WO2015129385A1 - 製鉄用ヘマタイトの製造方法 - Google Patents

製鉄用ヘマタイトの製造方法 Download PDF

Info

Publication number
WO2015129385A1
WO2015129385A1 PCT/JP2015/052713 JP2015052713W WO2015129385A1 WO 2015129385 A1 WO2015129385 A1 WO 2015129385A1 JP 2015052713 W JP2015052713 W JP 2015052713W WO 2015129385 A1 WO2015129385 A1 WO 2015129385A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
hematite
liquid separation
neutralization
slurry
Prior art date
Application number
PCT/JP2015/052713
Other languages
English (en)
French (fr)
Inventor
小原 剛
康雅 菅
今村 正樹
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to AU2015224243A priority Critical patent/AU2015224243B2/en
Priority to US15/121,403 priority patent/US10125025B2/en
Priority to EP15755671.3A priority patent/EP3112481B1/en
Priority to CN201580010655.XA priority patent/CN106062220B/zh
Priority to CA2940830A priority patent/CA2940830C/en
Publication of WO2015129385A1 publication Critical patent/WO2015129385A1/ja
Priority to PH12016501701A priority patent/PH12016501701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing hematite for iron making. More specifically, the present invention relates to a method for producing hematite for iron making that can efficiently suppress the mixing of sulfur compounds into the leaching residue in actual operations by providing a plurality of solid-liquid separation steps among the hydrometallurgical steps of nickel oxide ore. .
  • Nickel is widely used as a raw material for stainless steel.
  • technology for refining low-grade oxide ore has been developed and put into practical use.
  • nickel oxide ores such as limonite and saprolite are put into a pressure device such as an autoclave together with a sulfuric acid solution, and nickel is leached under a high temperature and high pressure of about 240 to 260 ° C.
  • high temperature pressure acid leaching HPAL : High ⁇ ⁇ ⁇ ⁇ Pressure Acid Leach
  • Nickel leached into the sulfuric acid solution is neutralized with a neutralizing agent to neutralize excess acid, and then separated into leaching residue by solid-liquid separation, and then impurities and hydroxides and sulfides are separated. It is recovered as an intermediate material in the form of By further refining this intermediate raw material, nickel metal, nickel salt compounds, and the like are obtained.
  • the pH is adjusted to a suitable level for solid-liquid separation, and in the next solid-liquid separation step, the solid content is measured with equipment called CCD (Counter Current Decantation). Concentration and solid-liquid separation.
  • CCD Counter Current Decantation
  • Concentration and solid-liquid separation Normally, a CCD uses a plurality of continuous thickeners.
  • the liquid component obtained from the CCD (hereinafter sometimes referred to as “overflow”) is sent to the neutralization process to adjust the pH to a suitable level for the sulfurization process. After removing the precipitate, for example, it is generally sent to a sulfidation step, and sulfidation is performed to obtain an intermediate raw material such as a mixed sulfide of nickel and cobalt.
  • Patent Document 1 a part of the solid content obtained by CCD (hereinafter, sometimes referred to as underflow) is added as a seed crystal in the neutralization step to promote the formation of fine precipitates.
  • underflow a part of the solid content obtained by CCD
  • the technology is described and is effectively used to improve the efficiency of actual operation.
  • HPAL High® Pressure • Acid®Leach
  • the target metal can be concentrated to the same extent as the conventional raw material, and the target metal can be obtained by a refining method and process substantially the same as those of the conventional raw material.
  • This HPAL process can be applied not only to nickel oxide ore but also to many types such as nickel sulfide ore, copper sulfide ore, and copper oxide ore.
  • the main component of the leaching residue obtained by the HPAL process is iron oxide in the form of hematite, etc.
  • the iron content in the leaching residue is about 50%
  • the amount of leaching residue produced is the production of intermediate raw materials About 50 to 100 times the amount. This is because both nickel oxide ore and copper sulfide ore used as raw materials contain iron far exceeding the content of nickel and copper.
  • This leaching residue is in the form of an oxide that is chemically and environmentally stable because it is generated at a high temperature, but currently has no particular utility value and is stored in a residue deposit site. For this reason, a vast residue depositing place for storing and storing a huge amount of leaching residue generated with the operation of the HPAL process is required.
  • iron and steel smelting iron ore containing iron oxide is charged into a blast furnace together with a reducing agent such as coke, heated to reduce and melt to obtain crude steel, which is refined in a converter.
  • a method of obtaining steel is used.
  • the raw iron oxide is a limited resource, and obtaining high-quality iron ore necessary for maintaining the quality of steel is becoming increasingly difficult. For this reason, the examination which uses a leaching residue as an iron ore is made
  • the leaching residue of the HPAL process could not be used directly for ironmaking raw materials.
  • the following two points can be cited as the reason. (1) Since the leaching residue of the HPAL process contains gangue and impurities, particularly sulfur, in addition to iron oxide, it was not suitable as a raw material used in a conventional general iron making process. (2) The average particle size of hematite recovered from the leaching residue is 1 ⁇ m or less and is very fine and difficult to handle.
  • iron ore can be divided into lump ore (6.3 to 31.5 mm), fine ore (1 to 6.3 mm), fine ore (0.05 to 0.1 mm) and charged into the blast furnace.
  • raw materials for iron making lump ore, sintered ore, and pellets.
  • the sintered ore is produced by sintering fine ore, and the pellet is obtained by firing fine ore.
  • the sulfur grade in iron oxide that can be used for such ironmaking raw materials varies depending on the facility capacity, production amount, etc. of each ironworks, but it is generally required to be suppressed to less than 1%.
  • the leaching residue of the HPLA process usually contains about 5 to 8% sulfur.
  • the origin of sulfur in the leaching residue is calcium sulfate (gypsum), which is mostly mixed during nickel refining. Gypsum is free sulfuric acid remaining in the leach slurry obtained by high-pressure acid leaching (free sulfuric acid is sulfuric acid that remains unreacted among sulfuric acid added excessively to perform sufficient leaching in the HPAL process. )), A general and inexpensive calcium-based neutralizer, such as limestone or slaked lime, is added, and is produced by the reaction of calcium and free sulfuric acid contained in the neutralizer. , It will be mixed in the leach residue. In addition, a part (about 1%) of sulfur contained in the leaching residue is taken into the generated hematite particles.
  • the neutralizing agent to be added does not form a poorly soluble starch after neutralization, such as slaked lime or slaked lime, but a material that generates a soluble salt may be used.
  • a poorly soluble starch after neutralization such as slaked lime or slaked lime
  • a material that generates a soluble salt may be used.
  • neutralizing agents are not suitable for processes that consume a large amount of neutralizing agents, such as the HPAL process, for reasons such as high cost or low production.
  • a calcium-based neutralizing agent that forms a poorly soluble starch after neutralization as described above must be used in whole or in part, and it is unavoidable that sulfur is mixed in. The resulting leach residue could not be processed into hematite and used as a raw material for iron making.
  • Patent Document 2 stirs iron alunite-containing residues and zinc sulfide-containing materials with an oxygen partial pressure of at least 1000 kPa and a temperature condition of 130 to 170 ° C. with 40 to 100 g / l of free sulfuric acid in an autoclave, Substantially dissolve the iron and zinc content of the residue and zinc sulfide-containing concentrate, introduce the solution into a leaching circuit for zinc electrolysis to precipitate iron in the form of hematite, and remove sulfur from the solids. Separating and supplying the residue to another application.
  • this method requires an expensive new device such as an autoclave, which increases the equipment cost, and also has a problem in terms of productivity.
  • U.S. Patent No. 6,057,053 provides a process for recovering magnesium oxide from a source of magnesium sulfate, which provides a source of magnesium sulfate in solution obtained from a portion of the process associated with the leaching of metal-containing ores or concentrates.
  • a recovering step is converting magnesium sulfate in a solution state to solid magnesium sulfate, a step of contacting solid magnesium sulfate with elemental sulfur in a reducing atmosphere, magnesium as magnesium oxide, and sulfur as sulfur dioxide gas.
  • the magnesium contained in the ore can be reused as a neutralizing agent, and the calcium brought in can be suppressed. As a result, the calcium mixed in the iron oxide in the residue can be reduced.
  • the method of Patent Document 3 requires a large amount of heat to crystallize magnesium in a solution as magnesium sulfate and to heat the obtained magnesium sulfate to convert it to magnesium oxide, which is an economical method. hard.
  • Patent Document 4 discloses that in a method of recovering nickel or cobalt from an oxide ore containing nickel or cobalt and iron, as the oxide ore, a first oxide ore and a magnesium content ratio than the first oxide ore are disclosed.
  • the reaction process which adjusts pH, and obtains the reaction liquid containing nickel or cobalt and the reaction residue containing iron, and neutralizes the reaction liquid containing the reaction residue using a neutralizing agent, and contains nickel or cobalt It is a recovery method characterized by including the neutralization liquid and the neutralization process of obtaining the neutralization residue containing iron.
