WO2015131845A1 - 对轮对的不均匀磨损进行修正的方法 - Google Patents

对轮对的不均匀磨损进行修正的方法 Download PDF

Info

Publication number
WO2015131845A1
WO2015131845A1 PCT/CN2015/073752 CN2015073752W WO2015131845A1 WO 2015131845 A1 WO2015131845 A1 WO 2015131845A1 CN 2015073752 W CN2015073752 W CN 2015073752W WO 2015131845 A1 WO2015131845 A1 WO 2015131845A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
traction
braking force
output
wheelset
Prior art date
Application number
PCT/CN2015/073752
Other languages
English (en)
French (fr)
Inventor
冯江华
刘可安
荣智林
高首聪
李鹏
王雨
Original Assignee
株洲南车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲南车时代电气股份有限公司 filed Critical 株洲南车时代电气股份有限公司
Publication of WO2015131845A1 publication Critical patent/WO2015131845A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a control method for automatic repair, in particular to a control method for automatically repairing uneven wear of a wheel set.
  • the control strategy of the electric locomotive for the motor is different according to the locomotive requirements, and one part will be divided into axis control, frame control or vehicle control.
  • different degrees of wheel diameter deviation will occur, including: First, the driving force (traction or braking) size during normal operation of the locomotive driven by the axis control or the frame control. Inconsistent, wheel-to-tread wear is inconsistent; second, after the machine wheel is used for a period of time, the wheel-to-tread surface will have different wear due to scratches, cracks, peeling, etc.; the third is uneven wear of the wheel-to-tread surface caused by the fault.
  • the wear of the wheel pair of the machine mainly brings the following hazards: First, the worn wheel pair will continuously impact the rail during operation. The higher the speed, the greater the impact, causing the rail surface to be injured; the second is that the running locomotive is pulling or When the brake is used for speed regulation, it will often cause idling or sliding at the wheel-to-scratch, and damage the wheel-rail adhesion of the locomotive when the traction or braking is broken. The third is the abrasion of the tread and the strong vibration caused by the peeling in the running of the locomotive. Quality status. In order to avoid these hazards, the wheelsets must be wheeled in the daily maintenance of the locomotive to make the wheelsets smooth and smooth. After each round of treatment, the wheel diameter will become smaller.
  • the wheel diameter of the wheel pair will further decrease.
  • the degree of wear between the wheel pairs of the machine is often different for a variety of reasons. Some of the wheel wears are more serious, the number of turns is more or the thickness of the wheel is deeper, resulting in different degrees of deviation compared with the wheel diameters of other wheel sets.
  • One of the existing electric locomotives consists of 2 to 4 bogies (not to exclude other shafts). Each bogie includes 2 or 3 traction motors, each of which drives a wheelset.
  • the control system calculates the traction force value that the locomotive should output through the driver's main controller handle level signal; and then calculates the output torque of each traction motor according to the number of traction motors currently available to the locomotive.
  • the calculation of the output torque of the locomotive motor is a relatively simple method. It does not consider the series of effects caused by the change of the wheel diameter after the locomotive is applied. It is considered that the traction/braking force of each wheelset output is the same, so the traction output pair is ignored. The effect of the wheel on wear.
  • the wheel pair is small, the wheel pair with a small wheel diameter is more likely to idling and sliding under the same traction motor torque, and the wearer is more worn, which makes the situation worse.
  • the limit of the wheel diameter deviation in the overall technical specification of a locomotive is that the wheel wheel diameter difference is not more than 2 mm coaxial, the same bogie is not more than 12 mm, and the same car is not more than 32 mm.
  • the wheel pair exceeds the limit, the whole wheel has to be smashed, which greatly aggravates the consumption of the entire wheel pair, shortens the service life of the wheel pair, and causes huge economic losses.
  • the technical problem to be solved by the present invention is to provide a method for correcting uneven wear of the wheel set, by which the uneven wear of the wheel set can be corrected to extend the service life of the wheel set.
  • the technical solution of the present invention is to provide a method for correcting uneven wear of a wheel set, comprising the following steps:
  • the controller level signal is collected and transmitted to the locomotive control system, and the locomotive control system calculates the wheel traction correction coefficient ⁇ n of the n-th wheelset. And calculating, according to the correction system, the wheel-to-wheel traction force f wheel_n of the corrected n-axis wheel set and the torque that the n-th axis traction motor should output;
