WO2015131539A1 - 一种温度测量装置 - Google Patents

一种温度测量装置 Download PDF

Info

Publication number
WO2015131539A1
WO2015131539A1 PCT/CN2014/090828 CN2014090828W WO2015131539A1 WO 2015131539 A1 WO2015131539 A1 WO 2015131539A1 CN 2014090828 W CN2014090828 W CN 2014090828W WO 2015131539 A1 WO2015131539 A1 WO 2015131539A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
temperature sensor
signal
operational amplifier
current
Prior art date
Application number
PCT/CN2014/090828
Other languages
English (en)
French (fr)
Inventor
郑红利
欧耀东
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015131539A1 publication Critical patent/WO2015131539A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Definitions

  • the invention relates to the field of thermal measurement, and in particular to a temperature measuring device.
  • a current type temperature sensor measures temperature more quickly and accurately.
  • Thermistor-type temperature sensing has a much larger value of the temperature coefficient of resistance, which can measure small temperature changes. Therefore, there is a need to develop a temperature measuring device equipped with a current type temperature sensor and a thermistor type temperature sensor.
  • the current type temperature sensor requires a high operating voltage, and the electrical parameters of the output are greatly different from the electrical parameters of the thermistor type temperature sensor. Therefore, from the perspective of cost, one can be compatible with both.
  • the circuit scheme has become the problem to be solved currently.
  • the technical problem to be solved by the present invention is to provide a temperature measuring device which is compatible with a current type temperature sensor and a thermistor type temperature sensor by a simple circuit configuration.
  • a temperature measuring device includes a current type temperature sensor, a thermistor type temperature sensor, a voltage dividing resistor, a voltage sampling resistor, and an AD converter, wherein:
  • the current type temperature sensor is configured to: output a first current signal corresponding to the temperature
  • the thermistor type temperature sensor is configured to: output a second current signal corresponding to the temperature
  • the voltage dividing resistor is connected in series with the thermistor in the thermistor type temperature sensor, and is configured to: control a voltage of the second current signal in a voltage interval of the first current signal;
  • One end of the voltage sampling resistor is grounded, and the other end is respectively connected to the current type temperature sensor and the output end of the thermistor type temperature sensor, and is configured to: the first current Converting the signal to a first voltage signal or converting the second current signal to a second voltage signal;
  • the AD converter is configured to convert the first voltage signal to a first digital signal or to convert the second voltage signal to a second digital signal.
  • the apparatus further includes a first operational amplifier, wherein:
  • a first operational amplifier connected between the voltage sampling resistor and the AD converter, configured to: amplify the first voltage signal or the second voltage signal.
  • the device further includes a first adjustment resistor and a second adjustment resistor, wherein:
  • One end of the first adjusting resistor is grounded, and the other end is connected to an inverting input end of the first operational amplifier;
  • One end of the second adjusting resistor is connected to an inverting input end of the first operational amplifier, and the other end is connected to an output end of the first operational amplifier;
  • the first adjustment resistor and the second adjustment resistor are both configured to: adjust a magnification of the first operational amplifier
  • the apparatus further includes a voltage follower, wherein:
  • the voltage follower is connected between the voltage sampling resistor and the input end of the first operational amplifier, and is configured to reduce a voltage division effect of the operational amplifier on the voltage sampling resistor.
  • the voltage follower includes a second operational amplifier, a negative input terminal of the second operational amplifier is connected to the output terminal, a forward input terminal and the voltage sampling resistor and the current type temperature sensor and the One end of the output terminal of the thermistor type temperature sensor is connected, and the output end of the second operational amplifier is connected to the input end of the first operational amplifier, and is configured to: access the first voltage signal or the The second voltage signal.
