WO2015125644A1 - ポリエステルフィルム - Google Patents

ポリエステルフィルム Download PDF

Info

Publication number
WO2015125644A1
WO2015125644A1 PCT/JP2015/053503 JP2015053503W WO2015125644A1 WO 2015125644 A1 WO2015125644 A1 WO 2015125644A1 JP 2015053503 W JP2015053503 W JP 2015053503W WO 2015125644 A1 WO2015125644 A1 WO 2015125644A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
film
layer
acid
component
Prior art date
Application number
PCT/JP2015/053503
Other languages
English (en)
French (fr)
Inventor
井澤雅俊
石田洋一
長谷川正大
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015513928A priority Critical patent/JP6489012B2/ja
Publication of WO2015125644A1 publication Critical patent/WO2015125644A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0841Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising organic materials, e.g. polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface

Definitions

  • the present invention relates to a polyester film, and more particularly to a film used as a reflector for a liquid crystal display.
  • Liquid crystal displays which are widely used in various electronic devices such as TVs, personal computers, and tablet terminals, have a light source called a backlight at the rear of the display for screen display. Moreover, the backlight needs to irradiate the whole screen uniformly.
  • a side light type and a direct type there are surface light source structures called a side light type and a direct type.
  • a thin type display employs a side-light type backlight, that is, a type of backlight that emits light from the side of the screen.
  • a sheet called a light guide plate which has been subjected to various treatments such as halftone printing or embossing on one side of a transparent substrate such as an acrylic plate having a certain thickness, is used.
  • the illumination light is evenly distributed upward, and a screen having uniform brightness is obtained. Moreover, since illumination is installed only at the edge portion, the number of light sources can be reduced, the cost and weight can be reduced, and the thickness can be made thinner than the direct type. Furthermore, in order to prevent the illumination light from escaping to the back of the screen, a reflecting plate is provided below the light guide plate, thereby reducing the loss of light from the light source and brightening the liquid crystal screen.
  • Such a surface light source for a liquid crystal screen is required to be compatible with a light guide plate as well as a thin film and light weight as well as high reflection performance.
  • a reflector white pigment is added to the film, fine bubbles are contained inside, and high reflection performance is achieved by this interface reflection, and particles such as inorganic particles are added to the surface layer.
  • An uneven shape has been imparted by processing or coating to prevent close contact with the light guide plate (Patent Documents 1, 2, 3, 4, 5, 6, 7).
  • Patent Documents 8 and 9 It has also been proposed to select a material having a high strength and not easily deteriorated, such as inorganic particles and resin particles, in particular, as the material used for the surface layer.
  • the reflective film provided with the concavo-convex shape by the methods described in Patent Documents 1, 2, 3, 4, 5, 6 and 7, depending on the material of the light guide plate there are various types such as halftone printing and embossing of the light guide plate.
  • the treated surface is likely to be scratched, and the scratch or shavings may cause screen unevenness.
  • the coating of a reflective film may peel off by the vibration at the time of conveyance.
  • the above-mentioned coating and embossing are often applied independently after film formation, which requires a multi-step and special process, which is expensive and increases the number of processes exposed to high temperatures. When the bubbles are crushed or the constituent resin is deteriorated, the light reflection performance is lowered.
  • an object of the present invention is to provide a film or a reflective member having excellent reflectivity and surface shape that could not be achieved by the above-described conventional studies at low cost without separate processes other than the film forming process such as coating. .
  • the present invention has the following configuration. (1) 10 to 90% by mass of a polyester (a) having a glass transition temperature (Tg) of 50 ° C. or more and less than 80 ° C. and 10 to 90% by mass of a polyester (b) having a Tg of 100 ° C. or more and 120 ° C. or less A layer (A) in which the difference in Tg between the polyester (a) and the polyester (b) is 50 ° C.
  • Tg glass transition temperature
  • polyester (B) comprising polyester (c) and at least one component (d) incompatible with the polyester (c); A biaxially stretched polyester film in which the layer (A) is at least one surface, the centerline average roughness (Ra) of this surface is 300 nm or more, and the ten-point average roughness (Rz) is 3000 nm or more.
  • the polyester (a) is polyethylene terephthalate.
  • the polyester (b) uses a diol having a cyclic skeleton as a diol component.
  • the layer (A) is a polyester (a) having a glass transition temperature (Tg) of 50 to 80 ° C. and a polyester (b) having a Tg of 100 to 120 ° C.
  • Tg glass transition temperature
  • a biaxially stretched polyester film comprising 10 to 90% by mass.
  • the present invention it is possible to provide a polyester film having both high reflectivity and an excellent surface shape, and particularly when this polyester film is used as a reflector or reflector in a surface light source, the liquid crystal screen is brightly illuminated, It is possible to make the liquid crystal image clearer and easier to see, and further, it is possible to suppress adhesion and scraping with the light guide plate, which are problems with a backlight using a sidelight type light source.
  • the polyester film of the present invention is a film having a layer (A) and a layer (B).
  • a structure of two or more layers is required, and a three-layer structure is preferable.
  • the layer (A) needs to be configured to be at least one surface.
  • a mode in which the layer (B) is protected by the layer (A) that is, a three-layer structure of layer (A) / layer (B) / layer (A) is preferable.
  • a core layer part is a layer (B), and the surface layer part of one side or both sides is a layer (A).
  • the polyester film of this invention consists of a layer (A) and a layer (B).
  • the thickness of the layer (A) of the polyester film of the present invention is preferably 2 to 20 ⁇ m.
  • the center line average roughness (Ra) is 300 nm or more and the ten-point average even when the polyester (a) and the polyester (b) are blended within the range described later.
  • the surface shape with a roughness (Rz) of 3000 nm or more is difficult to be obtained, and it is extremely easy to break due to the influence of the layer (B) containing a large number of bubbles having the incompatible component (d) as a core, and stable film formation cannot be performed. This is not preferable.
  • the thickness of the layer (A) exceeds 20 ⁇ m, when the polyester film is used as a reflecting plate, it becomes difficult for light to reach the layer (B), and air bubbles and polyester having an incompatible component (d) as a core This is not preferable because the components reflected at the interface with the surface may decrease and optical characteristics such as reflectance and luminance may deteriorate.
  • the layer (A) needs to contain polyester (a) and polyester (b).
  • the layer (A) is more preferably composed of polyester (a) and polyester (b).
  • the glass transition temperature (Tg) of the polyester (a) is 50 ° C. or more and less than 80 ° C.
