WO2015127814A1 - 光纤光栅振动传感器 - Google Patents

光纤光栅振动传感器 Download PDF

Info

Publication number
WO2015127814A1
WO2015127814A1 PCT/CN2014/094685 CN2014094685W WO2015127814A1 WO 2015127814 A1 WO2015127814 A1 WO 2015127814A1 CN 2014094685 W CN2014094685 W CN 2014094685W WO 2015127814 A1 WO2015127814 A1 WO 2015127814A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
fiber grating
fixed
link
vibration sensor
Prior art date
Application number
PCT/CN2014/094685
Other languages
English (en)
French (fr)
Inventor
许明
毛献辉
张植俊
刘云飞
曹学光
翟江兰
于国瑞
耿振
姜婷
康凯
刘单
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2015127814A1 publication Critical patent/WO2015127814A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Definitions

  • the invention relates to a fiber grating vibration sensor, belonging to the technical field of optical fiber sensing.
  • Fiber Bragg Grating sensing technology is especially suitable for railway no-man's land, no electricity area and harsh environment because it has the advantages of no electromagnetic interference, no need for power supply on site, long-term reliability and stability, and long transmission distance.
  • fiber grating sensing technology it has been widely used in the protection and early warning of high and steep slopes.
  • Dangerous rock falling rock alarm monitoring is a branch of high and steep slope protection monitoring. If the dangerous rock falls can be monitored in advance, the economic loss caused by dangerous rock falling stones to railways and highways will be greatly reduced.
  • the falling rock signal is weaker than the train vibration intensity, but the vibration acceleration is generally large when the train passes, which seriously affects the life of the sensor, that is, the sensor needs to consider the structural stability while improving the sensitivity. Sex.
  • the fiber grating sensor has low sensitivity and poor structural strength. Short life and other issues.
  • the present invention provides a fiber grating vibration sensor, comprising:
  • a support housing a link mechanism disposed in the support housing, a strained fiber grating, a support member, and an overload protection device;
  • the link mechanism includes a first arm in a horizontal direction and a second arm in a vertical direction; a first end of the first arm is a free end, and a second end of the first arm is opposite to the second The second end of the arm is connected such that the first arm and the second arm are L-shaped;
  • the link structure is further provided with a first fixed rotating shaft, the first rotating fixed moving shaft is perpendicular to the length direction of the strained fiber grating and fixed to the supporting housing, so that the first arm can be opposite to the first arm
  • the first fixed rotating shaft rotates, the first arm rotates to drive the second arm to rotate;
  • the first end of the strained fiber grating is encapsulated in a second arm of the link mechanism, and the strained fiber grating
  • the second end is packaged on the support housing;
  • the support member supports the first arm to maintain the first arm in a state substantially parallel to the strained fiber grating
  • the overload protection device is fixed inside the support housing for defining a range of motion of the first arm.
  • the first arm comprises:
  • a first end of the first link is a free end, a first end of the first link is rotatable about the second fixed rotational axis, and a second end of the first link passes the first end
  • the movable shaft is coupled to the first end of the second link
  • the second arm includes a second movable rotating shaft and a second fixed rotating shaft;
  • a second end of the second link is coupled to the first end of the second arm by the second movable rotating shaft; a second end of the second arm is fixed to the second fixed rotating shaft Supporting the housing such that the first arm is rotatable relative to the second fixed rotational axis;
  • a direction of a rotation axis of the second fixed rotating shaft, the first movable rotating shaft, and the second movable rotating shaft is parallel to a rotating shaft direction of the first fixed rotating shaft;
  • a second end of the strained fiber grating is encapsulated on the second arm, and a length direction of the strained fiber grating is perpendicular to a length direction of the second arm; a length of the second arm The degree direction is perpendicular to the length direction of the second link, and the length direction of the second link is parallel to the length direction of the first link.
  • the second end of the second arm is fixed with a mass.
  • the support member is a spring
  • the support member further includes a spring adjustment mechanism for causing the entirety of the spring to be elongated or shortened toward the inside of the support housing.
  • the overload protection device is a groove or a cavity.
  • the strained fiber grating is applied with a pre-tensioning stress during packaging, which is used to offset the center wavelength drift caused by the ambient temperature drop.
  • the fiber grating vibration sensor further comprises a fiber plug, and the fiber plug is disposed on the support shell for fixing, protecting the optical fiber and sealing the support shell.
  • the first end of the strained fiber grating is encapsulated on the support housing by a first fixing block fixed to the support housing.
  • the optical fiber connected to the first end of the strained fiber grating has a fiber segment inside the support housing, and the other end of the fiber segment is packaged/fixed on the support housing, and The length of the fiber length is such that the fiber length is slack within the range of rotation of the first arm.
  • the second end of the strained fiber grating is encapsulated on the support housing by a connector fixed to the support housing.
  • the fiber grating vibration sensor provided by the invention converts the vibration signal into the stretching of the fiber grating to avoid the generation of shear force.
  • the fatigue life of the sensor is improved; and the package uses both ends of the fixed fiber grating to avoid the grid region, which can avoid the fiber grating and improve the reliability and stability of the sensor.
  • the fiber grating vibration sensor according to the present invention is particularly suitable for detection of low frequency vibration.
  • FIG. 1 is a schematic view showing the structure of a fiber grating vibration sensor according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a fiber grating vibration sensor according to another embodiment of the present invention.
  • the present invention provides a fiber grating vibration sensor, a support housing 12, a link mechanism 150, 160 disposed in the support housing 12, a strained fiber grating 120, a support member 110, and an overload protection device 112;
  • the link mechanism includes a first arm 150 in a horizontal direction and a second arm 160 in a vertical direction; the first end of the first arm 150 is a free end, and the second end of the first arm and the second end of the second arm 16
  • the end connection makes the first arm 150 and the second arm 160 L-shaped;
  • the link structure is further provided with a first fixed rotating shaft 156, the first rotating fixed moving shaft 156 is perpendicular to the length direction of the strained fiber grating 120 and fixed to the supporting shell
  • the first arm 150 is rotatable relative to the first fixed rotating shaft 156, the first arm 150 is rotated to drive the second arm 160 to rotate; the first end of the strained fiber grating 120 is encapsulated in the second arm 160 of the link mechanism, The second end of the
  • a fiber grating vibration sensor includes: a support housing 12, a link mechanism 150, 160 disposed in the support housing 12, a strained fiber grating 120, a support member 110, and an overload protection device according to an embodiment of the present invention. 112; the link mechanism 150, 160 includes a first arm 150 in a horizontal direction and a second arm 160 in a vertical direction; the first end of the first arm 150 is a free end, and the second end of the first arm 150 is The second end of the two arms 160 is connected such that the first arm 150 and the second arm 160 are L-shaped; the link structures 150, 160 are further provided with a first rotating shaft 156 that is perpendicular to the length of the strained fiber grating 120.
  • the support housing 12 Direction and fixed to the support housing 12 such that the first arm 150 is rotatable relative to the first rotation axis 156, the first arm 150 is rotated to drive the second arm 160 to rotate;
  • the strained fiber grating 120 is One end is encapsulated on the second arm 160 of the link mechanism, and the second end of the strained fiber grating 120 is packaged on the support housing 12;
  • the support member 110 supports the first arm 150 to maintain the first arm 150 in the strained fiber grating 120 The substantially parallel state;
  • the overload protection device 112 the overload protection device 112 is fixed inside the support housing 12 for defining the range of motion of the first arm 150.
  • the first arm 150 is decomposed into a plurality of components, and the first arm 150 includes: a first link 151 and a second link 152, the first rotating shaft 157, the first movable rotating shaft 157; the first end of the first connecting rod 151 is a free end, and the first end of the first connecting 152 rod is rotatable about the first fixed rotating shaft 156, the first connecting rod
  • the second end of the 151 is coupled to the first end of the second link 152 via the first movable shaft 157;
  • the second arm 160 includes a second movable shaft 167, a second fixed rotating shaft 166, and a second second connecting rod 160 The end is connected to the first end of the second arm 150 through the second movable shaft 167; the second end of the second arm 160 is fixed to the support housing 12 by the second fixed rotating shaft 166, so that the second arm 160 can be opposite to the second The fixed rotating shaft