  • nickel oxide ore itself can be used as a neutralizing agent.
  • the cost and effort for classifying the ore could not be ignored.
  • JP 2004-225120 A Japanese Patent Laid-Open No. 03-176081 JP 2009-520661 A Japanese Patent No. 4294585
  • the present invention is a conventional Ca in the actual operation of refining hematite having a sulfur component low enough to be used as an ironmaking raw material from the leaching residue containing fine iron oxide produced by the HPAL process.
  • Hematite manufacturing method that enables sintering of ultrafine ore that has not been used conventionally, which makes it possible to use a neutralizing agent other than Ca-based neutralizing agent and Ca-based neutralizing agent Is to provide.
  • the first invention of the present invention for solving the above problems is for iron making in a process of leaching a valuable metal under high temperature and pressure by adding a mineral acid and an oxidizing agent to an ore containing iron and the valuable metal.
  • a method for producing (high purity) hematite, the method comprising producing the following steps (1) to (9).
  • the amount of Fe-enriched slurry added as a seed crystal is reduced to the precipitate generated by neutralization in the neutralization step 1 of (4).
  • it is a method for producing hematite for iron making, characterized in that the weight ratio is 50 to 80% by weight.
  • the third invention of the present invention is the iron making, wherein the neutralizing agent added to the leachate in the steps (1) and (2) of the first and second inventions is a mother rock or magnesium hydroxide This is a method for producing hematite.
  • the fourth invention of the present invention is the production of hematite for iron making, wherein the neutralizing agent in the neutralization step 2 of (5) in the first to third inventions is sodium hydroxide or potassium hydroxide Is the method.
  • the fifth invention of the present invention is a method for producing hematite for iron making, wherein the neutralizing agent in the neutralization step 1 of (4) in the first to fourth inventions is limestone or slaked lime. is there.
  • the sixth invention of the present invention is a method for producing hematite for iron making, wherein the ore containing iron and valuable metals in the first to fifth inventions is nickel oxide ore.
  • the firing is then performed in the step (9). This is a method for producing hematite for iron making.
  • the eighth invention of the present invention is the hematite for iron making, wherein the particle size (d50) of the hematite obtained in the solid-liquid separation step 3 of (6) in the first to seventh inventions is less than 1 ⁇ m It is a manufacturing method.
  • a hematite for iron making wherein the particle size (d50) of the sintered hematite obtained in the step (9) in the first to eighth aspects is 3 to 20 mm. It is a manufacturing method.
  • the method for producing hematite for iron production according to the present invention is a conventional method for refining hematite having a low sulfur content to the extent that it can be used as a raw material for iron production from a leach residue containing fine iron oxide produced by the HPAL process. It enables the combined use of a Ca-based neutralizer and a non-Ca-based neutralizer other than a Ca-based neutralizer derived from the mother rock. Secondly, it enables sintering of ultrafine ore that has not been conventionally used, and has a remarkable industrial effect.
  • the present invention is a method for producing hematite in a production process in which a mineral acid and an oxidizing agent are added to an ore containing iron and valuable metal, and the valuable metal is leached under high temperature and high pressure, and the following (1) to ( 9) A method for producing (high purity) hematite for iron making, which is characterized by undergoing the treatment of 9).
  • the pre-neutralized slurry formed by the pre-neutralization step of (2) is solid-liquid separated into a Ni-enriched slurry (liquid component) and an Fe-enriched slurry (solid component) and washed. Liquid separation step 1.
  • the neutralization process 1 which neutralizes the Ni enrichment slurry obtained by the solid-liquid separation process 1 of (3) using Ca type
  • the neutralization process 2 which neutralizes the Fe enrichment slurry obtained by the solid-liquid separation process 1 of (3) using a non-Ca neutralizer.
  • Solid-liquid separation step 3 in which the neutralized Fe-enriched slurry produced through the neutralization step 2 of (5) is solid-liquid separated and washed to produce hematite as a solid component.
  • Seed crystal addition in which a part of the Fe-enriched slurry obtained in the solid-liquid separation step 1 of (3) is added as a seed crystal to the neutralization step 1 of (4) to neutralize the Ni-enriched slurry processing.
  • the moisture content adjustment step (10) in which the water content of the removed hematite is 10% to 17% is performed. Then, it may be fired by the step (9).
  • FIG. 1 is a manufacturing process flow chart of the present invention.
  • the valuable metal contained in the ore is manufactured according to the flow indicated by the leftmost solid arrow (the thin solid arrow from the neutralization step) in FIG.
  • hematite which is a by-product of this manufacturing process, is a leaching residue (Fe rich) obtained at the tip of the solid line arrow branched to the right side from the solid-liquid separation step 1 (CCD) as shown by the thick line in FIG. And then manufactured according to the flow indicated by the rightmost solid line arrow in FIG.
  • CCD solid-liquid separation step 1
  • the neutralization treatment in the present invention is performed in three steps of “1. Preliminary neutralization step”, “2. Neutralization step 1”, “3, Neutralization step 2”.
  • the neutralizing agent used in each step is described below.
  • As the neutralizing agent in the preliminary neutralization step mother rock, magnesium oxide or magnesium hydroxide is used.
  • As the neutralizing agent in the neutralizing step 1 a Ca-based neutralizing agent can be used, and inexpensive limestone or slaked lime is used.
  • As the neutralizing agent in the neutralizing step 2 a non-Ca neutralizing agent is used and sodium hydroxide or potassium hydroxide is used, but magnesium hydroxide or magnesium oxide may be used.
  • Each neutralization step will be described.
  • Pre-neutralization step In the pre-neutralization step of the present invention, first of all, while using a host rock (unit: wt%) whose representative composition is shown in Table 1 as a neutralizing agent, the mixing of calcium is suppressed. Advance the harmony. In the case of refining nickel oxide ore, the target pH is neutralized to about pH 1 to 3 in order to improve the separation efficiency in the solid-liquid separation step 1 of the next step.
  • Neutralization process 1 In the neutralization process 1 for neutralizing the liquid component (Ni-enriched slurry) obtained from the solid-liquid separation process 1, an inexpensive Ca-based neutralizer such as limestone or slaked lime is used. This enables stable and low-cost operation. In the case of refining nickel oxide ore, the target pH is neutralized to about pH 3 to 5 in order to improve the efficiency of impurity separation in a subsequent process.
  • the solids that are neutralized and separated in this step are sent to the solid-liquid separation step 2 in a slurry state from the bottom of the neutralization tank, but since gypsum is the main component, it becomes a fine precipitate and settles in the neutralization tank. The speed is small and the solid content of the sediment is not high enough. Therefore, in order to improve the sedimentation rate, a part of the leaching residue Fe-enriched slurry (haematite is the main component), which is the underflow of the solid-liquid separation step 1 (CCD), is used as a seed crystal, and the solid content weight in the addition is reduced. It is preferable to add in the range of 50% by weight to 80% by weight of the weight of the precipitate.
  • the solid content weight is less than 50% by weight, it does not play a role as a seed crystal, and the sedimentation rate is not sufficiently improved. If it is greater than 80% by weight, the effect of improving the sedimentation rate is not changed so much. This is disadvantageous because the production of hematite obtained by processing the Fe-enriched slurry is reduced.
  • Neutralization process 2 In the neutralization step 2 for neutralizing the leaching residue (Fe-enriched slurry), it is preferable to use sodium hydroxide, potassium hydroxide or the like without using unstable supply of magnesium hydroxide or the like. Further, using magnesium hydroxide as a neutralizing agent is not preferable because the amount of Mg in the waste water increases and a large amount of neutralizing agent is required in the final Mg solidification treatment. Since the target pH is the final neutralization step for hematite, it is neutralized to about pH 6-8.
  • Solid-liquid separation process Next, the solid-liquid separation process in the present invention is performed by three processes of “solid-liquid separation process 1”, “solid-liquid separation process 2”, and “solid-liquid separation process 3”.
  • Solid-liquid separation process 1 The solid-liquid separation step 1 is performed using a known method such as CCD (Counter Current Decantation), and after pre-neutralization separated into Ni-enriched components and Fe-enriched components formed by neutralization in the pre-neutralization step.
  • the slurry is separated into Ni-enriched slurry (liquid component) and Fe-enriched slurry (solid component: leaching residue).
  • the Ni-enriched slurry is an overflow liquid (supernatant liquid) obtained from the CCD and contains a slight amount of solid content, and is therefore referred to as a slurry for convenience.
  • the Ni-enriched slurry is processed in a subsequent process to become an intermediate raw material such as a nickel / cobalt mixed sulfide or nickel sulfate solution, and further refined to become a valuable metal.
  • iron oxide for iron making high purity hematite