  • the Tg of the polyester (b) is 100 ° C. or more and 120 ° C. or less.
  • a polyester having a Tg difference of 20 ° C. or more is melt-kneaded, extruded, and biaxially stretched to produce a portion that is not easily stretched. Thereby, continuous and minute stretching unevenness occurs, and as a result, an uneven shape is formed on the surface of the film.
  • the polyester film having such a concavo-convex shape formed on the surface is used as a reflector or reflector in a surface light source, adhesion to the light guide plate can be prevented particularly in a type using a sidelight type light source.
  • the Tg of the polyester (a) constituting the layer (A) is 80 ° C. or higher, the Tg of the entire polyester film will increase, so that it cannot be stretched under normal stretching conditions.
  • the Tg of the polyester (b) is less than 100 ° C., it is difficult to separate the stretched portion from the easily stretched portion, and the desired surface irregularities are not formed.
  • the Tg of the polyester (b) is 120 ° C. or higher, the Tg difference from the polyester (a) is too large, and the stretching unevenness increases and tears, so that the film cannot be formed.
  • no film can be formed even if the difference in Tg between polyester (a) and polyester (b) exceeds 50 ° C. Therefore, in the present invention, the difference in Tg between polyester (a) and polyester (b) needs to be 50 ° C. or less.
  • the center line average roughness (Ra) of the surface of the layer (A) needs to be 300 nm or more. Preferably, it is 400 nm or more.
  • the upper limit is preferably less than 800 nm, more preferably less than 750 nm.
  • the ten-point average roughness (Rz) of the surface of the layer (A) needs to be 3000 nm or more. Preferably, it is 4000 nm or more.
  • the upper limit is preferably less than 8000 nm.
  • the numerical values of Ra and Rz are related to the unevenness of the film surface. By providing irregularities on the film surface, the specular reflection component of the light reflection on the film surface is reduced, and the glossiness of the film can be lowered, and the light from the illumination light source is evenly distributed to the liquid crystal cell. It is a film that reflects and hardly adheres to the light guide plate.
  • the polyester film of the present invention has an uneven shape in the layer (A).
  • the uneven shape preferably has a maximum height of 5 to 30 ⁇ m, more preferably 5 to 20 ⁇ m, and most preferably 5 to 15 ⁇ m.
  • the thickness is less than 5 ⁇ m, the luminance unevenness in the edge light type backlight may increase.
  • the bubble in a layer (B) may be crushed, reflective performance may fall and a brightness
  • luminance may fall.
  • the measuring method of the maximum height of the convex part is as follows.
  • (I) A white reflective film is cut into a 5 cm square to obtain a sample.
  • (Ii) Using a laser microscope VK-9700 manufactured by Keyence Co., Ltd., observing the sample with the magnification of the objective lens set to 20 times, the portion detected at a height of 1 ⁇ m or more is defined as a convex portion, To do.
  • the height is calculated from the profile function of the attached analysis software, and the maximum value is selected therefrom.
  • the above measurement is carried out on 5 samples collected at random, and the number average is defined as “the maximum height of the convex portion”.
  • the layer (A) needs to be substantially free of inorganic and organic particles.
  • being substantially free means that there is no intentional addition of inorganic particles or organic particles.
  • the layer (A) is cut in the thickness direction using a microtome, and the obtained cross section is observed with a transmission electron microscope (HU-12, manufactured by Hitachi, Ltd.). To do.
  • the observation magnification is 250 times, and the observation range (the cross-sectional range of the layer (A) to be observed) is 1000 [( ⁇ m) 2 ].
  • the observation range when the ratio of the area of the inorganic particles and the organic particles to the observation range (1000 [( ⁇ m) 2 ]) is 0.3% or less, the layer (A) is substantially inorganic particles and organic particles.
  • the ratio of the area of the inorganic particles and the organic particles to the observation range (1000 [( ⁇ m) 2 ]) is preferably 0.1% or less, more preferably 0.05% or less, and most preferably inorganic particles. And no organic particles are observed.
  • the layer (A) contains inorganic and organic particles, even if an attempt is made to provide unevenness on the film surface by the above-described method, the film may not be formed because of tearing. Moreover, even if it can form into a film, these particle
  • polyester (a) and polyester (b) are: 1) the weight of a dicarboxylic acid component or an ester-forming derivative thereof (hereinafter sometimes collectively referred to as “dicarboxylic acid component”) and a diol component. It can be obtained by condensation, 2) polycondensation of a compound having a carboxylic acid or carboxylic acid derivative skeleton and a hydroxyl group in one molecule, and a combination of 1) and 2).
  • dicarboxylic acid component constituting the polyester (a) examples include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, methylmalonic acid, and ethylmalonic acid, terephthalic acid, and isophthalic acid. , Phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, and the like, but are not limited thereto, for example, polyfunctional acid. Trimellitic acid, pyromellitic acid and the like can also be suitably used. Moreover, these may be used independently or may be used in multiple types as needed.
  • aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, methylmalonic acid, and
  • diol component constituting the polyester resin examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. And the like, and diols such as aromatic diols such as 1,3-benzenedimethanol and 1,4-benzenedimethanol, but are not limited thereto. Moreover, these may be used independently or may be used in multiple types as needed.
  • the polyester (a) can be obtained by polycondensation by appropriately combining the above compounds.
  • the polyester (a) may be crystalline or non-crystalline, but it is preferable to contain at least one non-crystalline polyester for forming the surface shape described later.
  • non-crystalline refers to a resin having a heat of crystal fusion of less than 1 cal / g.
  • polyester suitably used for the polyester (a) examples include polyethylene terephthalate (hereinafter sometimes abbreviated as PET), polypropylene terephthalate, polybutylene terephthalate, and the like.
  • PET is preferable because it is inexpensive and has excellent water resistance, durability, and chemical resistance.
  • dicarboxylic acid component constituting the polyester (b) examples include aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, methylmalonic acid, and ethylmalonic acid, terephthalic acid, and isophthalic acid. , Phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, and the like, but are not limited thereto, for example, polyfunctional acid. Trimellitic acid, pyromellitic acid and the like can also be suitably used. Moreover, these may be used independently or may be used in multiple types as needed.
  • aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, methylmalonic acid, and
  • examples of the diol component constituting such a polyester resin include linear aliphatic diols and diols having a rigid skeleton, that is, cycloaliphatic diols (diols having a cyclic skeleton).
  • linear aliphatic diol examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol and the like.