  • the controller level signal is collected and transmitted to the locomotive control system, and the locomotive control system calculates the wheel braking force correction coefficient of the n-th wheel pair. ⁇ n, and the n-th correction system in accordance with the wheel shaft of the correction of the calculated wheel peripheral wheel braking force and the n f wheel_n shaft brake torque of the motor to be output.
  • the present invention has the advantage that the wheel traction/braking force correction factor can be calculated based on the input wheelset wheel diameter value.
  • the circumferential traction/braking force of the current controller level can be further obtained, so that the torque of the corrected n-axis traction motor can be calculated.
  • the torque outputted by the n-axis traction motor can be corrected according to the actual wear condition of the wheel pair, so that the traction/braking force of the n-axis wheel pair can be adjusted correspondingly, and the wear of the wheel pair with smaller wheel diameter can be reduced.
  • the wear condition of all wheel sets of the electric locomotive is made more average, the probability of the overall boring wheel is reduced, and the service life of the wheel set is prolonged.
  • the locomotive control system controls the traction/braking force of the locomotive to continue to decrease according to their respective characteristic curves; if the handle remains at the same position, the traction/system Power is reduced to zero.
  • the locomotive control system is provided with a correction calculation unit that can calculate the correction coefficient and the output torque of the motor that controls the corresponding wheelset based on the input wheelset wheel diameter value. Calculating the output torque according to the correction coefficient to control the actual traction/braking force is more accurate, can effectively balance the wear of the wheel pair, and reduce the probability of the overall wheel.
  • the n-axis wheel-to-axle traction/braking force correction factor Where Dn is the n-axis wheelset wheel diameter, For the average wheel diameter of the vehicle, k is the adjustment factor.
  • the modification coefficient can also be determined according to other methods. In the embodiment of the present invention, the value of the adjustment coefficient k is selected and adjusted according to the actual vehicle type and the operating environment, and the function of the correction system can be maximized.
  • the n-axis wheel-to-axle traction/braking force is Among them, F loco is the traction/braking force of the whole vehicle. According to the actual wear condition of the n-axis wheel set, the n-axis wheel-to-axle traction/braking force is adjusted by the correction factor.
  • the torque that the nth axis traction motor should output is the torque that the nth axis traction motor should output:
  • the torque is also possible to adjust the torque according to the ratio of the correction coefficient, such as adjusting the diameters from small to large on the basis of the standard torque by adjusting -10%, -5%, 0%, 5%, and the like.
  • the coefficient of adjustment is not limited to 5%, and may be 1%, 0.5%, 3%, etc., and the ratio of the correction coefficient and the correction coefficient is selected according to actual conditions.
  • the results calculated according to the above formula are closer to the actual situation of the wheel, and it is easy to achieve more precise control.
  • the output torque of the motor when the output effect of the motor is greater than the range of the traction/braking force of the motor when the superimposed effect occurs, the output torque of the motor is maximized according to the characteristic curve of the traction/braking force. Value output.
  • the output torque is output in accordance with the torque to be output when the traction/braking force characteristic curve of the motor is within the range. When the output torque exceeds the characteristic curve range, it is output according to the maximum value (corresponding value of the envelope) of the characteristic curve of the traction/braking force.
  • FIG. 1 is a flow diagram of one embodiment of a method of correcting uneven wear of a wheel set in accordance with the present invention.
  • FIG. 2 is a flow diagram of another embodiment of a method of correcting uneven wear of a wheel set in accordance with the present invention.
  • Fig. 3 is a characteristic curve of the traction force corresponding to the embodiment of Fig. 1 or 2.
  • Fig. 4 is a characteristic curve of the braking force corresponding to the embodiment of Fig. 1 or 2.
  • Figure 1 shows a specific embodiment of a method of correcting uneven wear of a wheel set in accordance with the present invention.
  • the method comprises the steps of:
  • the locomotive control system (CCU) first determines if the traction/brake handle is greater than zero. If it is not greater than zero, unload the current traction/braking force of the locomotive; if it is greater than zero, proceed to the next step.
  • the locomotive control system determines whether the position of the traction/brake handle is in the traction state or the braking state by the collected controller level signal. If it is in the traction state, proceed to step 5); if it is in the braking state, proceed to step 7).
