WO2015125725A1 - Method for manufacturing optical display device - Google Patents

Method for manufacturing optical display device Download PDF

Info

Publication number
WO2015125725A1
WO2015125725A1 PCT/JP2015/054104 JP2015054104W WO2015125725A1 WO 2015125725 A1 WO2015125725 A1 WO 2015125725A1 JP 2015054104 W JP2015054104 W JP 2015054104W WO 2015125725 A1 WO2015125725 A1 WO 2015125725A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
center
optical display
display device
optical
Prior art date
Application number
PCT/JP2015/054104
Other languages
French (fr)
Japanese (ja)
Inventor
大充 田中
伸彦 西原
廷槐 陳
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580008836.9A priority Critical patent/CN106030391A/en
Priority to KR1020167020906A priority patent/KR20160122132A/en
Publication of WO2015125725A1 publication Critical patent/WO2015125725A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/001Constructional or mechanical details

Definitions

  • the present invention relates to a method for manufacturing an optical display device.
  • This application claims priority based on Japanese Patent Application No. 2014-29547 filed in Japan on February 19, 2014, the contents of which are incorporated herein by reference.
  • a polarizer layer is disposed on the display surface side of the liquid crystal panel, and a patterned retardation layer is disposed further on the viewing side thereof.
  • a polarizing film is disposed on the backlight side of the liquid crystal panel.
  • the polarizer layer is a layer having an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis of the polarizer layer and transmitting the polarization component of the orthogonal vibration plane among the light incident from the liquid crystal panel side. .
  • the transmitted light immediately after passing through the polarizer layer is linearly polarized light.
  • the patterned retardation layer is usually formed on a substrate film.
  • the patterned retardation layer includes a first region and a second region.
  • the first region and the second region are each formed in a band shape, and are alternately arranged corresponding to the pixel arrangement of the liquid crystal panel formed in a matrix.
  • FIG. 12 is a plan view for explaining alignment between the liquid crystal panel P and the patterned retardation layer 3 in the 3D liquid crystal display device.
  • red pixels R, green pixels G, and blue pixels B are periodically arranged along the long side (left and right of the liquid crystal panel P in FIG. 12: the horizontal width direction).
  • a large number of pixels R, G, and B of each color are arranged in the left-right direction to form a pixel column L, and the pixel column L is located above and below the display area of the liquid crystal panel P (the vertical direction of the liquid crystal panel P in FIG. Many are arranged across.
  • the patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L extending along the long sides of the patterned retardation layer 3 (left and right in FIG. 12: horizontal width direction). is doing.
  • a large number of first regions 3R and second regions 3L are arranged in the vertical direction (vertical direction in FIG. 12) corresponding to each pixel row L of the liquid crystal panel P.
  • the first region 3R is arranged on the viewing side of the pixel column L that displays the right-eye image
  • the second region 3L is arranged on the viewing side of the pixel column L that displays the left-eye image.
  • the first region 3R and the second region 3L have different phase difference directions, and the right-eye image and the left-eye image are displayed on the viewer side in different polarization states (for example, patents). Reference 1).
  • the patterned retardation layer 3 is bonded to the liquid crystal panel P so that the boundary line K between the first region 3R and the second region 3L is located between the pixel columns L, and the liquid crystal panel P is used.
  • An FPR 3D liquid crystal display device is configured.
  • the user views the display image through so-called polarized glasses equipped with optical elements having different optical characteristics between the right-eye lens and the left-eye lens.
  • Each image for the left eye is selectively visually recognized. Accordingly, the user can recognize a stereoscopic image obtained by fusing the images of both eyes.
  • the first region of the patterned retardation layer and the pixel column of the liquid crystal panel, or the second region and the pixel column are accurately associated with each other to perform patterning.
  • An optical member including the retardation layer and the polarizer layer is bonded to the liquid crystal panel.
  • the present invention has been made in view of such circumstances, and provides an optical display device manufacturing method capable of bonding an optical member and a liquid crystal panel with high positional accuracy to display a high-quality image. With the goal.
  • a plurality of first regions that change incident linearly polarized light into a first polarization state and a plurality of second regions that change into a second polarization state are provided.
  • a plurality of the first regions and a plurality of the second regions are bonded to an optical display component having a plurality of pixel rows, the optical member having a retardation layer formed in a band shape in plan view
  • the retardation layer is alternately arranged in a direction in which the first region and the second region intersect the extending direction of the first region and the second region.
  • Detector that detects each position And a determination step of calculating the center position based on the reference positions respectively detected at the one end side and the other end side, and determining the first region arranged at the center position;
  • the determined first region is imaged, and the width of the determined first region is measured at a plurality of locations based on the obtained image. Detecting the coordinates of the measured center position of the width, approximating the center line in the width direction of the determined first region in the image from a plurality of the coordinates, in the bonding step, The optical member and the optical display component may be bonded to each other based on the relative position between the pixel row located in the center of the intersecting direction.
  • the extension direction in the first region is the extension direction. It is good also as a manufacturing method which images the different position along and which measures the said width
  • the measurement point where the separation distance of the center position with respect to the center line is larger than a second threshold value, It is good also as a manufacturing method which excludes from the said several coordinate for approximating the said centerline, and approximates the said centerline again.
  • the extending direction in the first region is set in the extending direction. It is good also as a manufacturing method which images the different position along and which measures the said width
  • the detection step and the determination step are performed in at least one end portion and the central portion in the extending direction of the retardation layer, and in the bonding step,
  • the first region arranged at the center position calculated at each of the end portion and the center portion is pasted in correspondence with the pixel row located at the center in the intersecting direction of the optical display component. It is good also as a manufacturing method to combine.
  • the said optical It is good also as a manufacturing method which controls and controls the relative azimuth
  • an optical display device capable of bonding an optical member and a liquid crystal panel with high positional accuracy and capable of displaying a high-quality image.
  • ⁇ Optical display device> 1 to 3 are explanatory views showing a display device (optical display device) 100 manufactured by the method for manufacturing an optical display device of the present embodiment.
  • FIG. 1 is a plan view showing a schematic configuration of the display device 100.
  • FIG. 2 is a cross-sectional view of the display device 100 taken along line II-II in FIG.
  • the display device 100 of this embodiment is an FPR 3D liquid crystal display device.
  • the display device 100 includes a liquid crystal panel (optical display component) P, a polarizing film F ⁇ b> 11, and an optical member 1.
  • the liquid crystal panel P includes a first substrate P1 having a rectangular shape in a plan view, and a relatively small rectangular shape arranged to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2.
  • the liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
  • Alignment marks Am for positioning are provided at the four corners of the liquid crystal panel P in plan view.
  • FIG. 1 shows that the alignment marks Am are provided at all four corners, for example, a total of three alignment marks may be provided at three of the four corners, and a total of 2 may be provided at diagonal positions of the four corners. Two alignment marks may be provided.
  • a polarizing film F11 is bonded on the backlight side of the liquid crystal panel P.
  • the polarizing film F11 is bonded to the liquid crystal panel P via an adhesive layer (not shown).
  • the polarizing film F11 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the incident light.
  • the transmitted light immediately after passing through the polarizing film F11 is linearly polarized light.
  • the optical member 1 is bonded to the display surface side of the liquid crystal panel P.
  • the optical member 1 has a polarizer layer 2 and a patterned retardation layer (retardation layer) 3, and is bonded to the liquid crystal panel P so that the polarizer layer 2 side faces the liquid crystal panel P.
  • the polarizer layer 2 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the light incident from the liquid crystal panel P side.
  • the transmitted light immediately after passing through the polarizer layer 2 is linearly polarized light.
  • FIG. 3 is a schematic plan view of the patterned retardation layer 3 included in the optical member 1.
  • the patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L.
  • the patterned retardation layer 3 is a member having a rectangular shape in plan view.
  • region 3R changes the linearly polarized light inject
  • the second region 3L changes the linearly polarized light emitted through the polarizer layer 2 to, for example, left-handed circularly polarized light (second polarization state).
  • the first region 3R and the second region 3L are formed to extend in the longitudinal direction of the patterned retardation layer 3, and alternately in a direction crossing the extending direction of the first region 3R and the second region 3L. Has been placed.
  • the widths of the first region 3R and the second region 3L are set according to the size of the pixels of the liquid crystal panel P to be bonded, and are, for example, about 400 ⁇ m to 500 ⁇ m.
  • the extending directions of the first region 3R and the second region 3L in the patterned retardation layer 3 are defined as the “longitudinal direction” of the patterned retardation layer 3, the first region 3R, and the second region 3L.
  • the arrangement direction may be referred to as the “width direction” of the patterned retardation layer 3. That is, the above “longitudinal direction” corresponds to the “extending direction” in the present invention, and the “width direction” corresponds to the “crossing direction” in the present invention.
  • the patterned retardation layer 3 has a “surplus region” that protrudes from the overlapping portion with the display region P 4 when viewed in a plan view when the patterned retardation layer 3 is planarly overlapped with the display region P 4 of the liquid crystal panel P. It is formed larger than the display area P4.
  • the first region 3R and the second region 3L are provided not only in a portion overlapping the display region P4 but also in a surplus region.
  • “the patterned retardation layer (retardation layer) 3 and the display area P4 of the liquid crystal panel (optical display component) P overlap in a plane” described in the present invention means, for example, as shown in FIG.
  • a case where another layer (polarizer layer 2) is interposed between the patterned retardation layer 3 and the liquid crystal panel P is also included.
  • the polarizing film F11 and the optical member 1 are bonded to the liquid crystal panel P so that the polarizing film F11 and the polarizer layer 2 of the optical member 1 are in a crossed Nicols arrangement.
  • a protective film Pf is bonded to the surface of the optical member 1 on the patterned retardation layer 3 side.
  • the protective film Pf protects the surface of the optical member 1 and is provided to be peelable from the optical member 1.
  • the protective film Pf a transparent resin film formed by forming an adhesive / peelable resin layer or an adhesive resin layer and imparting weak adhesiveness is used.
  • the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to.
  • the transparent resin film it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
  • the protective film Pf is often birefringent because the resin is oriented in the flow direction or the stretching direction of the molten resin during molding.
  • the birefringence of such a protective film Pf is not uniform in the plane. Therefore, when the optical member 1 whose surface is protected by the protective film Pf is bonded to the liquid crystal panel P, optical detection of the optical member 1 may be difficult due to the optical characteristics of the protective film Pf. .
  • the liquid crystal panel P to which the polarizing film F11 and the optical member 1 are bonded becomes the display device 100 by further incorporating a drive circuit, a backlight unit, and the like (not shown).
  • the driving method of the liquid crystal panel P is known in this field such as TN (Twisted Nematic), STN (Super Twisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (Optically Compensated Bend), and the like.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Alignment
  • IPS In-Plane Switching
  • OCB Optically Compensated Bend
  • the display device 100 manufactured by the method for manufacturing an optical display device according to the present embodiment has the above-described configuration.
  • ⁇ Method for manufacturing optical display device> 4 to 11A and 11B are explanatory diagrams of the method for manufacturing the optical display device of the present embodiment.
  • the liquid crystal panel P and the optical member 1 are bonded based on the relative positions of the bonding reference of the liquid crystal panel P and the bonding reference of the optical member 1.
  • the pixel row at the center of the display area P4 is used as a bonding standard for the liquid crystal panel P.
  • an imaging area PA set around the corner of the liquid crystal panel P is imaged using a plurality of imaging devices (not shown).
  • the captured image includes an alignment mark Am.
  • Image data of the captured image is input to the arithmetic device, and image processing for emphasizing the alignment mark Am is appropriately performed. Based on the image data, the coordinates of the alignment mark Am are detected.
  • the center position PC1 of the four alignment marks Am and the center positions PC2 and PC3 of the pair of alignment marks Am facing in the width direction of the liquid crystal panel P are calculated from the line segment connecting the coordinates of the detected alignment marks Am.
  • the position of the pixel row at the center of the display area P4 is detected.
  • the center position PC1 or the center positions PC2 and PC3 obtained from the coordinates of the alignment mark Am may not be the center position of the display area P4. is there. In that case, based on the design value of the liquid crystal panel P, a deviation amount between the true center position and the calculated center position PC1 or the center positions PC2 and PC3 is set as an offset amount in advance, and the above calculated value May be used with an appropriate offset.
  • Detection of the center position of the optical member 1 As a reference for the optical member 1, a first region located at the center in the width direction of the patterned retardation layer 3 is used.
  • the display quality of the optical member 1 may be deteriorated when a geometrically calculated position such as the liquid crystal panel P is adopted as the center position.