  • Cycloaliphatic diols include cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclopropanedimethanol, cyclobutanedimethanol, cyclopentanedimethanol, cyclohexane Hexanedimethanol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, isosorbide, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10 -Tetraoxaspiro [5.5] undecane, 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane and the like.
  • a polyester having at least one of these diols as a diol component is preferably used.
  • the polyester (b) preferably has two or more different diol components selected from the above, and particularly preferably has three or more components. However, since it is difficult to adjust the copolymerization ratio when the component is five or more. It may not be preferable.
  • the polyester (b) comprises at least one diol having the above cyclic skeleton as the diol component.
  • the Tg of the polyester (b) can be increased.
  • the polyester (b) is preferably formed using 2,2,4,4-tetramethyl-1,3-cyclobutanediol as the diol component.
  • polyester (b) it is preferable to have ethylene glycol and 1,4-cyclohexanedimethanol as an example of two or more different diol components described above. More preferably, it has ethylene glycol and 1,4-cyclohexanedimethanol, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol, isosorbide, 3,9-bis (1,1 -Dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane and 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) A total of three components having one diol component selected from the group consisting of -1,3-dioxane. Among them, it is particularly preferable to have ethylene glycol, 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol.
  • ethylene glycol, 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol are used as the diol component of the polyester (b)
  • the respective ratios are the total of the diol components.
  • mol% is 100 mol%
  • ethylene glycol is 0 to 15 mol%
  • 1,4-cyclohexanedimethanol is 60 to 75 mol%
  • 2,2,4,4-tetramethyl-1,3-cyclobutanediol Is preferably 25 to 40 mol%.
  • the Tg of the polyester (a) and the polyester (b) can be appropriately adjusted by the combination of the dicarboxylic acid component and the diol component and the copolymerization ratio thereof.
  • the polyester (a) include PET using terephthalic acid as the dicarboxylic acid component and ethylene glycol as the diol component, and polyester using terephthalic acid and isophthalic acid as the dicarboxylic acid component (hereinafter sometimes abbreviated as PETI). Can be mentioned.
  • the polyester (b) is a polyester (for example, “2”) using a combination of terephthalic acid as the dicarboxylic acid component and 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethyl-1,3-cyclobutanediol as the diol component.
  • TRITAN (manufactured by Eastman Chemical Company)).
  • the polyester (a) and the polyester (b) may each be a combination of two or more, and the polyester (a) is particularly preferably a combination of PET and PETI.
  • the layer (A) comprises 10 to 90% by mass of a polyester (a) having a glass transition temperature (Tg) of 50 ° C. or more and less than 80 ° C., and a polyester (b) having a Tg of 100 ° C. or more and 120 ° C. or less. ) It is necessary to contain 10 to 90% by mass.
  • the layer (A) has a glass transition temperature (Tg) of 50 to 80 ° C. and a polyester (a) of 10 to 90% by mass, and Tg is 100 to 120 ° C.
  • the polyester (b) is preferably composed of 10 to 90% by mass.
  • the content of the polyester (a) needs to be 10 to 90% by mass with respect to the layer (A). More preferably, it is 20 to 80% by mass, and most preferably 30 to 70% by mass. If the content of the polyester (a) is less than 10% by weight, the content of the polyester (b) having a high Tg is too high, and stretching may not be possible under normal stretching conditions. On the other hand, if it exceeds 90% by weight, a surface shape as described later cannot be obtained.
  • the polyester (b) content needs to be 10 to 90% by mass with respect to the layer (A). More preferably, it is 20 to 80% by mass, and most preferably 30 to 70% by mass. If the content of the polyester (b) is less than 10% by weight, a surface shape as described later cannot be obtained. On the other hand, when the content exceeds 90% by weight, the content of the polyester (b) having a high Tg is too large, so that the film cannot be stretched under normal stretching conditions, and film-breaking often occurs.
  • the layer (B) of the polyester film of the present invention is a layer comprising at least one component (d) that is incompatible with the polyester (c) and the polyester (c).
  • the polyester (c) and the incompatible component (d) it is possible to easily contain bubbles having the incompatible component (d) as a core by a method as described later, It becomes possible to produce a polyester film having high reflection characteristics. Therefore, the layer (B) of the polyester film of the present invention contains polyester (c), a component (d) that is incompatible with the polyester (c), and bubbles, so that optical properties such as luminance and reflectance are improved. This is preferable.
  • the polyester film of the present invention has the above-mentioned configuration, controls the light diffusibility of reflected light, imparts high mechanical strength to the film, imparts film-forming properties, imparts antistatic properties, etc. Further, a layer having light resistance or other functions having an accompanying function may be laminated. Various characteristics can be controlled by using a multilayer structure.
  • Polyester (c) is: 1) polycondensation of a dicarboxylic acid component or an ester-forming derivative thereof (hereinafter sometimes referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid within one molecule. It can be obtained by polycondensation of a compound having an acid derivative skeleton and a hydroxyl group, and a combination of 1) and 2).
  • polyester (c) one or more polyester resins can be used as the polyester (c), but it is preferable to include the polyester (c1) and the polyester (c2) described later.
  • polyester (c1) and polyester (c2) By using polyester (c1) and polyester (c2), a white polyester film having high optical properties can be obtained stably.
  • Polyester (c1) is composed of 1) polycondensation of a dicarboxylic acid component or an ester-forming derivative thereof (hereinafter sometimes collectively referred to as “dicarboxylic acid component”) and a diol component, and 2) carboxylic acid or carboxylic acid within one molecule. It can be obtained by polycondensation of a compound having an acid derivative skeleton and a hydroxyl group, and a combination of 1) and 2).
  • dicarboxylic acid component constituting such polyester resin
  • malonic acid succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelain Acids, aliphatic dicarboxylic acids such as methylmalonic acid, ethylmalonic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1 , 8-Naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, anthracene dicarboxylic acid, phenanthrene dicarboxy
  • dicarboxy compounds obtained by adding oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, and a combination of a plurality of the oxyacids to the carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like
  • a combination of a plurality of the oxyacids to the carboxy terminus of the dicarboxylic acid component described above.
  • oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like
  • the diol component constituting the polyester resin in 1) includes ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3 -Aliphatic diols such as butanediol, aromatic diols such as bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene, etc.
  • diols include, but are not limited to, diols. Moreover, these may be used independently or may be used in multiple types as needed.
  • examples of the compound having a carboxylic acid or carboxylic acid derivative skeleton and a hydroxyl group in one molecule include oxyacids such as l-lactide, d-lactide, and hydroxybenzoic acid, and derivatives thereof, and oxyacids thereof. And a dicarboxy compound to which a plurality of is added.
