WO2015125676A1 - Wire rod for connector pin, method for producing same, and connector - Google Patents

Wire rod for connector pin, method for producing same, and connector Download PDF

Info

Publication number
WO2015125676A1
WO2015125676A1 PCT/JP2015/053715 JP2015053715W WO2015125676A1 WO 2015125676 A1 WO2015125676 A1 WO 2015125676A1 JP 2015053715 W JP2015053715 W JP 2015053715W WO 2015125676 A1 WO2015125676 A1 WO 2015125676A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
core material
connector pin
connector
plating film
Prior art date
Application number
PCT/JP2015/053715
Other languages
French (fr)
Japanese (ja)
Inventor
古川 欣吾
幹朗 佐藤
貴史 夏目
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2015125676A1 publication Critical patent/WO2015125676A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/58Fixed connections for rigid printed circuits or like structures characterised by the terminals terminals for insertion into holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to a wire for connector pins, a manufacturing method thereof, and a connector using the wire for connector pins.
  • Connectors such as PCB (Printed Circuit Board) connectors for automobiles and relay connectors for automobiles use connector pins with copper as a core material, such as brass, to which a metal of several mass% is added. .
  • An Sn (tin) plating film is often formed on the surface of the core material for the purpose of reducing contact resistance with the counterpart terminal.
  • Patent Document 1 discloses an example of a spring member made of an alloy of 10 to 70% by mass of Fe in which 0.05 to 5% by mass of carbon is dissolved, and the balance being Cu and inevitable impurities.
  • a Cu—Fe-based alloy having such a chemical component tends to have a higher strength than conventional copper alloys.
  • the Cu—Fe-based alloy contains Fe, which is cheaper than metal, than Cu, the material cost can be easily reduced by increasing the Fe content.
  • the Cu—Fe-based alloy is a material that has a possibility of achieving both a sufficient strength as a core material for a connector pin and a material cost.
  • Conventional connector pins are often provided with a Cu plating film between the core material and the Sn plating film for the purpose of improving the adhesion of the Sn plating film.
  • the Cu plating film is usually formed by electroplating using a sulfuric acid bath from the viewpoint of increasing the deposition rate of Cu.
  • both the Cu-based parent phase mainly composed of Cu and the Fe-based particles mainly composed of Fe are exposed. Therefore, when the core material is immersed in a sulfuric acid bath, a substitution reaction occurs between Fe-based particles exposed on the surface and Cu ions in the plating solution, and Cu is precipitated.
  • Cu deposited by this substitution reaction has poor adhesion to the core material compared to Cu formed by electroplating, so that the Sn plating film formed on the surface of the connector pin is easily peeled off together with Cu.
  • the Sn plating film is formed, for example, when inserting and removing terminals repeatedly or when used for a long time in a high temperature environment. There is a problem that it is easy to peel off from the core material. Since the peeling of the Sn plating film causes an increase in contact resistance with the counterpart terminal, a technique for improving the adhesion of the Sn plating film is required.
  • the present invention has been made in view of such a background, is low-cost, and has excellent durability, a connector pin wire and a method for manufacturing the same, and a connector having a connector pin composed of the wire. Is to provide.
  • One embodiment of the present invention contains 10 mass% or more of Fe, the remainder having a chemical component consisting of Cu and inevitable impurities, and Fe-based particles containing Fe as the main component are Cu containing Cu as the main component.
  • Another aspect of the present invention resides in a connector having a connector pin composed of the connector pin wire.
  • Fe-based particles containing 10 mass% or more of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and containing Fe as a main component are mainly Cu.
  • a core material is produced by performing wire drawing processing, which is a combination of plastic processing and annealing performed in an oxygen-free atmosphere, on the ingot,
  • An electroplating process is performed on the core material to form a Sn plating film on the surface.
  • the connector pin wire (hereinafter referred to as “wire” as appropriate) is produced using a core material having the specific chemical component and the specific metal structure. Therefore, the wire can easily achieve both a sufficiently high strength and a material cost for a connector pin. Moreover, since the said core material which has Cu type
  • the wire has the Sn plating film formed on the surface of the core material by electroplating. That is, the wire is formed without performing Cu plating on the core material. Therefore, Cu precipitation due to substitution reaction can be avoided. In addition, Sn is less likely to cause a substitution reaction with Fe than Cu, so that the precipitation of Sn due to the substitution reaction with the Fe-based particles exposed on the surface of the core material is suppressed. Therefore, the wire has high adhesion between the core material and the Sn plating film.
  • the core is manufactured by subjecting the ingot to wire drawing that is a combination of plastic working and annealing performed in an oxygen-free atmosphere. Therefore, the oxidation of the surface of the core material in the annealing treatment can be suppressed, and as a result, deterioration of the adhesion between the core material and the Sn plating film can be prevented. Therefore, according to the manufacturing method of the said wire, the said wire with high adhesiveness of the said core material and the said Sn plating film can be obtained easily.
  • the wire has high adhesion between the core material and the Sn plating film, and has excellent durability. Moreover, according to the manufacturing method of the said wire, the said wire which has the outstanding durability can be obtained easily.
  • the connector pin composed of the above wire rod has strength, conductivity and durability equal to or higher than those of the conventional one, and is lower in cost than a conventional connector pin using a copper alloy. Therefore, a connector having connector pins made of the above wire rod is lower in cost than a conventional connector and has a performance equal to or higher than that of a conventional connector.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • the graph which shows the result of the contact resistance measurement of the sample E1 in an experiment example.
  • the graph which shows the result of the contact resistance measurement of the sample C1 in an experiment example.
  • the core material used for the wire contains 10% by mass or more of Fe.
  • Cu—Fe-based alloys tend to have higher strength as the Fe content increases. Therefore, the said wire can fully satisfy the intensity
  • the material cost of the said wire can be reduced rather than the conventional wire by making content of Fe of the said core material into 10 mass% or more. Therefore, from the viewpoint of increasing the strength and further reducing the material cost, the Fe content is set to 10% by mass or more. From the same viewpoint, the Fe content is preferably 20% by mass or more, and more preferably 50% by mass or more.
  • the Fe content is preferably regulated to 70% by mass or less, and the Fe content is more preferably regulated to 60% by mass or less.
  • the core material is required for the connector pin material by setting the Fe content to 10 mass% or more, preferably 10 to 70 mass%, more preferably 10 to 60 mass%.
  • Various properties such as strength, workability, and conductivity can be satisfied, and the material cost can be reduced as compared with the prior art.
  • Fe-based particles containing Fe as a main component are distributed in a Cu-based matrix containing Cu as a main component.
  • the above-mentioned “main component” means an element having the highest content. That is, the Cu-based matrix may contain a trace amount of Fe or impurities in addition to the main component Cu. The Fe-based particles may contain a trace amount of Cu or impurities in addition to the main component Fe.
  • the Fe-based particles have a fibrous shape extending in the wire drawing direction.
  • the ductility in the wire drawing direction tends to increase, the occurrence of cracks in the bent portion can be suppressed when bending the wire.
  • the core material is reinforced by the fibrous Fe-based particles, the wire has higher strength. Therefore, the wire having the fibrous Fe-based particles has excellent bending workability and high strength.
  • the Fe-based particles having a fibrous shape are, for example, a crystallized product mainly composed of Fe generated in casting or a precipitate mainly composed of Fe generated by heat treatment, such as cold drawing or cold rolling. It can be formed by drawing in the drawing direction by cold working.
  • the Fe-based particles have an average width obtained by measuring in a direction perpendicular to the wire drawing direction of 0.5 ⁇ m or less, and are obtained by measuring in a direction parallel to the wire drawing direction.
  • the average length is preferably 4 ⁇ m or more. In this case, the ductility of the wire in the wire drawing direction tends to be greater. Therefore, the workability at the time of bending the wire is further improved, and the generation of cracks at the bent portion can be prevented.
  • the effect of improving the strength by the Fe-based particles may be insufficient, and the strength of the wire may be insufficient.
  • both the Fe-based particles having a width exceeding 1 ⁇ m and the Fe-based particles having a width of less than 0.1 ⁇ m it is preferable to reduce the contents of both the Fe-based particles having a width exceeding 1 ⁇ m and the Fe-based particles having a width of less than 0.1 ⁇ m. From the same viewpoint, it is more preferable to control the metal structure so that the average width of the Fe-based particles is in the range of 0.1 to 0.5 ⁇ m.
  • the metal structure may be non-uniform.
  • heterogenous metal structure becomes easy to produce stress concentration at the time of a bending process, and there exists a possibility that workability may deteriorate. From the viewpoint of making the metal structure of the wire rod uniform and further improving the workability, it is more preferable to control the metal structure so that the average value of the length is 30 ⁇ m or less.
  • both the Fe-based particles having a length of more than 30 ⁇ m and the Fe-based particles having a length of less than 4 ⁇ m it is preferable to reduce the contents of both the Fe-based particles having a length of more than 30 ⁇ m and the Fe-based particles having a length of less than 4 ⁇ m. From the same viewpoint, it is more preferable to control the metal structure so that the average length of the Fe-based particles is in the range of 4 to 30 ⁇ m.
  • the size of the Fe-based particles can be controlled, for example, by adjusting the size of precipitates or crystallized matter generated during casting, or adjusting the processing rate in wire drawing.
  • the wire has a tensile strength of 700 MPa or more.
  • the wire having the tensile strength in the specific range has a strength higher than that of a brass material (tensile strength of 450 to 500 MPa) or a Corson type copper alloy (tensile strength of 600 to 650 MPa). Therefore, even if the wire diameter is further reduced, the wire has sufficient strength as a material for the connector pin, which is advantageous for reducing the size and weight of the entire connector.
  • the wire preferably has an elongation of 2% or more.
  • the said wire since the said wire has sufficiently high ductility, it becomes easier to suppress the generation of cracks in the bent portion when bending is performed. As a result, the wire has better processability.
  • the core material preferably has a conductivity of 25% IACS or higher.
  • the said core material has the electrical conductivity equivalent to conventionally used copper alloys, such as brass. Therefore, the said wire can satisfy the electrical conductivity requested
  • an ingot having a specific chemical component and having a metal structure in which the Fe-based particles are distributed in the Cu-based matrix is prepared.
  • the core is produced by subjecting the ingot to a wire drawing process that is a combination of plastic working and annealing performed in an oxygen-free atmosphere. That is, the core material can be prepared by appropriately combining a plastic working such as extrusion, rolling, and drawing and a heat treatment for the annealing treatment after producing an ingot having a desired chemical composition and metal structure. it can.
  • the above wire drawing processing usually includes multiple passes of plastic processing and one or more annealing treatments.
  • plastic working such as hot rolling, hot extrusion, hot drawing, and cold working, such as cold rolling, cold extrusion, cold drawing, etc.
  • hot working such as hot rolling, hot extrusion, hot drawing
  • cold working such as cold rolling, cold extrusion, cold drawing, etc.
  • these processing methods can be combined as appropriate.
  • the plastic working includes cold working of one pass or more.
  • the plastic working includes cold working of one pass or more.
  • the final pass of the plastic working is cold working. In this case, since the strength improvement effect by work hardening can be obtained reliably, the strength of the wire can be further increased.
  • the heating temperature in the annealing treatment is usually set in the range of 800 to 900 ° C.
  • the annealing treatment is performed in an oxygen-free atmosphere.
  • the “oxygen-free atmosphere” described above includes, for example, an inert gas atmosphere such as a nitrogen atmosphere and an argon atmosphere, a reducing gas atmosphere such as a hydrogen atmosphere, and a reduced pressure atmosphere of 10 Pa or less.
  • the above ingot is heated in an oxidizing atmosphere, a relatively thick oxide film is formed on the surface of the core material. Therefore, it is necessary to perform an acid cleaning treatment to remove the oxide film.
  • the Fe-based particles may be dissolved together with the oxide film, and pores may be formed on the surface of the core material. Such pores are not preferable because they cause deterioration of the adhesion of the Sn plating film in some cases.
  • the annealing treatment is performed in an oxygen-free atmosphere, it is not necessary to perform an acid cleaning treatment, and it is possible to prevent the formation of pores on the surface of the core material. As a result, it is possible to prevent the adhesion between the core material and the Sn plating film from deteriorating.
  • the surface of the core material is electroplated to form a Sn plating film.
  • Sn plating bath used for the electroplating treatment include a sulfuric acid bath and a methanesulfonic acid bath.
  • the Sn plating bath used for the electroplating treatment is preferably an organic acid bath such as a methanesulfonic acid bath.
  • the Sn plating film can be formed using a plating bath other than the organic acid bath, but the substitution reaction between Sn and Fe can be further suppressed by using the organic acid bath. Therefore, according to the manufacturing method of the said wire, the said wire with high adhesiveness of the said core material and the said Sn plating film can be obtained more easily.
  • the film thickness of the Sn plating film is preferably 0.5 to 2 ⁇ m. In this case, due to the presence of the Sn plating film, the contact resistance between the connector pin made of the wire and the mating terminal can be reduced, and the insertion force required for inserting the connector pin into the mating terminal is sufficiently small. it can.
  • the thickness of the Sn plating film is less than 0.5 ⁇ m, the contact area with the counterpart terminal may be insufficient. As a result, the effect of reducing the contact resistance between the connector pin and the counterpart terminal may be insufficient. Moreover, when the film thickness of the Sn plating film exceeds 2 ⁇ m, an insertion force required for inserting the connector pin into the counterpart terminal may be increased.
  • a reflow process for heating the core material may be performed.
  • Sn of the Sn plating film and Cu of the core material are alloyed to form a Cu—Sn alloy.
  • the adhesion between the Sn plating film and the core material is further improved, and the wire has more excellent durability.
  • the heating temperature in the reflow treatment is preferably in the temperature range of 0 to 50 ° C. higher than the melting point of Sn, for example.
  • the heating temperature for the reflow treatment is preferably in the temperature range of 0 to 50 ° C. higher than the melting point of Sn, for example.
  • Sn melts and the Cu—Sn alloy can be formed reliably.
  • the Sn plating film is present on the Cu—Sn alloy by controlling the heating time in the range of 10 to 120 seconds. Is formed. Therefore, both the effect of reducing the insertion force by the relatively hard Cu—Sn alloy and the effect of improving the contact characteristics by the relatively soft Sn plating film can be obtained.
  • the heating time and heating temperature in the reflow treatment can be appropriately set according to the desired amount of the Cu—Sn alloy.
  • the heating temperature in the reflow process is excessively high or the heating time is excessively long, the amount of the Cu—Sn alloy formed is increased, and in some cases, the Cu—Sn alloy is exposed on the surface.
  • the effect of improving the contact characteristics by the Sn plating film may be insufficient, and there may be a problem such as an increase in contact resistance.
  • the Sn plating film is entirely used for forming an alloy with Cu and the entire surface is covered with the Cu—Sn alloy, the effect of improving the contact characteristics by the Sn plating film cannot be obtained. It is not preferable.
  • Example 1 Examples of the connector pin wire (hereinafter referred to as “wire” as appropriate) will be described with reference to FIGS.
  • the wire 1 has the core material 2 and the Sn plating film 3 formed in the surface of the core material 2 by electroplating.
  • the core material 2 contains Fe of 10% by mass or more, and the remainder has a chemical component composed of Cu and inevitable impurities, and as shown in FIG. It has a metal structure distributed in the Cu-based matrix 22 containing Cu as a main component.
  • the wire 1 was produced by the following method.
  • the Fe-based particles 21 containing 50% by mass of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and containing Fe as a main component are formed into a Cu-based matrix 22 containing Cu as a main component.
  • An ingot having a distributed metal structure was prepared.
  • the core material 2 was produced by subjecting the ingot to wire drawing that is a combination of a plurality of passes of plastic working and annealing.
  • the plastic working of this example includes cold working of one or more passes, and the final pass is cold drawn.
  • the ingot was heated in a reduced pressure atmosphere of 10 Pa or less.
  • the cross-sectional shape of the core material 2 in a state where the wire drawing processing was completed was a square shape having a side of 0.64 mm.
  • the conductivity of the core material 2 was 30.9% IACS.
  • the conductivity of a conventional brass material C2600-H material
  • the core material 2 was subjected to electroplating to form a Sn plating film 3 on the surface.
  • the detailed conditions of the electroplating process are as follows.
  • the wire 1 on which the Sn plating film 3 was formed was reflowed by heating at 260 ° C. for 10 seconds, and a Cu—Sn alloy 31 was formed between the Sn plating film 3 and the core material 2. Thus, the wire 1 was obtained.
  • the Sn plating film 3 and the metal structure of the core material 2 were observed by the following method.
  • the core material 2 has a metal structure in which Fe-based particles 21 are distributed in the Cu-based matrix 22.
  • FIG. 3 shows a reflected electron image of the core material 2 exposed in the cross section.
  • the Fe-based particles 21 included in the core material 2 exhibited a fibrous shape extending in the wire drawing direction.
  • the above-mentioned three-dimensional image having a rectangular parallelepiped shape was created by digging a square field of view 10 ⁇ m long ⁇ 10 ⁇ m wide at intervals of 0.2 ⁇ m along the drawing direction.
  • the width and the length of each Fe-based particle 21 were measured based on the obtained three-dimensional image, the width was 0.1 ⁇ m or more for all the Fe-based particles 21 present in the three-dimensional image.
  • the length was 0.5 ⁇ m or less, and the length was 4 ⁇ m or more and 30 ⁇ m or less.
  • the wire 1 is produced using the core 2 provided with the specific chemical component and the specific metal structure. Therefore, the wire 1 can easily achieve both a sufficiently high strength for a connector pin and a material cost. Moreover, since the wire 1 has the Cu type
  • the wire 1 has a Sn plating film 3 formed on the surface of the core 2 by electroplating.
  • the Sn plating film 3 is formed by an electroplating process using an organic acid bath.
  • the annealing process is performed in an oxygen-free atmosphere. Therefore, it is possible to suppress the formation of an oxide film on the surface of the core material 2 in the wire drawing process, and consequently to prevent the formation of pores on the surface of the core material 2.
  • the wire 1 has high adhesion between the core material 2 and the Sn plating film 3, and has excellent durability.
  • Example 2 This example is an example of the connector 10 having the connector pins 11 manufactured using the wire 1. As shown in FIGS. 4 and 5, the connector 10 includes a housing 4 having a recess 41 and a plurality of connector pins 11 disposed through the housing 4. The connector pin 11 is formed from the wire 1.
  • the housing 4 has a substantially rectangular parallelepiped shape as shown in FIGS. 4 and 5, and includes a bottom wall portion 42 through which the connector pin 11 passes, and a side wall portion 43 erected from the outer peripheral edge portion of the bottom wall portion 42. have. A space surrounded by the bottom wall portion 42 and the side wall portion 43 constitutes the recess 41.
  • the connector pin 11 has a substantially rod shape as shown in FIGS. 4 and 5 and has a terminal connecting portion 111 at one end and a soldering portion 112 at the other end.
  • the connector pin 11 of this example is extended toward the bottom wall portion 42 with the terminal connection portion 111 disposed in the recess 41 as a base end. Further, the connector pin 11 penetrates the bottom wall portion 42 and protrudes outward from the housing 4, and is bent 90 ° between the bottom wall portion 42 and the soldering portion 112. That is, the connector pin 11 of this example is bent so that the terminal connection portion 111 and the soldering portion 112 are perpendicular to each other when the connector pin 11 is disposed in the connector 10.
  • the wire 1 can be suitably used as a material for the connector pin 11.
  • sample E1 This example uses the sample (hereinafter referred to as “sample E1”) collected from the wire 1 in Example 1, and evaluates each characteristic of mechanical properties, adhesion of the Sn plating film 3, solder wettability, and contact resistance. This is an example.
  • sample C1 two types of samples (referred to as “sample C1” and “sample C2”, respectively) were prepared and evaluated for characteristics.
  • Sample C1 is a conventional wire in which a Cu plating film and an Sn plating film are sequentially laminated on the surface of a core material made of brass (C2600-H).
  • Sample C2 is a wire in which the Cu plating film and the Sn plating film 3 are sequentially laminated on the core material 2 made of the Cu—Fe alloy in Example 1.
  • all the plating films in the sample C1 and the sample C2 were formed by an electroplating process using a sulfuric acid bath.
  • Table 1 shows the tensile strength and 0.2% proof stress of each test material obtained by the tensile test.
  • the tensile strength of the sample E1 was 700 MPa or more, which was higher than that of the sample C1 (C2600-H material).
  • solder wettability evaluation Evaluation of solder wettability of four types of samples, sample E1 and sample C1 in the initial state and sample E1 and sample C1 after being subjected to a high temperature durability test at 120 ° C. for 120 hours by the meniscograph method went.
  • Zero cross time and maximum wetting force were used as indicators of solder wettability. The smaller the value of the zero cross time, the better the solder wettability. Moreover, it shows that solder wettability is so favorable that the value of the maximum wetting force is large.
  • the solder used in the meniscograph method was a lead-free solder having a composition of Sn-3Ag-0.5Cu, and an active type flux was used in combination.
  • the solder temperature was 250 ° C.
  • Table 2 shows the measurement results of zero cross time and maximum wetting force. The measurement was performed a plurality of times for each sample, and Table 2 shows the average value.
  • the sample E1 and the sample C1 had a zero cross time of 2 seconds or less in both the initial state and the state after the high temperature durability test. This result is a result that sufficiently satisfies the characteristics required for the connector pin.
  • ⁇ Contact resistance measurement> Four types of samples, the sample E1 and the sample C1 in the initial state, and the sample E1 and the sample C1 subjected to the high-temperature durability test described above, were inserted into a separately prepared counterpart terminal. In this state, the resistance value between each sample and the counterpart terminal was measured, and the obtained value was defined as the contact resistance. In addition, as the counterpart terminal, a female terminal whose surface was subjected to Sn plating was used. Further, the contact resistance was measured for each sample a plurality of times.
  • FIGS. 6 and 7 show the measurement results of the contact resistances of the sample E1 and the sample C1, respectively.
  • shaft of FIG.6 and FIG.7 is a value of contact resistance (m (ohm)).
  • the plot points (symbol 5) shown in FIGS. 6 and 7 are average values of the contact resistance values obtained from a plurality of measurements, and the error bar (symbol 6) is from the maximum value to the minimum value. The range is shown.
  • the sample E1 had a contact resistance value of 10 m ⁇ or less in the initial state and the state after the high-temperature durability test, and showed a contact resistance equal to or less than that of the sample C1. This result is a result that sufficiently satisfies the characteristics required for the connector pin.
  • FIG. 8 shows a photograph of the sample E1 after restoration to the original state.
  • the Sn plating film 3 of the sample E1 did not peel from the core material 2 after being torsionally deformed, and exhibited excellent adhesion.
  • the sample E1 in which the Sn plating film 3 is directly laminated on the core material 2 has high adhesion between the core material 2 and the Sn plating film 3, and the Sn plating film 3 is peeled off. It turns out that it is hard to occur. Therefore, the connector pin produced using the sample E1 has excellent durability.
  • the sample C2 having a Cu plating film between the core material 2 and the Sn plating film 3 the Sn plating film 3 is easily peeled from the core material 2 together with the Cu plating film. Therefore, the connector pin produced using the sample C2 has lower durability than the sample E1.