  • the reason is as follows.
  • the optical member and the liquid crystal panel are arranged in a state where the first region and the second region of the patterned retardation layer 3 correspond to the pixel column of the liquid crystal panel in a one-to-one correspondence. It is necessary to paste. This is because if the first region and the second region are arranged so as to overlap one pixel column, it causes crosstalk.
  • the longitudinal side of the optical member 1 and the extending direction of the first region and the second region may not be parallel.
  • the optical member 1 may be manufactured in large quantities by a roll-to-roll method. Specifically, a layer of photo-alignable material is formed on the surface of a strip-shaped film original fabric, and the film original fabric is rolled and conveyed alternately in a direction crossing the conveyance direction. By exposing the two types of polarized light that are arranged, two types of polarization patterns (first region and second region) corresponding to the two types of polarized light are formed and used as the raw material of the optical member. And an optical member is manufactured by cutting this original fabric suitably.
  • the film original may meander during roll conveyance. Therefore, the first region and the second region formed by exposing the meandering film original may be formed to be curved. In this case, the side in the longitudinal direction of the optical member 1 and the extending direction of the first region and the second region are not parallel.
  • the side in the longitudinal direction of the optical member 1 may not be parallel to the extending direction of the first region and the second region.
  • the first region and the second region of the patterned retardation layer 3 do not necessarily overlap with the pixel column in a one-to-one correspondence. This is not necessarily the case.
  • the polarization pattern of the patterned retardation layer 3 at the center position of the optical member 1 is detected, and this polarization pattern and the pixel column of the liquid crystal panel P are detected.
  • the technique of pasting in correspondence is necessary.
  • the first region and the second region of the patterned retardation layer 3 at the center position of the optical member 1 are imaged while transmitting polarized light using the difference in optical characteristics between the first region and the second region,
  • the detected image is optically detected.
  • the optical member 1 has a polarizer layer, the light transmittance is low, the captured image tends to be dark, and the birefringence of the protective film Pf attached to the surface of the optical member 1 is in-plane. Due to the non-uniformity, it has been difficult to analyze the captured image.
  • the boundary between the first region and the second region is detected on one end side and the other end side in the width direction of the optical member 1 (detection step), and detected on one end side and the other end side. Based on the position of the boundary, the first region located at the center in the width direction of the patterned retardation layer 3 is determined (determination step).
  • determination step determines whether the first region located at the center in the width direction of the patterned retardation layer 3 is determined.
  • each imaging area includes imaging areas PA1 to PA3 set at the end 13 in the longitudinal direction of the optical member 1, imaging areas PA4 to PA6 set at the end 14 in the longitudinal direction of the optical member 1, and the longitudinal direction of the optical member 1.
  • the imaging areas PA7 to PA9 set in the center of the direction are each set.
  • the first region 3Ra is the first region from the one end 11 of the optical member 1 or what second region from the one end 11 of the optical member 1 is the second region 3La is the imaging region PA1. Based on the set position and the design of the optical member 1.
  • a boundary (reference position) Bb between the first area 3Rb and the second area 3Lb included in the imaging area PA2 is detected.
  • the number of the first region from the other end 12 of the optical member 1 is the first region 3Rb
  • the number of the second region from the other end 12 of the optical member 1 is the second region 3Lb. This is known based on the setting position of the region PA2 and the design of the optical member 1.
  • the boundary Ba can be detected, for example, by binarizing the captured image and smoothing the black and white boundary portion. The same applies to the boundary Bb.
  • the polarization pattern of the patterned retardation layer 3 regardless of the outer shape of the optical member 1. It is possible to accurately detect the position of.
  • the center position in the width direction of the patterned retardation layer 3 is calculated based on the positions of the boundaries Ba and Bb detected on the one end 11 side and the other end 12 side.
  • the calculated center position is indicated by a symbol Bx.
  • the center position Bx is included in the imaging area PA3 set at the center in the width direction of the optical member 1.
  • the center in the width direction of the patterned retardation layer 3 refers to the center in the width direction in the portion of the patterned retardation layer 3 that overlaps the display area P4 of the liquid crystal panel P in a plane.
  • the portion of the patterned retardation layer 3 that overlaps the display region P4 of the liquid crystal panel P in a plane is referred to as an “effective region”.
  • the optical member 1 For example, in the optical member 1, the number of first regions and second regions disposed in the surplus region from the boundary Ba to the end on the one end 11 side of the effective region, and the side of the other end 12 of the effective region from the boundary Bb. If the number of the first area and the second area arranged in the surplus area up to the end of the area is different, the number of the first area and the second area arranged in the surplus area is taken into consideration. The position Bx is calculated.
  • the first area 3Rc arranged to overlap the central position Bx is detected, and the first area 3Rc in the center of the effective area is determined.
  • the color and brightness of the first area and the second area appear to be different, so that the first area and the second area can be distinguished.
  • the second region appeared relatively brighter than the first region in one region, while the second region was relatively brighter in the other regions.
  • the first region appears brighter than the first region, and the accuracy may be reduced during detection based on the captured image.
  • the center position of the effective area is predicted from the boundaries Ba and Bb, and the first area arranged at the predicted position is determined to be the first area in the center of the effective area, thereby capturing the captured image.
  • the first area at the center of the effective area can be determined without being confused by the appearance of
  • FIG. 7A, FIG. 7B, and FIG. 9 are explanatory diagrams showing a method for obtaining a center line
  • FIG. 8 is a flowchart showing a method for obtaining a center line. In the following description, the corresponding operation steps will be described with reference to the flowchart shown in FIG.
  • the width of the first area 3Rc is measured at a plurality of measurement points based on the image captured in the imaging area PA3 (step S1). For example, the captured image is converted to grayscale, and the distance W between the boundaries Bc and Bd in the width direction of the first region 3Rc is measured at a plurality of locations.
  • the boundaries Bc and Bd are shown as straight lines for convenience, but the boundaries Bc and Bd are not straight lines in the captured image. Therefore, the distances W measured at a plurality of locations have different values. Further, depending on the image, there may be a part where the boundaries Bc and Bd are unclear, and the distance W cannot be measured at such a part.
  • a threshold (first threshold) is provided for the number of measurement points that can be measured effectively, and the number of measurement points that can be measured effectively and the threshold are compared (step S2).
  • the coordinates of the center position D of the width are calculated at the measurement points that can be effectively measured (step S3), and the coordinates of the plurality of center positions D are The center line C1 in the width direction of the first region 3Rc is approximated (step S4).
  • a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given.
  • the lower limit of the number of measurement points that can be effectively measured, which is set as the first threshold value can be set as appropriate based on the specifications of the patterned retardation layer 3.
  • the point D1 plotted on the + y side and the point D2 plotted on the ⁇ y side have a larger separation distance from the center line C1 than the other points D, and the calculation of the center line C1 is performed. This is thought to have a major impact on the results.
  • a determination is made based on a preset threshold value (second threshold value) (step S5), and measurement data of measurement spots (point D1 and point D2) having a larger separation distance than the second threshold value are deleted.
  • the center line may be approximated again using the remaining points excluding the points D1 and D2.
  • the number of measurement points remaining after excluding measurement points that are far away from the center line C1 is compared with the first threshold value (step S2), and subsequent processing is determined.
  • the upper limit of the separation distance between the center positions which is set as the second threshold value, can be set as appropriate based on the specification of the patterned retardation layer 3 as in the case of the first threshold value. it can.
  • the variation in the center position D is evaluated based on a preset threshold value (third threshold value) with respect to the separation distance of the center position D from the center line C1 (step S1). S6).
  • the third threshold value is smaller than the second threshold value.
  • the third threshold value is indicated by a symbol M.
  • step S2 When the measurement point that can be measured effectively is less than the threshold value in the determination in step S2, and in the determination in step S6, there is a center position D that is separated from the center line C1 by a distance greater than the third threshold value. Then, the imaging region is changed to a different position along the extending direction of the first region 3Rc, and imaging is performed (step S8), and the width is measured again at a plurality of locations based on the obtained image (step S1).
  • the processing as described above is performed on the imaging regions PA1 to PA3 set at the end portion 13 in the longitudinal direction of the optical member 1, the imaging regions PA4 to PA6 set at the end portion 14 in the longitudinal direction of the optical member 1, and the optical member 1. This is performed for each of the imaging areas PA7 to PA9 set at the center in the longitudinal direction.
  • the optical member 1 When changing the imaging area, as shown in FIG. 9, the optical member 1 is divided into three areas AR1, AR2, AR3 in the longitudinal direction, and the imaging area is set so as not to protrude from each area. It is good to change.
  • the imaging areas PA3 and PA6 at both ends in the longitudinal direction may be changed to the center side of the optical member 1 like the imaging areas PA31 and PA61, respectively.
  • the imaging area PA9 at the center in the longitudinal direction is changed to the imaging area PA91, for example, and when it needs to be changed, the imaging area PA9 is changed to the imaging area PA92. It is better to change the imaging area.
  • the imaging areas before and after the change may not overlap as in the imaging area PA3 and the imaging area PA31, and the imaging area PA6 and the imaging area PA61. As in the imaging areas PA91 and PA92, the imaging areas before and after the change may partially overlap.
  • the liquid crystal panel P and the optical member 1 are bonded. In that case, both are bonded based on the relative position of the pixel row located at the center in the width direction of the liquid crystal panel P and the determined center line of the first region 3Rc (see FIG. 7A).
  • an xyz coordinate system is set, the longitudinal direction of the liquid crystal panel P is indicated as the x direction, the width direction of the liquid crystal panel P is indicated as the y direction, and the direction orthogonal to the xy plane is indicated as the z direction.
  • the optical member 1 and the liquid crystal panel are based on the center lines C1 and C2 at the end in the longitudinal direction of the optical member 1 and the center line C3 at the center in the longitudinal direction.
  • the orientation of the optical member 1 is adjusted by controlling the relative orientation ⁇ within the bonding surface.
  • the rotation axis for angle adjustment is an axis in the same direction as the z axis, and the rotation center is, for example, a position overlapping the center line C3.
  • the center line at the end in the longitudinal direction used for angle adjustment may be either one of the center lines C1 and C2.
  • the relative position of the optical member 1 and the liquid crystal panel in the width direction is controlled based on the center line C3 in the central portion in the longitudinal direction to adjust the posture of the optical member 1.
  • FIG. 11B shows that the optical member 1 is moved in the y direction.
  • the position adjustment of the optical member 1 is performed with reference to the center line C3 of the optical member 1, and the pixel line positioned at the center in the width direction of the liquid crystal panel P and the center line C3 When both are bonded based on the relative position, the optical member 1 and the liquid crystal panel are bonded with the highest accuracy in the center of the display area. Therefore, the display device manufactured by the manufacturing method of the present embodiment is less likely to cause crosstalk at the center of the display area, and can display a high-quality image.
  • the optical member and the liquid crystal panel are bonded with high positional accuracy, and high-quality image display is possible.
  • the polarization pattern that transmits the right-eye image is the first region 3R.
  • the position detection or the like may be performed by setting the polarization pattern that transmits the left-eye image as the first region. I do not care.
  • a manufacturing apparatus for manufacturing the display device (optical display device) 100 is not illustrated, but the manufacturing apparatus is not limited in any way.
  • the assembly conveyance means for assembling each member and the operation of the assembly conveyance means while conveying each member in the process as shown in the flowchart of FIG. 8, the assembly conveyance means for assembling each member and the operation of the assembly conveyance means while conveying each member in the process.
  • movement can be employ
  • SYMBOLS 1 Optical member, 3 ... Patterned phase difference layer (retardation layer), 3L, 3La, 3Lb ... 2nd area

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Polarising Elements (AREA)

Abstract

This method for manufacturing an optical display device, in which an optical member (1) provided with a retardation layer in which a plurality of first regions and a plurality of second regions form bands in a planar view is affixed to a liquid-crystal panel that has a plurality of pixel rows, includes the following steps: a detection step in which, on both widthwise ends, reference positions (Ba, Bb) for computing a central position (Bx) in an intersecting direction in an area in which the retardation layer overlaps the display region of the liquid-crystal panel in a planar manner are detected; a determination step in which said central position (Bx) is computed on the basis of said reference positions (Ba, Bb) and the first region (3Rc) located at said central position (Bx) is determined; and an affixing step in which the optical member (1) is affixed to the liquid-crystal panel on the basis of the relative positions of the determined first region (3Rc) and the pixel row in the center of the liquid-crystal panel in the abovementioned intersecting direction.