  • the temperature measuring device of the embodiment of the invention can be compatible with the current type temperature sensor and the thermistor type temperature sensor through a simple circuit structure, thereby providing the user with more measurement choices at a lower cost, and has high practical value.
  • FIG. 1 is a schematic structural view of a temperature measuring device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a current type temperature sensor of the related art
  • FIG. 3 is a schematic structural view of a related art thermistor type temperature sensor.
  • an embodiment of the present invention provides a temperature measuring apparatus, including:
  • the current type temperature sensor S2 is configured to: output a first current signal corresponding to the temperature
  • the thermistor type temperature sensor S1 is configured to: output a second current signal corresponding to the temperature
  • the voltage dividing resistor R2 is connected in series with the thermistor Rt in the thermistor type temperature sensor S1, and is configured to: control the voltage of the second current signal in a voltage interval of the first current signal;
  • the voltage sampling resistor R1 is configured to: convert the first current signal into a first voltage signal or convert the second current signal into a second voltage signal;
  • the AD converter is configured to: convert the first voltage signal into a first digital signal or convert the second voltage signal into a second digital signal.
  • the temperature measuring device of the present embodiment controls the current of the second current signal output by the thermistor type temperature sensor S1 to be within the same preset range as the first current signal output by the current type temperature sensor S2 through the voltage dividing resistor R2. Therefore, the digital conversion process of the first current signal and the second current signal can be completed by using a compatible circuit.
  • the voltage sampling resistor R1 is grounded at one end, and the other end is connected to the output terminals of the current type temperature sensor S2 and the thermistor type temperature sensor S1 to sample the voltages of the first current signal and the second current signal.
  • a first operational amplifier A1 may be disposed between the sampling resistor R1 and the AD converter, and the first on the sampling resistor R1.
  • a voltage signal or a second voltage signal is amplified such that the voltage of the first voltage signal or the second voltage signal can reach the operating range of the ADC of the AD converter.
  • the amplification factor of the first operational amplifier A1 can be adjusted by the first adjustment resistor R4 and the second adjustment resistor R5. As shown in FIG. 1 , one end of the first adjusting resistor R4 is grounded, and the other end is connected to the inverting input terminal of the first operational amplifier A1; one end of the second regulating resistor R5 is opposite to the inverting input of the first operational amplifier A1. Connected, the other end is connected to the output of the first operational amplifier A1.
  • a voltage follower may be disposed between the sampling resistor R1 and the input end of the first operational amplifier A1, and the voltage follower is used to improve the load carrying capacity of the circuit, thereby reducing the An operational amplifier A1 affects the voltage division caused by R1, thereby reducing the error in temperature detection.
  • a second operational amplifier A2 connected to the output terminal may be used as a voltage follower.
  • the forward input terminal is connected to the other end of the voltage sampling resistor R1, and is configured to: access the first voltage signal or the second voltage signal, and output end thereof and the first operational amplifier A1 The input is connected.
  • a resistor R3 can be arranged between A1 and A2 for adjusting the electrical parameters of the A2 output, and the resistance value is set according to actual needs.
  • the current type temperature sensor S2 is of the type AD590.