Abstract

This wire rod (1) for a connector pin has a core material and an Sn plated film (3) that is formed on the surface of the core material (2) using electroplating. The core material (2) has a metal structure in which the core material contains at least 10 mass% of Fe, the balance has a chemical composition comprising Cu and inevitable impurities, and Fe particles, which have Fe as the principal component, are distributed in a Cu parent phase, which has Cu as the principal component.

Description

コネクタピン用線材、その製造方法及びコネクタWire for connector pin, method for manufacturing the same, and connector
 本発明は、コネクタピン用線材、その製造方法及びコネクタピン用線材を用いたコネクタに関する。 The present invention relates to a wire for connector pins, a manufacturing method thereof, and a connector using the wire for connector pins.
 自動車用PCB(Printed Circuit Board)コネクタや自動車用中継コネクタ等のコネクタには、例えば黄銅などの、銅に数質量%程度の金属を添加した銅合金を芯材とするコネクタピンが用いられている。芯材の表面には、相手方端子との接触抵抗を低減する目的で、表面にSn(スズ)めっき膜を形成することが多い。 Connectors such as PCB (Printed Circuit Board) connectors for automobiles and relay connectors for automobiles use connector pins with copper as a core material, such as brass, to which a metal of several mass% is added. . An Sn (tin) plating film is often formed on the surface of the core material for the purpose of reducing contact resistance with the counterpart terminal.
 近年では、コネクタ全体の軽量化、小型化及び低コスト化のために、より高い剛性を有すると共に、材料コストを低減できるコネクタピンが望まれている。そこで、材料の強度が高く、材料コストの低い銅合金として、銅(Cu)に鉄(Fe)を添加したCu-Fe系合金をコネクタピンの芯材として用いることが検討されている。 In recent years, in order to reduce the weight, size, and cost of the entire connector, a connector pin that has higher rigidity and can reduce the material cost is desired. Thus, as a copper alloy having high material strength and low material cost, use of a Cu—Fe based alloy in which iron (Fe) is added to copper (Cu) as a core material of a connector pin is being studied.
 例えば特許文献1には、0.05~5質量%の炭素が固溶した10~70質量%のFeと、残部がCu及び不可避不純物との合金からなるばね部材の例が開示されている。かかる化学成分を有するCu-Fe系合金は、従来の銅合金よりも高い強度を有するものとなりやすい。また、Cu-Fe系合金は、Cuよりも地金代の安価なFeを含有しているため、Feの含有量を多くすることにより材料コストを容易に低減することができる。 For example, Patent Document 1 discloses an example of a spring member made of an alloy of 10 to 70% by mass of Fe in which 0.05 to 5% by mass of carbon is dissolved, and the balance being Cu and inevitable impurities. A Cu—Fe-based alloy having such a chemical component tends to have a higher strength than conventional copper alloys. In addition, since the Cu—Fe-based alloy contains Fe, which is cheaper than metal, than Cu, the material cost can be easily reduced by increasing the Fe content.
 このように、Cu-Fe系合金は、コネクタピンの芯材として十分な強度と、材料コストとを両立する可能性を有する材料である。 Thus, the Cu—Fe-based alloy is a material that has a possibility of achieving both a sufficient strength as a core material for a connector pin and a material cost.
特開平5-125468号公報Japanese Patent Laid-Open No. 5-125468
 従来のコネクタピンには、芯材とSnめっき膜との間に、Snめっき膜の密着性を改善する目的でCuめっき膜が設けられていることが多い。Cuめっき膜は、Cuの析出速度を速くする観点から、通常、硫酸浴を用いた電気めっきにより形成される。しかしながら、Cu-Fe系合金よりなる芯材の表面には、Cuを主成分とするCu系母相及びFeを主成分とするFe系粒子の両方が露出している。そのため、芯材を硫酸浴に浸漬すると、表面に露出したFe系粒子とめっき液中のCuイオンとの間で置換反応が起き、Cuが析出する。この置換反応により析出したCuは、電気めっきにより形成したCuに比べて芯材との密着性が悪いため、コネクタピンの表面に形成されるSnめっき膜がCuごと剥離しやすくなる。 Conventional connector pins are often provided with a Cu plating film between the core material and the Sn plating film for the purpose of improving the adhesion of the Sn plating film. The Cu plating film is usually formed by electroplating using a sulfuric acid bath from the viewpoint of increasing the deposition rate of Cu. However, on the surface of the core material made of the Cu—Fe-based alloy, both the Cu-based parent phase mainly composed of Cu and the Fe-based particles mainly composed of Fe are exposed. Therefore, when the core material is immersed in a sulfuric acid bath, a substitution reaction occurs between Fe-based particles exposed on the surface and Cu ions in the plating solution, and Cu is precipitated. Cu deposited by this substitution reaction has poor adhesion to the core material compared to Cu formed by electroplating, so that the Sn plating film formed on the surface of the connector pin is easily peeled off together with Cu.
 以上のように、Cu-Fe合金を芯材とするコネクタピンに従来の製造方法を適用すると、例えば端子の挿抜を繰り返す場合や、高温環境下において長期間使用する場合等に、Snめっき膜が芯材から剥離しやすいという問題がある。Snめっき膜の剥離は相手方端子との接触抵抗の増大を招くため、Snめっき膜の密着性を向上させる技術が求められている。 As described above, when a conventional manufacturing method is applied to a connector pin having a Cu—Fe alloy as a core material, the Sn plating film is formed, for example, when inserting and removing terminals repeatedly or when used for a long time in a high temperature environment. There is a problem that it is easy to peel off from the core material. Since the peeling of the Sn plating film causes an increase in contact resistance with the counterpart terminal, a technique for improving the adhesion of the Sn plating film is required.
 本発明は、かかる背景に鑑みてなされたものであり、低コストであり、かつ、優れた耐久性を有するコネクタピン用線材及びその製造方法と、上記線材より構成されたコネクタピンを有するコネクタとを提供しようとするものである。 The present invention has been made in view of such a background, is low-cost, and has excellent durability, a connector pin wire and a method for manufacturing the same, and a connector having a connector pin composed of the wire. Is to provide.
 本発明の一態様は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、かつ、Feを主成分とするFe系粒子がCuを主成分とするCu系母相に分布している金属組織を有する芯材と、
 電気めっきにより上記芯材の表面に形成されたSnめっき膜とを有することを特徴とするコネクタピン用線材にある。
One embodiment of the present invention contains 10 mass% or more of Fe, the remainder having a chemical component consisting of Cu and inevitable impurities, and Fe-based particles containing Fe as the main component are Cu containing Cu as the main component. A core material having a metal structure distributed in the parent matrix;
A connector pin wire having an Sn plating film formed on the surface of the core by electroplating.
 また、本発明の他の態様は、上記コネクタピン用線材より構成されたコネクタピンを有するコネクタにある。 Further, another aspect of the present invention resides in a connector having a connector pin composed of the connector pin wire.
 また、本発明の更に他の態様は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、かつ、Feを主成分とするFe系粒子がCuを主成分とするCu系母相に分布している金属組織を有する鋳塊を準備し、
 塑性加工と、無酸素雰囲気下において実施される焼鈍処理とを組み合わせてなる伸線加工を上記鋳塊に施して芯材を作製し、
 電気めっき処理を上記芯材に施して表面にSnめっき膜を形成することを特徴とするコネクタピン用線材の製造方法にある。
In another aspect of the present invention, Fe-based particles containing 10 mass% or more of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and containing Fe as a main component are mainly Cu. Preparing an ingot having a metal structure distributed in a Cu-based matrix as a component;
A core material is produced by performing wire drawing processing, which is a combination of plastic processing and annealing performed in an oxygen-free atmosphere, on the ingot,
An electroplating process is performed on the core material to form a Sn plating film on the surface.
 上記コネクタピン用線材(以下、適宜「線材」という。)は、上記特定の化学成分及び上記特定の金属組織を備えた芯材を用いて作製されている。そのため、上記線材は、コネクタピン用として十分に高い強度と、材料コストとを容易に両立することができる。また、上記線材には、Cuを主成分とするCu系母相を有する上記芯材が用いられているため、従来の銅合金と同等以上の導電率を容易に確保することができる。 The connector pin wire (hereinafter referred to as “wire” as appropriate) is produced using a core material having the specific chemical component and the specific metal structure. Therefore, the wire can easily achieve both a sufficiently high strength and a material cost for a connector pin. Moreover, since the said core material which has Cu type | system | group mother phase which has Cu as a main component is used for the said wire, the electrical conductivity equivalent to the conventional copper alloy or more can be ensured easily.
 また、上記線材は、電気めっきにより上記芯材の表面に形成された上記Snめっき膜を有している。即ち、上記線材は、上記芯材にCuめっき処理を行うことなく形成されている。そのため、置換反応によるCuの析出を回避することができる。また、Snは、Cuに比べてFeとの置換反応を起こしにくいため、上記芯材の表面に露出した上記Fe系粒子との置換反応によるSnの析出が抑制される。それ故、上記線材は、上記芯材と上記Snめっき膜との密着性が高い。 Also, the wire has the Sn plating film formed on the surface of the core material by electroplating. That is, the wire is formed without performing Cu plating on the core material. Therefore, Cu precipitation due to substitution reaction can be avoided. In addition, Sn is less likely to cause a substitution reaction with Fe than Cu, so that the precipitation of Sn due to the substitution reaction with the Fe-based particles exposed on the surface of the core material is suppressed. Therefore, the wire has high adhesion between the core material and the Sn plating film.
 また、上記線材の製造方法においては、塑性加工と、無酸素雰囲気下において実施される焼鈍処理とを組み合わせてなる伸線加工を上記鋳塊に施して芯材を作製する。そのため、焼鈍処理における上記芯材の表面の酸化を抑制することができ、ひいては上記芯材と上記Snめっき膜との密着性が悪化することを防止できる。そのため、上記線材の製造方法によれば、上記芯材と上記Snめっき膜との密着性が高い上記線材を容易に得ることができる。 Further, in the above method for manufacturing a wire, the core is manufactured by subjecting the ingot to wire drawing that is a combination of plastic working and annealing performed in an oxygen-free atmosphere. Therefore, the oxidation of the surface of the core material in the annealing treatment can be suppressed, and as a result, deterioration of the adhesion between the core material and the Sn plating film can be prevented. Therefore, according to the manufacturing method of the said wire, the said wire with high adhesiveness of the said core material and the said Sn plating film can be obtained easily.
 以上のように、上記線材は、上記芯材と上記Snめっき膜との密着性が高く、優れた耐久性を有する。また、上記線材の製造方法によれば、優れた耐久性を有する上記線材を容易に得ることができる。 As described above, the wire has high adhesion between the core material and the Sn plating film, and has excellent durability. Moreover, according to the manufacturing method of the said wire, the said wire which has the outstanding durability can be obtained easily.
 また、上記線材から構成されるコネクタピンは、従来と同等以上の強度、導電率及び耐久性を有し、従来の銅合金を用いたコネクタピンよりも低コストである。それ故、上記線材からなるコネクタピンを有するコネクタは、従来のコネクタに比べて低コストであり、かつ、従来のコネクタと同等以上の性能を有する。 Also, the connector pin composed of the above wire rod has strength, conductivity and durability equal to or higher than those of the conventional one, and is lower in cost than a conventional connector pin using a copper alloy. Therefore, a connector having connector pins made of the above wire rod is lower in cost than a conventional connector and has a performance equal to or higher than that of a conventional connector.
