensional accuracy regardless of the shape. It is an object of the present invention to provide a molding apparatus that is used for molding a finishing material to be used for finishing. Another object of the present invention is to provide a production method capable of producing a forged crankshaft for a V-type 6-cylinder engine with high yield and high dimensional accuracy regardless of its shape.
  • a molding apparatus molds a finishing material to be used for finishing punching for shaping the final shape of a forged crankshaft from a rough material in the process of manufacturing a forged crankshaft for a V-type 6-cylinder engine.
  • the crude material is Coarse journal parts having the same axial length as each journal part of the forged crankshaft, Coarse pin portions having the same axial length as each pin portion of the forged crankshaft, And a rough crank arm portion having a thicker axial thickness than each crank arm portion of the forged crankshaft.
  • the apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine according to the present embodiment further includes the following configuration (1) or (2).
  • the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the amount of eccentricity in the direction perpendicular to the axial direction is forged. It is smaller than ⁇ 3 / 2 of the eccentric amount of the pin portion of the crankshaft.
  • the third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft. It is smaller than ⁇ 3 / 2 of the eccentric amount of the pin portion of the forged crankshaft in the opposite direction to the 6 pin portion.
  • the molding apparatus includes the following fixed mold, pin mold, and journal mold.
  • the fixed die is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and the axial thickness thereof is the same as the thickness of the fifth crank arm portion of the forged crankshaft.
  • the pin molds are arranged at the positions of the rough pin portions and are directed to the rough pin portions, respectively, and each is directed to the fixed die while being in contact with the side surface of the rough crank arm portion connected to the rough pin portion. Move in the axial direction and in a direction perpendicular to the axial direction.
  • the journal type is arranged at each position of the coarse journal part, and holds and holds the coarse journal part individually from a direction perpendicular to the axial direction, and each of them is attached to the side of the coarse crank arm part connected to the coarse journal part.
  • the molding apparatus sandwiches and holds the coarse journal portion with the journal die, and moves the journal die in the axial direction from the state where the pin die is addressed to the coarse pin portion, while moving the pin die in the axial direction. Move in a direction perpendicular to the axial direction.
  • the coarse crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crankshaft, and the first, second, fifth and sixth coarse pin portions,
  • the fourth rough pin portion is pressed in opposite directions in a direction perpendicular to the axial direction to increase the eccentric amount to ⁇ 3 / 2 of the eccentric amount of the pin portion of the forged crankshaft.
  • the pin mold includes an auxiliary pin mold disposed on the outer side opposite to the side to which the pin mold is assigned in each of the rough pin portions, and the journal mold, As the pin type and the auxiliary pin type paired with the pin type move in the axial direction, the gap between the journal type and the pin type and the auxiliary pin type is closed, and then the pressure deformation It is preferable that the movement of the pin mold in the direction perpendicular to the axial direction is controlled so that the rough pin portion reaches the auxiliary pin mold.
  • the movement of the journal mold adjacent to the pin mold in the axial direction is completed. It is preferable that the movement distance in the direction perpendicular to the axial direction of the pin type is 90% or less of the total movement distance, and thereafter the movement in the direction perpendicular to the axial direction of the pin type is completed.
  • the fixed die, the pin die, and the journal die are attached to a press machine that can be reduced in a direction along a direction perpendicular to the axial direction.
  • the journal mold sandwiches and holds the coarse journal part, and the pin mold is assigned to the coarse pin part, and as the press machine continues to reduce the journal mold,
  • the pin type can be individually moved in the axial direction along with the movement of the journal type simultaneously with the axial movement by the wedge mechanism.
  • the wedge angle of the wedge mechanism is different for each of the journal dies.
  • the pin type is connected to a hydraulic cylinder and is moved in a direction perpendicular to the axial direction by driving the hydraulic cylinder.
  • the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the amount of eccentricity in the direction perpendicular to the axial direction is forged. It is the same as ⁇ 3 / 2 of the eccentric amount of the pin portion of the crankshaft.
  • the third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft.
  • the eccentricity of the pin part of the forged crankshaft is the same as ⁇ 3 / 2.
  • the molding apparatus includes the following fixed mold, pin mold, and journal mold.
  • the fixed die is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and the axial thickness thereof is the same as the thickness of the fifth crank arm portion of the forged crankshaft.
  • the pin molds are arranged at the positions of the rough pin portions and are directed to the rough pin portions, respectively, and each is directed to the fixed die while being in contact with the side surface of the rough crank arm portion connected to the rough pin portion. Move in the axial direction and in a direction perpendicular to the axial direction.
  • the journal type is arranged at each position of the coarse journal part, and holds and holds the coarse journal part individually from a direction perpendicular to the axial direction, and each of them is attached to the side of the coarse crank arm part connected to the coarse journal part.
  • the molding apparatus sandwiches and holds the coarse journal portion with the journal die, and moves the journal die in the axial direction from the state where the pin die is addressed to the coarse pin portion, while moving the pin die in the axial direction. Move in a direction perpendicular to the axial direction.
  • the rough crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crank shaft, and the eccentric amount is reduced by pressing the rough pin portion in a direction perpendicular to the axial direction. Increase the eccentric amount of the pin part of the forged crankshaft.
  • a manufacturing method is a method for manufacturing a forged crankshaft for a V-type 6-cylinder engine, and further includes the following configuration (3) or (4).
  • the manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below.
  • a crude material to be provided to the molding apparatus (1) is modeled.
  • the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the same as that of the forged crankshaft. It is smaller than ⁇ 3 / 2 of the eccentric amount of the pin portion.
  • the third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft. It is smaller than ⁇ 3 / 2 of the eccentric amount of the pin portion of the forged crankshaft in the opposite direction to the 6 pin portion.
  • the finishing material is molded using the molding apparatus (1).
  • the first, second, fifth and sixth rough pin portions, and the third and fourth rough pin portions have eccentric amounts in directions perpendicular to the axial direction and are forged. It is the same as ⁇ 3 / 2 of the eccentric amount of the pin portion of the crankshaft.
  • the finish punching material is finish punched in a state where all the rough pin portions are in a horizontal posture, and a finish material in which the final shape of the forged crankshaft is formed is formed except for the arrangement angle of the pin portions.
  • the arrangement angle of the pin portion of the finishing material is adjusted to the arrangement angle of the pin portion of the forged crankshaft.
  • the manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below.
  • a rough material to be provided to the molding apparatus (2) is modeled.
  • the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the same as that of the forged crankshaft. It is the same as ⁇ 3 / 2 of the eccentric amount of the pin portion.
  • the third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the first, second, fifth and sixth pin portions.
  • the eccentricity of the pin portion of the forged crankshaft is the same as ⁇ 3 / 2.
  • the finishing material is formed using the forming device (2).
  • the final shape of the forged crankshaft is formed on the finishing material except for the pin portion arrangement angle.
  • the finish punching material is finish punched, and a finish material in which the final shape of the forged crankshaft is formed is formed except for the arrangement angle of the pin portion.
  • the arrangement angle of the pin portion of the finishing material is adjusted to the arrangement angle of the pin portion of the forged crankshaft.
  • the shape of the forged crankshaft for a V-type 6-cylinder engine with a thin arm portion is substantially the same from a rough material without burrs. With this shape, it is possible to form a finishing material without burrs. If such a burr-free finish punching material is finished, some burrs are generated, but the final shape of the forged crankshaft including the contour shape of the arm portion can be formed. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape.
  • FIG. 1 is a schematic diagram for explaining a manufacturing process of a conventional forged crankshaft for a general V-type 6-cylinder engine.
  • FIG. 2 is a diagram schematically showing each shape of a raw material to be molded by a molding apparatus, a formed finishing material, and a finishing material after finishing in the manufacturing method of the first embodiment.
  • Drawing 3 is a mimetic diagram showing a manufacturing process of a forge crankshaft in a 1st embodiment.
  • FIG. 4 is a longitudinal sectional view showing the configuration of the molding apparatus in the first embodiment.
  • FIG. 5A is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. 4, and shows a state in the initial stage of forming.
  • FIG. 5A is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. 4, and shows a state in the initial stage of forming.
  • FIG. 5B is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. 4 and shows a state when the forming is completed.
  • FIG. 6 is a diagram for explaining a situation in which biting occurs when the finish punching material is formed by the forming apparatus.
  • FIG. 7 is a diagram for explaining a situation when a countermeasure for biting is applied in forming a finishing material by a forming apparatus.
  • FIG. 8 shows each shape of a rough material to be molded by a molding apparatus, a finished finishing material, a finishing material after finishing, and a torsion finishing material after torsion molding in the manufacturing method of the second embodiment.
  • FIG. 9 is a schematic diagram illustrating a manufacturing process of a forged crankshaft in the second embodiment.
  • FIG. 10 is a longitudinal sectional view showing the configuration of the molding apparatus in the second embodiment.
  • FIG. 11A is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. 10, and shows a state in the initial stage of forming.
  • FIG. 11B is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. 10, and shows a state when the forming is completed.
  • the forming apparatus of the present invention is used to form a finish punching material to be used for finishing punching from a raw material in a pre-finishing process.
  • the following is a description of an apparatus for forming a forging crankshaft for a V-type 6-cylinder engine according to the present invention and a method for manufacturing a forged crankshaft for a V-type 6-cylinder engine including a pre-forming step using the same. A form is explained in full detail.
  • FIG. 2 is a diagram illustrating a rough material to be molded by a molding apparatus, a molded finish material, and a torsional finish material according to the first embodiment of the present invention. It is a figure which shows typically each shape of the finishing material after finishing punching, and the torsion finishing material after twist forming.
  • FIG. 2 shows a situation in the case of manufacturing a crankshaft of a V type 6 cylinder-5 counterweight.
  • FIG. 2 shows a plan view showing the appearance and a layout diagram of the pin portions when viewed along the axial direction in order to facilitate understanding of the shape of each stage.
  • the coarse material 4 of the first embodiment is based on the shape of the forged crankshaft 1 of the V-type 6 cylinder-5 counterweight shown in FIG. Shape.
  • the coarse material 4 includes four coarse journal portions J1a to J4a, six coarse pin portions P1a to P6a, a coarse front portion Fra, a coarse flange portion Fla, and coarse journal portions J1a to J4a and coarse pin portions P1a to P6a. It comprises a rough crank arm portion (hereinafter also simply referred to as “rough arm portion”) A1a to A9a.
  • the coarse material 4 has no burrs.
  • the reference numerals are “Ja” for the coarse journal portion, and “Pa” and “Aa” for the rough arm.
  • the finish punching material 5 of the first embodiment is formed from the above-mentioned rough material 4 by a molding device, which will be described in detail later.
  • the finishing material 5 includes four rough journal portions J1b to J4b, six rough pin portions P1b to P6b, a rough front portion Frb, a rough flange portion Flb, a rough journal portion J1b to J4b and a rough pin portion P1b to P6b.
  • Nine coarse crank arms hereinafter also simply referred to as “rough arms”) A1b to A9b to be connected.
  • the finishing material 5 has no burrs.
  • the reference numeral is “Jb” for the rough journal portion, and the rough pin portion. “Pb” and “Ab” on the rough arm.
  • the finishing material 6 of the first embodiment is obtained by finishing the above-described finishing material 5.
  • the finishing material 6 includes four journal portions J1c to J4c, six pin portions P1c to P6c, a front portion Frc, a flange portion Flc, and nine crank arm portions that connect the journal portions J1c to J4c and the pin portions P1c to P6c ( (Hereinafter also simply referred to as “arm portion”) A1c to A9c.
  • journal portions J1c to J4c, the pin portions P1c to P6c, and the arm portions A1c to A9c of the finishing material 6 are collectively referred to, the reference numerals are “Jc” for the journal portion, “Pc” for the pin portion, and the arm portion. Is written as “Ac”.
  • the twist finish material 7 of the first embodiment is obtained by twisting the finish material 6 described above.
  • the torsion finish 7 includes four journal portions J1d to J4d, six pin portions P1d to P6d, a front portion Frd, a flange portion Fld, and nine crank arm portions that connect the journal portions J1d to J4d and the pin portions P1d to P6d. (Hereinafter also simply referred to as “arm portion”) A1d to A9d.
  • journal portions J1d to J4d, the pin portions P1d to P6d, and the arm portions A1d to A9d of the torsion finish 7 are collectively referred to, the reference numerals are “Jd” for the journal portion, “Pd” for the pin portion, and the arm. "Ad” in the part.
  • the shape of the twisted finish 7 matches the shape of the crankshaft (final forged product) including the arrangement angle of the pin portion Pd, and corresponds to the forged crankshaft 1 shown in FIG. That is, the journal portion Jd of the twisted finish 7 has the same axial length as the journal portion J of the final shape forged crankshaft.
  • the pin portion Pd of the twisted finish 7 has the same axial length as the pin portion P of the final shape forged crankshaft.
  • the pin portion Pd of the torsion finish 7 has the same amount of eccentricity in the direction perpendicular to the axial direction with respect to the pin portion P of the forged crankshaft of the final shape, and the arrangement angle around the axis is equally spaced by 60 °. Are the same, and are placed at regular positions.
  • the arm portion Ad of the twisted finish 7 has the same axial thickness as the arm portion A of the final shape forged crankshaft.
  • the shape of the finishing material 6 matches the shape of the crankshaft (final forged product) except for the arrangement angle of the pin portion Pc, and corresponds to the crankshaft 107 after deburring shown in FIG. That is, the journal portion Jc of the finishing material 6 has the same axial length as the journal portion J of the final shape forged crankshaft.
  • the pin portion Pc of the finishing material 6 has the same length in the axial direction as the pin portion P of the final shape forged crankshaft, and the amount of eccentricity in the direction perpendicular to the axial direction is also the same.
  • the arrangement angle of the pin portion Pc of the finishing material 6 is out of the normal position. Specifically, among the pin portions Pc of the finishing material 6, the pin portions Pc connected via the arm portion Ac, that is, the first and second pin portions P1c, P2c, the third and fourth pin portions P3c, P4c. The fifth and sixth pin portions P5c, P6c are shifted from each other in the arrangement angle around the axis to the normal angle of 60 °, but the arrangement angle of the pin portion Pc as a whole is the forging of the final shape. It is not completely coincident with the crankshaft.
  • the first and fifth pin portions P1c and P5c have the same arrangement position around the axis
  • the second and sixth coarse pin portions P2c and P6c have the same arrangement position around the axis.
  • the first, second, fifth and sixth coarse pin portions P1c, P2c, P5c and P6c and the central third and fourth coarse pin portions P3c and P4c are located between the central axes of the finishing materials 6. They are arranged in opposite directions with respect to each other.
  • the arm portion Ac of the finishing material 6 has the same axial thickness as the arm portion A of the final shape forged crankshaft.
  • the rough journal portion Jb of the finishing material 5 has the same axial length as the journal portion J of the final shape forged crankshaft (the journal portion Jc of the finishing material 6).
  • the rough pin portion Pb of the finish punching material 5 has the same axial length as the pin portion P of the final shape forged crankshaft (the pin portion Pc of the finishing material 6). Out of normal position.
  • the first, second, fifth, and sixth rough pin portions P1b, P2b, P5b, and P6b have the same arrangement position around the axis and are perpendicular to the axial direction.
  • the amount of eccentricity in the direction is the same as ⁇ 3 / 2 of the amount of eccentricity of the pin portion P of the forged crankshaft.
  • the central third and fourth rough pin portions P3b and P4b have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the first, second, fifth and sixth rough pins. It is the same as ⁇ 3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft in the opposite direction to the pin portions P1b, P2b, P5b, P6b.
  • the rough arm portion Ab of the finishing material 5 has the same axial thickness as the arm portion A of the final shape forged crankshaft (the arm portion Ac of the finishing material 6).
  • the coarse journal portion Ja of the coarse material 4 has the same axial length as the coarse journal portion Jb of the finishing material 5, that is, the journal portion J of the forged crankshaft (the journal portion Jc of the finish material 6). .
  • the coarse pin portion Pa of the coarse material 4 has the same axial length as the coarse pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft (the pin portion Pc of the finish material 6).
  • the first, second, fifth and sixth coarse pin portions P1a, P2a, P5a and P6a have the same arrangement position around the axis and are perpendicular to the axial direction.
  • the eccentric amount in the correct direction is smaller than ⁇ 3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft.
  • the third and fourth coarse pin portions P3a and P4a in the center of the coarse material 4 have the same arrangement positions around the axis, and the first, second, and fifth eccentricities in the direction perpendicular to the axial direction are the same.
  • the eccentric amount of the pin portion P of the forged crankshaft is smaller than ⁇ 3 / 2.
  • the coarse arm portion Aa of the coarse material 4 is thicker in the axial direction than the coarse arm portion Ab of the finish punching material 5, that is, the arm portion A of the forged crankshaft (the arm portion Ac of the finish material 6).
  • the rough material 4 is longer than the finish punching material 5 (final shape forged crankshaft and finishing material 6) by the thickness of the rough arm portion Aa, and the rough pin portion Pa is uneven.
  • the core amount is small.
  • the coarse material 4 has a relatively gentle crankshaft shape.
  • the finish punching material 5 is slightly thinner than the forged crankshaft and the finishing material 6 in the final shape, and the coarse journal portion Jb and the coarse pin portion Pb are correspondingly thin.
  • the axial length of is slightly larger. This is because it is easy to accommodate the finishing material 5 in the mold at the time of finishing and prevent the occurrence of galling. Accordingly, the axial length of the coarse journal portion Ja and the coarse pin portion Pa is also slightly larger in the coarse material 4 than in the final shape forged crankshaft and finish material 6.
  • FIG. 3 is a schematic diagram showing a manufacturing process of the forged crankshaft in the first embodiment.
  • the method for manufacturing a forged crankshaft according to the first embodiment includes the steps of first preforming, second preforming, finish punching, and twisting, and if necessary, before twisting. Each process of deburring and shaping after torsion molding is included.
  • the first pre-molding step is a step of modeling the above-described rough material 4.
  • a round billet having a round cross section is used as a raw material, and the round billet is heated by an induction heating furnace or a gas atmosphere heating furnace and then subjected to a preforming process.
  • a round billet is drawn and rolled by a perforated roll and its volume is distributed in the longitudinal direction, and the roll waste obtained thereby is partially pressed down from the direction perpendicular to the longitudinal direction to obtain its volume. Repeat the bending to distribute.
  • the rough material 4 can be modeled.
  • the rough material 4 can be formed using the techniques disclosed in Patent Documents 1 and 2.
  • the second pre-molding step is a step of molding the finishing material 5 described above.
  • processing is performed using the molding apparatus shown in FIG.
  • the finishing material 5 in which the final shape of the forged crankshaft is formed can be formed from the above rough material 4 except for the eccentric amount and the arrangement angle of the pin portion.
  • Finishing process is a process for obtaining the finishing material 6 described above.
  • the above-described finish punching material 5 is provided, and press forging is performed using a pair of upper and lower dies in a state where all the rough pin portions are horizontally arranged. That is, all the rough pin portions are pressed in the vertical direction perpendicular to the axial direction.
  • the finishing material 6 in which the final shape of the forged crankshaft is shaped can be obtained except for the arrangement angle of the pin portion.
  • the twist forming process is a process for obtaining the above-described twist finish material 7.
  • the journal portion and the pin portion of the finishing material 6 are held and twisted about the axis of the journal portion.
  • the twist angle of the forged crankshaft is adjusted to match the crankshaft, and the final shape of the forged crankshaft is shaped, including the pinned angle, by adjusting the pin angle to the pin angle of the forged crankshaft. 7 can be obtained.
  • FIG. 4 is a longitudinal sectional view showing the configuration of the forming apparatus in the first embodiment.
  • FIG. 4 exemplifies a molding apparatus for producing a crankshaft of a V-type 6 cylinder-5 counterweight, that is, a molding apparatus for molding the finishing material 5 from the rough material 4 shown in FIG. Note that the longitudinal section shown in FIG. 4 actually includes all the rough pin portions on the same plane.
  • the molding apparatus uses a press machine, and has a fixed lower hard plate 20 serving as a foundation and an upper hard plate 21 that descends as the ram of the press machine is driven.
  • a lower mold support base 22 is elastically supported via an elastic member 24 directly above the lower hard plate 20.
  • the lower mold support base 22 is allowed to move in the vertical direction.
  • a disc spring, a coil spring, an air spring or the like can be applied, and a hydraulic spring system can also be applied.
  • An upper mold support base 23 is fixed directly below the upper hard plate 21 via a support column 25. The upper mold support 23 is lowered integrally with the upper hard plate 21 by driving of a press machine (ram).
  • the coarse material 4 is accommodated in the mold in a posture in which the coarse pin portions Pa are arranged along the vertical direction.
  • the rough material 4 in this posture is formed into a finishing material.
  • the first, second, fifth and sixth rough pin portions P1a, P2a, P5a and P6a are arranged upward in the vertical direction, and the center third and fourth rough pin portions P3a and P4a are in the vertical direction.
  • positioned downward is shown. For this reason, the lower mold support base 22 and the upper mold support base 23 are divided along the axial direction of the coarse material 4, and fixed molds 9U and 9B and journal molds 10U and 10B that are paired vertically.
  • the pin type 12 and the auxiliary pin type 13 are attached.
  • the fixed molds 9U and 9B are arranged at the position of the center fifth coarse arm portion A5a in the coarse material 4, and the upper and lower parts are completely attached to the upper mold support base 23 and the lower mold support base 22, respectively.
  • the fixed molds 9U and 9B have the same upper and lower thickness as the fifth arm portion A5b of the finishing material 5 and are completely in relation to the upper mold support base 23 and the lower mold support base 22. Fixed to.
  • the upper and lower pin molds 12 and auxiliary pin molds 13 are arranged at positions of the coarse pin portions Pa in the coarse material 4, and the upper and lower parts are attached to the upper mold support base 23 and the lower mold support base 22. It is done.
  • mold 12 of 1st Embodiment is arrange
  • the other auxiliary pin mold 13 is disposed on the outer side opposite to the eccentric center side of each coarse pin portion Pa. For example, in the position of the 1st rough pin part P1a, arrangement
  • the pin mold 12 and the auxiliary pin mold 13 are allowed to move in the axial direction toward the fixed molds 9U and 9B on the lower mold support base 22 and the upper mold support base 23 in both the upper and lower sides. Is done. Only the pin mold 12 is allowed to move in the direction perpendicular to the axial direction and also in the eccentric direction (vertical direction in FIG. 4) toward the coarse pin portion Pa.
  • the pin mold 12 and the auxiliary pin mold 13 are formed with semi-cylindrical engraved portions 12a and 13a, respectively.
  • the lengths of the engraved portions 12a and 13a are the same as the lengths in the axial direction of the rough pin portions Pb in the finishing material 5 for finishing.
  • FIG. 4 shows an aspect in which the convex portion 12c is provided on the pin mold 12 of the first rough pin portion P1a. Similarly, the convex part 12c is provided also in the pin type
  • the protruding amount of the convex portion 12c is the same as the thickness in the axial direction of the coarse arm portion Ab in the finish punching material 5 corresponding to the coarse arm portion Aa sandwiched between the coarse pin portions P.
  • a similar convex portion 13 c is also provided on the auxiliary pin mold 13 that forms a pair with the pin mold 12.
  • the journal molds 10U and 10B are disposed at the position of the coarse journal portion Ja in the coarse material 4, and the upper and lower parts are attached to the upper mold support base 23 and the lower mold support base 22, respectively.
  • the journal molds 10U and 10B are allowed to move in the axial direction toward the fixed molds 9U and 9B on the upper mold support base 23 and the lower mold support base 22 in both the upper and lower sides.
  • the journal molds 10U and 10B include semi-cylindrical first engraved portions 10Ua and 10Ba, and second engraved portions 10Ub and 10Bb adjacent to the front and rear (left and right in FIG. 4) of the first engraved portions 10Ua and 10Ba, respectively. Is formed.
  • the lengths of the first engraving portions 10Ua and 10Ba are the same as the axial length of the coarse journal portion Jb in the finishing material 5.
  • the lengths of the second engraved portions 10Ub and 10Bb are the same as the axial thickness of the coarse arm portion Ab connected to the coarse journal portion Jb in the finishing material 5.
  • the journal molds 10U and 10B are moved up and down individually corresponding to the respective coarse journal sections Ja by the first engraving sections 10Ua and 10Ba by the lowering of the upper mold support base 23 accompanying the drive of the press machine, that is, the press machine pressure. Hold it between.
  • the journal molds 10U and 10B have the rough engraving portions 10Ub and 10Bb on the side of the first engraving portions 10Ua and 10Ba on the coarse journal portions Aa connected to the corresponding coarse journal portions Ja. It contacts the side surface of the portion Ja.