  • a spring 110 that supports the first arm 150 such that the first arm 150 remains in a substantially parallel state to the strained fiber grating 120;
  • the overload protection device 112 the overload protection device 112 is fixed inside the support housing 12 for defining the range of motion of the second end of the first arm 150.
  • the gate region Between the two ends of the strained fiber grating 120 is a gate region.
  • the gate region When the strained fiber grating 120 is strained, the gate region will change its transmission and/or reflection wavelength to give a feedback signal corresponding to the external vibration.
  • the overload protection device 112 Due to the overload protection device having a range of motion defining the free end of the first arm 150 112.
  • the overload protection device 112 defines a range of motion of the free end of the first arm 150 to limit the range of rotation of the linkage.
  • the overload protection device 112 can effectively ensure that the strained fiber grating 120 does not break due to excessive strain under external excitation of a train or the like.
  • the first arm 150 can be swung in a vertical direction for measurement
  • the vibration in the vertical direction can also rotate the fiber grating vibration sensor as a whole by 90° to measure the vibration in the horizontal direction).
  • Supporting the first arm 150 by the spring 110 means that the spring 110 is in a compressed state in the initial state.
  • the spring 110 adjusts the amount of compression of the spring 110 by the spring adjustment mechanism 153 and also activates the positional movement of the restriction spring 110.
  • the limiting structure of the spring adjusting mechanism 153 may be a rod (not shown) protruding from the inner side surface of the support housing 12 to position the spring sleeved outside the limiting structure; and/or may also be the first A limiting hole is provided on the lower side of the arm 150 to prevent the spring from shifting.
  • the first arm 150 In the operating state, the first arm 150 is not restrained from the spring 110 even if it is swung up to the extreme position due to the restriction of the overload protection device 112. Therefore, the spring 110 need not be fixed to the first arm 150 by bonding or other fixing means.
  • the link mechanism sets the range of rotation of the first link 151, and the most critical is that in this range, not only the sensitivity of the fiber grating vibration sensor to external vibration but also the shear force of the strained fiber grating 120 is ensured. Can be ignored. In this configuration, only the strain of the strained fiber grating 120 needs to be considered, which increases the fatigue life of the fiber grating vibration sensor.
  • the first end of the first arm 150 is fixed with the mass 111 so that the corresponding range of the resonant frequency of the fiber grating vibration sensor can be adjusted according to the k value (elastic coefficient) of the spring 110.
  • the first arm 150 itself can also have a certain quality, so that the first arm 150 having the desired quality can also be directly used without Quality block 111 is required.
  • the spring 110 constitutes a spring (k)-damping (c)-mass (m) single degree of freedom motion system of the vibration sensor. Adjusting the k value of the spring 110 and the m value of the mass 111 on the second arm adjusts the natural frequency and sensitivity of the fiber grating vibration sensor.
  • the fiber grating vibration sensor further includes a spring adjustment mechanism 153, which may be, for example, a mechanism that causes the entirety of the spring 110 to elongate or shorten toward the inside of the support housing 12 for adjusting the spring 110 such that the first arm 150
  • the initial position remains substantially parallel to the strained fiber grating 120.
  • the first arm 150 is initially disposed in a state substantially parallel to the strained fiber grating 120 using a spring 110 disposed perpendicular to the first arm 150.
  • the above arrangement can maximize the sensitivity of the first arm 150 to the vertical component of the external vibration to improve the detection accuracy of the fiber grating vibration sensor.
  • the overload protection device 112 can be a groove or cavity.
  • the upper and lower motion limits of the first arm 150 can be defined separately.
  • one or two protrusions for example protruding from the support housing, may also be used to limit the range of rotation of the first arm 150.
  • the strained fiber grating 120 is applied with a pre-tensioning stress during packaging to counteract a central wavelength shift caused by a drop in ambient temperature.
  • the fiber grating vibration sensor further includes a fiber plug 11 disposed on the support housing 12 for fixing, protecting the optical fiber and sealing the support housing 12. Since the strained fiber grating 120 transmits signals to the outside through the optical fiber, the fiber plug 11 can prevent an improper external pull and cause the strained fiber grating 120 to generate an undesired strain; the fiber plug 11 can also prevent the fiber from being bent and sealed. Supporting the housing 12, the fiber grating vibration sensor can work normally in a harsh outdoor environment; at the same time, in order to facilitate the connection of the plurality of fiber grating vibration sensors in series, the fiber plug 11 can continue the fiber between the plurality of fiber grating vibration sensors .
  • the first end of the strained fiber grating 120 is encapsulated on the support housing 12 by a first fixed block 130 that is fixed to the support housing 12.
  • the length may be shorter, so the first fixing block 130 fixed to the support housing 12 may be provided to securely encapsulate the strained fiber grating 120 inside the support housing 12.
  • the first end of the strained fiber grating 120 may be directly encapsulated in the through hole of the support housing 12 and passed through the fiber plug 11 without affecting the use of the strained fiber grating 120. Connect to external fiber.
  • the first fixed rotating shaft and the second fixed rotating shaft refer to a rotating shaft fixed to the support housing; in the operation of the fiber grating vibration sensor, the first fixed rotating shaft and the second fixed rotating shaft The position will always be fixed relative to the support housing; the first movable shaft and the second movable shaft refer to the shaft that is not fixed to the support housing; in the operation of the fiber grating vibration sensor, the position of the "active shaft" will It is not fixed relative to the support housing.
  • first fixed rotating shaft to which the first arm 150 is attached can be fixed to the support housing 12 by means of the fixing block 154; likewise, the first fixed rotating shaft 156 to which the first link 151 is attached can also be A fixing block (not shown) is fixed to the support housing 12.
  • the fiber grating vibration sensor further includes a fiber segment 140 located inside the support housing 12, the first end of the fiber segment 140 is coupled to the second end of the strained fiber grating 120, and the second end of the fiber segment 140 is coupled to the support housing 12, and the length of the fiber section 140 is such that the fiber section 140 is slack within the range of rotation of the first link 151.
  • the fiber section between the support housing 12 and one end of the strained fiber grating 120 is tensioned, the rotation of the first link 151 is restricted.
  • the rotation of the first link 151 may cause breakage of the tensioned fiber segment; if the fiber segment does not break, the rotation of the first link 151 is restricted, thereby causing a false report. . Therefore, the fiber length is set to be slack in the rotation range of the first link 151, and it can be ensured that the support housing 12 does not pull the second end of the strained fiber grating 120 when subjected to external excitation, thereby ensuring the measurement signal. Authenticity and reliability of fiber Bragg grating vibration sensors.
  • the fiber grating vibration sensor provided in this embodiment increases the overload protection device, effectively eliminates the shear force of the fiber grating under the vibration environment, and improves the fatigue life of the sensor. Life, and the package uses both ends of the fixed fiber grating to avoid the grid area, avoiding the fiber grating and improving the reliability and stability of the sensor. It provides an effective, stable and reliable solution for dangerous rockfall alarm monitoring along the railway.
  • This embodiment is basically the same as the embodiment. This embodiment mainly simplifies the components compared with the embodiment 1. For example, the first link 151, the second link 152, and the first movable shaft 157 in the embodiment 1 are integrated into The first arm 160 reduces the difficulty of production and processing and reduces the production cost while not significantly reducing its function.
  • the fiber grating vibration sensor of the present invention comprises: a support housing 12, link mechanisms 150, 160 disposed in the support housing 12, a strained fiber grating 120, a support member 110, an overload protection device 112, and a link mechanism 150.
  • the 160 includes a first arm 150 in a horizontal direction and a second arm 160 in a vertical direction; a first end of the second arm 160 is a free end, and a second end of the second arm 160 is first with the first arm 150
  • the end connection makes the first arm 150 and the second arm 160 L-shaped, and the second end of the first arm 150 is a free end;
  • the link mechanism 150, 160 further has a first fixed rotating shaft 156, and the first fixed rotating shaft 156 is vertical
  • the two arms are fixed to the support housing 12 such that the link mechanisms 150, 160 are rotatable relative to the first fixed rotational axis 156; the strained fiber grating 120, the first end of the strained fiber grating 120 is encapsulated in the linkage mechanism