実施例1のコネクタピン用線材における、伸線方向に垂直な断面に露出したSnめっき膜近傍の反射電子像。The reflected electron image of Sn plating film vicinity exposed to the cross section perpendicular | vertical to a wire drawing direction in the wire material for connector pins of Example 1. FIG. 図1の元素マッピング像。The element mapping image of FIG. 実施例1のコネクタピン用線材における、伸線方向に沿った断面に露出した芯材の反射電子像。The reflected electron image of the core material exposed to the cross section along the wire drawing direction in the wire material for connector pins of Example 1. FIG. 実施例2における、コネクタの正面図。The front view of the connector in Example 2. FIG. 図4のV-V線矢視断面図。FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. 実験例における、試料E1の接触抵抗測定の結果を示すグラフ。The graph which shows the result of the contact resistance measurement of the sample E1 in an experiment example. 実験例における、試料C1の接触抵抗測定の結果を示すグラフ。The graph which shows the result of the contact resistance measurement of the sample C1 in an experiment example. 実験例における、ねじり変形を与えた後の試料E1の表面を撮影した写真。The photograph which image | photographed the surface of the sample E1 after giving torsional deformation in an experiment example. 実験例における、ねじり変形を与えた後の試料C2の表面を撮影した写真。The photograph which image | photographed the surface of the sample C2 after giving torsional deformation in an experiment example.
 上記線材に用いられる上記芯材は、10質量%以上のFeを含有している。Cu-Fe系合金は、Feの含有量が多くなるほど強度が高くなる傾向がある。そのため、上記線材は、Feの含有量を10質量%以上とすることにより、コネクタピンの素材に要求される強度を十分に満足することができる。また、上記芯材のFeの含有量を10質量%以上とすることにより、従来の線材よりも上記線材の材料コストを低減することができる。それ故、強度をより高くし、材料コストをより低減する観点から、Feの含有量は10質量%以上とする。同じ観点から、Feの含有量は20質量%以上が好ましく、50質量%以上がより好ましい。 The core material used for the wire contains 10% by mass or more of Fe. Cu—Fe-based alloys tend to have higher strength as the Fe content increases. Therefore, the said wire can fully satisfy the intensity | strength requested | required of the raw material of a connector pin by content of Fe being 10 mass% or more. Moreover, the material cost of the said wire can be reduced rather than the conventional wire by making content of Fe of the said core material into 10 mass% or more. Therefore, from the viewpoint of increasing the strength and further reducing the material cost, the Fe content is set to 10% by mass or more. From the same viewpoint, the Fe content is preferably 20% by mass or more, and more preferably 50% by mass or more.
 一方、Cu-Fe系合金は、Feの含有量が過度に多くなると、曲げ加工を施す際の加工性が悪化するため、上記線材を用いてコネクタピン等を作製する際に割れ等が生じ易くなる。また、Fe系粒子はCuを主成分とするCu系母相に比べて導電率が低いため、Feの含有量が過度に多い場合には、上記芯材の導電率が低くなりやすい。それ故、Feの含有量が過度に多い場合には、コネクタピンの素材に要求される導電率を満足することが困難となるおそれがある。これらの問題を回避するためには、例えば、Feの含有量を70質量%以下に規制することが好ましく、Feの含有量を60質量%以下に規制することがより好ましい。 On the other hand, Cu—Fe-based alloys, when the Fe content is excessively increased, deteriorates the workability when bending, and therefore, cracks and the like are likely to occur when a connector pin or the like is produced using the wire. Become. In addition, since Fe-based particles have a lower conductivity than a Cu-based matrix containing Cu as a main component, when the Fe content is excessively large, the conductivity of the core material tends to be low. Therefore, if the Fe content is excessively large, it may be difficult to satisfy the electrical conductivity required for the connector pin material. In order to avoid these problems, for example, the Fe content is preferably regulated to 70% by mass or less, and the Fe content is more preferably regulated to 60% by mass or less.
 以上のように、上記芯材は、Feの含有量を10質量%以上とし、好ましくは10~70質量%、さらに好ましくは10~60質量%とすることにより、コネクタピンの素材に要求される強度、加工性、導電性等の諸特性を満足でき、かつ、従来よりも材料コストを低減できる。 As described above, the core material is required for the connector pin material by setting the Fe content to 10 mass% or more, preferably 10 to 70 mass%, more preferably 10 to 60 mass%. Various properties such as strength, workability, and conductivity can be satisfied, and the material cost can be reduced as compared with the prior art.
 上記金属組織は、Feを主成分とするFe系粒子が、Cuを主成分とするCu系母相に分布している。ここで、上述した「主成分」とは、最も含有量の多い元素であることを意味している。即ち、上記Cu系母相は主成分のCuの他に微量のFeあるいは不純物を含有する場合がある。また、Fe系粒子は主成分のFeの他に微量のCuあるいは不純物を含有する場合がある。 In the metal structure, Fe-based particles containing Fe as a main component are distributed in a Cu-based matrix containing Cu as a main component. Here, the above-mentioned “main component” means an element having the highest content. That is, the Cu-based matrix may contain a trace amount of Fe or impurities in addition to the main component Cu. The Fe-based particles may contain a trace amount of Cu or impurities in addition to the main component Fe.
 上記Fe系粒子は、伸線方向に伸びた繊維状を呈していることが好ましい。この場合には、伸線方向への延性が大きくなり易いため、上記線材に曲げ加工を施す際に、屈曲部分における割れの発生を抑制することができる。また、繊維状の上記Fe系粒子によって上記芯材が強化されるため、上記線材はより高い強度を有する。それ故、繊維状の上記Fe系粒子を有する線材は、優れた曲げ加工性及び高い強度を有する。 It is preferable that the Fe-based particles have a fibrous shape extending in the wire drawing direction. In this case, since the ductility in the wire drawing direction tends to increase, the occurrence of cracks in the bent portion can be suppressed when bending the wire. Further, since the core material is reinforced by the fibrous Fe-based particles, the wire has higher strength. Therefore, the wire having the fibrous Fe-based particles has excellent bending workability and high strength.
 繊維状を呈するFe系粒子は、例えば、鋳造の際に生じるFeを主成分とする晶出物や、熱処理等により生じるFeを主成分とする析出物を、冷間引抜や冷間圧延等の冷間加工によって伸線方向に引き伸ばすことにより形成することができる。 The Fe-based particles having a fibrous shape are, for example, a crystallized product mainly composed of Fe generated in casting or a precipitate mainly composed of Fe generated by heat treatment, such as cold drawing or cold rolling. It can be formed by drawing in the drawing direction by cold working.
 また、上記Fe系粒子は、上記伸線方向と直角な方向に測定して得られる幅の平均値が0.5μm以下であり、かつ、上記伸線方向と平行な方向に測定して得られる長さの平均値が4μm以上であることが好ましい。この場合には、上記線材の伸線方向への延性がより大きくなりやすい。それ故、上記線材に曲げ加工を施す際の加工性がより向上し、屈曲部分における割れの発生を防止することができる。 The Fe-based particles have an average width obtained by measuring in a direction perpendicular to the wire drawing direction of 0.5 μm or less, and are obtained by measuring in a direction parallel to the wire drawing direction. The average length is preferably 4 μm or more. In this case, the ductility of the wire in the wire drawing direction tends to be greater. Therefore, the workability at the time of bending the wire is further improved, and the generation of cracks at the bent portion can be prevented.
 上記幅が1μmを超えるFe系粒子が過度に多く存在する場合には、Fe系粒子の分布に偏りが生じやすく、金属組織が不均一となるおそれがある。そして、不均一な金属組織を有する線材は、曲げ加工時に応力集中が生じ易くなり、加工性が悪化するおそれがある。このような問題は、上記幅の平均値が0.5μm以下となるように上記金属組織を制御することにより回避できる。 When an excessive amount of Fe-based particles having a width exceeding 1 μm exists, the distribution of Fe-based particles is likely to be biased, and the metal structure may be uneven. And the wire which has a non-uniform | heterogenous metal structure becomes easy to produce stress concentration at the time of a bending process, and there exists a possibility that workability may deteriorate. Such a problem can be avoided by controlling the metal structure so that the average value of the width is 0.5 μm or less.
 一方、上記幅が0.1μm未満となるFe系粒子が過度に多く存在する場合には、上記Fe系粒子による強度向上効果が不十分となり、ひいては上記線材の強度が不十分となるおそれがある。上記Fe系粒子による強度向上効果を十分に得るためには、上記幅の平均値が0.1μm以上となるように上記金属組織を制御することが好ましい。 On the other hand, when there are too many Fe-based particles having a width of less than 0.1 μm, the effect of improving the strength by the Fe-based particles may be insufficient, and the strength of the wire may be insufficient. . In order to sufficiently obtain the strength improvement effect by the Fe-based particles, it is preferable to control the metal structure so that the average value of the width is 0.1 μm or more.
 以上のように、加工性と強度とを両立させる観点から、幅が1μmを超える上記Fe系粒子及び幅が0.1μm未満となる上記Fe系粒子の両方の含有量を低減することが好ましい。同じ観点から、上記Fe系粒子の幅の平均値が0.1~0.5μmの範囲内になるように上記金属組織を制御することがより好ましい。 As described above, from the viewpoint of achieving both workability and strength, it is preferable to reduce the contents of both the Fe-based particles having a width exceeding 1 μm and the Fe-based particles having a width of less than 0.1 μm. From the same viewpoint, it is more preferable to control the metal structure so that the average width of the Fe-based particles is in the range of 0.1 to 0.5 μm.
 また、上記長さが4μm未満となる上記Fe系粒子が過度に多く存在する場合には、Fe系粒子による強度向上効果が不十分となるおそれがあり、ひいては上記線材の強度が不十分となるおそれがある。この問題は、上記長さの平均値が4μm以上となるように上記金属組織を制御することにより回避できる。 In addition, when there are too many Fe-based particles having a length of less than 4 μm, there is a risk that the effect of improving the strength by the Fe-based particles may be insufficient, and consequently the strength of the wire becomes insufficient. There is a fear. This problem can be avoided by controlling the metal structure so that the average value of the length is 4 μm or more.
 一方、上記長さが30μmを超えるFe系粒子が過度に多く存在する場合には、Fe系粒子の分布に偏りが生じやすく、金属組織が不均一となるおそれがある。そして、不均一な金属組織を有する線材は、曲げ加工時に応力集中が生じ易くなり、加工性が悪化するおそれがある。上記線材の金属組織を均一にし、加工性をより向上させる観点からは、上記長さの平均値が30μm以下となるように上記金属組織を制御することがより好ましい。 On the other hand, if there are too many Fe-based particles having a length exceeding 30 μm, the distribution of Fe-based particles tends to be biased, and the metal structure may be non-uniform. And the wire which has a non-uniform | heterogenous metal structure becomes easy to produce stress concentration at the time of a bending process, and there exists a possibility that workability may deteriorate. From the viewpoint of making the metal structure of the wire rod uniform and further improving the workability, it is more preferable to control the metal structure so that the average value of the length is 30 μm or less.
 以上のように、加工性と強度とを両立させる観点から、長さが30μmを超える上記Fe系粒子及び4μm未満となる上記Fe系粒子の両方の含有量を低減することが好ましい。同じ観点から、上記Fe系粒子の長さの平均値が4~30μmの範囲内になるように上記金属組織を制御することがより好ましい。 As described above, from the viewpoint of achieving both workability and strength, it is preferable to reduce the contents of both the Fe-based particles having a length of more than 30 μm and the Fe-based particles having a length of less than 4 μm. From the same viewpoint, it is more preferable to control the metal structure so that the average length of the Fe-based particles is in the range of 4 to 30 μm.