  • the pin mold 12 is engraved by the pressing machine so that the engraved portion 12a is assigned to each rough pin portion Pa, and both side surfaces of the pin die 12 are connected to each rough arm portion Aa connected to each rough pin portion Pa. It contacts the side surface on the pin portion Pa side.
  • the end surfaces of the journal molds 10U and 10B arranged at the positions of the first and fourth coarse journal portions J1a and J4a at both ends are inclined surfaces 14U and 14B.
  • the first and fourth coarse journal portions J1a and J4a are individually provided in correspondence with the positions of the inclined surfaces 14U and 14B of the journal molds 10U and 10B.
  • a wedge 26 is erected. Each first wedge 26 protrudes upward through the lower mold support base 22.
  • the inclined surface 14B of the lower journal dies 10B contacts the inclined surface of the first wedge 26 in the initial state.
  • the inclined surface 14U of the upper journal mold 10U comes into contact with the inclined surface of the first wedge 26 by the pressing of the press.
  • journal molds 10U and 10B arranged at the positions of the second and third coarse journal portions J2a and J3a closer to the center have side portions that are separated from the first engraved portions 10Ua and 10Ba and the second engraved portions 10Ub and 10Bb.
  • a block (not shown) having the inclined surfaces 15U and 15B is fixed (in front and back of the page in FIG. 4).
  • the second and third coarse journal portions J2a and J3a are respectively provided with second shapes corresponding to the positions of the inclined surfaces 15U and 15B of the journal molds 10U and 10B.
  • a wedge 27 is erected. Each second wedge 27 penetrates the lower mold support base 22 and protrudes upward.
  • the inclined surface 15B of the lower journal mold 10B contacts the inclined surface of the second wedge 27 in the initial state.
  • the inclined surface 15U of the upper journal mold 10U comes into contact with the inclined surface of the second wedge 27 by the press machine.
  • journal molds 10U and 10B of the first and fourth coarse journal portions J1a and J4a have their inclined surfaces 14U and 14B slide along the inclined surface of the wedge 26 in the upper and lower sides. It moves in the axial direction toward the stationary molds 9U and 9B arranged at the position of the five coarse arm portions A5a.
  • the journal types 10U and 10B of the second and third coarse journal portions J2a and J3a have their inclined surfaces 15U and 15B slide along the inclined surface of the second wedge 27, both above and below. Similarly, it moves in the axial direction toward the fixed molds 9U and 9B.
  • the journal molds 10U and 10B can be individually moved in the axial direction by a wedge mechanism.
  • the pin mold 12 and the auxiliary pin mold 13 are pushed down together as the press machine continues to be reduced. Accordingly, the pin mold 12 and the auxiliary pin mold 13 move in the axial direction toward the fixed molds 9U and 9B as the journal molds 10U and 10B move in the axial direction as described above. Further, the movement of the pin mold 12 in the direction perpendicular to the axial direction is performed by driving a hydraulic cylinder 16 connected to each pin mold 12.
  • the axial movement of the pin mold 12 and the auxiliary pin mold 13 is forcibly performed using a wedge mechanism similar to the journal molds 10U and 10B, or using a separate mechanism such as a hydraulic cylinder or a servo motor. May be.
  • the auxiliary pin mold 13 may be integrated with the adjacent journal molds 10U and 10B.
  • each gap is the difference between the thickness of the coarse arm portion Ab in the finish punching material 5 and the thickness of the coarse arm portion Aa in the coarse material 4.
  • FIG. 5A and 5B are longitudinal sectional views for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. Among these drawings, FIG. 5A shows a state in the initial stage of molding, and FIG. 5B shows a state when the molding is completed.
  • the raw material 4 is accommodated in the lower journal die 10B, fixed die 9B, pin die 12 and auxiliary pin die 13 shown in FIG. 4, and the press machine starts to be reduced. Then, first, as shown in FIG. 5A, the upper journal mold 10U comes into contact with the lower journal mold 10B.
  • the coarse material 4 is in a state in which each coarse journal portion Ja is held from above and below by the journal dies 10U and 10B, and the pin die 12 is assigned to each coarse pin portion Pa.
  • the journal molds 10U and 10B are in contact with the side surface of the coarse journal portion Ja side of each coarse arm portion Aa of the coarse material 4, and the side surface of the coarse pin portion Pa side of each coarse arm portion Aa is The pin mold 12 is in contact.
  • the inclined surfaces 14U and 14B of the journal dies 10U and 10B of the first and fourth coarse journal portions J1a and J4a are in contact with the inclined surface of the first wedge 26.
  • the inclined surfaces 15U and 15B of the journal dies 10U and 10B of the second and third coarse journal portions J2a and J3a are in contact with the inclined surface of the second wedge 27.
  • the gaps between the journal molds 10U and 10B and the fixed molds 9U and 9B and the pin mold 12 (including the convex part 12c) and the auxiliary pin mold 13 (including the convex part 13c) are gradually narrowed. They come into contact with each other and the gaps between them disappear.
  • the coarse material 4 is clamped in the axial direction by the journal molds 10U and 10B and the pin mold 12 while the axial lengths of the coarse journal part Ja and the coarse pin part Pa are maintained.
  • the thickness of the coarse arm portion Aa is reduced to the thickness of the coarse arm portion Ab of the finishing material 5 (see FIG. 5B).
  • the hydraulic cylinders 16 of the pin molds 12 are driven according to the movement of the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 in the axial direction. Then, each pin type
  • the first, second, fifth and sixth rough pin portions P1a, P2a, P5a and P6a of the rough material 4 and the third and fourth rough pin portions P3a and P4a are perpendicular to the axial direction. Therefore, the eccentric amount increases in the opposite direction to the eccentric amount equal to ⁇ 3 / 2 of the eccentric amount of the rough pin portion Pb of the finishing material 5 (see FIGS. 2 and 5B).
  • the finish punching material 5 having no burr can be formed.
  • such a burr-free finishing material 5 is subjected to finishing, and finishing is performed in a state in which all the rough pin portions are horizontally arranged.
  • all the rough pin portions of the finish punching material 5 are pressed in the vertical direction perpendicular to the axial direction, some burrs are generated, but the arm portion contour shape is included except for the pin portion arrangement angle.
  • the finishing material 6 having the final shape of the forged crankshaft for the V-type 6-cylinder engine can be formed. And if this finishing material 6 is twisted, the final shape of the forged crankshaft for the V-type 6-cylinder engine can be modeled including the pin portion arrangement angle. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape. However, if a portion corresponding to the balance weight is formed on the arm portion at the stage of the coarse material, a forged crankshaft having a balance weight can be manufactured.
  • the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the first coarse journal portion J1a and the inclined surfaces of the first wedges 26 in contact therewith and the fourth coarse journal.
  • the inclination angles of the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the portion J4a and the inclined surfaces of the first wedges 26 in contact therewith are opposite to each other with respect to the vertical surface.
  • the angle of the inclined surface of the first wedge 26 (the angle of the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the first and fourth coarse journal portions J1a and J4a) is the angle of the inclined surface of the second wedge 27 (second And the angle of the inclined surfaces 15U and 15B of the journal types 10U and 10B of the third coarse journal portions J2a and J3a.
  • the reason why the wedge angle of the wedge mechanism for moving each journal mold 10U, 10B in the axial direction is different for each journal mold 10U, 10B is to deform the coarse arm portion Aa in the axial direction to reduce the thickness. This is because the speed is constant in all the coarse arm portions Aa.
  • the rough material 4 used in the molding apparatus shown in FIGS. 4, 5A and 5B has a cross-sectional area of the rough journal portion Ja, which is the cutting of the rough journal portion Jb of the finish punching material 5, that is, the journal portion J of the forged crankshaft. It is equal to or larger than the area.
  • the cross-sectional area of the rough pin portion Pa of the rough material 4 is the same as or larger than the cross-sectional area of the rough pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft.
  • the cross-sectional area of the coarse journal portion Ja of the coarse material 4 is larger than the cross-sectional area of the coarse journal portion Jb of the finish punching material 5, the cross-sectional area of the coarse journal portion Ja is used as the coarse journal of the finish punching material 5.
  • the sectional area of the portion Jb can be reduced. This is due to sandwiching and holding of the coarse journal portion Ja by the journal dies 10U and 10B, and subsequent movement of the journal dies 10U and 10B in the axial direction.
  • the cross-sectional area of the rough pin portion Pa of the rough material 4 is larger than the cross-sectional area of the rough pin portion Pb of the finish punching material 5, the cross-sectional area of the rough pin portion Pa is equal to that of the finish punching material 5.
  • the cross-sectional area of the rough pin portion Pb can be reduced. This is due to the movement of the pin mold 12 in the axial direction and the movement in a direction perpendicular thereto.
  • FIG. 6 is a diagram for explaining a situation in which biting occurs in forming a finishing material by a molding apparatus
  • FIG. 7 is a diagram for explaining a situation when the countermeasure is taken.
  • (a) shows a state in the initial stage of molding
  • (b) shows a state in the middle of molding
  • (c) shows a state when the molding is completed
  • (d) shows a state after the molding is completed.
  • Each finishing material is shown.
  • the meat of the coarse pin portion Pa flows into the gap between the auxiliary pin mold 13 and the journal molds 10U and 10B.
  • the inflowed meat is thinly extended as the molding progresses, but remains at the completion of the molding as shown in FIG.
  • a local biting portion 5a appears at the boundary with the adjacent coarse arm portion Aa on the outside of the coarse pin portion Pb of the finish punching material 5.
  • the biting part 5a is driven into the product in the finishing process of the next process and becomes a fogger. Therefore, it is necessary to prevent the occurrence of biting from the viewpoint of ensuring product quality.
  • the coarse pin portion Pa that press-deforms after reaching the auxiliary pin die 13 after the gap between the journal dies 10U and 10B and the pin die 12 and the auxiliary pin die 13 is closed.
  • the movement of the pin mold 12 in the direction perpendicular to the axial direction may be controlled. Specifically, after the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 paired with the pin mold 12 are moved in the axial direction, the journal molds 10U and 10B are moved in a direction perpendicular to the axial direction of the pin mold 12. Can be completed.
  • the pin mold 12 when the movement of the journal molds 10U and 10B adjacent to the pin mold 12 in the axial direction is completed, the pin mold
  • the movement distance in the direction perpendicular to the 12 axial directions is preferably 90% or less (more preferably 83% or less, and even more preferably 60% or less) of the total movement distance. After this, the movement of the pin mold 12 in that direction may be completed.
  • molding is started as shown in FIG. Thereafter, as shown in FIG. 7B, the journal dies 10U, 10B, and the pin dies 12 and the auxiliary dies until the movement distance in the direction perpendicular to the axial direction of the pin dies 12 reaches 90% of the total movement distance.
  • the movement of the pin mold 13 in the axial direction is completed.
  • the gaps between the journal molds 10U, 10B, the pin mold 12, and the auxiliary pin mold 13 are closed, the rough pin portion Pa that is deformed by pressing does not reach the auxiliary pin mold 13.
  • the movement process in the direction perpendicular to the axial direction of the pin type until the movement in the axial direction of the journal type is completed can be arbitrarily changed.
  • the movement in the direction perpendicular to the axial direction of the pin type may be started simultaneously with the start of the movement in the axial direction of the journal type, or may be started before that, or the journal type axis You may start, after the movement to a direction progresses to some extent.
  • the movement in a direction perpendicular to the axial direction of the pin type may be temporarily stopped at a position moved by a certain amount after the start, and resumed after the movement in the axial direction of the journal type is completed.
  • Second Embodiment is a modification of the configuration of the first embodiment.
  • FIG. 8 shows a rough material to be molded by a molding apparatus, a molded finish material, and a finish-finished material in the manufacturing method of the second embodiment. It is a figure which shows typically each shape of a finishing material and the twist finishing material after torsion molding.
  • FIG. 8 shows the situation when a crankshaft of a V-type 6-cylinder-5-counterweight is manufactured as in FIG.
  • the matter which overlaps with 1st Embodiment is abbreviate
  • the rough material 4 of the second embodiment has a rough crankshaft shape as a whole while relying on the shape of the forged crankshaft 1 of a V-type 6-cylinder-5-counterweight.
  • the rough material 4 includes four rough journal portions Ja, six rough pin portions Pa, a rough front portion Fra, a rough flange portion Fla, and nine rough arm portions Aa.
  • the finish punching material 5 according to the second embodiment is formed from the above-described rough material 4 by a molding device which will be described in detail later.
  • the finishing material 5 includes four rough journal portions Jb, six rough pin portions Pb, a rough front portion Frb, a rough flange portion Flb, and nine rough arm portions Ab.
  • the finishing material 6 of the second embodiment is obtained by finishing the above-mentioned finishing material 5.
  • the finishing material 6 includes four journal portions Jc, six pin portions Pc, a front portion Frc, a flange portion Flc, and nine arm portions Ac.
  • the twisted finish material 7 of the second embodiment is obtained by twisting the finish material 6 described above.
  • the torsion finishing material 7 includes four journal portions Jd, six pin portions Pd, a front portion Frd, a flange portion Fld, and nine arm portions Ad.
  • the shapes of the twisted finishing material 7 and the finishing material 6 are the same as in the first embodiment.
  • the shape of the finishing material 5 is different from that of the first embodiment, and generally matches the shape of the finishing material 6, except for the burr 105a of the rough forging material 105 shown in FIG. It corresponds to the part. That is, the coarse journal portion Jb of the finishing material 5 has the same axial length as the journal portion J of the final shape forged crankshaft (the journal portion Jc of the finishing material 6). The rough pin portion Pb of the finishing material 5 has the same axial length as the pin portion P of the final shape forged crankshaft (the pin portion Pc of the finishing material 6), and a direction perpendicular to the axial direction. The amount of eccentricity is also the same, but the arrangement angle is deviated from the normal position as with the finishing material 6.
  • the pin portions Pb of the finishing material 5 are included in the fifth and sixth pin portions P5b and P6b.
  • the arrangement angle around the axis is shifted to a normal angle of 60 °.
  • the arrangement angle of the pin portion Pb as a whole does not completely match the final shape of the forged crankshaft.
  • the first and fifth pin portions P1b and P5b have the same arrangement position around the axis
  • the second and sixth coarse pin portions P2b and P6b have the same arrangement position around the axis.
  • the first, second, fifth, and sixth rough pin portions P1b, P2b, P5b, and P6b, and the third and fourth rough pin portions P3b and P4b in the center are center axes of the finishing punching material 5. They are arranged in opposite directions with respect to each other.
  • the rough arm portion Ab of the finishing material 5 has the same axial thickness as the arm portion A of the final shape forged crankshaft (the arm portion Ac of the finishing material 6).
  • the coarse journal portion Ja of the coarse material 4 has the same axial length as the coarse journal portion Jb of the finishing material 5, that is, the journal portion J of the forged crankshaft (the journal portion Jc of the finish material 6). .
  • the coarse pin portion Pa of the coarse material 4 has the same axial length as the coarse pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft (the pin portion Pc of the finish material 6).
  • the first, second, fifth and sixth coarse pin portions P1a, P2a, P5a and P6a have the same arrangement position around the axis and are perpendicular to the axial direction.
  • the eccentric amount in the right direction is the same as ⁇ 3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft.
  • the central third and fourth rough pin portions P3a and P4a have the same arrangement position around the axis, and the first, second, fifth and sixth pins have eccentric amounts in the direction perpendicular to the axial direction.
  • the eccentricity of the pin portion P of the forged crankshaft is the same as ⁇ 3 / 2 in the opposite direction to the portions P1a, P2a, P5a, P6a.
  • the coarse arm portion Aa of the coarse material 4 is thicker in the axial direction than the coarse arm portion Ab of the finish punching material 5 corresponding thereto, that is, the arm portion A of the forged crankshaft (the arm portion Ac of the finish material 6). .
  • FIG. 9 is a schematic diagram showing a manufacturing process of the forged crankshaft in the second embodiment.
  • the method for manufacturing the forged crankshaft of the second embodiment includes the steps of the first preforming, the second preforming, the finishing punching, and the torsion molding as in the first embodiment. If necessary, each process of deburring before twist forming and shaping after twist forming is included.
  • the first pre-molding step is a step of modeling the above-described rough material 4.
  • the finish punching material in which the final shape of the forged crankshaft is formed from the rough material 4 except for the arrangement angle of the pin portion by using the forming apparatus shown in FIG. 5 is a step of molding 5.
  • the finish punching step is a step of obtaining the above finish material 6 in which the finish punching material 5 is provided and the final shape of the forged crankshaft is formed except for the arrangement angle of the pin portion.
  • the torsion forming step is a step of obtaining the above-described torsion finishing material 7 having a shape that matches the crankshaft, in which the final shape of the forged crankshaft including the arrangement angle of the pin portion is formed.
  • FIG. 10 is a longitudinal sectional view showing the configuration of the forming device in the second embodiment.
  • FIG. 10 illustrates a forming apparatus for forming the finishing material 5 from the rough material 4 shown in FIG.
  • the first, fourth, and fifth rough pin portions and the second, third, and sixth rough pin portions are actually one of the paper planes. Although it is located in front and the other is located in the back, it is shown on the same plane for convenience.
  • the coarse material 4 is accommodated in the mold in a posture in which all the coarse pin portions are horizontally arranged.
  • the rough material 4 in this posture is formed into a finishing material 5. Since the configuration other than this point is the same as that of the molding apparatus of the first embodiment shown in FIG.
  • FIG. 11A and FIG. 11B are longitudinal sectional views for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. Among these drawings, FIG. 11A shows a state in the initial stage of molding, and FIG. 11B shows a state when the molding is completed.
  • the raw material 4 is accommodated in the lower journal mold 10B, fixed mold 9B, pin mold 12 and auxiliary pin mold 13, and the press machine is reduced. Then, the journal molds 10U and 10B holding the respective coarse journal parts Ja are moved in the axial direction toward the fixed molds 9U and 9B arranged at the position of the center fifth coarse arm part A5a.
  • the pin type 12 and the auxiliary pin type 13 addressed to each coarse pin part Pa also move in the axial direction toward the fixed types 9U and 9B.
  • the coarse material 4 has the coarse arm portion Aa while the axial lengths of the coarse journal portion Ja and the coarse pin portion Pa are maintained by the journal dies 10U, 10B, the fixed dies 9U, 9B, and the pin die 12. Is clamped in the axial direction. Then, the thickness of the coarse arm portion Aa is reduced to the thickness of the coarse arm portion Ab of the finishing material 5 (see FIG. 11B).
  • the pin mold 12 individually moves the coarse pin 4 of the coarse material 4 as the hydraulic cylinders 16 are driven.
  • the part Pa is pressed in a direction perpendicular to the axial direction.
  • the shape of the forged crankshaft for the V-type 6-cylinder engine (final forged product) is almost the same as that of the burrs and is used for finishing.
  • the material 5 can be formed.
  • a burr-free finish punching material 5 is used for finishing punching, a slight burr is generated, but the forged crankshaft for a V-type 6-cylinder engine is excluded except for the pin arrangement angle.
  • the finishing material 6 with the final shape can be obtained. If the finishing material 6 is twisted, the final shape of the forged crankshaft for the V-type 6-cylinder engine can be formed, including the arrangement angle of the pin portion. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • a wedge mechanism using a press machine is employed in the above embodiment, but the present invention is not limited to this, and a link mechanism may be employed.
  • a hydraulic cylinder, a servo motor, or the like may be used instead of the above.
  • the mechanism for moving the pin mold in the direction perpendicular to the axial direction is not limited to the hydraulic cylinder but may be a servo motor.
  • the upper mold support base is fixed to the upper hard plate
  • the lower mold support base is elastically supported by the lower hard plate
  • a wedge is placed on the lower hard plate.
  • the upper and lower journal types are moved by the wedge, but a configuration in which the upper and lower sides are inverted may be used.
  • the upper and lower mold support bases may be elastically supported by the respective hard plates, and wedges may be installed on the hard plates, and the upper and lower journal molds may be moved by the respective wedges.
  • the auxiliary pin type is allowed to move only in the axial direction.
  • the auxiliary pin type may be allowed to move in the direction toward the paired pin type.
  • the pin type and the auxiliary pin type move in a direction perpendicular to the axial direction in conjunction with each other while holding each coarse pin portion Pa sandwiched from above and below.
  • the pin type is moved in the vertical direction perpendicular to the axial direction to press the rough pin portion Pa in the vertical direction.
  • the pin is configured to press the rough pin portion Pa in the horizontal direction.
  • the arrangement of the mold and the journal mold can be modified.
  • the present invention is useful when manufacturing a forged crankshaft for a V-type 6-cylinder engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

In this molding device, a journal mold (10U, 10B) and a pin mold (12) are moved, from a state in which a crude journal (Ja) of a crude material (4) is held by the journal mold (10U, 10B) and a crude pin (Pa) is held against the pin mold (12), towards a fixed mold (9U, 9B) in the axial direction, as well as the pin mold (12) being moved in a direction that is perpendicular to the axial direction. Thus, a crude arm (Aa) is clamped in the axial direction to reduce the thickness of the same to the thickness of an arm of a forged crank shaft, and the crude pin (Pa) is pressed in the direction perpendicular to the axial direction to increase the eccentricity amount of the same to the eccentricity amount of a pin of a forged crank shaft.

Description

V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置、及びこれを用いたV型6気筒エンジン用鍛造クランク軸の製造方法Forming device for finishing punched material of forged crankshaft for V-type 6-cylinder engine and method for manufacturing forged crankshaft for V-type 6-cylinder engine using the same
 本発明は、熱間鍛造によりV型6気筒エンジン用のクランク軸(以下、「鍛造クランク軸」ともいう)を製造する技術に関する。特に、その鍛造クランク軸の製造過程において、鍛造クランク軸の最終形状を造形する仕上打ちに供する仕上打ち用素材を成形するための成形装置、及びその成形装置を用いた予備成形工程を含むV型6気筒エンジン用鍛造クランク軸の製造方法に関する。 The present invention relates to a technique for manufacturing a crankshaft for a V-type 6-cylinder engine (hereinafter also referred to as “forged crankshaft”) by hot forging. In particular, in the manufacturing process of the forged crankshaft, a V-shape including a forming apparatus for forming a finishing material to be used for finishing punching for shaping the final shape of the forged crankshaft, and a preforming process using the forming apparatus The present invention relates to a method for manufacturing a forged crankshaft for a six-cylinder engine.
 クランク軸は、ピストンの往復運動を回転運動に変換して動力を取り出すレシプロエンジンの基幹部品であり、鍛造によって製造されるものと、鋳造によって製造されるものとに大別される。乗用車、貨物車、特殊作業車等の自動車のV型6気筒エンジンにおいては、クランク軸に高い強度と剛性が要求され、その要求に対して優位な鍛造クランク軸が多用されている。また、自動二輪車、農業機械、船舶等のV型6気筒エンジンでも鍛造クランク軸が用いられる。 The crankshaft is a basic part of a reciprocating engine that extracts the power by converting the reciprocating motion of the piston into a rotational motion, and is roughly divided into those manufactured by forging and those manufactured by casting. In V-type 6-cylinder engines of automobiles such as passenger cars, freight cars, and special work vehicles, high strength and rigidity are required for the crankshaft, and forged crankshafts that are superior to the demand are frequently used. Forged crankshafts are also used in V-type 6-cylinder engines such as motorcycles, agricultural machines, and ships.
 一般に、V型6気筒エンジン用の鍛造クランク軸は、断面が丸形又は角形で全長にわたって断面積が一定のビレットを原材料とし、予備成形、型鍛造、バリ抜き、捩り成形及び整形の各工程を順に経て製造される。予備成形工程は、ロール成形と曲げ打ちの各工程を含み、型鍛造工程は、荒打ちと仕上打ちの各工程を含む。 Generally, a forged crankshaft for a V-6 engine uses a billet having a round or square cross section and a constant cross sectional area over the entire length as a raw material, and performs the steps of preforming, die forging, deburring, twisting and shaping. Manufactured sequentially. The preforming step includes roll forming and bending steps, and the die forging step includes roughing and finish punching steps.