  • step 6 It is judged whether the torque of the n-th shaft motor exceeds the traction characteristic curve shown in FIG. If the nth axis motor torque exceeds the traction force characteristic curve shown in FIG. 3, it is output according to the maximum value (envelope corresponding value) in the traction force characteristic curve; if the nth axis motor torque does not exceed the traction force shown in FIG. For the characteristic curve, follow the motor torque output calculated in step 5), and then proceed to step 9).
  • step 8 It is judged whether the torque of the nth axis motor exceeds the braking force characteristic curve shown in FIG. If the nth axis motor torque exceeds the braking force characteristic curve shown in FIG. 4, the maximum value (envelope corresponding value) in the braking force characteristic curve is output; if the nth axis motor torque does not exceed FIG. For the braking force characteristic curve, follow the motor torque output calculated in step 7), and then proceed to step 9).
  • Figure 2 shows another embodiment of a method of correcting uneven wear of a wheel set in accordance with the present invention.
  • the method comprises the steps of:
  • step 5 Determine whether the position of the traction/brake handle is in the traction state or the braking state. If it is in the traction state, proceed to step 5); if it is in the braking state, proceed to step 7).
  • the input wheel pair wheel diameter value can be manually measured the wheel diameter value of one of the wheel pairs, and then the other wheel pair wheel diameter values are calculated according to the actual running wear condition. It is also possible to obtain all the wheelset wheel diameter values of the electric locomotive by manual or automatic measurement.
  • Fig. 3 shows a schematic diagram of a corrected traction characteristic curve according to the method of the present invention.
  • the abscissa indicates the speed value of the traction/brake handle in the traction zone from 0 to the maximum value Vmax
  • the ordinate indicates the traction force value.
  • the thick black line of the outermost layer represents the maximum traction force from the speed of 0 to the maximum value Vmax, also called the envelope of the traction characteristic curve.
  • the traction characteristic curve is known for a specific type of traction motor.
  • the traction force is maximum at the beginning of the start, and the traction force is linearly decreased when the speed value rises to the first inflection point value, and the power is always increasing at this stage.
  • the speed value increases to the second inflection point value, the electric locomotive enters the full power state, and the power remains constant. Since the speed value is continuously rising, the traction force is rapidly decreased due to the limitation of the constant power value. When the power reaches the maximum value Vmax, the traction force is no longer needed and the traction force is quickly unloaded to zero.
  • Fig. 3 three parallel straight lines in the envelope are shown, which represent the traction force f wheel_1 of the corrected large wheel set and the average traction of the wheel pair from top to bottom. And the corrected traction force f wheel_2 of the small wheelset pair. It can be seen from the figure that the corrected traction force f wheel_1 of the large wheeled wheel pair is greater than the average traction of the wheel pair. The corrected traction force f wheel_2 of the small wheelset pair is smaller than the average traction of the wheelset Therefore, in the present invention, the wheel traction of the wheel pair output having a larger wheel diameter is larger, and the wheel circumference of the wheel pair output having a smaller wheel diameter is smaller. Thereby, the wear of the small wheel wheel pair can be reduced.
  • Fig. 4 shows a schematic diagram of a brake force characteristic curve corrected in accordance with the method of the present invention.
  • the abscissa indicates the speed value of the traction/brake handle in the braking zone from 0 to the maximum value Vmax, and the ordinate indicates the corresponding speed.
  • the resulting braking force value indicates the maximum braking force that can be generated from the speed of 0 to the maximum value Vmax, which is also called the envelope of the braking force characteristic curve.
  • the braking force characteristic curve is known.
  • the braking force rises linearly, and the braking force reaches the maximum at the first speed inflection point (for example, at 5km/h).
  • the speed continues to increase, the braking force value remains at an interval for a maximum, and at the second speed inflection point (eg, 65 km/h), the full power braking phase is entered.
  • the braking force is further reduced due to the braking power limitation.
  • the third inflection point reaches Vmax, the braking force drops rapidly to zero. If the speed is still rising, the air brake will be triggered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种对轮对的不均匀磨损进行修正的方法,包括以下步骤:输入有效的轮对轮径值;判断牵引/制动手柄是在牵引区还是制动区,采集司控器级位信号,将信号传送到机车控制***,机车控制***计算第n轴轮对的轮周牵引力/制动力修正系数,并根据修正系数计算出修正后的第n轴轮对的轮周牵引力/制动力f wheel_n和对应第n轴的牵引/制动电机应输出的转矩。对轮对的不均匀磨损进行修正的方法能对轮对的不均匀磨损进行修正从而延长轮对的使用寿命。