  • the AD590 is a two-port integrated temperature converter that converts the output current ratio to absolute temperature. In a device with a supply voltage between +4V and +30V, it can be used as a high-impedance, constant current 1uA/K device. The device can be fine-tuned to output 298.2uA at 298.2K (+25°C) by laser trimming the thin film resistor inside the chip.
  • the AD590 is a PTAT (proportional to absolute temperature) current regulator. Its output current is proportional to the Kelvin temperature.
  • Figure 2 is a schematic diagram of the internal structure of the AD590. It converts the current into a voltage through a resistor.
  • the voltage on the resistor cannot exceed 1V.
  • the temperature range of the detection is -40 ° C to 100 ° C (233 K - 373 K), then the current corresponding to AD590 is 233 uA - 373 uA.
  • Fig. 3 is a schematic view showing the internal structure of the thermistor type temperature sensor S1, which converts a current into a voltage through a thermistor Rt and a 2k ⁇ resistor.
  • R X * e Y / T (X, Y is a constant related to the semiconductor material, T is the absolute temperature), in the temperature range of -40 ° C to 100 ° C
  • the thermistor Rt varies from 192k to 1k, and the output voltage of the second current signal ranges from 0.010V to 1.667V.
  • the method solved by the embodiment of the present invention is to connect a voltage dividing resistor R2 with an accuracy of 0.1% in series with the thermistor Rt, so that the total value of the resistor is changed from the original 192k-1k to 202k-11k.
  • the voltage of the second current signal 5V*R1/(Rt+R1+R2) can be derived by the above calculation formula.
  • the voltage of the output second current signal is: 0.049V - 0.769V, which is approximately the same as the voltage range of the first current signal of the AD590 0.466 - 0.746V, both of which belong to 0.049V. - Within the range of 0.769V. Therefore, the same first operational amplifier A1 can be used for voltage amplification, and digital conversion can be performed on the ADC to generate a digital signal that the microprocessor can recognize.
  • the processor When the temperature measuring device of the embodiment of the present invention is used, the processor is first connected, that is, the ADC output terminal of FIG. 1 is connected to the processor, and then the user can select whether to use the current type temperature sensor or the heat according to his own needs.
  • a resistive temperature sensor measures the temperature. And set the working mode corresponding to the selected temperature sensor on the processor machine. For example, when a thermistor type temperature sensor is used to measure the temperature, the operating mode of the processor corresponding to the thermistor type temperature sensor can be set, and after receiving the digital signal output by the ADC, the processor can follow the thermistor type temperature sensor.
  • the temperature algorithm calculates the temperature to be measured.
  • the temperature sensor that has been selected for use is energized and set on the object to be tested to perform temperature measurement.
  • a power interface may be separately provided for the two temperature sensors for accessing the working power source.
  • the working power source corresponding to the temperature sensor may be connected to the power source.
  • the operating voltages of the two temperature sensors are the same. Therefore, the temperature measuring device of the embodiment of the present invention can also set only one power interface, and control which temperature sensor the operating power source is selected to flow through the switch.
  • the temperature measuring device of the embodiment of the present invention can apply two kinds of temperature sensors through the simple circuit structure shown in FIG. 1 , and can provide more measurement options for the user at a lower cost, and has high practical value. .
  • the temperature measuring device of the technical solution of the present invention can be compatible with the current type temperature sensor and the thermistor type temperature sensor through a simple circuit structure, thereby providing the user with more measurement options at a lower cost. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种温度测量装置,包括:电流型温度传感器(S2),用于输出与温度对应的第一电流信号;热敏电阻型温度传感器(S1),用于输出与温度对应的第二电流信号;分压电阻(R2),与热敏电阻型温度传感器(S1)中的热敏电阻(Rt)串联,用于将第二电流信号的电压控制在第一电流信号的电压区间内;电压采样电阻(R1),用于将第一电流信号转换为第一电压信号或将第二电流信号转换为第二电压信号;AD转换器(ADC),用于将第一电压信号转换为第一数字信号或将第二电压信号转换为第二数字信号。该温度测量装置能够通过简单的电路结构兼容电流型温度传感器(S2)以及热敏电阻型温度传感器(S1),从而以较低的成本为用户提供了更多的测量选择。