  • the polyester (c1) can be obtained by polycondensation by appropriately combining the above compounds.
  • Polyesters suitably used for the polyester (c1) include polyethylene terephthalate (hereinafter abbreviated as PET), polyethylene-2,6-naphthalenedicarboxylate (hereinafter abbreviated as PEN), and polypropylene. Examples include terephthalate (hereinafter sometimes abbreviated as PPT) and polybutylene terephthalate (hereinafter sometimes abbreviated as PBT).
  • polyester (c1) the same polyester as the polyester (a) of the layer (A) can be used.
  • polyester (c1) used in the present invention high mechanical strength can be imparted when a film is formed while maintaining no coloration.
  • PET is preferable because it is inexpensive and has excellent water resistance, durability, and chemical resistance.
  • various known additives such as an antioxidant and an antistatic agent may be added to the polyester.
  • the polyester (c) preferably has a polyester (c2), and the polyester resin component (c2) preferably contains an alicyclic diol component having 4 to 8 carbon atoms.
  • the alicyclic group having 4 to 8 carbon atoms in the present invention is a cycloalkane, and is a cyclic aliphatic represented by the general formula C n H 2n (where 4 ⁇ n ⁇ 8).
  • An alicyclic diol having 4 to 8 carbon atoms refers to a substance having both the structure of a cyclic aliphatic hydrocarbon part having 4 to 8 carbon atoms and a diol part. That is, specific examples of the alicyclic diol having 4 to 8 carbon atoms include cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclopropanedimethanol, cyclobutanedimethanol, cyclopentane. Examples include dimethanol, cyclohexane dimethanol, cycloheptane dimethanol, and cyclooctane dimethanol.
  • the diol component bonded to the cycloaliphatic hydrocarbon moiety having 4 to 8 carbon atoms may be bonded to any carbon atom of the cycloaliphatic hydrocarbon moiety.
  • the cycloaliphatic hydrocarbon moiety When is a cyclohexane, it is preferable that a diol component is bonded to positions 1 and 4.
  • 1,4-cyclohexanedimethanol is particularly preferable because it is easy to mix with a monomer price and a polyester resin (particularly PET). Used for.
  • the diol component in the present invention is not limited to a component existing as a diol, and includes a case where it is contained as a constituent component of a polyester, for example, a copolymer, or a mixture of these resins.
  • the content of the polyester (c2) is preferably 1.2 to 36% by mass with respect to the layer (B). More preferably, it is 1.9 to 30% by mass, still more preferably 2.4 to 26% by mass, and most preferably 3.3 to 20% by mass. If the content of the polyester (c2) is less than 1.2% by mass, the fine dispersion effect of the incompatible component (d) is lowered and the reflection performance is lowered, which is not preferable. On the other hand, if it exceeds 36% by mass, the heat resistance of the polyester film is lowered, and the dimensional change may be increased when exposed to high temperatures, which is not preferable. In the white polyester film of the present invention, when the content of the polyester (c2) is 1.2 to 36% by mass, a polyester film having film forming stability, reflectivity, and dimensional stability can be obtained.
  • the polyester film of the present invention needs to have air bubbles inside the layer (B) for whiteness and reflection properties, but is incompatible with the polyester (c) constituting the layer (B) (d ) And biaxially stretching, bubbles can be formed around the incompatible component (d).
  • the bubbles formed in this manner exhibit a light scattering action, and a large number of bubbles exist throughout the polyester film, whereby the polyester film is whitened and high reflectance can be obtained.
  • the incompatible component (d) may be organic or inorganic, and both crystalline and amorphous are preferably used.
  • the organic material include linear, branched, or cyclic polyolefins such as polyethylene, polypropylene, polybutene, polymethylpentene, and cyclopentadiene.
  • the polyolefin may be a homopolymer or a copolymer, and may be used in combination of two or more.
  • polypropylene and polymethylpentene are preferably used as the crystalline polyolefin
  • cycloolefin copolymer is preferably used as the amorphous polyolefin in terms of excellent transparency and heat resistance.
  • calcium carbonate, magnesium carbonate, titanium oxide, antimony oxide, magnesium oxide, barium carbonate, zinc carbonate, barium sulfate, calcium sulfate, aluminum oxide, silicon oxide (silica), and the like can be used.
  • calcium carbonate, titanium oxide, barium sulfate, and silica are preferable from the viewpoints of long-term film-forming stability and improved reflection characteristics. These may be used alone or in combination of two or more. Further, it may be in the form of a porous or hollow porous material, and may be subjected to a surface treatment in order to improve the dispersibility with respect to the polyester within a range not impairing the effects of the present invention.
  • a cycloolefin copolymer when an amorphous polyolefin is used as the incompatible component (d), a cycloolefin copolymer can be particularly preferably used.
  • the cycloolefin copolymer is composed of at least one cycloolefin selected from the group consisting of cycloalkene, bicycloalkene, tricycloalkene, tetracycloalkene and pentacycloalkene, and linear olefin such as ethylene and propylene. It is a copolymer.
  • the amorphous resin as used herein refers to a resin having a heat of crystal fusion of less than 1 cal / g.
  • Typical examples of the cyclic olefin in the cycloolefin copolymer include bicyclo [2,2,1] hept-2-ene, 6-methylbicyclo [2,2,1] hept-2-ene, and 5,6-dimethyl.
  • linear olefins in the cycloolefin copolymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene and the like.
  • the incompatible component (d) preferably has a glass transition temperature Tg of 170 ° C. or higher. More preferably, it is 180 degreeC or more. It is because it can disperse
  • the upper limit is preferably 250 ° C. If it exceeds 250 ° C., the extrusion temperature at the time of film formation becomes high and the processability may be inferior.
  • the glass transition temperature Tg of the incompatible component (d) is less than 170 ° C.
  • the incompatible component (d) is deformed when the film is heat-treated to impart dimensional stability.
  • bubbles formed using the core as a nucleus are reduced or disappeared, and the reflection characteristics are deteriorated.
  • the heat treatment temperature is lowered to maintain the reflection characteristics, the dimensional stability of the film may be lowered in that case.
  • the linear olefin component is preferably an ethylene component from the viewpoint of reactivity.
  • bicyclo [2,2,1] hept-2-ene (norbornene) and its derivatives are preferable from the viewpoint of productivity, transparency, and high Tg.
  • a cyclic olefin copolymer resin is used as the incompatible component (d), it is effective to add a dispersant to uniformly disperse the resin.