  • the solid-liquid separation method used in the solid-liquid separation step 1 includes a substance (here, refers to a slurry after preliminary neutralization), such as a CCD method, in a carrier fluid (here, refers to a cleaning liquid).
  • a substance here, refers to a slurry after preliminary neutralization
  • a carrier fluid here, refers to a cleaning liquid.
  • the solid-liquid separation method of transporting is preferable from the viewpoint of saving resources because the cleaning liquid created in the manufacturing process can be used, and also preferable from the viewpoint of reducing the sulfur quality in the produced hematite.
  • the CCD method is particularly suitable.
  • Solid-liquid separation process 2 In the solid-liquid separation step 2, a known method such as CCD (Counter Current Decantation) is performed, and the liquid component is obtained from the slurry of the precipitate mainly composed of gypsum obtained from the neutralization step 1, and the solid-liquid separation step. 1 is recovered as a cleaning solution, and the residue (solid component) is sent to the final processing step.
  • CCD Counter Current Decantation
  • Solid-liquid separation process 3 In the solid-liquid separation step 3, a known method such as wet classification, thickener or filter press is used, and the sulfur content is less than 1% as a solid content from the neutralized Fe-enriched slurry obtained from the neutralization step 2. Collect hematite. Further, the obtained liquid component is recovered as a cleaning liquid in the solid-liquid separation step 1.
  • the leaching residue (hereinafter referred to as neutralization residue for distinction) is treated with a wet cyclone.
  • Etc. is used to concentrate hematite on the small particle size side (for example, wet cyclone overflow; O / F side) of the neutralization residue, and on the large particle size side (wet cyclone in the wet cyclone). It is preferable to enhance the quality of hematite by concentrating substances other than hematite in the underflow (U / F side).
  • the Fe-enriched slurry is added in the neutralization step, and the precipitate that is a residue generated in the neutralization step is returned to the CCD (FIG. 2).
  • the CCD CCD
  • the hematite cake (denoted as “hematite” in FIG. 1) obtained in the solid-liquid separation step 3 in the production method of the present invention has a low sulfur content of less than 1%, but a relatively high moisture content of 22%. .
  • the transportable moisture value (TML: Transportable Moisture Limit) of the hematite of the present invention was 17% or less. For this reason, when carrying a ship, it is necessary to reduce the moisture content of the cake.
  • the particle size of the hematite is as very small as about 1 ⁇ m, so the possibility of dust generation is very high.
  • this dust generation has the property of decreasing as the moisture content increases, there is a tendency for fine particles to increase significantly from about 10% when the moisture content is lowered from 17%, so the moisture content is 10 to 17%. Is preferred.
  • the moisture content is preferably lower.
  • a moisture adjustment step for adjusting the moisture content is preferably performed.
  • dehydration is performed to remove moisture from the hematite cake.
  • the dehydration method there are a heating method, a filter press method, a centrifugal separation method, and the like, but a method using a filter press (pressure filtration) is widely used because of its high water removal efficiency and economy.
  • the obtained hematite is very fine particles
  • hematite with adjusted water content can be used as a raw material for iron making, but if it remains as fine particles, clogging is likely to occur in a blast furnace, so only a small amount should be used. I can't. Therefore, the hematite cake obtained from the hematite production process of the present invention, which is very fine particles, is baked to obtain coarse particles.
  • the hematite obtained by the production method of the present invention has an average particle size of 1 ⁇ m or less. If hematite having this particle size is used as a raw material for iron making, clogging will occur at the time of introduction into the blast furnace. Since hematite is composed of ultrafine particles having an average particle size of 1 ⁇ m or less, it can be easily sintered, and lime as a sintering aid that has been added at the time of conventional firing is unnecessary. Therefore, when the average particle diameter of the obtained hematite exceeds 1 ⁇ m, the strength of the fired body obtained after firing such hematite is lowered, which is not preferable.
  • the firing of the hematite can be easily performed at a temperature of 1150 to 1350 ° C. without adding a sintering aid such as lime, and the density of the obtained hematite fired body is 4.0 g / cc to 5.0 g / cc. cc.
  • the density of the hematite fired body is less than 4.0 g / cc.
  • the density is 4.0 g / cc or less, the number of pores in the fired body increases, causing cracks in the fired body and causing brittleness.
  • the density exceeds 5.0 g / cc.
  • the density exceeds 5.0 g / cc, it is difficult for the reducing gas to enter the fired body, and the reduction efficiency of the reducing gas is deteriorated.
  • a particle size (d50) of 3 to 20 mm is obtained through a pulverization step. If the particle diameter (d50) is less than 3 mm, it will cause clogging in the blast furnace, and the flow of the reducing gas will deteriorate. On the other hand, when it exceeds 20 mm, reaction time will become long and will cause productivity deterioration.
  • the particle size of the host rock used for the preliminary neutralization treatment it is preferable to adjust the particle size of the host rock used for the preliminary neutralization treatment to the optimum range by pulverization or the like. Specifically, as long as the particle size of the host rock does not exceed 500 ⁇ m, there is no difference in neutralization performance, and when using a wet cyclone for classification, classification accuracy increases as the particle size of the substance to be classified and removed increases. Therefore, by adjusting the range of the host rock particle diameter to be 500 ⁇ m or less and considering the equipment load, it is preferable to adjust the average particle diameter to around 150 ⁇ m so that gangues other than hematite can be removed. / F can be distributed to improve the quality of hematite.
  • the moisture content was measured with a heat drying moisture meter “ML-50” (manufactured by A & D Co., Ltd.), and the sulfur quality was measured using a carbon / sulfur analyzer.
  • the particle size was measured with a particle size distribution analyzer “model number SALD-3100” (manufactured by SHIMADZU).
  • a hearth raising / lowering high temperature furnace (manufactured by Marusho Denki Co., Ltd.) was used as the sintering furnace.
  • the sintering temperature was measured by measuring the temperature of the sintered product with a thermocouple, and held for a predetermined time after the sintering temperature reached a predetermined temperature.
  • the solid-liquid separation process 2 CCD
  • the solid-liquid separation process 3 filter press
  • the neutralization process 2 neutralizing agent: sodium hydroxide
  • the operation was carried out without returning the precipitate obtained from the neutralization step 1 to the solid-liquid separation step 1.
  • hematite having a hematite sulfur grade of 0.9%, an average particle size of 0.6 ⁇ m, and a moisture content of 22% could be obtained. Since the Fe-enriched slurry was added to the neutralization step 1 and the sedimentation of the precipitate was promoted, it was possible to operate with the same efficiency as before.
  • the obtained hematite cake (10 cm ⁇ 20 cm ⁇ 1 cm) was baked at 1350 ° C. for 10 minutes. Next, it was pulverized using a jaw crusher.
  • the obtained fired body had a sulfur grade of 0.01% and a moisture content of 0%. Moreover, the density of this sintered body was 5.0 g / cc, and the particle diameter (d50) was 3 mm.
  • the solid-liquid separation process 2 CCD
  • the solid-liquid separation process 3 filter press
  • the neutralization process 2 neutralizing agent: sodium hydroxide
  • the operation was carried out without returning the precipitate obtained from the neutralization step 1 to the solid-liquid separation step 1.
  • the obtained hematite cake was subjected to a high-pressure filter press (high-pressure heat filtration device) to obtain hematite having a hematite sulfur grade of 0.9%, an average particle size of hematite of 0.6 ⁇ m, and a moisture content of 13%.
  • the obtained hematite cake (10 cm ⁇ 20 cm ⁇ 1 cm) was baked at 1350 ° C. for 10 minutes. Next, it was pulverized using a jaw crusher.
  • the obtained fired body had a sulfur quality of 0.01% and a moisture content of 0%. Moreover, the density of this sintered body was 5.0 g / cc, and the particle diameter (d50) was 20 mm.
  • the solid-liquid separation process 2 CCD
  • the solid-liquid separation process 3 filter press
  • the neutralization process 2 neutralizing agent: sodium hydroxide
  • the resulting hematite cake was subjected to a high-pressure filter press (high-pressure heating filtration device) to obtain hematite having a hematite sulfur grade of 0.9% and a moisture content of 13%.
  • the obtained hematite cake (10 cm ⁇ 20 cm ⁇ 1 cm) was baked at 1150 ° C. for 10 minutes. Next, it was pulverized using a jaw crusher.
  • the obtained fired body had a sulfur quality of 0.07% and a moisture content of 0%.
  • the density of this sintered body was 4.3 g / cc, and the particle diameter (d50) was 20 mm.
  • the obtained hematite cake (10 cm ⁇ 20 cm ⁇ 1 cm) was baked at 1400 ° C. for 10 minutes. Next, it was pulverized using a jaw crusher.
  • the obtained fired body had a sulfur quality of 0.01% and a moisture content of 0%. Moreover, the density of the sintered body was 5.2 g / cc, and the particle diameter (d50) was 20 mm.
  • the obtained hematite cake (10 cm ⁇ 20 cm ⁇ 1 cm) was baked at 1050 ° C. for 10 minutes. Next, it was pulverized using a jaw crusher.
  • the obtained fired body had a sulfur quality of 0.2% and a moisture content of 0%.
  • the density of the fired body was 3.8 g / cc, and the particle diameter (d50) was 20 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