  • the second end of the strained fiber grating 120 is packaged on the support housing 12; and the overload protection device 112; wherein the first arm 150 of the link mechanism is supported by the spring 110 to maintain the level, and the overload protection device 112 defines The range of motion of the
  • the second arm 160 and the first arm 150 in FIG. 2 are respectively disposed vertically and horizontally. Under the excitation of external vibrations (especially the vertical component of external vibration), the first arm 150 of the link mechanism generates and Support housing The relative displacement of 12 drives the linkages 150, 160 to produce corresponding angular displacements.
  • the strained fiber grating 120 Since the first end of the strained fiber grating 120 is packaged on the second arm 160 of the link mechanism and the second end is packaged on the support housing 12, the strained fiber grating 120 is subsequently subjected to corresponding strain. Between the two ends of the strained fiber grating 120 is a gate region. When the strained fiber grating is strained, the gate region will change its transmission and/or reflection wavelength, thereby giving a feedback signal corresponding to the external vibration.
  • the overload protection device 112 Due to the overload protection device 112 having a range of motion defining the free end of the first arm 150, the overload protection device 112 can effectively ensure that the strained fiber grating 120 does not break due to excessive strain under external excitation of the train or the like. Therefore, the fiber grating vibration sensor provided by the invention has the characteristics of simple structure, low cost, convenient installation, high reliability and high stability.
  • the fiber grating vibration sensor according to the present invention is particularly suitable for detection of low frequency vibration.
  • Supporting the first arm 150 of the linkage by the spring 110 means that the spring is in a compressed state in the initial state.
  • the spring may be sleeved on a rod (not shown) projecting from the inner side surface of the support housing to be positioned; and/or a limit hole may be provided on the lower side of the first arm 150 to prevent spring displacement.
  • the first arm 150 In the operating state, the first arm 150 is not restrained from the spring even if it is swung up to the extreme position due to the restriction of the overload protection device 112. Therefore, the spring does not need to be fixed to the first arm 150 by bonding or other fixing means.
  • the length of the second arm 160 is less than the length of the first arm 150. Since the strain length of the strained fiber grating is limited, the use of the longer first arm 150 and the shorter second arm 160 proportionally reduces the amount of movement of the first arm 150 of the link mechanism due to vibration. Such an arrangement ensures the sensitivity of the fiber grating vibration sensor to external vibrations, and limits the amount of expansion and contraction of the strained fiber grating, which can prevent it from being broken due to excessive stretching and/or bending.
  • a mass m is attached to the first arm 150 of the linkage.
  • a mass m is attached to the first arm 150 so that the vibration frequency response range of the fiber grating vibration sensor can be adjusted according to the arm length of the first arm 150 and the k value of the spring 110.
  • the spring 110 constitutes a spring (k)-damping (c)-mass (m) single degree of freedom motion system of the vibration sensor. Adjusting the k value of the spring 110 and the mass m value on the link mechanisms 150, 160 adjusts the natural frequency and sensitivity of the fiber grating vibration sensor.
  • the first arm 150 and the second arm 160 of the link mechanism each have a width parallel to the direction of the rotational axis and a thickness perpendicular to the rotational axis, the width being greater than the thickness.
  • the above arrangement enables the sensor to withstand large lateral disturbances (i.e., vibrations in the direction of the axis of rotation).
  • the fiber grating vibration sensor further includes a micro-adjustment mechanism (not shown), which may be, for example, a mechanism that causes the entirety of the spring 110 to elongate or shorten toward the inside of the support housing, which is used to adjust the spring 110 so that The initial position of the first arm 150 of the lever mechanism remains horizontal.
  • a micro-adjustment mechanism (not shown), which may be, for example, a mechanism that causes the entirety of the spring 110 to elongate or shorten toward the inside of the support housing, which is used to adjust the spring 110 so that The initial position of the first arm 150 of the lever mechanism remains horizontal.
  • a micro-adjustment mechanism (not shown), which may be, for example, a mechanism that causes the entirety of the spring 110 to elongate or shorten toward the inside of the support housing, which is used to adjust the spring 110 so that The initial position of the first arm 150 of the lever mechanism remains horizontal.
  • the overload protection device 112 can be a groove or cavity. Using the recess or cavity as an overload protection device, the upper and lower motion limits of the first arm 150 of the linkage can be defined separately. However, those skilled in the art will appreciate that one or two protrusions, for example protruding from the support housing, may also be used to limit the range of rotation of the linkages 150, 160.
  • the strained fiber grating 120 is applied with a pre-tensioning stress during packaging to counteract a central wavelength shift caused by a drop in ambient temperature.
  • the fiber grating vibration sensor further includes a plug 11 disposed on the support housing for fixing, protecting the optical fiber and sealing the support housing 12. Since the strained fiber grating 120 transmits signals to the outside through the optical fiber, the plug 11 can prevent an improper external pull and cause the strained fiber grating 120 to generate an undesired strain; the plug 11 can also prevent the fiber from being bent and seal the support shell.
  • Body 12 which enables the fiber Bragg grating vibration sensor to work normally in harsh outdoor environments; at the same time, in order to facilitate the vibration of multiple fiber gratings
  • the sensors are connected in series with each other, and the plug 11 can continue to connect the fibers between the plurality of fiber grating vibration sensors.
  • the fiber connected to the first end of the strained fiber grating 120 has a fiber section 140 inside the support housing, the other end of the fiber section 140 being packaged/fixed on the support housing 12, and the length of the fiber section 140 is such that The fiber section 140 is slack within the range of rotation of the linkages 150,160.
  • the rotation of the linkages 150, 160 will be limited (because of the strained fiber grating)
  • the first end is packaged on the second arm 160 of the linkage mechanism).
  • the fiber section 140 is disposed to be slack in the range of rotation of the link mechanisms 150, 160, which can ensure that the support housing 12 does not pull the first end of the strained fiber grating 120 when subjected to external excitation, thereby ensuring measurement.
  • the authenticity of the signal and the reliability of the fiber Bragg grating vibration sensor may cause breakage of the tensioned fiber section 140; if the fiber section 140 does not break, the second arm 160 of the linkage mechanism will be constrained. Rotate, so that a false report may occur. Therefore, the fiber section 140 is disposed to be slack in the range of rotation of the link mechanisms 150, 160, which can ensure that the support housing 12 does not pull the first end of the strained fiber grating 120 when subjected to external excitation, thereby ensuring measurement.
  • the authenticity of the signal and the reliability of the fiber Bragg grating vibration sensor may cause breakage of the tensioned fiber section 140; if the fiber section 140 does not break, the second arm 160 of the linkage mechanism will be con
  • the second end of the strained fiber grating 120 is encapsulated on the support housing 12 by a connector 130 that is secured to the support housing 12.
  • a connector 130 fixed to the support housing 12 may be provided to securely encapsulate the strained fiber grating 120 inside the support housing.
  • the second end of the strained fiber grating can be directly encapsulated in the through hole of the support casing 12 and pass through the plug 11 and the external fiber without affecting the use of the strained fiber grating. connection.
  • the fiber grating vibration sensor provided by the embodiment is more suitable for monitoring the rockfall of the dangerous rock slope along the railway, and has the advantages of simple and novel structure, high sensitivity, and overload protection device under the large external excitation, thereby improving the life of the fiber grating vibration sensor. And improve the stability of the sensor.
  • the fiber grating vibration sensor converts the vibration signal into the stretching of the fiber grating to avoid the generation of shear force. Increased sensor fatigue life; and
  • the package uses both ends of the fixed fiber grating to avoid the gate region, which can avoid the fiber grating and improve the reliability and stability of the sensor.
  • the fiber grating vibration sensor according to the present invention is particularly suitable for detection of low frequency vibration.
  • the fiber grating vibration sensor provided by the invention converts the vibration signal into the stretching of the fiber grating to avoid the generation of shear force.
  • the fatigue life of the sensor is improved; and the package uses both ends of the fixed fiber grating to avoid the grid region, which can avoid the fiber grating and improve the reliability and stability of the sensor.
  • the fiber grating vibration sensor according to the present invention is particularly suitable for detection of low frequency vibration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