Description

一种温度测量装置 技术领域
本发明涉及热测量领域,特别是一种温度测量装置。
背景技术
目前,用于温度测量的传感器主要有两种,即电流型温度传感器以及热敏电阻型温度传感器,两者均能够输出与温度成对应关系的电参数。电流型温度传感器对温度的测量更快速、更准确。而热敏电阻型温度传感则有大得多的电阻温度系数值,可以测量微小的温度变化。因此,有需求价值去研制一种配有电流型温度传感器以及热敏电阻型温度传感器的温度测量装置。
但是电流型温度传感器需要较高的工作电压,且其输出的电参数与热敏电阻型温度传感器输出的电参数具有很大的差异性,因此,从成本角度考虑,研究一种能够兼容两者的电路方案成为了当前所要解决的问题。
发明内容
本发明要解决的技术问题是提供一种温度测量装置,能够通过简单的电路结构兼容电流型温度传感器以及热敏电阻型温度传感器。
为解决上述技术问题,采用如下技术方案:
一种温度测量装置,包括电流型温度传感器、热敏电阻型温度传感器、分压电阻、电压采样电阻和AD转换器,其中:
所述电流型温度传感器设置成:输出与温度对应的第一电流信号;
所述热敏电阻型温度传感器设置成:输出与温度对应的第二电流信号;
所述分压电阻,与所述热敏电阻型温度传感器中的热敏电阻串联,设置成:将所述第二电流信号的电压控制在所述第一电流信号的电压区间内;
所述电压采样电阻的一端接地电压,另一端分别与所述电流型温度传感器以及所述热敏电阻型温度传感器的输出端连接,设置成:将所述第一电流 信号转换为第一电压信号或将所述第二电流信号转换为第二电压信号;
AD转换器设置成:将所述第一电压信号转换为第一数字信号或将第二电压信号转换为第二数字信号。
可选地,该装置还包括第一运算放大器,其中:
第一运算放大器,连接在所述电压采样电阻与AD转换器之间,设置成:对所述第一电压信号或所述第二电压信号进行放大。
可选地,该装置还包括第一调节电阻和第二调节电阻,其中:
所述第一调节电阻的一端接地电压,另一端接所述第一运算放大器的反向输入端;
所述第二调节电阻的一端与所述第一运算放大器的反向输入端连接,另一端接所述第一运算放大器的输出端;
所述第一调节电阻以及第二调节电阻均设置成:调节所述第一运算放大器的放大倍数;。
可选地,该装置还包括电压跟随器,其中:
所述电压跟随器,连接在所述电压采样电阻与第一运算放大器输入端之间,设置成:减小所述运算放大器对所述电压采样电阻的分压影响。
可选地,所述电压跟随器包括第二运算放大器,所述第二运算放大器的负向输入端与输出端连接,正向输入端与所述电压采样电阻与所述电流型温度传感器以及所述热敏电阻型温度传感器的输出端连接的一端连接,所述第二运算放大器的输出端与所述第一运算放大器的输入端连接,设置成:接入所述第一电压信号或所述第二电压信号。
本发明的上述技术方案的有益效果如下:
本发明实施例的温度测量装置能够通过简单的电路结构兼容电流型温度传感器以及热敏电阻型温度传感器,从而以较低的成本为用户提供了更多的测量选择,具有很高的实用价值。
附图概述
图1为本发明实施例的温度测量装置的结构示意图;
图2为相关技术的电流型温度传感器的结构示意图;
图3为相关技术的热敏电阻型温度传感器的结构示意图。
本发明的较佳实施方式
下面将结合附图及具体实施例进行详细描述。
如图1所示,本发明的实施例提供了一种温度测量装置,包括:
电流型温度传感器S2,设置成:输出与温度对应的第一电流信号;
热敏电阻型温度传感器S1,设置成:输出与温度对应的第二电流信号;
分压电阻R2,与所述热敏电阻型温度传感器S1中的热敏电阻Rt串联,设置成:将所述第二电流信号的电压控制在所述第一电流信号的电压区间内;
电压采样电阻R1,设置成:将所述第一电流信号转换为第一电压信号或将所述第二电流信号转换为第二电压信号;
AD转换器,设置成:将所述第一电压信号转换为第一数字信号或将第二电压信号转换为第二数字信号。
本实施例的温度测量装置通过分压电阻R2将热敏电阻型温度传感器S1所输出的第二电流信号的电流控制在与电流型温度传感器S2所输出的第一电流信号相同的预设范围内,从而能够采用一个兼容电路即可完第一电流信号以及第二电流信号的数字转换过程。
其中,电压采样电阻R1一端接地电压,另一端与电流型温度传感器S2和热敏电阻型温度传感器S1的输出端连接,采样第一电流信号以及第二电流信号的电压大小。
可选地,在上述实施例基础之上,如图1所示,可设置一个第一运算放大器A1,连接在所述采样电阻R1与AD转换器之间,对所述采样电阻R1上的第一电压信号或第二电压信号进行放大,使第一电压信号或第二电压信号的电压大小能够达到AD转化器ADC的工作范围内。