Description

对轮对的不均匀磨损进行修正的方法
相关申请的交叉引用
本申请要求享有于2014年3月7日提交的名称为“对轮对的不均匀磨损进行修正的方法”的中国专利申请201410081728.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及一种自动修复的控制方法,具体涉及对轮对不均匀磨损进行自动修复的控制方法。
背景技术
电力机车对于电机的控制策略根据机车要求不同,一股会分为轴控、架控或车控。机车在现有这三种控制方式下运行时,会出现不同程度的轮径偏差,主要包括:一是采用轴控驱动或架控驱动的机车正常运行时因驱动力(牵引或制动)大小不一致,轮对踏面磨损不一致;二是机车轮对在运用一段时间后轮对踏面因擦伤、裂纹、剥离等会出现不同的磨损;三是因故障导致的轮对踏面不均匀磨损。机车轮对的磨损主要会带来以下危害:一是擦伤的轮对在运行中会不断冲击钢轨,速度越高冲击作用越大,导致轨面砸伤;二是运行中的机车在牵引或制动调速时,往往会在轮对擦伤处再次引起空转或滑行,破坏牵引或制动时机车的轮轨黏着;三是踏面擦伤、剥离在机车运行中导致的强烈振动影响走行部的质量状态。为了避免这些危害,机车日常维护中必须对轮对进行镟轮处理,使轮对踏面重新恢复光滑平整。每经过一次镟轮处理,轮对轮径就会变小,随着镟轮的次数增加,轮对的轮径就会进一步减小。由于各种原因,机车轮对之间的磨损程度往往不同。其中一些轮对磨损情况较为严重,镟轮次数较多或者镟轮厚度较深,导致与其它轮对的轮径相比出现不同程度的偏差。
现有一股电力机车一股由2~4个转向架组成(不排除其他轴式),每个转向架包括2台或3台牵引电机,每台牵引电机驱动一个轮对运行。机车在运行过程中,控制***通过司机主司控器手柄级位信号计算出机车应输出的牵引力值;再根据机车当前可用牵引电机数量计算出每个牵引电机的输出转矩。机车电机输出转矩计算是一种较为简单的方式,没有考虑机车运用后轮径变化带来的一系列影响,认为每个轮对输出的牵引/制动力是相同的,因此忽略了牵引力输出对轮对磨损的影响。制动工况也是如此,没有考虑实际轮对磨损等情况的影响。导致的结 果是在整车轮对中,轮径偏小的轮对在相同牵引电机转矩下更容易发生空转、滑行,更加剧轮对磨损,导致情况更加恶化。一股机车的总体技术规格书中对轮径偏差的限度为车轮轮径差为同轴不大于2mm、同转向架不大于12mm、同车不大于32mm。当有轮对超过该限值的时候,不得不整体镟轮,极大的加剧整车轮对的消耗,缩短了轮对的使用寿命,造成巨大的经济损失。
发明内容
本发明所要解决的技术问题是,提供一种对轮对的不均匀磨损进行修正的方法,通过该方法能对轮对的不均匀磨损进行修正从而能延长轮对的使用寿命。
本发明的技术解决方案是,提供一种对轮对的不均匀磨损进行修正的方法,包括以下步骤:
输入有效的轮对轮径值;
当牵引/制动手柄置于牵引区某一位置时,采集司控器级位信号,并将该信号传送到机车控制***,机车控制***计算第n轴轮对的轮周牵引力修正系数λn,并根据修正***计算出修正后的第n轴轮对的轮对轮周牵引力fwheel_n和第n轴牵引电机应输出的转矩;
当牵引/制动手柄置于制动区某一位置时,采集司控器级位信号,并将该信号传送到机车控制***,机车控制***计算第n轴轮对的轮周制动力修正系数λn,并根据修正***计算出修正后的第n轴轮对的轮对轮周制动力fwheel_n和第n轴制动电机应输出的转矩。
与现有技术相比,本发明具有以下优点:由于根据输入的轮对轮径值能计算轮周牵引力/制动力修正系数。根据修正系数能进一步得到当前司控器级位下轮周牵引力/制动力的大小,从而能计算出修正后的第n轴牵引电机应输出的转矩。能根据轮对的实际磨损情况来修正第n轴牵引电机输出的转矩,从而能相应地调整第n轴轮对的牵引力/制动力,减少轮径较小的轮对的磨损。使得该电力机车的所有轮对的磨损状况更平均,减少整体镟轮的概率,延长轮对的使用寿命。
在一个实施例中,当牵引/制动手柄置于零位置时,机车控制***控制机车的牵引力/制动力按各自原有的特性曲线持续下降;如果手柄保持该位置不变,则牵引力/制动力下降至零。
在一个优选的实施例中,轮径越大的轮对输出轮周牵引力/制动力越大,轮径越小的轮对输出轮周牵引力牵引力/制动力越小。能起到平衡轮径较大的大轮对和轮径较小的小轮对的磨损的作用,减少对小轮对的磨损,减少整体镟轮的概率和损耗。
在一个优选的实施例中,机车控制***内设有修正计算单元,所述修正计算单元能根据输入的轮对轮径值计算出修正系数和控制对应轮对的电机的输出转矩。根据修正系数计算输出转矩从而控制实际的牵引力/制动力更准确,能有效地平衡轮对的磨损,减少整体镟轮的概率。
在一个实施例中,第n轴轮对轮轴牵引力/制动力修正系数
Figure PCTCN2015073752-appb-000001
其中,Dn 为第n轴轮对轮径,
Figure PCTCN2015073752-appb-000002
为整车平均轮径,k为调整系数。也可以根据其它的方法来确定修改系数,在本文的实施例中,调整系数k的值根据实际车型和运用环境等情况进行选定和调整,能最大限度地输出修正***的作用。
在一个实施例中,第n轴轮对轮轴牵引力/制动力为
Figure PCTCN2015073752-appb-000003
其中,Floco为整车的牵引力/制动力。根据第n轴轮对的实际磨损状况,通过修正系数来调整第n轴轮对轮轴牵引力/制动力。
在一个优选的实施例中,第n轴牵引电机应该输出的转矩:
Figure PCTCN2015073752-appb-000004