 図1は、従来の一般的なV型6気筒エンジン用鍛造クランク軸の製造工程を説明するための模式図である。図1に例示するクランク軸1は、V型6気筒エンジンに搭載されるものであり、4つのジャーナル部J1~J4、6つのピン部P1~P6、フロント部Fr、フランジ部Fl、及びジャーナル部J1~J4とピン部P1~P6をつなぐ9枚のクランクアーム部(以下、単に「アーム部」ともいう)A1~A9から構成される。このクランク軸1は、9枚のアーム部A1~A6のうち、前端の第1ピン部P1につながる第1及び第2アーム部A1、A2と、後端の第6ピン部P6につながる第8及び第9アーム部A8、A9と、中央の第5アーム部A5とにバランスウエイトを有するV型6気筒-5枚カウンターウエイトのクランク軸である。以下、ジャーナル部J1~J4、ピン部P1~P6、及びアーム部A1~A9それぞれを総称するとき、その符号は、ジャーナル部で「J」、ピン部で「P」、アーム部で「A」と記す。 FIG. 1 is a schematic diagram for explaining a manufacturing process of a conventional general forged crankshaft for a V-type 6-cylinder engine. A crankshaft 1 illustrated in FIG. 1 is mounted on a V-type 6-cylinder engine, and includes four journal portions J1 to J4, six pin portions P1 to P6, a front portion Fr, a flange portion Fl, and a journal portion. It consists of nine crank arm portions (hereinafter also simply referred to as “arm portions”) A1 to A9 that connect J1 to J4 and pin portions P1 to P6. The crankshaft 1 includes, among the nine arm portions A1 to A6, the first and second arm portions A1 and A2 connected to the first pin portion P1 at the front end, and the eighth pin connected to the sixth pin portion P6 at the rear end. And a crankshaft of a V-type 6-cylinder-5-counter weight having a balance weight in the ninth arm portion A8, A9 and the central fifth arm portion A5. Hereinafter, the journal portions J1 to J4, the pin portions P1 to P6, and the arm portions A1 to A9 are collectively referred to as “J” for the journal portion, “P” for the pin portion, and “A” for the arm portion. .
 図1に示す製造方法では、以下のようにして鍛造クランク軸1が製造される。先ず、予め所定の長さに切断した図1(a)に示すビレット2を加熱炉によって加熱した後、ロール成形を行う。ロール成形工程では、例えば孔型ロールによりビレット2を圧延して絞りつつその体積を長手方向に配分し、中間素材となるロール荒地103を成形する(図1(b)参照)。次に、曲げ打ち工程では、ロール成形によって得られたロール荒地103を長手方向と直角な方向から部分的にプレス圧下してその体積を配分し、更なる中間素材となる曲げ荒地104を成形する(図1(c)参照)。 In the manufacturing method shown in FIG. 1, the forged crankshaft 1 is manufactured as follows. First, the billet 2 shown in FIG. 1A cut in advance to a predetermined length is heated by a heating furnace, and then roll forming is performed. In the roll forming step, for example, the billet 2 is rolled with a perforated roll and the volume thereof is distributed in the longitudinal direction while being drawn, thereby forming the roll rough ground 103 as an intermediate material (see FIG. 1B). Next, in the bending process, the roll rough ground 103 obtained by roll forming is partially pressed down from the direction perpendicular to the longitudinal direction to distribute its volume, and a bent rough ground 104 as a further intermediate material is formed. (See FIG. 1 (c)).
 続いて、荒打ち工程では、曲げ打ちによって得られた曲げ荒地104を上下に一対の金型を用いてプレス鍛造し、ピン部Pの配置角度を除きクランク軸(最終鍛造製品)のおおよその形状が造形された鍛造材105を成形する(図1(d)参照)。更に、仕上打ち工程では、荒打ちによって得られた荒鍛造材105が供され、荒鍛造材105を上下に一対の金型を用いてプレス鍛造し、ピン部Pの配置角度を除きクランク軸と合致する形状が造形された鍛造材106を成形する(図1(e)参照)。これら荒打ち及び仕上打ちのとき、互いに対向する金型の型割面の間から、余材がバリとして流出する。このため、荒鍛造材105及び仕上鍛造材106には、造形されたクランク軸の周囲にそれぞれバリ105a、106aが大きく付いている。 Subsequently, in the roughing process, the bent rough ground 104 obtained by bending is press-forged using a pair of upper and lower dies, and the approximate shape of the crankshaft (final forged product) is removed except for the arrangement angle of the pin portion P. Is formed into a forged material 105 (see FIG. 1D). Further, in the finish punching process, a rough forging material 105 obtained by roughing is provided, and the rough forging material 105 is press-forged using a pair of upper and lower molds, and the crankshaft and the shaft shaft are removed except for the arrangement angle of the pin portion P. A forging material 106 having a matching shape is formed (see FIG. 1E). At the time of roughing and finishing, surplus material flows out as burrs from between the split surfaces of the molds facing each other. For this reason, the rough forged material 105 and the finished forged material 106 have large burrs 105a and 106a around the shaped crankshaft.
 バリ抜き工程では、仕上打ちによって得られたバリ106a付きの仕上鍛造材106を上下から金型で保持しつつ、刃物型によってバリ106aを打ち抜き除去する(図1(f)参照)。 In the deburring process, the forged material 106 with the burr 106a obtained by finish punching is held by a die from above and below, and the burr 106a is punched and removed with a blade tool (see FIG. 1 (f)).
 捩り工程では、バリ抜き後のクランク軸107に対し、第1及び第2ピン部と、第3及び第4ピン部と、第5及び第6ピン部とをそれぞれ個別に上下から金型で保持する。そして、中央の第3及び第4ピン部を保持する金型を固定した状態で、第1及び第2ピン部を保持する金型と、第5及び第6ピン部を保持する金型とをそれぞれジャーナル部の軸心回りに互いに反対方向に60°回転させる。これにより、中央の第3及び第4ピン部を基準にして、第1及び第2ピン部が第2ジャーナル部で捩られると同時に、第5及び第6ピン部が第3ジャーナル部で捩られ、ピン部の配置角度が正規の位置に調整される。その結果、図1(g)に示すように、鍛造クランク軸1が得られる。 In the twisting process, the first and second pin portions, the third and fourth pin portions, and the fifth and sixth pin portions are individually held by the mold from above and below with respect to the crankshaft 107 after deburring. To do. And in the state which fixed the metal mold | die holding the 3rd and 4th pin part of a center, the metal mold | die holding a 1st and 2nd pin part, and the metal mold | die holding a 5th and 6th pin part Each is rotated 60 ° in opposite directions around the axis of the journal. Accordingly, the first and second pin portions are twisted by the second journal portion with reference to the central third and fourth pin portions, and at the same time, the fifth and sixth pin portions are twisted by the third journal portion. The arrangement angle of the pin portion is adjusted to the normal position. As a result, a forged crankshaft 1 is obtained as shown in FIG.
 そして、整形工程では、捩り成形後の鍛造クランク軸1の要所(例えば、ジャーナル部J、ピン部P、フロント部Fr、フランジ部Fl等といった軸部、場合によってはアーム部A)を上下から金型で僅かにプレスし、所望の寸法形状に矯正する。こうして、鍛造クランク軸1が製造される。 In the shaping process, the main parts of the forged crankshaft 1 after twisting (for example, the shaft portion such as the journal portion J, the pin portion P, the front portion Fr, the flange portion Fl, or the arm portion A in some cases) are viewed from above and below. Press slightly with mold and correct to desired dimensions. Thus, the forged crankshaft 1 is manufactured.
 図1に示す製造工程は、例示するV型6気筒-5枚カウンターウエイトのクランク軸に限らず、9枚のアーム部Aの全てにバランスウエイトを有するV型6気筒-9枚カウンターウエイトのクランク軸であっても、同様である。 The manufacturing process shown in FIG. 1 is not limited to the crankshaft of the V-type 6-cylinder-five counterweight illustrated, but the crank of the V-type six-cylinder-9-counterweight having balance weights in all nine arm portions A The same applies to the shaft.
 ところで、このような製造方法では、製品とはならない不要なバリが大量に発生することから、歩留りの低下は否めない。このため、鍛造クランク軸を製造する上では、従来から、バリの発生を極力抑え、歩留りの向上を実現することが至上の課題となっている。この課題に対応する従来の技術としては下記のものがある。 By the way, in such a manufacturing method, a large amount of unnecessary burrs that do not become a product is generated, and thus the yield cannot be denied. For this reason, in the production of a forged crankshaft, it has hitherto been a supreme issue to suppress the generation of burrs as much as possible and to improve the yield. The following are conventional techniques for addressing this problem.
 例えば、特開2008-155275号公報(特許文献1)及び特開2011-161496号公報(特許文献2)は、ジャーナル部及びピン部が造形され、アーム部もそれなりに造形されたクランク軸を製造する技術を開示する。特許文献1の技術では、クランク軸のジャーナル部とピン部に相当する部分が個々にくびれた段付きの丸棒を素材とする。そして、ピン部相当部分を間に挟む一対のジャーナル部相当部分をそれぞれダイスで把持する。この状態から、両ダイスを軸方向に接近させて丸棒素材に圧縮変形を与える。この変形付与とともに、ピン部相当部分に軸方向と直角な方向にポンチを押し付けてピン部相当部分を偏芯させる。この動作をすべてのクランクスローにわたって順次繰り返す。 For example, Japanese Patent Application Laid-Open No. 2008-155275 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2011-161696 (Patent Document 2) manufacture a crankshaft in which a journal portion and a pin portion are formed, and an arm portion is also formed as it is. The technology to do is disclosed. In the technology of Patent Document 1, a stepped round bar in which portions corresponding to a journal portion and a pin portion of a crankshaft are individually constricted is used as a material. And a pair of journal part equivalent part which pinches | interposes a pin part equivalent part is each hold | gripped with a die | dye. From this state, both dies are brought close to each other in the axial direction to compress the round bar material. Along with this deformation, the punch is pressed against the pin portion in a direction perpendicular to the axial direction to decenter the pin portion. This operation is repeated sequentially over all crank throws.
 特許文献2の技術では、単なる丸棒を素材とする。そして、その丸棒素材の両端部のうちの一方を固定型で、その他方を可動型でそれぞれ保持するとともに、丸棒素材のジャーナル部相当部分をジャーナル型で、ピン部相当部分をピン型でそれぞれ保持する。この状態から、可動型、ジャーナル型及びピン型を固定型に向けて軸方向に移動させて丸棒素材に圧縮変形を与える。この変形付与と同時に、ピン型を軸方向と直角な偏芯方向に移動させてピン部相当部分を偏芯させる。 In the technology of Patent Document 2, a simple round bar is used as a material. Then, one of the ends of the round bar material is held by a fixed type and the other is held by a movable type, the journal part of the round bar material is journal type, and the pin part is pin type. Retain each. From this state, the movable die, the journal die and the pin die are moved in the axial direction toward the fixed die to give the round bar material a compressive deformation. Simultaneously with this deformation application, the pin mold is moved in the eccentric direction perpendicular to the axial direction, and the portion corresponding to the pin portion is eccentric.
 特許文献1及び2のいずれの技術でも、バリが発生しないことから、歩留りの著しい向上が期待できる。 In any of the techniques of Patent Documents 1 and 2, no burrs are generated, so that a significant improvement in yield can be expected.
特開2008-155275号公報JP 2008-155275 A 特開2011-161496号公報JP 2011-161696 A
 上述のとおり、前記特許文献1及び2に開示される技術は、丸棒の素材をいきなりクランク軸形状に成形するものである。しかし、鍛造クランク軸は高強度と高剛性が要求されるので、その素材は変形し難い。このため、実際に製造できるクランク軸は、アーム部の厚みが厚くて、ピン部の偏芯量も小さくならざるを得ず、比較的緩やかなクランク軸形状に限定される。しかも、アーム部は、全てにバランスウエイトがない単純な形状のものに限られる。 As described above, the techniques disclosed in Patent Documents 1 and 2 suddenly form a round bar material into a crankshaft shape. However, since the forged crankshaft is required to have high strength and high rigidity, its material is difficult to deform. For this reason, the crankshaft that can actually be manufactured is limited to a relatively gentle crankshaft shape because the thickness of the arm portion is large and the eccentric amount of the pin portion is inevitably small. In addition, the arm portion is limited to a simple shape having no balance weight.
 また、前記特許文献1及び2に開示される技術では、アーム部は、丸棒素材の軸方向の圧縮変形に伴う軸方向と直角な方向への自由膨張と、丸棒素材のピン部相当部分の偏芯移動に伴う引張変形によって造形される。このため、アーム部の輪郭形状は不定形になりがちであり、寸法精度を確保できない。 Further, in the techniques disclosed in Patent Documents 1 and 2, the arm portion is a portion corresponding to the pin portion of the round bar material and free expansion in a direction perpendicular to the axial direction accompanying the axial deformation of the round bar material. It is shaped by the tensile deformation accompanying the eccentric movement. For this reason, the contour shape of the arm portion tends to be indefinite, and dimensional accuracy cannot be ensured.
 本発明は、上記の問題に鑑みてなされたものである。本発明の目的は、V型6気筒エンジン用の鍛造クランク軸を歩留り良く、しかも、その形状を問わずに高い寸法精度で製造するために、鍛造クランク軸の製造過程において、その最終形状を造形する仕上打ちを行うことを前提とし、その仕上打ちに供する仕上打ち用素材の成形に用いる成形装置を提供することを目的とする。また、本発明の他の目的は、V型6気筒エンジン用鍛造クランク軸を歩留り良く、しかも、その形状を問わずに高い寸法精度で製造することができる製造方法を提供することにある。 The present invention has been made in view of the above problems. An object of the present invention is to form a final shape of a forged crankshaft in the manufacturing process of the forged crankshaft in order to produce a forged crankshaft for a V-type 6-cylinder engine with high yield and high dimensional accuracy regardless of the shape. It is an object of the present invention to provide a molding apparatus that is used for molding a finishing material to be used for finishing. Another object of the present invention is to provide a production method capable of producing a forged crankshaft for a V-type 6-cylinder engine with high yield and high dimensional accuracy regardless of its shape.
 本発明の実施形態による成形装置は、V型6気筒エンジン用の鍛造クランク軸を製造する過程で、鍛造クランク軸の最終形状を造形する仕上打ちに供する仕上打ち用素材を、粗素材から成形する装置である。
 粗素材は、
 鍛造クランク軸の各ジャーナル部と軸方向の長さが同じ粗ジャーナル部と、
 鍛造クランク軸の各ピン部と軸方向の長さが同じ粗ピン部と、
 鍛造クランク軸の各クランクアーム部よりも軸方向の厚みが厚い粗クランクアーム部と、を有する。
 本実施形態によるV型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置は、更に下記(1)又は(2)の構成を備える。
A molding apparatus according to an embodiment of the present invention molds a finishing material to be used for finishing punching for shaping the final shape of a forged crankshaft from a rough material in the process of manufacturing a forged crankshaft for a V-type 6-cylinder engine. Device.
The crude material is
Coarse journal parts having the same axial length as each journal part of the forged crankshaft,
Coarse pin portions having the same axial length as each pin portion of the forged crankshaft,
And a rough crank arm portion having a thicker axial thickness than each crank arm portion of the forged crankshaft.
The apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine according to the present embodiment further includes the following configuration (1) or (2).
 (1)粗素材の粗ピン部のうち、第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部の偏芯量の√3/2よりも小さい。粗素材の中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸の第1、第2、第5及び第6ピン部に対して反対方向で、鍛造クランク軸のピン部の偏芯量の√3/2よりも小さい。
 成形装置は、下記の固定型と、ピン型と、ジャーナル型と、を備える。
 固定型は、粗素材の中央の第5粗クランクアーム部の位置に配置され、その軸方向の厚みが鍛造クランク軸の第5クランクアーム部の厚みと同じである。
 ピン型は、粗ピン部それぞれの位置に配置され、当該粗ピン部それぞれに宛がわれるとともに、各々が、当該粗ピン部につながる粗クランクアーム部の側面に接触しつつ、固定型に向けた軸方向及び軸方向と直角な方向に移動する。
 ジャーナル型は、粗ジャーナル部それぞれの位置に配置され、当該粗ジャーナル部を個々に軸方向と直角な方向から挟み込んで保持するとともに、各々が、当該粗ジャーナル部につながる粗クランクアーム部の側面に接触しつつ、固定型に向けて軸方向に移動する。
 当該成形装置は、粗ジャーナル部をジャーナル型によって挟み込んで保持し、粗ピン部にピン型を宛がった状態から、ジャーナル型を軸方向に移動させるとともに、ピン型を軸方向に移動させつつ軸方向と直角な方向に移動させる。これにより、粗クランクアーム部を軸方向に挟圧してその厚みを鍛造クランク軸のクランクアーム部の厚みまで減少させるとともに、第1、第2、第5及び第6粗ピン部と、第3及び第4粗ピン部とを軸方向と直角な方向で互いに反対方向に押圧してその偏芯量を鍛造クランク軸のピン部の偏芯量の√3/2まで増加させる。
(1) Among the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the amount of eccentricity in the direction perpendicular to the axial direction is forged. It is smaller than √3 / 2 of the eccentric amount of the pin portion of the crankshaft. The third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft. It is smaller than √3 / 2 of the eccentric amount of the pin portion of the forged crankshaft in the opposite direction to the 6 pin portion.
The molding apparatus includes the following fixed mold, pin mold, and journal mold.
The fixed die is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and the axial thickness thereof is the same as the thickness of the fifth crank arm portion of the forged crankshaft.
The pin molds are arranged at the positions of the rough pin portions and are directed to the rough pin portions, respectively, and each is directed to the fixed die while being in contact with the side surface of the rough crank arm portion connected to the rough pin portion. Move in the axial direction and in a direction perpendicular to the axial direction.
The journal type is arranged at each position of the coarse journal part, and holds and holds the coarse journal part individually from a direction perpendicular to the axial direction, and each of them is attached to the side of the coarse crank arm part connected to the coarse journal part. It moves in the axial direction toward the fixed mold while making contact.
The molding apparatus sandwiches and holds the coarse journal portion with the journal die, and moves the journal die in the axial direction from the state where the pin die is addressed to the coarse pin portion, while moving the pin die in the axial direction. Move in a direction perpendicular to the axial direction. As a result, the coarse crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crankshaft, and the first, second, fifth and sixth coarse pin portions, The fourth rough pin portion is pressed in opposite directions in a direction perpendicular to the axial direction to increase the eccentric amount to √3 / 2 of the eccentric amount of the pin portion of the forged crankshaft.
 上記(1)の成形装置において、前記ピン型は、前記粗ピン部それぞれにおける前記ピン型が宛がわれた側とは反対の外側に配置された補助ピン型を含んでおり、前記ジャーナル型、並びに前記ピン型及びこのピン型と対を成す前記補助ピン型の軸方向への移動に伴って、前記ジャーナル型と、前記ピン型及び前記補助ピン型との隙間が閉ざされた後に、押圧変形する前記粗ピン部が前記補助ピン型に到達するように、前記ピン型の軸方向と直角な方向への移動が制御される構成とすることが好ましい。 In the molding apparatus of (1) above, the pin mold includes an auxiliary pin mold disposed on the outer side opposite to the side to which the pin mold is assigned in each of the rough pin portions, and the journal mold, As the pin type and the auxiliary pin type paired with the pin type move in the axial direction, the gap between the journal type and the pin type and the auxiliary pin type is closed, and then the pressure deformation It is preferable that the movement of the pin mold in the direction perpendicular to the axial direction is controlled so that the rough pin portion reaches the auxiliary pin mold.
 この成形装置の場合、前記ピン型の軸方向と直角な方向への総移動距離を100%としたとき、当該ピン型に隣接する前記ジャーナル型の軸方向への移動が完了した時点で、当該ピン型の軸方向と直角な方向への移動距離が総移動距離の90%以下であり、この後に当該ピン型の軸方向と直角な方向への移動が完了する構成とすることが好ましい。 In the case of this molding apparatus, when the total movement distance in the direction perpendicular to the axial direction of the pin mold is 100%, the movement of the journal mold adjacent to the pin mold in the axial direction is completed. It is preferable that the movement distance in the direction perpendicular to the axial direction of the pin type is 90% or less of the total movement distance, and thereafter the movement in the direction perpendicular to the axial direction of the pin type is completed.
 また、上記(1)の成形装置において、前記固定型、前記ピン型及び前記ジャーナル型は、軸方向と直角な方向に沿った方向に圧下が可能なプレス機に取り付けられており、プレス機の圧下に伴って、前記ジャーナル型が前記粗ジャーナル部を挟み込んで保持するとともに、前記ピン型が前記粗ピン部に宛がわれ、そのままプレス機の圧下を継続するのに伴って、前記ジャーナル型が個々に楔機構により軸方向に移動すると同時に、このジャーナル型の移動に伴って、前記ピン型が個々に軸方向に移動する構成とすることができる。 In the molding apparatus of (1), the fixed die, the pin die, and the journal die are attached to a press machine that can be reduced in a direction along a direction perpendicular to the axial direction. In accordance with the reduction, the journal mold sandwiches and holds the coarse journal part, and the pin mold is assigned to the coarse pin part, and as the press machine continues to reduce the journal mold, The pin type can be individually moved in the axial direction along with the movement of the journal type simultaneously with the axial movement by the wedge mechanism.
 この成形装置の場合、前記楔機構の楔角度が前記ジャーナル型のそれぞれで互いに異なることが好ましい。更に、前記ピン型が油圧シリンダに連結されており、この油圧シリンダの駆動により軸方向と直角な方向に移動する構成とすることが好ましい。 In the case of this forming apparatus, it is preferable that the wedge angle of the wedge mechanism is different for each of the journal dies. Further, it is preferable that the pin type is connected to a hydraulic cylinder and is moved in a direction perpendicular to the axial direction by driving the hydraulic cylinder.
 (2)粗素材の粗ピン部のうち、第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部の偏芯量の√3/2と同じである。粗素材の中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸の第1、第2、第5及び第6ピン部に対して反対方向で、鍛造クランク軸のピン部の偏芯量の√3/2と同じである。
 成形装置は、下記の固定型と、ピン型と、ジャーナル型と、を備える。
 固定型は、粗素材の中央の第5粗クランクアーム部の位置に配置され、その軸方向の厚みが鍛造クランク軸の第5クランクアーム部の厚みと同じである。
 ピン型は、粗ピン部それぞれの位置に配置され、当該粗ピン部それぞれに宛がわれるとともに、各々が、当該粗ピン部につながる粗クランクアーム部の側面に接触しつつ、固定型に向けた軸方向及び軸方向と直角な方向に移動する。
 ジャーナル型は、粗ジャーナル部それぞれの位置に配置され、当該粗ジャーナル部を個々に軸方向と直角な方向から挟み込んで保持するとともに、各々が、当該粗ジャーナル部につながる粗クランクアーム部の側面に接触しつつ、固定型に向けて軸方向に移動する。
 当該成形装置は、粗ジャーナル部をジャーナル型によって挟み込んで保持し、粗ピン部にピン型を宛がった状態から、ジャーナル型を軸方向に移動させるとともに、ピン型を軸方向に移動させつつ軸方向と直角な方向に移動させる。これにより、粗クランクアーム部を軸方向に挟圧してその厚みを鍛造クランク軸のクランクアーム部の厚みまで減少させるとともに、粗ピン部を軸方向と直角な方向に押圧してその偏芯量を鍛造クランク軸のピン部の偏芯量まで増加させる。
(2) Among the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the amount of eccentricity in the direction perpendicular to the axial direction is forged. It is the same as √3 / 2 of the eccentric amount of the pin portion of the crankshaft. The third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft. In the opposite direction to the 6-pin part, the eccentricity of the pin part of the forged crankshaft is the same as √3 / 2.
The molding apparatus includes the following fixed mold, pin mold, and journal mold.
The fixed die is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and the axial thickness thereof is the same as the thickness of the fifth crank arm portion of the forged crankshaft.
The pin molds are arranged at the positions of the rough pin portions and are directed to the rough pin portions, respectively, and each is directed to the fixed die while being in contact with the side surface of the rough crank arm portion connected to the rough pin portion. Move in the axial direction and in a direction perpendicular to the axial direction.
The journal type is arranged at each position of the coarse journal part, and holds and holds the coarse journal part individually from a direction perpendicular to the axial direction, and each of them is attached to the side of the coarse crank arm part connected to the coarse journal part. It moves in the axial direction toward the fixed mold while making contact.
The molding apparatus sandwiches and holds the coarse journal portion with the journal die, and moves the journal die in the axial direction from the state where the pin die is addressed to the coarse pin portion, while moving the pin die in the axial direction. Move in a direction perpendicular to the axial direction. As a result, the rough crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crank shaft, and the eccentric amount is reduced by pressing the rough pin portion in a direction perpendicular to the axial direction. Increase the eccentric amount of the pin part of the forged crankshaft.
 本発明の実施形態による製造方法は、V型6気筒エンジン用の鍛造クランク軸を製造する方法であり、更に下記(3)又は(4)の構成を備える。 A manufacturing method according to an embodiment of the present invention is a method for manufacturing a forged crankshaft for a V-type 6-cylinder engine, and further includes the following configuration (3) or (4).