一种光纤光栅振动传感器,包括:支撑壳体(12)、设置在支撑壳体(12)内的连杆机构,连杆机构包括水平方向上的第一臂(150)和竖直方向上的第二臂(160);第一臂(150)的第一端为自由端,第一臂(150)的第二端与第二臂(160)的第二端连接使第一臂(150)和第二臂(160)呈L形;连杆结构还设置有第一固定转动轴(156),第一固定转动轴(156)垂直于应变光纤光栅(120)的长度方向并固定至支撑壳体(12),使得第一臂(150)能够相对于第一固定转动轴(156)转动,第一臂(150)转动带动第二臂(160)转动;应变光纤光栅(120)的第一端封装在连杆机构的第二臂(160),应变光纤光栅(120)的第二端封装在支撑壳体(12)上;过载保护装置(112)固定在支撑壳体(12)内侧,用于限定第一臂(150)的运动范围。该传感器可避免光纤光栅横向方向上的剪切力,提高传感器的可靠性和稳定性。

Description

光纤光栅振动传感器 技术领域
本发明涉及一种光纤光栅振动传感器,属于光纤传感技术领域。
背景技术
随着我国经济建设的蓬勃发展,尤其是在山区高速铁路的建设及运营过程中,高陡边坡的安全性问题尤为突出。光纤光栅传感技术因其具有不受电磁干扰、现场无需供电、长期可靠性和稳定性好,传输距离远等优点,特别适用于铁路无人区、无电区以及恶劣的环境。鉴于光纤光栅传感技术的如上优点,在高陡边坡的防护及预警中得到了普遍的应用。
危岩落石报警监测属于高陡边坡防护监测的一个分支,如果能预先监测到危岩落石,将极大程度上减轻危岩落石对铁路、公路等造成的经济损失。
国内也已经有些高校或企业开展了光纤光栅振动传感器或光纤光栅加速度计的研究,其中以悬臂梁结构居多。首先,悬臂梁型光纤光栅振动传感器的灵敏度受结构本身限制一般不会过高;其次,该种类型的传感器收敛性缓慢,会降低传感器使用寿命;再者,光纤光栅的栅区直接被胶封装在悬臂梁的表面,容易使光纤光栅产生啁啾,振动环境下的光纤光栅封装也是光纤光栅振动传感器技术的一个关键因素。这些光纤光栅传感器并不适用于铁路沿线危岩落石的监测。铁路沿线危岩落石监测的特点在于:落石信号相较于火车振动强度弱,但火车通过时振动加速度一般都很大,使传感器寿命严重受到影响,即传感器提高灵敏度的同时也要考虑到结构稳定性。
发明内容
为了解决现有技术中的光纤光栅传感器灵敏度低、结构强度差、 寿命短等问题。
针对上述问题,本发明提出了一种光纤光栅振动传感器,包括:
支撑壳体、设置在所述支撑壳体内的连杆机构、应变光纤光栅、支撑部件、过载保护装置;
所述连杆机构包括水平方向上的第一臂和竖直方向上的第二臂;所述第一臂的第一端为自由端,所述第一臂的第二端与所述第二臂的第二端连接使所述第一臂和所述第二臂呈L形;
所述连杆结构还设置有第一固定转动轴,所述第一转固定动轴垂直于所述应变光纤光栅的长度方向并固定至所述支撑壳体,使得所述第一臂能够相对于所述第一固定转动轴转动,所述第一臂转动带动所述第二臂转动;所述应变光纤光栅的第一端封装在所述连杆机构的第二臂,所述应变光纤光栅的第二端封装在所述支撑壳体上;
所述支撑部件支撑所述第一臂,使所述第一臂保持在与所述应变光纤光栅基本平行的状态;
所述过载保护装置固定在所述支撑壳体内侧,用于限定所述第一臂的运动范围。
其中较优地,所述第一臂包括:
第一连杆、第二连杆、第一活动转轴;
所述第一连杆的第一端为自由端,所述第一连杆的第一端能够绕所述第二固定转动轴转动,所述第一连杆的第二端通过所述第一活动转轴与所述第二连杆的第一端连接;
所述第二臂包括,第二活动转轴,第二固定转动轴;
所述第二连杆的第二端通过所述第二活动转轴与所述第二臂的第一端连接;所述第二臂的第二端通过所述第二固定转动轴固定至所述支撑壳体,使得所述第一臂能够相对于所述第二固定转动轴转动;
所述第二固定转动轴、所述第一活动转轴、所述第二活动转轴的转轴方向与所述第一固定转动轴的转轴方向相互平行;
所述应变光纤光栅的第二端封装在所述第二臂上,并且所述应变光纤光栅的长度方向垂直于所述第二臂的长度方向;所述第二臂的长 度方向垂直于所述第二连杆的长度方向,所述第二连杆的长度方向平行于所述第一连杆的长度方向。
其中较优地,所述第二臂的第二端固定有质量块。
其中较优地,所述支撑部件是弹簧,所述支撑部件还包括弹簧调节机构,用于使得所述弹簧的整体向支撑壳体内部伸长或缩短。
其中较优地,所述过载保护装置是凹槽或腔。
其中较优地,所述应变光纤光栅在封装时施加有预拉应力,该预拉应力用于抵消外界环境温度下降引起的中心波长漂移。
其中较优地,所述光纤光栅振动传感器还包括光纤堵头,所述光纤堵头设置在所述支撑壳体上,用于固定、保护光纤以及密封所述支撑壳体。
其中较优地,所述应变光纤光栅的第一端通过固定于所述支撑壳体的第一固定块而封装在所述支撑壳体上。
其中较优地,与所述应变光纤光栅的第一端相连接的光纤具有位于所述支撑壳体内部的光纤段,所述光纤段的另一端封装/固定在所述支撑壳体上,并且所述光纤段的长度使得所述光纤段在所述第一臂的转动范围内是松弛的。
其中较优地,所述应变光纤光栅的第二端通过固定于所述支撑壳体的连接件而封装在所述支撑壳体上。
本发明提供的光纤光栅振动传感器将振动信号转化成光纤光栅的拉伸,避免剪切力的产生。提高了传感器的疲劳寿命;且封装采用固定光纤光栅的两端,避开栅区,能够避免光纤光栅啁啾,提高了传感器的可靠性和稳定性。根据本发明的光纤光栅振动传感器尤其适合低频振动的检测。
附图说明
图1本发明的一个实施例的光纤光栅振动传感器的结构原理示意图;
图2为本发明另一个实施例的光纤光栅振动传感器结构原理示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本发明提供一种光纤光栅振动传感器,支撑壳体12、设置在支撑壳体12内的连杆机构150、160、应变光纤光栅120、支撑部件110、过载保护装置112;连杆机构包括水平方向上的第一臂150和竖直方向上的第二臂160;第一臂150的第一端为自由端,第一臂的第二端与第二臂16的第二端连接使第一臂150和第二臂160呈L形;连杆结构还设置有第一固定转动轴156,第一转固定动轴156垂直于应变光纤光栅120的长度方向并固定至支撑壳体12,使得第一臂150能够相对于第一固定转动轴156转动,第一臂150转动带动第二臂160转动;应变光纤光栅120的第一端封装在连杆机构的第二臂160,应变光纤光栅120的第二端封装在支撑壳体12上;支撑部件110支撑第一臂150,使第一臂150保持在与应变光纤光栅120基本平行的状态;过载保护装置112固定在支撑壳体12内侧,用于限定第一臂150的运动范围。。下面对本发明提供的光纤光栅振动传感器展开详细说明。
实施例1
参照图1,根据本发明的一个实施例,光纤光栅振动传感器包括:支撑壳体12、设置在支撑壳体12内的连杆机构150、160、应变光纤光栅120、支撑部件110、过载保护装置112;连杆机构150、160包括水平方向上的第一臂150和竖直方向上的第二臂160;第一臂150的第一端为自由端,第一臂150的第二端与第二臂160的第二端连接使第一臂150和第二臂160呈L形;连杆结构150、160还设置有第一转动轴156,第一转动轴156垂直于应变光纤光栅120的长度方向并固定至支撑壳体12,使得第一臂150能够相对于第一转动轴156转动,第一臂150转动带动第二臂160转动;应变光纤光栅120的第 一端封装在连杆机构的第二臂160上,应变光纤光栅120的第二端封装在支撑壳体12上;支撑部件110支撑第一臂150,使第一臂150保持在与应变光纤光栅120基本平行的状态;过载保护装置112,过载保护装置112固定在支撑壳体12内侧,用于限定第一臂150的运动范围。