 HPALプロセスで産出した微細な酸化鉄を含む浸出残渣から、第一に製鉄原料に使用できる程度に硫黄成分が低いヘマタイトを精製する実操業においてCa系中和剤と母岩由来のCa系以外の中和剤とを使用することを可能とし、第二に従来使用されなかった極微粉鉱の焼結を可能とするヘマタイトの製造方法を提供する。 鉄と有価金属を含有する鉱石に、鉱酸と酸化剤を添加し、高温高圧下で有価金属を浸出するプロセスにおける製鉄用(高純度)ヘマタイトの製造方法であって、(1)高圧浸出工程、(2)予備中和工程、(3)固液分離工程1、(4)中和工程1、(5)中和工程2、(6)固液分離工程3、(7)種晶添加処理、(8)固液分離工程2、(9)焼成工程の(1)~(9)の工程を経ることを特徴とする製鉄用ヘマタイトの製造方法。

Description

製鉄用ヘマタイトの製造方法
 本発明は、製鉄用ヘマタイトの製造方法に関する。詳しくは、ニッケル酸化鉱の湿式精錬工程のうち固液分離工程を複数系列備えることにより、実操業において浸出残渣への硫黄化合物の混入を効率良く抑制することが可能な製鉄用ヘマタイトの製造方法に関する。
 ニッケルはステンレスの原料として幅広く用いられている。
 しかしながら、その原料となる硫化鉱石の資源枯渇傾向に伴い、低品位の酸化鉱石を精製する技術が開発され、実用化されている。
 具体的には、リモナイトやサプロライトなどのニッケル酸化鉱石を、硫酸溶液と共にオートクレーブなどの加圧装置に入れ、240~260℃程度の高温高圧下でニッケルを浸出する、「高温加圧酸浸出(HPAL:High Pressure Acid Leach)」と呼ばれる製造プロセスが実用化されている。
 この硫酸溶液中に浸出されたニッケルは、中和剤を添加して余剰の酸を中和し、次いで固液分離して浸出残渣と分離され、その後不純物を分離して水酸化物や硫化物などの形態の中間原料として回収されている。この中間原料をさらに精錬することにより、ニッケルメタルやニッケル塩化合物などを得ている。
 なお、前記の余剰の酸を中和する予備中和工程では、固液分離に適したpHに調整し、次工程の固液分離工程において、CCD(Counter Current Decantation)と呼ばれる設備で、固形分の濃縮および固液分離が行われる。通常CCDでは、連続する複数段のシックナーを使用している。
 そのCCDから得られる液体成分(以下、オーバーフローという場合がある)は、硫化工程に適したpHに調整するために中和工程に回され、pHを調整することにより、発生する微細な固形物を沈殿除去した後、例えば、硫化工程に送られ、硫化処理が行われ、ニッケル・コバルトの混合硫化物という中間原料を得るのが一般的である。
 この際、例えば特許文献1には、CCDで得られた固形分(以下、アンダーフローという場合がある)の一部を、中和工程に種晶として添加し、微細な沈殿の生成を促進する技術が記載されており、実操業の効率を向上させるために有効に活用されている。
 このような高温加圧酸浸出(HPAL:High Pressure Acid Leach)と呼ばれる製造プロセスでは、例えばニッケル酸化鉱石の場合、回収目的の有価金属が1~2重量%以下の低品位鉱石(以下、品位に関しては「%」で表記する。)であっても、ほぼ完全にニッケルを浸出できる。
 また浸出液から中間原料を製造することにより、目的金属を従来原料と同程度まで濃縮し、従来原料とほぼ同様の精錬方法および工程で目的金属を得ることができる。
 また、このHPALプロセスは、ニッケル酸化鉱のみでなく、ニッケル硫化鉱石や硫化銅鉱石、酸化銅鉱石など多くの種類にも適用できる。
 さらに、HPALプロセスで得られる浸出残渣の主な成分は、ヘマタイトなどの形態の酸化鉄であり、浸出残渣中の鉄分はおよそ50%程度であり、また、浸出残渣の生産量は中間原料の生産量に対しておよそ50倍から100倍である。これは原料としたニッケル酸化鉱石や銅の硫化鉱石に、いずれもニッケルや銅の含有量をはるかに超える量の鉄を含有するためである。
 この浸出残渣は、高温で生成されているため化学的・環境的には安定な酸化物の形態であるが、現状では特段の利用価値もなく、残渣堆積場に積立保管されている。
 このためHPALプロセスの操業に伴って発生する、膨大な量の浸出残渣を積立保管するための広大な残渣堆積場が必要である。
 一方、鉄鋼製錬では、酸化鉄が含まれた鉄鉱石をコークスなどの還元剤と共に高炉に装入し、加熱して還元溶融して粗鋼を得、これを転炉で精錬して目的とする鋼を得る方法が用いられる。
 その原料の酸化鉄は、限られた資源であり、しかも鋼の品質維持に必要な良質な鉄鉱石の入手は次第に難しくなっている。このため、浸出残渣を鉄鉱石として使用する検討がなされている。
 しかしながら、HPALプロセスの浸出残渣は製鉄原料用に直接用いることはできなかった。
 その理由に以下に示す2点が挙げられる。
(1)HPALプロセスの浸出残渣には、酸化鉄以外にも脈石や不純物、特に硫黄が含まれるため、従来の一般的な製鉄プロセスに用いる原料には適さなかった。
(2)浸出残渣から回収されるヘマタイトの平均粒径が1μm以下と非常に細かく取扱いが困難である。
 ところで、鉄鉱石は塊鉱石(6.3~31.5mm)、粉鉱石(1~6.3mm)、微粉鉱石(0.05~0.1mm)に分けることができ、高炉に装入される製鉄原料は、塊鉱石、焼結鉱、ペレットの三種類である。
 なお、焼結鉱は粉鉱石を焼結して製造され、ペレットは微粉鉱石を焼成して得られる。
 このような製鉄原料に利用できる酸化鉄中の硫黄品位は、個々の製鉄所の設備能力、生産量などによって異なるが、一般には1%未満に抑制することが必要とされている。
 一方、HPLAプロセスの浸出残渣には、通常5~8%程度の硫黄が含まれている。
 この浸出残渣中の硫黄の由来は、その大部分がニッケル精製中に混入する硫酸カルシウム(石膏)である。
 石膏は、高圧酸浸出で得られた浸出スラリーに残留する遊離硫酸(遊離硫酸とはHPALプロセスで十分な浸出を行うために過剰に加えた硫酸のうち、未反応で残留する硫酸のことである。)を中和する際に、一般的で安価なカルシウム系の中和剤、例えば、石灰石や消石灰を添加しており、中和剤に含まれるカルシウムと遊離硫酸とが反応することで生成し、浸出残渣中に混入することになる。
 なお、浸出残渣に含有される硫黄の一部(1%程度)は、生成したヘマタイトの粒子中に取り込まれている。
 そこで、添加する中和剤に消石灰や消石灰のような中和後に難溶性の澱物を形成するものでなく、溶解性の塩を生成するものを使用すれば良いと考えられる。
 例えばこのような用途に適した中和剤として水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、酸化マグネシウムなどがある。
 しかしながら、これらの中和剤は高価または生産量が少ないなどの理由で、HPALプロセスのような中和剤を大量消費するプロセスには適さない。
 このため、全量あるいは部分的に上記のような中和後に難溶性の澱物を形成するカルシウム系の中和剤を使用せざるを得ず、硫黄の混入を避けられないことから、HPALプロセスで生成する浸出残渣をヘマタイトに加工して製鉄原料として用いることはできなかった。
 一方、オートクレーブなどの加圧装置を使用して、鉄明礬石中の硫黄を分離する方法も知られている。
 例えば特許文献2には、鉄明礬石含有残留物と硫化亜鉛含有物を少なくとも1000kPaの酸素分圧及び130~170℃の温度条件で、オートクレーブ内において40~100g/lの遊離硫酸とともに攪拌し、残留物および硫化亜鉛含有濃厚物の鉄分及び亜鉛分を実質的に溶解させ、溶液を亜鉛電解のための浸出循環路に導入して鉄を赤鉄鉱の形で沈殿させ、前記固形物から硫黄を分離し、残留物は別の用途に供給することを特徴とする方法である。
 しかしこの方法は、オートクレーブのような高価な新規の装置を要し、設備コストがかさみ、さらに生産性の面でも課題があった。
 そこで、鉱石自身に含有される酸化マグネシウムを中和剤として利用することが提案されている。
 例えば、特許文献3は、硫酸マグネシウムのソースから酸化マグネシウムを回収するプロセスであって、金属含有鉱石または精鉱の浸出に関連したプロセスの一部から得られた溶液状態の硫酸マグネシウムのソースを用意する工程と、溶液状態の硫酸マグネシウムを固体硫酸マグネシウムに変換する工程と、固体硫酸マグネシウムを還元性雰囲気中で元素状硫黄に接触させる工程と、マグネシウムを酸化マグネシウムとして、かつ硫黄を二酸化硫黄ガスとして回収する工程とを含むプロセスである。