 (3)製造方法は、下記の第1予備成形工程、第2予備成形工程、仕上打ち工程、及び捩り工程、の一連の工程を含む。
 第1予備成形工程は、上記(1)の成形装置に供する粗素材を造形する。粗素材の粗ピン部のうち、第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部の偏芯量の√3/2よりも小さい。粗素材の中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸の第1、第2、第5及び第6ピン部に対して反対方向で、鍛造クランク軸のピン部の偏芯量の√3/2よりも小さい。
 第2予備成形工程は、上記(1)の成形装置を用い、仕上打ち用素材を成形する。仕上打ち用素材は、第1、第2、第5及び第6粗ピン部と、第3及び第4粗ピン部とは、軸方向と直角な方向の偏芯量が互いに反対方向で、鍛造クランク軸のピン部の偏芯量の√3/2と同じである。
 仕上打ち工程は、前記仕上打ち用素材を全ての粗ピン部を水平姿勢にした状態で仕上打ちし、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形された仕上材を成形する。
 捩り工程は、前記仕上材のピン部の配置角度を鍛造クランク軸のピン部の配置角度に調整する。
(3) The manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below.
In the first preforming step, a crude material to be provided to the molding apparatus (1) is modeled. Of the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the same as that of the forged crankshaft. It is smaller than √3 / 2 of the eccentric amount of the pin portion. The third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentric amount in the direction perpendicular to the axial direction is the first, second, fifth and second of the forged crankshaft. It is smaller than √3 / 2 of the eccentric amount of the pin portion of the forged crankshaft in the opposite direction to the 6 pin portion.
In the second preforming step, the finishing material is molded using the molding apparatus (1). For the finishing material, the first, second, fifth and sixth rough pin portions, and the third and fourth rough pin portions have eccentric amounts in directions perpendicular to the axial direction and are forged. It is the same as √3 / 2 of the eccentric amount of the pin portion of the crankshaft.
In the finish punching step, the finish punching material is finish punched in a state where all the rough pin portions are in a horizontal posture, and a finish material in which the final shape of the forged crankshaft is formed is formed except for the arrangement angle of the pin portions.
In the twisting process, the arrangement angle of the pin portion of the finishing material is adjusted to the arrangement angle of the pin portion of the forged crankshaft.
 (4)製造方法は、下記の第1予備成形工程、第2予備成形工程、仕上打ち工程、及び捩り工程、の一連の工程を含む。
 第1予備成形工程は、上記(2)の成形装置に供する粗素材を造形する。粗素材の粗ピン部のうち、第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部の偏芯量の√3/2と同じである。粗素材の中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が第1、第2、第5及び第6ピン部に対して反対方向で、鍛造クランク軸のピン部の偏芯量の√3/2と同じである。
 第2予備成形工程は、上記(2)の成形装置を用い、仕上打ち用素材を成形する。仕上打ち用素材は、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形される。
 仕上打ち工程は、前記仕上打ち用素材を仕上打ちし、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形された仕上材を成形する。
 捩り工程は、前記仕上材のピン部の配置角度を鍛造クランク軸のピン部の配置角度に調整する。
(4) The manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below.
In the first preforming step, a rough material to be provided to the molding apparatus (2) is modeled. Of the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the same as that of the forged crankshaft. It is the same as √3 / 2 of the eccentric amount of the pin portion. The third and fourth coarse pin portions in the center of the coarse material have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the first, second, fifth and sixth pin portions. On the other hand, in the opposite direction, the eccentricity of the pin portion of the forged crankshaft is the same as √3 / 2.
In the second pre-forming step, the finishing material is formed using the forming device (2). The final shape of the forged crankshaft is formed on the finishing material except for the pin portion arrangement angle.
In the finish punching process, the finish punching material is finish punched, and a finish material in which the final shape of the forged crankshaft is formed is formed except for the arrangement angle of the pin portion.
In the twisting process, the arrangement angle of the pin portion of the finishing material is adjusted to the arrangement angle of the pin portion of the forged crankshaft.
 本実施形態の成形装置、及びこれを用いた予備成形工程を含む製造方法によれば、バリのない粗素材から、アーム部の厚みが薄いV型6気筒エンジン用鍛造クランク軸の形状と概ね一致した形状で、バリのない仕上打ち用素材を成形することができる。このようなバリなしの仕上打ち用素材を仕上打ちすれば、多少のバリは発生するが、アーム部の輪郭形状を含めて鍛造クランク軸の最終形状を造形することができる。したがって、V型6気筒エンジン用の鍛造クランク軸を歩留り良く、しかも、その形状を問わずに高い寸法精度で製造することが可能になる。 According to the molding apparatus of the present embodiment and the manufacturing method including the pre-molding process using the molding apparatus, the shape of the forged crankshaft for a V-type 6-cylinder engine with a thin arm portion is substantially the same from a rough material without burrs. With this shape, it is possible to form a finishing material without burrs. If such a burr-free finish punching material is finished, some burrs are generated, but the final shape of the forged crankshaft including the contour shape of the arm portion can be formed. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape.
図1は、従来の一般的なV型6気筒エンジン用鍛造クランク軸の製造工程を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a manufacturing process of a conventional forged crankshaft for a general V-type 6-cylinder engine. 図2は、第1実施形態の製造方法において、成形装置で被成形対象とする粗素材、成形された仕上打ち用素材、及び仕上打ち後の仕上材の各形状を模式的に示す図である。FIG. 2 is a diagram schematically showing each shape of a raw material to be molded by a molding apparatus, a formed finishing material, and a finishing material after finishing in the manufacturing method of the first embodiment. . 図3は、第1実施形態における鍛造クランク軸の製造工程を示す模式図である。Drawing 3 is a mimetic diagram showing a manufacturing process of a forge crankshaft in a 1st embodiment. 図4は、第1実施形態における成形装置の構成を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing the configuration of the molding apparatus in the first embodiment. 図5Aは、図4に示す第1実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図であり、成形初期の状態を示す。FIG. 5A is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. 4, and shows a state in the initial stage of forming. 図5Bは、図4に示す第1実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図であり、成形完了時の状態を示す。FIG. 5B is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. 4 and shows a state when the forming is completed. 図6は、成形装置による仕上打ち用素材の成形で噛み出しが発生する状況を説明するための図である。FIG. 6 is a diagram for explaining a situation in which biting occurs when the finish punching material is formed by the forming apparatus. 図7は、成形装置による仕上打ち用素材の成形で噛み出しの対応策を施した場合の状況を説明するための図である。FIG. 7 is a diagram for explaining a situation when a countermeasure for biting is applied in forming a finishing material by a forming apparatus. 図8は、第2実施形態の製造方法において、成形装置で被成形対象とする粗素材、成形された仕上打ち用素材、仕上打ち後の仕上材、及び捩り成形後の捩り仕上材の各形状を模式的に示す図である。FIG. 8 shows each shape of a rough material to be molded by a molding apparatus, a finished finishing material, a finishing material after finishing, and a torsion finishing material after torsion molding in the manufacturing method of the second embodiment. FIG. 図9は、第2実施形態における鍛造クランク軸の製造工程を示す模式図である。FIG. 9 is a schematic diagram illustrating a manufacturing process of a forged crankshaft in the second embodiment. 図10は、第2実施形態における成形装置の構成を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing the configuration of the molding apparatus in the second embodiment. 図11Aは、図10に示す第2実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図であり、成形初期の状態を示す。FIG. 11A is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. 10, and shows a state in the initial stage of forming. 図11Bは、図10に示す第2実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図であり、成形完了時の状態を示す。FIG. 11B is a longitudinal sectional view for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. 10, and shows a state when the forming is completed.
 本発明では、V型6気筒エンジン用の鍛造クランク軸を製造するに際し、その製造過程で仕上打ちを行うことを前提とする。本発明の成形装置は、仕上打ちの前工程で、その仕上打ちに供する仕上打ち用素材を粗素材から成形するために用いられる。以下に、本発明のV型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置、及びこれを用いた予備成形工程を含むV型6気筒エンジン用鍛造クランク軸の製造方法について、その実施形態を詳述する。 In the present invention, when producing a forged crankshaft for a V-type 6-cylinder engine, it is assumed that finishing is performed in the production process. The forming apparatus of the present invention is used to form a finish punching material to be used for finishing punching from a raw material in a pre-finishing process. The following is a description of an apparatus for forming a forging crankshaft for a V-type 6-cylinder engine according to the present invention and a method for manufacturing a forged crankshaft for a V-type 6-cylinder engine including a pre-forming step using the same. A form is explained in full detail.
 1.第1実施形態
 1-1.粗素材、仕上打ち用素材、仕上材、及び捩り仕上材
 図2は、本発明の第1実施形態の製造方法において、成形装置で被成形対象とする粗素材、成形された仕上打ち用素材、仕上打ち後の仕上材、及び捩り成形後の捩り仕上材の各形状を模式的に示す図である。図2には、V型6気筒-5枚カウンターウエイトのクランク軸を製造する場合の状況を示す。また、図2には、各段階の形状の理解を容易にするため、外観を示す平面図と、軸方向に沿って見たときのピン部の配置図を並べて示す。
1. 1. First embodiment 1-1. FIG. 2 is a diagram illustrating a rough material to be molded by a molding apparatus, a molded finish material, and a torsional finish material according to the first embodiment of the present invention. It is a figure which shows typically each shape of the finishing material after finishing punching, and the torsion finishing material after twist forming. FIG. 2 shows a situation in the case of manufacturing a crankshaft of a V type 6 cylinder-5 counterweight. FIG. 2 shows a plan view showing the appearance and a layout diagram of the pin portions when viewed along the axial direction in order to facilitate understanding of the shape of each stage.
 図2に示すように、第1実施形態の粗素材4は、図1(g)に示すV型6気筒-5枚カウンターウエイトの鍛造クランク軸1の形状に依拠しつつも全体として粗いクランク軸形状である。粗素材4は、4つの粗ジャーナル部J1a~J4a、6つの粗ピン部P1a~P6a、粗フロント部Fra、粗フランジ部Fla、及び粗ジャーナル部J1a~J4aと粗ピン部P1a~P6aをつなぐ9枚の粗クランクアーム部(以下、単に「粗アーム部」ともいう)A1a~A9aから構成される。粗素材4にはバリはついていない。以下、粗素材4の粗ジャーナル部J1a~J4a、粗ピン部P1a~P6a、及び粗アーム部A1a~A9aそれぞれを総称するとき、その符号は、粗ジャーナル部で「Ja」、粗ピン部で「Pa」、粗アーム部で「Aa」と記す。 As shown in FIG. 2, the coarse material 4 of the first embodiment is based on the shape of the forged crankshaft 1 of the V-type 6 cylinder-5 counterweight shown in FIG. Shape. The coarse material 4 includes four coarse journal portions J1a to J4a, six coarse pin portions P1a to P6a, a coarse front portion Fra, a coarse flange portion Fla, and coarse journal portions J1a to J4a and coarse pin portions P1a to P6a. It comprises a rough crank arm portion (hereinafter also simply referred to as “rough arm portion”) A1a to A9a. The coarse material 4 has no burrs. Hereinafter, when the coarse journal portions J1a to J4a, the coarse pin portions P1a to P6a, and the coarse arm portions A1a to A9a of the coarse material 4 are collectively referred to, the reference numerals are “Ja” for the coarse journal portion, and “ “Pa” and “Aa” for the rough arm.
 第1実施形態の仕上打ち用素材5は、上記の粗素材4から、詳細は後述する成形装置によって成形されるものである。仕上打ち用素材5は、4つの粗ジャーナル部J1b~J4b、6つの粗ピン部P1b~P6b、粗フロント部Frb、粗フランジ部Flb、及び粗ジャーナル部J1b~J4bと粗ピン部P1b~P6bをつなぐ9枚の粗クランクアーム部(以下、単に「粗アーム部」ともいう)A1b~A9bから構成される。仕上打ち用素材5にはバリはついていない。以下、仕上打ち用素材5の粗ジャーナル部J1b~J4b、粗ピン部P1b~P6b、及び粗アーム部A1b~A9bそれぞれを総称するとき、その符号は、粗ジャーナル部で「Jb」、粗ピン部で「Pb」、粗アーム部で「Ab」と記す。 The finish punching material 5 of the first embodiment is formed from the above-mentioned rough material 4 by a molding device, which will be described in detail later. The finishing material 5 includes four rough journal portions J1b to J4b, six rough pin portions P1b to P6b, a rough front portion Frb, a rough flange portion Flb, a rough journal portion J1b to J4b and a rough pin portion P1b to P6b. Nine coarse crank arms (hereinafter also simply referred to as “rough arms”) A1b to A9b to be connected. The finishing material 5 has no burrs. Hereinafter, when the rough journal portions J1b to J4b, the rough pin portions P1b to P6b, and the rough arm portions A1b to A9b of the finishing material 5 are collectively referred to, the reference numeral is “Jb” for the rough journal portion, and the rough pin portion. “Pb” and “Ab” on the rough arm.
 第1実施形態の仕上材6は、上記の仕上打ち用素材5を仕上打ちして得られるものである。仕上材6は、4つのジャーナル部J1c~J4c、6つのピン部P1c~P6c、フロント部Frc、フランジ部Flc、及びジャーナル部J1c~J4cとピン部P1c~P6cをつなぐ9枚のクランクアーム部(以下、単に「アーム部」ともいう)A1c~A9cから構成される。以下、仕上材6のジャーナル部J1c~J4c、ピン部P1c~P6c、及びアーム部A1c~A9cそれぞれを総称するとき、その符号は、ジャーナル部で「Jc」、ピン部で「Pc」、アーム部で「Ac」と記す。 The finishing material 6 of the first embodiment is obtained by finishing the above-described finishing material 5. The finishing material 6 includes four journal portions J1c to J4c, six pin portions P1c to P6c, a front portion Frc, a flange portion Flc, and nine crank arm portions that connect the journal portions J1c to J4c and the pin portions P1c to P6c ( (Hereinafter also simply referred to as “arm portion”) A1c to A9c. Hereinafter, when the journal portions J1c to J4c, the pin portions P1c to P6c, and the arm portions A1c to A9c of the finishing material 6 are collectively referred to, the reference numerals are “Jc” for the journal portion, “Pc” for the pin portion, and the arm portion. Is written as “Ac”.
 第1実施形態の捩り仕上材7は、上記の仕上材6を捩り成形して得られるものである。捩り仕上材7は、4つのジャーナル部J1d~J4d、6つのピン部P1d~P6d、フロント部Frd、フランジ部Fld、及びジャーナル部J1d~J4dとピン部P1d~P6dをつなぐ9枚のクランクアーム部(以下、単に「アーム部」ともいう)A1d~A9dから構成される。以下、捩り仕上材7のジャーナル部J1d~J4d、ピン部P1d~P6d、及びアーム部A1d~A9dそれぞれを総称するとき、その符号は、ジャーナル部で「Jd」、ピン部で「Pd」、アーム部で「Ad」と記す。 The twist finish material 7 of the first embodiment is obtained by twisting the finish material 6 described above. The torsion finish 7 includes four journal portions J1d to J4d, six pin portions P1d to P6d, a front portion Frd, a flange portion Fld, and nine crank arm portions that connect the journal portions J1d to J4d and the pin portions P1d to P6d. (Hereinafter also simply referred to as “arm portion”) A1d to A9d. Hereinafter, when the journal portions J1d to J4d, the pin portions P1d to P6d, and the arm portions A1d to A9d of the torsion finish 7 are collectively referred to, the reference numerals are “Jd” for the journal portion, “Pd” for the pin portion, and the arm. "Ad" in the part.
 捩り仕上材7の形状は、ピン部Pdの配置角度を含めクランク軸(最終鍛造製品)の形状と一致し、図1(g)に示す鍛造クランク軸1に相当する。すなわち、捩り仕上材7のジャーナル部Jdは、最終形状の鍛造クランク軸のジャーナル部Jと軸方向の長さが同じである。捩り仕上材7のピン部Pdは、最終形状の鍛造クランク軸のピン部Pと軸方向の長さが同じである。更に、捩り仕上材7のピン部Pdは、最終形状の鍛造クランク軸のピン部Pに対し、軸方向と直角な方向の偏芯量が同じで、軸回りの配置角度も60°ずつ等間隔にシフトして同じであり、正規の位置に配置されている。捩り仕上材7のアーム部Adは、最終形状の鍛造クランク軸のアーム部Aと軸方向の厚みが同じである。 The shape of the twisted finish 7 matches the shape of the crankshaft (final forged product) including the arrangement angle of the pin portion Pd, and corresponds to the forged crankshaft 1 shown in FIG. That is, the journal portion Jd of the twisted finish 7 has the same axial length as the journal portion J of the final shape forged crankshaft. The pin portion Pd of the twisted finish 7 has the same axial length as the pin portion P of the final shape forged crankshaft. Further, the pin portion Pd of the torsion finish 7 has the same amount of eccentricity in the direction perpendicular to the axial direction with respect to the pin portion P of the forged crankshaft of the final shape, and the arrangement angle around the axis is equally spaced by 60 °. Are the same, and are placed at regular positions. The arm portion Ad of the twisted finish 7 has the same axial thickness as the arm portion A of the final shape forged crankshaft.
 仕上材6の形状は、ピン部Pcの配置角度を除きクランク軸(最終鍛造製品)の形状と一致し、図1(f)に示すバリ抜き後のクランク軸107に相当する。すなわち、仕上材6のジャーナル部Jcは、最終形状の鍛造クランク軸のジャーナル部Jと軸方向の長さが同じである。仕上材6のピン部Pcは、最終形状の鍛造クランク軸のピン部Pと軸方向の長さが同じであり、軸方向と直角な方向の偏芯量も同じである。 The shape of the finishing material 6 matches the shape of the crankshaft (final forged product) except for the arrangement angle of the pin portion Pc, and corresponds to the crankshaft 107 after deburring shown in FIG. That is, the journal portion Jc of the finishing material 6 has the same axial length as the journal portion J of the final shape forged crankshaft. The pin portion Pc of the finishing material 6 has the same length in the axial direction as the pin portion P of the final shape forged crankshaft, and the amount of eccentricity in the direction perpendicular to the axial direction is also the same.
 ただし、仕上材6のピン部Pcの配置角度は、正規の位置から外れている。具体的には、仕上材6のピン部Pcのうち、アーム部Acを介してつながるピン部Pc同士、すなわち第1及び第2ピン部P1c、P2c同士、第3及び第4ピン部P3c、P4c同士、第5及び第6ピン部P5c、P6c同士は、それぞれ、軸回りの配置角度が正規角度の60°にシフトしているが、全体としてのピン部Pcの配置角度は、最終形状の鍛造クランク軸と完全には一致していない。第1及び第5ピン部P1c、P5cは軸回りの配置位置が同じであり、第2及び第6粗ピン部P2c、P6cは軸回りの配置位置が同じである。そして、第1、第2、第5及び第6粗ピン部P1c、P2c、P5c、P6cと、中央の第3及び第4粗ピン部P3c、P4cとは、仕上げ材6の中心軸を間に挟んで互いに反対方向に配置されている。仕上材6のアーム部Acは、最終形状の鍛造クランク軸のアーム部Aと軸方向の厚みが同じである。 However, the arrangement angle of the pin portion Pc of the finishing material 6 is out of the normal position. Specifically, among the pin portions Pc of the finishing material 6, the pin portions Pc connected via the arm portion Ac, that is, the first and second pin portions P1c, P2c, the third and fourth pin portions P3c, P4c. The fifth and sixth pin portions P5c, P6c are shifted from each other in the arrangement angle around the axis to the normal angle of 60 °, but the arrangement angle of the pin portion Pc as a whole is the forging of the final shape. It is not completely coincident with the crankshaft. The first and fifth pin portions P1c and P5c have the same arrangement position around the axis, and the second and sixth coarse pin portions P2c and P6c have the same arrangement position around the axis. The first, second, fifth and sixth coarse pin portions P1c, P2c, P5c and P6c and the central third and fourth coarse pin portions P3c and P4c are located between the central axes of the finishing materials 6. They are arranged in opposite directions with respect to each other. The arm portion Ac of the finishing material 6 has the same axial thickness as the arm portion A of the final shape forged crankshaft.
 これに対し、仕上打ち用素材5の粗ジャーナル部Jbは、最終形状の鍛造クランク軸のジャーナル部J(仕上材6のジャーナル部Jc)と軸方向の長さが同じである。仕上打ち用素材5の粗ピン部Pbは、最終形状の鍛造クランク軸のピン部P(仕上材6のピン部Pc)と軸方向の長さが同じであるが、偏芯量も配置角度も正規の位置から外れている。具体的には、仕上打ち用素材5において、第1、第2、第5及び第6粗ピン部P1b、P2b、P5b、P6bは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部Pの偏芯量の√3/2と同じである。一方、中央の第3及び第4粗ピン部P3b、P4bは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が第1、第2、第5及び第6粗ピン部P1b、P2b、P5b、P6bに対して反対方向で鍛造クランク軸のピン部Pの偏芯量の√3/2と同じである。仕上打ち用素材5の粗アーム部Abは、最終形状の鍛造クランク軸のアーム部A(仕上材6のアーム部Ac)と軸方向の厚みが同じである。 On the other hand, the rough journal portion Jb of the finishing material 5 has the same axial length as the journal portion J of the final shape forged crankshaft (the journal portion Jc of the finishing material 6). The rough pin portion Pb of the finish punching material 5 has the same axial length as the pin portion P of the final shape forged crankshaft (the pin portion Pc of the finishing material 6). Out of normal position. Specifically, in the finishing material 5, the first, second, fifth, and sixth rough pin portions P1b, P2b, P5b, and P6b have the same arrangement position around the axis and are perpendicular to the axial direction. The amount of eccentricity in the direction is the same as √3 / 2 of the amount of eccentricity of the pin portion P of the forged crankshaft. On the other hand, the central third and fourth rough pin portions P3b and P4b have the same arrangement position around the axis, and the eccentricity in the direction perpendicular to the axial direction is the first, second, fifth and sixth rough pins. It is the same as √3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft in the opposite direction to the pin portions P1b, P2b, P5b, P6b. The rough arm portion Ab of the finishing material 5 has the same axial thickness as the arm portion A of the final shape forged crankshaft (the arm portion Ac of the finishing material 6).
 また、粗素材4の粗ジャーナル部Jaは、仕上打ち用素材5の粗ジャーナル部Jb、すなわち鍛造クランク軸のジャーナル部J(仕上材6のジャーナル部Jc)と軸方向の長さが同じである。粗素材4の粗ピン部Paは、仕上打ち用素材5の粗ピン部Pb、すなわち鍛造クランク軸のピン部P(仕上材6のピン部Pc)と軸方向の長さが同じである。ただし、粗素材4の粗ピン部Paのうち、第1、第2、第5及び第6粗ピン部P1a、P2a、P5a、P6aは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部Pの偏芯量の√3/2よりも小さい。一方、粗素材4の中央の第3及び第4粗ピン部P3a、P4aは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が第1、第2、第5及び第6ピン部P1a、P2a、P5a、P6aに対して反対方向で、鍛造クランク軸のピン部Pの偏芯量の√3/2よりも小さい。 The coarse journal portion Ja of the coarse material 4 has the same axial length as the coarse journal portion Jb of the finishing material 5, that is, the journal portion J of the forged crankshaft (the journal portion Jc of the finish material 6). . The coarse pin portion Pa of the coarse material 4 has the same axial length as the coarse pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft (the pin portion Pc of the finish material 6). However, among the coarse pin portions Pa of the coarse material 4, the first, second, fifth and sixth coarse pin portions P1a, P2a, P5a and P6a have the same arrangement position around the axis and are perpendicular to the axial direction. The eccentric amount in the correct direction is smaller than √3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft. On the other hand, the third and fourth coarse pin portions P3a and P4a in the center of the coarse material 4 have the same arrangement positions around the axis, and the first, second, and fifth eccentricities in the direction perpendicular to the axial direction are the same. And in the opposite direction to the sixth pin portions P1a, P2a, P5a, P6a, the eccentric amount of the pin portion P of the forged crankshaft is smaller than √3 / 2.
 粗素材4の粗アーム部Aaは、仕上打ち用素材5の粗アーム部Ab、すなわち鍛造クランク軸のアーム部A(仕上材6のアーム部Ac)よりも軸方向の厚みが厚い。要するに、粗素材4は、仕上打ち用素材5(最終形状の鍛造クランク軸及び仕上材6)と比較して、粗アーム部Aaの厚みが厚い分だけ全長が長くて、粗ピン部Paの偏芯量が小さい。このように、粗素材4は、比較的緩やかなクランク軸形状となっている。 The coarse arm portion Aa of the coarse material 4 is thicker in the axial direction than the coarse arm portion Ab of the finish punching material 5, that is, the arm portion A of the forged crankshaft (the arm portion Ac of the finish material 6). In short, the rough material 4 is longer than the finish punching material 5 (final shape forged crankshaft and finishing material 6) by the thickness of the rough arm portion Aa, and the rough pin portion Pa is uneven. The core amount is small. Thus, the coarse material 4 has a relatively gentle crankshaft shape.