Description

光学表示デバイスの製造方法Manufacturing method of optical display device
 本発明は、光学表示デバイスの製造方法に関するものである。
本出願は、2014年2月19日に日本に出願された特願2014-29547号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing an optical display device.
This application claims priority based on Japanese Patent Application No. 2014-29547 filed in Japan on February 19, 2014, the contents of which are incorporated herein by reference.
 近年、FPR(Film Patterned Retarder)方式と称されるパッシブ方式の3D(3 Dimension)液晶表示装置が開発されている。 In recent years, a passive 3D (3-dimensional) liquid crystal display device called an FPR (Film Patterned Retarder) system has been developed.
 この方式の3D液晶表示装置(表示装置)では、例えば、液晶パネルの表示面側に偏光子層が配置され、その更に視認側にパターン化位相差層が配置される。また、液晶パネルのバックライト側には偏光フィルムが配置される。 In this type of 3D liquid crystal display device (display device), for example, a polarizer layer is disposed on the display surface side of the liquid crystal panel, and a patterned retardation layer is disposed further on the viewing side thereof. A polarizing film is disposed on the backlight side of the liquid crystal panel.
偏光子層は、液晶パネル側から入射する光のうち、偏光子層の吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する層である。偏光子層を透過した直後の透過光は、直線偏光光である。 The polarizer layer is a layer having an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis of the polarizer layer and transmitting the polarization component of the orthogonal vibration plane among the light incident from the liquid crystal panel side. . The transmitted light immediately after passing through the polarizer layer is linearly polarized light.
 パターン化位相差層は、通常、基材フィルム上に形成されている。パターン化位相差層は、第1領域と第2領域とを備えている。第1領域と第2領域とは、それぞれ帯状に形成されており、マトリクス状に形成された液晶パネルの画素配列に対応して、交互に配列されている。 The patterned retardation layer is usually formed on a substrate film. The patterned retardation layer includes a first region and a second region. The first region and the second region are each formed in a band shape, and are alternately arranged corresponding to the pixel arrangement of the liquid crystal panel formed in a matrix.
 図12は、3D液晶表示装置における液晶パネルPとパターン化位相差層3との位置合わせを説明するための平面図である。 FIG. 12 is a plan view for explaining alignment between the liquid crystal panel P and the patterned retardation layer 3 in the 3D liquid crystal display device.
 図12に示すように、液晶パネルPでは、長辺(図12中における液晶パネルPの左右:横幅方向)に沿って、赤色画素R、緑色画素G、青色画素Bが周期的に並んで配置されている。そして、各色の画素R,G,Bが左右方向に沿って多数並んで画素列Lとなり、この画素列Lが液晶パネルPの表示領域の上下(図12中における液晶パネルPの縦方向)に渡って多数配列されている。 As shown in FIG. 12, in the liquid crystal panel P, red pixels R, green pixels G, and blue pixels B are periodically arranged along the long side (left and right of the liquid crystal panel P in FIG. 12: the horizontal width direction). Has been. A large number of pixels R, G, and B of each color are arranged in the left-right direction to form a pixel column L, and the pixel column L is located above and below the display area of the liquid crystal panel P (the vertical direction of the liquid crystal panel P in FIG. Many are arranged across.
 一方、パターン化位相差層3は、パターン化位相差層3の長辺(図12中における左右:横幅方向)に沿って延在する複数の第1領域3Rおよび複数の第2領域3Lを有している。第1領域3Rおよび第2領域3Lは、液晶パネルPの各画素列Lに対応して上下(図12中における縦方向)に渡って多数配列されている。例えば、右眼用画像を表示する画素列Lの視認側に第1領域3Rが配置され、左眼用画像を表示する画素列Lの視認側には第2領域3Lが配置される。第1領域3Rと第2領域3Lとでは、位相差の方向が異なっており、右眼用画像と左眼用画像とでは、互いに異なる偏光状態となって視認側に表示される(例えば、特許文献1参照)。 On the other hand, the patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L extending along the long sides of the patterned retardation layer 3 (left and right in FIG. 12: horizontal width direction). is doing. A large number of first regions 3R and second regions 3L are arranged in the vertical direction (vertical direction in FIG. 12) corresponding to each pixel row L of the liquid crystal panel P. For example, the first region 3R is arranged on the viewing side of the pixel column L that displays the right-eye image, and the second region 3L is arranged on the viewing side of the pixel column L that displays the left-eye image. The first region 3R and the second region 3L have different phase difference directions, and the right-eye image and the left-eye image are displayed on the viewer side in different polarization states (for example, patents). Reference 1).
 パターン化位相差層3は、第1領域3Rと第2領域3Lとの境界線Kが各画素列Lの間に位置するように液晶パネルPに対して貼合され、液晶パネルPを用いたFPR方式の3D液晶表示装置を構成している。 The patterned retardation layer 3 is bonded to the liquid crystal panel P so that the boundary line K between the first region 3R and the second region 3L is located between the pixel columns L, and the liquid crystal panel P is used. An FPR 3D liquid crystal display device is configured.
 使用者は、右眼用レンズと左眼用レンズとで光学特性が異なる光学素子を備えた、いわゆる偏光眼鏡を介して表示画像を見ることで、右眼では右眼用画像を、左眼では左眼用画像をそれぞれ選択的に視認する。これにより使用者は、両眼の像を融合した立体画像を認識することができる。 The user views the display image through so-called polarized glasses equipped with optical elements having different optical characteristics between the right-eye lens and the left-eye lens. Each image for the left eye is selectively visually recognized. Accordingly, the user can recognize a stereoscopic image obtained by fusing the images of both eyes.
特開2012-212033号公報JP 2012-212033 A
 上述のようなFPR方式の3D液晶表示装置の製造にあたっては、パターン化位相差層の第1領域と液晶パネルの画素列、または第2領域と画素列、をそれぞれ正確に対応させて、パターン化位相差層と偏光子層とを含む光学部材を液晶パネルに貼合する。その際、1つの画素列に対し、パターン化位相差層の第1領域および第2領域の両方が重なってしまうと、本来は右眼のみで認識されるべき右眼用画像が左眼でも認識されてしまう、いわゆるクロストークが生じ、立体表示画像の画質を低下させるおそれがある。 In manufacturing the FPR type 3D liquid crystal display device as described above, the first region of the patterned retardation layer and the pixel column of the liquid crystal panel, or the second region and the pixel column are accurately associated with each other to perform patterning. An optical member including the retardation layer and the polarizer layer is bonded to the liquid crystal panel. At that time, if both the first region and the second region of the patterned retardation layer overlap one pixel row, the right-eye image that should be recognized only by the right eye is also recognized by the left eye. In other words, so-called crosstalk occurs, and the image quality of the stereoscopic display image may be deteriorated.
 しかし、光学部材の製造誤差や光学部材の変形、貼合時の位置決めのための光学検出精度の低さなどに起因して、光学部材と液晶パネルとの貼合後の相対位置や方位がずれるおそれがある。 However, the relative position and orientation after bonding of the optical member and the liquid crystal panel are shifted due to manufacturing errors of the optical member, deformation of the optical member, and low optical detection accuracy for positioning during bonding. There is a fear.
 本発明はこのような事情に鑑みてなされたものであって、光学部材と液晶パネルとを高い位置精度で貼合し、高品質な画像表示が可能な光学表示デバイスの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides an optical display device manufacturing method capable of bonding an optical member and a liquid crystal panel with high positional accuracy to display a high-quality image. With the goal.
 上記の課題を解決するため、本発明の一態様は、入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において帯状に延在して形成された位相差層を備える光学部材を、複数の画素列を有する光学表示部品に貼合する光学表示デバイスの製造方法であって、前記位相差層は、前記第1領域および前記第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、前記交差する方向の一端側および他端側において、前記位相差層と前記光学表示部品の表示領域とが平面的に重なる部分における前記交差する方向の中央の位置を算出するための基準位置をそれぞれ検出する検出工程と、前記一端側および前記他端側においてそれぞれ検出された前記基準位置に基づいて、前記中央の位置を算出し、前記中央の位置に配置された前記第1領域を決定する決定工程と、決定された前記第1領域と、前記光学表示部品の前記交差する方向の中央に位置する画素列と、の相対位置に基づいて、前記光学部材と前記光学表示部品とを貼合する貼合工程と、を有する光学表示デバイスの製造方法を提供する。 In order to solve the above problems, according to one embodiment of the present invention, a plurality of first regions that change incident linearly polarized light into a first polarization state and a plurality of second regions that change into a second polarization state are provided. A plurality of the first regions and a plurality of the second regions are bonded to an optical display component having a plurality of pixel rows, the optical member having a retardation layer formed in a band shape in plan view In the method of manufacturing an optical display device, the retardation layer is alternately arranged in a direction in which the first region and the second region intersect the extending direction of the first region and the second region. And a reference for calculating a center position in the intersecting direction at a portion where the retardation layer and the display area of the optical display component overlap in a plane on one end side and the other end side in the intersecting direction. Detector that detects each position And a determination step of calculating the center position based on the reference positions respectively detected at the one end side and the other end side, and determining the first region arranged at the center position; A bonding step of bonding the optical member and the optical display component based on a relative position between the first region and the pixel row located in the center of the crossing direction of the optical display component; The manufacturing method of the optical display device which has these.
 上記構成を備える本発明の一態様においては、前記決定工程において、決定された前記第1領域を撮像し、得られた画像に基づいて前記決定された第1領域の幅を複数箇所で測定し、測定された前記幅の中心位置の座標を検出し、前記画像における前記決定された第1領域の幅方向の中心線を複数の前記座標から近似し、前記貼合工程において、前記中心線と、前記交差する方向の中央に位置する画素列と、の相対位置に基づいて前記光学部材と前記光学表示部品とを貼合する製造方法としてもよい。 In one aspect of the present invention having the above-described configuration, in the determining step, the determined first region is imaged, and the width of the determined first region is measured at a plurality of locations based on the obtained image. Detecting the coordinates of the measured center position of the width, approximating the center line in the width direction of the determined first region in the image from a plurality of the coordinates, in the bonding step, The optical member and the optical display component may be bonded to each other based on the relative position between the pixel row located in the center of the intersecting direction.
 上記構成を備える本発明の一態様においては、前記決定工程において、前記幅を測定できた測定箇所の数が、第1の閾値よりも小さい場合には、前記第1領域における前記延在方向に沿った異なる位置を撮像し、得られた画像に基づいて前記幅を複数箇所で再測定する製造方法としてもよい。 In one aspect of the present invention having the above-described configuration, in the determination step, when the number of measurement points where the width can be measured is smaller than a first threshold value, the extension direction in the first region is the extension direction. It is good also as a manufacturing method which images the different position along and which measures the said width | variety again in several places based on the obtained image.
 上記構成を備える本発明の一態様においては、前記決定工程において、前記幅を測定できた測定箇所のうち、前記中心線に対する前記中心位置の離間距離が第2の閾値よりも大きい測定箇所について、前記中心線を近似するための複数の前記座標から除外し、前記中心線を再度近似する製造方法としてもよい。 In one aspect of the present invention having the above-described configuration, in the determination step, among the measurement points where the width can be measured, the measurement point where the separation distance of the center position with respect to the center line is larger than a second threshold value, It is good also as a manufacturing method which excludes from the said several coordinate for approximating the said centerline, and approximates the said centerline again.
 上記構成を備える本発明の一態様においては、前記決定工程において、前記中心線に対する前記中心位置の離間距離が、第3の閾値よりも大きい場合には、前記第1領域における前記延在方向に沿った異なる位置を撮像し、得られた画像に基づいて前記幅を複数箇所で再測定する製造方法としてもよい。 In one aspect of the present invention having the above-described configuration, in the determination step, when a separation distance of the center position with respect to the center line is larger than a third threshold value, the extending direction in the first region is set in the extending direction. It is good also as a manufacturing method which images the different position along and which measures the said width | variety again in several places based on the obtained image.
 上記構成を備える本発明の一態様においては、前記位相差層の前記延在方向の少なくとも一方の端部および中央部において、前記検出工程と前記決定工程とを行い、前記貼合工程においては、前記端部および前記中央部のそれぞれにおいて算出された前記中央の位置に配置される前記第1領域と、前記光学表示部品の前記交差する方向の中央に位置する画素列と、を対応させて貼合する製造方法としてもよい。 In one aspect of the present invention having the above-described configuration, the detection step and the determination step are performed in at least one end portion and the central portion in the extending direction of the retardation layer, and in the bonding step, The first region arranged at the center position calculated at each of the end portion and the center portion is pasted in correspondence with the pixel row located at the center in the intersecting direction of the optical display component. It is good also as a manufacturing method to combine.
 上記構成を備える本発明の一態様においては、前記貼合工程においては、前記中央部における前記中心線と、前記交差する方向の中央であって前記中央部に位置する画素列と、の相対位置に基づいて前記光学部材と前記光学表示部品とを貼合する製造方法としてもよい。 In 1 aspect of this invention provided with the said structure, in the said bonding process, the relative position of the said centerline in the said center part, and the pixel row | line | column located in the center of the said crossing direction and located in the said center part It is good also as a manufacturing method which bonds the said optical member and the said optical display component based on.
 上記構成を備える本発明の一態様においては、前記貼合工程においては、前記延在方向の少なくとも一方の端部における前記中心線と、前記中央部における前記中心線と、に基づいて、前記光学部材と前記光学表示部品との貼合面内の相対方位を制御して貼合する製造方法としてもよい。 In 1 aspect of this invention provided with the said structure, in the said bonding process, based on the said centerline in the at least one edge part of the said extension direction, and the said centerline in the said center part, the said optical It is good also as a manufacturing method which controls and controls the relative azimuth | direction in the bonding surface of a member and the said optical display component.
