WO2015125688A1 - Highly adhesive resin composition and molded article produced from same, and laminate - Google Patents

Highly adhesive resin composition and molded article produced from same, and laminate Download PDF

Info

Publication number
WO2015125688A1
WO2015125688A1 PCT/JP2015/053844 JP2015053844W WO2015125688A1 WO 2015125688 A1 WO2015125688 A1 WO 2015125688A1 JP 2015053844 W JP2015053844 W JP 2015053844W WO 2015125688 A1 WO2015125688 A1 WO 2015125688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyvinyl acetal
molecular weight
resin
resin composition
Prior art date
Application number
PCT/JP2015/053844
Other languages
French (fr)
Japanese (ja)
Inventor
夕陽 島住
楠藤 健
徳地 一記
芳聡 浅沼
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2015528739A priority Critical patent/JP5799192B1/en
Publication of WO2015125688A1 publication Critical patent/WO2015125688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to a resin composition excellent in adhesiveness containing polyvinyl acetal, and a molded product and a laminate comprising the resin composition.
  • Polyvinyl acetal is obtained by acetalization reaction in water using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound under acidic conditions.
  • PVA polyvinyl alcohol
  • Polyvinyl acetal has been proposed for various polymers because it provides a tough film and has a unique structure having both a hydrophilic hydroxy group and a hydrophobic acetal group.
  • polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetoacetal produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
  • polyvinyl butyral is widely used as various binders and films, and occupies a particularly important position commercially.
  • resin products other than metal and glass are widely used for automobile exterior parts.
  • resin molded products are often used for bumpers, door mirror covers, moldings, spoilers, and the like.
  • an polyolefin resin material is used more and more than a urethane resin from the economical aspect.
  • Polyolefin resins are excellent in chemical resistance, water resistance, moldability, and the like.
  • a polyolefin resin material has low polarity and therefore has poor adhesion of a coating film.
  • the styrenic thermoplastic resin composition is also a material having low polarity, it is inferior in adhesiveness with a highly polar resin and is difficult to melt and bond. Therefore, in order to adhere a styrene thermoplastic resin or olefin thermoplastic resin to a highly polar resin, it is necessary to apply an adhesive or to treat the surface in advance.
  • Patent Document 1 or 2 describes a thermoplastic composition obtained by blending the polyvinyl acetal with a low-polarity thermoplastic elastomer or a high-polarity methacrylic resin.
  • a thermoplastic composition as described in Patent Document 1 or 2 there are cases where sufficient adhesive strength cannot be obtained.
  • the manufacturing method which performs surface treatment to the film in patent document 3 using an atmospheric plasma apparatus and improves adhesiveness is described, this is only description of the adhesive improvement, and obtained molded object No mention is made of the improvement of the quality of the molded product, such as the mechanical properties of the product.
  • the object of the present invention is to have good flexibility as a thermoplastic resin composition, excellent mechanical properties, and excellent adhesion to a polar polymer, and stable after adhesion to an adherend. It is providing the thermoplastic resin composition excellent in property. Furthermore, the objective of this invention is providing the molded object and laminated body which use this thermoplastic resin composition.
  • a resin composition comprising polyvinyl acetal and a thermoplastic resin;
  • the polyvinyl acetal has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, a viscosity average polymerization degree of 200 to 5000, and heated at 230 ° C. for 3 hours.
  • the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) ( B) is the following formula (1) (AB) / A ⁇ 0.60 (1)
  • the absorbance at the peak top molecular weight (B) is 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 ;
  • the thermoplastic resin is selected from polyester, polyamide, ⁇ -olefin (co) polymer, cellulose resin, acrylic resin, and styrene resin; This is solved by providing a resin composition characterized by the above.
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample concentration 1.00 mg / ml
  • Sample injection volume 100 ⁇ l
  • Absorbance detector cell length 10 mm It is.
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector is preferably 2.8 to 12.0.
  • a resin composition in which the polyvinyl acetal has a functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group in the side chain is also a preferred embodiment of the present invention.
  • the functional group is preferably an amide group or an amino group.
  • thermoplastic resin is a styrene resin or an ⁇ -olefin (co) polymer is also a preferred embodiment of the present invention.
  • a molded body made of the above resin composition, or a molded body formed by irradiating at least a part of the surface with plasma is also a preferred embodiment of the present invention.
  • a laminate obtained by coating or bonding an adherend to a molded body formed by irradiating the plasma is also a preferred embodiment of the present invention.
  • the adherend is a functional group selected from the group consisting of an amide group, an ester group, a carbonate group, an acetal group, an ether group, a sulfide group, a nitrile group, a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, and a sulfonic acid group.
  • a laminated body made of a polar polymer having s is also a preferred embodiment of the present invention.
  • the polar polymer is polyamide, polyester, polycarbonate, polyacetal, polyphenylene sulfide, ABS resin, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl acetate, poly (meth) acrylate, polyether, polyketone, ionomer.
  • a laminate that is at least one selected from the group consisting of polyurethane and polyurea is also a preferred embodiment of the present invention.
  • the resin composition of the present invention has good flexibility, excellent mechanical properties, and itself has excellent adhesion to polar polymers without the need for an adhesive, primer, etc. Excellent stability after bonding. Furthermore, the molded object and laminated body which use this resin composition are obtained by this invention.
  • Example 1 In the polyvinyl acetal used in Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed the relationship.
  • RI differential refractive index detector
  • UV absorptiometric detector
  • the polyvinyl acetal contained in the resin composition of the present invention has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000.
  • acetalization degree 50 to 85 mol%
  • vinyl ester monomer unit content 0.1 to 20 mol%
  • a viscosity average polymerization degree 200 to 5000.
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used.
  • An absorptiometric detector that can measure absorbance at a wavelength of 280 nm is used.
  • a cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the polyvinyl acetal subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the signal intensity by the differential refractive index detector is approximately proportional to the polyvinyl acetal concentration (mg / ml).
  • polyvinyl acetal detected by an absorptiometric detector is only one having absorption at a predetermined wavelength.
  • GPC measurement it is possible to measure the concentration and absorbance at a predetermined wavelength for each molecular weight component of polyvinyl acetal.
  • HFIP containing sodium trifluoroacetate at a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the polyvinyl acetal measured in the GPC measurement.
  • HFIP can dissolve polyvinyl acetal and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, adsorption of polyvinyl acetal to the column filler is prevented.
  • the flow rate in the GPC measurement is 1 ml / min, and the column temperature is 40 ° C.
  • standard PMMA monodisperse PMMA
  • Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA.
  • a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector.
  • the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
  • the polyvinyl acetal Before the GPC measurement, the polyvinyl acetal is heated at 230 ° C. for 3 hours.
  • polyvinyl acetal is heated by the following method.
  • the film has a thickness of 600 to 800 ⁇ m, preferably about 760 ⁇ m.
  • a heated polyvinyl acetal is dissolved in the above-mentioned solvent to obtain a measurement sample.
  • the concentration of polyvinyl acetal in the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • the viscosity average polymerization degree of the polyvinyl acetal exceeds 2400, the excluded volume increases, and therefore the polyvinyl acetal concentration may not be measured with good reproducibility at a concentration of 1.00 mg / ml.
  • an appropriately diluted sample injection amount 100 ⁇ l
  • Absorbance is proportional to the concentration of polyvinyl acetal. Therefore, the absorbance when the polyvinyl acetal concentration is 1.00 mg / ml is determined using the concentration of the diluted sample and the actually measured absorbance.
  • FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of polyvinyl acetal and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm.
  • the chromatogram represented by “RI” is a plot of values measured by a differential refractive index detector against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A).
  • peak top molecular weight (A) the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).
  • the chromatogram indicated by “UV” is a plot of the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. is there.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B).
  • peak top molecular weight (B) the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).
  • the polyvinyl acetal has a peak top molecular weight (A) measured with a differential refractive index detector and a peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above.
  • A peak top molecular weight measured with a differential refractive index detector
  • B peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above.
  • B) satisfies the following formula (1).
  • the peak top molecular weight (A) is a value that serves as an index of the molecular weight of polyvinyl acetal.
  • the peak top molecular weight (B) is derived from a component present in polyvinyl acetal and having absorption at 280 nm.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm.
  • foreign matter undissolved part
  • a molded product produced using polyvinyl acetal may increase. That is, if there is an undissolved part, it may become a starting point of fracture or fracture at the foreign substance interface. Therefore, the mechanical properties and adhesive strength are reduced.
  • (AB) / A is preferably less than 0.55, more preferably less than 0.50.
  • the polyvinyl acetal needs to have an absorbance (measurement wavelength of 280 nm) at a peak top molecular weight (B) of 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 when GPC measurement is performed by the method described above. .
  • the absorbance is less than 0.50 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in a molded product produced using polyvinyl acetal may increase. For the above reasons, mechanical properties, adhesion Strength decreases.
  • the absorbance exceeds 1.00 ⁇ 10 ⁇ 2 , polyvinyl acetal and a molded product produced using the same may be easily colored, resulting in poor appearance and poor mechanical properties. Storage stability after adhesion may deteriorate due to deterioration.
  • the absorbance is preferably 1.00 ⁇ 10 ⁇ 3 to 8.00 ⁇ 10 ⁇ 3, and more preferably 1.50 ⁇ 10 ⁇ 3 to 6.50 ⁇ 10 ⁇ 3 .
  • the polyvinyl acetal has a weight average molecular weight Mw ratio Mw / Mn of 2.8 to 12.0 determined by a differential refractive index detector in the GPC measurement. Is preferred. Mw and Mn are determined from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of the polyvinyl acetal described above. Mw and Mn in the present invention are values in terms of PMMA.
  • Mn is an average molecular weight that is strongly influenced by a low molecular weight component
  • Mw is an average molecular weight that is strongly influenced by a high molecular weight component.
  • Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.
  • Mw / Mn when Mw / Mn is less than 2.8, it indicates that the proportion of the low molecular weight component is small in the polyvinyl acetal.
  • Mw / Mn is more preferably 2.9 or more, and further preferably 3.1 or more.
  • Mw / Mn exceeds 12.0, it shows that the ratio of a low molecular weight component is large in polyvinyl acetal.
  • Mw / Mn exceeds 12.0, the mechanical properties of the molded body may be deteriorated.
  • Mw / Mn is more preferably 11.0 or less, and even more preferably 8.0 or less.
  • the degree of acetalization of polyvinyl acetal is 50 to 85 mol%, preferably 55 to 82 mol%, more preferably 60 to 78 mol%, and further preferably 65 to 75 mol%.
  • the degree of acetalization is less than 50 mol%, the water content after the production of polyvinyl acetal is increased, so that the cleaning efficiency is lowered, and deterioration of the resin due to contamination of impurities such as metal salts and acids remaining in the resin, Furthermore, the water content increases due to water absorption of the resin composition during storage, and there is a possibility that sufficient adhesiveness may not be exhibited.
  • the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is remarkably lowered, the productivity is remarkably deteriorated, and the commercial property is lacking.
  • the degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal.
  • the vinyl alcohol monomer units in the raw material PVA those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
  • the viscosity average degree of polymerization of polyvinyl acetal is represented by the viscosity average degree of polymerization of the raw material PVA measured according to JIS K6726. That is, after re-saponifying PVA to a saponification degree of 99.5 mol% or more and purifying it, it can be obtained from the intrinsic viscosity [ ⁇ ] (L / g) measured in water at 30 ° C. according to the following formula.
  • the viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
  • P ([ ⁇ ] ⁇ 10000 / 8.29) (1 / 0.62)
  • the viscosity average polymerization degree of the polyvinyl acetal is 200 to 5,000. When the viscosity average degree of polymerization is less than 200, it is difficult to produce polyvinyl acetal, and the mechanical properties of a molded article made of a resin composition using polyvinyl acetal may be lowered.
  • the viscosity average degree of polymerization is preferably 250 or more, more preferably 300 or more, and still more preferably 400 or more.
  • the viscosity average polymerization degree exceeds 5,000, the resin viscosity at the time of molding becomes too high and it becomes difficult to mold, and the adhesiveness may be lowered.
  • the viscosity average degree of polymerization is preferably 4500 or less, more preferably 4000 or less, further preferably 3500 or less, and particularly preferably 2500 or less.
  • the content of the vinyl ester monomer unit of the polyvinyl acetal is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%, Preferably, it is 0.7 to 13 mol%.
  • the content of the vinyl ester monomer unit is less than 0.1 mol%, polyvinyl acetal cannot be stably produced.
  • the content of the vinyl ester monomer unit exceeds 20 mol%, the storage stability of the resin composition containing the polyvinyl acetal is lowered, the resin is deteriorated, and the mechanical properties may be lowered. is there.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less, more preferably 10%. It is less than mol%.
  • the polyvinyl acetal contained in the resin composition of the present invention is usually produced by acetalizing PVA.
  • the polyvinyl acetal may have at least one functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group in the side chain.
  • the functional group is preferably an amide group or an amino group, and the content thereof is preferably 20 mol% or less, more preferably 10 mol% or less, more preferably 5 mol% relative to the number of monomer units of PVA before acetalization. % Or less is more preferable. When the content of the functional group is 20 mol% or more, it may be difficult to produce polyvinyl acetal.
  • the method for introducing a functional group into the side chain there is no particular limitation on the method for introducing a functional group into the side chain.
  • a method obtained by copolymerizing a comonomer having the functional group and vinyl acetate, and an aldehyde containing the functional group examples thereof include a method for acetalization and a method for reacting a hydroxyl group of a vinyl alcohol unit which has not been acetalized with a carboxylic acid.
  • vinyl esters used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic.
  • vinyl acid examples include vinyl acid, and vinyl acetate is particularly preferable.
  • a carbonyl group-containing monomer As a comonomer used for the copolymerization with vinyl acetate and copolymerized to introduce the functional group, a carbonyl group-containing monomer, an amino group-containing monomer, a vinyl group-containing monomer, Examples thereof include N-vinylamide monomers and (meth) acrylamide monomers.
  • Examples of the carbonyl group-containing monomer include diacetone acrylamide.
  • amino group-containing monomers examples include allylamine, dimethylaminopropyl methacrylamide, dimethylaminopropyl acrylamide, dimethylaminoethyl acrylate, and acryloylmorpholine.
  • vinyl group-containing monomers include trimethylolpropane diallyl ether and pentaerythritol. And triallyl ether.
  • N-vinylamide monomers include N-vinyl-2-pyrrolidones and N-vinyl-2-caprolactams, N-vinylformamide, N-methyl-N-vinylformamide, N-vinylacetamide, N -Methyl-N-vinylacetamide and the like.
  • N-vinyl-2-pyrrolidones examples include N-vinyl-2-pyrrolidone, N-vinyl-3-propyl-2-pyrrolidone, N-vinyl-5,5-dimethyl-2-pyrrolidone, N-vinyl-3 , 5-dimethyl-2-pyrrolidone and the like.
  • (Meth) acrylamide monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, t-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N- Such as methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, t-butyl (meth) acrylamide sulfonic acid, etc. ) Acrylamide derivatives and the like.
  • N-vinylacetamide, N-vinyl-2-caprolactam, and N-methoxymethylmethacrylamide are more preferable from the viewpoint of obtaining a homogeneous resin composition.
  • the raw material PVA is also produced by polymerizing a vinyl ester in the presence of a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester.
  • a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester.
  • Examples of methods for polymerizing vinyl esters include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the reaction can be carried out by either a batch method or a continuous method.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy- 2,4-dimethylvaleronitrile) and other azo initiators; benzoyl peroxide, n-propyl peroxycarbonate, organic peroxide initiators such as peroxydicarbonate, and the like, as long as the effects of the present invention are not impaired.
  • organic peroxide initiators having a half-life of 10 to 110 minutes at 60 ° C. are preferred, and peroxydicarbonate is particularly preferred.
  • polymerization temperature for carrying out the polymerization reaction but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • a monomer include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride; Derivatives thereof; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n methacrylate -Methacrylic acid esters such as propyl and isopropyl methacrylate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether,
  • the amount of the monomer copolymerizable with these vinyl esters varies depending on the purpose and application of use, but is usually 20 mol in a ratio based on all monomers used for copolymerization. % Or less, preferably 10 mol% or less.
  • PVA can be obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • an alkaline substance is usually used as the catalyst for the saponification reaction of the polyvinyl ester.
  • alkali metal hydroxides such as potassium hydroxide and sodium hydroxide
  • alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is 0.00 in terms of a molar ratio based on the vinyl ester monomer unit of the polyvinyl ester. It is preferably in the range of 2 to 0.2, particularly preferably in the range of 0.004 to 0.1.
  • the saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added and added during the saponification reaction.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. At this time, the water content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours.
  • the saponification reaction can be performed by either a batch method or a continuous method.
  • the remaining catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the raw material PVA preferably contains an alkali metal salt of carboxylic acid in an amount of 0.5% by mass or less in terms of the mass of the alkali metal. In order to obtain such PVA, the PVA may be washed after saponification.
  • examples of a method for adjusting each value obtained by GPC measurement so as to fall within the above-described range include a method using PVA produced by the following method as a raw material for polyvinyl acetal.
  • a vinyl ester from which a radical polymerization inhibitor contained in the raw material vinyl ester has been removed in advance is used for the polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of vinyl ester.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester in order to suppress polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene 2,3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl -1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene 1,3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 2-methoxy-1
  • Conjugated dienes from conjugated structures with three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Conjugated triene: cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc.
  • Carbon - include polyenes such as conjugated polyene consisting of carbon-carbon double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used.
  • the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
  • the acetalization of PVA can be performed, for example, under the following reaction conditions, but is not limited thereto.
  • PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA.
  • an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant.
  • polyvinyl acetal having reached a certain degree of acetalization is precipitated.
  • the temperature of the reaction solution is raised to 25 to 80 ° C.
  • aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed.
  • coarse particles are generated, there is a risk of causing variation between batches.
  • PVA produced using the above-described predetermined method is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used.
  • acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned.
  • hydrochloric acid, sulfuric acid, and nitric acid are preferably used.
  • nitric acid when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected.
  • the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. is there.
  • PVA produced using the above-described predetermined method is used as a raw material, the generation of coarse particles is suppressed.
  • the aldehyde used in the acetalization reaction is not particularly limited, and examples thereof include known aldehydes having a hydrocarbon group and alkyl acetalized products thereof.
  • aldehydes having a hydrocarbon group aliphatic aldehydes and alkyl acetals thereof include formaldehyde (including paraformaldehyde), acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, hexylaldehyde, 2-ethyl Butyraldehyde, pivalaldehyde, octyl aldehyde, 2-ethylhexyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde, etc.
  • alicyclic aldehydes and their alkyl acetals such as cyclopentane aldehyde, methyl cyclopentane aldehyde, dimethyl cyclopentane aldehyde , Cyclohexanealdehyde, methylcyclohexanealdehyde, dimethylcyclohexanealdehyde, cyclohexane Setaldehyde and the like are cyclic unsaturated aldehydes and alkyl acetals thereof, such as cyclopentene aldehyde and cyclohexene aldehyde, and aromatic and unsaturated bond-containing aldehydes and alkyl acetals thereof are benzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, methoxybenzaldehyde, and the like.
  • aldehydes having 1 to 8 carbon atoms are preferable, aldehydes having 4 to 6 carbon atoms are more preferable, and n-butyraldehyde is particularly preferably used.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • an aldehyde used for acetalizing a polyvinyl alcohol resin an aldehyde having a functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group or an alkyl acetalized product thereof may be used. Good. Among these, an aldehyde having an amino group as a functional group is preferable.
  • aldehyde having an amino group as a functional group examples include aminoacetaldehyde, dimethylaminoacetaldehyde, diethylaminoacetaldehyde, aminopropionaldehyde, dimethylaminopropionaldehyde, aminobutyraldehyde, aminopentylaldehyde, aminobenzaldehyde, dimethylaminobenzaldehyde, ethylmethylaminobenzaldehyde, Examples include diethylaminobenzaldehyde, pyrrolidylacetaldehyde, piperidylacetaldehyde, pyridylacetaldehyde, and aminobutyraldehyde is more preferable from the viewpoint of productivity. Examples of the aldehyde having a vinyl group as a functional group include acrolein.
  • aldehyde having a carbonyl group as a functional group examples include glyoxylic acid and its metal salt or ammonium salt, 2-formylacetic acid and its metal salt or ammonium salt, 3-formylpropionic acid and its metal salt or ammonium salt, 5-formylpentane Acid and its metal salt or ammonium salt, 4-formylphenoxyacetic acid and its metal salt or ammonium salt, 2-carboxybenzaldehyde and its metal salt or ammonium salt, 4-carboxybenzaldehyde and its metal salt or ammonium salt, 2,4- Examples include dicarboxybenzaldehyde and its metal salt or ammonium salt.
  • aldehyde having an ester group as a functional group examples include methyl glyoxylate, ethyl glyoxylate, methyl formyl acetate, methyl formyl acetate, methyl 3-formylpropionate, ethyl 3-formylpropionate, methyl 5-formylpentanoate, 5- Examples include ethyl formylpentanoate.
  • heterocyclic aldehyde and its alkyl acetal an aldehyde having a hydroxyl group, an aldehyde having a sulfonic acid group, an aldehyde having a phosphoric acid group, a cyano group, a nitro group, or a quaternary ammonium salt may be used as long as the characteristics of the present invention are not impaired.
  • an aldehyde having a halogen atom may be used.
  • the content of the polyvinyl acetal in the resin composition of the present invention is not particularly limited, but is preferably 0.01 to 80 parts by mass with respect to 100 parts by mass of the resin composition.
  • the content of the polyvinyl acetal in the resin composition is in such a range, the mechanical properties are excellent and the adhesiveness is also good.
  • the said content is less than 0.01 mass part, there exists a possibility that the adhesive force at the time of setting it as a resin composition may become inadequate.
  • the content is more preferably 1 part by mass or more.
  • the said content exceeds 80 mass parts, the molded object obtained becomes hard and it becomes difficult to express a favorable mechanical characteristic.
  • the content is more preferably 50 parts by mass or less.
  • polyester polyamide, polyolefin, ⁇ -olefin (co) polymer, cellulose resin, acrylic resin, and styrene resin contained in the resin composition of the present invention
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate
  • polyamide resins such as nylon 6 and nylon 12
  • ⁇ -olefin (co) polymers such as polyethylene and polypropylene
  • ⁇ -olefins examples include ethylene-propylene copolymer rubber (EPR) and ethylene-propylene-diene copolymer rubber (EPDM).
  • EPR ethylene-propylene copolymer rubber
  • EPDM ethylene-propylene-diene copolymer rubber
  • a typical example of a copolymer of ethylene and a monomer other than ⁇ -olefin is an ethylene-vinyl acetate copolymer (EVA) or a saponified product thereof.
  • EVA ethylene-vinyl acetate copolymer
  • cellulose resins such as cellulose, cellulose acetate, ethyl cellulose, triacetyl cellulose; polymethyl (meth) acrylate, polyethyl (meth) acrylate, polypropyl (meth) acrylate, polyisopropyl (meth) acrylate, poly-n-butyl ( Acrylic resins such as (meth) acrylate, poly-sec-butyl (meth) acrylate, poly-tert-butyl (meth) acrylate, etc .; block copolymer having a polymer block composed of polystyrene, an aromatic vinyl compound and a conjugated diene compound Or a styrenic resin such
  • polyolefin resins such as polyethylene and polypropylene, or polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate are preferable, and moisture-proof Considering the properties, olefin resins such as polyethylene and polypropylene are more preferable, and polypropylene is particularly preferable. Further, as a copolymer with ⁇ -olefin, an ethylene-vinyl acetate copolymer (EVA), which is a copolymer of ethylene and a monomer other than ⁇ -olefin, is also preferable.
  • EVA ethylene-vinyl acetate copolymer
  • polypropylene examples include propylene homopolymers, random or block copolymers of propylene and ⁇ -olefins such as ethylene other than propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, Further, a mixture of these polymers may be mentioned, among which propylene homopolymer, propylene-ethylene random copolymer, and propylene-ethylene-1-butene random terpolymer are preferable.
  • thermoplastic resin used in the present invention one kind of the above resin may be used alone, or two or more kinds may be used in combination.
  • the thermoplastic resin used may be a thermoplastic resin containing a polar functional group, or a combination thereof. May be. Since the thermoplastic resin containing a polar functional group has good compatibility with polyvinyl acetal, it is excellent in the mechanical performance of the resin composition and excellent in adhesion to the adherend.
  • the resin composition of the present invention may contain a rubber softener as necessary for the purpose of imparting moldability and flexibility in addition to the thermoplastic resin and polyvinyl acetal.
  • softeners include mineral oil rubber softeners called process oils or extender oils. This is a mixture of the aromatic ring, naphthene ring and paraffin, and the paraffin chain having 50% by mass or more of the total number of carbon atoms is called paraffinic. Those having 30 to 45% by mass of carbon are called naphthenes, and those having more than 30% of aromatics are called aromatics.
  • 5 to 500 parts by mass of rubber softener is blended with 100 parts by mass of the thermoplastic resin.
  • the resin composition of the present invention is a plasticizer, inorganic filler, compatibilizer, lubricant, light stabilizer, weathering agent, processing as long as it does not inhibit the effects of the invention.
  • Content of components other than the said polyvinyl acetal is 50 mass% or less, 20 mass% or less is preferable and 10 mass% or less is more preferable.
  • the above plasticizer is not particularly limited as long as it does not impair the effects of the present invention and there is no problem in compatibility with polyvinyl acetal.
  • the plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with polyvinyl acetal.
  • a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and an alcohol, or the like can be used. These can be used alone or in combination of two or more.
  • triethylene glycol-di-2-ethylhexanoate tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-n-heptanoate, tetraethylene glycol-di-n-heptanoate
  • the method for producing the resin composition of the present invention is not particularly limited, and any method can be used as long as the above-described components used in the resin composition of the present invention can be uniformly mixed.
  • a kneading method is used.
  • the melt kneading can be performed using a melt kneading apparatus such as a single screw extruder, a twin screw extruder, a kneader, a batch mixer, a roller, a Banbury mixer, and is usually melt kneaded at a temperature of 100 ° C. to 270 ° C. By this, the resin composition of the present invention can be obtained.
  • the resin composition of the present invention has a heat melting property and excellent molding processability, various molded products, sheets and films can be produced.
  • various molding methods generally used for thermoplastic resins can be used. For example, injection molding, extrusion molding, press molding, blow molding, calendar molding, casting molding, etc. The molding method can be adopted.
  • a T-die method, a calendar method, an inflation method, a belt method, etc. which are generally used for forming films and sheets, can also be employed.
  • a preferred embodiment of a molded article made of the resin composition of the present invention is a laminate in which a molded article made of the resin composition is coated or bonded to an adherend.
  • the adherend is selected from the group consisting of, for example, amide group, ester group, carbonate group, acetal group, ether group, sulfide group, nitrile group, hydroxyl group, carbonyl group, carboxyl group, amino group, and sulfonic acid group. It is a polar polymer having a functional group. Since these functional groups have an interaction with the polyvinyl acetal contained in the resin composition of the present invention, the adhesiveness to the resin composition of the present invention is good.
  • Styrenic resins and ⁇ -olefin (co) polymers usually have poor adhesion to polar polymers, but the resin composition of the present invention has good adhesion to polar polymers for the above reasons. Excellent and stability after bonding. Therefore, the resin composition of the present invention can be suitably used by adhering to the polar polymer.
  • the polar polymer include polyamide, polyester, polycarbonate, polyacetal, polyphenylene sulfide and ABS resin (acrylonitrile-butadiene-styrene copolymer), polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyacetic acid.
  • examples include vinyl, poly (meth) acrylate, polyether, polyketone, ionomer, polyurethane and polyurea.
  • the method for producing a molded product in which the resin composition of the present invention and the polar polymer are bonded is not particularly limited. Examples thereof include molding methods such as injection molding, extrusion molding, press molding, and melt casting. Alternatively, one of the pre-molded products may be melt-coated or a solution may be applied. In addition, two-color molding or insert molding can be employed.
  • a solvent-based paint for the coating of a molded article molded from the resin composition according to the present invention, a solvent-based paint, a water-based paint, and a solvent-free paint can be used.
  • solvent-based paints include alkyd resin paints, amino alkyd resin paints, vinyl resin paints, room temperature drying acrylic resin paints, baking dry acrylic resin paints, tar epoxy epoxy resin paints, varnish Examples thereof include enamel epoxy resin paints, one-pack urethane resin paints, multi-pack urethane resin paints, unsaturated polyester resin paints, and chlorinated rubber paints.
  • water-based paints include emulsion paints and water-soluble resin paints.
  • solvent-free paints include powder paints and traffic paints.
  • the laminate it is preferable to employ plasma discharge treatment, corona discharge treatment or ultraviolet irradiation treatment, or atmospheric pressure plasma treatment on at least a part of the surface of the molded body.
  • these treatments can be carried out in accordance with ordinary methods.
  • a pressure of 1 to 100000 Pascals and argon, helium, and nitrogen are more preferred as the atmospheric gas.
  • the discharge frequency, discharge output, and processing time are preferably adjusted as appropriate depending on the shape and size of the processing apparatus. Usually, a frequency of 13.56 MHz, an output of 10 to 1000 watts, and a processing time of about 5 seconds to 10 minutes are preferable. is there.
  • corona discharge treatment is usually performed in the air due to the simplicity of the apparatus, but in order to improve the treatment effect and enhance the adhesion, an inert gas such as argon gas or a gas atmosphere such as oxygen or nitrogen
  • an inert gas such as argon gas or a gas atmosphere such as oxygen or nitrogen
  • the treatment may be carried out with the above, or the treatment may be carried out while blowing these gases in the vicinity of the electrodes.
  • this method is most preferably employed as a resin modification treatment method.
  • the frequency of the corona discharge treatment can be adjusted as appropriate, but is usually 5 kHz or more, particularly 20 to 30 kHz from the viewpoint of treatment effect and efficiency. If the frequency is lower than 5 kHz, it is difficult to perform a stable and uniform process and the power consumption is increased, which may increase the power cost and shorten the durability of the electrode.
  • the discharge output and processing time may be appropriately adjusted according to the material, shape, and size of the object to be processed, and the shape and size of the electrode. Usually, it is about 50 to 5000 watts and about 1 to 60 seconds. Is preferred.
  • atmospheric pressure plasma devices can be used for atmospheric pressure plasma.
  • a device that can generate low-temperature plasma by performing intermittent discharge while passing an inert gas at a pressure close to atmospheric pressure between electrodes covered with a dielectric is preferable, and any device can be used.
  • Various modifications can be selected according to the purpose of use.
  • the “pressure near atmospheric pressure” in the “atmospheric pressure plasma” in the present invention refers to a range of 70 kPa to 130 kPa, and preferably 90 kPa to 110 kPa.
  • any gas of nitrogen, oxygen, hydrogen, carbon dioxide, helium, and argon, or a mixed gas of two or more of these can be used. It is preferable to use inert gases such as He and Ar, or nitrogen gas (N2), and Ar or He is particularly preferable.
  • the shape, structure, use, etc. are not particularly limited, and are useful for a wide range of uses. Further, it can be suitably used for automotive resin molded products such as bumpers, door mirror covers, moldings and spoilers, joints in buildings, electronic parts such as solar cell modules, sundries, daily necessities, footwear and the like.
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added so that the molar ratio of sodium hydroxide to vinyl acetate monomer units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement.
  • the degree of polymerization was 1700.
  • PVAc-2 to PVAc-11 Polyvinyl acetate (PVAc-2 to PVAc-11) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • PVAc-A to H Polyvinyl acetate PVAc-A to H were obtained by the same method as PVAc-1 except that the conditions were changed to those described in Table 2. The amount of modification of each comonomer was determined using a sample dissolved in DMSO-d6 or CDCl3 using a 500 MHz proton NMR measurement apparatus (JEOL GX-500).
  • the polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS K6726.
  • the degree of polymerization was 1700, and the degree of saponification was 99.1 mol%.
  • These physical property data are also shown in Table 3.
  • the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. .
  • the content of sodium acetate was 0.7% (0.20% in terms of sodium).
  • PVA-2-7, comparative PVA-1-7 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 3.
  • PVA-A1 to G comparative PVA-H1, -H2
  • Each PVA was synthesized in the same manner as PVA-1 except that the conditions shown in Table 4 were changed.
  • the polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1.
  • the results are shown in Table 4.
  • PVA analysis method Analysis of PVA was performed according to the method described in JIS K6726 unless otherwise specified.
  • the content of N-vinylamide monomer units, acrylamide monomer units, etc. contained in PVA was determined using a 500 MHz proton NMR measurement apparatus (JEOL GX-500) for a sample dissolved in DMSO-d6.
  • the degree of butyralization (degree of acetalization) of polyvinyl butyral, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728.
  • the resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 0.9 mol%, and a vinyl alcohol monomer unit content of 30. It was 9 mol%.
  • the amount of aminoacetal modification in the vinyl acetal polymer was determined using a 500 MHz proton NMR measurement apparatus (JEOL GX-500) for a sample dissolved in DMSO-d6. The results are shown in Table 5.
  • HFIP HFIP containing 20 mmol / l sodium trifluoroacetate was used as the mobile phase.
  • the mobile phase flow rate was 1.0 ml / min.
  • the sample injection amount was 100 ⁇ l, and measurement was performed at a GPC column temperature of 40 ° C.
  • the sample whose viscosity average polymerization degree of PVA mentioned later exceeds 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • PMMA polymethyl methacrylate
  • Agilent Technologies peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690
  • a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector.
  • the analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of the standard samples having both molecular weights of 1944000 and 271400 can be separated in the measurement of polymethyl methacrylate was used.
  • the peak intensity obtained from the differential refractive index detector is mV (millivolt), and the peak intensity obtained from the UV detector is represented by absorbance (abs unit: Absorbance unit).
  • Example preparation The obtained powdery PVB-1 was hot pressed at a pressure of 2 MPa and 230 ° C. for 3 hours to obtain a heated polyvinyl acetal (film). At this time, the thickness of the film was 760 ⁇ m. This was used for GPC measurement.
  • FIG. 1 is a graph showing the relationship between the molecular weight and the value measured with a differential refractive index detector, and the relationship between the molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm).
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 90000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 68900.
  • the obtained value is expressed by the following formula (AB) / A
  • the value obtained by substituting for was 0.23.
  • the absorbance (b) at the peak top molecular weight (B) was 2.21 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 1 was 3.4. These results are also shown in Table 5.
  • Example 1 (1) Production of Resin Composition and Polar Resin Sheet Using polyvinyl acetal shown in Table 6, using polypropylene and rubber softener described later, mixing polyvinyl acetal to 20% by mass, Toyo Seiki Co., Ltd. Using a factory batch type mixer “Labo Plast Mill 20R20C”, melt kneading was performed for 5 minutes at 230 ° C. and at a rotation speed of 100 rpm. The obtained kneaded product was used at 230 ° C. and 100 kgf / cm 2 using a “Teflon (registered trademark)” coated metal frame as a spacer using a compression press molding machine “NF-37” manufactured by Shindo Metal Industries, Ltd.
  • Teflon registered trademark
  • a sheet of a resin composition having a thickness of 1 mm was obtained by compression press molding with a load for 5 minutes.
  • the following polypropylene was used and 50 phr of the following rubber softener was added to the polypropylene and used for the above treatment.
  • Polypropylene Polypropylene "Novatec PP MA3" manufactured by Nippon Polychem Co., Ltd.
  • Rubber softener Paraffinic process oil “Diana Process PW-90” manufactured by Idemitsu Kosan Co., Ltd.
  • the polar polymer bonded to the resin composition was as follows.
  • PET Teijin Limited polyethylene terephthalate "Bottle TR-8550”
  • PA6 Polyamide "UBE nylon 1013B” manufactured by Ube Industries, Ltd.
  • ABS ABS "Psycholac EX-111” manufactured by Ube Saikon Co., Ltd.
  • POM Polyoxymethylene "Duracon M90-44” manufactured by Polyplastics Co., Ltd.
  • Examples 2 to 23 Evaluation was performed in the same manner as in Example 1 except that the raw material PVB was changed to that shown in Table 6. The results are shown in Table 6.
  • EVA ethylene-vinyl acetate copolymer
  • polyvinyl acetal PVB was mixed so that the total amount was 20% by mass.
  • a Toyo Seiki Seisakusho batch-type mixer “Labo Plast Mill 20R20C” it was melt-kneaded for 5 minutes at 150 ° C. and at a rotation speed of 100 rpm. The obtained kneaded product was used for 5 minutes at 150 ° C.
  • Example 24 The operation was performed and evaluated in the same manner as in Example 1 except that the rubber softener was not used. The results are shown in Table 6.
  • Coating test Plasma treatment was performed on the surface of a sheet of 50 mm ⁇ 50 mm ⁇ 1 mm obtained from the sheet prepared by the method of (1) above using an atmospheric pressure plasma apparatus, followed by urethane paint based metallic paint (Nippon Bee Chemical Co., Ltd., trade name: R-212) was coated to a thickness of 20 ⁇ m, dried at 80 ° C. for 30 minutes, and then allowed to stand at room temperature for 48 hours to obtain a test piece. Apply a cellophane adhesive tape (JIS Z1522) to the test piece obtained at intervals of 2 mm, and press the cellophane adhesive tape (JIS Z1522) on top of it. The number of films was counted. A: No peeled out of 100 sheets B: Less than 11 sheets C: 11 or more sheets

Abstract

[Problem] To provide: a molded article which enables the production of a molded article having flexibility, excellent mechanical properties and excellent adhesivity to a polar polymer and also enables the production of a laminate, and which is highly stable after being adhered to an object of interest; and a laminate. [Solution] A highly adhesive resin composition comprising: a polyvinyl acetal which has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol% and a viscosity average polymerization degree of 200 to 5000, and which has such a property that, when the polyvinyl acetal is heated at 230ºC for three hours and is then subjected to a gel permeation chromatographic measurement, the peak top molecular weight (A) as measured using a differential refractive index detector and the peak top molecular weight (B) as measured using an absorbance detector (a wavelength employed for measurement: 280 nm) satisfy the following formula (1): (A-B)/A < 0.60, wherein the absorbance at the peak top molecular weight (B) is 0.50 × 10-3 to 1.00 × 10-2; and a thermoplastic resin selected from polyester, polyamide, an α-olefin (co)polymer, a cellulose-type resin, an acrylic resin and a styrene-type resin.