也可以根据修正系数的比例,如按照轮径由小到大在标准转矩的基础上通过调整-10%、-5%、0%、5%等这类方式来实现转矩的调整。当然,调整的系数不限于5%,也可以为1%、0.5%、3%等等,根据实际情况选择调整修正系数和修正系数的比例。但根据上述公式计算出来的结果更接近轮对实际情况,容易达到更精确的控制。
在一个优选的实施例中,当产生叠加效果出现某台电机的输出转矩大于该电机的牵引力/制动力的特性曲线范围时,该电机的输出转矩按牵引力/制动力的特性曲线的最大值输出。输出转矩在该电机的牵引力/制动力的特性曲线范围内时按照应输出的转矩输出。输出转矩超出特性曲线范围时,按照按牵引力/制动力的特性曲线的最大值(包络线对应值)输出。
附图说明
图1是根据本发明的对轮对的不均匀磨损进行修正的方法的一种实施例的流程示意图。
图2是根据本发明的对轮对的不均匀磨损进行修正的方法的另一种实施例的流程示意图。
图3是图1或图2中的实施例对应的牵引力的特性曲线。
图4是图1或图2中的实施例对应的制动力的特性曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
图1显示了根据本发明的对轮对的不均匀磨损进行修正的方法的一种具体实施例。在该实施例中,该方法包括以下步骤:
1)在开始状态时,机车控制***(CCU)先判断牵引/制动手柄是否大于零位。若不是大于零位,卸载机车当前的牵引力/或制动力;若是大于零位,进入下一步骤。
2)判断是否存在有效轮径输入。若有有效轮径输入,进入机车控制***(CCU)的修正模式的下一步判断。若没有有效轮径输入,机车控制***(CCU)指示采用默认轮径值,退出修订模式。
3)与另一种具体实施例(图2)相比,不考虑轴重转移电气补偿工况的影响,直接进入下个步骤。
4)机车控制***(CCU)通过采集的司控器级位信号判断牵引/制动手柄的位置是处于牵引状态还是制动状态。若处于牵引状态,进入步骤5);若处于制动状态,进入步骤7)。
5)当处于牵引状态时,首先,根据牵引/制动手柄在牵引区的位置计算整车牵引力Floco;
其次,根据公式
Figure PCTCN2015073752-appb-000005
计算单轴平均牵引力
Figure PCTCN2015073752-appb-000006
n为轮对数;
再次,根据公式
Figure PCTCN2015073752-appb-000007
Figure PCTCN2015073752-appb-000008
计算出第n(n=1、2...)轴的轮对轮周牵引力修正系数,k为调整系数,Dn为第n轴轮对轮径;
然后,根据公式
Figure PCTCN2015073752-appb-000009
计算出修正后的第n轴的轮周牵引力;
最后,根据公式
Figure PCTCN2015073752-appb-000010
计算出第n轴电机转矩。计算出第n轴电机转矩后进入步骤6)。
6)判断第n轴电机转矩是否超出图3示出的牵引力特性曲线。若第n轴电机转矩超出图3示出的牵引力特性曲线,则按牵引力特性曲线中的最大值(包络线对应值)输出;若第n轴电机转矩未超出图3示出的牵引力特性曲线,则按照步骤5)计算出的电机转矩输出,然后进入步骤9)。
7)当处于制动状态时,首先,根据牵引/制动手柄在制动区的位置计算整车制动力Floco
其次,根据公式
Figure PCTCN2015073752-appb-000011
计算单轴平均制动力
Figure PCTCN2015073752-appb-000012
n为轮对数;
再次,根据公式
Figure PCTCN2015073752-appb-000013
Figure PCTCN2015073752-appb-000014
计算出第n(n=1、2...)轴的轮对轮周制动力修正系数,k为调整系数,Dn为第n轴轮对轮径;
然后,根据公式
Figure PCTCN2015073752-appb-000015
计算出修正后的第n轴的轮周制动力;
最后,根据公式
Figure PCTCN2015073752-appb-000016
计算出第n轴电机转矩。计算出第n轴电机转矩后进入步骤8)。
8)判断第n轴电机转矩是否超出图4示出的制动力特性曲线。若第n轴电机转矩超出图4示出的制动力特性曲线,则按制动力特性曲线中的最大值(包络线对应值)输出;若第n轴电机转矩未超出图4示出的制动力特性曲线,则按照步骤7)计算出的电机转矩输出,然后进入步骤9)。
9)根据实际要求判断是否对超出牵引/制动特性曲线那部分转矩值进行二次电机转矩转移/分配。若不进行二次电机转矩转移/分配,则进入下一个循环的开始状态;若进行二次电机转矩转移/分配,则在完成二次分配计算后进入下一个循环的开始状态。
图2显示了根据本发明的对轮对的不均匀磨损进行修正的方法的另一种具体实施例。在该实施例中,该方法包括以下步骤:
1)在开始时先判断牵引/制动手柄是否大于零位。若不是大于零位,卸载机车当前的牵引力/或制动力;若是大于零位,进入下一步骤。
2)判断是否存在有效轮径输入。若有有效轮径输入,进入修正模式的下一步判断。若没有有效轮径输入,采用默认轮径值,退出修订模式。
3)判断是否存在轴重转移电气补偿工况。若有,退出修正模式。若没有,进入下一步骤。
4)判断牵引/制动手柄的位置是处于牵引状态还是制动状态。若处于牵引状态,进入步骤5);若处于制动状态,进入步骤7)。
5)当处于牵引状态时,首先,根据牵引/制动手柄在牵引区的位置计算整车牵引力Floco
其次,根据公式
Figure PCTCN2015073752-appb-000017
计算单轴平均牵引力
Figure PCTCN2015073752-appb-000018
n为轮对数;
再次,根据公式
Figure PCTCN2015073752-appb-000019
Figure PCTCN2015073752-appb-000020