上記構成を備える本発明の一態様においては、前記貼合工程においては、前記中央部における前記中心線と、前記交差する方向の中央であって前記中央部に位置する画素列と、の相対位置に基づいて、前記光学部材と前記光学表示部品との前記幅方向の相対位置を制御する製造方法としてもよい。 In 1 aspect of this invention provided with the said structure, in the said bonding process, the relative position of the said centerline in the said center part, and the pixel row | line | column located in the center of the said crossing direction and located in the said center part The manufacturing method for controlling the relative position in the width direction between the optical member and the optical display component may be used.
 本発明によれば、光学部材と液晶パネルとを高い位置精度で貼合し、高品質な画像表示が可能な光学表示デバイスの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing an optical display device capable of bonding an optical member and a liquid crystal panel with high positional accuracy and capable of displaying a high-quality image.
表示装置の概略構成を示す平面図である。It is a top view which shows schematic structure of a display apparatus. 表示装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a display apparatus. パターン化位相差層の平面模式図である。It is a plane schematic diagram of a patterned retardation layer. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 本実施形態の光学表示デバイスの製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical display device of this embodiment. 3D液晶表示装置における液晶パネルとパターン化位相差層との位置合わせを説明するための平面図である。It is a top view for demonstrating position alignment with the liquid crystal panel and patterned retardation layer in a 3D liquid crystal display device.
 以下、図面を参照しながら、本実施形態に係る光学表示デバイスの製造方法について説明する。なお、以下の説明で参照する全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。 Hereinafter, a method for manufacturing an optical display device according to the present embodiment will be described with reference to the drawings. In all the drawings referred to in the following description, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
<光学表示デバイス>
 図1~3は、本実施形態の光学表示デバイスの製造方法で製造する表示装置(光学表示デバイス)100を示す説明図である。
<Optical display device>
1 to 3 are explanatory views showing a display device (optical display device) 100 manufactured by the method for manufacturing an optical display device of the present embodiment.
 図1は、表示装置100の概略構成を示す平面図である。図2は、図1の線分II-IIにおける表示装置100の断面図である。本実施形態の表示装置100は、FPR方式の3D液晶表示装置である。図1又は図2に示すように、表示装置100は、液晶パネル(光学表示部品)Pと、偏光フィルムF11と、光学部材1とを有している。 FIG. 1 is a plan view showing a schematic configuration of the display device 100. FIG. 2 is a cross-sectional view of the display device 100 taken along line II-II in FIG. The display device 100 of this embodiment is an FPR 3D liquid crystal display device. As shown in FIG. 1 or 2, the display device 100 includes a liquid crystal panel (optical display component) P, a polarizing film F <b> 11, and an optical member 1.
 液晶パネルPは、図1及び図2に示すように、平面視で長方形状をなす第1の基板P1と、第1の基板P1に対向して配置される比較的小形の長方形状をなす第2の基板P2と、第1の基板P1と第2の基板P2との間に封入された液晶層P3とを備える。液晶パネルPは、平面視で第1の基板P1の外形状に沿う長方形状をなし、平面視で液晶層P3の外周の内側に収まる領域を表示領域P4とする。 As shown in FIGS. 1 and 2, the liquid crystal panel P includes a first substrate P1 having a rectangular shape in a plan view, and a relatively small rectangular shape arranged to face the first substrate P1. And a liquid crystal layer P3 sealed between the first substrate P1 and the second substrate P2. The liquid crystal panel P has a rectangular shape that conforms to the outer shape of the first substrate P1 in a plan view, and a region that fits inside the outer periphery of the liquid crystal layer P3 in a plan view is a display region P4.
 液晶パネルPの平面視における四隅には、位置決め用のアライメントマークAmが設けられている。図1では、四隅すべてにアライメントマークAmが設けられることとして示しているが、例えば、四隅のうち3つの隅に合計3つのアライメントマークを設けることとしてもよく、四隅の対角の位置に合計2つのアライメントマークを設けることとしてもよい。 Alignment marks Am for positioning are provided at the four corners of the liquid crystal panel P in plan view. Although FIG. 1 shows that the alignment marks Am are provided at all four corners, for example, a total of three alignment marks may be provided at three of the four corners, and a total of 2 may be provided at diagonal positions of the four corners. Two alignment marks may be provided.
 液晶パネルPのバックライト側には、偏光フィルムF11が貼合されている。偏光フィルムF11は、不図示の粘着剤層を介して液晶パネルPに貼合される。偏光フィルムF11は、入射する光のうち、吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する。偏光フィルムF11を透過した直後の透過光は、直線偏光光である。 On the backlight side of the liquid crystal panel P, a polarizing film F11 is bonded. The polarizing film F11 is bonded to the liquid crystal panel P via an adhesive layer (not shown). The polarizing film F11 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the incident light. The transmitted light immediately after passing through the polarizing film F11 is linearly polarized light.
 一方、この液晶パネルPの表示面側には、光学部材1が貼合されている。光学部材1は、偏光子層2とパターン化位相差層(位相差層)3とを有し、偏光子層2側が液晶パネルPに面するように液晶パネルPに貼合されている。 On the other hand, the optical member 1 is bonded to the display surface side of the liquid crystal panel P. The optical member 1 has a polarizer layer 2 and a patterned retardation layer (retardation layer) 3, and is bonded to the liquid crystal panel P so that the polarizer layer 2 side faces the liquid crystal panel P.
 偏光子層2は、液晶パネルP側から入射する光のうち、吸収軸に平行な振動面の偏光成分を吸収し、直交する振動面の偏光成分を透過する光学機能を有する。偏光子層2を透過した直後の透過光は、直線偏光光である。 The polarizer layer 2 has an optical function of absorbing the polarization component of the vibration plane parallel to the absorption axis and transmitting the polarization component of the vibration plane orthogonal to the light incident from the liquid crystal panel P side. The transmitted light immediately after passing through the polarizer layer 2 is linearly polarized light.
 図3は、光学部材1が有するパターン化位相差層3の平面模式図である。パターン化位相差層3は、複数の第1領域3Rおよび複数の第2領域3Lを有している。また、パターン化位相差層3は、平面視矩形の部材である。 FIG. 3 is a schematic plan view of the patterned retardation layer 3 included in the optical member 1. The patterned retardation layer 3 has a plurality of first regions 3R and a plurality of second regions 3L. The patterned retardation layer 3 is a member having a rectangular shape in plan view.
 第1領域3Rは、偏光子層2を介して射出される直線偏光を、例えば右旋回の円偏光(第1の偏光状態)に変化させる。第2領域3Lは、偏光子層2を介して射出される直線偏光を、例えば左旋回の円偏光(第2の偏光状態)に変化させる。 1st area | region 3R changes the linearly polarized light inject | emitted through the polarizer layer 2, for example to the right-handed circularly polarized light (1st polarization state). The second region 3L changes the linearly polarized light emitted through the polarizer layer 2 to, for example, left-handed circularly polarized light (second polarization state).
 第1領域3Rおよび第2領域3Lは、パターン化位相差層3の長手方向に延在して形成されており、第1領域3Rおよび第2領域3Lの延在方向と交差する方向に交互に配置されている。第1領域3Rおよび第2領域3Lの幅は、貼合する液晶パネルPの画素の大きさに応じて設定され、例えば400μm~500μm程度である。 The first region 3R and the second region 3L are formed to extend in the longitudinal direction of the patterned retardation layer 3, and alternately in a direction crossing the extending direction of the first region 3R and the second region 3L. Has been placed. The widths of the first region 3R and the second region 3L are set according to the size of the pixels of the liquid crystal panel P to be bonded, and are, for example, about 400 μm to 500 μm.
 以下の説明においては、パターン化位相差層3における第1領域3Rおよび第2領域3Lの延在方向を、パターン化位相差層3の「長手方向」、第1領域3Rおよび第2領域3Lの配列方向を、パターン化位相差層3の「幅方向」と称することがある。すなわち、上記の「長手方向」は、本発明における「延在方向」に対応し、「幅方向」は、本発明における「交差する方向」に対応する。 In the following description, the extending directions of the first region 3R and the second region 3L in the patterned retardation layer 3 are defined as the “longitudinal direction” of the patterned retardation layer 3, the first region 3R, and the second region 3L. The arrangement direction may be referred to as the “width direction” of the patterned retardation layer 3. That is, the above “longitudinal direction” corresponds to the “extending direction” in the present invention, and the “width direction” corresponds to the “crossing direction” in the present invention.
 表示装置100においては、パターン化位相差層3は、液晶パネルPの表示領域P4と平面的に重ねたとき、表示領域P4との重なり部分からはみ出る「余剰領域」を有するように、平面視で表示領域P4よりも大きく形成されている。第1領域3Rおよび第2領域3Lは、表示領域P4と重なる部分のみならず、余剰領域にまで設けられている。ここで、本発明において述べる「パターン化位相差層(位相差層)3と液晶パネル(光学表示部品)Pの表示領域P4とが平面的に重なる」とは、例えば、図2に示すように、パターン化位相差層3と液晶パネルPとの間に、さらに別の層(偏光子層2)が介在される場合も含むものである。 In the display device 100, the patterned retardation layer 3 has a “surplus region” that protrudes from the overlapping portion with the display region P 4 when viewed in a plan view when the patterned retardation layer 3 is planarly overlapped with the display region P 4 of the liquid crystal panel P. It is formed larger than the display area P4. The first region 3R and the second region 3L are provided not only in a portion overlapping the display region P4 but also in a surplus region. Here, “the patterned retardation layer (retardation layer) 3 and the display area P4 of the liquid crystal panel (optical display component) P overlap in a plane” described in the present invention means, for example, as shown in FIG. In addition, a case where another layer (polarizer layer 2) is interposed between the patterned retardation layer 3 and the liquid crystal panel P is also included.
 図2に戻って、偏光フィルムF11および光学部材1は、偏光フィルムF11と、光学部材1の偏光子層2とがクロスニコル配置となるように液晶パネルPに貼合される。 Referring back to FIG. 2, the polarizing film F11 and the optical member 1 are bonded to the liquid crystal panel P so that the polarizing film F11 and the polarizer layer 2 of the optical member 1 are in a crossed Nicols arrangement.
 光学部材1のパターン化位相差層3側の表面には保護フィルムPfが貼合されている。保護フィルムPfは、光学部材1の表面を保護するものであり、光学部材1に対して剥離自在に設けられている。 A protective film Pf is bonded to the surface of the optical member 1 on the patterned retardation layer 3 side. The protective film Pf protects the surface of the optical member 1 and is provided to be peelable from the optical member 1.
 保護フィルムPfは、透明樹脂フィルムに粘着・剥離性の樹脂層又は付着性の樹脂層を形成して、弱い粘着性を付与したものが用いられる。透明樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフトレート、ポリエチレン、及びポリプロピレンのような熱可塑性樹脂の押出フィルム、それらを組み合わせた共押出フィルム、それらを一軸又は二軸に延伸したフィルムなどを挙げることができる。透明樹脂フィルムとしては、上記の中でも、透明性及び均質性に優れ、廉価であるポリエチレンテレフタレート又はポリエチレンの一軸又は二軸延伸フィルムを用いることが好ましい。 As the protective film Pf, a transparent resin film formed by forming an adhesive / peelable resin layer or an adhesive resin layer and imparting weak adhesiveness is used. Examples of the transparent resin film include extruded films of thermoplastic resins such as polyethylene terephthalate, polyethylene naphtholate, polyethylene, and polypropylene, co-extruded films combining them, and films obtained by stretching them uniaxially or biaxially. be able to. Among these, as the transparent resin film, it is preferable to use polyethylene terephthalate or polyethylene uniaxially or biaxially stretched film which is excellent in transparency and homogeneity and is inexpensive.
 保護フィルムPfは、成形時における溶融樹脂の流動方向や延伸方向に樹脂が配向し、複屈折性を有することが多い。このような保護フィルムPfの複屈折性は、面内において一様ではない。そのため、保護フィルムPfで表面が保護された光学部材1を液晶パネルPに貼合する場合には、保護フィルムPfの光学特性に起因して、光学部材1の光学検出が困難となることがある。 The protective film Pf is often birefringent because the resin is oriented in the flow direction or the stretching direction of the molten resin during molding. The birefringence of such a protective film Pf is not uniform in the plane. Therefore, when the optical member 1 whose surface is protected by the protective film Pf is bonded to the liquid crystal panel P, optical detection of the optical member 1 may be difficult due to the optical characteristics of the protective film Pf. .
 偏光フィルムF11および光学部材1が貼合された液晶パネルPは、不図示の駆動回路やバックライトユニットなどがさらに組み込まれることによって、表示装置100となる。 The liquid crystal panel P to which the polarizing film F11 and the optical member 1 are bonded becomes the display device 100 by further incorporating a drive circuit, a backlight unit, and the like (not shown).
 液晶パネルPの駆動方式については、例えば、TN(Twisted Nematic)、STN(SuperTwisted Nematic)、VA(Vertical Alignment)、IPS(In-Plane Switching)、OCB(Optically Compensated Bend)など、この分野で知られている各種モードを採用することができる。これらの中でも、IPS方式の液晶パネルPを好適に用いることができる。
 本実施形態の光学表示デバイスの製造方法で製造する表示装置100は、以上のような構成となっている。
The driving method of the liquid crystal panel P is known in this field such as TN (Twisted Nematic), STN (Super Twisted Nematic), VA (Vertical Alignment), IPS (In-Plane Switching), OCB (Optically Compensated Bend), and the like. Various modes can be adopted. Among these, the IPS liquid crystal panel P can be preferably used.
The display device 100 manufactured by the method for manufacturing an optical display device according to the present embodiment has the above-described configuration.
<光学表示デバイスの製造方法>
 図4~図11Aおよび図11Bは、本実施形態の光学表示デバイスの製造方法の説明図である。本実施形態の光学表示デバイスの製造方法においては、液晶パネルPの貼合基準と光学部材1の貼合基準との相対位置に基づいて、液晶パネルPと光学部材1とを貼合する。
<Method for manufacturing optical display device>
4 to 11A and 11B are explanatory diagrams of the method for manufacturing the optical display device of the present embodiment. In the manufacturing method of the optical display device of this embodiment, the liquid crystal panel P and the optical member 1 are bonded based on the relative positions of the bonding reference of the liquid crystal panel P and the bonding reference of the optical member 1.
(表示領域P4の中心の画素列の検出)
 液晶パネルPの貼合基準としては、表示領域P4の中心の画素列を用いる。
 例えば、図4に示すように、複数の撮像装置(不図示)を用いて、液晶パネルPの角部の周辺に設定された撮像領域PAを撮像する。撮像した画像には、アライメントマークAmが含まれる。撮像した画像の画像データは、演算装置に入力され、アライメントマークAmを強調する画像処理が適宜施される。当該画像データに基づいて、アライメントマークAmの座標が検出される。
(Detection of the pixel row at the center of the display area P4)
As a bonding standard for the liquid crystal panel P, the pixel row at the center of the display area P4 is used.
For example, as shown in FIG. 4, an imaging area PA set around the corner of the liquid crystal panel P is imaged using a plurality of imaging devices (not shown). The captured image includes an alignment mark Am. Image data of the captured image is input to the arithmetic device, and image processing for emphasizing the alignment mark Am is appropriately performed. Based on the image data, the coordinates of the alignment mark Am are detected.