在本实施例中,可通过第一调节电阻R4以及第二调节电阻R5来调节第一运算放大器A1的放大倍数。其中,如图1所示,第一调节电阻R4的一端接地电压,另一端接第一运算放大器A1的反向输入端;第二调节电阻R5的一端与第一运算放大器A1的反向输入端连接,另一端接第一运算放大器A1的输出端。这种接入方法可以使第一运算放大器A1的放大倍数=1+R5/R4。示例性地,如果想将第一电压信号或第二电压信号的电压放大3倍,则设置R5=2*R4。如果想放大6倍,则设置R5=5*R4。依次类推,放大倍数不同,设置的R5值不同。
此外,在上述实施例的基础之上,还可设置一个电压跟随器,连接在采样电阻R1与第一运算放大器A1输入端之间,通过电压跟随器以提高电路的带负载能力,降低了第一运算放大器A1对R1造成的分压影响,进而减小了对温度检测的误差。可选地,如图1所示,可使用反向输入端与输出端连接的第二运算放大器A2作为电压跟随器。其正向输入端与所述电压采样电阻R1的所述另一端连接,设置成:接入所述第一电压信号或所述第二电压信号,其输出端与所述第一运算放大器A1的输入端连接。此外,还可在A1与A2之间设置一个电阻R3,用于调节A2输出的电参数,其阻值根据实际需求进行设置。
下面以目前常见的电流型温度传感器和热敏电阻温度传感器为例,对本发明的应用进行详细说明。
在本实施例中,电流型温度传感器S2的型号为AD590。热敏电阻型温度传感器S1的参数为R25=10KΩ,B25/85=3435K,即25℃时,热敏电阻Rt=10KΩ,其阻值对温度的敏感度为3435K。
AD590是一个将输出电流比例转换成绝对温度的二端口集成温度变换装置。在电源电压在+4V到+30V之间的设备中,可作为一个高阻抗、恒定电流为1uA/K的装置。通过芯片内部的激光微调薄膜电阻器,可将设备微调至在298.2K(+25℃)时输出298.2uA电流。此外,AD590是一个PTAT(正比于绝对温度)电流调节器。其输出电流与开氏温度成正比。图2为AD590的内部结构示意图,其通过一个电阻将电流转换成电压,在5V供电的时候,由于AD590的最低工作电压为4V,所以在该电阻上的电压不能超过1V,假设期 望检测的温度范围为-40℃至100℃(233K—373K),那么AD590对应的电流为233uA—373uA。当图2中电阻=2kΩ时,输出的第一电流信号的电压范围为:0.466—0.746V。
图3为热敏电阻型温度传感器S1的内部结构示意图,其通过一个热敏电阻Rt以及一个2kΩ的电阻将电流转换成电压。在5V供电的时候,其输出的第二电流信号的电压的计算公式为V=5V*R2/(Rt+R2)。根据热敏电阻的电阻值与温度的关系:R=X*e Y/T可知(X、Y是与半导体材料有关的常数,T为绝对温度),在温度范围-40℃至100℃的时候,热敏电阻Rt的变化范围为192k—1k,输出的第二电流信号的电压范围为:0.010V—1.667V。
通过对比可以知道,两个传感器信号输出的电流信号对应的电压范围相差比较大,因此设置信号调整电路时不可能一致。为此,本发明实施例解决的方法是将一个精度为0.1%的分压电阻R2与热敏电阻Rt串联,使得电阻的总值由原来的192k—1k变化为202k—11k。通过上述计算公式可以推出第二电流信号的电压=5V*R1/(Rt+R1+R2)。在温度范围是-40℃至100℃的时候,输出第二电流信号的电压为:0.049V—0.769V,与AD590输出的第一电流信号的电压范围0.466—0.746V大致相同,均属于0.049V—0.769V范围之内。因此,可以使用同一个第一运算放大器A1进行电压放大,并在ADC上完成数字转换,生成微处理器能够识别的数字信号。
在使用本发明实施例的温度测量装置时,先与处理器进行连接,即将图1中的ADC输出端接入处理器,之后用户可根据自己的需求选择是使用电流型温度传感器还是使用热敏电阻型温度传感器测量温度。并在处理器机上设置好选择完成的温度传感器所对应的工作模式。例如当使用热敏电阻型温度传感器测量温度时,可设置处理器机对应热敏电阻型温度传感器的工作模式,处理器在收到ADC输出的数字信号后,即可按照热敏电阻型温度传感器的温度算法计算出待测量的温度。
在上述配置完成后,对已选择使用的温度传感器进行通电,并将其设置在待测物体上即可进行温度测量。可选地,可对应两个温度传感器分别设置一个电源接口以用于接入工作电源,在使用过程中,需要哪个温度传感器工作就在哪个温度传感器对应的电源接口上接入工作电源即可。此外,通过上 述描述可以知道,两个温度传感器的工作电压一致,因此本发明实施例的温度测量装置也可以只设置一个电源接口,并通过开关来控制工作电源选择流入哪个温度传感器。
可见,本发明实施例的温度测量装置通过图1所示的简单的电路结构就能应用两种温度传感器,能够以较低的成本为用户提供了更多的测量选择,具有很高的实用价值。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本发明技术方案的温度测量装置能够通过简单的电路结构兼容电流型温度传感器以及热敏电阻型温度传感器,从而以较低的成本为用户提供了更多的测量选择。因此本发明具有很强的工业实用性。