本实施例中,为了避免第二臂160产生剪切力使光纤的疲劳寿命减短,将第一臂150分解为多个部件,第一臂150包括:第一连杆151、第二连杆152、第一旋转轴157、第一活动转轴157;第一连杆151的第一端为自由端,第一连152杆的第一端能够绕第一固定转动轴156转动,第一连杆151的第二端通过第一活动转轴157与第二连杆152的第一端连接;第二臂160包括,第二活动转轴167,第二固定转动轴166;第二连杆160的第二端通过第二活动转轴167与第二臂150的第一端连接;第二臂160的第二端通过第二固定转动轴166固定至支撑壳体12,使得第二臂160能够相对于第二固定转动轴166转动;第二固定转动轴166、第一活动转轴157、第二活动转轴167的转轴方向与第一固定转动轴156的转轴方向相互平行;应变光纤光栅120的第二端封装在第二臂160上,并且应变光纤光栅120的长度方向垂直于第二臂160的长度方向;第二臂160的长度方向垂直于第二连杆152的长度方向,第二连杆152的长度方向平行于第一连杆151的长度方向。
弹簧110,弹簧110支撑第一臂150,使得第一臂150保持在与应变光纤光栅120基本平行的状态;
过载保护装置112,过载保护装置112固定在支撑壳体12内侧,用于限定第一臂150的第二端的运动范围。
应变光纤光栅120的两端之间为栅区,在应变光纤光栅120产生应变时,栅区将改变其透射和/或反射波长,从而给出与外界振动相对应的反馈信号。
由于具有限定第一臂150自由端的运动范围的过载保护装置 112,过载保护装置112限定第一臂150自由端的运动范围,从而限制连杆机构的转动范围。过载保护装置112能有效保证在火车等外界大激励下,应变光纤光栅120不会因应变过大而导致断裂。
其中,为简化起见,在附图和说明书中仅示出了多种可能的设置之一。本领域技术人员能够理解,在不脱离本发明精神的情况下,能够对光纤光栅振动传感器中各组件的空间位置作出适当的调整(例如,可以使第一臂150在竖直方向上摆动从而测量竖直方向内的振动,也可以将光纤光栅振动传感器整体旋转90°以测量水平方向内的振动)。
由弹簧110支撑第一臂150,意味着弹簧110在初始状态下就处于压缩状态。弹簧110通过弹簧调节机构153调节弹簧110的压缩量还启动限制弹簧110位置串动的作用。弹簧调节机构153的限位结构可以是从支撑壳体12的内侧表面凸出的杆(未示出),从而将套在该限位结构外侧的弹簧定位;并且/或者,还可以是第一臂150下侧设置的限位孔,以防止弹簧移位。
在工作状态下,第一臂150由于受到过载保护装置112的限制,即使向上摆动到极限位置,也不会与弹簧110脱离。因此弹簧110无需通过粘合或其他固定手段固定至第一臂150。
连杆机构设定了第一连杆151的转动范围,最关键的在于:在该范围内,不仅保证了光纤光栅振动传感器对于外界振动的灵敏度,还保证了应变光纤光栅120承受的剪切力可以忽略不计。在这种配置中,仅需考虑应变光纤光栅120的拉伸,这增加了光纤光栅振动传感器的疲劳寿命。
可选地,第一臂150的第一端固定有质量块111,使得能够根据弹簧110的k值(弹性系数)调节光纤光栅振动传感器的共振频率相应范围。当然,本领域技术人员能够理解,第一臂150本身也能够具有一定质量,因此也可以直接使用具有期望质量的第一臂150,而无 需质量块111。弹簧110构成振动传感器的弹簧(k)-阻尼(c)-质量(m)单自由度运动***。调节弹簧110的k值及第二臂上的质量块111的m值可调节光纤光栅振动传感器的固有频率及灵敏度。
优选地,光纤光栅振动传感器还包括弹簧调节机构153,弹簧调节机构可以例如是使得弹簧110的整体向支撑壳体12内部伸长或缩短的机构,其用于调节弹簧110,使得第一臂150初始位置保持与应变光纤光栅120基本平行。使用垂直于第一臂150设置的弹簧110将第一臂150初始地设置在与应变光纤光栅120基本平行的状态。例如,当使第一臂150能够在竖直方向上摆动时,上述布置能够最大限度地提高第一臂150对于外界振动中竖直分量的灵敏度,以提高光纤光栅振动传感器的检测精度。
可选地,过载保护装置112可以为凹槽或腔。使用凹槽或腔作为过载保护装置,能够分别限定第一臂150的运动上限和运动下限。然而,本领域技术人员能够理解,还可以使用例如突出于支撑壳体的一或两个突起,以限制第一臂150的转动范围。
优选地,应变光纤光栅120在封装时施加有预拉应力,该预拉应力用于抵消外界环境温度下降引起的中心波长漂移。
可选地,光纤光栅振动传感器还包括光纤堵头11,光纤堵头11设置在支撑壳体12上,用于固定、保护光纤以及密封支撑壳体12。由于应变光纤光栅120通过光纤向外部传递信号,因此光纤堵头11能够防止不恰当的外部拉拽而导致应变光纤光栅120产生不期望的应变;光纤堵头11还能防止光纤弯折,并密封支撑壳体12,使得光纤光栅振动传感器能够在严酷的室外环境下正常工作;同时,为了便于多个光纤光栅振动传感器相互串联,光纤堵头11还能接续多个光纤光栅振动传感器之间的光纤。
可选地,应变光纤光栅120的第一端通过固定于支撑壳体12的第一固定块130而封装在支撑壳体12上。鉴于应变光纤光栅120的 长度可能较短,因此可以设置固定于支撑壳体12的第一固定块130,以在支撑壳体12的内部稳固地封装应变光纤光栅120。然而本领域技术人员能够理解,在不影响应变光纤光栅120的使用的情况下,也可以将应变光纤光栅120的第一端直接封装在支撑壳体12的通孔中,并通过光纤堵头11与外部光纤连接。
在本发明的上下文中,第一固定转动轴和第二固定转动轴指的是固连至支撑壳体的转轴;在光纤光栅振动传感器的操作中,第一固定转动轴、第二固定转动轴的位置将始终相对于支撑壳体固定;第一活动转轴和第二活动转轴指的是并不固连至支撑壳体的转轴;在光纤光栅振动传感器的操作中,“活动转轴”的位置将并不相对于支撑壳体固定。
事实上,第一臂150所附连的第一固定转动轴可以借助于固定块154固定至支撑壳体12;同样,第一连杆151所附连的第一固定转动轴156也可借助于固定块(未示出)固定至支撑壳体12。
优选地,光纤光栅振动传感器还包括位于支撑壳体12内部的光纤段140,光纤段140的第一端连接至应变光纤光栅120的第二端,光纤段140的第二端连接至支撑壳体12,并且光纤段140的长度使得光纤段140在第一连杆151的转动范围内是松弛的。在初始状态下或工作中,如果在支撑壳体12和应变光纤光栅120的一端之间的光纤段是张紧的,就限制了第一连杆151的转动。在受到外界激励时,第一连杆151的转动将可能导致该张紧的光纤段的断裂;若该光纤段不发生断裂,就限制了第一连杆151的转动,从而发生漏报的情况。因此,将光纤段设置为在第一连杆151的转动范围内是松弛的,能够保证支撑壳体12不会在受到外界激励时拉拽应变光纤光栅120的第二端,从而保证测量信号的真实性和光纤光栅振动传感器的可靠性。
本实施例提供的光纤光栅振动传感器增加了过载保护装置,有效的消除了光纤光栅在振动环境下的剪切力,提高了传感器的疲劳寿 命,且封装采用固定光纤光栅的两端,避开栅区,避免光纤光栅啁啾,提高传感器的可靠性和稳定性。为铁路沿线危岩落石报警监测提供了一种有效的、稳定可靠的解决手段。
实施例2