计算出第n(n=1、2...)轴的轮对轮周牵引力修正系数,k为调整系数,Dn为第n轴轮对轮径;
然后,根据公式
Figure PCTCN2015073752-appb-000021
计算出修正后的第n轴的轮周牵引力;
最后,根据公式
Figure PCTCN2015073752-appb-000022
计算出第n轴电机转矩。计算出第n轴电机转矩后进入步骤6)。
6)判断第n轴电机转矩是否超出图3示出的牵引力特性曲线。若第n轴电机转矩超出图3示出的牵引力特性曲线,则按牵引力特性曲线中的最大值(包络线对应值)输出;若第n轴电机转矩未超出图3示出的牵引力特性曲线,则按照步骤5)计算出的电机转矩输出,然后进入下一个循环。
7)当处于制动状态时,首先,根据牵引/制动手柄在制动区的位置计算整车制动力Floco
其次,根据公式
Figure PCTCN2015073752-appb-000023
计算单轴平均制动力
Figure PCTCN2015073752-appb-000024
n为轮对数;
再次,根据公式
Figure PCTCN2015073752-appb-000025
Figure PCTCN2015073752-appb-000026
计算出第n(n=1、2...)轴的轮对轮周制动力修正系数,k为调整系数,Dn为第n轴轮对轮径;
然后,根据公式
Figure PCTCN2015073752-appb-000027
计算出修正后的第n轴的轮周制动力;
最后,根据公式
Figure PCTCN2015073752-appb-000028
计算出第n轴电机转矩。计算出第n轴电机转矩后进入步骤8)。
8)判断第n轴电机转矩是否超出图4示出的制动力特性曲线。若第n轴电机转矩超出图4示出的制动力特性曲线,则按制动力特性曲线中的最大值(包络线对应值)输出;若第n轴电机转矩未超出图4示出的制动力特性曲线,则按照步骤7)计算出的电机转矩输出,然后进入下一个循环。
在本文中,输入有效的轮对轮径值可以是手动测量其中某一轮对的轮径值,然后根据实际运行中磨损状况计算出其它的轮对轮径值。也可以是全部通过手动或自动测量得到该电力机车的所有的轮对轮径值。
图3示出了根据本发明的方法进行修正后的牵引力特性曲线的示意图。在该图中,横坐标表示的是牵引/制动手柄处于牵引区从0到最大值Vmax的速度值,纵坐标表示的是牵引力值。最外层的黑色粗线表示的是从速度为0到最大值Vmax时对应的最大牵引力,也称为牵引力特性曲线的包络线。对于具体型号的牵引电机,其牵引力特性曲线是已知的。而且从牵引力包络线的走势可以看出,在刚开始启动时,牵引力最大,速度值上升到第一拐点值时,牵引力呈直线下降状态,在这个阶段,功率一直在增加。在速度值增加到第二拐点值时,电力机车进入满功率状态,功率保持恒定,由于速度值在不断上升,受恒定功率值的限制,牵引力快速下降。当功率达到最大值Vmax时,不再需要牵引力,牵引力快速卸载到零。
而且在图3中,示出了包络线内的三条平行的直线,从上往下分别代表的是修正后的大轮径轮对的牵引力fwheel_1、轮对的平均牵引力
Figure PCTCN2015073752-appb-000029
和修正后的小轮径轮对的牵引力fwheel_2。从图中可以看出,修正后大轮径轮对的牵引力fwheel_1大于轮对的平均牵引力
Figure PCTCN2015073752-appb-000030
修正后的小轮径轮对的牵引力fwheel_2小于轮对的平均牵引力
Figure PCTCN2015073752-appb-000031
因此,在本发明中,轮径越大的轮对输出的轮周牵引力越大,轮径越小的轮对输出的轮周牵引力越小。从而能减小小轮径轮对的磨损。
图4示出了根据本发明的方法进行修正后的制动力特性曲线的示意图。在该图中,横坐标表示牵引/制动手柄处于制动区从0到最大值Vmax的速度值,纵坐标表示的是对应速度下能够 产生的制动力值。最外层的黑色粗线表示的是从速度为0到最大值Vmax时对应能产生的最大制动力,也称为制动力特性曲线的包络线。对于具体型号的牵引电机,其制动力特性曲线是已知的。而且从该制动力特性曲线可以看出,在刚开始速度为零时,制动能力为零。速度在开始增加阶段(例如2km/h~5km/h)制动力呈直线上升,并在第一速度拐点处(例如5km/h处)制动力达到最大值。速度继续增加,制动力值在最大值处保持一段区间,并在第二速度拐点处(例如65km/h),进入满功率制动阶段。随着速度进一步增大,受制动功率限制,制动力进一步下降。到第三个拐点速度达到Vmax处,制动力快速下降到零。如果速度仍然上升,将触发空气制动。
而且在图4中,示出了包络线内的三条平行的直线。从上往下分别代表的是修正后的大轮径轮对的制动力fwheel_1、轮对的平均制动力
Figure PCTCN2015073752-appb-000032
和修正后的小轮径轮对的制动力fwheel_2。从图中可以看出,修正后大轮径轮对的制动力fwheel_1大于轮对的平均制动力
Figure PCTCN2015073752-appb-000033
修正后的小轮径轮对的制动力fwheel_2小于轮对的平均制动力
Figure PCTCN2015073752-appb-000034
因此,在本发明中,轮径越大的轮对输出的轮周制动力越大,轮径越小的轮对输出的轮周制动力越小。从而能减小小轮径轮对的磨损。
虽然已经结合具体实施例对本发明进行了描述,然而可以理解,在不脱离本发明的范围的情况下,可以对其进行各种改进或替换。尤其是,只要不存在结构上的冲突,各实施例中的特征均可相互结合起来,所形成的组合式特征仍属于本发明的范围内。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (8)