Claims (5)

  1. 一种温度测量装置,包括电流型温度传感器、热敏电阻型温度传感器、分压电阻、电压采样电阻和AD转换器,其中:
    所述电流型温度传感器设置成:输出与温度对应的第一电流信号;
    所述热敏电阻型温度传感器设置成:输出与温度对应的第二电流信号;
    所述分压电阻,与所述热敏电阻型温度传感器中的热敏电阻串联,设置成:将所述第二电流信号的电压控制在所述第一电流信号的电压区间内;
    所述电压采样电阻的一端接地电压,另一端分别与所述电流型温度传感器以及所述热敏电阻型温度传感器的输出端连接,设置成:将所述第一电流信号转换为第一电压信号或将所述第二电流信号转换为第二电压信号;
    AD转换器设置成:将所述第一电压信号转换为第一数字信号或将第二电压信号转换为第二数字信号。
  2. 根据权利要求1所述的温度测量装置,还包括第一运算放大器,其中:
    第一运算放大器,连接在所述电压采样电阻与AD转换器之间,设置成:对所述第一电压信号或所述第二电压信号进行放大。
  3. 根据权利要求2所述的温度测量装置,还包括第一调节电阻和第二调节电阻,其中:
    所述第一调节电阻的一端接地电压,另一端接所述第一运算放大器的反向输入端;
    所述第二调节电阻的一端与所述第一运算放大器的反向输入端连接,另一端接所述第一运算放大器的输出端;
    所述第一调节电阻以及第二调节电阻均设置成:调节所述第一运算放大器的放大倍数;。
  4. 根据权利要求2所述的温度测量装置,还包括电压跟随器,其中:
    所述电压跟随器,连接在所述电压采样电阻与第一运算放大器输入端之间,设置成:减小所述运算放大器对所述电压采样电阻的分压影响。
  5. 根据权利要求4所述的温度测量装置,其中,
    所述电压跟随器包括第二运算放大器,所述第二运算放大器的负向输入端与输出端连接,正向输入端与所述电压采样电阻与所述电流型温度传感器以及所述热敏电阻型温度传感器的输出端连接的一端连接,所述第二运算放大器的输出端与所述第一运算放大器的输入端连接,设置成:接入所述第一电压信号或所述第二电压信号。
PCT/CN2014/090828 2014-07-23 2014-11-11 一种温度测量装置 WO2015131539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410354440.7 2014-07-23
CN201410354440.7A CN105277292A (zh) 2014-07-23 2014-07-23 一种温度测量装置

Publications (1)

Publication Number Publication Date
WO2015131539A1 true WO2015131539A1 (zh) 2015-09-11

Family

ID=54054428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090828 WO2015131539A1 (zh) 2014-07-23 2014-11-11 一种温度测量装置

Country Status (2)

Country Link
CN (1) CN105277292A (zh)
WO (1) WO2015131539A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750116A (zh) * 2019-11-25 2020-02-04 武汉科技大学 一种温度区间控制电路及电子设备
CN112306120A (zh) * 2020-10-20 2021-02-02 武汉智能装备工业技术研究院有限公司 一种温度控制***
CN112729587A (zh) * 2020-12-15 2021-04-30 珠海格力电器股份有限公司 温度检测电路、冰箱及温度检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201074A (ja) * 2019-06-07 2020-12-17 株式会社村田製作所 温度検出回路及びモジュール