 ただし、厳密に言えば、仕上打ち用素材5は、最終形状の鍛造クランク軸及び仕上材6に対し、粗アーム部Abの厚みが僅かに薄く、その分だけ粗ジャーナル部Jb及び粗ピン部Pbの軸方向長さが僅かに大きい。仕上打ちの際に仕上打ち用素材5を金型内に収容し易くし、かじり疵の発生を防止するためである。これに応じて、粗素材4も、最終形状の鍛造クランク軸及び仕上材6に対し、粗ジャーナル部Ja及び粗ピン部Paの軸方向長さが僅かに大きい。 Strictly speaking, however, the finish punching material 5 is slightly thinner than the forged crankshaft and the finishing material 6 in the final shape, and the coarse journal portion Jb and the coarse pin portion Pb are correspondingly thin. The axial length of is slightly larger. This is because it is easy to accommodate the finishing material 5 in the mold at the time of finishing and prevent the occurrence of galling. Accordingly, the axial length of the coarse journal portion Ja and the coarse pin portion Pa is also slightly larger in the coarse material 4 than in the final shape forged crankshaft and finish material 6.
 1-2.鍛造クランク軸の製造工程
 図3は、第1実施形態における鍛造クランク軸の製造工程を示す模式図である。図3に示すように、第1実施形態の鍛造クランク軸の製造方法は、第1予備成形、第2予備成形、仕上打ち、捩り成形の各工程を含み、必要に応じて、捩り成形前のバリ抜き、捩り成形後の整形の各工程を含む。
1-2. Manufacturing Process of Forged Crankshaft FIG. 3 is a schematic diagram showing a manufacturing process of the forged crankshaft in the first embodiment. As shown in FIG. 3, the method for manufacturing a forged crankshaft according to the first embodiment includes the steps of first preforming, second preforming, finish punching, and twisting, and if necessary, before twisting. Each process of deburring and shaping after torsion molding is included.
 第1予備成形工程は、上記の粗素材4を造形する工程である。第1予備成形工程では、断面が丸形の丸ビレットを原材料とし、この丸ビレットを誘導加熱炉又はガス雰囲気加熱炉によって加熱した後に予備成形加工を施す。例えば、孔型ロールにより丸ビレットを絞り圧延してその体積を長手方向に配分するロール成形を行い、これによって得られたロール荒地を長手方向と直角な方向から部分的にプレス圧下してその体積を配分する曲げ打ちを繰り返し行う。これにより、粗素材4を造形することができる。そのほかに、前記特許文献1及び2に開示される技術を用いても、粗素材4の造形は可能である。また、クロスロール、閉塞鍛造等を採用してもよい。 The first pre-molding step is a step of modeling the above-described rough material 4. In the first preforming step, a round billet having a round cross section is used as a raw material, and the round billet is heated by an induction heating furnace or a gas atmosphere heating furnace and then subjected to a preforming process. For example, a round billet is drawn and rolled by a perforated roll and its volume is distributed in the longitudinal direction, and the roll waste obtained thereby is partially pressed down from the direction perpendicular to the longitudinal direction to obtain its volume. Repeat the bending to distribute. Thereby, the rough material 4 can be modeled. In addition, the rough material 4 can be formed using the techniques disclosed in Patent Documents 1 and 2. Moreover, you may employ | adopt a cross roll, closed forging, etc.
 第2予備成形工程は、上記の仕上げ打ち用素材5を成形する工程である。第2予備成形工程では、下記の図4に示す成形装置を用いて加工を行う。これにより、上記の粗素材4から、ピン部の偏芯量及び配置角度を除き鍛造クランク軸の最終形状が造形された仕上げ打ち用素材5を成形することができる。 The second pre-molding step is a step of molding the finishing material 5 described above. In the second preforming step, processing is performed using the molding apparatus shown in FIG. Thereby, the finishing material 5 in which the final shape of the forged crankshaft is formed can be formed from the above rough material 4 except for the eccentric amount and the arrangement angle of the pin portion.
 仕上打ち工程は、上記の仕上材6を得る工程である。仕上打ち工程では、上記の仕上打ち用素材5が供され、全ての粗ピン部を水平に配置した姿勢の状態で、上下に一対の金型を用いてプレス鍛造する。すなわち、全ての粗ピン部を軸方向と直角な鉛直方向に押圧する。これにより、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形された仕上材6を得ることができる。 Finishing process is a process for obtaining the finishing material 6 described above. In the finish punching process, the above-described finish punching material 5 is provided, and press forging is performed using a pair of upper and lower dies in a state where all the rough pin portions are horizontally arranged. That is, all the rough pin portions are pressed in the vertical direction perpendicular to the axial direction. Thereby, the finishing material 6 in which the final shape of the forged crankshaft is shaped can be obtained except for the arrangement angle of the pin portion.
 捩り成形工程は、上記の捩り仕上材7を得る工程である。捩り成形工程では、上記の仕上材6のジャーナル部及びピン部を保持した状態でジャーナル部の軸心を中心にして捩る。これにより、ピン部の配置角度を鍛造クランク軸のピン部の配置角度に調整し、ピン部の配置角度を含め鍛造クランク軸の最終形状が造形された、クランク軸と合致する形状の捩り仕上材7を得ることができる。 The twist forming process is a process for obtaining the above-described twist finish material 7. In the twisting process, the journal portion and the pin portion of the finishing material 6 are held and twisted about the axis of the journal portion. As a result, the twist angle of the forged crankshaft is adjusted to match the crankshaft, and the final shape of the forged crankshaft is shaped, including the pinned angle, by adjusting the pin angle to the pin angle of the forged crankshaft. 7 can be obtained.
 1-3.仕上打ち用素材の成形装置
 図4は、第1実施形態における成形装置の構成を示す縦断面図である。図4には、V型6気筒-5枚カウンターウエイトのクランク軸を製造する場合の成形装置、すなわち前記図2に示す粗素材4から仕上打ち用素材5を成形する成形装置を例示する。なお、図4に示す縦断面には、実際に全ての粗ピン部の部分が同一面上で含まれる。
1-3. Finishing Punching Material Forming Apparatus FIG. 4 is a longitudinal sectional view showing the configuration of the forming apparatus in the first embodiment. FIG. 4 exemplifies a molding apparatus for producing a crankshaft of a V-type 6 cylinder-5 counterweight, that is, a molding apparatus for molding the finishing material 5 from the rough material 4 shown in FIG. Note that the longitudinal section shown in FIG. 4 actually includes all the rough pin portions on the same plane.
 図4に示すように、成形装置は、プレス機を利用したものであり、基礎となる固定の下側ハードプレート20と、プレス機のラムの駆動に伴って下降する上側ハードプレート21を有する。下側ハードプレート20の真上には、弾性部材24を介して下側金型支持台22が弾性的に支持される。この下側金型支持台22は、上下方向に移動が許容される。弾性部材24としては、皿ばね、コイルばね、空気ばね等を適用することができ、そのほかにも油圧ばねシステムを適用することができる。上側ハードプレート21の真下には、支柱25を介して上側金型支持台23が固定される。この上側金型支持台23は、プレス機(ラム)の駆動により上側ハードプレート21と一体で下降する。 As shown in FIG. 4, the molding apparatus uses a press machine, and has a fixed lower hard plate 20 serving as a foundation and an upper hard plate 21 that descends as the ram of the press machine is driven. A lower mold support base 22 is elastically supported via an elastic member 24 directly above the lower hard plate 20. The lower mold support base 22 is allowed to move in the vertical direction. As the elastic member 24, a disc spring, a coil spring, an air spring or the like can be applied, and a hydraulic spring system can also be applied. An upper mold support base 23 is fixed directly below the upper hard plate 21 via a support column 25. The upper mold support 23 is lowered integrally with the upper hard plate 21 by driving of a press machine (ram).
 図4に示す成形装置では、粗素材4を、粗ピン部Paを鉛直方向に沿って配置した姿勢で金型内に収容する。この姿勢の粗素材4を仕上打ち用素材に成形する。図4では、第1、第2、第5及び第6粗ピン部P1a、P2a、P5a、P6aが鉛直方向の上向きに配置され、中央の第3及び第4粗ピン部P3a、P4aが鉛直方向の下向きに配置された態様を示す。このため、下側金型支持台22と上側金型支持台23とには、粗素材4の軸方向に沿って分割され、それぞれ上下で対を成す固定型9U、9B、ジャーナル型10U、10B、並びにピン型12及び補助ピン型13が取り付けられる。 In the molding apparatus shown in FIG. 4, the coarse material 4 is accommodated in the mold in a posture in which the coarse pin portions Pa are arranged along the vertical direction. The rough material 4 in this posture is formed into a finishing material. In FIG. 4, the first, second, fifth and sixth rough pin portions P1a, P2a, P5a and P6a are arranged upward in the vertical direction, and the center third and fourth rough pin portions P3a and P4a are in the vertical direction. The aspect arrange | positioned downward is shown. For this reason, the lower mold support base 22 and the upper mold support base 23 are divided along the axial direction of the coarse material 4, and fixed molds 9U and 9B and journal molds 10U and 10B that are paired vertically. The pin type 12 and the auxiliary pin type 13 are attached.
 固定型9U、9Bは、粗素材4における中央の第5粗アーム部A5aの位置に配置され、上下のそれぞれが上側金型支持台23、下側金型支持台22に完全に取り付けられる。特に、固定型9U、9Bは、上下のいずれも、仕上打ち用素材5における第5アーム部A5bの厚みと同じであり、上側金型支持台23、下側金型支持台22に対して完全に固定される。 The fixed molds 9U and 9B are arranged at the position of the center fifth coarse arm portion A5a in the coarse material 4, and the upper and lower parts are completely attached to the upper mold support base 23 and the lower mold support base 22, respectively. In particular, the fixed molds 9U and 9B have the same upper and lower thickness as the fifth arm portion A5b of the finishing material 5 and are completely in relation to the upper mold support base 23 and the lower mold support base 22. Fixed to.
 上下で対を成すピン型12と補助ピン型13は、粗素材4における粗ピン部Paそれぞれの位置に配置され、上下のそれぞれが上側金型支持台23及び下側金型支持台22に取り付けられる。第1実施形態のピン型12は、粗ピン部Paそれぞれの偏芯中心側に配置される。他方の補助ピン型13は、粗ピン部Paそれぞれの偏芯中心側とは反対の外側に配置される。例えば、第1粗ピン部P1aの位置では、第1粗ピン部P1aの配置が上側である。このため、ピン型12が下側金型支持台22に取り付けられるとともに、これと対を成す補助ピン型13が上側金型支持台23に取り付けられる。 The upper and lower pin molds 12 and auxiliary pin molds 13 are arranged at positions of the coarse pin portions Pa in the coarse material 4, and the upper and lower parts are attached to the upper mold support base 23 and the lower mold support base 22. It is done. The pin type | mold 12 of 1st Embodiment is arrange | positioned at the eccentric center side of each rough pin part Pa. FIG. The other auxiliary pin mold 13 is disposed on the outer side opposite to the eccentric center side of each coarse pin portion Pa. For example, in the position of the 1st rough pin part P1a, arrangement | positioning of the 1st rough pin part P1a is an upper side. For this reason, the pin mold 12 is attached to the lower mold support base 22, and the auxiliary pin mold 13 that is paired with the pin mold 12 is attached to the upper mold support base 23.
 特に、ピン型12及び補助ピン型13は、上下のいずれも、下側金型支持台22及び上側金型支持台23の上で、固定型9U、9Bに向けての軸方向に移動が許容される。ピン型12に限っては、軸方向とは直角な方向であって、粗ピン部Paに向けての偏芯方向(図4では上下方向)にも移動が許容される。 In particular, the pin mold 12 and the auxiliary pin mold 13 are allowed to move in the axial direction toward the fixed molds 9U and 9B on the lower mold support base 22 and the upper mold support base 23 in both the upper and lower sides. Is done. Only the pin mold 12 is allowed to move in the direction perpendicular to the axial direction and also in the eccentric direction (vertical direction in FIG. 4) toward the coarse pin portion Pa.
 ピン型12及び補助ピン型13には、それぞれ、半円筒状の彫り込み部12a、13aが形成されている。彫り込み部12a、13aの長さは、仕上打ち用素材5における各粗ピン部Pbの軸方向の長さと同じである。 The pin mold 12 and the auxiliary pin mold 13 are formed with semi-cylindrical engraved portions 12a and 13a, respectively. The lengths of the engraved portions 12a and 13a are the same as the lengths in the axial direction of the rough pin portions Pb in the finishing material 5 for finishing.
 互いに粗アーム部Aaを挟んで隣接する粗ピン部Pのピン型12同士の間、例えば、第1粗ピン部P1aのピン型12と第2粗ピン部P2aのピン型12との間には、いずれか一方のピン型12から突出した凸部12cが設けられる。図4には、第1粗ピン部P1aのピン型12に凸部12cが設けられた態様を示す。同様に、第5粗ピン部P5aのピン型12と第6粗ピン部P6aのピン型12とにも凸部12cが設けられる。凸部12cの突出量は、粗ピン部P同士の間に挟まれた粗アーム部Aaに対応する仕上打ち用素材5における粗アーム部Abの軸方向の厚みと同じである。ピン型12と対をなす補助ピン型13にも、同様の凸部13cが設けられる。 Between the pin dies 12 of the coarse pin portion P adjacent to each other with the coarse arm portion Aa interposed therebetween, for example, between the pin die 12 of the first coarse pin portion P1a and the pin die 12 of the second coarse pin portion P2a. The convex part 12c which protruded from any one pin type | mold 12 is provided. FIG. 4 shows an aspect in which the convex portion 12c is provided on the pin mold 12 of the first rough pin portion P1a. Similarly, the convex part 12c is provided also in the pin type | mold 12 of the 5th rough pin part P5a, and the pin type | mold 12 of the 6th rough pin part P6a. The protruding amount of the convex portion 12c is the same as the thickness in the axial direction of the coarse arm portion Ab in the finish punching material 5 corresponding to the coarse arm portion Aa sandwiched between the coarse pin portions P. A similar convex portion 13 c is also provided on the auxiliary pin mold 13 that forms a pair with the pin mold 12.
 ジャーナル型10U、10Bは、粗素材4における粗ジャーナル部Jaの位置に配置され、上下のそれぞれが上側金型支持台23及び下側金型支持台22に取り付けられる。特に、ジャーナル型10U、10Bは、上下のいずれも、上側金型支持台23及び下側金型支持台22の上で、固定型9U、9Bに向けての軸方向に移動が許容される。 The journal molds 10U and 10B are disposed at the position of the coarse journal portion Ja in the coarse material 4, and the upper and lower parts are attached to the upper mold support base 23 and the lower mold support base 22, respectively. In particular, the journal molds 10U and 10B are allowed to move in the axial direction toward the fixed molds 9U and 9B on the upper mold support base 23 and the lower mold support base 22 in both the upper and lower sides.
 ジャーナル型10U、10Bには、それぞれ、半円筒状の第1彫り込み部10Ua、10Baと、この第1彫り込み部10Ua、10Baの前後(図4では左右)に隣接して第2彫り込み部10Ub、10Bbが形成される。第1彫り込み部10Ua、10Baの長さは、仕上打ち用素材5における粗ジャーナル部Jbの軸方向の長さと同じである。第2彫り込み部10Ub、10Bbの長さは、仕上打ち用素材5におけるその粗ジャーナル部Jbにつながる粗アーム部Abの軸方向の厚みと同じである。 The journal molds 10U and 10B include semi-cylindrical first engraved portions 10Ua and 10Ba, and second engraved portions 10Ub and 10Bb adjacent to the front and rear (left and right in FIG. 4) of the first engraved portions 10Ua and 10Ba, respectively. Is formed. The lengths of the first engraving portions 10Ua and 10Ba are the same as the axial length of the coarse journal portion Jb in the finishing material 5. The lengths of the second engraved portions 10Ub and 10Bb are the same as the axial thickness of the coarse arm portion Ab connected to the coarse journal portion Jb in the finishing material 5.
 ジャーナル型10U、10Bは、プレス機の駆動に伴う上側金型支持台23の下降、すなわちプレス機の圧下により、第1彫り込み部10Ua、10Baで各々に対応する各粗ジャーナル部Jaを個々に上下から挟み込んで保持する。これと同時に、ジャーナル型10U、10Bは、第2彫り込み部10Ub、10Bbの第1彫り込み部10Ua、10Ba側の面が、各々に対応する各粗ジャーナル部Jaにつながる粗アーム部Aaにおける各粗ジャーナル部Ja側の側面に接触する。 The journal molds 10U and 10B are moved up and down individually corresponding to the respective coarse journal sections Ja by the first engraving sections 10Ua and 10Ba by the lowering of the upper mold support base 23 accompanying the drive of the press machine, that is, the press machine pressure. Hold it between. At the same time, the journal molds 10U and 10B have the rough engraving portions 10Ub and 10Bb on the side of the first engraving portions 10Ua and 10Ba on the coarse journal portions Aa connected to the corresponding coarse journal portions Ja. It contacts the side surface of the portion Ja.
 その際、ピン型12は、プレス機の圧下により、彫り込み部12aが各粗ピン部Paに宛がわれ、ピン型12の両側面が、各粗ピン部Paにつながる粗アーム部Aaにおける各粗ピン部Pa側の側面に接触する。 At that time, the pin mold 12 is engraved by the pressing machine so that the engraved portion 12a is assigned to each rough pin portion Pa, and both side surfaces of the pin die 12 are connected to each rough arm portion Aa connected to each rough pin portion Pa. It contacts the side surface on the pin portion Pa side.
 ここで、両端の第1及び第4粗ジャーナル部J1a、J4aの位置に配置されたジャーナル型10U、10Bの端面は、傾斜面14U、14Bとなっている。これに対し、下側ハードプレート20上には、それらの第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bの傾斜面14U、14Bの位置に対応して、個々に、第1楔26が立設されている。各第1楔26は、下側金型支持台22を貫通して上方に突き出す。第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bのうち、下側のジャーナル型10Bの傾斜面14Bは、初期状態で第1楔26の斜面に接触する。一方、上側のジャーナル型10Uの傾斜面14Uは、プレス機の圧下により、第1楔26の斜面に接触する。 Here, the end surfaces of the journal molds 10U and 10B arranged at the positions of the first and fourth coarse journal portions J1a and J4a at both ends are inclined surfaces 14U and 14B. On the other hand, on the lower hard plate 20, the first and fourth coarse journal portions J1a and J4a are individually provided in correspondence with the positions of the inclined surfaces 14U and 14B of the journal molds 10U and 10B. A wedge 26 is erected. Each first wedge 26 protrudes upward through the lower mold support base 22. Of the journal dies 10U and 10B of the first and fourth coarse journal portions J1a and J4a, the inclined surface 14B of the lower journal dies 10B contacts the inclined surface of the first wedge 26 in the initial state. On the other hand, the inclined surface 14U of the upper journal mold 10U comes into contact with the inclined surface of the first wedge 26 by the pressing of the press.
 また、中央寄りの第2及び第3粗ジャーナル部J2a、J3aの位置に配置されたジャーナル型10U、10Bには、第1彫り込み部10Ua、10Ba及び第2彫り込み部10Ub、10Bbから外れた側部(図4では紙面の手前と奥)に、傾斜面15U、15Bを有する図示しないブロックが固定される。これに対し、下側ハードプレート20上には、それらの第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bの傾斜面15U、15Bの位置に対応して、個々に、第2楔27が立設されている。各第2楔27は、下側金型支持台22を貫通して上方に突き出す。第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bのうち、下側のジャーナル型10Bの傾斜面15Bは、初期状態で第2楔27の斜面に接触する。一方、上側のジャーナル型10Uの傾斜面15Uは、プレス機の圧下により、第2楔27の斜面に接触する。 Further, the journal molds 10U and 10B arranged at the positions of the second and third coarse journal portions J2a and J3a closer to the center have side portions that are separated from the first engraved portions 10Ua and 10Ba and the second engraved portions 10Ub and 10Bb. A block (not shown) having the inclined surfaces 15U and 15B is fixed (in front and back of the page in FIG. 4). On the other hand, on the lower hard plate 20, the second and third coarse journal portions J2a and J3a are respectively provided with second shapes corresponding to the positions of the inclined surfaces 15U and 15B of the journal molds 10U and 10B. A wedge 27 is erected. Each second wedge 27 penetrates the lower mold support base 22 and protrudes upward. Of the journal molds 10U and 10B of the second and third coarse journal portions J2a and J3a, the inclined surface 15B of the lower journal mold 10B contacts the inclined surface of the second wedge 27 in the initial state. On the other hand, the inclined surface 15U of the upper journal mold 10U comes into contact with the inclined surface of the second wedge 27 by the press machine.
 そして、プレス機の圧下の継続に伴って、上側のジャーナル型10Uが下側のジャーナル型10Bと一体で押し下げられる。これにより、第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bは、上下のいずれも、その傾斜面14U、14Bが楔26の斜面に沿って摺動することから、中央の第5粗アーム部A5aの位置に配置された固定型9U、9Bに向けて軸方向に移動する。これと同時に、第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bは、上下のいずれも、その傾斜面15U、15Bが第2楔27の斜面に沿って摺動することから、同じく固定型9U、9Bに向けて軸方向に移動する。要するに、ジャーナル型10U、10Bは、個々に楔機構により軸方向に移動できる。 Then, as the press machine continues to be reduced, the upper journal mold 10U is pushed down together with the lower journal mold 10B. Thereby, the journal molds 10U and 10B of the first and fourth coarse journal portions J1a and J4a have their inclined surfaces 14U and 14B slide along the inclined surface of the wedge 26 in the upper and lower sides. It moves in the axial direction toward the stationary molds 9U and 9B arranged at the position of the five coarse arm portions A5a. At the same time, the journal types 10U and 10B of the second and third coarse journal portions J2a and J3a have their inclined surfaces 15U and 15B slide along the inclined surface of the second wedge 27, both above and below. Similarly, it moves in the axial direction toward the fixed molds 9U and 9B. In short, the journal molds 10U and 10B can be individually moved in the axial direction by a wedge mechanism.
 また、ピン型12及び補助ピン型13は、プレス機の圧下の継続に伴って一体で押し下げられる。これにより、ピン型12及び補助ピン型13は、上記したようにジャーナル型10U、10Bが軸方向に移動するのに連れて、固定型9U、9Bに向けて軸方向に移動する。また、ピン型12の軸方向と直角な方向への移動は、各ピン型12に連結された油圧シリンダ16の駆動により行われる。 Also, the pin mold 12 and the auxiliary pin mold 13 are pushed down together as the press machine continues to be reduced. Accordingly, the pin mold 12 and the auxiliary pin mold 13 move in the axial direction toward the fixed molds 9U and 9B as the journal molds 10U and 10B move in the axial direction as described above. Further, the movement of the pin mold 12 in the direction perpendicular to the axial direction is performed by driving a hydraulic cylinder 16 connected to each pin mold 12.
 なお、ピン型12及び補助ピン型13の軸方向への移動は、ジャーナル型10U、10Bと同様の楔機構を用いたり、油圧シリンダ、サーボモータ等の別途の機構を用いて、強制的に行ってもよい。補助ピン型13は、隣接するジャーナル型10U、10Bと一体化されても構わない。 The axial movement of the pin mold 12 and the auxiliary pin mold 13 is forcibly performed using a wedge mechanism similar to the journal molds 10U and 10B, or using a separate mechanism such as a hydraulic cylinder or a servo motor. May be. The auxiliary pin mold 13 may be integrated with the adjacent journal molds 10U and 10B.
 図4に示す初期状態では、個々に軸方向に連なるジャーナル型10U、10B、固定型9U、9B、並びにピン型12及び補助ピン型13の間に、隙間が確保される。ジャーナル型10U、10B、並びにピン型12及び補助ピン型13の軸方向への移動を許容するためである。これらの各隙間の寸法は、仕上打ち用素材5における粗アーム部Abの厚みと、粗素材4における粗アーム部Aaの厚みとの差である。 In the initial state shown in FIG. 4, gaps are secured between the journal molds 10U and 10B, the fixed molds 9U and 9B, the pin mold 12 and the auxiliary pin mold 13 that are individually linked in the axial direction. This is because the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 are allowed to move in the axial direction. The size of each gap is the difference between the thickness of the coarse arm portion Ab in the finish punching material 5 and the thickness of the coarse arm portion Aa in the coarse material 4.
 次に、このような構成の成形装置による仕上打ち用素材の成形方法について説明する。
 図5A及び図5Bは、図4に示す第1実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図である。これらの図のうち、図5Aは成形初期の状態を示し、図5Bは成形完了時の状態を示す。
Next, a method for forming a finish punching material by the forming apparatus having such a configuration will be described.