 この方法を用いることにより、鉱石に含有されるマグネシウムを中和剤として再利用し、持ち込まれるカルシウムを抑制することができ、その結果、残渣中の酸化鉄に混入するカルシウムを減少することができる。
 しかしながら特許文献3の方法は、溶液中のマグネシウムを硫酸マグネシウムとして晶析させたり、得た硫酸マグネシウムを加熱して酸化マグネシウムに変換するのに多量の熱を必要とし、経済的な方法とは言い難い。
 さらに、マグネシウム含有率が高い酸化鉱石(リモナイト鉱石)を中和剤として用いる方法も提案されている。
 例えば、特許文献4は、ニッケルまたはコバルトと鉄とを含む酸化鉱石から、ニッケルまたはコバルトを回収する方法において、酸化鉱石として、第一の酸化鉱石と、この第一の酸化鉱石よりもマグネシウム含有率が高い第二の酸化鉱石とを準備する工程と、第一の酸化鉱石を、第一の小粒径酸化鉱石と、第一の大粒径酸化鉱石とに分級し、第二の酸化鉱石を第二の小粒径酸化鉱石と、第二の大粒径酸化鉱石とに分級する分級工程と、硫酸を使用して第一の大粒径酸化鉱石から、ニッケルまたはコバルトを浸出し、ニッケルまたはコバルトを含む硫酸浸出溶液と浸出残渣とを得る浸出工程と、その浸出残渣を含む硫酸浸出溶液と第二の大粒径酸化鉱石とを混合し、硫酸浸出溶液と第二の大粒径酸化鉱石に含有されるマグネシウムとを反応させてpH調整し、ニッケルまたはコバルトを含む反応液と、鉄を含む反応残渣とを得る反応工程と、その反応残渣を含む反応液を、中和剤を使用して中和し、ニッケルまたはコバルトを含む中和液と、鉄を含む中和残渣とを得る中和工程とを含むことを特徴とする回収方法である。
 この方法を用いることにより、ニッケル酸化鉱石自身を中和剤として利用することができる。
 しかしながら、鉱石を分級するためのコストや手間は無視できなかった。さらに、浸出残渣中には脈石成分も多く、そのままでは鉄品位が低くなり、効率的な原料とは言い難かった。
 従って、HPALプロセスで使用する中和剤の全量を酸化マグネシウムで代替することは困難だった。
 また、浸出残渣を産出する予備中和工程だけ、中和剤を母岩由来の酸化マグネシウムに代替して硫黄混入を防ぐ方法も容易に想起される。
 しかしながら、中和工程で従来のカルシウム系中和剤を使用して、特許文献1に記載の、実操業の効率を向上する技術を利用しようとすれば、中和工程の残渣がCCDに戻し入れられるため、浸出残渣への硫黄分混入は避けられず、硫黄品位の上昇を招く問題が新たに発生してしまう。
特開2004-225120号公報 特開平03-176081号公報 特開2009-520661号公報 特許第4294685号公報
 このような状況の中、本発明はHPALプロセスで産出した微細な酸化鉄を含む浸出残渣から、第一に製鉄原料に使用できる程度に硫黄成分が低いヘマタイトを精製する実操業において、従来のCa系中和剤と母岩由来のCa系以外の中和剤とを使用することを可能とする、第二に、従来、使用されなかった極微粉鉱の焼結を可能とするヘマタイトの製造方法を提供するものである。
 上記の課題を解決するための本発明の第1の発明は、鉄と有価金属を含有する鉱石に、鉱酸と酸化剤を添加し、高温高圧下で有価金属を浸出するプロセスにおける製鉄用(高純度)ヘマタイトの製造方法であって、下記(1)から(9)の工程を経ることを特徴とする製鉄用(高純度)ヘマタイトの製造方法である。
(1)前記鉱石に鉱酸と酸化剤を添加し、高温高圧下で前記鉱石に含まれる有価金属を浸出して得られた浸出液を、中和剤の添加により中和処理して形成した浸出スラリーを形成する高圧酸浸出工程。
(2)前記浸出スラリーを、中和剤の添加により中和処理してNi富化成分とFe富化成分に分離した予備中和後スラリーを形成する予備中和工程。
(3)前記(2)の予備中和工程により形成された予備中和後スラリーを、固液分離してNi富化スラリー(液体成分)とFe富化スラリー(固体成分)に分離、洗浄する固液分離工程1。
(4)前記(3)の固液分離工程1により得られたNi富化スラリーを、Ca系中和剤を用いて中和する中和工程1。
(5)前記(3)の固液分離工程1により得られたFe富化スラリーを、非Ca系中和剤を用いて中和する中和工程2。
(6)前記(5)の中和工程2を経て生成された中和後Fe富化スラリーを固液分離、洗浄して固体成分としてヘマタイトを生成する固液分離工程3。
(7)前記(3)の固液分離工程1で得られたFe富化スラリーの一部を、Ni富化スラリーを中和する前記(4)の中和工程1に種晶として添加する種晶添加処理。
(8)前記(4)のNi富化スラリーの中和工程1から得られる沈殿を固液分離して、硫黄化合物を含む残渣(固体成分)と硫黄を含まない液体成分に分離、洗浄する固液分離工程2。
(9)前記(6)の固液分離工程3で得られるヘマタイトを1150~1350℃で焼成する焼成工程。
 本発明の第2の発明は、第1の発明の(7)の処理において、種晶として添加するFe富化スラリーの量が、(4)の中和工程1における中和により生成する沈殿に対し、重量比で50~80重量%であることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第3の発明は、第1及び第2の発明の(1)及び(2)の工程における浸出液に添加する中和剤が、母岩または水酸化マグネシウムであることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第4の発明は、第1から第3の発明における(5)の中和工程2における中和剤が、水酸化ナトリウム又は水酸化カリウムであることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第5の発明は、第1から第4の発明における(4)の中和工程1におい
ける中和剤が、石灰石又は消石灰であることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第6の発明は、第1から第5の発明における鉄と有価金属を含有する鉱石が、ニッケル酸化鉱石であることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第7の発明は、第1から第6の発明における(6)の工程の後に、その(6)の固液分離工程3で得られた固体成分のヘマタイトから水分を除去して、除去後のヘマタイトの水分率を10重量%~17重量%(以下、水分率の単位は「%」で表す。)とする水分量調整工程(10)を経て、次いで(9)の工程で焼成されることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第8の発明は、第1から第7の発明における(6)の固液分離工程3で得られるヘマタイトの粒子径(d50)が、1μm未満であることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の第9の発明は、第1から第8の発明における(9)の工程で得られるヘマタイト焼結体の粒子径(d50)が、3~20mmであることを特徴とする製鉄用ヘマタイトの製造方法である。
 本発明の製鉄用ヘマタイトの製造方法は、HPALプロセスで産出した微細な酸化鉄を含む浸出残渣から、第一に製鉄原料に使用できる程度に硫黄成分の低いヘマタイトを精製する実操業において、従来のCa系中和剤と母岩由来のCa系以外の非Ca系中和剤との併用を可能とする。第二に従来、使用されなかった極微粉鉱の焼結を可能とし、工業上顕著な効果を奏するものである。
本発明の製造工程フロー図である。 従来の製造工程フロー図である。
 本発明では、鉄と有価金属を含有する鉱石に、鉱酸と酸化剤を添加し、高温高圧下で有価金属を浸出する製造プロセスにおけるヘマタイトの製造方法であって、以下の(1)から(9)の処理を経ることを特徴とする製鉄用(高純度)ヘマタイトの製造方法である。
(1)前記鉱石に鉱酸と酸化剤を添加し、高温高圧下で前記鉱石に含まれる有価金属を浸出して得られた浸出液を中和剤の添加により中和処理して形成した浸出スラリーを形成する高圧酸浸出工程。
(2)得られた浸出スラリーを、中和剤の添加により中和処理してNi富化成分とFe富化成分に分離した予備中和後スラリーを形成する予備中和工程。