Description

高接着性樹脂組成物及びそれからなる成形体並びに積層体High adhesive resin composition, molded article and laminate comprising the same
 本発明は、ポリビニルアセタールを含有する接着性に優れた樹脂組成物及びそれからなる成形体並びに積層体に関する。 The present invention relates to a resin composition excellent in adhesiveness containing polyvinyl acetal, and a molded product and a laminate comprising the resin composition.
 ポリビニルアセタールは、ポリビニルアルコール(以後「PVA」と略記する場合がある)とアルデヒド化合物を用いて、酸性条件下、水中でのアセタール化反応により得られる。ポリビニルアセタールは、強靭なフィルムが得られること、親水性のヒドロキシ基と疎水性のアセタール基を併せ持つユニークな構造であることなどから、種々のポリマーが提案されている。その中でも、PVAとホルムアルデヒドから製造されるポリビニルホルマール、PVAとアセトアルデヒドから製造されるポリビニルアセトアセタール、およびPVAとブチルアルデヒドから製造されるポリビニルブチラールは、商業的に重要な位置を占めている。特に、ポリビニルブチラールは、各種バインダーやフィルム等として広く用いられており、商業的に特に重要な位置を占めている。 Polyvinyl acetal is obtained by acetalization reaction in water using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound under acidic conditions. Polyvinyl acetal has been proposed for various polymers because it provides a tough film and has a unique structure having both a hydrophilic hydroxy group and a hydrophobic acetal group. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetoacetal produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions. In particular, polyvinyl butyral is widely used as various binders and films, and occupies a particularly important position commercially.
 一方、自動車の外装部品には、金属や、ガラス以外の樹脂製品が広く使用されるようになっている。例えば、バンパーや、ドアミラーカバー、モール、スポイラー等に樹脂成形品を使用するケースが多くなっている。このような樹脂成形品としては、経済性の面から、ウレタン系樹脂よりも、ポリオレフィン系樹脂素材が益々多量に使用されるようになっている。また、ポリオレフィン系樹脂は、耐薬品性や、耐水性、成形性等に優れている。これらのポリオレフィン系樹脂素材を使用する場合には、金属の塗装の場合に比べて種々の制約を受ける。例えば、ポリオレフィン系樹脂素材は、低極性であるため、塗膜の付着性が悪い。同様にスチレン系熱可塑性樹脂組成物も極性が低い材料であるために、高極性の樹脂との接着性に劣り、溶融接着が困難である。そのため、スチレン系熱可塑性樹脂やオレフィン系熱可塑性樹脂と高極性の樹脂とを接着させるためには、接着剤を塗布したり、あらかじめ表面を処理したりする必要がある。 On the other hand, resin products other than metal and glass are widely used for automobile exterior parts. For example, resin molded products are often used for bumpers, door mirror covers, moldings, spoilers, and the like. As such a resin molded product, an polyolefin resin material is used more and more than a urethane resin from the economical aspect. Polyolefin resins are excellent in chemical resistance, water resistance, moldability, and the like. When these polyolefin resin materials are used, there are various restrictions as compared with the case of metal coating. For example, a polyolefin resin material has low polarity and therefore has poor adhesion of a coating film. Similarly, since the styrenic thermoplastic resin composition is also a material having low polarity, it is inferior in adhesiveness with a highly polar resin and is difficult to melt and bond. Therefore, in order to adhere a styrene thermoplastic resin or olefin thermoplastic resin to a highly polar resin, it is necessary to apply an adhesive or to treat the surface in advance.
 さらに、接着性を向上する方法として、特許文献1または2に、低極性である熱可塑性エラストマーや高極性であるメタクリル樹脂に前記ポリビニルアセタールを配合した熱可塑性組成物が記載されている。しかしながら、特許文献1または2に記載されているような熱可塑性組成物を以ってしても、十分な接着強さを得ることができない場合もあった。さらに、特許文献3におけるフィルムに大気プラズマ装置を用いて表面処理を施し、接着性を向上させる製造方法が記載されているが、これは接着性の向上のみの記載であり、得られた成形体の力学特性等、当該成形品の品質向上までは言及していない。 Furthermore, as a method for improving adhesiveness, Patent Document 1 or 2 describes a thermoplastic composition obtained by blending the polyvinyl acetal with a low-polarity thermoplastic elastomer or a high-polarity methacrylic resin. However, even with a thermoplastic composition as described in Patent Document 1 or 2, there are cases where sufficient adhesive strength cannot be obtained. Furthermore, although the manufacturing method which performs surface treatment to the film in patent document 3 using an atmospheric plasma apparatus and improves adhesiveness is described, this is only description of the adhesive improvement, and obtained molded object No mention is made of the improvement of the quality of the molded product, such as the mechanical properties of the product.
国際公開第2009/081877International Publication No. 2009/081877 国際公開第2008/050738International Publication No. 2008/05050738 国際公開第2011/046143International Publication No. 2011/046143
 本発明の目的は、熱可塑性樹脂組成物として良好な柔軟性を有し、力学特性に優れ、かつそれ自体が極性重合体に対する優れた接着性を有し、被着体との接着後の安定性に優れた熱可塑性樹脂組成物を提供することである。さらに、本発明の目的は、かかる熱可塑性樹脂組成物を使用した成形体および積層体を提供することである。 The object of the present invention is to have good flexibility as a thermoplastic resin composition, excellent mechanical properties, and excellent adhesion to a polar polymer, and stable after adhesion to an adherend. It is providing the thermoplastic resin composition excellent in property. Furthermore, the objective of this invention is providing the molded object and laminated body which use this thermoplastic resin composition.
 上記課題は、
ポリビニルアセタールおよび熱可塑性樹脂を含む樹脂組成物であって;
前記ポリビニルアセタールの、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であり、230℃において3時間加熱された前記ポリビニルアセタールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A-B)/A<0.60   (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.50×10-3~1.00×10-2となり;
前記熱可塑性樹脂が、ポリエステル、ポリアミド、α-オレフィン(共)重合体、セルロース系樹脂、アクリル系樹脂、スチレン系樹脂から選ばれるものである;
ことを特徴とする樹脂組成物を提供することにより解決される。
The above issues
A resin composition comprising polyvinyl acetal and a thermoplastic resin;
The polyvinyl acetal has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, a viscosity average polymerization degree of 200 to 5000, and heated at 230 ° C. for 3 hours. When the polyvinyl acetal was measured by gel permeation chromatography, the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) ( B) is the following formula (1)
(AB) / A <0.60 (1)
And the absorbance at the peak top molecular weight (B) is 0.50 × 10 −3 to 1.00 × 10 −2 ;
The thermoplastic resin is selected from polyester, polyamide, α-olefin (co) polymer, cellulose resin, acrylic resin, and styrene resin;
This is solved by providing a resin composition characterized by the above.
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/ml
試料注入量:100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column: Showa Denko "GPC HFIP-806M"
Column temperature: 40 ° C
Flow rate: 1 ml / min Absorbance detector cell length: 10 mm
It is.
 前記GPC測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0となることが好ましい。 In the GPC measurement, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector is preferably 2.8 to 12.0.
 前記ポリビニルアセタールが、側鎖にアミド基、アミノ基、エステル基、カルボニル基、ビニル基から選ばれる官能基を有するものである樹脂組成物も本発明の好適な実施態様である。前記官能基はアミド基またはアミノ基であることが好ましい。 A resin composition in which the polyvinyl acetal has a functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group in the side chain is also a preferred embodiment of the present invention. The functional group is preferably an amide group or an amino group.
 前記熱可塑性樹脂が、スチレン系樹脂またはα―オレフィン(共)重合体である樹脂組成物も本発明の好適な実施態様である。 A resin composition in which the thermoplastic resin is a styrene resin or an α-olefin (co) polymer is also a preferred embodiment of the present invention.
 前記の樹脂組成物からなる成形体、またはその表面の少なくとも一部にプラズマを照射してなる成形体も本発明の好適な実施態様である。 A molded body made of the above resin composition, or a molded body formed by irradiating at least a part of the surface with plasma is also a preferred embodiment of the present invention.
 前記のプラズマを照射してなる成形体に被着体を塗装または貼合せてなる積層体も本発明の好適な実施形態である。 A laminate obtained by coating or bonding an adherend to a molded body formed by irradiating the plasma is also a preferred embodiment of the present invention.
 前記被着体が、アミド基、エステル基、カーボネート基、アセタール基、エーテル基、スルフィド基、ニトリル基、水酸基、カルボニル基、カルボキシル基、アミノ基及びスルホン酸基からなる群から選択される官能基を有する極性重合体からなる積層体も本発明の好適な実施形態である。 The adherend is a functional group selected from the group consisting of an amide group, an ester group, a carbonate group, an acetal group, an ether group, a sulfide group, a nitrile group, a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, and a sulfonic acid group. A laminated body made of a polar polymer having s is also a preferred embodiment of the present invention.
 前記極性重合体が、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ABS樹脂、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリ酢酸ビニル、ポリ(メタ)アクリレート、ポリエーテル、ポリケトン、アイオノマー、ポリウレタン及びポリウレアからなる群から選択される少なくとも1種である積層体も本発明の好適な実施形態である。 The polar polymer is polyamide, polyester, polycarbonate, polyacetal, polyphenylene sulfide, ABS resin, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl acetate, poly (meth) acrylate, polyether, polyketone, ionomer. A laminate that is at least one selected from the group consisting of polyurethane and polyurea is also a preferred embodiment of the present invention.
 本発明の樹脂組成物は良好な柔軟性を有し、力学特性に優れ、かつそれ自体が接着剤、プライマー等を要さずに極性重合体に対する優れた接着性を有し、被着体との接着後の安定性に優れる。さらに、本発明により、かかる樹脂組成物を使用した成形体および積層体が得られる。 The resin composition of the present invention has good flexibility, excellent mechanical properties, and itself has excellent adhesion to polar polymers without the need for an adhesive, primer, etc. Excellent stability after bonding. Furthermore, the molded object and laminated body which use this resin composition are obtained by this invention.
実施例1で用いるポリビニルアセタールにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In the polyvinyl acetal used in Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed the relationship.
 本発明の樹脂組成物に含有されるポリビニルアセタールは、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であるポリビニルアセタールであって、230℃において3時間加熱された前記ポリビニルアセタールをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A-B)/A<0.60   (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.50×10-3~1.00×10-2となるものである。
The polyvinyl acetal contained in the resin composition of the present invention has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000. When the polyvinyl acetal heated at 230 ° C. for 3 hours is measured by GPC, the peak top molecular weight (A) measured by a differential refractive index detector and an absorptiometric detector (measurement wavelength) 280 nm), the peak top molecular weight (B) measured by the following formula (1)
(AB) / A <0.60 (1)
And the absorbance at the peak top molecular weight (B) is 0.50 × 10 −3 to 1.00 × 10 −2 .
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP
試料濃度:1.00mg/ml
試料注入量:100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: HFIP containing 20 mmol / l sodium trifluoroacetate
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column: Showa Denko "GPC HFIP-806M"
Column temperature: 40 ° C
Flow rate: 1 ml / min Absorbance detector cell length: 10 mm
It is.
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことができるGPC装置を使用する。吸光光度検出器には、波長280nmにおける吸光度を測定できるものを使用する。吸光光度検出器の検出部のセルには、セル長(光路長)が10mmのものを使用する。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供されたポリビニルアセタールは、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ねポリビニルアセタールの濃度(mg/ml)に比例する。一方、吸光光度検出器により検出されるポリビニルアセタールは、所定の波長に吸収を有するもののみである。前記GPC測定により、ポリビニルアセタールの各分子量成分ごとの、濃度および所定の波長における吸光度を測定することができる。 In the GPC measurement in the present invention, a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used. An absorptiometric detector that can measure absorbance at a wavelength of 280 nm is used. A cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer. The absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths. The polyvinyl acetal subjected to the measurement is separated into each molecular weight component by a GPC column. The signal intensity by the differential refractive index detector is approximately proportional to the polyvinyl acetal concentration (mg / ml). On the other hand, polyvinyl acetal detected by an absorptiometric detector is only one having absorption at a predetermined wavelength. By the GPC measurement, it is possible to measure the concentration and absorbance at a predetermined wavelength for each molecular weight component of polyvinyl acetal.
前記GPC測定において測定されるポリビニルアセタールの溶解に用いる溶媒及び移動相として、20mmol/lの濃度でトリフルオロ酢酸ナトリウムを含有するHFIPを用いる。HFIPは、ポリビニルアセタール及びポリメタクリル酸メチル(以下、PMMAと略記する)を溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのポリビニルアセタールの吸着が防止される。前記GPC測定における流速は1ml/分、カラム温度は40℃とする。 HFIP containing sodium trifluoroacetate at a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the polyvinyl acetal measured in the GPC measurement. HFIP can dissolve polyvinyl acetal and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, adsorption of polyvinyl acetal to the column filler is prevented. The flow rate in the GPC measurement is 1 ml / min, and the column temperature is 40 ° C.
 前記GPC測定において、標品として単分散のPMMA(以下、標準PMMAと称する)を用いる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。 In the GPC measurement, monodisperse PMMA (hereinafter referred to as standard PMMA) is used as a standard. Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA. In the present invention, a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
 前記GPC測定の前に、ポリビニルアセタールを230℃において3時間加熱する。本発明においては、以下の方法でポリビニルアセタールを加熱する。加熱処理後の試料の色相の差異を吸光度の差異に明確に反映させるために、ポリビニルアセタールの粉末を圧力2MPa、230℃にて、3時間熱プレスすることにより、加熱されたポリビニルアセタール(フィルム)を得る。このときのフィルムの厚みは、600~800μmであり、概ね760μmであることが好ましい。 Before the GPC measurement, the polyvinyl acetal is heated at 230 ° C. for 3 hours. In the present invention, polyvinyl acetal is heated by the following method. In order to clearly reflect the difference in hue of the sample after the heat treatment in the difference in absorbance, the polyvinyl acetal (film) heated by pressing the polyvinyl acetal powder at 2 MPa and 230 ° C. for 3 hours. Get. At this time, the film has a thickness of 600 to 800 μm, preferably about 760 μm.
 加熱されたポリビニルアセタールを前述した溶媒に溶解させて測定試料を得る。測定試料のポリビニルアセタールの濃度は1.00mg/mlとし、注入量は100μlとする。但し、ポリビニルアセタールの粘度平均重合度が2400を超える場合、排除体積が増大するため、ポリビニルアセタールの濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光度はポリビニルアセタールの濃度に比例する。したがって、希釈した試料の濃度と実測された吸光度を用いて、ポリビニルアセタール濃度が1.00mg/mlの場合の吸光度を求める。 * A heated polyvinyl acetal is dissolved in the above-mentioned solvent to obtain a measurement sample. The concentration of polyvinyl acetal in the measurement sample is 1.00 mg / ml, and the injection volume is 100 μl. However, when the viscosity average polymerization degree of the polyvinyl acetal exceeds 2400, the excluded volume increases, and therefore the polyvinyl acetal concentration may not be measured with good reproducibility at a concentration of 1.00 mg / ml. In that case, an appropriately diluted sample (injection amount 100 μl) is used. Absorbance is proportional to the concentration of polyvinyl acetal. Therefore, the absorbance when the polyvinyl acetal concentration is 1.00 mg / ml is determined using the concentration of the diluted sample and the actually measured absorbance.
 図1は、後述する本発明の実施例において、ポリビニルアセタールをGPC測定して得られた、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算したポリビニルアセタールの分子量(横軸)に対して、示差屈折率検出器で測定された値をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(A)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。 FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of polyvinyl acetal and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm. The GPC measurement in the present invention will be further described with reference to FIG. In FIG. 1, the chromatogram represented by “RI” is a plot of values measured by a differential refractive index detector against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).
 図1において、「UV」で示されるクロマトグラムは、溶出容量から換算したポリビニルアセタールの分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定された吸光度をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(B)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。 In FIG. 1, the chromatogram indicated by “UV” is a plot of the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. is there. In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)を満たす。
 
(A-B)/A<0.60   (1)
The polyvinyl acetal has a peak top molecular weight (A) measured with a differential refractive index detector and a peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above. B) satisfies the following formula (1).