  1. 一种对轮对的不均匀磨损进行修正的方法,包括以下步骤:
    输入有效的轮对轮径值;
    当牵引/制动手柄置于牵引区某一位置时,采集司控器级位信号,并将该信号传送到机车控制***,机车控制***计算第n轴轮对的轮周牵引力修正系数λn,并根据修正***计算出修正后的第n轴轮对的轮对轮周牵引力fwheel_n和第n轴牵引电机应输出的转矩;
    当牵引/制动手柄置于制动区某一位置时,采集司控器级位信号,并将该信号传送到机车控制***,机车控制***计算第n轴轮对的轮周制动力修正系数λn,并根据修正***计算出修正后的第n轴轮对的轮对轮周制动力fwheel_n和第n轴制动电机应输出的转矩。
  2. 根据权利要求1所述的方法,其特征在于,当牵引/制动手柄置于零位置时,机车控制***控制机车的牵引力/制动力按各自原有的特性曲线持续下降;如果手柄保持该位置不变,则牵引力/制动力下降至零。
  3. 根据权利要求1或2所述的方法,其特征在于,轮径越大的轮对输出的轮周牵引力/制动力越大,轮径越小的轮对输出的轮周牵引力牵引力/制动力越小。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,机车控制***内设有修正计算单元,所述修正计算单元能根据输入的轮对轮径值计算出修正系数和控制对应轮对的电机的输出转矩。
  5. 根据权利要求1~4中任一项所述的方法,其特征在于,第n轴轮对轮轴牵引力/制动力修正系数
    Figure PCTCN2015073752-appb-100001
    其中,Dn为第n轴轮对轮径,
    Figure PCTCN2015073752-appb-100002
    为整车平均轮径,k为调整系数。
  6. 根据权利要求5所述的方法,其特征在于,第n轴轮对轮轴牵引力/制动力为
    Figure PCTCN2015073752-appb-100003
    其中,Floco为整车的牵引力/制动力。
  7. 根据权利要求6所述的方法,其特征在于,第n轴牵引电机应该输出的转矩:
    Figure PCTCN2015073752-appb-100004
  8. 根据权利要求1~7中任一项所述的方法,其特征在于,当产生叠加效果出现某台电机的输出转矩大于该电机的牵引力/制动力的特性曲线范围时,该电机的输出转矩按牵引力/制动力的特性曲线的最大值输出。
PCT/CN2015/073752 2014-03-07 2015-03-06 对轮对的不均匀磨损进行修正的方法 WO2015131845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410081728.1 2014-03-07
CN201410081728.1A CN104890530B (zh) 2014-03-07 2014-03-07 对轮对的不均匀磨损进行修正的方法