(3)(2)の予備中和工程により形成された予備中和後スラリーを、固液分離してNi富化スラリー(液体成分)とFe富化スラリー(固体成分)に分離、洗浄する固液分離工程1。
(4)(3)の固液分離工程1により得られたNi富化スラリーを、Ca系中和剤を用いて中和する中和工程1。
(5)(3)の固液分離工程1により得られたFe富化スラリーを、非Ca系中和剤を用いて中和する中和工程2。
(6)(5)の中和工程2を経て生成された中和後Fe富化スラリーを固液分離、洗浄して固体成分としてヘマタイトを生成する固液分離工程3。
(7)(3)の固液分離工程1で得られたFe富化スラリーの一部を、Ni富化スラリーを中和する(4)の中和工程1に種晶として添加する種晶添加処理。
(8)(4)のNi富化スラリーの中和工程1から得られる沈殿を、固液分離して、硫黄化合物を含む残渣(固体成分)と硫黄を含まない液体成分に分離、洗浄する固液分離工程2。
(9)(6)の固液分離工程3で得られたヘマタイトを、1150~1350℃で焼成する焼成工程。
 さらに、(6)の固液分離工程3で得られた固体成分のヘマタイトから水分を除去して、除去後のヘマタイトの水分率を10%~17%とする水分量調整工程(10)を経て、次いで(9)の工程により焼成しても良い。
 以下、図面を参照しながら、本発明を詳細に説明する。
 図1は、本発明の製造工程フロー図である。
 鉱石に含まれる有価金属は、図1の最も左側の実線矢印(中和工程からは細実線矢印)で示すフローに従って製造されていく。
 一方、この製造プロセスの副生品であるヘマタイトは、図1の太実線で示されるように固液分離工程1(CCD)から右側に分岐した太実線矢印の先で得られる浸出残渣(Fe富化スラリー)に含まれ、その後、図1の最も右側の太実線矢印で示すフローに従って製造される。以下、各工程について詳細に説明する。
[中和処理]
 本発明における中和処理は、「1.予備中和工程」、「2.中和工程1」、「3、中和工程2」の3工程において行われる。それぞれの工程において使用する中和剤を下記に記す。
 予備中和工程における中和剤には、母岩、酸化マグネシウムもしくは水酸化マグネシウムを用いる。
 中和工程1における中和剤には、Ca系の中和剤を用いることができ、安価な石灰石や消石灰を用いる。
 中和工程2における中和剤には、非Ca系中和剤を使用し、水酸化ナトリウムや水酸化カリウムを用いるが、水酸化マグネシウムや酸化マグネシウムを用いても良い。
 各中和工程を説明する。
1.予備中和工程
 本発明の予備中和工程では、先ず中和剤に表1に成分組成の代表例を示した母岩(単位:wt%)を用いることで、カルシウムの混入を抑制しながら中和を進める。その目標とするpHは、ニッケル酸化鉱石の精錬の場合、次工程の固液分離工程1での分離効率を向上させるため、pH1~3程度に中和する。
Figure JPOXMLDOC01-appb-T000001
2.中和工程1
 固液分離工程1から得られる液体成分(Ni富化スラリー)を中和処理する中和工程1で、安価な石灰石や消石灰などのCa系中和剤を用いる。このことで、安定かつ低コストでの操業が可能となる。その目標とするpHは、ニッケル酸化鉱石の精錬の場合、後工程で不純物分離の効率を向上させるため、pH3~5程度に中和する。
 この工程で中和分離する固形分は、中和槽の底部からスラリーの状態で固液分離工程2に送られるが、石膏が主成分であるため微細な沈殿物となり中和槽内での沈降速度が小さく、沈降殿物の固体率が十分に上がらない欠点がある。
 そこで、沈降速度を向上させるため、固液分離工程1(CCD)のアンダーフロー分である浸出残渣のFe富化スラリー(ヘマタイトが主成分)の一部を種晶として、添加における固形分重量を、沈殿物重量の50重量%以上、80重量%以下の範囲で添加することが好ましい。
 固形分重量が50重量%未満だと、種晶としての役割を果たせず、沈降速度の向上が不充分となり、80重量%より大きいと、沈降速度の向上させる効果があまり変わらないだけでなく、Fe富化スラリーを処理して得られるヘマタイトの生産量が少なくなるので不利である。
3.中和工程2
 浸出残渣(Fe富化スラリー)を中和する中和工程2では、供給不安定な水酸化マグネシウムなどは用いず、水酸化ナトリウムや水酸化カリウムなどを用いるのが好ましい。
 また、水酸化マグネシウムを中和剤として用いると、排水中のMg量が多くなり最終Mg固化処理において大量の中和剤が必要になるので好ましくない。
 目標とするpHは、ヘマタイトとしては最終的な中和の工程となるため、pH6~8程度に中和する。
[固液分離処理]
 次に本発明における固液分離処理は、「固液分離工程1」、「固液分離工程2」、「固液分離工程3」の3処理にて行われる。
1.固液分離工程1
 固液分離工程1では、CCD(Counter Current Decantation)などの公知の方法を用いて行い、予備中和工程の中和により形成されたNi富化成分とFe富化成分に分離した予備中和後スラリーを、Ni富化スラリー(液体成分)とFe富化スラリー(固体成分:浸出残渣)に分離する。
 ここで、Ni富化スラリーとは、CCDから得られるオーバーフロー液(上澄み液)であって、わずかながら固形分が混入しているので、便宜上スラリーと称している。
 Ni富化スラリーは、後工程で処理されニッケル・コバルト混合硫化物や硫酸ニッケル溶液などの中間原料となり、さらに精錬されて有価金属となる。
 一方、Fe富化スラリーの浸出残渣からは、図1の最も右側の太実線矢印で示すフローに従って中和工程2、固液分離工程3を経て、製鉄用酸化鉄(高純度ヘマタイト)を回収する。
 なお、この固液分離工程1に用いる固液分離法は、CCD法のような、物質(ここでは、予備中和後スラリーを指す)を、キャリア流体(ここでは、洗浄液を指す)に含ませ、運搬させる方式の固液分離法が、製造工程内において創出された洗浄液が使用可能であり、省資源の点からも好ましく、又生成されるヘマタイト中の硫黄品位を低減可能な点においても好ましく、この固液分離工程1ではCCD法が特に適している。
2.固液分離工程2
 固液分離工程2では、CCD(Counter Current Decantation)などの公知の方法を用いて行い、中和工程1から得られる、石膏を主成分とする沈殿物のスラリーから液体成分を、固液分離工程1の洗浄液として回収し、残渣(固体成分)を最終処理工程に送出する。
 この固液分離工程2を設けたことにより、Fe富化スラリーを生成する固液分離工程1において使用する洗浄液に石膏を除去した洗浄液を用いることができることから、分離されたFe富化スラリーに石膏が混入することがなくなり、得られるヘマタイトの硫黄品位を抑制することができる。また、新しく用意する洗浄液の量も削減可能となる。
3.固液分離工程3
 固液分離工程3では、湿式分級、シックナーやフィルタープレスなど公知の方法を用いて行い、中和工程2から得られる中和後のFe富化スラリーから固形分として、硫黄分が1%未満のヘマタイトを回収する。また、得られた液体成分は、固液分離工程1の洗浄液として回収する。
 なお、母岩を使用して浸出スラリー中の余剰酸の中和を行う場合、固液分離工程1を経た後、その浸出残渣(以下、区別するために中和残渣と呼ぶ)を、湿式サイクロン等を使用して分級(湿式分級)することにより、中和残渣の小粒径側(例えば、湿式サイクロンのオーバーフロー;O/F側)にヘマタイトを濃縮し、大粒径側(湿式サイクロンでのアンダーフロー:U/F側)にはヘマタイト以外の物質を濃縮することでヘマタイトの品位を高めることが好ましい。
 以上説明してきたように、実操業で操業効率を向上させるために、中和工程でFe富化スラリーを添加し、中和工程で発生する残渣である沈殿を、CCDに戻し入れる場合(図2の従来の製造工程フロー図を参照)には、5~8%程度の硫黄を含有するヘマタイトしか得ることが出来なかったが、本発明を適用することにより、硫黄分が1%未満のヘマタイトを得ることが可能となった。
 一方、本発明の製造方法における固液分離工程3において得られるヘマタイトケーキ(図1中「ヘマタイト」と表記)は、その硫黄分は1%未満と低いが、水分含有率22%と比較的高い。
 一般的に固体物質の運送においては、水分含有量が多いと船舶輸送中に液状化現象を引き起こし、船舶の転覆を引き起こす可能性がある。日本海事検定協会にて調査した結果、本発明ヘマタイトの運送許容水分値(TML:Transportable Moisture Limit)は17%以下であった。このため、船舶搬送する場合、当該ケーキの水分含有率を下げる必要がある。同時に当該ヘマタイトの粒子径は1μm程度と非常に細かいので、発塵の可能性が非常に高い。