(AB) / A <0.60 (1)
 ピークトップ分子量(A)は、ポリビニルアセタールの分子量の指標となる値である。一方、ピークトップ分子量(B)は、ポリビニルアセタール中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、ポリビニルアセタール中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (A) is a value that serves as an index of the molecular weight of polyvinyl acetal. On the other hand, the peak top molecular weight (B) is derived from a component present in polyvinyl acetal and having absorption at 280 nm. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (B), (AB) / A becomes a positive value. As the peak top molecular weight (B) increases, (AB) / A decreases, and as the peak top molecular weight (B) decreases, (AB) / A increases. That is, when (AB) / A is large, it means that there are many components that absorb ultraviolet rays having a wavelength of 280 nm in the low molecular weight components in the polyvinyl acetal.
 (A-B)/Aが0.60以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、ポリビニルアセタールを用いて製造される成形体中の異物(未溶解分)が増加するおそれがあり、すなわち、未溶解分がある場合、異物界面で破断、破壊の起点になりうる為、力学特性、接着強度が低下する。(A-B)/Aは、好ましくは0.55未満であり、より好ましくは0.50未満である。 When (A−B) / A is 0.60 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, there is a possibility that foreign matter (undissolved part) in a molded product produced using polyvinyl acetal may increase. That is, if there is an undissolved part, it may become a starting point of fracture or fracture at the foreign substance interface. Therefore, the mechanical properties and adhesive strength are reduced. (AB) / A is preferably less than 0.55, more preferably less than 0.50.
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、ピークトップ分子量(B)における吸光度(測定波長280nm)が0.50×10-3~1.00×10-2となる必要がある。前記吸光度が0.50×10-3未満の場合には、ポリビニルアセタールを用いて製造される成形体中の異物(未溶解分)が増加するおそれがあり、上述の理由から、力学特性、接着強度が低下する。一方、前記吸光度が1.00×10-2を超える場合には、ポリビニルアセタールやそれを用いて製造される成形体が着色し易くなるおそれがあり、外観不良や力学特性が低下し、樹脂の劣化に伴う、接着後の保存安定性が悪化する恐れがある。前記吸光度は1.00×10-3~8.00×10-3が好ましく、1.50×10-3~6.50×10-3がより好ましい。 The polyvinyl acetal needs to have an absorbance (measurement wavelength of 280 nm) at a peak top molecular weight (B) of 0.50 × 10 −3 to 1.00 × 10 −2 when GPC measurement is performed by the method described above. . When the absorbance is less than 0.50 × 10 −3 , foreign matter (undissolved content) in a molded product produced using polyvinyl acetal may increase. For the above reasons, mechanical properties, adhesion Strength decreases. On the other hand, when the absorbance exceeds 1.00 × 10 −2 , polyvinyl acetal and a molded product produced using the same may be easily colored, resulting in poor appearance and poor mechanical properties. Storage stability after adhesion may deteriorate due to deterioration. The absorbance is preferably 1.00 × 10 −3 to 8.00 × 10 −3, and more preferably 1.50 × 10 −3 to 6.50 × 10 −3 .
 また、前記ポリビニルアセタールは、前記GPC測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0であることが好ましい。Mw及びMnは、前述したポリビニルアセタールの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。本発明におけるMw及びMnは、PMMA換算の値である。 The polyvinyl acetal has a weight average molecular weight Mw ratio Mw / Mn of 2.8 to 12.0 determined by a differential refractive index detector in the GPC measurement. Is preferred. Mw and Mn are determined from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of the polyvinyl acetal described above. Mw and Mn in the present invention are values in terms of PMMA.
 一般にMnは低分子量成分の影響を強く受ける平均分子量であり、Mwは高分子量成分の影響を強く受ける平均分子量である。Mw/Mnは高分子の分子量分布の指標として一般的に用いられている。Mw/Mnが小さい場合は、低分子量成分の割合が小さい高分子であることを示し、Mw/Mnが大きい場合には、低分子量成分の割合が大きい高分子であることを示す。 Generally, Mn is an average molecular weight that is strongly influenced by a low molecular weight component, and Mw is an average molecular weight that is strongly influenced by a high molecular weight component. Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.
 したがって、本発明において、Mw/Mnが2.8未満の場合、ポリビニルアセタールにおいて、低分子量成分の割合が小さいことを示す。Mw/Mnが2.8未満の場合、接着時の接着性が低下する恐れがある。Mw/Mnが2.9以上であることがより好ましく、3.1以上であることがさらに好ましい。一方、Mw/Mnが12.0を超える場合、ポリビニルアセタールにおいて、低分子量成分の割合が大きいことを示す。Mw/Mnが12.0を超える場合、成形体の力学特性が低下するおそれがある。Mw/Mnが11.0以下であることがより好ましく、8.0以下であることがさらに好ましい。 Therefore, in the present invention, when Mw / Mn is less than 2.8, it indicates that the proportion of the low molecular weight component is small in the polyvinyl acetal. When Mw / Mn is less than 2.8, there is a possibility that the adhesiveness at the time of adhesion is lowered. Mw / Mn is more preferably 2.9 or more, and further preferably 3.1 or more. On the other hand, when Mw / Mn exceeds 12.0, it shows that the ratio of a low molecular weight component is large in polyvinyl acetal. When Mw / Mn exceeds 12.0, the mechanical properties of the molded body may be deteriorated. Mw / Mn is more preferably 11.0 or less, and even more preferably 8.0 or less.
 ポリビニルアセタールのアセタール化度は50~85モル%であり、好ましくは55~82モル%であり、より好ましくは60~78モル%、さらに好ましくは65~75モル%である。アセタール化度が50モル%未満である場合、前記ポリビニルアセタール製造後の含水率が高くなる為、洗浄効率が下がり、樹脂内に残存する金属塩や酸などの不純物の混入やによる樹脂の劣化、さらに保存時に樹脂組成物の吸水により含水率が増加し、十分な接着性が発現しないおそれがある。一方、アセタール化度が85モル%を超える場合には、アセタール化反応の効率が著しく低下し、生産性が著しく悪化し商業性に欠ける。  The degree of acetalization of polyvinyl acetal is 50 to 85 mol%, preferably 55 to 82 mol%, more preferably 60 to 78 mol%, and further preferably 65 to 75 mol%. When the degree of acetalization is less than 50 mol%, the water content after the production of polyvinyl acetal is increased, so that the cleaning efficiency is lowered, and deterioration of the resin due to contamination of impurities such as metal salts and acids remaining in the resin, Furthermore, the water content increases due to water absorption of the resin composition during storage, and there is a possibility that sufficient adhesiveness may not be exhibited. On the other hand, when the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is remarkably lowered, the productivity is remarkably deteriorated, and the commercial property is lacking. *
 なお、アセタール化度はポリビニルアセタールを構成する全単量体単位に対する、アセタール化されたビニルアルコール単量体単位の割合を表す。原料のPVA中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。 The degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal. Among the vinyl alcohol monomer units in the raw material PVA, those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
 ポリビニルアセタールの粘度平均重合度は、JIS K6726に準じて測定される原料のPVAの粘度平均重合度で表される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](L/g)から次式により求めることができる。PVAの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
  P=([η]×10000/8.29)(1/0.62)
The viscosity average degree of polymerization of polyvinyl acetal is represented by the viscosity average degree of polymerization of the raw material PVA measured according to JIS K6726. That is, after re-saponifying PVA to a saponification degree of 99.5 mol% or more and purifying it, it can be obtained from the intrinsic viscosity [η] (L / g) measured in water at 30 ° C. according to the following formula. The viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
P = ([η] × 10000 / 8.29) (1 / 0.62)
 前記ポリビニルアセタールの粘度平均重合度は200~5000である。粘度平均重合度が200に満たない場合、ポリビニルアセタールの製造が困難な上、ポリビニルアセタールを用いた樹脂組成物からなる成形体の力学特性が低下することがある。粘度平均重合度は、250以上が好ましく、300以上がより好ましく、400以上がさらに好ましい。一方、粘度平均重合度が5000を超える場合、成形時の樹脂粘度が高くなりすぎて成形しにくくなる上、接着性が低下することがある。粘度平均重合度は、4500以下が好ましく、4000以下がより好ましく、3500以下がさらに好ましく、2500以下であることが特に好ましい。 The viscosity average polymerization degree of the polyvinyl acetal is 200 to 5,000. When the viscosity average degree of polymerization is less than 200, it is difficult to produce polyvinyl acetal, and the mechanical properties of a molded article made of a resin composition using polyvinyl acetal may be lowered. The viscosity average degree of polymerization is preferably 250 or more, more preferably 300 or more, and still more preferably 400 or more. On the other hand, when the viscosity average polymerization degree exceeds 5,000, the resin viscosity at the time of molding becomes too high and it becomes difficult to mold, and the adhesiveness may be lowered. The viscosity average degree of polymerization is preferably 4500 or less, more preferably 4000 or less, further preferably 3500 or less, and particularly preferably 2500 or less.
 前記ポリビニルアセタールのビニルエステル単量体単位の含有量は0.1~20モル%であり、好ましくは0.3~18モル%であり、より好ましくは0.5~15モル%であり、更に好ましくは0.7~13モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができない。一方、ビニルエステル単量体単位の含有量が20モル%を超える場合には、前記ポリビニルアセタールを含有する樹脂組成物の保存安定性が低下し、樹脂劣化が起こり、力学特性が低下するおそれがある。 The content of the vinyl ester monomer unit of the polyvinyl acetal is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%, Preferably, it is 0.7 to 13 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, polyvinyl acetal cannot be stably produced. On the other hand, when the content of the vinyl ester monomer unit exceeds 20 mol%, the storage stability of the resin composition containing the polyvinyl acetal is lowered, the resin is deteriorated, and the mechanical properties may be lowered. is there.
 前記ポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下である。 The content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less, more preferably 10%. It is less than mol%.
 本発明の樹脂組成物に含有されるポリビニルアセタールは、通常、PVAをアセタール化することにより製造する。 The polyvinyl acetal contained in the resin composition of the present invention is usually produced by acetalizing PVA.
 ポリビニルアセタールは、アミド基、アミノ基、エステル基、カルボニル基、ビニル基から選ばれる少なくとも1種類の官能基を側鎖に有していてもよい。該官能基はアミド基またはアミノ基であることが好ましく、その含有量はアセタール化前のPVAの単量体単位数に対して20モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましい。該官能基の含有量が20モル%以上の場合は、ポリビニルアセタールの製造が困難になる場合がある。 The polyvinyl acetal may have at least one functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group in the side chain. The functional group is preferably an amide group or an amino group, and the content thereof is preferably 20 mol% or less, more preferably 10 mol% or less, more preferably 5 mol% relative to the number of monomer units of PVA before acetalization. % Or less is more preferable. When the content of the functional group is 20 mol% or more, it may be difficult to produce polyvinyl acetal.
 側鎖に官能基を導入する手法に特に制限はなく、たとえば後述する製造方法において、前記の官能基を有するコモノマーと酢酸ビニルを共重合して得る方法、前記官能基を含有するアルデヒドを用いてアセタール化する方法、アセタール化されなかったビニルアルコール単位の水酸基をカルボン酸と反応させる方法などが挙げられる。 There is no particular limitation on the method for introducing a functional group into the side chain. For example, in the production method described later, a method obtained by copolymerizing a comonomer having the functional group and vinyl acetate, and an aldehyde containing the functional group. Examples thereof include a method for acetalization and a method for reacting a hydroxyl group of a vinyl alcohol unit which has not been acetalized with a carboxylic acid.
 原料PVAの製造に用いられるビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。 Examples of vinyl esters used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic. Examples thereof include vinyl acid, and vinyl acetate is particularly preferable.
 酢酸ビニルとの前記共重合に用いられ、前記官能基を導入するために共重合してもよいコモノマーとしては、カルボニル基含有単量体、アミノ基含有単量体、ビニル基含有単量体、N-ビニルアミド系単量体、および(メタ)アクリルアミド系単量体などが挙げられる。 As a comonomer used for the copolymerization with vinyl acetate and copolymerized to introduce the functional group, a carbonyl group-containing monomer, an amino group-containing monomer, a vinyl group-containing monomer, Examples thereof include N-vinylamide monomers and (meth) acrylamide monomers.
 カルボニル基含有単量体としては、ジアセトンアクリルアミド等が挙げられる。 Examples of the carbonyl group-containing monomer include diacetone acrylamide.
 アミノ基含有単量体としては、アリルアミン、ジメチルアミノプロピルメタアクリルアミド、ジメチルアミノプロピルアクリルアミド、ジメチルアミノエチルアクリレート、アクリロイルモルフォリン等が、ビニル基含有単量体としては、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル等が挙げられる。 Examples of amino group-containing monomers include allylamine, dimethylaminopropyl methacrylamide, dimethylaminopropyl acrylamide, dimethylaminoethyl acrylate, and acryloylmorpholine. Examples of vinyl group-containing monomers include trimethylolpropane diallyl ether and pentaerythritol. And triallyl ether.
 N-ビニルアミド系単量体としては、例えば、N-ビニル-2-ピロリドン類およびN-ビニル-2-カプロラクタム類、N-ビニルホルムアミド、N-メチル-N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミドなどが挙げられる。 Examples of N-vinylamide monomers include N-vinyl-2-pyrrolidones and N-vinyl-2-caprolactams, N-vinylformamide, N-methyl-N-vinylformamide, N-vinylacetamide, N -Methyl-N-vinylacetamide and the like.
 N-ビニル-2-ピロリドン類としては、N-ビニル-2-ピロリドン、N-ビニル-3-プロピル-2-ピロリドン、N-ビニル-5,5-ジメチル-2-ピロリドン、N-ビニル―3,5-ジメチル-2-ピロリドンなどが挙げられる。 Examples of N-vinyl-2-pyrrolidones include N-vinyl-2-pyrrolidone, N-vinyl-3-propyl-2-pyrrolidone, N-vinyl-5,5-dimethyl-2-pyrrolidone, N-vinyl-3 , 5-dimethyl-2-pyrrolidone and the like.
 (メタ)アクリルアミド系単量体としては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、t-ブチル(メタ)アクリルアミドスルフォン酸等の(メタ)アクリルアミド誘導体等が挙げられる。 (Meth) acrylamide monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, t-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N- Such as methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, t-butyl (meth) acrylamide sulfonic acid, etc. ) Acrylamide derivatives and the like.
 前記単量体の中でも、均質な樹脂組成物を得る観点から、N-ビニルアセトアミド、N-ビニル-2-カプロラクタム、N-メトキシメチルメタアクリルアミドがさらに好ましい。 Among the monomers, N-vinylacetamide, N-vinyl-2-caprolactam, and N-methoxymethylmethacrylamide are more preferable from the viewpoint of obtaining a homogeneous resin composition.
 また、原料PVAは、ビニルエステルを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによっても製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。 The raw material PVA is also produced by polymerizing a vinyl ester in the presence of a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
 ビニルエステルを重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その方法の中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式にても実施可能である。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート、パーオキシジカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられるが、特に、60℃での半減期が10~110分の有機過酸化物系開始剤が好ましく、中でもパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。 Examples of methods for polymerizing vinyl esters include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among the methods, a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed. In terms of enhancing the effect of the present invention, a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable. The lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used. When performing the polymerization reaction by the bulk polymerization method or the solution polymerization method, the reaction can be carried out by either a batch method or a continuous method. Examples of the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy- 2,4-dimethylvaleronitrile) and other azo initiators; benzoyl peroxide, n-propyl peroxycarbonate, organic peroxide initiators such as peroxydicarbonate, and the like, as long as the effects of the present invention are not impaired. In particular, organic peroxide initiators having a half-life of 10 to 110 minutes at 60 ° C. are preferred, and peroxydicarbonate is particularly preferred. There is no particular limitation on the polymerization temperature for carrying out the polymerization reaction, but a range of 5 ° C to 200 ° C is suitable.
 ビニルエステルをラジカル重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン類;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミドプロピルトリメトキシシラン、3-(メタ)アクリルアミドプロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステルと共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。 When the vinyl ester is radically polymerized, a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired. Examples of such a monomer include α-olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride; Derivatives thereof; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n methacrylate -Methacrylic acid esters such as propyl and isopropyl methacrylate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether and n-butyl vinyl ether; Ethylene glycol vinyl ether, 1,3- Hydroxyl group-containing vinyl ethers such as lopandiol vinyl ether and 1,4-butanediol vinyl ether; allyl ethers such as allyl acetate, propyl allyl ether, butyl allyl ether, and hexyl allyl ether; monomers having an oxyalkylene group; Propenyl, 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl-3-butene- Hydroxyl group-containing α-olefins such as 1-ol; Monomers having sulfonic acid groups such as ethylene sulfonic acid, allyl sulfonic acid, methallyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid; vinyloxyethyl Trimethylammonium chloride, vinyloxybuty Trimethylammonium chloride, vinyloxyethyldimethylamine, vinyloxymethyldiethylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidodimethylamine, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine Monomers having a cationic group such as allylethylamine; vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, 3- (meth) acrylamide Propyltrimethoxysilane, 3- (meth) acrylamidopropyltri Such monomers include having a silyl group such Tokishishiran. The amount of the monomer copolymerizable with these vinyl esters varies depending on the purpose and application of use, but is usually 20 mol in a ratio based on all monomers used for copolymerization. % Or less, preferably 10 mol% or less.
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAを得ることができる。 PVA can be obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使
用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.00
2~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加して添加しても良い。 
As the catalyst for the saponification reaction of the polyvinyl ester, an alkaline substance is usually used. Examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The amount of the alkaline substance used is 0.00 in terms of a molar ratio based on the vinyl ester monomer unit of the polyvinyl ester.
It is preferably in the range of 2 to 0.2, particularly preferably in the range of 0.004 to 0.1. The saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added and added during the saponification reaction.
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。このとき、メタノールの含水率を好ましくは0.001~1質量%、より好ましくは0.003~0.9質量%、特に好ましくは0.005~0.8質量%に調整する。 Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. At this time, the water content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応は、好ましくは5分間~10時間、より好ましくは10分間~5時間行う。けん化反応は、バッチ法および連続法のいずれの方式によっても行うことができる。けん化反応の終了後に、必要に応じて、残存する触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などを挙げることができる。 The saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C. The saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours. The saponification reaction can be performed by either a batch method or a continuous method. After completion of the saponification reaction, the remaining catalyst may be neutralized as necessary. Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
 けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、反応後添加された酢酸などのカルボン酸により中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。後述するように、本発明において、原料PVAがカルボン酸のアルカリ金属塩を、アルカリ金属の質量換算で0.5質量%以下含有することが好ましい。このようなPVAを得るために、けん化後、PVAを洗浄しても良い。 The alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed. As will be described later, in the present invention, the raw material PVA preferably contains an alkali metal salt of carboxylic acid in an amount of 0.5% by mass or less in terms of the mass of the alkali metal. In order to obtain such PVA, the PVA may be washed after saponification.
 本発明において、GPC測定により求められる各値がそれぞれ上述した範囲に入るように調整する方法としては、例えば、以下の方法を用いて製造したPVAをポリビニルアセタールの原料として用いる方法が挙げられる。 In the present invention, examples of a method for adjusting each value obtained by GPC measurement so as to fall within the above-described range include a method using PVA produced by the following method as a raw material for polyvinyl acetal.
 A)原料ビニルエステルに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルを重合に用いる。 A) A vinyl ester from which a radical polymerization inhibitor contained in the raw material vinyl ester has been removed in advance is used for the polymerization.
 B)原料ビニルエステル中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。 B) A vinyl ester having a total content of impurities contained in the raw material vinyl ester of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and even more preferably 5 to 1000 ppm is used for radical polymerization. Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
 C)アルコール溶媒中にて原料ビニルエステルをラジカル重合し、未反応ビニルエステルを回収再利用する一連の工程にて、アルコールや微量の水分によるビニルエステルの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。 C) In order to suppress alcoholic decomposition and hydrolysis of vinyl ester due to alcohol and a small amount of water in a series of steps of radical polymerization of raw vinyl ester in alcohol solvent and recovery and reuse of unreacted vinyl ester Organic acids, specifically glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid and other hydroxycarboxylic acids; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc. Add polyvalent carboxylic acid to suppress the production of aldehydes such as acetaldehyde generated by decomposition as much as possible. The addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester.
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステル中に含まれる不純物として上述したものが挙げられる。 D) As the solvent used for the polymerization, a solvent having a total impurity content of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and still more preferably 5 to 1000 ppm. Examples of the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester.
 E)ビニルエステルをラジカル重合する際に、ビニルエステルに対する溶媒の比を高める。 E) When the vinyl ester is radically polymerized, the ratio of the solvent to the vinyl ester is increased.
 F)ビニルエステルをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。 F) An organic peroxide is used as a radical polymerization initiator used for radical polymerization of vinyl ester. Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
 G)ビニルエステルのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、例えば、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。 G) When an inhibitor is added after radical polymerization of the vinyl ester in order to suppress polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator. Examples of the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction. Specifically, for example, isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene 2,3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl -1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene 1,3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-ethoxy- , 3-butadiene, 2-ethoxy-1,3-butadiene, 2-nitro-1,3-butadiene, chloroprene, 1-chloro-1,3-butadiene, 1-bromo-1,3-butadiene, 2-bromo 1,3-butadiene, fulvene, tropone, osymene, ferlandene, myrcene, farnesene, semblene, sorbic acid, sorbic acid ester, sorbic acid salt, abietic acid, etc. Conjugated dienes; from conjugated structures with three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Conjugated triene: cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc. Carbon - include polyenes such as conjugated polyene consisting of carbon-carbon double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Further, p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, 2-phenyl-1-propene, 2-phenyl-1-butene, 2,4-diphenyl-4-methyl-1-pentene, 3,5-diphenyl-5 Methyl-2-heptene, 2,4,6-triphenyl-4,6-dimethyl-1-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-2-nonene, 1,3- Diphenyl-1-butene, 2,4-diphenyl-4-methyl-2-pentene, 3,5-diphenyl-5-methyl-3-heptene, 1,3,5-triphenyl-1-hexene, 2,4 , 6-triphenyl-4,6-dimethyl-2-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-3-nonene, 1-phenyl-1,3-butadiene, 1,4 -The Aromatic compounds such as Eniru 1,3-butadiene.
 H)残存するビニルエステルが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。 H) An alcohol solution of polyvinyl ester from which the remaining vinyl ester has been removed as much as possible is used for the saponification reaction. Preferably, the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
 A)~H)を適宜組み合わせて製造したPVAをアセタール化して前記ポリビニルアセタールを得ることが好ましい。 It is preferable to obtain the polyvinyl acetal by acetalizing PVA produced by appropriately combining A) to H).
 PVAのアセタール化は、例えば次のような反応条件で行うことができるが、これに限定されない。80~100℃に加熱してPVAを水に溶解させた後、10~60分かけて徐々に冷却することにより、PVAの3~40質量%水溶液を得る。温度が-10~30℃まで低下したところで、前記水溶液にアルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その際、一定のアセタール化度に達したポリビニルアセタールが析出する。その後反応液を30~300分かけて25~80℃まで昇温し、その温度を10分~24時間保持する(この温度を追い込み時反応温度とする)。次に反応溶液に、必要に応じてアルカリなどの中和剤を添加して酸触媒を中和し、水洗、乾燥することにより、ポリビニルアセタールが得られる。 The acetalization of PVA can be performed, for example, under the following reaction conditions, but is not limited thereto. PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA. When the temperature falls to −10 to 30 ° C., an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. At that time, polyvinyl acetal having reached a certain degree of acetalization is precipitated. Thereafter, the temperature of the reaction solution is raised to 25 to 80 ° C. over 30 to 300 minutes, and the temperature is maintained for 10 minutes to 24 hours (this temperature is set as the reaction temperature at the time of driving). Next, a neutralizing agent such as an alkali is added to the reaction solution as necessary to neutralize the acid catalyst, and the resultant is washed with water and dried to obtain polyvinyl acetal.
 一般的に、このような反応や処理の工程においてポリビニルアセタールからなる凝集粒子が生じ、粗粒子を形成しやすい。このような粗粒子が生じた場合には、バッチ間のばらつきの原因になるおそれがある。それに対して、上述した所定の方法を用いて製造したPVAを原料とした場合、従来品より粗粒子の生成が抑制される。 Generally, aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed. When such coarse particles are generated, there is a risk of causing variation between batches. On the other hand, when PVA produced using the above-described predetermined method is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product.
 アセタール化反応に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能である。例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられる。また一般には、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向がある。それに対して、上述した所定の方法を用いて製造したPVAを原料とした場合、粗粒子の生成が抑制される。 The acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. For example, acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. is there. On the other hand, when PVA produced using the above-described predetermined method is used as a raw material, the generation of coarse particles is suppressed.
 本発明において、アセタール化反応に用いるアルデヒドは特に限定されないが、公知の炭化水素基を有するアルデヒドおよびそのアルキルアセタール化物が挙げられる。該炭化水素基を有するアルデヒドの中で、脂肪族アルデヒドおよびそのアルキルアセタールとしては、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、イソバレルアルデヒド、ヘキシルアルデヒド、2-エチルブチルアルデヒド、ピバルアルデヒド、オクチルアルデヒド、2-エチルヘキシルアルデヒド、ノニルアルデヒド、デシルアルデヒド、ドデシルアルデヒド等が、脂環族アルデヒドおよびそのアルキルアセタールとしては、シクロペンタンアルデヒド、メチルシクロペンタンアルデヒド、ジメチルシクロペンタンアルデヒド、シクロヘキサンアルデヒド、メチルシクロヘキサンアルデヒド、ジメチルシクロヘキサンアルデヒド、シクロヘキサンアセトアルデヒド等が、環式不飽和アルデヒドおよびそのアルキルアセタールとしては、シクロペンテンアルデヒド、シクロヘキセンアルデヒド等が、芳香族あるいは不飽和結合含有アルデヒドおよびそのアルキルアセタールとしては、ベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、メトキシベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、クミンアルデヒド、ナフチルアルデヒド、アントラアルデヒド、シンナムアルデヒド、クロトンアルデヒド、アクロレインアルデヒド、7-オクテン-1-アール等が、複素環アルデヒドおよびそのアルキルアセタールフルフラールアルデヒド、メチルフルフラールアルデヒド等が挙げられる。これらのアルデヒドの中で、炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましく用いられる。本発明においては、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。 In the present invention, the aldehyde used in the acetalization reaction is not particularly limited, and examples thereof include known aldehydes having a hydrocarbon group and alkyl acetalized products thereof. Among the aldehydes having a hydrocarbon group, aliphatic aldehydes and alkyl acetals thereof include formaldehyde (including paraformaldehyde), acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, isovaleraldehyde, hexylaldehyde, 2-ethyl Butyraldehyde, pivalaldehyde, octyl aldehyde, 2-ethylhexyl aldehyde, nonyl aldehyde, decyl aldehyde, dodecyl aldehyde, etc. are alicyclic aldehydes and their alkyl acetals such as cyclopentane aldehyde, methyl cyclopentane aldehyde, dimethyl cyclopentane aldehyde , Cyclohexanealdehyde, methylcyclohexanealdehyde, dimethylcyclohexanealdehyde, cyclohexane Setaldehyde and the like are cyclic unsaturated aldehydes and alkyl acetals thereof, such as cyclopentene aldehyde and cyclohexene aldehyde, and aromatic and unsaturated bond-containing aldehydes and alkyl acetals thereof are benzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, methoxybenzaldehyde, and the like. , Phenylacetaldehyde, phenylpropylaldehyde, cuminaldehyde, naphthylaldehyde, anthraldehyde, cinnamaldehyde, crotonaldehyde, acroleinaldehyde, 7-octen-1-al, etc., heterocyclic aldehydes and their alkyl acetal furfural aldehyde, methyl furfural aldehyde, etc. Is mentioned. Among these aldehydes, aldehydes having 1 to 8 carbon atoms are preferable, aldehydes having 4 to 6 carbon atoms are more preferable, and n-butyraldehyde is particularly preferably used. In the present invention, polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
 本発明においては、ポリビニルアルコール樹脂をアセタール化するために用いられるアルデヒドとして、アミド基、アミノ基、エステル基、カルボニル基、ビニル基から選ばれる官能基を有するアルデヒドまたはそのアルキルアセタール化物を用いてもよい。中でも、アミノ基を官能基として有するアルデヒドが好ましい。 アミノ基を官能基として有するアルデヒドとしては、アミノアセトアルデヒド、ジメチルアミノアセトアルデヒド、ジエチルアミノアセトアルデヒド、アミノプロピオンアルデヒド、ジメチルアミノプロピオンアルデヒド、アミノブチルアルデヒド、アミノペンチルアルデヒド、アミノベンズアルデヒド、ジメチルアミノベンズアルデヒド、エチルメチルアミノベンズアルデヒド、ジエチルアミノベンズアルデヒド、ピロリジルアセトアルデヒド、ピペリジルアセトアルデヒド、ピリジルアセトアルデヒド等が挙げられ、アミノブチルアルデヒドが生産性の観点からより好ましい。 ビニル基を官能基として有するアルデヒドとしてはアクロレイン等が挙げられる。 In the present invention, as an aldehyde used for acetalizing a polyvinyl alcohol resin, an aldehyde having a functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group or an alkyl acetalized product thereof may be used. Good. Among these, an aldehyde having an amino group as a functional group is preferable. Examples of the aldehyde having an amino group as a functional group include aminoacetaldehyde, dimethylaminoacetaldehyde, diethylaminoacetaldehyde, aminopropionaldehyde, dimethylaminopropionaldehyde, aminobutyraldehyde, aminopentylaldehyde, aminobenzaldehyde, dimethylaminobenzaldehyde, ethylmethylaminobenzaldehyde, Examples include diethylaminobenzaldehyde, pyrrolidylacetaldehyde, piperidylacetaldehyde, pyridylacetaldehyde, and aminobutyraldehyde is more preferable from the viewpoint of productivity. Examples of the aldehyde having a vinyl group as a functional group include acrolein.
 カルボニル基を官能基として有するアルデヒドとしては、グリオキシル酸およびその金属塩あるいはアンモニウム塩、2-ホルミル酢酸およびその金属塩あるいはアンモニウム塩、3-ホルミルプロピオン酸およびその金属塩あるいはアンモニウム塩、5-ホルミルペンタン酸およびその金属塩あるいはアンモニウム塩、4-ホルミルフェノキシ酢酸およびその金属塩あるいはアンモニウム塩、2-カルボキシベンズアルデヒドおよびその金属塩あるいはアンモニウム塩、4-カルボキシベンズアルデヒドおよびその金属塩あるいはアンモニウム塩、2,4-ジカルボキシベンズアルデヒドおよびその金属塩あるいはアンモニウム塩等が挙げられる。 Examples of the aldehyde having a carbonyl group as a functional group include glyoxylic acid and its metal salt or ammonium salt, 2-formylacetic acid and its metal salt or ammonium salt, 3-formylpropionic acid and its metal salt or ammonium salt, 5-formylpentane Acid and its metal salt or ammonium salt, 4-formylphenoxyacetic acid and its metal salt or ammonium salt, 2-carboxybenzaldehyde and its metal salt or ammonium salt, 4-carboxybenzaldehyde and its metal salt or ammonium salt, 2,4- Examples include dicarboxybenzaldehyde and its metal salt or ammonium salt.
 エステル基を官能基として有するアルデヒドとしては、グリオキシル酸メチル、グリオキシル酸エチル、ホルミル酢酸メチル、ホルミル酢酸メチル、3-ホルミルプロピオン酸メチル、3-ホルミルプロピオン酸エチル、5-ホルミルペンタン酸メチル、5-ホルミルペンタン酸エチル等のが挙げられる。 Examples of the aldehyde having an ester group as a functional group include methyl glyoxylate, ethyl glyoxylate, methyl formyl acetate, methyl formyl acetate, methyl 3-formylpropionate, ethyl 3-formylpropionate, methyl 5-formylpentanoate, 5- Examples include ethyl formylpentanoate.
 また、本発明の特性を損なわない少ない範囲で、複素環アルデヒドおよびそのアルキルアセタール、水酸基を有するアルデヒド、スルホン酸基を有するアルデヒド、リン酸基を有するアルデヒド、シアノ基、ニトロ基または4級アンモニウム塩などを有するアルデヒド、ハロゲン原子を有するアルデヒドなどを使用してもよい。 In addition, the heterocyclic aldehyde and its alkyl acetal, an aldehyde having a hydroxyl group, an aldehyde having a sulfonic acid group, an aldehyde having a phosphoric acid group, a cyano group, a nitro group, or a quaternary ammonium salt may be used as long as the characteristics of the present invention are not impaired. Or an aldehyde having a halogen atom may be used.
 本発明の樹脂組成物おける前記ポリビニルアセタールの含有量は特に限定されないが、樹脂組成物100質量部に対して0.01~80質量部が好ましい。樹脂組成物における前記ポリビニルアセタールの含有量がこのような範囲であると、力学特性が優れ、かつ接着性も良好である。当該含有量が0.01質量部未満の場合、樹脂組成物にした際の接着力が不十分となるおそれがある。当該含有量は1質量部以上がより好ましい。一方、当該含有量が80質量部を超える場合、得られる成形体が硬くなり、良好な力学特性が発現しにくくなる。当該含有量は、50質量部以下がより好ましい。 The content of the polyvinyl acetal in the resin composition of the present invention is not particularly limited, but is preferably 0.01 to 80 parts by mass with respect to 100 parts by mass of the resin composition. When the content of the polyvinyl acetal in the resin composition is in such a range, the mechanical properties are excellent and the adhesiveness is also good. When the said content is less than 0.01 mass part, there exists a possibility that the adhesive force at the time of setting it as a resin composition may become inadequate. The content is more preferably 1 part by mass or more. On the other hand, when the said content exceeds 80 mass parts, the molded object obtained becomes hard and it becomes difficult to express a favorable mechanical characteristic. The content is more preferably 50 parts by mass or less.
 本発明の樹脂組成物に含まれるポリエステル、ポリアミド、ポリオレフィン、α-オレフィン(共)重合体、セルロース系樹脂、アクリル系樹脂、スチレン系樹脂としては、特に制限なく公知のものが使用できる。たとえば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系樹脂;ナイロン6、ナイロン12等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のα-オレフィン(共)重合体;α-オレフィンとの共重合体としては、エチレン-プロピレン共重合体ゴム(EPR)及びエチレン-プロピレン-ジエン共重合体ゴム(EPDM)が挙げられる。また、エチレンとα-オレフィン以外の単量体との共重合体の典形的な例としてはエチレン-酢酸ビニル共重合体(EVA)、またはそのけん化物が挙げられる。
 さらに、セルロース、酢酸セルロース、エチルセルロース、トリアセチルセルロース等のセルロース系樹脂;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリプロピル(メタ)アクリレート、ポリイソプロピル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリ-sec-ブチル(メタ)アクリレート、ポリ-tert-ブチル(メタ)アクリレート等のアクリル系樹脂;ポリスチレン、芳香族ビニル化合物と共役ジエン化合物からなる重合体ブロックを有するブロック共重合体又はその水素添加物等のスチレン系樹脂;等の樹脂、およびこれらの共重合体が挙げられる。
As the polyester, polyamide, polyolefin, α-olefin (co) polymer, cellulose resin, acrylic resin, and styrene resin contained in the resin composition of the present invention, known ones can be used without particular limitation. For example, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate; polyamide resins such as nylon 6 and nylon 12; α-olefin (co) polymers such as polyethylene and polypropylene; α-olefins Examples of the copolymer include ethylene-propylene copolymer rubber (EPR) and ethylene-propylene-diene copolymer rubber (EPDM). A typical example of a copolymer of ethylene and a monomer other than α-olefin is an ethylene-vinyl acetate copolymer (EVA) or a saponified product thereof.
Further, cellulose resins such as cellulose, cellulose acetate, ethyl cellulose, triacetyl cellulose; polymethyl (meth) acrylate, polyethyl (meth) acrylate, polypropyl (meth) acrylate, polyisopropyl (meth) acrylate, poly-n-butyl ( Acrylic resins such as (meth) acrylate, poly-sec-butyl (meth) acrylate, poly-tert-butyl (meth) acrylate, etc .; block copolymer having a polymer block composed of polystyrene, an aromatic vinyl compound and a conjugated diene compound Or a styrenic resin such as a hydrogenated product thereof; a resin such as; and a copolymer thereof.
 これらの中で、透明性、二次加工性等を勘案すると、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂もしくはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系樹脂が好ましく、さらに防湿性を勘案するとポリエチレン、ポリプロピレン等のオレフィン系樹脂がより好ましく、ポリプロピレンが特に好ましい。また、α-オレフィンとの共重合体として、エチレンとα-オレフィン以外の単量体との共重合体である、エチレン-酢酸ビニル共重合体(EVA)も好ましい。 Among these, considering transparency, secondary processability, etc., polyolefin resins such as polyethylene and polypropylene, or polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate are preferable, and moisture-proof Considering the properties, olefin resins such as polyethylene and polypropylene are more preferable, and polypropylene is particularly preferable. Further, as a copolymer with α-olefin, an ethylene-vinyl acetate copolymer (EVA), which is a copolymer of ethylene and a monomer other than α-olefin, is also preferable.
 上記ポリプロピレンとしては、プロピレン単独重合体、プロピレンとプロピレン以外のエチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン等のα-オレフィンとのランダムまたはブロック共重合体、さらにこれら重合体の混合物が挙げられ、その中でも、プロピレン単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレン-1-ブテンランダム三元共重合体が好適である。 Examples of the polypropylene include propylene homopolymers, random or block copolymers of propylene and α-olefins such as ethylene other than propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, Further, a mixture of these polymers may be mentioned, among which propylene homopolymer, propylene-ethylene random copolymer, and propylene-ethylene-1-butene random terpolymer are preferable.
 また、上記ポリプロピレンには、本発明の効果を阻害しない程度で、他の樹脂と共重合体を使用することができる。共重合モノマーとしては特に制限されないが、エチレンと酢酸ビニル、アクリル酸エステル、アクリル酸モノマーとの共重合体、またはこれらの重合体の2種以上の混合物を挙げることができる。 Also, other resins and copolymers can be used for the polypropylene as long as the effects of the present invention are not impaired. Although it does not restrict | limit especially as a copolymerization monomer, The copolymer of ethylene and vinyl acetate, acrylic acid ester, an acrylic acid monomer, or 2 or more types of mixtures of these polymers can be mentioned.
 また、本発明において使用する熱可塑性樹脂として、上記の樹脂1種を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 In addition, as the thermoplastic resin used in the present invention, one kind of the above resin may be used alone, or two or more kinds may be used in combination.
 さらに、接着性の観点から、熱可塑性樹脂とポリビニルアセタールの相容性が低下する場合には、用いられる熱可塑性樹脂が極性官能基を含む熱可塑性樹脂であってもよいし、それを併用してもよい。極性官能基を含む熱可塑性樹脂はポリビニルアセタールとの相溶性が良好なので、樹脂組成物の力学性能に優れ、被着体との接着性にも優れる。 Furthermore, from the viewpoint of adhesiveness, when the compatibility between the thermoplastic resin and polyvinyl acetal decreases, the thermoplastic resin used may be a thermoplastic resin containing a polar functional group, or a combination thereof. May be. Since the thermoplastic resin containing a polar functional group has good compatibility with polyvinyl acetal, it is excellent in the mechanical performance of the resin composition and excellent in adhesion to the adherend.