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888838A (zh) * 2006-07-19 2007-01-03 青岛科技大学 一种组合式温度传感器
JP2009121825A (ja) * 2007-11-12 2009-06-04 Shindengen Electric Mfg Co Ltd 温度検出回路
CN201909684U (zh) * 2011-01-18 2011-07-27 浙江恒强科技有限公司 温度测量电路
CN202066615U (zh) * 2011-01-18 2011-12-07 浙江恒强科技股份有限公司 改进的温度测量电路
CN202075052U (zh) * 2011-03-24 2011-12-14 魏思远 一种温度、温差测量装置
CN102279060A (zh) * 2011-06-16 2011-12-14 厦门青年网络通讯股份有限公司 一种即插即用型温度传感器及其成型方法
CN203216626U (zh) * 2012-12-30 2013-09-25 黑龙江工程学院 利用运放虚地技术的ad590测温电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285400A3 (en) * 1987-03-31 1990-12-12 Spectra-Physics, Inc. Laser power monitor
CN101169341B (zh) * 2006-10-25 2011-01-26 深圳迈瑞生物医疗电子股份有限公司 一种温度测量电路
CN101498618A (zh) * 2008-02-02 2009-08-05 联创汽车电子有限公司 Bcm模块的逻辑验证***
CN103353356A (zh) * 2013-07-02 2013-10-16 晶锋集团股份有限公司 一种高精度测量温度的方法及其***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888838A (zh) * 2006-07-19 2007-01-03 青岛科技大学 一种组合式温度传感器
JP2009121825A (ja) * 2007-11-12 2009-06-04 Shindengen Electric Mfg Co Ltd 温度検出回路
CN201909684U (zh) * 2011-01-18 2011-07-27 浙江恒强科技有限公司 温度测量电路
CN202066615U (zh) * 2011-01-18 2011-12-07 浙江恒强科技股份有限公司 改进的温度测量电路
CN202075052U (zh) * 2011-03-24 2011-12-14 魏思远 一种温度、温差测量装置
CN102279060A (zh) * 2011-06-16 2011-12-14 厦门青年网络通讯股份有限公司 一种即插即用型温度传感器及其成型方法
CN203216626U (zh) * 2012-12-30 2013-09-25 黑龙江工程学院 利用运放虚地技术的ad590测温电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750116A (zh) * 2019-11-25 2020-02-04 武汉科技大学 一种温度区间控制电路及电子设备
CN112306120A (zh) * 2020-10-20 2021-02-02 武汉智能装备工业技术研究院有限公司 一种温度控制***
CN112306120B (zh) * 2020-10-20 2022-01-04 武汉智能装备工业技术研究院有限公司 一种温度控制***
CN112729587A (zh) * 2020-12-15 2021-04-30 珠海格力电器股份有限公司 温度检测电路、冰箱及温度检测方法

Also Published As

Publication number Publication date
CN105277292A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
ES2705433T3 (es) Método para la compensación de deriva de temperatura de dispositivo de medición de temperatura que usa termopar
US8499786B2 (en) Mass flow controller with enhanced operating range
WO2015131539A1 (zh) 一种温度测量装置
EP2302344A2 (en) An apparatus for measuring temperature and method thereof
US7990162B2 (en) Systems and methods for an open circuit current limiter
US20080211510A1 (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
JP2010511894A (ja) プロセス変数送信機における温度センサ構成の検出
TWI375018B (en) Temperature sensing circuit using cmos switch-capacitor
JPWO2016088332A1 (ja) 液面検知回路、液面計、それを備えた容器、及び、その容器を用いた気化器
KR20140012865A (ko) 서미스터를 이용한 온도 측정 장치
CN101788830B (zh) 数字式温度控制电路
US20190301909A1 (en) Thermal flow sensor device and flow rate correction method
KR102668952B1 (ko) 대상(Target)의 전력값을 판단하는 장치 및 방법
EP3287752B1 (en) Low power operational methodology for a flow sensor
Arunachalam et al. Embedded temperature monitoring and control unit
CN109540313A (zh) 一种基于硅基二极管与ntc热敏电阻的线性测温电路
CN204228286U (zh) 一种水分仪用温度采集电路
JP2004309243A (ja) 液漏れ検出装置
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
RU2488128C2 (ru) Терморезисторный преобразователь температуры в напряжение
CN216144392U (zh) 传感器电路、mcu液位传感器和墨盒
WO2019031329A1 (ja) 風速測定装置および風量測定装置
TW200935204A (en) Feedback-type automatic power control system
CN219223837U (zh) 一种新型热式气体质量流量计
CN103913546B (zh) 一种高精度探头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884354

Country of ref document: EP

Kind code of ref document: A1