  • the dispersant include, for polyester, polyalkylene glycol such as polyethylene glycol, methoxy polyethylene glycol, polytetramethylene glycol, and polypropylene glycol, ethylene oxide / propylene oxide copolymer, sodium dodecylbenzenesulfonate, and alkyl sulfonate. It is represented by sodium salt, glycerin monostearate, tetrabutylphosphonium paraaminobenzenesulfonate and the like.
  • polyalkylene glycol particularly polyethylene glycol is particularly preferable.
  • a copolymer of polybutylene terephthalate and polytetramethylene glycol is preferably used for improving the dispersibility of the incompatible component (d).
  • the addition amount is preferably 3% by mass or more and 20% by mass or less, and particularly preferably 5% by mass or more and 15% by mass or less with respect to the total mass of the layer (B). If the amount of the dispersant added is too small, the effect of the addition is diminished, and if it is too large, the original properties of the film base material may be impaired.
  • Such a dispersant can be added to the polymer constituting the layer (B) in advance to prepare a master polymer (master chip).
  • the glass transition temperature Is preferably 170 ° C. or higher and 250 ° C. or lower.
  • the incompatible component (d) is preferably amorphous, and more preferably (amorphous) cycloolefin copolymer.
  • the amount of the incompatible component (d) added is preferably 5 to 50% by mass when the total mass of the layer (B) is 100% by mass, and 5 to 30% by mass. It is more preferable. If the content of the incompatible component (d) is less than 5% by mass, sufficient bubbles are not generated inside the film, and the whiteness and light reflection characteristics may be inferior. On the other hand, when the content of the incompatible component (d) exceeds 50% by mass, the strength of the film is lowered, breakage during stretching tends to occur, and inconvenience such as generation of powder during post-processing occurs. There is a case. By setting the content within this range, sufficient whiteness, reflectivity, and lightness can be exhibited.
  • the polyester film of the present invention preferably has a relative reflectance of 102% or more. More preferably, it is 102.5% or more, More preferably, it is 103% or more.
  • the relative reflectance means that an integrating sphere made of barium sulfate on the inner surface, a spectrophotometer equipped with a 10 ° inclined spacer, aluminum oxide as a standard white plate, and light incident at an incident angle of 10 °.
  • the polyester film of the present invention by setting the relative reflectance to 100% or more, a biaxially stretched film excellent in whiteness and reflection characteristics can be obtained, and particularly when used for a liquid crystal display device, a high luminance improvement is achieved. An effect can be obtained.
  • Formation of bubbles is achieved by finely dispersing the incompatible component (d) in the layer (B) and biaxially stretching it. During stretching, bubbles are formed around the incompatible component (d), and the number of interfaces between the bubbles and the substrate in the film thickness direction is preferably 15 or more per 10 ⁇ m film thickness, more preferably 20 or more, more preferably 25 or more. When the number of the interfaces is 15 or more, this exhibits light reflection and scattering action, so that it is whitened and high reflectance can be obtained. If the number of interfaces is less than 15, the light reflection and scattering actions are insufficient, and it is difficult to achieve whitening and high reflectivity.
  • polyester (b) Dimethyl terephthalate as the acid component, CHDM (cyclohexanedimethanol) and 2,2,4,4-tetramethyl-1,3-cyclobutanediol as the diol component, and 200 ppm of butyltin tris (2-ethylhexanoate)
  • a polycondensation reaction can be carried out in the presence of Tg copolymerized polyester pellets (polyester (b)) at 116 ° C.
  • the Tg of the polyester (b) can be appropriately adjusted by the combination of the dicarboxylic acid component and the diol component described above and the copolymerization ratio thereof. Specifically, it is polymerized by a known method (for example, see JP-T-2013-504650, JP-A-2012-219129, JP-T 2009-513801), or a commercial product (for example, , “ECOZEN” (manufactured by SK chemicals), “TRITAN” (manufactured by Eastman Chemical Company), “ALTERSTER” (manufactured by Mitsubishi Gas Chemical Co., Ltd.)) is obtained to obtain a polyester (b) having a desired Tg. be able to.
  • a known method for example, see JP-T-2013-504650, JP-A-2012-219129, JP-T 2009-513801
  • a commercial product for example, “ECOZEN” (manufactured by SK chemicals), “TRITAN” (manufactured by Eastman Chemical
  • polyester (c1) a method for obtaining the polyester (c1) will be described, but it is not limited to this example.
  • antimony trioxide polymerization catalyst
  • polyester (c2) a method for obtaining the polyester (c2) will be described, but it is not limited to this example.
  • a polyester (c2) obtained by copolymerizing an alicyclic diol having 4 to 8 carbon atoms and terephthalic acid can be obtained by performing a polycondensation reaction.
  • the incompatible component (d) is obtained by polymerizing the above-described cycloolefin and olefin by a known method (for example, see JP-A No. 61-271308, International Publication No. 2007/060723) or being marketed.
  • a known method for example, see JP-A No. 61-271308, International Publication No. 2007/060723
  • TOPAS manufactured by Polyplastics Co., Ltd.
  • master pellets such as polyester (a) containing the inorganic substance mentioned above, can be used.
  • the dispersant is a block copolymer of PBT (polybutylene terephthalate) and PAG (mainly polytetramethylene glycol), and has a melt index (MI) of 14 (2.160 g, 240 ° C.).
  • polyester (a) and polyester (b), and a mixture containing various additives as necessary are sufficiently vacuum dried and supplied to a heated extruder.
  • the addition of the polyester (b) may be performed using a master chip prepared by uniform melt-kneading in advance, or may be directly supplied to a kneading extruder.
  • the mixture containing the component (d) incompatible with the polyester (c) and a dispersant as necessary is sufficiently vacuum-dried and supplied to a heated extruder.
  • the addition of the incompatible component (d) may be performed using a master chip prepared by melt-kneading uniformly in advance, or may be directly supplied to a kneading extruder.
  • melt-extrude after filtering through a filter having a mesh of 40 ⁇ m or less, to introduce into a T-die die and obtain a molten sheet by extrusion molding.
  • the melted sheet is closely cooled and solidified by static electricity on a drum cooled to a surface temperature of 10 to 60 ° C. to produce an unstretched A / B / A three-layer film.
  • the unstretched three-layer film is led to a group of rolls heated to 70 to 120 ° C., preferably 70 to 100 ° C., and the longitudinal direction (that is, the traveling direction of the film, sometimes referred to as “longitudinal direction”). Then, the film is stretched 2.5 to 4 times and cooled by a roll group having a temperature of 20 to 50 ° C.