 本発明の樹脂組成物は、熱可塑性樹脂とポリビニルアセタールに加えて、成形性、柔軟性を付与するなどの目的で、必要に応じてゴム用軟化剤を含有していてもよい。このような軟化剤としては、例えば、プロセスオイルまたはエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤が挙げられる。これは芳香族環、ナフテン環およびパラフィンの三者が合わさった混合物であって、全炭素数の中でパラフィン鎖の炭素数が50質量%以上を占めるものがパラフィン系と呼ばれ、ナフテン環の炭素数が30~45質量%のものがナフテン系、また芳香族炭素数が30%よりも多いものが芳香族系と称されている。通常、熱可塑性樹脂100質量部に対して5~500質量部のゴム用軟化剤が配合される。 The resin composition of the present invention may contain a rubber softener as necessary for the purpose of imparting moldability and flexibility in addition to the thermoplastic resin and polyvinyl acetal. Examples of such softeners include mineral oil rubber softeners called process oils or extender oils. This is a mixture of the aromatic ring, naphthene ring and paraffin, and the paraffin chain having 50% by mass or more of the total number of carbon atoms is called paraffinic. Those having 30 to 45% by mass of carbon are called naphthenes, and those having more than 30% of aromatics are called aromatics. Usually, 5 to 500 parts by mass of rubber softener is blended with 100 parts by mass of the thermoplastic resin.
 また、本発明の樹脂組成物は、上記した成分以外に、発明の効果を阻害しない範囲で、必要に応じて可塑剤、無機充填剤、相溶化剤、滑剤、光安定剤、耐候剤、加工助剤、顔料や色素などの着色剤、難燃剤、帯電防止剤、軟化剤、可塑剤、艶消し剤、充填剤、シリコンオイル、ブロッキング防止剤、紫外線吸収剤、酸化防止剤、離型剤、密着促進剤、発泡剤、香料などの他の成分の1種または2種以上を含有していてもよい。前記ポリビニルアセタール以外の成分の含有量は、50質量%以下であり、20質量%以下が好ましく、10質量%以下がより好ましい。 In addition to the above-described components, the resin composition of the present invention is a plasticizer, inorganic filler, compatibilizer, lubricant, light stabilizer, weathering agent, processing as long as it does not inhibit the effects of the invention. Auxiliaries, colorants such as pigments and dyes, flame retardants, antistatic agents, softeners, plasticizers, matting agents, fillers, silicone oil, antiblocking agents, UV absorbers, antioxidants, mold release agents, You may contain 1 type, or 2 or more types of other components, such as an adhesion promoter, a foaming agent, and a fragrance | flavor. Content of components other than the said polyvinyl acetal is 50 mass% or less, 20 mass% or less is preferable and 10 mass% or less is more preferable.
 上記可塑剤は、本発明の効果を損なわず、なおかつポリビニルアセタールとの相溶性に問題がなければ特に制限はない。前記可塑剤としては、本発明の効果を損なわず、ポリビニルアセタールとの相溶性に問題がなければ特に制限はない。可塑剤として、両末端に水酸基を有するオリゴアルキレングリコールとカルボン酸とのモノまたはジエステル、ジカルボン酸とアルコールとのジエステルなどを用いることができる。これらは単独で、あるいは2種以上を組み合わせて用いることができる。具体的には、トリエチレングリコール-ジ-2-エチルヘキサノエート、テトラエチレングリコール-ジ-2-エチルヘキサノエート、トリエチレングリコール-ジ-n-ヘプタノエート、テトラエチレングリコール-ジ-n-ヘプタノエート等のトリまたはテトラエチレングリコールなどの両末端に水酸基を有するオリゴアルキレングリコールとカルボン酸とのモノまたはジエステル;ジオクチルフタレート、ジブチルフタレート、ジオクチルアジペート、ジブチルアジペート等のジカルボン酸とアルコールとのジエステルが挙げられる。 The above plasticizer is not particularly limited as long as it does not impair the effects of the present invention and there is no problem in compatibility with polyvinyl acetal. The plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with polyvinyl acetal. As the plasticizer, a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and an alcohol, or the like can be used. These can be used alone or in combination of two or more. Specifically, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-n-heptanoate, tetraethylene glycol-di-n-heptanoate Mono- or diesters of oligoalkylene glycols having hydroxyl groups at both ends, such as tri- or tetraethylene glycol, and the like; diesters of dicarboxylic acids and alcohols such as dioctyl phthalate, dibutyl phthalate, dioctyl adipate, dibutyl adipate, etc. .
 本発明の樹脂組成物の製造法は特に限定されず、本発明の樹脂組成物において用いられる上記した成分を均一に混合し得る方法であればいずれの方法で製造してもよく、通常は溶融混練法が用いられる。溶融混練は、例えば、単軸押出機、2軸押出機、ニーダー、バッチミキサー、ローラー、バンバリーミキサーなどの溶融混練装置を用いて行うことができ、通常100℃~270℃の温度で溶融混練することにより、本発明の樹脂組成物を得ることができる。 The method for producing the resin composition of the present invention is not particularly limited, and any method can be used as long as the above-described components used in the resin composition of the present invention can be uniformly mixed. A kneading method is used. The melt kneading can be performed using a melt kneading apparatus such as a single screw extruder, a twin screw extruder, a kneader, a batch mixer, a roller, a Banbury mixer, and is usually melt kneaded at a temperature of 100 ° C. to 270 ° C. By this, the resin composition of the present invention can be obtained.
 本発明の樹脂組成物は熱溶融性があって成形加工性に優れているので、種々の成形品、シート、フィルムを製造することができる。その際の成形方法としては、熱可塑性樹脂に対して一般に用いられている各種の成形方法が使用でき、例えば、射出成形、押出成形、プレス成形、ブロー成形、カレンダー成形、流延成形などの任意の成形法を採用できる。また、フィルム、シートの成形に一般的な、Tダイ法、カレンダー法、インフレーション法、ベルト法なども採用できる。 Since the resin composition of the present invention has a heat melting property and excellent molding processability, various molded products, sheets and films can be produced. As the molding method at that time, various molding methods generally used for thermoplastic resins can be used. For example, injection molding, extrusion molding, press molding, blow molding, calendar molding, casting molding, etc. The molding method can be adopted. In addition, a T-die method, a calendar method, an inflation method, a belt method, etc., which are generally used for forming films and sheets, can also be employed.
 本発明の樹脂組成物からなる成形品の好適な実施態様は、当該樹脂組成物からなる成形体が被着体に塗装または貼合せてなる積層体である。被着体としては、例えば、アミド基、エステル基、カーボネート基、アセタール基、エーテル基、スルフィド基、ニトリル基、水酸基、カルボニル基、カルボキシル基、アミノ基及びスルホン酸基からなる群から選択される官能基を有する極性重合体である。これらの官能基は、本発明の樹脂組成物に含まれるポリビニルアセタールとの相互作用を有するので、本発明の樹脂組成物に対する接着性が良好である。スチレン系樹脂やα-オレフィン(共)重合体は、通常、極性重合体への接着性が良くない場合が多いが、本発明の樹脂組成物は、上記理由によって極性重合体への接着性に優れ、接着後の安定性にも優れている。したがって、本発明の樹脂組成物は、上記極性重合体と接着して好適に用いることができる。 A preferred embodiment of a molded article made of the resin composition of the present invention is a laminate in which a molded article made of the resin composition is coated or bonded to an adherend. The adherend is selected from the group consisting of, for example, amide group, ester group, carbonate group, acetal group, ether group, sulfide group, nitrile group, hydroxyl group, carbonyl group, carboxyl group, amino group, and sulfonic acid group. It is a polar polymer having a functional group. Since these functional groups have an interaction with the polyvinyl acetal contained in the resin composition of the present invention, the adhesiveness to the resin composition of the present invention is good. Styrenic resins and α-olefin (co) polymers usually have poor adhesion to polar polymers, but the resin composition of the present invention has good adhesion to polar polymers for the above reasons. Excellent and stability after bonding. Therefore, the resin composition of the present invention can be suitably used by adhering to the polar polymer.
 極性重合体の好適な例としては、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド及びABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリ酢酸ビニル、ポリ(メタ)アクリレート、ポリエーテル、ポリケトン、アイオノマー、ポリウレタン及びポリウレアが例示される。 Preferable examples of the polar polymer include polyamide, polyester, polycarbonate, polyacetal, polyphenylene sulfide and ABS resin (acrylonitrile-butadiene-styrene copolymer), polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyacetic acid. Examples include vinyl, poly (meth) acrylate, polyether, polyketone, ionomer, polyurethane and polyurea.
 本発明の樹脂組成物と極性重合体とが接着された成形品の製造方法は、特に限定されない。例えば、射出成形法、押出成形法、プレス成形法、溶融注型法などの成形法が挙げられる。また、予め成形された一方の成形品の上に溶融コーティングしたり溶液を塗装してもよい。他に、二色成形やインサート成形なども採用することができる。 The method for producing a molded product in which the resin composition of the present invention and the polar polymer are bonded is not particularly limited. Examples thereof include molding methods such as injection molding, extrusion molding, press molding, and melt casting. Alternatively, one of the pre-molded products may be melt-coated or a solution may be applied. In addition, two-color molding or insert molding can be employed.
 本発明に係る樹脂組成物から成形された成形体の塗装には、溶剤系塗料、水系塗料および無溶剤系塗料を用いることができる。溶剤系塗料の例としては、アルキド樹脂系塗料、アミノアルキド樹脂系塗料、ビニル樹脂系塗料、常温乾燥型アクリル樹脂系塗料、焼付け乾燥型アクリル樹脂系塗料、タールエポキシ型エポキシ樹脂系塗料、ワニス・エナメル型エポキシ樹脂系塗料、一液型ウレタン樹脂系塗料、多液型ウレタン樹脂系塗料、不飽和ポリエステル樹脂系塗料、塩化ゴム系塗料が挙げられる。また、水系塗料の例としては、エマルジョン系塗料、水溶性樹脂系塗料が挙げられる。さらに無溶剤系塗料の例としては、粉体塗料およびトラフィックペイントが挙げられる。 For the coating of a molded article molded from the resin composition according to the present invention, a solvent-based paint, a water-based paint, and a solvent-free paint can be used. Examples of solvent-based paints include alkyd resin paints, amino alkyd resin paints, vinyl resin paints, room temperature drying acrylic resin paints, baking dry acrylic resin paints, tar epoxy epoxy resin paints, varnish Examples thereof include enamel epoxy resin paints, one-pack urethane resin paints, multi-pack urethane resin paints, unsaturated polyester resin paints, and chlorinated rubber paints. Examples of water-based paints include emulsion paints and water-soluble resin paints. Furthermore, examples of solvent-free paints include powder paints and traffic paints.
 積層体の製造には、成形体の表面の少なくとも一部に、プラズマ放電処理、コロナ放電処理又は紫外線照射処理、あるいは大気圧プラズマ処理を採用することが好適である。ここで、これらの処理は常法に従って行うことができるが、プラズマ放電処理の条件としては、圧力1乃至100000パスカル、雰囲気ガスとしては、アルゴン、ヘリウム、窒素がより好適である。放電周波数、放電出力、処理時間は、処理装置の形状や大きさによって適宜調整することが望ましいが、通常は周波数13.56MHz、出力10~1000ワット、処理時間5秒~10分間程度が好適である。 For manufacturing the laminate, it is preferable to employ plasma discharge treatment, corona discharge treatment or ultraviolet irradiation treatment, or atmospheric pressure plasma treatment on at least a part of the surface of the molded body. Here, these treatments can be carried out in accordance with ordinary methods. As conditions for the plasma discharge treatment, a pressure of 1 to 100000 Pascals and argon, helium, and nitrogen are more preferred as the atmospheric gas. The discharge frequency, discharge output, and processing time are preferably adjusted as appropriate depending on the shape and size of the processing apparatus. Usually, a frequency of 13.56 MHz, an output of 10 to 1000 watts, and a processing time of about 5 seconds to 10 minutes are preferable. is there.
 また、コロナ放電処理は、通常、装置の手軽さから空気中で行われることが多いが、処理効果を向上させ接着性を高めるためにアルゴンガス等の不活性ガスや酸素、窒素などのガス雰囲気で処理を実施してもよいし、これらのガスを電極近傍に吹き付けながら処理をしてもよい。特に窒素ガス中でコロナ放電処理を行うと、処理効果が高く、ランニングコストも比較的低く抑えられ、更に空気中でコロナ放電処理を実施した場合に発生するオゾン処理をする必要がないという利点があり、本発明においてはこの方法が樹脂の改質処理方法として最も好適に採用される。 In addition, corona discharge treatment is usually performed in the air due to the simplicity of the apparatus, but in order to improve the treatment effect and enhance the adhesion, an inert gas such as argon gas or a gas atmosphere such as oxygen or nitrogen The treatment may be carried out with the above, or the treatment may be carried out while blowing these gases in the vicinity of the electrodes. In particular, when corona discharge treatment is performed in nitrogen gas, the treatment effect is high, the running cost is relatively low, and there is no need to perform ozone treatment that occurs when corona discharge treatment is performed in air. In the present invention, this method is most preferably employed as a resin modification treatment method.
 コロナ放電処理の周波数は、適宜調整し得るが、処理効果と効率の点から通常は5kHz以上、特に20~30kHzが好適である。5kHzより低いと安定で均一な処理ができ難く、かつ電力消費量も大きくなってしまうため、電力コストが高くなり、電極の耐久性も短くなってしまうという場合がある。 The frequency of the corona discharge treatment can be adjusted as appropriate, but is usually 5 kHz or more, particularly 20 to 30 kHz from the viewpoint of treatment effect and efficiency. If the frequency is lower than 5 kHz, it is difficult to perform a stable and uniform process and the power consumption is increased, which may increase the power cost and shorten the durability of the electrode.
 また、放電出力、処理時間は被処理物の材質、形状、大きさや、電極の形状、大きさ等に応じて適宜調整するのが良いが、通常は50~5000ワット、1~60秒程度が好適である。 The discharge output and processing time may be appropriately adjusted according to the material, shape, and size of the object to be processed, and the shape and size of the electrode. Usually, it is about 50 to 5000 watts and about 1 to 60 seconds. Is preferred.
 大気圧プラズマは種々の大気圧プラズマ装置を用いることができる。例えば、誘電体で覆われた電極間に大気圧近傍の圧力の不活性気体を通じつつ間欠放電を行うことにより低温プラズマを発生させることができる装置等が好ましく、いずれの装置も用いることができ、使用目的等に応じて種々の変形例を選択できる。本発明における「大気圧プラズマ」における「大気圧近傍の圧力」とは、70kPa以上130kPa以下の範囲を指し、好ましくは90kPa以上110kPa以下の範囲である。 Various atmospheric pressure plasma devices can be used for atmospheric pressure plasma. For example, a device that can generate low-temperature plasma by performing intermittent discharge while passing an inert gas at a pressure close to atmospheric pressure between electrodes covered with a dielectric is preferable, and any device can be used. Various modifications can be selected according to the purpose of use. The “pressure near atmospheric pressure” in the “atmospheric pressure plasma” in the present invention refers to a range of 70 kPa to 130 kPa, and preferably 90 kPa to 110 kPa.
 大気圧プラズマの生成時に用いられる放電ガスとしては、窒素、酸素、水素、二酸化炭素、ヘリウム、及びアルゴンのいずれかのガス、又はこれらの2種以上の混合ガスを利用することができる。不活性気体であるHe及びAr等の希ガス、あるいは窒素ガス(N2)を用いることが好ましく、Ar又はHeの希ガスが特に好ましい。 As the discharge gas used when generating the atmospheric pressure plasma, any gas of nitrogen, oxygen, hydrogen, carbon dioxide, helium, and argon, or a mixed gas of two or more of these can be used. It is preferable to use inert gases such as He and Ar, or nitrogen gas (N2), and Ar or He is particularly preferable.
 本発明の樹脂組成物からなる成形品および積層体において、形状、構造、用途などは特に制限されず、広い範囲の用途に有用である。また、バンパーや、ドアミラーカバー、モール、スポイラー等の自動車用樹脂成形品や建築物における接合部、太陽電池モジュールなどの電子部品、雑貨、日用品、履物などにも好適に使用できる。 In the molded article and laminate comprising the resin composition of the present invention, the shape, structure, use, etc. are not particularly limited, and are useful for a wide range of uses. Further, it can be suitably used for automotive resin molded products such as bumpers, door mirror covers, moldings and spoilers, joints in buildings, electronic parts such as solar cell modules, sundries, daily necessities, footwear and the like.
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準である。「重合度」は「粘度平均重合度」を意味する。また、本発明はかかる実施例により何ら限定されるものではない。なお、実施例および比較例中の樹脂の合成および、試験片の作製および各物性の測定または評価は、以下のようにして行なった。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In the following examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. “Polymerization degree” means “viscosity average polymerization degree”. In addition, the present invention is not limited to the examples. In addition, the synthesis | combination of the resin in an Example and a comparative example, preparation of a test piece, and the measurement or evaluation of each physical property were performed as follows.
[ポリ酢酸ビニルの合成]
PVAc-1
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素し、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニル(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニル中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル当量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時の酢酸ビニルの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
[Synthesis of polyvinyl acetate]
PVAc-1
In a 6 L separable flask equipped with a stirrer, a thermometer, a nitrogen introduction tube, and a reflux tube, deoxygenated beforehand, and vinyl acetate (VAM) 2555 g containing 500 ppm acetaldehyde (AA) and 50 ppm acetaldehyde dimethyl acetal (DMA); 945 g of methanol (MeOH) containing 50 ppm of acetaldehyde dimethyl acetal and an acetaldehyde content of less than 1 ppm; a 1% methanol solution of tartaric acid in an amount of 20 ppm of tartaric acid in vinyl acetate was charged. While blowing nitrogen into the flask, the temperature inside the flask was adjusted to 60 ° C. Note that an ethylene glycol / water solution at −10 ° C. was circulated in the reflux tube. A 0.55% by mass methanol solution of di-n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. At this time, the amount of di-n-propyl peroxydicarbonate added was 0.081 g. A methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C. Four hours after the start of the polymerization, when the solid content concentration of the polymerization solution reached 25.1%, 0.0141 g of sorbic acid (3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution) After adding 1200 g of contained methanol (corresponding to a molar equivalent), the polymerization solution was cooled to stop the polymerization. When the polymerization was stopped, the polymerization rate of vinyl acetate was 35.0%. After the polymerization solution was cooled to room temperature, the pressure in the flask was reduced using a water flow aspirator to distill off vinyl acetate and methanol, thereby precipitating polyvinyl acetate. After 3000 g of methanol was added to the precipitated polyvinyl acetate and the polyvinyl acetate was dissolved while heating at 30 ° C., the pressure in the flask was reduced again using a water aspirator to distill off the vinyl acetate and methanol. Thus, polyvinyl acetate was precipitated. The operation of dissolving polyvinyl acetate in methanol and then precipitating it was further repeated twice. Methanol was added to the precipitated polyvinyl acetate to obtain a 40% by mass methanol solution of polyvinyl acetate (PVAc-1) with a vinyl acetate removal rate of 99.8%.
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度測定に供した。重合度は1700であった。 The polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained. To a methanol solution of PVAc-1, a 10% methanol solution of sodium hydroxide was added so that the molar ratio of sodium hydroxide to vinyl acetate monomer units in polyvinyl acetate was 0.1. When the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days. The obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement. The degree of polymerization was 1700.
PVAc-2~PVAc-11
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~PVAc-11)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。
その結果を表1に示す。
PVAc-2 to PVAc-11
Polyvinyl acetate (PVAc-2 to PVAc-11) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1. In Table 1, “ND” means less than 1 ppm. The degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
PVAc-A~H
 表2に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニルPVAc-A~Hを得た。各コモノマーの変性量はDMSO-d6あるいはCDCl3に溶解したサンプルを500MHzのプロトンNMR測定装置(JEOL GX-500)を用いて求めた。
PVAc-A to H
Polyvinyl acetate PVAc-A to H were obtained by the same method as PVAc-1 except that the conditions were changed to those described in Table 2. The amount of modification of each comonomer was determined using a sample dissolved in DMSO-d6 or CDCl3 using a 500 MHz proton NMR measurement apparatus (JEOL GX-500).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[ポリビニルアルコールの合成]
PVA-1
 PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVA-1を得た。
[Synthesis of polyvinyl alcohol]
PVA-1