 なお、上記Fe系粒子の大きさは、例えば、鋳造時等に生じる析出物や晶出物の大きさの調整、あるいは、伸線加工における加工率の調整により制御することができる。 The size of the Fe-based particles can be controlled, for example, by adjusting the size of precipitates or crystallized matter generated during casting, or adjusting the processing rate in wire drawing.
 また、上記線材は、引張強さが700MPa以上であることが好ましい。上記特定の範囲の引張強さを有する上記線材は、黄銅材(引張強さ450~500MPa)やコルソン系銅合金(引張強さ600~650MPa)よりも高い強度を備えている。それ故、上記線材は、より線径を細くしてもコネクタピンの素材として十分な強度を有し、ひいてはコネクタ全体の小型化、軽量化に有利なものとなる。 Moreover, it is preferable that the wire has a tensile strength of 700 MPa or more. The wire having the tensile strength in the specific range has a strength higher than that of a brass material (tensile strength of 450 to 500 MPa) or a Corson type copper alloy (tensile strength of 600 to 650 MPa). Therefore, even if the wire diameter is further reduced, the wire has sufficient strength as a material for the connector pin, which is advantageous for reducing the size and weight of the entire connector.
 また、上記線材は、伸びが2%以上であることが好ましい。この場合には、上記線材は、十分に高い延性を有するため、曲げ加工を施す際に、屈曲部分における割れの発生をより抑制し易くなる。その結果、上記線材は、より優れた加工性を有する。 Also, the wire preferably has an elongation of 2% or more. In this case, since the said wire has sufficiently high ductility, it becomes easier to suppress the generation of cracks in the bent portion when bending is performed. As a result, the wire has better processability.
 また、上記芯材は、導電率が25%IACS以上であることが好ましい。この場合には、上記芯材は、黄銅等の従来用いられている銅合金と同等の導電率を有する。そのため、上記線材は、コネクタピンに要求される導電率を満足でき、コネクタピンの素材として好適に用いることができる。 The core material preferably has a conductivity of 25% IACS or higher. In this case, the said core material has the electrical conductivity equivalent to conventionally used copper alloys, such as brass. Therefore, the said wire can satisfy the electrical conductivity requested | required of a connector pin, and can be used suitably as a raw material of a connector pin.
 次に、上記線材の製造方法について説明する。まず、上記特定の化学成分を有すると共に、上記Fe系粒子が上記Cu系母相に分布している金属組織を有する鋳塊を準備する。次いで、上記鋳塊に塑性加工と無酸素雰囲気下において実施される焼鈍処理とを組み合わせてなる伸線加工を施して芯材を作成する。すなわち、芯材は、所望の化学成分及び金属組織を有する鋳塊を作製した後、押出、圧延及び引抜などの塑性加工と、上記焼鈍処理のための熱処理とを適宜組み合わせることにより作製することができる。 Next, a method for manufacturing the wire will be described. First, an ingot having a specific chemical component and having a metal structure in which the Fe-based particles are distributed in the Cu-based matrix is prepared. Next, the core is produced by subjecting the ingot to a wire drawing process that is a combination of plastic working and annealing performed in an oxygen-free atmosphere. That is, the core material can be prepared by appropriately combining a plastic working such as extrusion, rolling, and drawing and a heat treatment for the annealing treatment after producing an ingot having a desired chemical composition and metal structure. it can.
 上記伸線加工には、通常、複数パスの塑性加工と、1回以上の焼鈍処理とが含まれる。上記塑性加工としては、熱間圧延、熱間押出、熱間引抜等の熱間加工及び冷間圧延、冷間押出、冷間引抜等の冷間加工を採用することができる。複数パスの塑性加工が施される場合には、これらの加工方法を適宜組み合わせることができる。 The above wire drawing processing usually includes multiple passes of plastic processing and one or more annealing treatments. As said plastic working, hot working, such as hot rolling, hot extrusion, hot drawing, and cold working, such as cold rolling, cold extrusion, cold drawing, etc., can be employed. When multiple passes of plastic processing are performed, these processing methods can be combined as appropriate.
 また、上記塑性加工は、1パス以上の冷間加工を含むことが好ましい。この場合には、伸線方向に伸びた繊維状のFe系粒子がCu系母相中に分布した金属組織を確実に形成することができる。得られる線材の強度をより高くする観点からは、上記塑性加工の最終パスを冷間加工とすることがより好ましい。この場合には、加工硬化による強度向上効果を確実に得ることができるため、線材の強度をより高くすることができる。 Moreover, it is preferable that the plastic working includes cold working of one pass or more. In this case, it is possible to reliably form a metal structure in which fibrous Fe-based particles extending in the wire drawing direction are distributed in the Cu-based matrix. From the viewpoint of increasing the strength of the obtained wire, it is more preferable that the final pass of the plastic working is cold working. In this case, since the strength improvement effect by work hardening can be obtained reliably, the strength of the wire can be further increased.
 上記焼鈍処理における加熱温度は、通常、800~900℃の範囲で設定される。 The heating temperature in the annealing treatment is usually set in the range of 800 to 900 ° C.
 また、上記焼鈍処理は、無酸素雰囲気下において実施する。上述した「無酸素雰囲気」には、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気、水素雰囲気等の還元ガス雰囲気及び10Pa以下の減圧雰囲気が含まれる。 Also, the annealing treatment is performed in an oxygen-free atmosphere. The “oxygen-free atmosphere” described above includes, for example, an inert gas atmosphere such as a nitrogen atmosphere and an argon atmosphere, a reducing gas atmosphere such as a hydrogen atmosphere, and a reduced pressure atmosphere of 10 Pa or less.
 上記鋳塊を酸化雰囲気下で加熱する場合には、芯材の表面に比較的厚い酸化膜が形成されるため、酸洗浄処理を施して酸化膜を除去する必要がある。この場合、酸洗浄処理の条件によっては酸化膜と共にFe系粒子が溶解し、芯材の表面に細孔が形成されるおそれがある。このような細孔は、場合によってはSnめっき膜の密着性を悪化させる原因となるため、好ましくない。一方、上記焼鈍処理を無酸素雰囲気下において実施することにより、酸洗浄処理を施す必要がなくなり、上記芯材の表面に細孔が生じることを防止できる。その結果、上記芯材と上記Snめっき膜との密着性が悪化することを防止できる。 When the above ingot is heated in an oxidizing atmosphere, a relatively thick oxide film is formed on the surface of the core material. Therefore, it is necessary to perform an acid cleaning treatment to remove the oxide film. In this case, depending on the conditions of the acid cleaning treatment, the Fe-based particles may be dissolved together with the oxide film, and pores may be formed on the surface of the core material. Such pores are not preferable because they cause deterioration of the adhesion of the Sn plating film in some cases. On the other hand, when the annealing treatment is performed in an oxygen-free atmosphere, it is not necessary to perform an acid cleaning treatment, and it is possible to prevent the formation of pores on the surface of the core material. As a result, it is possible to prevent the adhesion between the core material and the Sn plating film from deteriorating.
 上記伸線加工の後、上記芯材の表面に電気めっき処理を施してSnめっき膜を形成する。上記電気めっき処理に用いるSnめっき浴としては、例えば、硫酸浴、メタンスルホン酸浴等を用いることができる。 After the wire drawing, the surface of the core material is electroplated to form a Sn plating film. Examples of the Sn plating bath used for the electroplating treatment include a sulfuric acid bath and a methanesulfonic acid bath.
 電気めっき処理に用いるSnめっき浴は、メタンスルホン酸浴等の有機酸浴であることが好ましい。上記Snめっき膜は、有機酸浴以外のめっき浴を用いて形成することも可能であるが、有機酸浴を用いることにより、SnとFeとの置換反応をより抑制することができる。そのため、上記線材の製造方法によれば、上記芯材と上記Snめっき膜との密着性が高い上記線材をより容易に得ることができる。 The Sn plating bath used for the electroplating treatment is preferably an organic acid bath such as a methanesulfonic acid bath. The Sn plating film can be formed using a plating bath other than the organic acid bath, but the substitution reaction between Sn and Fe can be further suppressed by using the organic acid bath. Therefore, according to the manufacturing method of the said wire, the said wire with high adhesiveness of the said core material and the said Sn plating film can be obtained more easily.
 上記Snめっき膜の膜厚は0.5~2μmであることが好ましい。この場合には、上記Snめっき膜の存在により、上記線材よりなるコネクタピンと相手方端子との接触抵抗を低減でき、かつ、上記コネクタピンを相手方端子に挿入する際に必要な挿入力を十分に小さくできる。 The film thickness of the Sn plating film is preferably 0.5 to 2 μm. In this case, due to the presence of the Sn plating film, the contact resistance between the connector pin made of the wire and the mating terminal can be reduced, and the insertion force required for inserting the connector pin into the mating terminal is sufficiently small. it can.
 上記Snめっき膜の膜厚が0.5μm未満の場合には、相手方端子との接触面積が不十分となるおそれがある。その結果、コネクタピンと相手方端子との接触抵抗を低減する効果が不十分となるおそれがある。また、上記Snめっき膜の膜厚が2μmを超える場合には、上記コネクタピンを相手方端子に挿入する際に必要な挿入力が大きくなるおそれがある。 If the thickness of the Sn plating film is less than 0.5 μm, the contact area with the counterpart terminal may be insufficient. As a result, the effect of reducing the contact resistance between the connector pin and the counterpart terminal may be insufficient. Moreover, when the film thickness of the Sn plating film exceeds 2 μm, an insertion force required for inserting the connector pin into the counterpart terminal may be increased.
 また、上記芯材に上記電気めっき処理を施した後、上記芯材を加熱するリフロー処理を施しても良い。リフロー処理を施すことにより、上記Snめっき膜のSnと上記芯材のCuとが合金化し、Cu-Sn系合金が形成される。その結果、上記Snめっき膜と上記芯材との密着性がより向上し、上記線材がより優れた耐久性を有する。 Further, after the electroplating process is performed on the core material, a reflow process for heating the core material may be performed. By performing the reflow treatment, Sn of the Sn plating film and Cu of the core material are alloyed to form a Cu—Sn alloy. As a result, the adhesion between the Sn plating film and the core material is further improved, and the wire has more excellent durability.
 上記リフロー処理における加熱温度は、例えば、Snの融点より0~50℃高い温度範囲が好ましい。上記リフロー処理の加熱温度を上記特定の温度範囲とすることにより、Snが溶融し、上記Cu-Sn系合金を確実に形成することができる。また、上記特定の温度範囲で上記リフロー処理を行う場合には、加熱時間を10~120秒の範囲に制御することにより、上記Cu-Sn系合金上に上記Snめっき膜が存在している構造が形成される。そのため、比較的硬い上記Cu-Sn系合金による挿入力の低減効果と、比較的軟らかい上記Snめっき膜による接点特性の向上効果との両方を得ることができる。 The heating temperature in the reflow treatment is preferably in the temperature range of 0 to 50 ° C. higher than the melting point of Sn, for example. By setting the heating temperature for the reflow treatment to the specific temperature range, Sn melts and the Cu—Sn alloy can be formed reliably. Further, when the reflow treatment is performed in the specific temperature range, the Sn plating film is present on the Cu—Sn alloy by controlling the heating time in the range of 10 to 120 seconds. Is formed. Therefore, both the effect of reducing the insertion force by the relatively hard Cu—Sn alloy and the effect of improving the contact characteristics by the relatively soft Sn plating film can be obtained.