5A and 5B are longitudinal sectional views for explaining a method of forming a finishing material by the forming apparatus of the first embodiment shown in FIG. Among these drawings, FIG. 5A shows a state in the initial stage of molding, and FIG. 5B shows a state when the molding is completed.
 前記図4に示す下側のジャーナル型10B、固定型9B、ピン型12及び補助ピン型13に粗素材4を収容し、プレス機の圧下を開始する。すると、先ず、図5Aに示すように、上側のジャーナル型10Uが、それぞれ、下側のジャーナル型10Bに当接する。 4 The raw material 4 is accommodated in the lower journal die 10B, fixed die 9B, pin die 12 and auxiliary pin die 13 shown in FIG. 4, and the press machine starts to be reduced. Then, first, as shown in FIG. 5A, the upper journal mold 10U comes into contact with the lower journal mold 10B.
 これにより、粗素材4は、各粗ジャーナル部Jaがジャーナル型10U、10Bによって上下から保持され、各粗ピン部Paにピン型12が宛がわれた状態になる。この状態のとき、粗素材4の各粗アーム部Aaにおける粗ジャーナル部Ja側の側面には、ジャーナル型10U、10Bが接触し、各粗アーム部Aaにおける粗ピン部Pa側の側面には、ピン型12が接触している。また、この状態のとき、第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bの傾斜面14U、14Bは、第1楔26の斜面に接触している。第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bの傾斜面15U、15Bは、第2楔27の斜面に接触している。 Thus, the coarse material 4 is in a state in which each coarse journal portion Ja is held from above and below by the journal dies 10U and 10B, and the pin die 12 is assigned to each coarse pin portion Pa. In this state, the journal molds 10U and 10B are in contact with the side surface of the coarse journal portion Ja side of each coarse arm portion Aa of the coarse material 4, and the side surface of the coarse pin portion Pa side of each coarse arm portion Aa is The pin mold 12 is in contact. Further, in this state, the inclined surfaces 14U and 14B of the journal dies 10U and 10B of the first and fourth coarse journal portions J1a and J4a are in contact with the inclined surface of the first wedge 26. The inclined surfaces 15U and 15B of the journal dies 10U and 10B of the second and third coarse journal portions J2a and J3a are in contact with the inclined surface of the second wedge 27.
 この状態から、そのままプレス機の圧下を継続する。すると、第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bは、各々の傾斜面14U、14Bが楔26の斜面に沿って摺動し、この楔機構により、第5粗アーム部A5aの固定型9U、9Bに向けて軸方向に移動する。これと同時に、第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bは、各々の傾斜面15U、15Bが第2楔27の斜面に沿って摺動し、この楔機構により、第5粗アーム部A5aの固定型9U、9B向けて軸方向に移動する。このようにジャーナル型10U、10Bが個々に楔機構により軸方向に移動するのに伴って、ピン型12及び補助ピン型13も、固定型9U、9Bに向けて軸方向に移動する。 か ら From this state, continue pressing the press machine. Then, in the journal molds 10U and 10B of the first and fourth coarse journal portions J1a and J4a, the inclined surfaces 14U and 14B slide along the slope of the wedge 26, and this wedge mechanism causes the fifth coarse arm portion. It moves in the axial direction toward the fixed molds 9U and 9B of A5a. At the same time, in the journal types 10U and 10B of the second and third coarse journal portions J2a and J3a, the inclined surfaces 15U and 15B slide along the inclined surface of the second wedge 27, and this wedge mechanism causes the first It moves in the axial direction toward the fixed molds 9U and 9B of the five coarse arm portions A5a. As the journal molds 10U and 10B are individually moved in the axial direction by the wedge mechanism, the pin mold 12 and the auxiliary pin mold 13 are also moved in the axial direction toward the fixed molds 9U and 9B.
 これにより、ジャーナル型10U、10B及び固定型9U、9Bと、ピン型12(凸部12cを含む)及び補助ピン型13(凸部13cを含む)との隙間が次第に狭まり、終には各型同士が接触してそれらの各隙間がなくなる。その際、粗素材4は、ジャーナル型10U、10B及びピン型12により、粗ジャーナル部Ja及び粗ピン部Paの軸方向の長さが維持されながら、粗アーム部Aaが軸方向に挟圧される。そして、粗アーム部Aaの厚みが仕上打ち用素材5の粗アーム部Abの厚みまで減少する(図5B参照)。 As a result, the gaps between the journal molds 10U and 10B and the fixed molds 9U and 9B and the pin mold 12 (including the convex part 12c) and the auxiliary pin mold 13 (including the convex part 13c) are gradually narrowed. They come into contact with each other and the gaps between them disappear. At that time, the coarse material 4 is clamped in the axial direction by the journal molds 10U and 10B and the pin mold 12 while the axial lengths of the coarse journal part Ja and the coarse pin part Pa are maintained. The Then, the thickness of the coarse arm portion Aa is reduced to the thickness of the coarse arm portion Ab of the finishing material 5 (see FIG. 5B).
 また、ジャーナル型10U、10B、並びにピン型12及び補助ピン型13の軸方向への移動に応じ、ピン型12それぞれの油圧シリンダ16を駆動する。すると、各ピン型12は、個々に、粗素材4の粗ピン部Paを軸方向と直角な鉛直方向に押圧する。これにより、粗素材4の第1、第2、第5及び第6粗ピン部P1a、P2a、P5a、P6aと、第3及び第4粗ピン部P3a、P4aとは、軸方向と直角な鉛直方向にずれるため、その偏芯量が互いに反対方向で仕上打ち用素材5の粗ピン部Pbの偏芯量の√3/2と同じ偏芯量まで増加する(図2、図5B参照)。 Also, the hydraulic cylinders 16 of the pin molds 12 are driven according to the movement of the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 in the axial direction. Then, each pin type | mold 12 presses the rough pin part Pa of the coarse raw material 4 to the perpendicular direction orthogonal to an axial direction individually. Thus, the first, second, fifth and sixth rough pin portions P1a, P2a, P5a and P6a of the rough material 4 and the third and fourth rough pin portions P3a and P4a are perpendicular to the axial direction. Therefore, the eccentric amount increases in the opposite direction to the eccentric amount equal to √3 / 2 of the eccentric amount of the rough pin portion Pb of the finishing material 5 (see FIGS. 2 and 5B).
 このようにして、バリのない粗素材4から、ピン部Pの偏芯量及び配置角度を除いて、アーム部Aの厚みが薄いV型6気筒エンジン用鍛造クランク軸(最終鍛造製品)の形状と概ね一致した形状で、バリのない仕上打ち用素材5を成形することができる。次いで、このようなバリなしの仕上打ち用素材5を仕上打ちに供し、全ての粗ピン部を水平に配置した姿勢の状態で仕上打ちを行う。このとき、仕上打ち用素材5の全ての粗ピン部を軸方向と直角な鉛直方向に押圧すれば、多少のバリは発生するが、ピン部の配置角度を除き、アーム部の輪郭形状を含めてV型6気筒エンジン用鍛造クランク軸の最終形状の仕上材6を造形することができる。そして、この仕上材6に捩り成形を施せば、ピン部の配置角度を含めてV型6気筒エンジン用鍛造クランク軸の最終形状を造形することができる。したがって、V型6気筒エンジン用の鍛造クランク軸を歩留り良く、しかも、その形状を問わずに高い寸法精度で製造することが可能になる。もっとも、粗素材の段階でアーム部にバランスウエイトに相当する部分を造形しておけば、バランスウエイトを有する鍛造クランク軸の製造も可能である。 In this way, the shape of the forged crankshaft (final forged product) for the V-type 6-cylinder engine in which the arm portion A is thin except for the eccentric amount and the arrangement angle of the pin portion P from the raw material 4 without burrs. The finish punching material 5 having no burr can be formed. Next, such a burr-free finishing material 5 is subjected to finishing, and finishing is performed in a state in which all the rough pin portions are horizontally arranged. At this time, if all the rough pin portions of the finish punching material 5 are pressed in the vertical direction perpendicular to the axial direction, some burrs are generated, but the arm portion contour shape is included except for the pin portion arrangement angle. Thus, the finishing material 6 having the final shape of the forged crankshaft for the V-type 6-cylinder engine can be formed. And if this finishing material 6 is twisted, the final shape of the forged crankshaft for the V-type 6-cylinder engine can be modeled including the pin portion arrangement angle. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape. However, if a portion corresponding to the balance weight is formed on the arm portion at the stage of the coarse material, a forged crankshaft having a balance weight can be manufactured.
 前記図4、図5A及び図5Bに示す成形装置では、第1粗ジャーナル部J1aのジャーナル型10U、10Bの傾斜面14U、14B及びこれと接触する第1楔26の斜面と、第4粗ジャーナル部J4aのジャーナル型10U、10Bの傾斜面14U、14B及びこれと接触する第1楔26の斜面とは、傾斜角度が鉛直面を基準に正反対とされる。また、第2粗ジャーナル部J2aのジャーナル型10U、10Bの傾斜面15U、15B及びこれと接触する第2楔27の斜面と、第3粗ジャーナル部J3aのジャーナル型10U、10Bの傾斜面15U、15B及びこれと接触する第2楔27の斜面とは、傾斜角度が鉛直面を基準に正反対とされる。更に、第1楔26の斜面の角度(第1及び第4粗ジャーナル部J1a、J4aのジャーナル型10U、10Bの傾斜面14U、14Bの角度)は、第2楔27の斜面の角度(第2及び第3粗ジャーナル部J2a、J3aのジャーナル型10U、10Bの傾斜面15U、15Bの角度)よりも大きくされる。このように、各ジャーナル型10U、10Bを軸方向に移動させる楔機構の楔角度をジャーナル型10U、10Bごとに異ならせる理由は、粗アーム部Aaを軸方向に挟圧して厚みを減少させる変形速度をすべての粗アーム部Aaで一定にするためである。 In the molding apparatus shown in FIGS. 4, 5A, and 5B, the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the first coarse journal portion J1a and the inclined surfaces of the first wedges 26 in contact therewith, and the fourth coarse journal. The inclination angles of the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the portion J4a and the inclined surfaces of the first wedges 26 in contact therewith are opposite to each other with respect to the vertical surface. Further, the inclined surfaces 15U and 15B of the journal molds 10U and 10B of the second coarse journal portion J2a and the inclined surfaces of the second wedges 27 in contact therewith, and the inclined surfaces 15U of the journal molds 10U and 10B of the third coarse journal portion J3a, The inclination angle of 15B and the inclined surface of the second wedge 27 in contact with this is opposite to that of the vertical plane with respect to the vertical plane. Furthermore, the angle of the inclined surface of the first wedge 26 (the angle of the inclined surfaces 14U and 14B of the journal molds 10U and 10B of the first and fourth coarse journal portions J1a and J4a) is the angle of the inclined surface of the second wedge 27 (second And the angle of the inclined surfaces 15U and 15B of the journal types 10U and 10B of the third coarse journal portions J2a and J3a. As described above, the reason why the wedge angle of the wedge mechanism for moving each journal mold 10U, 10B in the axial direction is different for each journal mold 10U, 10B is to deform the coarse arm portion Aa in the axial direction to reduce the thickness. This is because the speed is constant in all the coarse arm portions Aa.
 前記図4、図5A及び図5Bに示す成形装置で用いる粗素材4は、粗ジャーナル部Jaの断面積が、仕上打ち用素材5の粗ジャーナル部Jb、すなわち鍛造クランク軸のジャーナル部Jの断面積と同じであるか、それよりも大きい。同様に、粗素材4の粗ピン部Paの断面積は、仕上打ち用素材5の粗ピン部Pb、すなわち鍛造クランク軸のピン部Pの断面積と同じであるか、それよりも大きい。粗素材4の粗ジャーナル部Jaの断面積が仕上打ち用素材5の粗ジャーナル部Jbの断面積よりも大きい場合であっても、粗ジャーナル部Jaの断面積を仕上打ち用素材5の粗ジャーナル部Jbの断面積まで減少させることができる。これは、ジャーナル型10U、10Bによる粗ジャーナル部Jaの挟み込み保持、及びこれに続くジャーナル型10U、10Bの軸方向への移動による。また、粗素材4の粗ピン部Paの断面積が仕上打ち用素材5の粗ピン部Pbの断面積よりも大きい場合であっても、粗ピン部Paの断面積を仕上打ち用素材5の粗ピン部Pbの断面積まで減少させることができる。これは、ピン型12の軸方向への移動及びこれと直角な方向への移動による。 The rough material 4 used in the molding apparatus shown in FIGS. 4, 5A and 5B has a cross-sectional area of the rough journal portion Ja, which is the cutting of the rough journal portion Jb of the finish punching material 5, that is, the journal portion J of the forged crankshaft. It is equal to or larger than the area. Similarly, the cross-sectional area of the rough pin portion Pa of the rough material 4 is the same as or larger than the cross-sectional area of the rough pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft. Even if the cross-sectional area of the coarse journal portion Ja of the coarse material 4 is larger than the cross-sectional area of the coarse journal portion Jb of the finish punching material 5, the cross-sectional area of the coarse journal portion Ja is used as the coarse journal of the finish punching material 5. The sectional area of the portion Jb can be reduced. This is due to sandwiching and holding of the coarse journal portion Ja by the journal dies 10U and 10B, and subsequent movement of the journal dies 10U and 10B in the axial direction. Even if the cross-sectional area of the rough pin portion Pa of the rough material 4 is larger than the cross-sectional area of the rough pin portion Pb of the finish punching material 5, the cross-sectional area of the rough pin portion Pa is equal to that of the finish punching material 5. The cross-sectional area of the rough pin portion Pb can be reduced. This is due to the movement of the pin mold 12 in the axial direction and the movement in a direction perpendicular thereto.
 以上説明した仕上打ち用素材の成形で留意すべき点として、局部的な噛み出しの発生がある。以下に、噛み出しの発生原理とその対応策について説明する。 As mentioned above, there is local biting as a point to be noted in forming the finishing material. Hereinafter, the principle of occurrence of biting and the countermeasures will be described.
 図6は、成形装置による仕上打ち用素材の成形で噛み出しが発生する状況を説明するための図であり、図7は、その対応策を施した場合の状況を説明するための図である。図6及び図7中、(a)は成形初期の状態を、(b)は成形途中の状態を、(c)は成形完了時の状態を、(d)は成形完了後に成形装置から取り出した仕上打ち用素材をそれぞれ示す。 FIG. 6 is a diagram for explaining a situation in which biting occurs in forming a finishing material by a molding apparatus, and FIG. 7 is a diagram for explaining a situation when the countermeasure is taken. . 6 and 7, (a) shows a state in the initial stage of molding, (b) shows a state in the middle of molding, (c) shows a state when the molding is completed, and (d) shows a state after the molding is completed. Each finishing material is shown.
 図6(a)に示すように、成形が開始されると、ジャーナル型10U、10Bが軸方向へ移動するとともに、ピン型12及び補助ピン型13が軸方向及びこれと直角な方向へ移動する。その後、図6(b)に示すように、ジャーナル型10U、10B、並びにピン型12及び補助ピン型13の軸方向への移動が完了する前に、すなわち、ジャーナル型10U、10Bと、ピン型12及び補助ピン型13との隙間が閉ざされる前に、軸方向と直角な方向に押圧変形する粗ピン部Paが補助ピン型13に到達すると、以下に示す事態が生じる。補助ピン型13とジャーナル型10U、10Bとの隙間に、粗ピン部Paの肉が流入する。この流入した肉は、成形の進行に伴って薄く延ばされていくものの、図6(c)に示すように、成形完了時にも残存する。こうして、図6(d)に示すように、仕上打ち用素材5の粗ピン部Pbの外側には、隣接する粗アーム部Aaとの境界に局所的な噛み出し部5aが現れる。 As shown in FIG. 6A, when molding is started, the journal molds 10U and 10B move in the axial direction, and the pin mold 12 and the auxiliary pin mold 13 move in the axial direction and a direction perpendicular thereto. . Thereafter, as shown in FIG. 6B, before the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 are moved in the axial direction, that is, the journal molds 10U and 10B and the pin mold When the rough pin portion Pa that is pressed and deformed in the direction perpendicular to the axial direction reaches the auxiliary pin die 13 before the gap between the auxiliary pin die 13 and the auxiliary pin die 13 is closed, the following situation occurs. The meat of the coarse pin portion Pa flows into the gap between the auxiliary pin mold 13 and the journal molds 10U and 10B. The inflowed meat is thinly extended as the molding progresses, but remains at the completion of the molding as shown in FIG. Thus, as shown in FIG. 6 (d), a local biting portion 5a appears at the boundary with the adjacent coarse arm portion Aa on the outside of the coarse pin portion Pb of the finish punching material 5.
 噛み出し部5aは、次工程の仕上打ちで製品に打ち込まれてかぶり疵となる。したがって、製品品質を確保する観点から、噛み出しの発生を防止する必要がある。 The biting part 5a is driven into the product in the finishing process of the next process and becomes a fogger. Therefore, it is necessary to prevent the occurrence of biting from the viewpoint of ensuring product quality.
 噛み出しの発生を防止する対応策としては、ジャーナル型10U、10Bと、ピン型12及び補助ピン型13との隙間が閉ざされた後に、押圧変形する粗ピン部Paが補助ピン型13に到達するように、ピン型12の軸方向と直角な方向への移動を制御すればよい。具体的には、ジャーナル型10U、10B、並びにピン型12及びこのピン型12と対を成す補助ピン型13の軸方向への移動が完了した後に、ピン型12の軸方向と直角な方向への移動を完了させればよい。例えば、ピン型12の軸方向と直角な方向への総移動距離を100%としたとき、そのピン型12に隣接するジャーナル型10U、10Bの軸方向への移動が完了した時点で、ピン型12の軸方向と直角な方向への移動距離が総移動距離の90%以下(より好適には83%以下、更に好適には60%以下)であることが好ましい。この後にピン型12のその方向への移動が完了すればよい。 As a countermeasure to prevent the occurrence of biting, the coarse pin portion Pa that press-deforms after reaching the auxiliary pin die 13 after the gap between the journal dies 10U and 10B and the pin die 12 and the auxiliary pin die 13 is closed. Thus, the movement of the pin mold 12 in the direction perpendicular to the axial direction may be controlled. Specifically, after the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 paired with the pin mold 12 are moved in the axial direction, the journal molds 10U and 10B are moved in a direction perpendicular to the axial direction of the pin mold 12. Can be completed. For example, assuming that the total movement distance in the direction perpendicular to the axial direction of the pin mold 12 is 100%, when the movement of the journal molds 10U and 10B adjacent to the pin mold 12 in the axial direction is completed, the pin mold The movement distance in the direction perpendicular to the 12 axial directions is preferably 90% or less (more preferably 83% or less, and even more preferably 60% or less) of the total movement distance. After this, the movement of the pin mold 12 in that direction may be completed.
 例えば、図7(a)に示すように、成形を開始する。その後、図7(b)に示すように、ピン型12の軸方向と直角な方向への移動距離が総移動距離の90%に達するまでに、ジャーナル型10U、10B、並びにピン型12及び補助ピン型13の軸方向への移動を完了させる。そうすると、この時点では、ジャーナル型10U、10B、ピン型12及び補助ピン型13との隙間が閉ざされているものの、押圧変形する粗ピン部Paが補助ピン型13に到達していない。そして、ピン型12の軸方向と直角な方向への移動に伴って粗ピン部Paが補助ピン型13に到達し、その移動が完了すると、図7(c)に示すように、成形が完了する。このため、補助ピン型13とジャーナル型10U、10Bとの隙間に、粗ピン部Paの肉が流入する事態は起こらない。こうして、図7(d)に示すように、噛み出しのない高品位の仕上打ち用素材5を得ることができる。 For example, molding is started as shown in FIG. Thereafter, as shown in FIG. 7B, the journal dies 10U, 10B, and the pin dies 12 and the auxiliary dies until the movement distance in the direction perpendicular to the axial direction of the pin dies 12 reaches 90% of the total movement distance. The movement of the pin mold 13 in the axial direction is completed. Then, at this time, although the gaps between the journal molds 10U, 10B, the pin mold 12, and the auxiliary pin mold 13 are closed, the rough pin portion Pa that is deformed by pressing does not reach the auxiliary pin mold 13. Then, as the pin mold 12 moves in the direction perpendicular to the axial direction, the rough pin portion Pa reaches the auxiliary pin mold 13, and when the movement is completed, the molding is completed as shown in FIG. To do. For this reason, the situation where the flesh of the coarse pin portion Pa flows into the gap between the auxiliary pin mold 13 and the journal molds 10U and 10B does not occur. In this way, as shown in FIG. 7 (d), a high quality finishing material 5 without biting can be obtained.
 ジャーナル型の軸方向への移動が完了するまでのピン型の軸方向と直角な方向への移動過程は、任意に変更することが可能である。例えば、ピン型の軸方向と直角な方向への移動は、ジャーナル型の軸方向への移動開始と同時に開始してもよいし、それよりも前に開始してもよく、又はジャーナル型の軸方向への移動がある程度進行してから開始してもよい。また、ピン型の軸方向と直角な方向への移動は、開始後、一定量移動した位置で一旦停止させ、ジャーナル型の軸方向への移動が完了した後に再開してもよい。 The movement process in the direction perpendicular to the axial direction of the pin type until the movement in the axial direction of the journal type is completed can be arbitrarily changed. For example, the movement in the direction perpendicular to the axial direction of the pin type may be started simultaneously with the start of the movement in the axial direction of the journal type, or may be started before that, or the journal type axis You may start, after the movement to a direction progresses to some extent. Further, the movement in a direction perpendicular to the axial direction of the pin type may be temporarily stopped at a position moved by a certain amount after the start, and resumed after the movement in the axial direction of the journal type is completed.
 2.第2実施形態
 第2実施形態は、上記の第1実施形態の構成を変形したものである。
2. Second Embodiment The second embodiment is a modification of the configuration of the first embodiment.
 2-1.粗素材、仕上打ち用素材、仕上材、捩り仕上材
 図8は、第2実施形態の製造方法において、成形装置で被成形対象とする粗素材、成形された仕上打ち用素材、仕上打ち後の仕上材、及び捩り成形後の捩り仕上材の各形状を模式的に示す図である。図8には、前記図2と同様に、V型6気筒-5枚カウンターウエイトのクランク軸を製造する場合の状況を示す。なお、第1実施形態と重複する事項は適宜省略する。
2-1. FIG. 8 shows a rough material to be molded by a molding apparatus, a molded finish material, and a finish-finished material in the manufacturing method of the second embodiment. It is a figure which shows typically each shape of a finishing material and the twist finishing material after torsion molding. FIG. 8 shows the situation when a crankshaft of a V-type 6-cylinder-5-counterweight is manufactured as in FIG. In addition, the matter which overlaps with 1st Embodiment is abbreviate | omitted suitably.
 図8に示すように、第2実施形態の粗素材4は、V型6気筒-5枚カウンターウエイトの鍛造クランク軸1の形状に依拠しつつも全体として粗いクランク軸形状である。粗素材4は、4つの粗ジャーナル部Ja、6つの粗ピン部Pa、粗フロント部Fra、粗フランジ部Fla、及び9枚の粗アーム部Aaから構成される。第2実施形態の仕上打ち用素材5は、上記の粗素材4から、詳細は後述する成形装置によって成形されるものである。仕上打ち用素材5は、4つの粗ジャーナル部Jb、6つの粗ピン部Pb、粗フロント部Frb、粗フランジ部Flb、及び9枚の粗アーム部Abから構成される。第2実施形態の仕上材6は、上記の仕上打ち用素材5を仕上打ちして得られるものである。仕上材6は、4つのジャーナル部Jc、6つのピン部Pc、フロント部Frc、フランジ部Flc、及び9枚のアーム部Acから構成される。第2実施形態の捩り仕上材7は、上記の仕上材6を捩り成形して得られるものである。捩り仕上材7は、4つのジャーナル部Jd、6つのピン部Pd、フロント部Frd、フランジ部Fld、及び9枚のアーム部Adから構成される。 As shown in FIG. 8, the rough material 4 of the second embodiment has a rough crankshaft shape as a whole while relying on the shape of the forged crankshaft 1 of a V-type 6-cylinder-5-counterweight. The rough material 4 includes four rough journal portions Ja, six rough pin portions Pa, a rough front portion Fra, a rough flange portion Fla, and nine rough arm portions Aa. The finish punching material 5 according to the second embodiment is formed from the above-described rough material 4 by a molding device which will be described in detail later. The finishing material 5 includes four rough journal portions Jb, six rough pin portions Pb, a rough front portion Frb, a rough flange portion Flb, and nine rough arm portions Ab. The finishing material 6 of the second embodiment is obtained by finishing the above-mentioned finishing material 5. The finishing material 6 includes four journal portions Jc, six pin portions Pc, a front portion Frc, a flange portion Flc, and nine arm portions Ac. The twisted finish material 7 of the second embodiment is obtained by twisting the finish material 6 described above. The torsion finishing material 7 includes four journal portions Jd, six pin portions Pd, a front portion Frd, a flange portion Fld, and nine arm portions Ad.