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of polyvinyl acetate in PVAc-1. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.020, and the saponification reaction was started at 40 ° C. The gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C. When 60 minutes have elapsed from the start of the saponification reaction, methanol / methyl acetate / water ( 25/70/5 mass ratio) solution and neutralized. The obtained swollen gel was centrifuged, and methanol twice as much as the swollen gel was added, immersed, left for 30 minutes, and then centrifuged four times, 60 ° C. for 1 hour, 100 PVA-1 was obtained by drying at 2 ° C. for 2 hours.
 PVA-1の重合度およびけん化度を、JIS K6726に記載の方法により求めた。重合度は1700、けん化度は99.1モル%であった。これらの物性データを表3にも示す。 The polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS K6726. The degree of polymerization was 1700, and the degree of saponification was 99.1 mol%. These physical property data are also shown in Table 3.
 PVA-1を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することによりPVA-1の酢酸ナトリウム含有量を求めた。酢酸ナトリウムの含有量は0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表3にも示す。 After ashing PVA-1, the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. . The content of sodium acetate was 0.7% (0.20% in terms of sodium). These physical property data are also shown in Table 3.
PVA-2~7、比較PVA-1~7
 表3に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表3に示す。
PVA-2-7, comparative PVA-1-7
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
PVA-A1~G,比較PVA-H1,-H2
 表4に示す条件に変更した以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度および酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表4に示す。
(PVAの分析方法)
 PVAの分析は、特に断らない限りJIS K6726に記載の方法にしたがって行った。PVAに含まれるN-ビニルアミド単量体単位、アクリルアミド単量体単位等の含有量は、DMSO-d6に溶解したサンプルを500MHzのプロトンNMR測定装置(JEOL GX-500)を用いて求めた。
PVA-A1 to G, comparative PVA-H1, -H2
Each PVA was synthesized in the same manner as PVA-1 except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 4.
(PVA analysis method)
Analysis of PVA was performed according to the method described in JIS K6726 unless otherwise specified. The content of N-vinylamide monomer units, acrylamide monomer units, etc. contained in PVA was determined using a 500 MHz proton NMR measurement apparatus (JEOL GX-500) for a sample dissolved in DMSO-d6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[ポリビニルアセタールの合成]
<PVB-1-1>
 還流冷却器、温度計、イカリ形攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してポリビニルブチラールを得た。
[Synthesis of polyvinyl acetal]
<PVB-1-1>
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-shaped stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was washed again with ion-exchanged water and then dried to obtain polyvinyl butyral.
(ポリビニルアセタールの分析方法)
 ポリビニルブチラールのブチラール化度(アセタール化度)、酢酸ビニル単量体単位の含有量、及びビニルアルコール単量体単位の含有量はJIS K6728に従って測定した。得られたポリビニルブチラールのブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は30.9モル%であった。以後の合成例においてビニルアセタール系重合体中のアミノアセタールの変性量は、DMSO-d6に溶解したサンプルを500MHzのプロトンNMR測定装置(JEOL GX-500)を用いて求めた。結果を表5に示す。
(Method for analyzing polyvinyl acetal)
The degree of butyralization (degree of acetalization) of polyvinyl butyral, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 0.9 mol%, and a vinyl alcohol monomer unit content of 30. It was 9 mol%. In the subsequent synthesis examples, the amount of aminoacetal modification in the vinyl acetal polymer was determined using a 500 MHz proton NMR measurement apparatus (JEOL GX-500) for a sample dissolved in DMSO-d6. The results are shown in Table 5.
[PVBのGPC測定]
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
[GPC measurement of PVB]
(measuring device)
GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
(測定条件)
 移動相には、20mmol/lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。
(Measurement condition)
As the mobile phase, HFIP containing 20 mmol / l sodium trifluoroacetate was used. The mobile phase flow rate was 1.0 ml / min. The sample injection amount was 100 μl, and measurement was performed at a GPC column temperature of 40 ° C.
 なお、後述するPVAの粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
 試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値 
In addition, the sample whose viscosity average polymerization degree of PVA mentioned later exceeds 2400 performed GPC measurement using the sample (100 microliters) diluted suitably. The absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. α (mg / ml) is the concentration of the diluted sample.
Absorbance at a sample concentration of 1.00 mg / ml = (1.00 / α) × measured value of absorbance
(検量線の作成)
 標品として、Agilent Technologies製のポリメタクリル酸メチル(以下「PMMA」と略記する)(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。なお、本測定においてはポリメタクリル酸メチルの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。 
(Create a calibration curve)
As a standard, polymethyl methacrylate (hereinafter abbreviated as “PMMA”) manufactured by Agilent Technologies (peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690) And a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector. The analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of the standard samples having both molecular weights of 1944000 and 271400 can be separated in the measurement of polymethyl methacrylate was used.
 なお、本装置においては、示差屈折率検出器から得られるピーク強度はmV(ミリボルト)で、UV Detectorから得られるピーク強度は吸光度(abs unit:アブソーバンスユニット)で表される。 In this apparatus, the peak intensity obtained from the differential refractive index detector is mV (millivolt), and the peak intensity obtained from the UV detector is represented by absorbance (abs unit: Absorbance unit).
(試料の準備)
 得られた粉末状のPVB-1を、圧力2MPa、230℃にて、3時間熱プレスすることにより、加熱されたポリビニルアセタール(フィルム)を得た。このときのフィルムの厚みは、760μmであった。これをGPC測定に供した。
(Sample preparation)
The obtained powdery PVB-1 was hot pressed at a pressure of 2 MPa and 230 ° C. for 3 hours to obtain a heated polyvinyl acetal (film). At this time, the thickness of the film was 760 μm. This was used for GPC measurement.
 上述の方法により準備された試料を20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以後「HFIP」と略記する)に溶解し、PVAの1.00mg/ml溶液を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
 得られた試料を上記方法によりGPC測定した。図1は、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図1から求めた示差屈折率検出器で測定されたピークトップ分子量(A)は90000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は68900であった。得られた値を下記式
 (A-B)/A
に代入して得られた値は0.23であった。ピークトップ分子量(B)における吸光度(b)は2.21×10-3であった。図1中の、クロマトグラム(RI)から求めた数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnは3.4であった。これらの結果を表5にも示す。
A sample prepared by the above-described method was dissolved in 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter abbreviated as “HFIP”) to prepare a 1.00 mg / ml solution of PVA. The solution was filtered through a 0.45 μm polytetrafluoroethylene filter and used for measurement.
The obtained sample was subjected to GPC measurement by the above method. FIG. 1 is a graph showing the relationship between the molecular weight and the value measured with a differential refractive index detector, and the relationship between the molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm). The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 90000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 68900. The obtained value is expressed by the following formula (AB) / A
The value obtained by substituting for was 0.23. The absorbance (b) at the peak top molecular weight (B) was 2.21 × 10 −3 . The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 1 was 3.4. These results are also shown in Table 5.
<PVB-1-2~PVB-7>
 原料PVAを表5に示すものに変更したこと以外は同様にしてポリビニルブチラールを合成した。そして、同様にして得られたポリビニルアセタールの評価(GPC測定)を行った。その結果を表5に示す。
<PVB-1-2 to PVB-7>
Polyvinyl butyral was synthesized in the same manner except that the raw material PVA was changed to that shown in Table 5. And evaluation (GPC measurement) of the polyvinyl acetal obtained similarly was performed. The results are shown in Table 5.
<PVB-A1~G>
 原料PVAを表5に示すものに変更したこと以外は、同様にしてポリビニルブチラールを合成した。そして、同様にして得られたポリビニルアセタールの評価(GPC測定)を行った。
<PVB-NH-1>
 4-アミノブチルアルデヒドのジエチルアセタール化物を21.5g、n-ブチルアルデヒドの量を375gにしたこと以外は、同様にして変性ポリビニルブチラールを合成し、評価した。結果を表5に示す。
<PVB-A1 to G>
Polyvinyl butyral was synthesized in the same manner except that the raw material PVA was changed to that shown in Table 5. And evaluation (GPC measurement) of the polyvinyl acetal obtained similarly was performed.
<PVB-NH-1>
Modified polyvinyl butyral was synthesized and evaluated in the same manner except that 21.5 g of diethyl acetalization product of 4-aminobutyraldehyde and 375 g of n-butyraldehyde were used. The results are shown in Table 5.
<比較PVB-1~H2>
 原料PVAを表5に示すものに変更したこと以外は同様にしてポリビニルブチラールを合成した。そして、同様に得られたポリビニルアセタールの評価(GPC測定)を行った。
<Comparison PVB-1 to H2>
Polyvinyl butyral was synthesized in the same manner except that the raw material PVA was changed to that shown in Table 5. And the evaluation (GPC measurement) of the polyvinyl acetal obtained similarly was performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例1>
(1)樹脂組成物および極性樹脂シートの作製
 表6に示すポリビニルアセタールを用い、後述するポリプロピレン、ゴム用軟化剤を用い、ポリビニルアセタールを全量の20質量%になるよう混合し、株式会社東洋精機製作所バッチ式ミキサー「ラボプラストミル20R20C」を使用して、230℃、回転数100rpmの条件で5分間溶融混練した。得られた混練物を、株式会社新藤金属工業所製圧縮プレス成形機「NF-37」を使用して、「テフロン(登録商標)」コーティング金属枠をスペーサーとして用い、230℃、100kgf/cm2の荷重で5分間、圧縮プレス成形することで厚さ1mmの樹脂組成物のシートを得た。
 なおポリプロピレンは以下のものを用い、下記のゴム用軟化剤をポリプロピレンに対し50phr添加し、上記処理に使用した。
[ポリプロピレン]
 日本ポリケム株式会社製ポリプロピレン「ノバテックPP MA3」
[ゴム用軟化剤]
 出光興産株式会社製、パラフィン系プロセスオイル「ダイアナプロセスPW-90」
<Example 1>
(1) Production of Resin Composition and Polar Resin Sheet Using polyvinyl acetal shown in Table 6, using polypropylene and rubber softener described later, mixing polyvinyl acetal to 20% by mass, Toyo Seiki Co., Ltd. Using a factory batch type mixer “Labo Plast Mill 20R20C”, melt kneading was performed for 5 minutes at 230 ° C. and at a rotation speed of 100 rpm. The obtained kneaded product was used at 230 ° C. and 100 kgf / cm 2 using a “Teflon (registered trademark)” coated metal frame as a spacer using a compression press molding machine “NF-37” manufactured by Shindo Metal Industries, Ltd. A sheet of a resin composition having a thickness of 1 mm was obtained by compression press molding with a load for 5 minutes.
The following polypropylene was used and 50 phr of the following rubber softener was added to the polypropylene and used for the above treatment.
[polypropylene]
Polypropylene "Novatec PP MA3" manufactured by Nippon Polychem Co., Ltd.
[Rubber softener]
Paraffinic process oil “Diana Process PW-90” manufactured by Idemitsu Kosan Co., Ltd.
(2)引張破断強度および引張破断伸びの測定
 上記(1)の方法で作製したシートを打ち抜いてJIS3号ダンベル試験片を作製した。そのダンベル試験片を用い、株式会社島津製作所製「オートグラフAG-5000B」を使用して、JIS K6251に準じて500mm/minの条件で引張破断強度および引張破断伸びの測定を行なった。
引張破断強度試験
A:破断強度が5MPa以上
B:破断強度が1~5MPa未満
C:破断強度が1MPa未満
引張破断伸び試験
A:破断伸度が200%以上
B:破断伸度が100%~200%未満
C:破断伸度が100%未満
(2) Measurement of Tensile Breaking Strength and Tensile Breaking Elongation The sheet produced by the method (1) was punched out to produce a JIS No. 3 dumbbell test piece. Using the dumbbell test piece, the tensile breaking strength and the tensile breaking elongation were measured under the condition of 500 mm / min according to JIS K6251 using “Autograph AG-5000B” manufactured by Shimadzu Corporation.
Tensile break strength test A: Break strength is 5 MPa or more B: Break strength is 1 to less than 5 MPa C: Break strength is less than 1 MPa Tensile break elongation test A: Break elongation is 200% or more B: Break elongation is 100% to 200 Less than% C: Elongation at break is less than 100%
(3)接着性試験サンプルの作成
 上記(1)の方法で作製したシートから得た50mm×25mm×1mmのシートの表面に大気圧プラズマ装置を用いて、窒素ガス150L/分、ドライ純エアー0.5l/分の流速の混合ガスを用い、電圧11kV、サンプル移動速度10mm/秒、電極間距離2mmの条件でプラズマ処理を行い、続いて、大気圧プラズマ処理なしの表6記載の極性重合体シート(50mm×25mm×1mm)の端面から25mm×25mmの部分のみに接着するように、フッ素樹脂シートでマスキングして、樹脂組成物シートを置いた。これを、圧縮成形機の金属板の間に挟み、下記に示す条件で熱圧着することで、樹脂組成物シートと極性重合体のシートに貼合せられた積層体を得た。あわせて、プラズマ処理なしの場合も上記と同様に作成した。
プレス温度 180~260℃
圧力 2Mpa
時間 10分
(3) Preparation of Adhesion Test Sample Using an atmospheric pressure plasma apparatus on the surface of a sheet of 50 mm × 25 mm × 1 mm obtained from the sheet prepared by the method of (1) above, nitrogen gas 150 L / min, dry pure air 0 A polar polymer described in Table 6 without plasma treatment, using a mixed gas with a flow rate of 5 l / min, under conditions of a voltage of 11 kV, a sample moving speed of 10 mm / second, and a distance between electrodes of 2 mm. The resin composition sheet was placed by masking with a fluororesin sheet so as to adhere only to the 25 mm × 25 mm portion from the end face of the sheet (50 mm × 25 mm × 1 mm). This was sandwiched between metal plates of a compression molding machine and thermocompression bonded under the conditions shown below to obtain a laminate bonded to the resin composition sheet and the polar polymer sheet. In addition, it was prepared in the same manner as described above without plasma treatment.
Press temperature 180-260 ° C
Pressure 2Mpa
10 minutes
 樹脂組成物と接着された極性重合体は以下のものを使用した。
[PET]
 帝人株式会社製ポリエチレンテレフタレート「ボトルTR-8550」
[PA6]
 宇部興産株式会社製ポリアミド「UBEナイロン1013B」
[ABS]
 宇部サイコン株式会社製ABS「サイコラックEX-111」
[POM]
ポリプラスチックス株式会社製ポリオキシメチレン「ジュラコンM90-44」
The polar polymer bonded to the resin composition was as follows.
[PET]
Teijin Limited polyethylene terephthalate "Bottle TR-8550"
[PA6]
Polyamide "UBE nylon 1013B" manufactured by Ube Industries, Ltd.
[ABS]
ABS "Psycholac EX-111" manufactured by Ube Saikon Co., Ltd.
[POM]
Polyoxymethylene "Duracon M90-44" manufactured by Polyplastics Co., Ltd.
(4)接着強さの測定
 上記で作製した積層体について、株式会社島津製作所「オートグラフAG-5000B」を使用して、JIS K6854-2に準じて、剥離角度180°、引張速度50mm/minの条件で剥離接着強さ試験を行い、接着性を目視を主体とする官能試験によって以下の3段階で評価した。
A:全く層間剥離が認められず、強固に接着し、非常に良好な接着性を示した。
(10N/25mmより大きい)
B:層間剥離が一部認められたが、良好な接着性を示す。
(1N/25mm~10N/25mm)
C:層間剥離で認められ、接着性不良と判断。
(1N/mm未満)
(4) Measurement of Adhesive Strength For the laminate produced above, Shimadzu Corporation “Autograph AG-5000B” was used, according to JIS K6854-2, peeling angle of 180 °, tensile speed of 50 mm / min. The peel adhesion strength test was performed under the conditions described above, and the adhesion was evaluated in the following three stages by a sensory test mainly consisting of visual observation.
A: No delamination was observed at all, and adhesion was strong and very good adhesion was exhibited.
(Greater than 10N / 25mm)
B: Some delamination was observed, but good adhesion was exhibited.
(1N / 25mm to 10N / 25mm)
C: Recognized by delamination and judged as poor adhesion.
(Less than 1N / mm)
(5)接着安定性の評価方法
 上記(4)で評価した試験片と同様の方法で作成した試験片を温度25℃、湿度60%RHの雰囲気条件(常温)で一定期間暗所保管し、(4)と同様の方法で接着性試験と行った。
A:50日間保管後、前記接着直後の接着強度と比較し、接着性が変化なし、もしくは接着性の低下率が5%未満
B:50日間保管後、前記接着直後の接着強度と比較し、接着性の低下率が20%未満
C:50日間保管後、前記接着直後の接着強度と比較し、接着性の低下率が20%以上
結果を表6に示す。
(5) Evaluation method of adhesion stability A test piece prepared by the same method as the test piece evaluated in (4) above is stored in a dark place for a certain period of time at ambient temperature (normal temperature) of 25 ° C. and humidity 60% RH, An adhesion test was performed in the same manner as in (4).
A: After storage for 50 days, compared with the adhesive strength immediately after the adhesion, the adhesiveness does not change, or the rate of decrease in adhesiveness is less than 5%. B: Compared with the adhesive strength immediately after the adhesion after storage for 50 days, The rate of decrease in adhesiveness is less than 20%. C: Compared with the adhesive strength immediately after bonding after storage for 50 days, Table 6 shows the results of the rate of decrease in adhesiveness of 20% or more.
<実施例2~23>
 原料PVBを表6に示すものに変更したこと以外は実施例1と同様にして評価した。その結果を表6に示す。
 なお、熱可塑性樹脂として、エチレン-酢酸ビニル共重合体(EVA)(酢酸ビニルの含有量28質量%)を用いた例では、ポリビニルアセタールPVBを全量の20質量%になるよう混合し、株式会社東洋精機製作所バッチ式ミキサー「ラボプラストミル20R20C」を使用して、150℃、回転数100rpmの条件で5分間溶融混練した。得られた混練物を、株式会社新藤金属工業所製圧縮プレス成形機「NF-37」を使用して、フッ素樹脂コーティング金属枠をスペーサーとして用い、150℃、100kgf/cm2の荷重で5分間、圧縮プレス成形することで厚さ1mmの樹脂組成物のシートを得た。
<実施例24>
 ゴム用軟化剤を用いなかったこと以外は、実施例1と同様に操作を行い、評価した。結果を表6に示す。
<Examples 2 to 23>
Evaluation was performed in the same manner as in Example 1 except that the raw material PVB was changed to that shown in Table 6. The results are shown in Table 6.
In the case of using an ethylene-vinyl acetate copolymer (EVA) (vinyl acetate content of 28% by mass) as the thermoplastic resin, polyvinyl acetal PVB was mixed so that the total amount was 20% by mass. Using a Toyo Seiki Seisakusho batch-type mixer “Labo Plast Mill 20R20C”, it was melt-kneaded for 5 minutes at 150 ° C. and at a rotation speed of 100 rpm. The obtained kneaded product was used for 5 minutes at 150 ° C. and a load of 100 kgf / cm 2 using a fluororesin-coated metal frame as a spacer using a compression press molding machine “NF-37” manufactured by Shindo Metal Industries, Ltd. A sheet of a resin composition having a thickness of 1 mm was obtained by compression press molding.
<Example 24>
The operation was performed and evaluated in the same manner as in Example 1 except that the rubber softener was not used. The results are shown in Table 6.
<比較例1~14>
 表6に示すポリビニルアセタール、組成に変更した以外は、実施例1と同様に操作を行い、評価した。
<Comparative Examples 1 to 14>
Except having changed into the polyvinyl acetal and composition which are shown in Table 6, it operated similarly to Example 1 and evaluated.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(6)塗装試験
 上記(1)の方法で作製したシートから得た50mm×50mm×1mmのシートの表面に大気圧プラズマ装置を用いプラズマ処理を行い、続いて、ウレタン塗料系メタリック塗料(日本ビーケミカル社製、商品名:R-212)を厚み20μmになるように塗装し、80℃で30分乾燥し、その後室温で48時間放置して試験片を得た。得られた試験片に2mm間隔で碁盤目状の切れ目を入れ、その上にセロハン粘着テープ(JIS Z1522)を十分圧着し、塗膜面と約30度に保ち手前に一気に引き剥し、剥離する塗膜の枚数を数えた。
A:剥離したものが100枚中0のもの
B:11枚未満のもの
C:11枚以上のもの
(6) Coating test Plasma treatment was performed on the surface of a sheet of 50 mm × 50 mm × 1 mm obtained from the sheet prepared by the method of (1) above using an atmospheric pressure plasma apparatus, followed by urethane paint based metallic paint (Nippon Bee Chemical Co., Ltd., trade name: R-212) was coated to a thickness of 20 μm, dried at 80 ° C. for 30 minutes, and then allowed to stand at room temperature for 48 hours to obtain a test piece. Apply a cellophane adhesive tape (JIS Z1522) to the test piece obtained at intervals of 2 mm, and press the cellophane adhesive tape (JIS Z1522) on top of it. The number of films was counted.
A: No peeled out of 100 sheets B: Less than 11 sheets C: 11 or more sheets
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1~24の樹脂組成物を用いた場合、得られた成形体は優れた力学特性、および、極性樹脂とも良好な接着性または塗装性を示した。さらに、大気圧プラズマ照射を樹脂、あるいは成形体に施すことにより、さらに良好な接着性または塗装性を示し、接着後の安定性も非常に良好であった。一方、本発明で規定した条件を満たさない樹脂組成物を用いた場合(比較例1~14)、いずれかの性能が明らかに低下した。 When the resin compositions of Examples 1 to 24 were used, the obtained molded articles exhibited excellent mechanical properties and good adhesion or paintability with polar resins. Furthermore, by applying atmospheric pressure plasma irradiation to the resin or the molded body, even better adhesion or paintability was exhibited, and the stability after adhesion was also very good. On the other hand, when a resin composition not satisfying the conditions defined in the present invention was used (Comparative Examples 1 to 14), any of the performances was clearly deteriorated.