 上記リフロー処理における加熱時間及び加熱温度は、所望する上記Cu-Sn系合金の量に応じて適宜設定することができる。上記リフロー処理における加熱温度が過度に高い場合または加熱時間が過度に長い場合には、形成される上記Cu-Sn系合金の量が多くなり、場合によっては上記Cu-Sn系合金が表面に露出することがある。この場合には、上記Snめっき膜による接点特性の向上効果が不十分となるおそれがあり、例えば接触抵抗の増大等の問題が発生するおそれがある。特に、上記Snめっき膜が全てCuとの合金形成に費やされ、表面の全面が上記Cu-Sn系合金により覆われる場合には、上記Snめっき膜による接点特性の向上効果が得られなくなるため、好ましくない。 The heating time and heating temperature in the reflow treatment can be appropriately set according to the desired amount of the Cu—Sn alloy. When the heating temperature in the reflow process is excessively high or the heating time is excessively long, the amount of the Cu—Sn alloy formed is increased, and in some cases, the Cu—Sn alloy is exposed on the surface. There are things to do. In this case, the effect of improving the contact characteristics by the Sn plating film may be insufficient, and there may be a problem such as an increase in contact resistance. In particular, when the Sn plating film is entirely used for forming an alloy with Cu and the entire surface is covered with the Cu—Sn alloy, the effect of improving the contact characteristics by the Sn plating film cannot be obtained. It is not preferable.
 なお、上記線材の製造方法においては、上記焼鈍処理以外に、必要に応じて均質化処理や時効処理等の熱処理を実施してもよい。 In addition, in the manufacturing method of the said wire, you may implement heat processing, such as a homogenization process and an aging treatment, as needed other than the said annealing process.
(実施例1)
 上記コネクタピン用線材(以下、適宜「線材」という。)の実施例について、図1~図3を用いて説明する。図1及び図2に示すように、線材1は、芯材2と、電気めっきにより芯材2の表面に形成されたSnめっき膜3とを有している。芯材2は、10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有していると共に、図2に示すように、Feを主成分とするFe系粒子21がCuを主成分とするCu系母相22に分布している金属組織を有している。
Example 1
Examples of the connector pin wire (hereinafter referred to as “wire” as appropriate) will be described with reference to FIGS. As shown in FIG.1 and FIG.2, the wire 1 has the core material 2 and the Sn plating film 3 formed in the surface of the core material 2 by electroplating. The core material 2 contains Fe of 10% by mass or more, and the remainder has a chemical component composed of Cu and inevitable impurities, and as shown in FIG. It has a metal structure distributed in the Cu-based matrix 22 containing Cu as a main component.
 本例においては、以下の方法により、線材1を作製した。 In this example, the wire 1 was produced by the following method.
<線材1の作製方法>
 まず、50質量%のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、かつ、Feを主成分とするFe系粒子21がCuを主成分とするCu系母相22に分布している金属組織を有する鋳塊を準備した。次いで、複数パスの塑性加工と、焼鈍処理とを組み合わせてなる伸線加工を上記鋳塊に施して芯材2を作製した。本例の塑性加工は、1パス以上の冷間加工を含み、最終パスが冷間引抜加工となるように構成した。また、焼鈍処理においては、10Pa以下の減圧雰囲気下において鋳塊の加熱を行った。なお、伸線加工が完了した状態における芯材2の断面形状は、一辺が0.64mmの正方形状とした。
<Method for producing wire 1>
First, the Fe-based particles 21 containing 50% by mass of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and containing Fe as a main component are formed into a Cu-based matrix 22 containing Cu as a main component. An ingot having a distributed metal structure was prepared. Subsequently, the core material 2 was produced by subjecting the ingot to wire drawing that is a combination of a plurality of passes of plastic working and annealing. The plastic working of this example includes cold working of one or more passes, and the final pass is cold drawn. In the annealing treatment, the ingot was heated in a reduced pressure atmosphere of 10 Pa or less. In addition, the cross-sectional shape of the core material 2 in a state where the wire drawing processing was completed was a square shape having a side of 0.64 mm.
 ここで、表面に電気めっき処理を施す前の芯材2から試料を採取し、4端子法を用いて芯材2の導電率を測定した。その結果、芯材2の導電率は30.9%IACSであった。一方、従来の黄銅材(C2600-H材)の導電率を同様の方法で測定したところ、28%IACSであった。この結果から、Cu-Fe系合金よりなる芯材2は、従来の銅合金と同等以上の導電率を示すことがわかる。 Here, a sample was taken from the core material 2 before the surface was electroplated, and the conductivity of the core material 2 was measured using a four-terminal method. As a result, the conductivity of the core material 2 was 30.9% IACS. On the other hand, when the conductivity of a conventional brass material (C2600-H material) was measured by the same method, it was 28% IACS. From this result, it can be seen that the core material 2 made of a Cu—Fe based alloy exhibits a conductivity equal to or higher than that of a conventional copper alloy.
 次に、芯材2に電気めっき処理を施して表面にSnめっき膜3を形成した。電気めっき処理の詳細な条件は以下の通りである。 Next, the core material 2 was subjected to electroplating to form a Sn plating film 3 on the surface. The detailed conditions of the electroplating process are as follows.
・浴組成
 メタンスルホン酸スズ 450mL/L
 メタンスルホン酸 100mL/L
 光沢剤
・めっき浴温度 20℃
・電流密度 10~20A/dm2
・膜厚 0.5~2μm
・ Bath composition Tin methanesulfonate 450mL / L
Methanesulfonic acid 100mL / L
Brightener / Plating bath temperature 20 ℃
・ Current density: 10-20A / dm 2
・ Film thickness 0.5-2μm
 その後、Snめっき膜3を形成した線材1を260℃で10秒間加熱するリフロー処理を行い、Snめっき膜3と芯材2との間にCu-Sn系合金31を形成させた。以上により、線材1を得た。次に、以下の方法により、Snめっき膜3の観察及び芯材2の金属組織観察を行った。 Thereafter, the wire 1 on which the Sn plating film 3 was formed was reflowed by heating at 260 ° C. for 10 seconds, and a Cu—Sn alloy 31 was formed between the Sn plating film 3 and the core material 2. Thus, the wire 1 was obtained. Next, the Sn plating film 3 and the metal structure of the core material 2 were observed by the following method.
<Snめっき膜3の観察>
 まず、線材1を伸線方向に垂直な断面で切断し、露出した断面を研磨した。その後、当該断面を電子顕微鏡により観察した。これにより得られた断面の反射電子像及び元素マッピング像を図1及び図2にそれぞれ示す。
<Observation of Sn plating film 3>
First, the wire 1 was cut along a cross section perpendicular to the drawing direction, and the exposed cross section was polished. Thereafter, the cross section was observed with an electron microscope. The reflected electron image and element mapping image of the cross section obtained by this are shown in FIGS. 1 and 2, respectively.
 図1より知られるように、芯材2とSnめっき膜3との間には大きな空洞が存在せず、電気めっき処理が適切に行われたことを確認した。また、図2より知られるように、芯材2は、Cu系母相22中にFe系粒子21が分布している金属組織を有していることを確認した。 As is known from FIG. 1, it was confirmed that there was no large cavity between the core material 2 and the Sn plating film 3, and that the electroplating process was appropriately performed. Further, as is known from FIG. 2, it was confirmed that the core material 2 has a metal structure in which Fe-based particles 21 are distributed in the Cu-based matrix 22.
 また、図1及び図2より知られるように、芯材2に含まれるCuの一部がSnめっき膜3に拡散しており、Cu-Sn系合金31が形成されたことを確認した。芯材2とSnめっき膜3との間に形成されたCu-Sn系合金31は、Snめっき膜3の密着性をより向上させる効果を有しており、Snめっき膜3を芯材2からより剥離しにくくすることができる。 Further, as is known from FIGS. 1 and 2, it was confirmed that a part of Cu contained in the core material 2 diffused into the Sn plating film 3 and the Cu—Sn alloy 31 was formed. The Cu—Sn alloy 31 formed between the core material 2 and the Sn plating film 3 has an effect of further improving the adhesion of the Sn plating film 3. It can be made more difficult to peel.
<芯材2の金属組織観察>
・Fe系粒子21の形態観察
 線材1を伸線方向に沿って切断し、露出した断面を研磨した。その後、当該断面を電子顕微鏡により観察し、反射電子像を取得した。断面に露出した芯材2の反射電子像を図3に示す。図3より知られるように、芯材2に含まれるFe系粒子21は、伸線方向に伸びた繊維状を呈していた。
<Metal structure observation of core material 2>
-Observation of morphology of Fe-based particles 21 The wire 1 was cut along the wire drawing direction, and the exposed cross section was polished. Thereafter, the cross section was observed with an electron microscope to obtain a reflected electron image. FIG. 3 shows a reflected electron image of the core material 2 exposed in the cross section. As is known from FIG. 3, the Fe-based particles 21 included in the core material 2 exhibited a fibrous shape extending in the wire drawing direction.
・Fe系粒子21の寸法分布の評価
 集束イオンビーム-走査型電子顕微鏡複合装置(FIB-SEM、FEI社製「Helion NanoLab600」)を用いて、FIB加工による断面形成とSEMによる断面観察とを繰り返し行い、多数のSEM像を取得した。次いで、得られた多数のSEM像を再構成し、金属組織の3次元像を作成した。そして、得られた3次元像に基づいて、個々のFe系粒子21の上記幅及び上記長さを測定し、これらの平均値を算出した。
・ Evaluation of dimensional distribution of Fe-based particles 21 Using a focused ion beam-scanning electron microscope composite device (FIB-SEM, “Helion NanoLab600” manufactured by FEI), cross-section formation by FIB processing and cross-section observation by SEM are repeated. A number of SEM images were obtained. Next, the obtained many SEM images were reconstructed to create a three-dimensional image of the metal structure. And based on the obtained three-dimensional image, the said width | variety and said length of each Fe-type particle | grain 21 were measured, and these average values were computed.
 本例においては、縦10μm×横10μmの正方形状の視野を伸線方向に沿って0.2μm間隔で掘り下げることにより、直方体状の上記3次元像を作成した。得られた3次元像中に基づいて個々のFe系粒子21の上記幅及び上記長さを測定したところ、3次元像中に存在する全てのFe系粒子21について、上記幅が0.1μm以上0.5μm以下であり、かつ、上記長さが4μm以上30μm以下であった。 In this example, the above-mentioned three-dimensional image having a rectangular parallelepiped shape was created by digging a square field of view 10 μm long × 10 μm wide at intervals of 0.2 μm along the drawing direction. When the width and the length of each Fe-based particle 21 were measured based on the obtained three-dimensional image, the width was 0.1 μm or more for all the Fe-based particles 21 present in the three-dimensional image. The length was 0.5 μm or less, and the length was 4 μm or more and 30 μm or less.
 次に、線材1の作用効果について説明する。線材1は、上記特定の化学成分及び上記特定の金属組織を備えた芯材2を用いて作成されている。そのため、線材1は、コネクタピン用として十分に高い強度と、材料コストとを容易に両立することができる。また、線材1は、Cuを主成分とするCu系母相22を有しているため、従来の銅合金と同等以上の導電率を容易に確保することができる。 Next, the function and effect of the wire 1 will be described. The wire 1 is produced using the core 2 provided with the specific chemical component and the specific metal structure. Therefore, the wire 1 can easily achieve both a sufficiently high strength for a connector pin and a material cost. Moreover, since the wire 1 has the Cu type | system | group mother phase 22 which has Cu as a main component, the electrical conductivity equivalent to or more than the conventional copper alloy can be ensured easily.
 また、線材1は、芯材2の表面に電気めっきにより形成されたSnめっき膜3を有している。そして、Snめっき膜3は、有機酸浴を用いた電気めっき処理により形成されている。 Further, the wire 1 has a Sn plating film 3 formed on the surface of the core 2 by electroplating. The Sn plating film 3 is formed by an electroplating process using an organic acid bath.
 また、線材1の製造方法において、焼鈍処理が無酸素雰囲気下で実施されている。そのため、伸線加工において芯材2の表面に酸化膜が形成されることを抑制でき、ひいては芯材2の表面に細孔が生じることを防止できる。 Moreover, in the manufacturing method of the wire 1, the annealing process is performed in an oxygen-free atmosphere. Therefore, it is possible to suppress the formation of an oxide film on the surface of the core material 2 in the wire drawing process, and consequently to prevent the formation of pores on the surface of the core material 2.
 これらの結果、線材1は、芯材2とSnめっき膜3との密着性が高く、優れた耐久性を有する。 As a result, the wire 1 has high adhesion between the core material 2 and the Sn plating film 3, and has excellent durability.
(実施例2)
 本例は、線材1を用いて作製したコネクタピン11を有するコネクタ10の例である。図4及び図5に示すように、コネクタ10は、凹部41を備えたハウジング4と、ハウジング4を貫通して配置された複数のコネクタピン11とを有している。そして、コネクタピン11は、線材1より形成されている。