 その後、検出されたアライメントマークAmの座標同士を結ぶ線分から、4つのアライメントマークAmの中心位置PC1や、液晶パネルPの幅方向において対向する一対のアライメントマークAmの中心位置PC2,PC3が算出される。これらの位置に基づいて、表示領域P4の中心の画素列の位置を検出する。 Thereafter, the center position PC1 of the four alignment marks Am and the center positions PC2 and PC3 of the pair of alignment marks Am facing in the width direction of the liquid crystal panel P are calculated from the line segment connecting the coordinates of the detected alignment marks Am. The Based on these positions, the position of the pixel row at the center of the display area P4 is detected.
 なお、液晶パネルPの外形形状に対する表示領域P4の設定位置によっては、アライメントマークAmの座標から求めた中心位置PC1や、中心位置PC2,PC3が、表示領域P4の中心位置等とはならないことがある。その場合、液晶パネルPの設計値に基づいて、真の中心位置と、算出された中心位置PC1や、中心位置PC2,PC3とのズレ量を予めオフセット量として設定しておき、上記の算出値を適宜オフセットして用いればよい。 Depending on the set position of the display area P4 with respect to the outer shape of the liquid crystal panel P, the center position PC1 or the center positions PC2 and PC3 obtained from the coordinates of the alignment mark Am may not be the center position of the display area P4. is there. In that case, based on the design value of the liquid crystal panel P, a deviation amount between the true center position and the calculated center position PC1 or the center positions PC2 and PC3 is set as an offset amount in advance, and the above calculated value May be used with an appropriate offset.
(光学部材1の中心位置の検出)
 光学部材1の基準としては、パターン化位相差層3の幅方向の中央に位置する第1領域を用いる。
(Detection of the center position of the optical member 1)
As a reference for the optical member 1, a first region located at the center in the width direction of the patterned retardation layer 3 is used.
 本発明者らの検討により、光学部材1については、液晶パネルPのように幾何学的に算出された位置を中心位置として採用すると、表示品質が低下するおそれがあることが分かっている。その理由は以下の通りである。 According to the study by the present inventors, it is known that the display quality of the optical member 1 may be deteriorated when a geometrically calculated position such as the liquid crystal panel P is adopted as the center position. The reason is as follows.
 まず、FPR方式の3D液晶表示装置においては、パターン化位相差層3の第1領域および第2領域と、液晶パネルの画素列とが、1対1で対応した状態で光学部材と液晶パネルとを貼合させる必要がある。これは、1つの画素列に対し、第1領域と第2領域とが重なって配置されると、クロストークの原因となるためである。 First, in the FPR type 3D liquid crystal display device, the optical member and the liquid crystal panel are arranged in a state where the first region and the second region of the patterned retardation layer 3 correspond to the pixel column of the liquid crystal panel in a one-to-one correspondence. It is necessary to paste. This is because if the first region and the second region are arranged so as to overlap one pixel column, it causes crosstalk.
 一方、光学部材1は、光学部材1の長手方向の辺と第1領域や第2領域の延在方向とが平行にならないことがある。 On the other hand, in the optical member 1, the longitudinal side of the optical member 1 and the extending direction of the first region and the second region may not be parallel.
 例えば、光学部材1は、ロールトゥロール方式で大量に製造することがある。具体的には、帯状のフィルム原反の表面に光配向性材料の層を形成し、このフィルム原反をロール搬送しながら、光配向性材料の層に、搬送方向に交差する方向に交互に配列した2種の偏光光を露光することで、2種の偏光光に対応する2種の偏光パターン(第1領域、第2領域)を形成して光学部材の原反とする。そして、この原反を適宜切削することで、光学部材を製造する。 For example, the optical member 1 may be manufactured in large quantities by a roll-to-roll method. Specifically, a layer of photo-alignable material is formed on the surface of a strip-shaped film original fabric, and the film original fabric is rolled and conveyed alternately in a direction crossing the conveyance direction. By exposing the two types of polarized light that are arranged, two types of polarization patterns (first region and second region) corresponding to the two types of polarized light are formed and used as the raw material of the optical member. And an optical member is manufactured by cutting this original fabric suitably.
 しかし、このようなロールトゥロール方式では、ロール搬送中にフィルム原反が蛇行することがある。そのため、蛇行するフィルム原反に対して露光して形成される第1領域や第2領域も、湾曲して形成されることがある。この場合、光学部材1の長手方向の辺と第1領域や第2領域の延在方向とは、平行にならない。 However, in such a roll-to-roll system, the film original may meander during roll conveyance. Therefore, the first region and the second region formed by exposing the meandering film original may be formed to be curved. In this case, the side in the longitudinal direction of the optical member 1 and the extending direction of the first region and the second region are not parallel.
 また、液晶パネルPの形状に応じて施される切削加工の精度に起因して、光学部材1の長手方向の辺と第1領域や第2領域の延在方向とが平行にならないことがある。 Moreover, due to the accuracy of the cutting process performed according to the shape of the liquid crystal panel P, the side in the longitudinal direction of the optical member 1 may not be parallel to the extending direction of the first region and the second region. .
 これらの理由から、光学部材1の形状から幾何学的に算出された位置において、必ずしも、パターン化位相差層3の第1領域および第2領域が、画素列に1対1で対応して重なるとは限らないこととなる。 For these reasons, at the position calculated geometrically from the shape of the optical member 1, the first region and the second region of the patterned retardation layer 3 do not necessarily overlap with the pixel column in a one-to-one correspondence. This is not necessarily the case.
 上記理由から、光学部材1を液晶パネルPに貼合する場合には、光学部材1の中心位置におけるパターン化位相差層3の偏光パターンを検出し、この偏光パターンと液晶パネルPの画素列とを対応させて貼合する技術が必要となる。 For the above reason, when the optical member 1 is bonded to the liquid crystal panel P, the polarization pattern of the patterned retardation layer 3 at the center position of the optical member 1 is detected, and this polarization pattern and the pixel column of the liquid crystal panel P are detected. The technique of pasting in correspondence is necessary.
 光学部材1の中心位置におけるパターン化位相差層3の第1領域および第2領域は、第1領域および第2領域の光学特性の違いを利用して、偏光光を透過させながら撮像し、撮像した画像を用いて光学的に検出する。 The first region and the second region of the patterned retardation layer 3 at the center position of the optical member 1 are imaged while transmitting polarized light using the difference in optical characteristics between the first region and the second region, The detected image is optically detected.
 しかし、光学部材1は偏光子層を有することから、光透過率が低く、撮像した画像が暗くなりやすいこと、および光学部材1の表面に付された保護フィルムPfの複屈折性が面内で一様ではないことに起因して、撮像画像の解析が困難となっていた。 However, since the optical member 1 has a polarizer layer, the light transmittance is low, the captured image tends to be dark, and the birefringence of the protective film Pf attached to the surface of the optical member 1 is in-plane. Due to the non-uniformity, it has been difficult to analyze the captured image.
 そこで、本実施形態においては、光学部材1の幅方向の一端側および他端側において、第1領域と第2領域の境界をそれぞれ検出し(検出工程)、一端側および他端側において検出された境界の位置に基づいて、パターン化位相差層3の幅方向の中央に位置する第1領域を決定する(決定工程)。
 以下、順に説明する。
Therefore, in this embodiment, the boundary between the first region and the second region is detected on one end side and the other end side in the width direction of the optical member 1 (detection step), and detected on one end side and the other end side. Based on the position of the boundary, the first region located at the center in the width direction of the patterned retardation layer 3 is determined (determination step).
Hereinafter, it demonstrates in order.
(検出工程)
 図5に示すように、複数の撮像装置(不図示)を用い、光学部材1の長手方向の両端部(符号13,14で示す)および中央部において、光学部材1の幅方向の一端11、他端12、および中央にそれぞれ設定された撮像領域PA1~PA9を撮像する。各撮像領域は、光学部材1の長手方向の端部13に設定された撮像領域PA1~PA3、光学部材1の長手方向の端部14に設定された撮像領域PA4~PA6、光学部材1の長手方向の中央に設定された撮像領域PA7~PA9が、それぞれ組みとなっている。
(Detection process)
As shown in FIG. 5, using a plurality of imaging devices (not shown), one end 11 in the width direction of the optical member 1 at both longitudinal ends (indicated by reference numerals 13 and 14) and the central portion of the optical member 1; The other end 12 and the imaging areas PA1 to PA9 set in the center are imaged. Each imaging area includes imaging areas PA1 to PA3 set at the end 13 in the longitudinal direction of the optical member 1, imaging areas PA4 to PA6 set at the end 14 in the longitudinal direction of the optical member 1, and the longitudinal direction of the optical member 1. The imaging areas PA7 to PA9 set in the center of the direction are each set.
 図6に示すように、光学部材1の長手方向の端部13においては、まず撮像領域PA1で撮像される画像に基づいて、撮像領域PA1に含まれる第1領域3Raと第2領域3Laとの境界(基準位置)Baを検出する。第1領域3Raが、光学部材1の一端11から何番目の第1領域であるか、第2領域3Laが、光学部材1の一端11から何番目の第2領域であるかは、撮像領域PA1の設定位置および光学部材1の設計に基づいて既知である。 As shown in FIG. 6, at the end portion 13 in the longitudinal direction of the optical member 1, first, based on the image captured in the imaging area PA <b> 1, the first area 3 </ b> Ra and the second area 3 </ b> La included in the imaging area PA <b> 1. A boundary (reference position) Ba is detected. Whether the first region 3Ra is the first region from the one end 11 of the optical member 1 or what second region from the one end 11 of the optical member 1 is the second region 3La is the imaging region PA1. Based on the set position and the design of the optical member 1.
 また、撮像領域PA2で撮像される画像に基づいて、撮像領域PA2に含まれる第1領域3Rbと第2領域3Lbとの境界(基準位置)Bbを検出する。第1領域3Rbが、光学部材1の他端12から何番目の第1領域であるか、第2領域3Lbが、光学部材1の他端12から何番目の第2領域であるかは、撮像領域PA2の設定位置および光学部材1の設計に基づいて既知である。 Further, based on the image captured in the imaging area PA2, a boundary (reference position) Bb between the first area 3Rb and the second area 3Lb included in the imaging area PA2 is detected. The number of the first region from the other end 12 of the optical member 1 is the first region 3Rb, and the number of the second region from the other end 12 of the optical member 1 is the second region 3Lb. This is known based on the setting position of the region PA2 and the design of the optical member 1.
 境界Baは、例えば、撮像した画像を二値化し、白黒の境界部分をスムージングすることにより検出することができる。これは、境界Bbについても同様である。 The boundary Ba can be detected, for example, by binarizing the captured image and smoothing the black and white boundary portion. The same applies to the boundary Bb.
 このように、境界Ba,Bbを検出し、検出された境界Ba,Bbに基づいて以後の位置検出を行うことにより、光学部材1の外形形状に関わらず、パターン化位相差層3の偏光パターンの位置を正確に検出することが可能となる。 In this way, by detecting the boundaries Ba and Bb and performing subsequent position detection based on the detected boundaries Ba and Bb, the polarization pattern of the patterned retardation layer 3 regardless of the outer shape of the optical member 1. It is possible to accurately detect the position of.
(決定工程:中央の第1領域の決定)
 次いで、一端11の側および他端12の側において検出された境界Ba,Bbの位置に基づいて、パターン化位相差層3の幅方向における中央の位置を算出する。図6では、算出された中央の位置を符号Bxで示している。中央の位置Bxは、光学部材1の幅方向の中央に設定された撮像領域PA3に含まれる。
(Decision step: determination of the first region in the center)
Next, the center position in the width direction of the patterned retardation layer 3 is calculated based on the positions of the boundaries Ba and Bb detected on the one end 11 side and the other end 12 side. In FIG. 6, the calculated center position is indicated by a symbol Bx. The center position Bx is included in the imaging area PA3 set at the center in the width direction of the optical member 1.
 ここで、「パターン化位相差層3の幅方向における中央」とは、パターン化位相差層3において液晶パネルPの表示領域P4と平面的に重なる部分における幅方向の中央のことである。以下の説明では、パターン化位相差層3において、液晶パネルPの表示領域P4と平面的に重なる部分のことを「有効領域」と称する。 Here, “the center in the width direction of the patterned retardation layer 3” refers to the center in the width direction in the portion of the patterned retardation layer 3 that overlaps the display area P4 of the liquid crystal panel P in a plane. In the following description, the portion of the patterned retardation layer 3 that overlaps the display region P4 of the liquid crystal panel P in a plane is referred to as an “effective region”.
 例えば、光学部材1において、境界Baから有効領域の一端11の側の端部までの余剰領域に配置された第1領域および第2領域の数と、境界Bbから有効領域の他端12の側の端部までの余剰領域に配置された第1領域および第2領域の数と、が異なる場合には、これら余剰領域に配置された第1領域および第2領域の数を考慮して、中央の位置Bxを算出する。 For example, in the optical member 1, the number of first regions and second regions disposed in the surplus region from the boundary Ba to the end on the one end 11 side of the effective region, and the side of the other end 12 of the effective region from the boundary Bb. If the number of the first area and the second area arranged in the surplus area up to the end of the area is different, the number of the first area and the second area arranged in the surplus area is taken into consideration. The position Bx is calculated.
 次いで、撮像領域PA3で撮像される画像に基づいて、中央の位置Bxに重なって配置された第1領域3Rcを検出し、有効領域の中央の第1領域3Rcを決定する。 Next, based on the image picked up in the image pickup area PA3, the first area 3Rc arranged to overlap the central position Bx is detected, and the first area 3Rc in the center of the effective area is determined.
 撮像した画像では、第1領域と第2領域の色味や明るさが異なって見えるため、第1領域と第2領域とを区別することが可能である。しかし、保護フィルムの複屈折性に起因して、ある領域では、相対的に第1領域よりも第2領域の方が明るく見えていたのに対し、他の領域では、相対的に第2領域よりも第1領域の方が明るく見えるという現象が起こり、撮像画像に基づいた検出時に精度低下が生じるおそれがある。 In the captured image, the color and brightness of the first area and the second area appear to be different, so that the first area and the second area can be distinguished. However, due to the birefringence of the protective film, the second region appeared relatively brighter than the first region in one region, while the second region was relatively brighter in the other regions. There is a possibility that the first region appears brighter than the first region, and the accuracy may be reduced during detection based on the captured image.
 しかし、上述のように、境界Ba,Bbから有効領域の中心位置を予測し、予測位置に配置されている第1領域を有効領域の中央の第1領域であると決定することで、撮像画像の見た目に惑わされず、有効領域の中央の第1領域を決定することができる。 However, as described above, the center position of the effective area is predicted from the boundaries Ba and Bb, and the first area arranged at the predicted position is determined to be the first area in the center of the effective area, thereby capturing the captured image. The first area at the center of the effective area can be determined without being confused by the appearance of
(決定工程:中央線の検出)
 次いで、撮像領域PA3で撮像される画像に基づいて、第1領域3Rcの幅方向の中心線を近似して求める。図7A,図7B,および図9は、中心線を求める方法について示す説明図であり、図8は、中心線を求める方法について示すフローチャートである。以下の説明においては、適宜図8に示すフローチャートを参照しながら、該当する操作のステップを示す。
(Decision process: detection of the center line)
Next, an approximate center line in the width direction of the first region 3Rc is obtained based on the image captured in the imaging region PA3. FIG. 7A, FIG. 7B, and FIG. 9 are explanatory diagrams showing a method for obtaining a center line, and FIG. 8 is a flowchart showing a method for obtaining a center line. In the following description, the corresponding operation steps will be described with reference to the flowchart shown in FIG.