 この発塵は水分率が多くなると少なくなる性質を示すことから、水分率を17%から下げていくと10%程度から微細粒子が著しく多くなる傾向がみられるので、水分率は10~17%が好ましい。ハンドリング時にフレコンを使用するなど防塵出来る場合、水分含有量はより低い方が好ましい。
 そこで、水分含有量の調製を行う水分調整工程を行うと良い。本発明ではヘマタイトケーキから水分を除去する脱水が行われる。
 その脱水方法には、加熱法、フィルタープレス法、遠心分離法などがあるが、水分除去効率の高さや経済性からフィルタープレス(加圧濾過)による方法が広く用いられている。
 しかしながら、得られたヘマタイトは極微粒子であるため、水分量を調整したヘマタイトでも製鉄用原料として使用可能であるが、極微粒子のままでは、高炉で目詰まりを起こしやすいので、少量しか用いることが出来ない。
 従って、極微粒子である本発明のヘマタイト製造工程から得られたヘマタイトケーキを焼成して、粗粒子とする。
 本発明の製造方法で得られるヘマタイトは平均粒径が1μm以下であり、この粒径のヘマタイトを製鉄用原料として使用すると高炉への投入時に目詰まりを起こしてしまうが、ヘマタイトの焼成において、このヘマタイトは、平均粒径が1μm以下の極微粒子で構成されているため、容易に焼結し、従来焼成時に添加している焼結助剤の石灰なども不要である。
 したがって、得られるヘマタイトの平均粒径が1μmを超える場合、そのようなヘマタイトを焼成した後に得られる焼成体の強度が低下するので、好ましくない。
 このヘマタイトの焼成は、石灰などの焼結助剤を添加せずに温度1150~1350℃で容易に行うことができ、得られたヘマタイト焼成体の密度は4.0g/cc~5.0g/ccとなる。
 ヘマタイト焼成温度が1150℃未満であると、ヘマタイト焼成体の密度が4.0g/cc未満になる。この密度が4.0g/cc以下であると焼成体の空孔が多くなり、焼成体にクラックが生じ、脆くなる原因となる。
 一方、焼成温度が1350℃よりも高くなると、その密度は5.0g/ccを超えてしまう。密度が5.0g/ccを超えると焼成体の中へ還元ガスが入り難くなり、還元ガスの還元効率が悪くなるので好ましくない。
 なお、上記ヘマタイトケーキに残留する硫黄の大部分は、石膏由来の硫黄ではなく、高温加圧酸浸出の工程で、ヘマタイト粒子の中に取り込まれた硫酸成分の硫黄と考えられており、本発明を適用することにより石膏由来の硫黄は実質的に、その全量を除去することが可能である。
 次に、焼成後、粉砕工程を経て3~20mmの粒子径(d50)にする。
 粒子径(d50)が3mm未満であると高炉内での目詰まりの原因になり、還元ガスの流れが悪くなる。一方で、20mmを超えると、反応時間が長くなり生産性悪化の原因となる。
 また、予備中和処理に用いる母岩は、その粒径を粉砕などによって最適範囲に調整することが好ましい。
 具体的には、母岩の粒径が500μmを超えない範囲であれば、中和性能に差がなく、また、分級に湿式サイクロンを用いる場合、分級除去したい物質の粒径が大きいほど分級精度を上げることができることから、母岩の粒径は500μm以下となる範囲、そして設備負荷を考えると好ましくは150μm前後の平均粒径となるように調整することにより、ヘマタイト以外の脈石等をU/F側に分配させ、ヘマタイトの品位を向上させることが出来る。
 以下、実施例、比較例で、本発明をより詳細に説明する。実施例、比較例において共通の条件を以下の表2に示した。
Figure JPOXMLDOC01-appb-T000002
 なお、水分率は、加熱乾燥式水分計「ML-50」(株式会社エーアンドデイ製)で測定し、硫黄品位は炭素・硫黄分析装置を用いて測定した。
 粒子径は、粒度分布測定装置「型番 SALD-3100」(SHIMADZU社製)で測定した。
 焼結炉には炉床昇降式高温炉(丸祥電器株式会社製)を使用した。焼結温度は、焼結物の温度を熱電対で測定し、焼結温度が所定の温度に達してから所定時間保持した。
 図1に示す本発明に係る製造工程フローに従い、固液分離工程2(CCD)、固液分離工程3(フィルタープレス)、中和工程2(中和剤:水酸化ナトリウム)を実施し、特に、中和工程1から得られる沈殿を固液分離工程1に戻し入れることなく、操業を実施した。
 その結果、ヘマタイトの硫黄品位0.9%、平均粒径0.6μm、水分率22%のヘマタイトを得ることができた。
 中和工程1にFe富化スラリーを添加して、沈殿物の沈降を促進したため従来と同様の効率で操業することができた。
 得られたヘマタイトケーキ(10cm×20cm×1cm)を1350℃、10分の焼成を施した。次にジョークラッシャーを使用して粉砕した。
 得られた焼成体の硫黄品位は0.01%、水分率は0%であった。また、この焼成体の密度は5.0g/cc、粒子径(d50)は3mmであった。
 図1に示す本発明に係る製造工程フローに従い、固液分離工程2(CCD)、固液分離工程3(フィルタープレス)、中和工程2(中和剤:水酸化ナトリウム)を実施し、特に、中和工程1から得られる沈殿を固液分離工程1に戻し入れることなく、操業を実施した。
 得られたヘマタイトケーキを高圧フィルタープレス(高圧加熱濾過装置)をすることで、ヘマタイト硫黄品位0.9%、ヘマタイトの平均粒径0.6μm、水分率13%のヘマタイトが得られた。
 得られたヘマタイトケーキ(10cm×20cm×1cm)を1350℃、10分の焼成を施した。次にジョークラッシャーを使用して粉砕した。
 得られた焼成体の硫黄品位は0.01%、水分率は0%であった。また、この焼成体の密度は5.0g/cc、粒子径(d50)は20mmであった。
 図1に示す本発明に係る製造工程フローに従い、固液分離工程2(CCD)、固液分離工程3(フィルタープレス)、中和工程2(中和剤:水酸化ナトリウム)を実施し、特に、中和工程1から得られる沈殿を固液分離工程1に戻し入れることなく、操業を実施した。得られたヘマタイトの平均粒子は0.6μmであった。
 得られたヘマタイトケーキを高圧フィルタープレス(高圧加熱濾過装置)することで、ヘマタイト硫黄品位0.9%、水分率13%のヘマタイトが得られた。
 得られたヘマタイトケーキ(10cm×20cm×1cm)を1150℃、10分の焼成を施した。次にジョークラッシャーを使用して粉砕した。
 得られた焼成体の硫黄品位は0.07%、水分率は0%であった。また、この焼成体の密度は4.3g/cc、粒子径(d50)は20mmであった。
(比較例1)
 本発明を適用せず、図2の従来の製造工程フロー図に示すように中和工程から得られた沈殿をCCD(固液分離工程)に戻し入いれる操業を実施した。
 その結果、得られたヘマタイトの硫黄品位は6.5%であり、製鉄用原料としては使用が困難なヘマタイトしか得られなかった。
(比較例2)
 図1に示す本発明に係る製造工程フローに従い、固液分離工程2(CCD)、固液分離工程3(フィルタープレス)、中和工程2(中和剤:水酸化ナトリウム)を実施し、特に、中和工程1から得られる沈殿を固液分離工程1に戻し入れることなく、操業を実施した。
 得られたヘマタイトの硫黄品位は0.9%、平均粒子は0.6μm、水分率は22%であった。
 得られたヘマタイトケーキ(10cm×20cm×1cm)を1400℃、10分の焼成を施した。次にジョークラッシャーを使用して粉砕した。
 得られた焼成体の硫黄品位は0.01%、水分率は0%であった。また、焼成体の密度は5.2g/cc、粒子径(d50)は20mmであった。
(比較例3)
 図1に示す本発明に係る製造工程フローに従い、固液分離工程2(CCD)、固液分離工程3(フィルタープレス)、中和工程2(中和剤:水酸化ナトリウム)を実施し、特に、中和工程1から得られる沈殿を固液分離工程1に戻し入れることなく、操業を実施した。
 得られたヘマタイトの硫黄品位は0.9%、平均粒子は0.6μm、水分率は22%であった。
 得られたヘマタイトケーキ(10cm×20cm×1cm)を1050℃、10分の焼成を施した。次にジョークラッシャーを使用して粉砕した。
 得られた焼成体の硫黄品位は0.2%、水分率は0%であった。また、焼成体の密度は3.8g/cc、粒子径(d50)は20mmであった。