(Example 2)
This example is an example of the connector 10 having the connector pins 11 manufactured using the wire 1. As shown in FIGS. 4 and 5, the connector 10 includes a housing 4 having a recess 41 and a plurality of connector pins 11 disposed through the housing 4. The connector pin 11 is formed from the wire 1.
 ハウジング4は、図4及び図5に示すように略直方体状を呈しており、コネクタピン11が貫通する底壁部42と、底壁部42の外周縁部から立設された側壁部43とを有している。そして、底壁部42及び側壁部43により囲まれた空間が凹部41を構成している。 The housing 4 has a substantially rectangular parallelepiped shape as shown in FIGS. 4 and 5, and includes a bottom wall portion 42 through which the connector pin 11 passes, and a side wall portion 43 erected from the outer peripheral edge portion of the bottom wall portion 42. have. A space surrounded by the bottom wall portion 42 and the side wall portion 43 constitutes the recess 41.
 コネクタピン11は、図4及び図5に示すように略棒状を呈しており、その一端に端子接続部111を有し、他端にはんだ付け部112を有している。本例のコネクタピン11は、図5に示すように、凹部41内に配置された端子接続部111を基端として底壁部42へ向けて延設されている。また、コネクタピン11は、底壁部42を貫通してハウジング4の外方へ突出し、底壁部42とはんだ付け部112との間において90°曲げ加工が施される。すなわち、本例のコネクタピン11は、コネクタ10に配設された状態において、端子接続部111とはんだ付け部112とが互いに直角方向となるように屈曲されている。 The connector pin 11 has a substantially rod shape as shown in FIGS. 4 and 5 and has a terminal connecting portion 111 at one end and a soldering portion 112 at the other end. As shown in FIG. 5, the connector pin 11 of this example is extended toward the bottom wall portion 42 with the terminal connection portion 111 disposed in the recess 41 as a base end. Further, the connector pin 11 penetrates the bottom wall portion 42 and protrudes outward from the housing 4, and is bent 90 ° between the bottom wall portion 42 and the soldering portion 112. That is, the connector pin 11 of this example is bent so that the terminal connection portion 111 and the soldering portion 112 are perpendicular to each other when the connector pin 11 is disposed in the connector 10.
 かかる構成において、90°曲げ加工により形成される屈曲部113の表面を観察したところ、90°曲げ加工に伴う割れやクラックの発生及びSnめっき膜3の剥離は認められなかった。このように、線材1は、コネクタピン11の素材として好適に用いることができる。 In such a configuration, when the surface of the bent portion 113 formed by the 90 ° bending process was observed, no cracks or cracks accompanying the 90 ° bending process and peeling of the Sn plating film 3 were observed. Thus, the wire 1 can be suitably used as a material for the connector pin 11.
(実験例)
 本例は、実施例1における線材1から採取した試料(以下、「試料E1」という。)を用いて、機械特性、Snめっき膜3の密着性、はんだ濡れ性及び接触抵抗の各特性について評価を行った例である。なお、本例においては、試料E1との比較のために、2種の試料(それぞれ、「試料C1」及び「試料C2」という。)を準備し、特性評価を行った。試料C1は、黄銅(C2600-H)よりなる芯材の表面に、Cuめっき膜及びSnめっき膜を順次積層した従来の線材である。また、試料C2は、実施例1におけるCu-Fe系合金からなる芯材2上に、Cuめっき膜及びSnめっき膜3を順次積層した線材である。なお、試料C1及び試料C2における全てのめっき膜は、硫酸浴を用いた電気めっき処理により形成した。
(Experimental example)
This example uses the sample (hereinafter referred to as “sample E1”) collected from the wire 1 in Example 1, and evaluates each characteristic of mechanical properties, adhesion of the Sn plating film 3, solder wettability, and contact resistance. This is an example. In this example, for comparison with the sample E1, two types of samples (referred to as “sample C1” and “sample C2”, respectively) were prepared and evaluated for characteristics. Sample C1 is a conventional wire in which a Cu plating film and an Sn plating film are sequentially laminated on the surface of a core material made of brass (C2600-H). Sample C2 is a wire in which the Cu plating film and the Sn plating film 3 are sequentially laminated on the core material 2 made of the Cu—Fe alloy in Example 1. In addition, all the plating films in the sample C1 and the sample C2 were formed by an electroplating process using a sulfuric acid bath.
<機械特性評価>
・引張試験
 JIS Z 2241に準じた方法により、試料E1及び試料C1の引張試験を行った。
<Mechanical property evaluation>
-Tensile test The tensile test of the sample E1 and the sample C1 was done by the method according to JISZ2241.
 表1に、引張試験により得られた各試験材の引張強さ及び0.2%耐力を示す。 Table 1 shows the tensile strength and 0.2% proof stress of each test material obtained by the tensile test.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より知られるように、試料E1の引張強さは700MPa以上であり、試料C1(C2600-H材)に比べて高い強度を示した。 As can be seen from Table 1, the tensile strength of the sample E1 was 700 MPa or more, which was higher than that of the sample C1 (C2600-H material).
<はんだ濡れ性評価>
 メニスコグラフ法により、初期状態における試料E1及び試料C1と、大気雰囲気下において120℃で120時間加熱する高温耐久試験を施した後の試料E1及び試料C1の4種類の試料についてはんだ濡れ性の評価を行った。はんだ濡れ性の指標としては、ゼロクロスタイム及び最大ぬれ力を用いた。ゼロクロスタイムの値は、小さいほどはんだ濡れ性が良好であることを示す。また、最大ぬれ力の値は、大きいほどはんだ濡れ性が良好であることを示す。なお、メニスコグラフ法に使用するはんだはSn-3Ag-0.5Cuの組成を有する無鉛はんだとし、活性タイプのフラックスを併用した。また、はんだの温度は250℃とした。
<Solder wettability evaluation>
Evaluation of solder wettability of four types of samples, sample E1 and sample C1 in the initial state and sample E1 and sample C1 after being subjected to a high temperature durability test at 120 ° C. for 120 hours by the meniscograph method went. Zero cross time and maximum wetting force were used as indicators of solder wettability. The smaller the value of the zero cross time, the better the solder wettability. Moreover, it shows that solder wettability is so favorable that the value of the maximum wetting force is large. The solder used in the meniscograph method was a lead-free solder having a composition of Sn-3Ag-0.5Cu, and an active type flux was used in combination. The solder temperature was 250 ° C.
 表2に、ゼロクロスタイム及び最大ぬれ力の測定結果を示す。なお、測定は、各試料について複数回行い、表2にはその平均値を示した。 Table 2 shows the measurement results of zero cross time and maximum wetting force. The measurement was performed a plurality of times for each sample, and Table 2 shows the average value.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より知られるように、試料E1及び試料C1は、初期状態及び高温耐久試験後のいずれの状態においても、ゼロクロスタイムが2秒以下であった。この結果は、コネクタピンに要求される特性を十分に満足する結果である。 As can be seen from Table 2, the sample E1 and the sample C1 had a zero cross time of 2 seconds or less in both the initial state and the state after the high temperature durability test. This result is a result that sufficiently satisfies the characteristics required for the connector pin.
<接触抵抗測定>
 初期状態における試料E1及び試料C1と、上述した高温耐久試験を施した試料E1及び試料C1との4種類の試料を、別途準備した相手方端子に挿入した。この状態において、各試料と相手方端子との間の抵抗値を測定し、得られた値を接触抵抗とした。なお、相手方端子としては、表面にSnめっき処理が施されたメス型端子を用いた。また、接触抵抗の測定は、各試料について複数回行った。
<Contact resistance measurement>
Four types of samples, the sample E1 and the sample C1 in the initial state, and the sample E1 and the sample C1 subjected to the high-temperature durability test described above, were inserted into a separately prepared counterpart terminal. In this state, the resistance value between each sample and the counterpart terminal was measured, and the obtained value was defined as the contact resistance. In addition, as the counterpart terminal, a female terminal whose surface was subjected to Sn plating was used. Further, the contact resistance was measured for each sample a plurality of times.
 図6及び図7に、試料E1及び試料C1の接触抵抗の測定結果をそれぞれ示す。なお、図6及び図7の縦軸は接触抵抗(mΩ)の値である。また、図6及び図7に示したプロット点(符号5)は複数回の測定から得られた接触抵抗の値の平均値であり、エラーバー(符号6)は、最大値から最小値までの範囲を示している。 6 and 7 show the measurement results of the contact resistances of the sample E1 and the sample C1, respectively. In addition, the vertical axis | shaft of FIG.6 and FIG.7 is a value of contact resistance (m (ohm)). The plot points (symbol 5) shown in FIGS. 6 and 7 are average values of the contact resistance values obtained from a plurality of measurements, and the error bar (symbol 6) is from the maximum value to the minimum value. The range is shown.
 図6及び図7に示すように、試料E1は、初期状態及び高温耐久試験後のいずれの状態においても、接触抵抗の値が10mΩ以下であり、試料C1と同等以下の接触抵抗を示した。この結果は、コネクタピンに要求される特性を十分に満足する結果である。 As shown in FIGS. 6 and 7, the sample E1 had a contact resistance value of 10 mΩ or less in the initial state and the state after the high-temperature durability test, and showed a contact resistance equal to or less than that of the sample C1. This result is a result that sufficiently satisfies the characteristics required for the connector pin.
<Snめっき膜3の密着性評価>
 試料E1の一端を固定した状態で、試料E1の中心軸が回転中心となるように他端に力を加えて回転させ、試料E1をねじり変形させた。その後、試料E1の他端を逆方向に回転させて元の状態に復元し、Snめっき膜3の状態を目視観察した。図8に、元の状態に復元した後の試料E1の写真を示す。図8より知られるように、試料E1のSnめっき膜3は、ねじり変形させた後に芯材2から剥離せず、優れた密着性を示した。
<Adhesion evaluation of Sn plating film 3>
With one end of the sample E1 fixed, the sample E1 was twisted and deformed by applying a force to the other end so that the center axis of the sample E1 was the center of rotation. Thereafter, the other end of the sample E1 was rotated in the reverse direction to restore the original state, and the state of the Sn plating film 3 was visually observed. FIG. 8 shows a photograph of the sample E1 after restoration to the original state. As can be seen from FIG. 8, the Sn plating film 3 of the sample E1 did not peel from the core material 2 after being torsionally deformed, and exhibited excellent adhesion.
 一方、芯材2とSnめっき膜3との間にCuめっき膜を有する試料C2を用いて同様の試験を行ったところ、図9に示すように、ねじり変形を与えた後にSnめっき膜3が芯材2から剥離した。そして、剥離部分は、芯材2を構成するCu-Fe系合金の色を呈していた。 On the other hand, when a similar test was performed using a sample C2 having a Cu plating film between the core material 2 and the Sn plating film 3, as shown in FIG. The core material 2 was peeled off. The peeled portion exhibited the color of the Cu—Fe alloy constituting the core material 2.
 図8及び図9より知られるように、芯材2上にSnめっき膜3が直接積層された試料E1は、芯材2とSnめっき膜3との密着性が高く、Snめっき膜3の剥離が生じにくいことがわかる。それ故、試料E1を用いて作製したコネクタピンは、優れた耐久性を有する。一方、芯材2とSnめっき膜3との間にCuめっき膜を有する試料C2は、Snめっき膜3がCuめっき膜ごと芯材2から剥離しやすい。そのため、試料C2を用いて作製したコネクタピンは、試料E1に比べて耐久性が低い。 8 and 9, the sample E1 in which the Sn plating film 3 is directly laminated on the core material 2 has high adhesion between the core material 2 and the Sn plating film 3, and the Sn plating film 3 is peeled off. It turns out that it is hard to occur. Therefore, the connector pin produced using the sample E1 has excellent durability. On the other hand, in the sample C2 having a Cu plating film between the core material 2 and the Sn plating film 3, the Sn plating film 3 is easily peeled from the core material 2 together with the Cu plating film. Therefore, the connector pin produced using the sample C2 has lower durability than the sample E1.