  • the film is guided to a tenter while holding both ends of the film with clips, and in an atmosphere heated to a temperature of 90 to 150 ° C., a direction perpendicular to the longitudinal direction (referred to as “width direction” or “lateral direction”). May be stretched 2.5 to 4 times.
  • the draw ratio is 2.5 to 4 times in each of the longitudinal direction and the width direction, but the area ratio (stretch ratio in the longitudinal direction ⁇ stretch ratio in the width direction) must be 9 to 16 times. More preferably, it is ⁇ 12 times.
  • the area magnification is less than 9 times, formation of bubbles and irregularities in the resulting polyester film and film strength are insufficient, and when the area magnification exceeds 16 times, tearing tends to occur during stretching.
  • polyester film of the present invention can be obtained by cooling to room temperature, and then, if necessary, performing corona discharge treatment or the like in order to further improve the adhesion to other materials and winding.
  • the film is formed at a high temperature (190 ° C. or higher).
  • a high temperature 190 ° C. or higher.
  • the polyester film of the present invention may be used as a reflective film for a surface light source (backlight) mounted on a liquid crystal display or the like, and thus it is desired to have a certain thermal dimensional stability.
  • the internal atmospheric temperature may rise to about 100 ° C.
  • the biaxial stretching method may be either sequential or simultaneous. Further, after biaxial stretching, the film may be re-stretched in either the longitudinal direction or the width direction.
  • the biaxially stretched film thus obtained preferably has a heat shrinkage measured by a method described later of 0.5% or less under the condition of treating at 80 ° C. for 30 minutes.
  • the thermal shrinkage rate exceeds 0.5% at 80 ° C., the film shrinks greatly when used as a reflector for a liquid crystal display, and the entire surface of the housing display cannot be covered. Since a dark part may arise in a part, it may be unpreferable.
  • the polyester film of the present invention preferably has a specific gravity of less than 1.2.
  • the specific gravity is within this range, a large number of fine bubbles can be present while maintaining the film strength, and a high reflectance can be obtained. That is, when it is used as a liquid crystal display reflector, it exhibits outstanding performance in terms of screen brightness.
  • it is preferable that it is 0.3 or more and less than 1.0, since it can reduce in weight, maintaining a mechanical characteristic.
  • the polyester film of the present invention has a concavo-convex shape that does not include particles such as inorganic substances in the layer (A) that forms the surface layer on at least one side, and does not use any post-process such as coating or embossing.
  • the layer (A) is preferably used in such a manner that the surface of the layer (A) faces the light guide plate. When used in such a manner, particularly high luminance can be obtained while suppressing unevenness in luminance.
  • the effect of the polyester film of the present invention is more effectively manifested when a concave or convex portion having a height of 5 ⁇ m or more is provided on the surface of the light guide plate in the edge light type backlight. Furthermore, when a concave portion or a convex portion having a size of 10 ⁇ m or more is provided, the effect is exhibited more significantly.
  • the upper limit of the height of the concave and convex portions on the surface of the light guide plate is not particularly limited, but is preferably 100 ⁇ m or less because the effect is remarkably exhibited. More preferably, it is 60 ⁇ m or less.
  • the surface roughness layer (A) has a center line average roughness (Ra) and a ten-point average roughness (Rz) of Kosaka Laboratory, stylus type surface roughness meter ( Model No .: SE-3FA).
  • the conditions were as follows, and the average value of five measurements was taken as the value.
  • Tg Glass transition temperature of polyester Using a differential scanning calorimeter “Robot DSC-RDC220” manufactured by Seiko Denshi Kogyo Co., Ltd. according to JIS K7122 (1987), a disk session “SSC / 5200” was used for data analysis. The measurement was carried out as follows.
  • the layer (A) is weighed in a sample pan and heated from 25 ° C. to 300 ° C. at a heating rate of 20 ° C./min. It was kept for a minute and then rapidly cooled to 25 ° C. or lower. Immediately thereafter, the temperature was increased again from room temperature to 300 ° C. at a rate of temperature increase of 20 ° C./min, and measurement was performed to obtain a differential scanning calorimetry chart. Based on JIS K7121 (1987), the glass transition temperature of polyester (b) was determined according to the method for determining the midpoint glass transition temperature described in 9.3 (1) of JIS K7121 (1987).
  • the glass transition temperature is the same as the step of the glass transition and the straight line equidistant in the vertical axis direction from the extended straight line of each base line in the stepwise change portion of the glass transition. It was obtained from the point where the curve of the change part intersects. When two or more of these points are observed, the point observed at 50 ° C. or higher and lower than 80 ° C. is the glass transition temperature of polyester (a), and the point observed at 100 ° C. or higher and 120 ° C. or lower is the glass of polyester (b). The transition temperature was used.
  • AA Excellent (Uneven brightness in 500 lx lighting environment and dark environment)
  • A Good (Uneven brightness in a dark environment of 500 lx is visible, but uneven brightness is not visible in a lighting environment.)
  • B Inferior (Brightness unevenness is visible both in a 500 lx lighting environment and in a dark environment.)
  • C Very inferior (A very strong uneven brightness can be seen both in a 500 lx lighting environment and in a dark environment.) The above “AA” and "A” were accepted.
  • polyester (a) Using terephthalic acid as the acid component and ethylene glycol as the diol component, adding to the polyester pellets to obtain antimony trioxide (polymerization catalyst) to 300 ppm in terms of antimony atoms, conducting a polycondensation reaction, limiting viscosity Polyethylene terephthalate pellets (PET) having 0.63 dl / g and carboxyl end group amount of 40 equivalents / ton were obtained.
  • antimony trioxide polymerization catalyst
  • PET Polyethylene terephthalate pellets
  • PETI polyethylene terephthalate / isophthalate copolymer
  • PBT Polybutylene terephthalate
  • Tg were 78 ° C for PET, 75 ° C for PETI, 60 ° C for PBT, and 47 ° C for VYLON.
  • Polyester (b) Dimethyl terephthalate as the acid component, CHDM (cyclohexanedimethanol) and 2,2,4,4-tetramethyl-1,3-cyclobutanediol as the diol component, and 200 ppm of butyltin tris (2-ethylhexanoate)
  • CHDM cyclohexanedimethanol
  • 2,2,4,4-tetramethyl-1,3-cyclobutanediol as the diol component
  • 200 ppm butyltin tris (2-ethylhexanoate
  • ECOZEN manufactured by SK chemicals
  • TRITAN manufactured by Eastman Chemical Company
  • ALTERSTER manufactured by Mitsubishi Gas Chemical Company
  • ECOZEN is an isosorbide component
  • TRITRAN is a 2,2,4,4-tetramethyl-1,3-cyclobutanediol component
  • ALTERSTER is 3,9 -Bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane component, each of which is a diol component having a cyclic skeleton Since it is bulky, it is considered that polyester has a high Tg.