 捩り仕上材7及び仕上材6の形状は、上記第1実施形態と同様である。 The shapes of the twisted finishing material 7 and the finishing material 6 are the same as in the first embodiment.
 これに対し、仕上打ち用素材5の形状は、上記第1実施形態とは異なり、仕上材6の形状と概ね一致し、丁度、図1(d)に示す荒鍛造材105のバリ105aを除いた部分に相当する。すなわち、仕上打ち用素材5の粗ジャーナル部Jbは、最終形状の鍛造クランク軸のジャーナル部J(仕上材6のジャーナル部Jc)と軸方向の長さが同じである。仕上打ち用素材5の粗ピン部Pbは、最終形状の鍛造クランク軸のピン部P(仕上材6のピン部Pc)に対し、軸方向の長さが同じであり、軸方向と直角な方向の偏芯量も同じであるが、その配置角度は仕上材6と同様に正規の位置から外れている。 On the other hand, the shape of the finishing material 5 is different from that of the first embodiment, and generally matches the shape of the finishing material 6, except for the burr 105a of the rough forging material 105 shown in FIG. It corresponds to the part. That is, the coarse journal portion Jb of the finishing material 5 has the same axial length as the journal portion J of the final shape forged crankshaft (the journal portion Jc of the finishing material 6). The rough pin portion Pb of the finishing material 5 has the same axial length as the pin portion P of the final shape forged crankshaft (the pin portion Pc of the finishing material 6), and a direction perpendicular to the axial direction. The amount of eccentricity is also the same, but the arrangement angle is deviated from the normal position as with the finishing material 6.
 すなわち、仕上打ち用素材5のピン部Pbのうち、アーム部Abを介してつながるピン部Pb同士、すなわち第1及び第2ピン部P1b、P2b同士、第3及び第4ピン部P3b、P4b同士、第5及び第6ピン部P5b、P6b同士は、それぞれ、軸回りの配置角度が正規角度の60°にシフトしている。しかし、全体としてのピン部Pbの配置角度は、最終形状の鍛造クランク軸と完全には一致していない。第1及び第5ピン部P1b、P5bは軸回りの配置位置が同じであり、第2及び第6粗ピン部P2b、P6bは軸回りの配置位置が同じである。そして、第1、第2、第5及び第6粗ピン部P1b、P2b、P5b、P6bと、中央の第3、第4粗ピン部P3b、P4bとは、仕上打ち用素材5の中心軸を間に挟んで互いに反対方向に配置される。仕上打ち用素材5の粗アーム部Abは、最終形状の鍛造クランク軸のアーム部A(仕上材6のアーム部Ac)と軸方向の厚みが同じである。 That is, among the pin portions Pb of the finishing material 5, the pin portions Pb connected via the arm portion Ab, that is, the first and second pin portions P1b and P2b, and the third and fourth pin portions P3b and P4b. In the fifth and sixth pin portions P5b and P6b, the arrangement angle around the axis is shifted to a normal angle of 60 °. However, the arrangement angle of the pin portion Pb as a whole does not completely match the final shape of the forged crankshaft. The first and fifth pin portions P1b and P5b have the same arrangement position around the axis, and the second and sixth coarse pin portions P2b and P6b have the same arrangement position around the axis. The first, second, fifth, and sixth rough pin portions P1b, P2b, P5b, and P6b, and the third and fourth rough pin portions P3b and P4b in the center are center axes of the finishing punching material 5. They are arranged in opposite directions with respect to each other. The rough arm portion Ab of the finishing material 5 has the same axial thickness as the arm portion A of the final shape forged crankshaft (the arm portion Ac of the finishing material 6).
 また、粗素材4の粗ジャーナル部Jaは、仕上打ち用素材5の粗ジャーナル部Jb、すなわち鍛造クランク軸のジャーナル部J(仕上材6のジャーナル部Jc)と軸方向の長さが同じである。粗素材4の粗ピン部Paは、仕上打ち用素材5の粗ピン部Pb、すなわち鍛造クランク軸のピン部P(仕上材6のピン部Pc)と軸方向の長さが同じである。ただし、粗素材4の粗ピン部Paのうち、第1、第2、第5及び第6粗ピン部P1a、P2a、P5a、P6aは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が鍛造クランク軸のピン部Pの偏芯量の√3/2と同じである。一方、中央の第3及び第4粗ピン部P3a、P4aは、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が第1、第2、第5及び第6ピン部P1a、P2a、P5a、P6aに対して反対方向で鍛造クランク軸のピン部Pの偏芯量の√3/2と同じである。 The coarse journal portion Ja of the coarse material 4 has the same axial length as the coarse journal portion Jb of the finishing material 5, that is, the journal portion J of the forged crankshaft (the journal portion Jc of the finish material 6). . The coarse pin portion Pa of the coarse material 4 has the same axial length as the coarse pin portion Pb of the finish punching material 5, that is, the pin portion P of the forged crankshaft (the pin portion Pc of the finish material 6). However, among the coarse pin portions Pa of the coarse material 4, the first, second, fifth and sixth coarse pin portions P1a, P2a, P5a and P6a have the same arrangement position around the axis and are perpendicular to the axial direction. The eccentric amount in the right direction is the same as √3 / 2 of the eccentric amount of the pin portion P of the forged crankshaft. On the other hand, the central third and fourth rough pin portions P3a and P4a have the same arrangement position around the axis, and the first, second, fifth and sixth pins have eccentric amounts in the direction perpendicular to the axial direction. The eccentricity of the pin portion P of the forged crankshaft is the same as √3 / 2 in the opposite direction to the portions P1a, P2a, P5a, P6a.
 粗素材4の粗アーム部Aaは、各々に対応する仕上打ち用素材5の粗アーム部Ab、すなわち鍛造クランク軸のアーム部A(仕上材6のアーム部Ac)よりも軸方向の厚みが厚い。 The coarse arm portion Aa of the coarse material 4 is thicker in the axial direction than the coarse arm portion Ab of the finish punching material 5 corresponding thereto, that is, the arm portion A of the forged crankshaft (the arm portion Ac of the finish material 6). .
 2-2.鍛造クランク軸の製造工程
 図9は、第2実施形態における鍛造クランク軸の製造工程を示す模式図である。図9に示すように、第2実施形態の鍛造クランク軸の製造方法は、上記第1実施形態と同様に、第1予備成形、第2予備成形、仕上打ち、捩り成形の各工程を含み、必要に応じて、捩り成形前のバリ抜き、捩り成形後の整形の各工程を含む。
2-2. Manufacturing Process of Forged Crankshaft FIG. 9 is a schematic diagram showing a manufacturing process of the forged crankshaft in the second embodiment. As shown in FIG. 9, the method for manufacturing the forged crankshaft of the second embodiment includes the steps of the first preforming, the second preforming, the finishing punching, and the torsion molding as in the first embodiment. If necessary, each process of deburring before twist forming and shaping after twist forming is included.
 第1予備成形工程は、上記の粗素材4を造形する工程である。第2予備成形工程は、下記の図10に示す成形装置を用いることにより、上記の粗素材4から、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形された上記の仕上げ打ち用素材5を成形する工程である。仕上打ち工程は、上記の仕上打ち用素材5が供され、ピン部の配置角度を除き鍛造クランク軸の最終形状が造形された上記の仕上材6を得る工程である。捩り成形工程は、ピン部の配置角度を含め鍛造クランク軸の最終形状が造形された、クランク軸と合致する形状を有する上記の捩り仕上材7を得る工程である。 The first pre-molding step is a step of modeling the above-described rough material 4. In the second pre-forming step, the finish punching material in which the final shape of the forged crankshaft is formed from the rough material 4 except for the arrangement angle of the pin portion by using the forming apparatus shown in FIG. 5 is a step of molding 5. The finish punching step is a step of obtaining the above finish material 6 in which the finish punching material 5 is provided and the final shape of the forged crankshaft is formed except for the arrangement angle of the pin portion. The torsion forming step is a step of obtaining the above-described torsion finishing material 7 having a shape that matches the crankshaft, in which the final shape of the forged crankshaft including the arrangement angle of the pin portion is formed.
 2-3.仕上打ち用素材の成形装置
 図10は、第2実施形態における成形装置の構成を示す縦断面図である。図10には、前記図8に示す粗素材4から仕上打ち用素材5を成形する成形装置を例示する。図10に示す縦断面の中で、第1、第4及び第5粗ピン部の部分と第2、第3及び第6粗ピン部の部分とは、実際には、いずれか一方が紙面の手前に位置し他方が奥に位置するが、便宜上、同一面上に図示する。
2-3. Finishing Punching Material Forming Device FIG. 10 is a longitudinal sectional view showing the configuration of the forming device in the second embodiment. FIG. 10 illustrates a forming apparatus for forming the finishing material 5 from the rough material 4 shown in FIG. In the longitudinal section shown in FIG. 10, the first, fourth, and fifth rough pin portions and the second, third, and sixth rough pin portions are actually one of the paper planes. Although it is located in front and the other is located in the back, it is shown on the same plane for convenience.
 図10に示す第2実施形態の成形装置では、粗素材4を、全ての粗ピン部を水平に配置した姿勢で金型内に収容する。この姿勢の粗素材4を仕上打ち用素材5に成形する。この点以外の構成は、前記図4に示す第1実施形態の成形装置と共通するので、詳しい説明は省略する。 In the molding apparatus according to the second embodiment shown in FIG. 10, the coarse material 4 is accommodated in the mold in a posture in which all the coarse pin portions are horizontally arranged. The rough material 4 in this posture is formed into a finishing material 5. Since the configuration other than this point is the same as that of the molding apparatus of the first embodiment shown in FIG.
 図11A及び図11Bは、図10に示す第2実施形態の成形装置による仕上打ち用素材の成形方法を説明するための縦断面図である。これらの図のうち、図11Aは成形初期の状態を示し、図11Bは成形完了時の状態を示す。 FIG. 11A and FIG. 11B are longitudinal sectional views for explaining a method of forming a finishing material by the forming apparatus of the second embodiment shown in FIG. Among these drawings, FIG. 11A shows a state in the initial stage of molding, and FIG. 11B shows a state when the molding is completed.
 図11Aに示すように、下側のジャーナル型10B、固定型9B、ピン型12及び補助ピン型13に粗素材4を収容し、プレス機の圧下を行う。すると、各粗ジャーナル部Jaを保持したジャーナル型10U、10Bが、中央の第5粗アーム部A5aの位置に配置された固定型9U、9Bに向けて軸方向に移動し、これに伴って、各粗ピン部Paに宛がわれたピン型12及び補助ピン型13も、固定型9U、9Bに向けて軸方向に移動する。これにより、粗素材4は、ジャーナル型10U、10B、固定型9U、9B、及びピン型12により、粗ジャーナル部Ja及び粗ピン部Paの軸方向の長さが維持されながら、粗アーム部Aaが軸方向に挟圧される。そして、粗アーム部Aaの厚みが仕上打ち用素材5の粗アーム部Abの厚みまで減少する(図11B参照)。 As shown in FIG. 11A, the raw material 4 is accommodated in the lower journal mold 10B, fixed mold 9B, pin mold 12 and auxiliary pin mold 13, and the press machine is reduced. Then, the journal molds 10U and 10B holding the respective coarse journal parts Ja are moved in the axial direction toward the fixed molds 9U and 9B arranged at the position of the center fifth coarse arm part A5a. The pin type 12 and the auxiliary pin type 13 addressed to each coarse pin part Pa also move in the axial direction toward the fixed types 9U and 9B. As a result, the coarse material 4 has the coarse arm portion Aa while the axial lengths of the coarse journal portion Ja and the coarse pin portion Pa are maintained by the journal dies 10U, 10B, the fixed dies 9U, 9B, and the pin die 12. Is clamped in the axial direction. Then, the thickness of the coarse arm portion Aa is reduced to the thickness of the coarse arm portion Ab of the finishing material 5 (see FIG. 11B).
 また、ジャーナル型10U、10B、並びにピン型12及び補助ピン型13の軸方向への移動に応じ、ピン型12は、それぞれの油圧シリンダ16の駆動に伴い、個々に、粗素材4の粗ピン部Paを軸方向と直角な方向に押圧する。これにより、粗素材4の粗ピン部Paは、軸方向と直角な方向にずれるため、その配置角度が正規の位置から外れていながらも、その偏芯量が仕上打ち用素材5の粗ピン部Pbの偏芯量まで増加した状態となる(図8、図11B参照)。 Further, as the journal molds 10U and 10B and the pin mold 12 and the auxiliary pin mold 13 move in the axial direction, the pin mold 12 individually moves the coarse pin 4 of the coarse material 4 as the hydraulic cylinders 16 are driven. The part Pa is pressed in a direction perpendicular to the axial direction. Thereby, since the rough pin portion Pa of the coarse material 4 is displaced in a direction perpendicular to the axial direction, the eccentric amount of the coarse pin portion of the finish punching material 5 is maintained even though the arrangement angle deviates from the normal position. It will be in the state which increased to the eccentric amount of Pb (refer FIG. 8, FIG. 11B).
 このようにして、バリのない粗素材4から、ピン部Pの配置角度を除きV型6気筒エンジン用鍛造クランク軸(最終鍛造製品)の形状と概ね一致した形状で、バリのない仕上打ち用素材5を成形することができる。次いで、このようなバリなしの仕上打ち用素材5を仕上打ちに供して仕上打ちを行えば、多少のバリは発生するが、ピン部の配置角度を除きV型6気筒エンジン用鍛造クランク軸の最終形状が造形された仕上材6を得ることができる。そして、この仕上材6に捩り成形を施せば、ピン部の配置角度も含めてV型6気筒エンジン用鍛造クランク軸の最終形状を造形することができる。したがって、V型6気筒エンジン用の鍛造クランク軸を歩留り良く、しかも、その形状を問わずに高い寸法精度で製造することが可能になる。 In this way, from the rough material 4 without burrs, except for the arrangement angle of the pin portion P, the shape of the forged crankshaft for the V-type 6-cylinder engine (final forged product) is almost the same as that of the burrs and is used for finishing. The material 5 can be formed. Next, if such a burr-free finish punching material 5 is used for finishing punching, a slight burr is generated, but the forged crankshaft for a V-type 6-cylinder engine is excluded except for the pin arrangement angle. The finishing material 6 with the final shape can be obtained. If the finishing material 6 is twisted, the final shape of the forged crankshaft for the V-type 6-cylinder engine can be formed, including the arrangement angle of the pin portion. Therefore, a forged crankshaft for a V-type 6-cylinder engine can be manufactured with high yield and high dimensional accuracy regardless of its shape.
 その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、ジャーナル型を軸方向へ移動させる機構としては、上記の実施形態ではプレス機を利用した楔機構を採用しているが、これに限らず、リンク機構を採用してもよいし、プレス機の利用に代えて油圧シリンダ、サーボモータ等を利用しても構わない。また、ピン型を軸方向と直角な方向へ移動させる機構としては、油圧シリンダに限らず、サーボモータであってもよい。 Others The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, as the mechanism for moving the journal mold in the axial direction, a wedge mechanism using a press machine is employed in the above embodiment, but the present invention is not limited to this, and a link mechanism may be employed. A hydraulic cylinder, a servo motor, or the like may be used instead of the above. Further, the mechanism for moving the pin mold in the direction perpendicular to the axial direction is not limited to the hydraulic cylinder but may be a servo motor.
 また、上記の実施形態では、上側金型支持台を上側ハードプレートに固定するとともに、下側金型支持台を下側ハードプレートで弾性的に支持し、当該下側ハードプレートに楔を設置して、この楔で上下のジャーナル型を移動させるようにした構成であるが、これとは上下を反転させた構成でも構わない。上下の各金型支持台をそれぞれのハードプレートで弾性的に支持し、ハードプレートにそれぞれ楔を設置して、各楔で上下の各ジャーナル型を移動させるように構成することもできる。 In the above embodiment, the upper mold support base is fixed to the upper hard plate, the lower mold support base is elastically supported by the lower hard plate, and a wedge is placed on the lower hard plate. In this configuration, the upper and lower journal types are moved by the wedge, but a configuration in which the upper and lower sides are inverted may be used. The upper and lower mold support bases may be elastically supported by the respective hard plates, and wedges may be installed on the hard plates, and the upper and lower journal molds may be moved by the respective wedges.
 また、上記の実施形態では、補助ピン型は、軸方向にのみ移動が許容されるが、対を成すピン型に向く方向にも移動が許容される構成としても構わない。この場合、ピン型と補助ピン型とが各粗ピン部Paを個々に上下から挟み込んで保持しながら、互いに連動して軸方向と直角な方向に移動する。 In the above embodiment, the auxiliary pin type is allowed to move only in the axial direction. However, the auxiliary pin type may be allowed to move in the direction toward the paired pin type. In this case, the pin type and the auxiliary pin type move in a direction perpendicular to the axial direction in conjunction with each other while holding each coarse pin portion Pa sandwiched from above and below.
 また、上記の実施形態では、ピン型を軸方向と直角な鉛直方向に移動させて粗ピン部Paを鉛直方向に押圧する構成であるが、粗ピン部Paを水平方向に押圧するようにピン型及びジャーナル型の配置を変形することもできる。 In the above embodiment, the pin type is moved in the vertical direction perpendicular to the axial direction to press the rough pin portion Pa in the vertical direction. However, the pin is configured to press the rough pin portion Pa in the horizontal direction. The arrangement of the mold and the journal mold can be modified.
 本発明は、V型6気筒エンジン用の鍛造クランク軸を製造する際に有用である。 The present invention is useful when manufacturing a forged crankshaft for a V-type 6-cylinder engine.
  1:鍛造クランク軸、  J、J1~J4:ジャーナル部、
  P、P1~P6:ピン部、  Fr:フロント部、
  Fl:フランジ部、  A、A1~A9:クランクアーム部、
  2:ビレット、  
  4:粗素材、  Ja、J1a~J4a:粗素材の粗ジャーナル部、
  Pa、P1a~P6a:粗素材の粗ピン部、
  Fra:粗素材の粗フロント部、  Fla:粗素材の粗フランジ部、
  Aa、A1a~A9a:粗素材の粗クランクアーム部、
  5:仕上打ち用素材、  
  Jb、J1b~J4b:仕上打ち用素材の粗ジャーナル部、
  Pb、P1b~P6b:仕上打ち用素材の粗ピン部、
  Frb:仕上打ち用素材の粗フロント部、  
  Flb:仕上打ち用素材の粗フランジ部、
  Ab、A1b~A9b:仕上打ち用素材の粗クランクアーム部、
  5a:噛み出し部、
  6:仕上材、  Jc、J1c~J4c:仕上材のジャーナル部、
  Pc、P1c~P6c:仕上材のピン部、
  Frc:仕上材のフロント部、  Flc:仕上材のフランジ部、
  Ac、A1c~A9c:仕上材のクランクアーム部、
  7:捩り仕上材、  Jd、J1d~J4d:捩り仕上材のジャーナル部、
  Pd、P1d~P6d:捩り仕上材のピン部、
  Frd:捩り仕上材のフロント部、  Fld:捩り仕上材のフランジ部、
  Ad、A1d~A9d:捩り仕上材のクランクアーム部、
  9U、9B:固定型、  10U、10B:ジャーナル型、
  10Ua、10Ba:ジャーナル型の第1彫り込み部、
  10Ub、10Bb:ジャーナル型の第2彫り込み部、
  12:ピン型、  12a:彫り込み部、  12c:凸部、
  13:補助ピン型、  13a:彫り込み部、  13c:凸部、
  14U、14B:第1、4粗ジャーナル部のジャーナル型の傾斜面、
  15U、15B:第2、3粗ジャーナル部のジャーナル型の傾斜面、
  16:油圧シリンダ、  
  20:下側ハードプレート、  21:上側ハードプレート、
  22:下側金型支持台、  23:上側金型支持台、
  24:弾性部材、  25:支柱、  26:第1楔、  27:第2楔
1: Forged crankshaft, J, J1-J4: Journal part,
P, P1 to P6: Pin part, Fr: Front part,
Fl: Flange part A, A1-A9: Crank arm part,
2: Billet,
4: Coarse material, Ja, J1a to J4a: Coarse journal portion of the coarse material,
Pa, P1a to P6a: Coarse pin portion of the coarse material,
Fra: Coarse front part of coarse material, Fla: Coarse flange part of coarse material,
Aa, A1a to A9a: Coarse crank arm portion of coarse material,
5: Finishing material,
Jb, J1b to J4b: Coarse journal part of finishing material,
Pb, P1b to P6b: Coarse pin portion of the material for finishing,
Frb: rough front portion of the material for finishing,
Flb: Coarse flange portion of material for finishing,
Ab, A1b to A9b: Coarse crank arm portion of finishing material,
5a: biting part,
6: Finishing material, Jc, J1c to J4c: Finishing material journal,
Pc, P1c to P6c: Finish material pins,
Frc: front part of the finishing material, Flc: flange part of the finishing material,
Ac, A1c to A9c: Crank arm portion of finishing material,
7: Twisted finish material, Jd, J1d to J4d: Journal portion of twisted finish material,
Pd, P1d to P6d: Pin portions of twisted finishing material,
Frd: front portion of twisted finish material, Fld: flange portion of twisted finish material,
Ad, A1d to A9d: Crank arm portion of torsion finish material,
9U, 9B: fixed type, 10U, 10B: journal type,
10Ua, 10Ba: Journal type first engraving part,
10Ub, 10Bb: Journal type second engraving part,
12: Pin type, 12a: Engraved part, 12c: Convex part,
13: auxiliary pin type, 13a: engraved portion, 13c: convex portion,
14U, 14B: Journal-type inclined surfaces of the first and fourth coarse journal portions,
15U, 15B: Journal-type inclined surfaces of the second and third coarse journal portions,
16: hydraulic cylinder,
20: Lower hard plate, 21: Upper hard plate,
22: Lower mold support base, 23: Upper mold support base,
24: elastic member, 25: support, 26: first wedge, 27: second wedge

Claims (14)

  1.  V型6気筒エンジン用の鍛造クランク軸を製造する過程で、前記鍛造クランク軸の最終形状を造形する仕上打ちに供する仕上打ち用素材を、粗素材から成形する装置であって、
     前記粗素材は、
     前記鍛造クランク軸の各ジャーナル部と軸方向の長さが同じ粗ジャーナル部と、
     前記鍛造クランク軸の各ピン部と軸方向の長さが同じ粗ピン部と、
     前記鍛造クランク軸の各クランクアーム部よりも軸方向の厚みが厚い粗クランクアーム部と、を有し、
     前記粗素材の前記粗ピン部のうち、前記第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記鍛造クランク軸の前記ピン部の偏芯量の√3/2よりも小さくされ、中央の前記第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記鍛造クランク軸の前記第1、第2、第5及び第6ピン部に対して反対方向で、前記鍛造クランク軸の前記ピン部の偏芯量の√3/2よりも小さくされており、
     前記成形装置は、
     前記粗素材の中央の前記第5粗クランクアーム部の位置に配置され、その軸方向の厚みが前記鍛造クランク軸の前記第5クランクアーム部の厚みと同じ固定型と、
     前記粗ピン部それぞれの位置に配置され、当該粗ピン部それぞれに宛がわれるとともに、各々が、当該粗ピン部につながる前記粗クランクアーム部の側面に接触しつつ、前記固定型に向けた軸方向及び軸方向と直角な方向に移動するピン型と、
     前記粗ジャーナル部それぞれの位置に配置され、当該粗ジャーナル部を個々に軸方向と直角な方向から挟み込んで保持するとともに、各々が、当該粗ジャーナル部につながる前記粗クランクアーム部の側面に接触しつつ、前記固定型に向けて軸方向に移動するジャーナル型と、を備え、
     前記粗ジャーナル部を前記ジャーナル型によって挟み込んで保持し、前記粗ピン部に前記ピン型を宛がった状態から、前記ジャーナル型を軸方向に移動させるとともに、前記ピン型を軸方向に移動させつつ軸方向と直角な方向に移動させることにより、前記粗クランクアーム部を軸方向に挟圧してその厚みを前記鍛造クランク軸の前記クランクアーム部の厚みまで減少させるとともに、前記第1、第2、第5及び第6粗ピン部と、前記第3及び第4粗ピン部とを軸方向と直角な方向で互いに反対方向に押圧してその偏芯量を前記鍛造クランク軸の前記ピン部の偏芯量の√3/2まで増加させる、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    In the process of manufacturing a forged crankshaft for a V-type 6-cylinder engine, an apparatus for molding a finish punching material to be used for finishing punching for shaping the final shape of the forged crankshaft from a crude material,
    The crude material is
    A rough journal portion having the same axial length as each journal portion of the forged crankshaft,
    A rough pin portion having the same axial length as each pin portion of the forged crankshaft,
    A rough crank arm portion having a thicker axial thickness than each crank arm portion of the forged crankshaft,
    Among the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis and have an eccentricity amount in a direction perpendicular to the axial direction. The eccentric portion of the forged crankshaft is less than √3 / 2 of the eccentric amount, and the central third and fourth coarse pin portions are arranged at the same position around the axis and perpendicular to the axial direction. The eccentric amount of the forged crankshaft is opposite to the first, second, fifth, and sixth pin portions of the forged crankshaft and is more than √3 / 2 of the eccentric amount of the pin portion of the forged crankshaft. Have been made smaller,
    The molding device includes:
    A fixed die that is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and whose axial thickness is the same as the thickness of the fifth crank arm portion of the forged crankshaft;
    Shafts arranged at the positions of the rough pin portions and addressed to the rough pin portions, respectively, and in contact with the side surfaces of the rough crank arm portions connected to the rough pin portions, respectively, toward the fixed mold A pin type that moves in a direction perpendicular to the direction and the axial direction;
    The coarse journal portions are arranged at positions of the coarse journal portions, hold the coarse journal portions individually from a direction perpendicular to the axial direction, and contact each side surface of the coarse crank arm portion connected to the coarse journal portion. A journal type that moves in the axial direction toward the fixed type,
    The coarse journal portion is sandwiched and held by the journal die, and the journal die is moved in the axial direction and the pin die is moved in the axial direction from the state where the pin die is addressed to the coarse pin portion. While moving in a direction perpendicular to the axial direction, the coarse crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crank shaft, and the first and second The fifth and sixth rough pin portions and the third and fourth rough pin portions are pressed in directions opposite to each other in a direction perpendicular to the axial direction, and the amount of eccentricity thereof is reduced by the pin portion of the forged crankshaft. An apparatus for forming a material for finishing punching of a forged crankshaft for a V-type 6-cylinder engine that increases the eccentricity to √3 / 2.