 まず、図7Aに示すように、撮像領域PA3で撮像された画像に基づいて、第1領域3Rcの幅を複数の測定ポイントで測定する(ステップS1)。例えば、撮像した画像をグレースケールに変換し、第1領域3Rcの幅方向の境界Bc,Bdの間の距離Wを複数箇所で測定する。 First, as shown in FIG. 7A, the width of the first area 3Rc is measured at a plurality of measurement points based on the image captured in the imaging area PA3 (step S1). For example, the captured image is converted to grayscale, and the distance W between the boundaries Bc and Bd in the width direction of the first region 3Rc is measured at a plurality of locations.
 なお、図7Aでは、便宜上、境界Bc,Bdを直線で示しているが、撮像画像においては境界Bc,Bdは直線とはならない。そのため、複数箇所で測定した距離Wは、それぞれ異なる値となる。また、画像によっては境界Bc,Bdが不明確な箇所が存在することもあり、そのような箇所では距離Wを測定することはできない。 In FIG. 7A, the boundaries Bc and Bd are shown as straight lines for convenience, but the boundaries Bc and Bd are not straight lines in the captured image. Therefore, the distances W measured at a plurality of locations have different values. Further, depending on the image, there may be a part where the boundaries Bc and Bd are unclear, and the distance W cannot be measured at such a part.
 そのため、有効に測定できた測定ポイントの数について閾値(第1の閾値)を設けておき、有効に測定できた測定ポイントの数と閾値とを比較する(ステップS2)。 Therefore, a threshold (first threshold) is provided for the number of measurement points that can be measured effectively, and the number of measurement points that can be measured effectively and the threshold are compared (step S2).
 有効に測定できた測定ポイントが第1の閾値以上である場合、有効に測定できた測定ポイントにおいて、幅の中心位置Dの座標を算出し(ステップS3)、複数の中心位置Dの座標から、第1領域3Rcの幅方向の中心線C1を近似する(ステップS4)。近似としては、通常知られた統計学的手法を用いることができ、例えば、最小二乗法を用いた回帰直線(近似直線)を求める近似方法を挙げることができる。なお、第1の閾値として設定される、有効に測定できた測定ポイント数の下限については、パターン化位相差層3の仕様に基づいて適宜設定することができる。 When the measurement points that can be effectively measured are equal to or greater than the first threshold value, the coordinates of the center position D of the width are calculated at the measurement points that can be effectively measured (step S3), and the coordinates of the plurality of center positions D are The center line C1 in the width direction of the first region 3Rc is approximated (step S4). As the approximation, a generally known statistical method can be used. For example, an approximation method for obtaining a regression line (approximate line) using the least square method can be given. The lower limit of the number of measurement points that can be effectively measured, which is set as the first threshold value, can be set as appropriate based on the specifications of the patterned retardation layer 3.
 図7Bは、近似した中心線C1を示すグラフであり、中心線C1をY=0として示した図である。 FIG. 7B is a graph showing the approximate center line C1, and the center line C1 is shown as Y = 0.
 ここで、図7Bにおいて、+y側にプロットされた点D1や、-y側にプロットされた点D2は、他の点Dと比べて中心線C1からの離間距離が大きく、中心線C1の算出結果に大きな影響を与えていると考えられる。このような場合、予め設定した閾値(第2の閾値)に基づいて判断し(ステップS5)、第2の閾値よりも離間距離が大きい測定スポット(点D1および点D2)の測定データを削除し(ステップS7)、点D1および点D2を除外した残りの点を用いて再度中心線を近似することとしてもよい。その後、中心線C1から大きく離れる測定ポイントを除外して残った測定ポイントの数について、上記第1の閾値と比較して(ステップS2)その後の処理の判断を行う。ここで、第2の閾値として設定される、中心位置間の離間距離の上限については、上記の第1の閾値の場合と同様、パターン化位相差層3の仕様に基づいて適宜設定することができる。 Here, in FIG. 7B, the point D1 plotted on the + y side and the point D2 plotted on the −y side have a larger separation distance from the center line C1 than the other points D, and the calculation of the center line C1 is performed. This is thought to have a major impact on the results. In such a case, a determination is made based on a preset threshold value (second threshold value) (step S5), and measurement data of measurement spots (point D1 and point D2) having a larger separation distance than the second threshold value are deleted. (Step S7) The center line may be approximated again using the remaining points excluding the points D1 and D2. Thereafter, the number of measurement points remaining after excluding measurement points that are far away from the center line C1 is compared with the first threshold value (step S2), and subsequent processing is determined. Here, the upper limit of the separation distance between the center positions, which is set as the second threshold value, can be set as appropriate based on the specification of the patterned retardation layer 3 as in the case of the first threshold value. it can.
 一方、中心線C1から大きく離れる測定ポイントが無い場合、中心線C1に対する中心位置Dの離間距離について、予め設定した閾値(第3の閾値)に基づいて、中心位置Dのバラツキを評価する(ステップS6)。第3の閾値は第2の閾値よりも小さい値である。図7Bでは、第3の閾値を符号Mで示している。中心位置Dのバラツキが閾値で規定した範囲内である場合、求めた中心線C1を第1領域3Rcの中心線として決定する。また、第3の閾値として設定される、中心位置間の離間距離の上限についても、上記の第1,2の閾値の場合と同様、パターン化位相差層3の仕様に基づいて適宜設定することができる。 On the other hand, when there is no measurement point that is far away from the center line C1, the variation in the center position D is evaluated based on a preset threshold value (third threshold value) with respect to the separation distance of the center position D from the center line C1 (step S1). S6). The third threshold value is smaller than the second threshold value. In FIG. 7B, the third threshold value is indicated by a symbol M. When the variation in the center position D is within the range defined by the threshold value, the obtained center line C1 is determined as the center line of the first region 3Rc. Also, the upper limit of the separation distance between the center positions, which is set as the third threshold value, should be appropriately set based on the specification of the patterned retardation layer 3 as in the case of the first and second threshold values. Can do.
 ステップS2の判断で、有効に測定できた測定ポイントが閾値未満である場合、およびステップS6の判断で、中心線C1との離間距離が第3の閾値よりも大きい中心位置Dがある場合には、それぞれ、第1領域3Rcの延在方向に沿った異なる位置に撮像領域を変更して撮像し(ステップS8)、得られた画像に基づいて幅を複数箇所で再測定する(ステップS1)。 When the measurement point that can be measured effectively is less than the threshold value in the determination in step S2, and in the determination in step S6, there is a center position D that is separated from the center line C1 by a distance greater than the third threshold value. Then, the imaging region is changed to a different position along the extending direction of the first region 3Rc, and imaging is performed (step S8), and the width is measured again at a plurality of locations based on the obtained image (step S1).
 以上のような処理を、光学部材1の長手方向の端部13に設定された撮像領域PA1~PA3、光学部材1の長手方向の端部14に設定された撮像領域PA4~PA6、光学部材1の長手方向の中央に設定された撮像領域PA7~PA9について、それぞれ行う。 The processing as described above is performed on the imaging regions PA1 to PA3 set at the end portion 13 in the longitudinal direction of the optical member 1, the imaging regions PA4 to PA6 set at the end portion 14 in the longitudinal direction of the optical member 1, and the optical member 1. This is performed for each of the imaging areas PA7 to PA9 set at the center in the longitudinal direction.
 なお、撮像領域を変更する場合には、図9に示すように、光学部材1を長手方向に3つの領域AR1,AR2,AR3に区分し、それぞれの領域からはみ出ることが無いように撮像領域を変更するとよい。その際、長手方向の両端における撮像領域PA3,PA6については、それぞれ撮像領域PA31,PA61のように光学部材1の中央側に撮像領域を変更するとよい。長手方向の中央における撮像領域PA9については、例えば、撮像領域PA91に変更し、さらに変更する必要が生じた場合には撮像領域PA92に変更するというように、撮像領域PA9を中心として長手方向の両側に撮像領域を変更するとよい。 When changing the imaging area, as shown in FIG. 9, the optical member 1 is divided into three areas AR1, AR2, AR3 in the longitudinal direction, and the imaging area is set so as not to protrude from each area. It is good to change. At that time, the imaging areas PA3 and PA6 at both ends in the longitudinal direction may be changed to the center side of the optical member 1 like the imaging areas PA31 and PA61, respectively. The imaging area PA9 at the center in the longitudinal direction is changed to the imaging area PA91, for example, and when it needs to be changed, the imaging area PA9 is changed to the imaging area PA92. It is better to change the imaging area.
 また、撮像領域を変更する場合には、撮像領域PA3と撮像領域PA31、撮像領域PA6と撮像領域PA61のように、変更前と変更後との撮像領域が重ならないこととしてもよく、撮像領域PA9と撮像領域PA91,PA92のように、変更前と変更後との撮像領域が一部重なってもよい。 When the imaging area is changed, the imaging areas before and after the change may not overlap as in the imaging area PA3 and the imaging area PA31, and the imaging area PA6 and the imaging area PA61. As in the imaging areas PA91 and PA92, the imaging areas before and after the change may partially overlap.
(貼合工程)
 次いで、図10に示すように、液晶パネルPと光学部材1とを貼合する。その際、液晶パネルPの幅方向の中央に位置する画素列と、決定された第1領域3Rc(図7Aを参照)の中心線と、の相対位置に基づいて、両者を貼合する。図10においては、xyz座標系を設定し、液晶パネルPの長手方向をx方向、液晶パネルPの幅方向をy方向、xy平面に直交する方向をz方向として示している。
(Bonding process)
Then, as shown in FIG. 10, the liquid crystal panel P and the optical member 1 are bonded. In that case, both are bonded based on the relative position of the pixel row located at the center in the width direction of the liquid crystal panel P and the determined center line of the first region 3Rc (see FIG. 7A). In FIG. 10, an xyz coordinate system is set, the longitudinal direction of the liquid crystal panel P is indicated as the x direction, the width direction of the liquid crystal panel P is indicated as the y direction, and the direction orthogonal to the xy plane is indicated as the z direction.
 具体的には、図11Aに示すように、光学部材1の長手方向の端部における中心線C1,C2と、長手方向の中央部における中心線C3と、に基づいて、光学部材1と液晶パネルとの貼合面内の相対方位θを制御して、光学部材1の姿勢を調整する。その際、角度調整の回転軸はz軸と同方向の軸であり、回転中心は、例えば、中心線C3と重なる位置である。なお、角度調整に用いる長手方向の端部における中心線は、中心線C1,C2のうち、いずれか一方であってもよい。 Specifically, as shown in FIG. 11A, the optical member 1 and the liquid crystal panel are based on the center lines C1 and C2 at the end in the longitudinal direction of the optical member 1 and the center line C3 at the center in the longitudinal direction. The orientation of the optical member 1 is adjusted by controlling the relative orientation θ within the bonding surface. At this time, the rotation axis for angle adjustment is an axis in the same direction as the z axis, and the rotation center is, for example, a position overlapping the center line C3. The center line at the end in the longitudinal direction used for angle adjustment may be either one of the center lines C1 and C2.
 また、図11Bに示すように、長手方向の中央部における中心線C3に基づいて、光学部材1と液晶パネルとの幅方向の相対位置を制御して、光学部材1の姿勢を調整する。図11Bでは、光学部材1をy方向に移動させることとして示している。 Also, as shown in FIG. 11B, the relative position of the optical member 1 and the liquid crystal panel in the width direction is controlled based on the center line C3 in the central portion in the longitudinal direction to adjust the posture of the optical member 1. FIG. 11B shows that the optical member 1 is moved in the y direction.
 表示装置の使用者は、表示領域の中心近傍を最も注意深く観察するため、表示領域の中心においてクロストークが発生すると、使用者が気付きやすい。これに対し、本実施形態のように、光学部材1の位置調整を光学部材1の中心線C3を基準として行い、液晶パネルPの幅方向の中央に位置する画素列と、中心線C3との相対位置に基づいて、両者を貼合すると、表示領域の中心において最も精度良く光学部材1と液晶パネルとが貼合されることとなる。そのため、本実施形態の製造方法によって製造された表示装置は、表示領域の中心においてクロストークが発生しにくく、高品質な画像表示が可能となる。 Since the user of the display device observes the vicinity of the center of the display area most carefully, it is easy for the user to notice when crosstalk occurs at the center of the display area. On the other hand, as in the present embodiment, the position adjustment of the optical member 1 is performed with reference to the center line C3 of the optical member 1, and the pixel line positioned at the center in the width direction of the liquid crystal panel P and the center line C3 When both are bonded based on the relative position, the optical member 1 and the liquid crystal panel are bonded with the highest accuracy in the center of the display area. Therefore, the display device manufactured by the manufacturing method of the present embodiment is less likely to cause crosstalk at the center of the display area, and can display a high-quality image.
 すなわち、以上のような構成の光学表示デバイスの製造方法によれば、光学部材と液晶パネルとを高い位置精度で貼合し、高品質な画像表示が可能となる。 That is, according to the manufacturing method of the optical display device having the above configuration, the optical member and the liquid crystal panel are bonded with high positional accuracy, and high-quality image display is possible.
 なお、本実施形態においては、右眼用画像が透過する偏光パターンを第1領域3Rとしたが、左眼用画像が透過する偏光パターンを第1領域として設定して位置検出等を行っても構わない。
また、本実施形態においては、表示装置(光学表示デバイス)100を製造するための製造装置については不図示としているが、この製造装置についても何ら限定されるものではない。例えば、表示装置100の製造装置としては、各部材を工程上で搬送しながら、これら各部材同士を組み付けるための組立搬送手段や、この組立搬送手段の動作を、図8のフローチャートに示すような動作で制御する演算制御部などを備えた構成のものを採用することができる。
In the present embodiment, the polarization pattern that transmits the right-eye image is the first region 3R. However, the position detection or the like may be performed by setting the polarization pattern that transmits the left-eye image as the first region. I do not care.
In the present embodiment, a manufacturing apparatus for manufacturing the display device (optical display device) 100 is not illustrated, but the manufacturing apparatus is not limited in any way. For example, as a manufacturing apparatus of the display device 100, as shown in the flowchart of FIG. 8, the assembly conveyance means for assembling each member and the operation of the assembly conveyance means while conveying each member in the process. The thing of the structure provided with the arithmetic control part etc. which are controlled by operation | movement can be employ | adopted.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 1…光学部材、3…パターン化位相差層(位相差層)、3L,3La,3Lb…第2領域、3R,3Ra,3Rb,3Rc…第1領域、11…一端、12…他端、13,14…端部、100…表示装置(光学表示デバイス)、Ba,Bb…境界、Bx…中央の位置、C1~C3…中心線、D…中心位置、L…画素列、P…液晶パネル(光学表示部品)、P4…表示領域 DESCRIPTION OF SYMBOLS 1 ... Optical member, 3 ... Patterned phase difference layer (retardation layer), 3L, 3La, 3Lb ... 2nd area | region, 3R, 3Ra, 3Rb, 3Rc ... 1st area | region, 11 ... one end, 12 ... other end, 13 , 14 ... end, 100 ... display device (optical display device), Ba, Bb ... boundary, Bx ... center position, C1 to C3 ... center line, D ... center position, L ... pixel row, P ... liquid crystal panel ( Optical display component), P4 ... display area