本实施例与实施例基本相同,本实施例与实施例1相比主要简化了零部件,例如将实施例1中的第一连杆151、第二连杆152、第一活动转轴157整合为第一臂160,在不明显降低其功能的同时,降低了生产加工难度,降低了生产成本。
参照图2,本发明光纤光栅振动传感器包括:支撑壳体12、设置在支撑壳体12内的连杆机构150、160、应变光纤光栅120、支撑部件110、过载保护装置112;连杆机构150、160包括水平方向上的第一臂150和竖直方向上的第二臂160;第二臂160的第一端为自由端,第二臂160的第二端与第一臂150的第一端连接使第一臂150和第二臂160呈L形,第一臂150的第二端为自由端;连杆机构150、160还具有第一固定转动轴156,第一固定转动轴156垂直于两个臂并固定至支撑壳体12,使得连杆机构150、160能够相对于第一固定转动轴156转动;应变光纤光栅120,应变光纤光栅120的第一端封装在连杆机构的第二臂160上,应变光纤光栅120的第二端封装在支撑壳体12上;以及过载保护装置112;其中,连杆机构的第一臂150由弹簧110支撑以保持水平,过载保护装置112限定第一臂150自由端的运动范围,从而限制连杆机构的转动范围。
其中,为简化起见,在附图和说明书中仅示出了多种可能的设置之一。本领域技术人员能够理解,在不脱离本发明精神的情况下,能够对光纤光栅振动传感器中各组件的空间位置作出适当的调整(例如,整体旋转90°以测量水平方向内的振动)。图2中的第二臂160和第一臂150分别被竖直和水平地设置,在外界振动(尤其是外界振动的竖直分量)的激励下,连杆机构的第一臂150会产生与支撑壳体 12相对的位移,带动连杆机构150、160产生相应角位移。由于应变光纤光栅120的第一端封装在连杆机构的第二臂160上,第二端封装在支撑壳体12上,因此应变光纤光栅120随之产生相对应的应变。应变光纤光栅120的两端之间为栅区,在应变光纤光栅产生应变时,栅区将改变其透射和/或反射波长,从而给出与外界振动相对应的反馈信号。
由于具有限定第一臂150自由端的运动范围的过载保护装置112,过载保护装置112能有效保证在火车等外界大激励下,应变光纤光栅120不会因应变过大而导致断裂。因此本发明提供的光纤光栅振动传感器具有结构简单、成本低、安装方便、可靠性和稳定性高的特点。根据本发明的光纤光栅振动传感器尤其适合低频振动的检测。
由弹簧110支撑连杆机构的第一臂150,意味着弹簧在初始状态下就处于压缩状态。弹簧可以套在从支撑壳体的内侧表面凸出的杆(未示出)上,从而被定位;并且/或者,还可以在第一臂150下侧设置限位孔,以防止弹簧移位。
在工作状态下,第一臂150由于受到过载保护装置112的限制,即使向上摆动到极限位置,也不会与弹簧脱离。因此弹簧无需通过粘合或其他固定手段固定至第一臂150。
优选地,第二臂160的长度小于第一臂150的长度。由于应变光纤光栅的应变长度是有限的,因此使用较长的第一臂150和较短的第二臂160,等比例地缩小了连杆机构的第一臂150由于振动而导致的移动量。这样的设置即保证了光纤光栅振动传感器对于外界振动的灵敏度,又限制了应变光纤光栅的伸缩量,能够防止其因为过度的拉伸和/或弯折而断裂。
可选地,连杆机构的第一臂150上附有质量块m。在第一臂150上附有质量块m,使得能够根据第一臂150的臂长和弹簧110的k值调节光纤光栅振动传感器的振动频率响应范围。当然,本领域技术人 员能够理解,连杆机构的第一臂150本身也能够具有一定质量,因此也可以直接使用具有相当质量的第一臂150,而无需质量块m。弹簧110构成振动传感器的弹簧(k)-阻尼(c)-质量(m)单自由度运动***。调节弹簧110的k值及连杆机构150、160上的质量块m值可调节光纤光栅振动传感器的固有频率及灵敏度。
优选地,连杆机构的第一臂150和第二臂160都具有平行于转动轴方向上的宽度和垂直于转动轴的厚度,宽度大于厚度。上述设置使得传感器能够抵抗较大的横向干扰(即,沿转动轴方向的振动)。
优选地,光纤光栅振动传感器还包括微调节机构(未示出),微调节机构可以例如是使得弹簧110的整体向支撑壳体内部伸长或缩短的机构,其用于调节弹簧110,使得连杆机构的第一臂150初始位置保持水平。使用竖直地设置的弹簧110将连杆机构的第一臂150初始地设置在水平状态,能够最大限度地提高连杆机构的第一臂150对于外界振动中竖直分量的灵敏度,以提高光纤光栅振动传感器的检测精度。
可选地,过载保护装置112可以为凹槽或腔。使用凹槽或腔作为过载保护装置,能够分别限定连杆机构的第一臂150的运动上限和运动下限。然而,本领域技术人员能够理解,还可以使用例如突出于支撑壳体的一或两个突起,以限制连杆机构150、160的转动范围。
优选地,应变光纤光栅120在封装时施加有预拉应力,该预拉应力用于抵消外界环境温度下降引起的中心波长漂移。
可选地,光纤光栅振动传感器还包括堵头11,堵头11设置在支撑壳体上,用于固定、保护光纤以及密封支撑壳体12。由于应变光纤光栅120通过光纤向外部传递信号,因此堵头11能够防止不恰当的外部拉拽而导致应变光纤光栅120产生不期望的应变;堵头11还能防止光纤弯折,并密封支撑壳体12,使得光纤光栅振动传感器能够在严酷的室外环境下正常工作;同时,为了便于多个光纤光栅振动 传感器相互串联,堵头11还能接续多个光纤光栅振动传感器之间的光纤。
优选地,与应变光纤光栅120的第一端相连接的光纤具有位于支撑壳体内部的光纤段140,光纤段140的另一端封装/固定在支撑壳体12上,并且光纤段140的长度使得光纤段140在连杆机构150、160的转动范围内是松弛的。在初始状态下或工作中,如果在支撑壳体12和应变光纤光栅120的第一端之间的光纤段140是张紧的,将限制连杆机构150、160的转动(因为应变光纤光栅的第一端封装在连杆机构的第二臂160上)。在受到外界激励时,连杆机构的第二臂160的转动将可能导致该张紧的光纤段140的断裂;若该光纤段140不发生断裂,就将限制连杆机构的第二臂160的转动,从而可能发生漏报的情况。因此,将光纤段140设置为在连杆机构150、160的转动范围内是松弛的,能够保证支撑壳体12不会在受到外界激励时拉拽应变光纤光栅120的第一端,从而保证测量信号的真实性和光纤光栅振动传感器的可靠性。
可选地,应变光纤光栅120的第二端通过固定于支撑壳体12的连接件130而封装在支撑壳体12上。鉴于应变光纤光栅120的长度可能较短,因此可以设置固定于支撑壳体12的连接件130,以在支撑壳体的内部稳固地封装应变光纤光栅120。然而本领域技术人员能够理解,在不影响应变光纤光栅的使用的情况下,也可以将应变光纤光栅的第二端直接封装在支撑壳体12的通孔中,并通过堵头11与外部光纤连接。
本实施例提供的光纤光栅振动传感器更适用于铁路沿线危岩边坡落石的监测,具有结构简单新颖、灵敏度较高、在外界大激励下采用过载保护装置,提高了光纤光栅振动传感器的寿命,并提高了传感器的稳定性。
综上所述,本发明提供的光纤光栅振动传感器将振动信号转化成光纤光栅的拉伸,避免剪切力的产生。提高了传感器的疲劳寿命;且 封装采用固定光纤光栅的两端,避开栅区,能够避免光纤光栅啁啾,提高了传感器的可靠性和稳定性。根据本发明的光纤光栅振动传感器尤其适合低频振动的检测。
工业实用性
本发明提供的光纤光栅振动传感器将振动信号转化成光纤光栅的拉伸,避免剪切力的产生。提高了传感器的疲劳寿命;且封装采用固定光纤光栅的两端,避开栅区,能够避免光纤光栅啁啾,提高了传感器的可靠性和稳定性。根据本发明的光纤光栅振动传感器尤其适合低频振动的检测。