Claims (11)

  1.  10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、かつ、Feを主成分とするFe系粒子がCuを主成分とするCu系母相に分布している金属組織を有する芯材と、
     電気めっきにより上記芯材の表面に形成されたSnめっき膜とを有することを特徴とするコネクタピン用線材。
    Fe-based particles containing 10% by mass or more of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and Fe-based particles are distributed in a Cu-based matrix mainly composed of Cu A core material having a metallic structure;
    It has Sn plating film formed in the surface of the said core material by electroplating, The wire material for connector pins characterized by the above-mentioned.
  2.  上記Snめっき膜の膜厚は0.5~2μmであることを特徴とする請求項1に記載のコネクタピン用線材。 2. The connector pin wire according to claim 1, wherein the Sn plating film has a thickness of 0.5 to 2 μm.
  3.  上記Fe系粒子は、伸線方向に伸びた繊維状を呈していることを特徴とする請求項1または2に記載のコネクタピン用線材。 3. The connector pin wire according to claim 1, wherein the Fe-based particles have a fibrous shape extending in a wire drawing direction.
  4.  上記Fe系粒子は、伸線方向と直角な方向に測定して得られる幅の平均値が0.5μm以下であり、かつ、上記伸線方向と平行な方向に測定して得られる長さの平均値が4μm以上であることを特徴とする請求項1~3のいずれか1項に記載のコネクタピン用線材。 The Fe-based particles have an average width obtained by measuring in a direction perpendicular to the drawing direction of 0.5 μm or less, and a length obtained by measuring in a direction parallel to the drawing direction. 4. The connector pin wire according to claim 1, wherein the average value is 4 μm or more.
  5.  上記Fe系粒子は、伸線方向と平行な方向に測定して得られる長さの平均値が30μm以下であることを特徴とする請求項1~4のいずれか1項に記載のコネクタピン用線材。 The connector pin according to any one of claims 1 to 4, wherein the Fe-based particles have an average length obtained by measuring in a direction parallel to the wire drawing direction of 30 µm or less. wire.
  6.  引張強さが700MPa以上であることを特徴とする請求項1~5のいずれか1項に記載のコネクタピン用線材。 6. The wire for connector pins according to claim 1, wherein the tensile strength is 700 MPa or more.
  7.  上記芯材の導電率が25%IACS以上であることを特徴とする請求項1~6のいずれか1項に記載のコネクタピン用線材。 The connector pin wire according to any one of claims 1 to 6, wherein the electrical conductivity of the core material is 25% IACS or more.
  8.  請求項1~7のいずれか1項に記載のコネクタピン用線材より構成されたコネクタピンを有するコネクタ。 A connector having a connector pin made of the connector pin wire according to any one of claims 1 to 7.
  9.  10質量%以上のFeを含有し、残部がCu及び不可避不純物よりなる化学成分を有し、かつ、Feを主成分とするFe系粒子がCuを主成分とするCu系母相に分布している金属組織を有する鋳塊を準備し、
     塑性加工と、無酸素雰囲気下において実施される焼鈍処理とを組み合わせてなる伸線加工を上記鋳塊に施して芯材を作製し、
     電気めっき処理を上記芯材に施して表面にSnめっき膜を形成することを特徴とするコネクタピン用線材の製造方法。
    Fe-based particles containing 10% by mass or more of Fe, the remainder having a chemical component composed of Cu and inevitable impurities, and Fe-based particles are distributed in a Cu-based matrix mainly composed of Cu Preparing an ingot having a metallographic structure,
    A core material is produced by performing wire drawing processing, which is a combination of plastic processing and annealing performed in an oxygen-free atmosphere, on the ingot,
    A method for producing a wire for a connector pin, which comprises subjecting the core material to electroplating to form a Sn plating film on the surface.
  10.  上記塑性加工は、1パス以上の冷間加工を含むことを特徴とする請求項9に記載のコネクタピン用線材の製造方法。 10. The method of manufacturing a connector pin wire according to claim 9, wherein the plastic working includes cold working of one pass or more.
  11.  上記電気めっき処理に用いるSnめっき浴は有機酸浴であることを特徴とする請求項9または10に記載のコネクタピン用線材の製造方法。 The method for producing a connector pin wire according to claim 9 or 10, wherein the Sn plating bath used for the electroplating treatment is an organic acid bath.
PCT/JP2015/053715 2014-02-21 2015-02-11 Wire rod for connector pin, method for producing same, and connector WO2015125676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014031401A JP5761400B1 (en) 2014-02-21 2014-02-21 Wire for connector pin, method for manufacturing the same, and connector
JP2014-031401 2014-02-21