Claims (9)

  1.  鉄と有価金属を含有する鉱石に、鉱酸と酸化剤を添加し、高温高圧下で有価金属を浸出するプロセスにおける製鉄用ヘマタイトの製造方法であって、
      下記(1)から(9)の工程を経ることを特徴とする製鉄用ヘマタイトの製造方法。
                    (記)
    (1)前記鉱石に鉱酸と酸化剤を添加し、高温高圧下で前記鉱石に含まれる有価金属を浸出して得られた浸出液を、中和剤の添加により中和処理して形成した浸出スラリーを形成する高圧酸浸出工程。
    (2)前記浸出スラリーを、中和剤の添加により中和処理してNi富化成分とFe富化成分に分離した予備中和後スラリーを形成する予備中和工程。
    (3)前記(2)の予備中和工程により形成された予備中和後スラリーを、固液分離してNi富化スラリー(液体成分)とFe富化スラリー(固体成分)に分離、洗浄する固液分離工程1。
    (4)前記(3)の固液分離工程1により得られたNi富化スラリーを、Ca系中和剤を用いて中和する中和工程1。
    (5)前記(3)の固液分離工程1により得られたFe富化スラリーを、非Ca系中和剤を用いて中和する中和工程2。
    (6)前記(5)の中和工程2を経て生成された中和後Fe富化スラリーを固液分離、洗浄して固体成分としてヘマタイトを生成する固液分離工程3。
    (7)前記(3)の固液分離工程1で得られたFe富化スラリーの一部を、Ni富化スラリーを中和する前記(4)の中和工程1に種晶として添加する種晶添加処理。
    (8)前記(4)のNi富化スラリーの中和工程1から得られる沈殿を固液分離して、硫黄化合物を含む残渣(固体成分)と硫黄を含まない液体成分に分離、洗浄する固液分離工程2。
    (9)前記(6)の固液分離工程3で得られるヘマタイトを、1150~1350℃で焼成する焼成工程。
  2.  前記(7)の処理における種晶として添加するFe富化スラリーの量が、前記(4)の中和工程1における中和により生成する沈殿に対し、重量比で50~80重量%であることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
  3.  前記(1)及び(2)の工程における浸出液に添加する中和剤が、母岩または水酸化マグネシウムであることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
  4.  前記(5)の中和工程2における中和剤が、水酸化ナトリウム又は水酸化カリウムであることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
  5.  前記(4)の中和工程1における中和剤が、石灰石又は消石灰であることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
  6.  前記鉄と有価金属を含有する鉱石が、ニッケル酸化鉱石であることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
  7.  前記(6)の工程の後に、下記(10)の工程を経て、前記(9)の工程で焼成されることを特徴とする請求項1に記載の製鉄用ヘマタイトの製造方法。
                    (記)
    (10)前記(6)の固液分離工程3で得られた固体成分のヘマタイトから水分を除去して、除去後のヘマタイトの水分率を10重量%~17重量%とする水分量調整工程。
  8.  前記(6)の固液分離工程3で得られるヘマタイトの粒子径(d50)が、1μm未満であることを特徴とする請求項1に記載のヘマタイトの製造方法。
  9.  前記(9)の工程で得られるヘマタイト焼成体の粒子径(d50)が、3~20mmであることを特徴とする請求項1に記載のヘマタイトの製造方法。
PCT/JP2015/052713 2014-02-27 2015-01-30 製鉄用ヘマタイトの製造方法 WO2015129385A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2015224243A AU2015224243B2 (en) 2014-02-27 2015-01-30 Method for producing hematite for iron production
US15/121,403 US10125025B2 (en) 2014-02-27 2015-01-30 Method for producing hematite for ironmaking
EP15755671.3A EP3112481B1 (en) 2014-02-27 2015-01-30 Method for producing hematite for iron production
CN201580010655.XA CN106062220B (zh) 2014-02-27 2015-01-30 制铁用赤铁矿的制造方法
CA2940830A CA2940830C (en) 2014-02-27 2015-01-30 Method for producing hematite for ironmaking
PH12016501701A PH12016501701A1 (en) 2014-02-27 2016-08-26 Method for producing hematite for ironmaking

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036474A JP5800255B2 (ja) 2014-02-27 2014-02-27 製鉄用ヘマタイトの製造方法
JP2014-036474 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129385A1 true WO2015129385A1 (ja) 2015-09-03

Family

ID=54008711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052713 WO2015129385A1 (ja) 2014-02-27 2015-01-30 製鉄用ヘマタイトの製造方法

Country Status (8)

Country Link
US (1) US10125025B2 (ja)
EP (1) EP3112481B1 (ja)
JP (1) JP5800255B2 (ja)
CN (1) CN106062220B (ja)
AU (1) AU2015224243B2 (ja)
CA (1) CA2940830C (ja)
PH (1) PH12016501701A1 (ja)
WO (1) WO2015129385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408053B2 (en) 2015-04-21 2022-08-09 Excir Works Corp. Methods for selective leaching and extraction of precious metals in organic solvents

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5772869B2 (ja) * 2013-04-24 2015-09-02 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5679372B2 (ja) 2013-07-03 2015-03-04 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5776913B2 (ja) 2014-01-17 2015-09-09 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5800255B2 (ja) 2014-02-27 2015-10-28 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
CN106745309B (zh) * 2016-12-23 2018-08-07 天津理工大学 一种红土镍矿酸浸液生产高品质氧化铁红颜料的方法
CN106800314B (zh) * 2016-12-23 2019-01-29 天津理工大学 红土镍矿酸浸液除铁同时湿法生产氧化铁红颜料的方法
JP7279578B2 (ja) * 2019-08-20 2023-05-23 住友金属鉱山株式会社 シックナーによる固液分離方法及びこれを含んだニッケル酸化鉱石の湿式製錬方法
WO2024082020A1 (en) * 2022-10-20 2024-04-25 Element Zero Pty Limited Method of ore processing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225120A (ja) * 2003-01-23 2004-08-12 Sumitomo Metal Mining Co Ltd 中和澱物の沈降性改善方法
JP2010095788A (ja) * 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2013194283A (ja) * 2012-03-19 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2013193928A (ja) * 2012-03-21 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2013193923A (ja) * 2012-03-19 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2014189412A (ja) * 2013-03-26 2014-10-06 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935362A1 (de) 1989-10-24 1991-04-25 Ruhr Zink Gmbh Verfahren zur aufarbeitung von jarosit-haltigen rueckstaenden
ZA987219B (en) * 1997-08-15 2000-02-14 Cominco Eng Services Chloride assisted hydrometallurgical extraction of metal.
JP4525428B2 (ja) * 2004-05-13 2010-08-18 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
WO2005116281A1 (ja) 2004-05-27 2005-12-08 Pacific Metals Co., Ltd. ニッケルまたはコバルトの回収方法
BRPI0620340A2 (pt) 2005-12-22 2011-11-08 Bhp Billiton Ssm Dev Pty Ltd recuperação de óxido de magnésio
JP5572928B2 (ja) * 2008-07-25 2014-08-20 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
AU2009212947B2 (en) 2008-09-19 2014-06-05 Sumitomo Metal Mining Co., Ltd. Hydrometallurgical process of nickel laterite ore
JP5800255B2 (ja) 2014-02-27 2015-10-28 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225120A (ja) * 2003-01-23 2004-08-12 Sumitomo Metal Mining Co Ltd 中和澱物の沈降性改善方法
JP2010095788A (ja) * 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2013194283A (ja) * 2012-03-19 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2013193923A (ja) * 2012-03-19 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2013193928A (ja) * 2012-03-21 2013-09-30 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法
JP2014189412A (ja) * 2013-03-26 2014-10-06 Sumitomo Metal Mining Co Ltd 製鉄用ヘマタイトの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112481A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11408053B2 (en) 2015-04-21 2022-08-09 Excir Works Corp. Methods for selective leaching and extraction of precious metals in organic solvents
US11427886B2 (en) 2015-04-21 2022-08-30 Excir Works Corp. Methods for simultaneous leaching and extraction of precious metals
US11814698B2 (en) 2015-04-21 2023-11-14 Excir Works Corp. Methods for simultaneous leaching and extraction of precious metals

Also Published As

Publication number Publication date
CN106062220B (zh) 2018-10-16
AU2015224243B2 (en) 2016-10-20
EP3112481B1 (en) 2019-03-13
JP5800255B2 (ja) 2015-10-28
EP3112481A1 (en) 2017-01-04
US20160362304A1 (en) 2016-12-15
CA2940830C (en) 2017-05-02
CN106062220A (zh) 2016-10-26
AU2015224243A1 (en) 2016-09-15
JP2015160980A (ja) 2015-09-07
PH12016501701B1 (en) 2017-02-06
US10125025B2 (en) 2018-11-13
PH12016501701A1 (en) 2017-02-06
EP3112481A4 (en) 2018-01-31
CA2940830A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5800255B2 (ja) 製鉄用ヘマタイトの製造方法
AU2014258565B2 (en) Method for producing hematite for ironmaking
JP5776913B2 (ja) 製鉄用ヘマタイトの製造方法
JP2014214338A5 (ja)
WO2013140836A1 (ja) 製鉄用ヘマタイトの製造方法
JP5622061B2 (ja) 製鉄用ヘマタイトの製造方法
JP5800106B2 (ja) 製鉄用ヘマタイトの製造方法
WO2013140837A1 (ja) 製鉄用ヘマタイトの製造方法
JP5874944B2 (ja) ニッケル酸化鉱の湿式精錬方法
JP5858189B2 (ja) 製鉄用ヘマタイトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2940830

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15121403

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12016501701

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015224243

Country of ref document: AU

Date of ref document: 20150130

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015755671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201606451

Country of ref document: ID

Ref document number: 2015755671

Country of ref document: EP