  • ECOZEN is abbreviated as “ECZ”, TRITAN as “TRT”, and ALTERSTER as “AST”)
  • TRITAN TriTAN having a Tg of 108 ° C.”
  • TRITAN TriTAN having a Tg of 116 ° C.”
  • ECOZEN any one of “ECOZEN having a Tg of 100 ° C.”, “ECOZEN having a Tg of 120 ° C.”, and “ECOZEN having a Tg of 95 ° C.” was used.
  • ATERSTER any one of “ALTERSTER having a Tg of 100 ° C.”, “ALTERSTER having a Tg of 110 ° C.”, and “ALTERSTER having a Tg of 95 ° C.” was used.
  • Polyester (c) Using terephthalic acid as the acid component and ethylene glycol as the glycol component, adding to the polyester pellets that can obtain antimony trioxide (polymerization catalyst) to 300 ppm in terms of antimony atoms, performing a polycondensation reaction, limiting viscosity Polyethylene terephthalate pellets (PET) having 0.63 dl / g and carboxyl end group amount of 40 equivalents / ton were obtained.
  • antimony trioxide polymerization catalyst
  • PET Polyethylene terephthalate pellets
  • CHDM cyclohexanedimethanol copolymerized PET was used in combination with PET.
  • PET obtained by copolymerizing 60 mol% of cyclohexanedimethanol with the above-described method with respect to the glycol component (denoted as TPA / EG / CHDM in the table).
  • the copolymerized PET (TPA / EG / CHDM) was also used as polyester (a) or polyester (b).
  • Incompatible component (d) A cycloolefin copolymer “TOPAS” (manufactured by Polyplastics Co., Ltd.) having a glass transition temperature of 180 ° C. was used (described as COC in the table).
  • titanium oxide master pellets sold by DIC Corporation or the like were used (the base resin is polyester (c) PET).
  • PBT-PAG polybutylene terephthalate-polyalkylene glycol copolymer
  • the resin is a block copolymer of PBT (polybutylene terephthalate) and PTMG (mainly polytetramethylene glycol), and has a melt index (MI) of 14 (2.160 g, 240 ° C.).
  • MI melt index
  • Examples 1 to 19, 21, 23 to 26 In a composite film forming apparatus having a main extruder and a sub-extruder, the raw material mixture shown as the layer (B) in Table 1 was vacuum-dried at a temperature of 180 ° C. for 3 hours, and then supplied to the main extruder side. After melt extrusion at a temperature of 0 ° C., the mixture was filtered through a 30 ⁇ m cut filter and then introduced into a T-die composite die. On the other hand, the raw material mixture shown as layer (A) in Table 1 was vacuum-dried at a temperature of 180 ° C.
  • the layers (A) extruded from the sub-extruder were joined so as to be laminated (A / B / A) on both sides of the layer (B) extruded from the main extruder. Thereafter, it was co-extruded into a sheet to obtain a molten laminated sheet, and the molten laminated sheet was closely cooled and solidified by an electrostatic charge method on a drum maintained at a surface temperature of 20 ° C.
  • the unstretched laminated film is preheated with a group of rolls heated to 85 ° C. according to a conventional method, and then stretched so that the area ratio is as shown in Table 1 in the longitudinal direction (longitudinal direction) using a 90 ° C. heated roll. And cooled with a roll group having a temperature of 25 ° C. to obtain a uniaxially stretched film.
  • the polyester film of the present invention was able to be stably formed, and exhibited excellent properties such as reflectivity, lightness, surface shape (reduction in luminance unevenness, good compatibility with the light guide plate), and thermal dimensional stability.
  • Example 20 and 22 A polyester film was obtained in the same manner as in Examples 1 to 19 except that the layer (A) extruded from the sub-extruder was laminated (B / A) to the layer (B) extruded from the main extruder. It was.
  • the various characteristics are shown in Table 1.
  • the polyester film of the present invention was able to be stably formed, and exhibited excellent properties such as reflectivity, lightness, surface shape (reduction in luminance unevenness, good compatibility with the light guide plate), and thermal dimensional stability.
  • Comparative Examples 1 to 16 In a composite film-forming apparatus having a main extruder and a sub-extruder, an attempt was made to form a polyester film in the same manner as in Example 1 using the mixture and conditions of the raw materials shown in Table 2. Comparative Examples 2, 7, and 9 , 13 could not be formed into a film. Various characteristics are shown in Table 2. For the examples other than Comparative Examples 2, 7, 9, and 13 (except for Comparative Example 16), the surface shape was flat compared to the examples, and Ra and Rz were within the scope of the present invention. It was outside. When the compatibility with the light guide plate was examined, it was not scraped, but the unevenness was insufficient, the polyester film and the light guide plate were in close contact, and uneven brightness occurred. In Comparative Example 16, no luminance unevenness occurred, but the luminance was remarkably low due to the low reflectance, which was not practical at all.
  • the polyester film of the present invention is economical, film-forming, white, reflective, lightweight, and has a surface shape.
  • a surface light source excellent in luminance characteristics and compatibility with other members is inexpensive. Can be provided.