Publications (1)

Publication Number Publication Date
WO2015131845A1 true WO2015131845A1 (zh) 2015-09-11

Family

ID=54023656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073752 WO2015131845A1 (zh) 2014-03-07 2015-03-06 对轮对的不均匀磨损进行修正的方法

Country Status (2)

Country Link
CN (1) CN104890530B (zh)
WO (1) WO2015131845A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703600B (zh) * 2017-10-25 2021-05-25 株洲中车时代电气股份有限公司 一种计算列车轮径偏差的方法、***和一种列车
CN110979390B (zh) * 2019-12-05 2021-10-26 中车株洲电力机车有限公司 一种轨道交通车辆车轮多边形修复方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413854A (zh) * 2001-10-25 2003-04-30 丰田自动车株式会社 车辆制动控制装置及其制动控制方法
EP2325039A2 (de) * 2009-11-23 2011-05-25 Noell Mobile Systems GmbH Sensorsystem für Förderanlagen mit Linear-Synchron-Antrieb und Förderanlage
CN103057549A (zh) * 2012-12-13 2013-04-24 中国北车集团大连机车车辆有限公司 铁路机车牵引特性曲线自动修正方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009305103B2 (en) * 2008-10-17 2014-08-07 Frank Wegner Donnelly Rail conveyance system for mining
CN101537841B (zh) * 2009-04-22 2011-07-27 北京人和路通科技有限公司 机车混合编组的重载组合列车的控制方法及其***
CN101941446B (zh) * 2009-07-09 2012-08-01 北京锦鸿希电信息技术股份有限公司 一种可控列尾***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413854A (zh) * 2001-10-25 2003-04-30 丰田自动车株式会社 车辆制动控制装置及其制动控制方法
EP2325039A2 (de) * 2009-11-23 2011-05-25 Noell Mobile Systems GmbH Sensorsystem für Förderanlagen mit Linear-Synchron-Antrieb und Förderanlage
CN103057549A (zh) * 2012-12-13 2013-04-24 中国北车集团大连机车车辆有限公司 铁路机车牵引特性曲线自动修正方法

Also Published As

Publication number Publication date
CN104890530B (zh) 2017-05-17
CN104890530A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN109591613B (zh) 一种城轨列车牵引力控制方法和***
CN104029688B (zh) 一种轮对空转检测方法
WO2022088316A1 (zh) 一种列车动力分配方法及装置
WO2015131845A1 (zh) 对轮对的不均匀磨损进行修正的方法
WO2012079343A1 (zh) 机车防空转滑行控制方法
CN105465229A (zh) 车辆的平地起步控制方法、装置和车辆
CN112061177A (zh) 基于最优牵引转矩在线搜寻的机车黏着控制方法
US10358030B2 (en) Method for operating a drivetrain for a motor vehicle and corresponding drivetrain
CN107458363A (zh) 一种轨道车辆制动力控制***及其方法
CN114407940A (zh) 一种机车空转调节方法
JP5484089B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
WO2021203566A1 (zh) 机车空电混合制动力控制方法及控制***
CN114036635A (zh) 一种轨道交通车辆制动闸瓦剩余寿命评估方法
CN112406559A (zh) 一种大功率电力机车空转快速恢复控制方法
JP5484215B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN104057980B (zh) 一种列车牵引控制方法及***
CN105015539B (zh) 用于混合动力电动动力传动***的牵引控制
EP3040251B1 (en) Method of decreasing lateral pressure in railroad vehicle
JP5484214B2 (ja) 列車モニタ・データ伝送システムを有する列車制御装置
CN106080582A (zh) 一种电动车上坡换挡策略
US10227074B2 (en) Method for controlling sense of shift difference and 4-wheel drive vehicle applying the same
WO2021114509A1 (zh) 一种巡线机器人打滑辨识与智能自适应控制方法
WO2022116457A1 (zh) 一种轨道车辆、轨道车辆踏面廓形的控制方法及控制***
CN210587069U (zh) 一种控制板坯连铸主机区传动负载动态平衡的***
CN112632727A (zh) 一种具有动轴轮径自动校正功能的牵引变流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758395

Country of ref document: EP

Kind code of ref document: A1