Publications (1)

Publication Number Publication Date
WO2015125676A1 true WO2015125676A1 (en) 2015-08-27

Family

ID=53878181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053715 WO2015125676A1 (en) 2014-02-21 2015-02-11 Wire rod for connector pin, method for producing same, and connector

Country Status (2)

Country Link
JP (1) JP5761400B1 (en)
WO (1) WO2015125676A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164682B (en) * 2017-05-19 2018-11-02 杭州富阳星宇铜业有限公司 A kind of high-strength Antioxidant alloy material and preparation method thereof
JP2022031985A (en) * 2018-10-16 2022-02-24 パナソニックIpマネジメント株式会社 Terminal component and manufacturing method thereof, and electronic device including terminal component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271879A (en) * 1992-01-31 1993-10-19 Toshiba Corp High strength spring member
JP2005344166A (en) * 2004-06-03 2005-12-15 Nikko Metal Manufacturing Co Ltd High strength high conductivity copper alloy for electronic equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215445A (en) * 1983-05-19 1984-12-05 Hisafuji Watanabe High-strength cu-fe alloy for electric conduction
JPH05125468A (en) * 1991-11-06 1993-05-21 Toshiba Corp Spring material
JP2001295011A (en) * 2000-04-05 2001-10-26 Hitachi Cable Ltd Bending resistant copper alloy wire and cable using the same
JP4404786B2 (en) * 2005-03-10 2010-01-27 日鉱金属株式会社 High strength and high conductivity copper alloy and method for producing the same
JP4623737B2 (en) * 2006-03-31 2011-02-02 Jx日鉱日石金属株式会社 High-strength and highly conductive two-phase copper alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271879A (en) * 1992-01-31 1993-10-19 Toshiba Corp High strength spring member
JP2005344166A (en) * 2004-06-03 2005-12-15 Nikko Metal Manufacturing Co Ltd High strength high conductivity copper alloy for electronic equipment

Also Published As

Publication number Publication date
JP2015155570A (en) 2015-08-27
JP5761400B1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
TWI362046B (en) Flat cable
JP5319101B2 (en) Sn plating material for electronic parts
JP6126791B2 (en) Cu-Ni-Si copper alloy
WO2006006534A1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP5479789B2 (en) Metal materials for connectors
WO2015068572A1 (en) Substrate terminal and substrate connector
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
US10998108B2 (en) Electrical contact material, method of producing an electrical contact material, and terminal
WO2018139628A1 (en) Terminal material for connectors, terminal, and electric wire end part structure
JP2004300524A (en) Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
JP6181392B2 (en) Cu-Ni-Si copper alloy
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
WO2015125676A1 (en) Wire rod for connector pin, method for producing same, and connector
WO2015125350A1 (en) Copper alloy material for connector terminals and method for producing copper alloy material for connector terminals
JP6219553B2 (en) Plating material excellent in heat resistance and method for producing the same
JP2012124025A (en) Plated copper wire and manufacturing method thereof
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
WO2018083887A1 (en) Connector terminal wire
JP2015120966A (en) Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
JP5748019B1 (en) Pin terminals and terminal materials
JP6435575B2 (en) Plating wire manufacturing method
JP2022150452A (en) Material for electric and electronic component and manufacturing method of material for electric and electronic component
JP6490510B2 (en) Manufacturing method of plating material with excellent heat resistance
JP2017027705A (en) Connector terminal and manufacturing method therefor
WO2016067935A1 (en) Terminal metal piece and connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751779

Country of ref document: EP

Kind code of ref document: A1