Claims (10)

  1. 一种光纤光栅振动传感器,其特征在于,包括:
    支撑壳体、设置在所述支撑壳体内的连杆机构、应变光纤光栅、支撑部件、过载保护装置;
    所述连杆机构包括水平方向上的第一臂和竖直方向上的第二臂;所述第一臂的第一端为自由端,所述第一臂的第二端与所述第二臂的第二端连接使所述第一臂和所述第二臂呈L形;
    所述连杆结构还设置有第一固定转动轴,所述第一转固定动轴垂直于所述应变光纤光栅的长度方向并固定至所述支撑壳体,使得所述第一臂能够相对于所述第一固定转动轴转动,所述第一臂转动带动所述第二臂转动;所述应变光纤光栅的第一端封装在所述连杆机构的第二臂,所述应变光纤光栅的第二端封装在所述支撑壳体上;
    所述支撑部件支撑所述第一臂,使所述第一臂保持在与所述应变光纤光栅基本平行的状态;
    所述过载保护装置固定在所述支撑壳体内侧,用于限定所述第一臂的运动范围。
  2. 根据权利要求1所述的光纤光栅振动传感器,其特征在于,所述第一臂包括:
    第一连杆、第二连杆、第一活动转轴;
    所述第一连杆的第一端为自由端,所述第一连杆的第一端能够绕所述第二固定转动轴转动,所述第一连杆的第二端通过所述第一活动转轴与所述第二连杆的第一端连接;
    所述第二臂包括,第二活动转轴,第二固定转动轴;
    所述第二连杆的第二端通过所述第二活动转轴与所述第二臂的第一端连接;所述第二臂的第二端通过所述第二固定转动轴固定至所述支撑壳体,使得所述第一臂能够相对于所述第二固定转动轴转动;
    所述第二固定转动轴、所述第一活动转轴、所述第二活动转轴的转轴方向与所述第一固定转动轴的转轴方向相互平行;
    所述应变光纤光栅的第二端封装在所述第二臂上,并且所述应变 光纤光栅的长度方向垂直于所述第二臂的长度方向;所述第二臂的长度方向垂直于所述第二连杆的长度方向,所述第二连杆的长度方向平行于所述第一连杆的长度方向。
  3. 根据权利要求1或2所述的光纤光栅振动传感器,其特征在于,所述第二臂的第二端固定有质量块。
  4. 根据权利要求1或2所述的光纤光栅振动传感器,其特征在于,所述支撑部件是弹簧,所述支撑部件还包括弹簧调节机构,用于使得所述弹簧的整体向支撑壳体内部伸长或缩短。
  5. 根据权利要求1或2所述的光纤光栅振动传感器,其中所述过载保护装置是凹槽或腔。
  6. 根据权利要求1或2所述的光纤光栅振动传感器,其中所述应变光纤光栅在封装时施加有预拉应力,该预拉应力用于抵消外界环境温度下降引起的中心波长漂移。
  7. 根据权利要求1或2所述的光纤光栅振动传感器,所述光纤光栅振动传感器还包括光纤堵头,所述光纤堵头设置在所述支撑壳体上,用于固定、保护光纤以及密封所述支撑壳体。
  8. 根据权利要求1或2所述的光纤光栅振动传感器,其中所述应变光纤光栅的第一端通过固定于所述支撑壳体的第一固定块而封装/固定在所述支撑壳体上。
  9. 根据权利要求1或2所述的光纤光栅振动传感器,其特征在于,与所述应变光纤光栅的第一端相连接的光纤具有位于所述支撑壳体内部的光纤段,所述光纤段的另一端封装/固定在所述支撑壳体上,并且所述光纤段的长度使得所述光纤段在所述第一臂的转动范围内是松弛的。
  10. 根据权利要求1或2所述的光纤光栅振动传感器,其特征在于,所述应变光纤光栅的第二端通过固定于所述支撑壳体的连接件而封装在所述支撑壳体上。
PCT/CN2014/094685 2014-02-27 2014-12-23 光纤光栅振动传感器 WO2015127814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410068353.5A CN104880243B (zh) 2014-02-27 2014-02-27 光纤光栅振动传感器
CN201410068353.5 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015127814A1 true WO2015127814A1 (zh) 2015-09-03

Family

ID=53947826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094685 WO2015127814A1 (zh) 2014-02-27 2014-12-23 光纤光栅振动传感器

Country Status (2)