  2.  請求項1に記載の成形装置において、
     前記ピン型は、前記粗ピン部それぞれにおける前記ピン型が宛がわれた側とは反対の外側に配置された補助ピン型を含んでおり、
     前記ジャーナル型、並びに前記ピン型及びこのピン型と対を成す前記補助ピン型の軸方向への移動に伴って、前記ジャーナル型と、前記ピン型及び前記補助ピン型との隙間が閉ざされた後に、押圧変形する前記粗ピン部が前記補助ピン型に到達するように、前記ピン型の軸方向と直角な方向への移動が制御される、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 1,
    The pin type includes an auxiliary pin type disposed on the outer side opposite to the side to which the pin type is addressed in each of the rough pin portions,
    As the journal type, the pin type, and the auxiliary pin type paired with the pin type move in the axial direction, the gap between the journal type, the pin type, and the auxiliary pin type is closed. Later, the forging crankshaft for a V-type 6-cylinder engine is controlled to move in a direction perpendicular to the axial direction of the pin mold so that the rough pin portion that is deformed by pressure reaches the auxiliary pin mold. Material forming equipment.
  3.  請求項2に記載の成形装置において、
     前記ピン型の軸方向と直角な方向への総移動距離を100%としたとき、当該ピン型に隣接する前記ジャーナル型の軸方向への移動が完了した時点で、当該ピン型の軸方向と直角な方向への移動距離が総移動距離の90%以下であり、この後に当該ピン型の軸方向と直角な方向への移動が完了する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 2,
    When the total movement distance in the direction perpendicular to the axial direction of the pin mold is 100%, when the movement of the journal mold adjacent to the pin mold in the axial direction is completed, the axial direction of the pin mold For finishing forging of a forged crankshaft for a V-type 6-cylinder engine in which the movement distance in the direction perpendicular to the axis is 90% or less of the total movement distance, and the movement in the direction perpendicular to the axial direction of the pin mold is completed thereafter. Material molding equipment.
  4.  請求項1~3のいずれか1項に記載の成形装置において、
     前記固定型、前記ピン型及び前記ジャーナル型は、軸方向と直角な方向に沿った方向に圧下が可能なプレス機に取り付けられており、
     前記プレス機の圧下に伴って、前記ジャーナル型が前記粗ジャーナル部を挟み込んで保持するとともに、前記ピン型が前記粗ピン部に宛がわれ、そのまま前記プレス機の圧下を継続するのに伴って、前記ジャーナル型が個々に楔機構により軸方向に移動すると同時に、このジャーナル型の移動に伴って、前記ピン型が個々に軸方向に移動する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to any one of claims 1 to 3,
    The fixed die, the pin die, and the journal die are attached to a press machine capable of being reduced in a direction along a direction perpendicular to the axial direction,
    Along with the pressing of the press, the journal mold sandwiches and holds the rough journal part, and the pin mold is addressed to the rough pin part and continues to press down the press as it is. The forging crankshaft for a V-type 6-cylinder engine in which the journal mold is individually moved in the axial direction by the wedge mechanism and at the same time the pin mold is individually moved in the axial direction as the journal mold is moved. Material forming equipment.
  5.  請求項4に記載の成形装置において、
     前記楔機構の楔角度が前記ジャーナル型のそれぞれで互いに異なる、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 4, wherein
    An apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine, wherein the wedge mechanisms have different wedge angles in each of the journal dies.
  6.  請求項4又は5に記載の成形装置において、
     前記ピン型が油圧シリンダに連結されており、この油圧シリンダの駆動により軸方向と直角な方向に移動する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 4 or 5,
    An apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine, wherein the pin type is connected to a hydraulic cylinder and moves in a direction perpendicular to the axial direction by driving of the hydraulic cylinder.
  7.  V型6気筒エンジン用の鍛造クランク軸を製造する過程で、前記鍛造クランク軸の最終形状を造形する仕上打ちに供する仕上打ち用素材を、粗素材から成形する装置であって、
     前記粗素材は、
     前記鍛造クランク軸の各ジャーナル部と軸方向の長さが同じ粗ジャーナル部と、
     前記鍛造クランク軸の各ピン部と軸方向の長さが同じ粗ピン部と、
     前記鍛造クランク軸の各クランクアーム部よりも軸方向の厚みが厚い粗クランクアーム部と、を有し、
     前記粗素材の前記粗ピン部のうち、前記第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記鍛造クランク軸の前記ピン部の偏芯量の√3/2と同じにされ、中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記第1、第2、第5及び第6ピン部に対して反対方向で、前記鍛造クランク軸の前記ピン部の偏芯量の√3/2と同じにされており、
     前記成形装置は、
     前記粗素材の中央の前記第5粗クランクアーム部の位置に配置され、その軸方向の厚みが前記鍛造クランク軸の前記第5クランクアーム部の厚みと同じ固定型と、
     前記粗ピン部それぞれの位置に配置され、当該粗ピン部それぞれに宛がわれるとともに、各々が、当該粗ピン部につながる前記粗クランクアーム部の側面に接触しつつ、前記固定型に向けた軸方向及び軸方向と直角な方向に移動するピン型と、
     前記粗ジャーナル部それぞれの位置に配置され、当該粗ジャーナル部を個々に軸方向と直角な方向から挟み込んで保持するとともに、各々が、当該粗ジャーナル部につながる前記粗クランクアーム部の側面に接触しつつ、前記固定型に向けて軸方向に移動するジャーナル型と、を備え、
     前記粗ジャーナル部を前記ジャーナル型によって挟み込んで保持し、前記粗ピン部に前記ピン型を宛がった状態から、前記ジャーナル型を軸方向に移動させるとともに、前記ピン型を軸方向に移動させつつ軸方向と直角な方向に移動させることにより、前記粗クランクアーム部を軸方向に挟圧してその厚みを前記鍛造クランク軸の前記クランクアーム部の厚みまで減少させるとともに、前記粗ピン部を軸方向と直角な方向に押圧してその偏芯量を前記鍛造クランク軸の前記ピン部の偏芯量まで増加させる、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    In the process of manufacturing a forged crankshaft for a V-type 6-cylinder engine, an apparatus for molding a finish punching material to be used for finishing punching for shaping the final shape of the forged crankshaft from a crude material,
    The crude material is
    A rough journal portion having the same axial length as each journal portion of the forged crankshaft,
    A rough pin portion having the same axial length as each pin portion of the forged crankshaft,
    A rough crank arm portion having a thicker axial thickness than each crank arm portion of the forged crankshaft,
    Among the coarse pin portions of the coarse material, the first, second, fifth and sixth coarse pin portions have the same arrangement position around the axis and have an eccentricity amount in a direction perpendicular to the axial direction. The eccentric amount of the pin portion of the forged crankshaft is the same as √3 / 2, and the central third and fourth coarse pin portions have the same arrangement position around the axis and are perpendicular to the axial direction. The amount of eccentricity is the same as √3 / 2 of the amount of eccentricity of the pin portion of the forged crankshaft in the opposite direction to the first, second, fifth and sixth pin portions,
    The molding device includes:
    A fixed die that is disposed at the position of the fifth coarse crank arm portion at the center of the coarse material, and whose axial thickness is the same as the thickness of the fifth crank arm portion of the forged crankshaft;
    Shafts arranged at the positions of the rough pin portions and addressed to the rough pin portions, respectively, and in contact with the side surfaces of the rough crank arm portions connected to the rough pin portions, respectively, toward the fixed mold A pin type that moves in a direction perpendicular to the direction and the axial direction;
    The coarse journal portions are arranged at positions of the coarse journal portions, hold the coarse journal portions individually from a direction perpendicular to the axial direction, and contact each side surface of the coarse crank arm portion connected to the coarse journal portion. A journal type that moves in the axial direction toward the fixed type,
    The coarse journal portion is sandwiched and held by the journal die, and the journal die is moved in the axial direction and the pin die is moved in the axial direction from the state where the pin die is addressed to the coarse pin portion. While moving in a direction perpendicular to the axial direction, the coarse crank arm portion is clamped in the axial direction to reduce its thickness to the thickness of the crank arm portion of the forged crank shaft, and the coarse pin portion is pivoted. An apparatus for forming a material for finishing punching of a forged crankshaft for a V-type 6-cylinder engine, which presses in a direction perpendicular to the direction to increase the amount of eccentricity to the amount of eccentricity of the pin portion of the forged crankshaft.
  8.  請求項7に記載の成形装置において、
     前記ピン型は、前記粗ピン部それぞれにおける前記ピン型が宛がわれた側とは反対の外側に配置された補助ピン型を含んでおり、
     前記ジャーナル型、並びに前記ピン型及びこのピン型と対を成す前記補助ピン型の軸方向への移動に伴って、前記ジャーナル型と、前記ピン型及び前記補助ピン型との隙間が閉ざされた後に、押圧変形する前記粗ピン部が前記補助ピン型に到達するように、前記ピン型の軸方向と直角な方向への移動が制御される、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 7,
    The pin type includes an auxiliary pin type disposed on the outer side opposite to the side to which the pin type is addressed in each of the rough pin portions,
    As the journal type, the pin type, and the auxiliary pin type paired with the pin type move in the axial direction, the gap between the journal type, the pin type, and the auxiliary pin type is closed. Later, the forging crankshaft for a V-type 6-cylinder engine is controlled to move in a direction perpendicular to the axial direction of the pin mold so that the rough pin portion that is deformed by pressure reaches the auxiliary pin mold. Material forming equipment.
  9.  請求項8に記載の成形装置において、
     前記ピン型の軸方向と直角な方向への総移動距離を100%としたとき、当該ピン型に隣接する前記ジャーナル型の軸方向への移動が完了した時点で、当該ピン型の軸方向と直角な方向への移動距離が総移動距離の90%以下であり、この後に当該ピン型の軸方向と直角な方向への移動が完了する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 8, wherein
    When the total movement distance in the direction perpendicular to the axial direction of the pin mold is 100%, when the movement of the journal mold adjacent to the pin mold in the axial direction is completed, the axial direction of the pin mold For finishing forging of a forged crankshaft for a V-type 6-cylinder engine in which the movement distance in the direction perpendicular to the axis is 90% or less of the total movement distance, and the movement in the direction perpendicular to the axial direction of the pin mold is completed thereafter. Material molding equipment.
  10.  請求項7~9のいずれか1項に記載の成形装置において、
     前記固定型、前記ピン型及び前記ジャーナル型は、軸方向と直角な方向に沿った方向に圧下が可能なプレス機に取り付けられており、
     前記プレス機の圧下に伴って、前記ジャーナル型が前記粗ジャーナル部を挟み込んで保持するとともに、前記ピン型が前記粗ピン部に宛がわれ、そのまま前記プレス機の圧下を継続するのに伴って、前記ジャーナル型が個々に楔機構により軸方向に移動すると同時に、このジャーナル型の移動に伴って、前記ピン型が個々に軸方向に移動する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to any one of claims 7 to 9,
    The fixed die, the pin die, and the journal die are attached to a press machine capable of being reduced in a direction along a direction perpendicular to the axial direction,
    Along with the pressing of the press, the journal mold sandwiches and holds the rough journal part, and the pin mold is addressed to the rough pin part and continues to press down the press as it is. The forging crankshaft for a V-type 6-cylinder engine in which the journal mold is individually moved in the axial direction by the wedge mechanism and at the same time the pin mold is individually moved in the axial direction as the journal mold is moved. Material forming equipment.
  11.  請求項10に記載の成形装置において、
     前記楔機構の楔角度が前記ジャーナル型のそれぞれで互いに異なる、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 10,
    An apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine, wherein the wedge mechanisms have different wedge angles in each of the journal dies.
  12.  請求項10又は11に記載の成形装置において、
     前記ピン型が油圧シリンダに連結されており、この油圧シリンダの駆動により軸方向と直角な方向に移動する、V型6気筒エンジン用鍛造クランク軸の仕上打ち用素材の成形装置。
    The molding apparatus according to claim 10 or 11,
    An apparatus for forming a finishing material for a forged crankshaft for a V-type 6-cylinder engine, wherein the pin type is connected to a hydraulic cylinder and moves in a direction perpendicular to the axial direction by driving of the hydraulic cylinder.
  13.  V型6気筒エンジン用の鍛造クランク軸を製造する方法であって、
     前記製造方法は、下記の第1予備成形工程、第2予備成形工程、仕上打ち工程、及び捩り工程、の一連の工程を含む:
     請求項1~6のいずれか1項に記載の成形装置に供する前記粗素材として、前記第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記鍛造クランク軸の前記ピン部の偏芯量の√3/2よりも小さくされ、前記粗素材の中央の第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記第1、第2、第5及び第6ピン部に対して反対方向で、前記鍛造クランク軸の前記ピン部の偏芯量の√3/2よりも小さくされた粗素材を造形する第1予備成形工程;
     請求項1~6のいずれか1項に記載の成形装置を用い、前記仕上打ち用素材として、前記第1、第2、第5及び第6粗ピン部と、前記第3及び第4粗ピン部とは、軸方向と直角な方向の偏芯量が互いに反対方向で、前記鍛造クランク軸の前記ピン部の偏芯量の√3/2と同じにされた仕上打ち用素材を成形する第2予備成形工程;
     前記仕上打ち用素材を全ての前記粗ピン部を水平姿勢にした状態で仕上打ちし、前記ピン部の配置角度を除き前記鍛造クランク軸の最終形状が造形された仕上材を成形する仕上打ち工程;及び
     前記仕上材の前記ピン部の配置角度を前記鍛造クランク軸の前記ピン部の配置角度に調整する捩り工程。
    A method for manufacturing a forged crankshaft for a V-6 engine,
    The manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below:
    The first, second, fifth, and sixth rough pin portions as the rough material to be provided to the molding apparatus according to any one of claims 1 to 6 have the same arrangement position around the axis, and the shaft The eccentric amount in a direction perpendicular to the direction is smaller than √3 / 2 of the eccentric amount of the pin portion of the forged crankshaft, and the third and fourth rough pin portions in the center of the rough material are Are disposed at the same position, and the eccentricity in the direction perpendicular to the axial direction is opposite to the first, second, fifth and sixth pin portions, and the pin portion of the forged crankshaft is offset. A first preforming step of forming a rough material having a core amount smaller than √3 / 2;
    The molding apparatus according to any one of claims 1 to 6, wherein the first, second, fifth, and sixth rough pin portions, and the third and fourth rough pins are used as the finishing material. The part is formed by a finish punching material in which the amount of eccentricity in a direction perpendicular to the axial direction is opposite to each other and is equal to √3 / 2 of the amount of eccentricity of the pin portion of the forged crankshaft. 2 preforming steps;
    Finishing and punching the finishing material in a state where all the rough pin portions are in a horizontal posture, and forming a finishing material in which the final shape of the forged crankshaft is formed except for the arrangement angle of the pin portions And a twisting step of adjusting an arrangement angle of the pin portion of the finishing material to an arrangement angle of the pin portion of the forged crankshaft.
  14.  V型6気筒エンジン用の鍛造クランク軸を製造する方法であって、
     前記製造方法は、下記の第1予備成形工程、第2予備成形工程、仕上打ち工程、及び捩り工程、の一連の工程を含む:
     請求項7~12のいずれか1項に記載の成形装置に供する前記粗素材として、前記粗ピン部のうち、前記第1、第2、第5及び第6粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記鍛造クランク軸の前記ピン部の偏芯量の√3/2と同じにされ、前記粗素材の中央の前記第3及び第4粗ピン部は、軸回りの配置位置が互いに同じで、軸方向と直角な方向の偏芯量が前記第1、第2、第5及び第6ピン部に対して反対方向で、前記鍛造クランク軸の前記ピン部の偏芯量の√3/2と同じにされた粗素材を造形する第1予備成形工程;
     請求項7~12のいずれか1項に記載の成形装置を用い、前記仕上打ち用素材として、前記ピン部の配置角度を除き前記鍛造クランク軸の最終形状が造形された仕上打ち用素材を成形する第2予備成形工程;
     前記仕上打ち用素材を仕上打ちし、前記ピン部の配置角度を除き前記鍛造クランク軸の最終形状が造形された仕上材を成形する仕上打ち工程;及び
     前記仕上材の前記ピン部の配置角度を前記鍛造クランク軸の前記ピン部の配置角度に調整する捩り工程。
     
    A method for manufacturing a forged crankshaft for a V-6 engine,
    The manufacturing method includes a series of steps including a first preforming step, a second preforming step, a finish punching step, and a twisting step described below:
    The coarse material provided to the molding apparatus according to any one of claims 7 to 12, wherein the first, second, fifth, and sixth coarse pin portions of the coarse pin portion are arranged around an axis. The eccentricity in the direction perpendicular to the axial direction at the same position is the same as √3 / 2 of the eccentricity of the pin portion of the forged crankshaft, and the third and third in the center of the crude material The four rough pin portions have the same arrangement position around the axis, and the eccentric amount in a direction perpendicular to the axial direction is opposite to the first, second, fifth and sixth pin portions, and the forging A first preforming step of forming a rough material having the same eccentricity as √3 / 2 of the pin portion of the crankshaft;
    Using the molding apparatus according to any one of claims 7 to 12, as the finish punching material, a finish punching material in which a final shape of the forged crankshaft is formed except for an arrangement angle of the pin portion is molded. A second preforming step to perform;
    Finishing the finishing material, and forming a finishing material in which the final shape of the forged crankshaft is formed except for the arrangement angle of the pin portion; and the arrangement angle of the pin portion of the finishing material; A twisting step of adjusting to an arrangement angle of the pin portion of the forged crankshaft;
PCT/JP2015/001144 2014-03-06 2015-03-04 Molding device for finishing material for forged crank shaft for v-type six cylinder engine, and production method for forged crank shaft for v-type six cylinder engine using the same WO2015133133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506140A JP6172376B2 (en) 2014-03-06 2015-03-04 Forming device for finishing punched material of forged crankshaft for V-type 6-cylinder engine and method for manufacturing forged crankshaft for V-type 6-cylinder engine using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-043527 2014-03-06
JP2014043527 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015133133A1 true WO2015133133A1 (en) 2015-09-11

Family

ID=54054948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001144 WO2015133133A1 (en) 2014-03-06 2015-03-04 Molding device for finishing material for forged crank shaft for v-type six cylinder engine, and production method for forged crank shaft for v-type six cylinder engine using the same

Country Status (2)

Country Link
JP (1) JP6172376B2 (en)
WO (1) WO2015133133A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112047A4 (en) * 2014-02-28 2017-12-13 Nippon Steel & Sumitomo Metal Corporation Device for forming finish-forging blank for forged crankshaft of inline-six engine, and method for manufacturing forged crankshaft of inline-six engine using said device
CN113059102A (en) * 2021-03-15 2021-07-02 中机精密成形产业技术研究院(安徽)股份有限公司 Multi-station forging method and device for guide bar hanger base for warp knitting machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121539A (en) * 1994-10-19 1996-05-14 Mitsubishi Motors Corp Crankshaft of v type 6-cylinder engine and its manufacture
JP2002168229A (en) * 2000-11-29 2002-06-14 Sumitomo Metal Ind Ltd Crankshaft, its manufacturing method, and engine with crankshaft
KR100818008B1 (en) * 2006-09-25 2008-03-31 현진소재주식회사 Forging molding of crank shaft
JP2011078995A (en) * 2009-10-05 2011-04-21 Toyota Motor Corp Method and device for molding crankshaft blank
JP2012161819A (en) * 2011-02-08 2012-08-30 Toyota Motor Corp Apparatus and method for manufacturing crankshaft, and crankshaft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121539A (en) * 1994-10-19 1996-05-14 Mitsubishi Motors Corp Crankshaft of v type 6-cylinder engine and its manufacture
JP2002168229A (en) * 2000-11-29 2002-06-14 Sumitomo Metal Ind Ltd Crankshaft, its manufacturing method, and engine with crankshaft
KR100818008B1 (en) * 2006-09-25 2008-03-31 현진소재주식회사 Forging molding of crank shaft
JP2011078995A (en) * 2009-10-05 2011-04-21 Toyota Motor Corp Method and device for molding crankshaft blank
JP2012161819A (en) * 2011-02-08 2012-08-30 Toyota Motor Corp Apparatus and method for manufacturing crankshaft, and crankshaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112047A4 (en) * 2014-02-28 2017-12-13 Nippon Steel & Sumitomo Metal Corporation Device for forming finish-forging blank for forged crankshaft of inline-six engine, and method for manufacturing forged crankshaft of inline-six engine using said device
CN113059102A (en) * 2021-03-15 2021-07-02 中机精密成形产业技术研究院(安徽)股份有限公司 Multi-station forging method and device for guide bar hanger base for warp knitting machine
CN113059102B (en) * 2021-03-15 2023-12-01 中机精密成形产业技术研究院(安徽)股份有限公司 Multi-station forging method and device for guide bar hanger base for warp knitting machine

Also Published As

Publication number Publication date
JP6172376B2 (en) 2017-08-02
JPWO2015133133A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5924440B2 (en) Molding device for finishing punch material of forged crankshaft for 3-cylinder engine
JP6179660B2 (en) Finishing material forming apparatus for forged crankshaft for 3-cylinder engine and method for producing forged crankshaft for 3-cylinder engine using the same
JP5708893B2 (en) Forging crankshaft finishing material forming equipment
JP6172376B2 (en) Forming device for finishing punched material of forged crankshaft for V-type 6-cylinder engine and method for manufacturing forged crankshaft for V-type 6-cylinder engine using the same
JP6020766B2 (en) Finishing material forming apparatus for forged crankshaft for in-line 6-cylinder engine, and method for manufacturing forged crankshaft for in-line 6-cylinder engine using the same
JP6172377B2 (en) Forming device for finishing punched material of forged crankshaft for V-type 6-cylinder engine and method for manufacturing forged crankshaft for V-type 6-cylinder engine using the same
JP6179659B2 (en) Finishing material forming apparatus for forged crankshaft for 4-cylinder engine and method for producing forged crankshaft for 4-cylinder engine using the same
JP6160765B2 (en) Finishing material forming apparatus for forged crankshaft for in-line 6-cylinder engine, and method for manufacturing forged crankshaft for in-line 6-cylinder engine using the same
CN109982784B (en) Method for manufacturing forged crankshaft
JPWO2018230500A1 (en) Manufacturing method of forged crankshaft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757705

Country of ref document: EP

Kind code of ref document: A1