Claims (9)

  1.  入射する直線偏光を第1の偏光状態に変化させる複数の第1領域と、第2の偏光状態に変化させる複数の第2領域とを有し、複数の前記第1領域および複数の前記第2領域が平面視において帯状に延在して形成された位相差層を備える光学部材を、複数の画素列を有する光学表示部品に貼合する光学表示デバイスの製造方法であって、
     前記位相差層は、前記第1領域および前記第2領域が、前記第1領域および前記第2領域の延在方向と交差する方向に交互に配置されており、
     前記交差する方向の一端側および他端側において、前記位相差層と前記光学表示部品の表示領域とが平面的に重なる部分における前記交差する方向の中央の位置を算出するための基準位置をそれぞれ検出する検出工程と、
     前記一端側および前記他端側においてそれぞれ検出された前記基準位置に基づいて、前記中央の位置を算出し、前記中央の位置に配置された前記第1領域を決定する決定工程と、
     決定された前記第1領域と、前記光学表示部品の前記交差する方向の中央に位置する画素列と、の相対位置に基づいて、前記光学部材と前記光学表示部品とを貼合する貼合工程と、を有する光学表示デバイスの製造方法。
    A plurality of first regions for changing the incident linearly polarized light to the first polarization state; and a plurality of second regions for changing to the second polarization state, the plurality of the first regions and the plurality of the second regions. An optical display device manufacturing method in which an optical member including a retardation layer formed by extending a region in a band shape in a plan view is bonded to an optical display component having a plurality of pixel rows,
    The retardation layer is alternately arranged in a direction in which the first region and the second region intersect the extending direction of the first region and the second region,
    At one end side and the other end side in the intersecting direction, a reference position for calculating a center position in the intersecting direction in a portion where the retardation layer and the display area of the optical display component overlap in a plane is respectively provided. A detection process to detect;
    A determination step of calculating the center position based on the reference positions detected on the one end side and the other end side, and determining the first region disposed at the center position;
    A bonding step of bonding the optical member and the optical display component on the basis of the relative positions of the determined first region and the pixel column located in the center of the intersecting direction of the optical display component. And a method of manufacturing an optical display device.
  2.  前記決定工程において、決定された前記第1領域を撮像し、得られた画像に基づいて前記決定された第1領域の幅を複数箇所で測定し、測定された前記幅の中心位置の座標を検出し、前記画像における前記決定された第1領域の幅方向の中心線を複数の前記座標から近似し、
     前記貼合工程において、前記中心線と、前記交差する方向の中央に位置する画素列と、の相対位置に基づいて前記光学部材と前記光学表示部品とを貼合する請求項1に記載の光学表示デバイスの製造方法。
    In the determining step, the determined first area is imaged, the width of the determined first area is measured at a plurality of locations based on the obtained image, and the coordinates of the center position of the measured width are determined. Detecting, approximating a center line in the width direction of the determined first region in the image from a plurality of the coordinates,
    The optical according to claim 1, wherein, in the bonding step, the optical member and the optical display component are bonded based on a relative position between the center line and a pixel row positioned in the center of the intersecting direction. Display device manufacturing method.
  3.  前記決定工程において、前記幅を測定できた測定箇所の数が、第1の閾値よりも小さい場合には、前記第1領域における前記延在方向に沿った異なる位置を撮像し、得られた画像に基づいて前記幅を複数箇所で再測定する請求項2に記載の光学表示デバイスの製造方法。 In the determining step, when the number of measurement points where the width can be measured is smaller than the first threshold, images obtained by imaging different positions along the extending direction in the first region are obtained. The method for manufacturing an optical display device according to claim 2, wherein the width is remeasured at a plurality of locations based on the method.
  4.  前記決定工程において、前記幅を測定できた測定箇所のうち、前記中心線に対する前記中心位置の離間距離が第2の閾値よりも大きい測定箇所について、前記中心線を近似するための複数の前記座標から除外し、前記中心線を再度近似する請求項2または3に記載の光学表示デバイスの製造方法。 In the determination step, among the measurement points where the width can be measured, a plurality of the coordinates for approximating the center line with respect to a measurement point where the separation distance of the center position with respect to the center line is larger than a second threshold. The method for manufacturing an optical display device according to claim 2, wherein the center line is approximated again.
  5.  前記決定工程において、前記中心線に対する前記中心位置の離間距離が、第3の閾値よりも大きい場合には、前記第1領域における前記延在方向に沿った異なる位置を撮像し、得られた画像に基づいて前記幅を複数箇所で再測定する請求項2または3に記載の光学表示デバイスの製造方法。 In the determination step, when the separation distance of the center position with respect to the center line is larger than a third threshold, images obtained by imaging different positions along the extending direction in the first region are obtained. The method for manufacturing an optical display device according to claim 2, wherein the width is measured again at a plurality of locations based on the method.
  6.  前記位相差層の前記延在方向の少なくとも一方の端部および中央部において、前記検出工程と前記決定工程とを行い、
     前記貼合工程においては、前記端部および前記中央部のそれぞれにおいて算出された前記中央の位置に配置される前記第1領域と、前記光学表示部品の前記交差する方向の中央に位置する画素列と、を対応させて貼合する請求項1または2に記載の光学表示デバイスの製造方法。
    In at least one end and center of the extending direction of the retardation layer, the detection step and the determination step are performed,
    In the bonding step, the first region arranged at the center position calculated at each of the end portion and the center portion, and the pixel row located at the center of the optical display component in the intersecting direction And the manufacturing method of the optical display device of Claim 1 or 2 which makes it correspond and paste.
  7.  前記貼合工程においては、前記中央部における前記中心線と、前記交差する方向の中央であって前記中央部に位置する画素列と、の相対位置に基づいて前記光学部材と前記光学表示部品とを貼合する請求項6に記載の光学表示デバイスの製造方法。 In the bonding step, the optical member and the optical display component based on a relative position between the center line in the central portion and a pixel row located in the central portion in the intersecting direction. The manufacturing method of the optical display device of Claim 6 which bonds.
  8.  前記貼合工程においては、前記延在方向の少なくとも一方の端部における前記中心線と、前記中央部における前記中心線と、に基づいて、前記光学部材と前記光学表示部品との貼合面内の相対方位を制御して貼合する請求項7に記載の光学表示デバイスの製造方法。 In the bonding step, based on the center line in at least one end of the extending direction and the center line in the central portion, in the bonding surface of the optical member and the optical display component The manufacturing method of the optical display device of Claim 7 which controls and laminates | stacks by controlling the relative direction of.
  9.  前記貼合工程においては、前記中央部における前記中心線と、前記交差する方向の中央であって前記中央部に位置する画素列と、の相対位置に基づいて、前記光学部材と前記光学表示部品との前記幅方向の相対位置を制御する請求項7または8に記載の光学表示デバイスの製造方法。 In the bonding step, the optical member and the optical display component are based on a relative position between the center line in the central portion and a pixel row located in the central portion in the intersecting direction. The method for manufacturing an optical display device according to claim 7, wherein the relative position in the width direction is controlled.
PCT/JP2015/054104 2014-02-19 2015-02-16 Method for manufacturing optical display device WO2015125725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580008836.9A CN106030391A (en) 2014-02-19 2015-02-16 Method for manufacturing optical display device
KR1020167020906A KR20160122132A (en) 2014-02-19 2015-02-16 Method for manufacturing optical display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014029547A JP2015152899A (en) 2014-02-19 2014-02-19 Method for manufacturing optical display device
JP2014-029547 2014-02-19