Country Link
CN (1) CN104880243B (zh)
WO (1) WO2015127814A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125612A1 (de) * 2016-12-23 2018-06-28 fos4X GmbH Faseroptischer Beschleunigungssensor mit Hebel
CN109631791A (zh) * 2019-01-18 2019-04-16 山东道宽智能科技有限公司 一种矿用大量程光纤光栅无源顶板离层传感器
CN110146053A (zh) * 2019-06-17 2019-08-20 天津师范大学 用于船体艏摇运动测量的光纤光栅传感器及应用
CN114235129A (zh) * 2020-09-09 2022-03-25 中国石油化工集团有限公司 光纤光栅振动传感器
CN114509151A (zh) * 2022-02-17 2022-05-17 西北大学 自带温度和预应力补偿的一维光纤光栅振动传感器
CN115220087A (zh) * 2022-07-21 2022-10-21 西北大学 一种三分量光纤检波器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110045149A (zh) * 2019-01-31 2019-07-23 哈工大机器人义乌人工智能研究院 一种光纤光栅加速度传感器及加速度检测方法
CN111239438A (zh) * 2020-02-24 2020-06-05 山东省科学院激光研究所 光纤光栅加速度传感器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739661A (en) * 1987-04-10 1988-04-26 United States Of America As Represented By The Secretary Of The Navy Fiber-optic accelerometer having cantilevered acceleration-sensitive mass
US6161433A (en) * 1999-10-15 2000-12-19 Geosensor Corporation Fiber optic geophone
CN2856950Y (zh) * 2005-12-05 2007-01-10 同济大学 土木工程用光纤光栅低频振动传感装置
CN101285847A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 一种温度不敏感的光纤光栅加速度传感器
WO2009130377A1 (en) * 2008-04-24 2009-10-29 Sensapex Oy Optical measurement sensor and a method for evaluating a physical magnitude
CN101782658A (zh) * 2010-03-29 2010-07-21 中国石油大学(北京) 双L型光纤Bragg光栅地震检波器探头结构
CN102128952A (zh) * 2010-12-31 2011-07-20 南京航空航天大学 一种光纤光栅加速度传感器及其测试方法
US20110283795A1 (en) * 2008-11-19 2011-11-24 The Australian National University System, Device And Method For Detecting Seismic Acceleration
CN203551099U (zh) * 2013-09-23 2014-04-16 同方威视技术股份有限公司 一种光纤光栅传感器
CN203561436U (zh) * 2013-09-26 2014-04-23 同方威视技术股份有限公司 光纤光栅振动传感器
CN103823080A (zh) * 2014-03-05 2014-05-28 西安石油大学 一种温度不敏感光纤光栅加速度传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585407C (zh) * 2007-04-11 2010-01-27 中国科学院半导体研究所 基于悬臂梁挠度的光纤光栅加速度计
JP5196483B2 (ja) * 2008-11-07 2013-05-15 独立行政法人産業技術総合研究所 振動又は弾性波検出装置
CN201803825U (zh) * 2010-09-27 2011-04-20 山东大学 矿用光纤布拉格光栅正压传感器
CN103471702A (zh) * 2013-09-12 2013-12-25 马宾 一种温度不敏感的阻尼可调谐高精度光纤光栅振动传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739661A (en) * 1987-04-10 1988-04-26 United States Of America As Represented By The Secretary Of The Navy Fiber-optic accelerometer having cantilevered acceleration-sensitive mass
US6161433A (en) * 1999-10-15 2000-12-19 Geosensor Corporation Fiber optic geophone
CN2856950Y (zh) * 2005-12-05 2007-01-10 同济大学 土木工程用光纤光栅低频振动传感装置
CN101285847A (zh) * 2007-04-11 2008-10-15 中国科学院半导体研究所 一种温度不敏感的光纤光栅加速度传感器
WO2009130377A1 (en) * 2008-04-24 2009-10-29 Sensapex Oy Optical measurement sensor and a method for evaluating a physical magnitude
US20110283795A1 (en) * 2008-11-19 2011-11-24 The Australian National University System, Device And Method For Detecting Seismic Acceleration
CN101782658A (zh) * 2010-03-29 2010-07-21 中国石油大学(北京) 双L型光纤Bragg光栅地震检波器探头结构
CN102128952A (zh) * 2010-12-31 2011-07-20 南京航空航天大学 一种光纤光栅加速度传感器及其测试方法
CN203551099U (zh) * 2013-09-23 2014-04-16 同方威视技术股份有限公司 一种光纤光栅传感器
CN203561436U (zh) * 2013-09-26 2014-04-23 同方威视技术股份有限公司 光纤光栅振动传感器
CN103823080A (zh) * 2014-03-05 2014-05-28 西安石油大学 一种温度不敏感光纤光栅加速度传感器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125612A1 (de) * 2016-12-23 2018-06-28 fos4X GmbH Faseroptischer Beschleunigungssensor mit Hebel
US11243224B2 (en) 2016-12-23 2022-02-08 fos4X GmbH Fiber-optic acceleration sensor having lever arm
DE102016125612B4 (de) 2016-12-23 2022-05-05 fos4X GmbH Faseroptischer Beschleunigungssensor mit Hebel
CN109631791A (zh) * 2019-01-18 2019-04-16 山东道宽智能科技有限公司 一种矿用大量程光纤光栅无源顶板离层传感器
CN110146053A (zh) * 2019-06-17 2019-08-20 天津师范大学 用于船体艏摇运动测量的光纤光栅传感器及应用
CN110146053B (zh) * 2019-06-17 2023-08-11 天津师范大学 用于船体艏摇运动测量的光纤光栅传感器及应用
CN114235129A (zh) * 2020-09-09 2022-03-25 中国石油化工集团有限公司 光纤光栅振动传感器
CN114509151A (zh) * 2022-02-17 2022-05-17 西北大学 自带温度和预应力补偿的一维光纤光栅振动传感器
CN114509151B (zh) * 2022-02-17 2023-06-23 西北大学 自带温度和预应力补偿的一维光纤光栅振动传感器
CN115220087A (zh) * 2022-07-21 2022-10-21 西北大学 一种三分量光纤检波器

Also Published As

Publication number Publication date
CN104880243B (zh) 2018-06-01
CN104880243A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2015127814A1 (zh) 光纤光栅振动传感器
CN103983806B (zh) 一种基于柔性铰链的光纤光栅高频加速度传感器
EP1358488B1 (en) Highly sensitive cross axis accelerometer
JP6271031B2 (ja) ファイバブラッググレーティング振動センサ
CN102128952B (zh) 一种光纤光栅加速度传感器及其测试方法
CN101982740B (zh) 双等强度悬臂梁光纤光栅振动传感器
CN101852815A (zh) 一种温度自补偿型悬臂梁式光纤光栅加速度计
CN103471702A (zh) 一种温度不敏感的阻尼可调谐高精度光纤光栅振动传感器
CN107144705A (zh) 一种光纤光栅加速度计
CN106705877A (zh) 一种基于柔性铰链的高灵敏光纤光栅应变传感器
CN102089618A (zh) 温度补偿光纤应变仪
CA2660458C (en) Apparatus and method for measuring convergence using fiber bragg grating sensor
CN104515587A (zh) 光纤光栅振动传感器
CN103925984A (zh) 光纤振动传感器及应用其的输电线路微风振动监测***
Ni et al. Temperature-independent fiber Bragg grating tilt sensor
CN103197099A (zh) 一种双悬臂梁光纤光栅加速度传感器
CN102183292A (zh) 大型机械装备光纤光栅震动检测方法及检测传感器
CN203561436U (zh) 光纤光栅振动传感器
CN103852013A (zh) 一种基于光纤光栅位移探测的滑坡体深部位移传感器
CN104034274A (zh) 一种光纤应变传感结构体
CN207114575U (zh) 一种光纤光栅加速度计
US20200055401A1 (en) Optical monitoring system
CN102183210B (zh) 可扩张式光纤光栅应变传感器
KR101129261B1 (ko) 직렬 연결을 통한 동시 다점 계측이 가능한 광섬유 브래그 격자 가속도 센서
CN108759738B (zh) 一种振弦式应变传感器初始值调节装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883880

Country of ref document: EP

Kind code of ref document: A1