Claims (10)

  1.  ポリビニルアセタールおよび熱可塑性樹脂を含む樹脂組成物であって;
    前記ポリビニルアセタールの、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であり、230℃において3時間加熱された前記ポリビニルアセタールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
    (A-B)/A<0.60   (1)
    を満たし、かつピークトップ分子量(B)における吸光度が0.50×10-3~1.00×10-2となり;
    前記熱可塑性樹脂が、ポリエステル、ポリアミド、α-オレフィン(共)重合体、セルロース系樹脂、アクリル系樹脂、スチレン系樹脂から選ばれるものである;
    ことを特徴とする樹脂組成物。
    A resin composition comprising polyvinyl acetal and a thermoplastic resin;
    The polyvinyl acetal has an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, a viscosity average polymerization degree of 200 to 5000, and heated at 230 ° C. for 3 hours. When the polyvinyl acetal was measured by gel permeation chromatography, the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) ( B) is the following formula (1)
    (AB) / A <0.60 (1)
    And the absorbance at the peak top molecular weight (B) is 0.50 × 10 −3 to 1.00 × 10 −2 ;
    The thermoplastic resin is selected from polyester, polyamide, α-olefin (co) polymer, cellulose resin, acrylic resin, and styrene resin;
    The resin composition characterized by the above-mentioned.
  2.  前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0となる請求項1に記載の樹脂組成物。 The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector in the gel permeation chromatography measurement is 2.8 to 12.0. The resin composition as described.
  3.  前記ポリビニルアセタールが、側鎖にアミド基、アミノ基、エステル基、カルボニル基、ビニル基から選ばれる官能基を有するものである、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the polyvinyl acetal has a functional group selected from an amide group, an amino group, an ester group, a carbonyl group, and a vinyl group in a side chain.
  4.  前記ポリビニルアセタールの有する官能基がアミド基またはアミノ基である、請求項3に記載の樹脂組成物。 The resin composition according to claim 3, wherein the functional group of the polyvinyl acetal is an amide group or an amino group.
  5.  前記熱可塑性樹脂が、スチレン系樹脂またはα-オレフィン(共)重合体である請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermoplastic resin is a styrene resin or an α-olefin (co) polymer.
  6.  請求項1~5のいずれかに記載の樹脂組成物からなる成形体。 A molded body comprising the resin composition according to any one of claims 1 to 5.
  7.  表面の少なくとも一部にプラズマを照射してなる請求項6に記載の成形体。 The molded body according to claim 6, wherein at least a part of the surface is irradiated with plasma.
  8.  請求項7に記載の成形体に被着体を塗装または貼合せてなる積層体。 A laminate obtained by coating or bonding an adherend to the molded body according to claim 7.
  9. 前記被着体が、アミド基、エステル基、カーボネート基、アセタール基、エーテル基、スルフィド基、ニトリル基、水酸基、カルボニル基、カルボキシル基、アミノ基及びスルホン酸基からなる群から選択される官能基を有する極性重合体からなる請求項8に記載の積層体。 The adherend is a functional group selected from the group consisting of an amide group, an ester group, a carbonate group, an acetal group, an ether group, a sulfide group, a nitrile group, a hydroxyl group, a carbonyl group, a carboxyl group, an amino group, and a sulfonic acid group. The laminate according to claim 8, comprising a polar polymer having
  10. 前記極性重合体が、ポリアミド、ポリエステル、ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ABS樹脂、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリ酢酸ビニル、ポリ(メタ)アクリレート、ポリエーテル、ポリケトン、アイオノマー、ポリウレタン及びポリウレアからなる群から選択される少なくとも1種である請求項9に記載の積層体。 The polar polymer is polyamide, polyester, polycarbonate, polyacetal, polyphenylene sulfide, ABS resin, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl acetate, poly (meth) acrylate, polyether, polyketone, ionomer. The laminate according to claim 9, which is at least one selected from the group consisting of polyurethane and polyurea.
PCT/JP2015/053844 2014-02-18 2015-02-12 Highly adhesive resin composition and molded article produced from same, and laminate WO2015125688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528739A JP5799192B1 (en) 2014-02-18 2015-02-12 High adhesive resin composition, molded article and laminate comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014028580 2014-02-18
JP2014-028580 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125688A1 true WO2015125688A1 (en) 2015-08-27