Publications (1)

Publication Number Publication Date
WO2015125725A1 true WO2015125725A1 (en) 2015-08-27

Family

ID=53878228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054104 WO2015125725A1 (en) 2014-02-19 2015-02-16 Method for manufacturing optical display device

Country Status (5)

Country Link
JP (1) JP2015152899A (en)
KR (1) KR20160122132A (en)
CN (1) CN106030391A (en)
TW (1) TW201534982A (en)
WO (1) WO2015125725A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114822284B (en) * 2022-03-11 2023-09-15 武汉精立电子技术有限公司 Micro display laminating method and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111464A1 (en) * 2011-02-16 2012-08-23 日本ゼオン株式会社 Process for manufacture of liquid crystal display device
JP2013134394A (en) * 2011-12-27 2013-07-08 Fujifilm Corp Patterned retardation film, manufacturing method thereof, method of manufacturing optical laminate, 3d image display device, and mask
WO2013129256A1 (en) * 2012-02-29 2013-09-06 住友化学株式会社 Optical display device production system, and optical display device production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551482B2 (en) * 2009-04-08 2014-07-16 芝浦メカトロニクス株式会社 Substrate bonding apparatus and method for manufacturing bonded substrate
JP5462830B2 (en) 2011-03-31 2014-04-02 富士フイルム株式会社 3D image display device, manufacturing method thereof, phase difference plate, 3D image display system, and adhesive composition for 3D image display device
WO2013165013A1 (en) * 2012-05-02 2013-11-07 住友化学株式会社 System for producing and method for manufacturing optical display device
CN102902104B (en) * 2012-10-15 2015-11-25 京东方科技集团股份有限公司 The alignment method of polarizer and display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111464A1 (en) * 2011-02-16 2012-08-23 日本ゼオン株式会社 Process for manufacture of liquid crystal display device
JP2013134394A (en) * 2011-12-27 2013-07-08 Fujifilm Corp Patterned retardation film, manufacturing method thereof, method of manufacturing optical laminate, 3d image display device, and mask
WO2013129256A1 (en) * 2012-02-29 2013-09-06 住友化学株式会社 Optical display device production system, and optical display device production method

Also Published As

Publication number Publication date
JP2015152899A (en) 2015-08-24
TW201534982A (en) 2015-09-16
CN106030391A (en) 2016-10-12
KR20160122132A (en) 2016-10-21

Similar Documents

Publication Publication Date Title
US8891165B2 (en) Stereoscopic image display and alignment method thereof
TWI449989B (en) 3d image display device
JP4962043B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP2010231009A (en) Electro-optical device and electronic apparatus
US10649279B2 (en) Display substrate, manufacturing method thereof, display panel, and display device
WO2015125725A1 (en) Method for manufacturing optical display device
US9778474B2 (en) Display panel and display apparatus
KR101314402B1 (en) Dislgay device
JP6283528B2 (en) Manufacturing method of optical display device
WO2015125731A1 (en) Method for manufacturing optical display device
WO2015125727A1 (en) Method for manufacturing optical display device
JP2016071073A (en) Display device and electronic apparatus
KR101948827B1 (en) Transparent Liquid Crystal Display Device
JP4176600B2 (en) Patterned retardation plate, liquid crystal display panel, and manufacturing method of patterned retardation plate
WO2016002726A1 (en) Optical member, system for producing optical display device, method for producing optical display device, and original roll
JP2005010738A (en) Display device
WO2016002730A1 (en) Method for inspecting optical display device and pattern recognition method for optical member
US20130286305A1 (en) 3d display device and phase retarder film thereof
JP2012242564A (en) Polarization module and image display device
WO2014185261A1 (en) Liquid crystal display device
JP2010086002A (en) Display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020906

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752756

Country of ref document: EP

Kind code of ref document: A1