Family

ID=53878193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053844 WO2015125688A1 (en) 2014-02-18 2015-02-12 Highly adhesive resin composition and molded article produced from same, and laminate

Country Status (3)

Country Link
JP (1) JP5799192B1 (en)
TW (1) TWI641644B (en)
WO (1) WO2015125688A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065251A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Aqueous polyvinyl acetal resin composition
WO2019098187A1 (en) * 2017-11-14 2019-05-23 株式会社ガラステクノシナジー Resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190070631A1 (en) * 2016-03-11 2019-03-07 Dic Corporation Method for manufacturing laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050738A1 (en) * 2006-10-23 2008-05-02 Kuraray Co., Ltd. Acrylic thermoplastic resin composition, acrylic resin film and acrylic resin composite
WO2009081877A1 (en) * 2007-12-20 2009-07-02 Kuraray Co., Ltd. Thermoplastic polymer composition and molded article composed of the same
JP5420808B1 (en) * 2013-08-07 2014-02-19 株式会社クラレ Film containing polyvinyl acetal
JP5420804B1 (en) * 2013-08-07 2014-02-19 株式会社クラレ Film containing polyvinyl acetal
JP5469286B1 (en) * 2013-10-25 2014-04-16 株式会社クラレ Multilayer film and interlayer film for laminated glass comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722194B2 (en) * 2009-08-07 2014-05-13 Kuraray Co., Ltd. Polyvinyl acetal composition, laminate, and use thereof
WO2015019441A1 (en) * 2013-08-07 2015-02-12 株式会社クラレ Polyvinyl acetal and laminated glass interlayer comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050738A1 (en) * 2006-10-23 2008-05-02 Kuraray Co., Ltd. Acrylic thermoplastic resin composition, acrylic resin film and acrylic resin composite
WO2009081877A1 (en) * 2007-12-20 2009-07-02 Kuraray Co., Ltd. Thermoplastic polymer composition and molded article composed of the same
JP5420808B1 (en) * 2013-08-07 2014-02-19 株式会社クラレ Film containing polyvinyl acetal
JP5420804B1 (en) * 2013-08-07 2014-02-19 株式会社クラレ Film containing polyvinyl acetal
JP5469286B1 (en) * 2013-10-25 2014-04-16 株式会社クラレ Multilayer film and interlayer film for laminated glass comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065251A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Aqueous polyvinyl acetal resin composition
JP7120789B2 (en) 2017-09-29 2022-08-17 積水化学工業株式会社 Aqueous polyvinyl acetal resin composition
WO2019098187A1 (en) * 2017-11-14 2019-05-23 株式会社ガラステクノシナジー Resin composition
JPWO2019098187A1 (en) * 2017-11-14 2020-11-19 株式会社 ガラステクノシナジー Resin composition

Also Published As

Publication number Publication date
JP5799192B1 (en) 2015-10-21
JPWO2015125688A1 (en) 2017-03-30
TW201546144A (en) 2015-12-16
TWI641644B (en) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2015125689A1 (en) Adhesiveness-improving agent obtained from polyvinyl acetal solution
JP5199791B2 (en) Interlayer film for laminated glass
EP2426172B1 (en) Polyvinyl alcohol based resin composition
US20060205871A1 (en) Crosslinked polyvinyl acetals
JP5641769B2 (en) Water-soluble polyvinyl alcohol resin composition
US20170008988A1 (en) Binder for formation of ceramic or for use in conductive paste, and use of same
JP5799192B1 (en) High adhesive resin composition, molded article and laminate comprising the same
WO2012043455A1 (en) Polyvinyl acetal resin for thermoforming
JP2015151326A (en) Interlayer for glass laminate and glass laminate using the same
CN113646282B (en) Modified vinyl acetal resin for interlayer film of laminated glass
JP2007326943A (en) Resin composition and film obtained by using the same
JP4794121B2 (en) Ink or paint binder
JP4828278B2 (en) Production method of polyvinyl acetal
TW201546143A (en) Film
JP5667533B2 (en) Acrylic thermoplastic resin composition
JP2005002285A (en) Manufacturing method of polyvinyl acetal resin, and polyvinyl butyral resin
WO2014054711A1 (en) Laminate sheet, manufacturing method therefor, and surface protection sheet
JP6221147B2 (en) Binder for ink or paint and its use
WO2015019441A1 (en) Polyvinyl acetal and laminated glass interlayer comprising same
US20090092765A1 (en) Modification of acetalized polymers containing vinyl alcohol groups by means of reaction with carboxylic acid anhydrides and subsequent photochemical crosslinking
JP4083641B2 (en) Inks and paint binders
JP7428705B2 (en) Dope and film for film production
JP6021625B2 (en) Method for producing multilayer structure
WO2022270542A1 (en) Resin composition formed by containing ionomer resin, resin sheet, and laminated glass
JPH1192575A (en) Preparation of membrane

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528739

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751584

Country of ref document: EP

Kind code of ref document: A1