  • the polyester film of the present invention can be applied to uses that require whiteness, reflectivity, concealment, and thermal dimensional stability, but as a particularly preferred use, a plate-like material incorporated in a surface light source for light reflection Can be given. Specifically, it is preferably used for an edge light reflector for a liquid crystal screen, a reflector for a direct type light, and a cold cathode ray tube or a reflector around LED illumination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

経済性、製膜性、白色性、反射性、軽量性、表面形状に優れ、このポリエステルフィルムを用いることにより輝度特性及び他部材との相性に優れた面光源を安価に提供する。 (1)ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%を含み、ポリエステル(a)とポリエステル(b)のTgの差が50℃以下であり、かつ、実質的に無機及び有機粒子を含まない層(A)と、ポリエステル(c)と、該ポリエステル(c)に非相溶な成分(d)を少なくとも1種含む層(B)を有し、層(A)が少なくとも一方の表面となる構成であり、この表面の中心線平均粗さ(Ra)が300nm以上、及び十点平均粗さ(Rz)が3000nm以上である2軸延伸ポリエステルフィルム。

Description

ポリエステルフィルム
 本発明は、ポリエステルフィルムに関し、特に、液晶ディスプレイ用反射板として用いるフィルムに関する。
 テレビ、パソコン、タブレット型端末など様々な電子機器に多用されている液晶ディスプレイは、画面表示のために、ディスプレイ後部にバックライトと呼ばれる光源を設置している。また、バックライトは、画面全体を均一に照射する必要がある。この特性を満たす方式として、サイドライト型及び直下型と呼ばれる面光源の構造がある。特に、薄型ディスプレイには、サイドライト型、つまり画面に対し側面から光を照射するタイプのバックライトが適用されている。一般的に、このサイドライト型では、導光板と呼ばれる、ある厚みを持ったアクリル板などの透明基材の片面に網点印刷やシボ加工など各種処理を施したシートが用いられる。側面の光源より導光板のエッジへ光を当てることで、照明光が上方に均一に分散され、均一な明るさを持った画面が得られる。また、エッジ部のみに照明を設置するため、光源を減らすことができ、低コスト化及び軽量化でき、直下型より薄型にできる。さらに、照明光の画面背面への逃げを防ぐため、導光板の下方に反射板が設けられており、これにより光源からの光のロスを少なくし、液晶画面を明るくできる。
 このような液晶画面用の面光源、特にサイドライト型に用いられる反射板には、薄膜及び軽量であることと同時に、高い反射性能はもちろんのこと、特に導光板との相性が求められる。従来、反射板としては、フィルムに白色顔料を添加したり、内部に微細な気泡を含有させ、この界面反射により高反射性能を達成し、表面層に無機粒子などの粒子を添加したり、エンボス加工したり、コーティングを施すことにより凹凸形状を付与して導光板との密着を防止してきた(特許文献1、2、3、4、5、6、7)。
 また、特に表面層に用いる材質として、無機粒子や樹脂粒子等、強度が高く、劣化しにくい材質のものを選定することも提案されている(特許文献8,9)。
特開2009-98660号公報 特開2009-173015号公報 特開2002-98808号公報 特開2004-126345号公報 国際公開2011/105294号 特許第5218931号公報 特開2009-285912号公報 特表2009-513800号公報 特開2009-96999号公報
 しかしながら、特許文献1、2、3、4、5、6および7に記載の方法にて凹凸形状を付与した反射フィルムでは、導光板の素材によっては、導光板の網点印刷やシボ加工など各種処理を施した面に傷がつきやすくなり、この傷や削りカスが画面ムラの原因となる場合がある。また、運搬時の振動により反射フィルムのコーティングが剥がれることもある。さらには、上記コーティングやエンボス加工は製膜後に独立して付与されるケースが多く、多段階かつ特殊な工程が必要となり、高価となるうえ、高温に晒される工程が増えるため、内部の微細な気泡が潰れたり、構成する樹脂が劣化したりすることにより、光反射性能が低下する。
 加えて、近年は顧客要求も厳しくなり、特にサイドライト型バックライトにおいては、より削れにくく、高低差の有る凹凸を形成することが要求されてきており、特許文献8および9で提案されているような既存の設計では、この要求を満足することが難くなってきている。
 そこで、本発明は、上記従来の検討では達成し得なかった優れた反射性、及び表面形状を有するフィルムあるいは反射部材をコーティングなど製膜工程以外の別工程なく安価に提供することを課題とする。
 本発明は、上記課題を解決するために、次のような構成をとる。
(1)ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%を含み、ポリエステル(a)とポリエステル(b)のTgの差が50℃以下であり、かつ、実質的に無機及び有機粒子を含まない層(A)と、
ポリエステル(c)と、該ポリエステル(c)に非相溶な成分(d)を少なくとも1種含む層(B)を有し、
 層(A)が少なくとも一方の表面となる構成であり、この表面の中心線平均粗さ(Ra)が300nm以上、及び十点平均粗さ(Rz)が3000nm以上である2軸延伸ポリエステルフィルム。
(2)前記ポリエステル(a)がポリエチレンテレフタレートである(1)記載のポリエステルフィルム。
(3)前記ポリエステル(b)が、ジオール成分として、環状骨格を有するジオールを用いてなる(1)または(2)に記載のポリエステルフィルム。
(4)前記ポリエステル(b)が、ジオール成分として、2,2,4,4-テトラメチル-1,3-シクロブタンジオールを用いている(1)~(3)のいずれかに記載のポリエステルフィルム。
(5)前記層(A)が、ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%からなる2軸延伸ポリエステルフィルム。
(6) (1)~(5)のいずれかに記載の2軸延伸ポリエステルフィルムを用いた液晶ディスプレイ用反射板。
 本発明によれば、高い反射性と優れた表面形状を兼ね備えたポリエステルフィルムを提供することができ、特にこのポリエステルフィルムを面光源内の反射板やリフレクターとして用いた時、液晶画面を明るく照らし、液晶画像をより鮮明かつ見やすくすることができ、さらに、サイドライト型光源を使用したバックライトで問題となる、導光板との密着や削れを抑制することができる。
 以下、本発明を詳細に説明する。
[ポリエステルフィルムの構成]
 本発明のポリエステルフィルムは、層(A)と層(B)を有してなるフィルムである。本発明において、製膜の容易さと効果を考慮すると2層以上の構成が必要であり、3層構成が好ましい。本発明では、層(A)が少なくとも一方の表面となる構成である必要がある。特に層(A)にて層(B)を保護する形態、すなわち、層(A)/層(B)/層(A)の3層構成が好ましい。また、さらに多層となる場合、芯層部が層(B)であり、片側または両側の表層部が層(A)であることが好ましい。また、本発明のポリエステルフィルムは、層(A)と層(B)とからなることが好ましい。
 本発明のポリエステルフィルムの層(A)の厚みは2~20μmであることが好ましい。層(A)の厚みが2μm未満であると、ポリエステル(a)とポリエステル(b)とを後述の範囲内に配合しても、中心線平均粗さ(Ra)が300nm以上、及び十点平均粗さ(Rz)が3000nm以上である表面形状となりにくい上、非相溶な成分(d)を核とした気泡を多数含有する層(B)の影響により著しく破れやすく、安定製膜できないことがあるため好ましくない。層(A)の厚みが20μmを超えると、当該ポリエステルフィルムを反射板として用いた場合に、光が層(B)まで届きにくくなり、非相溶な成分(d)を核とした気泡とポリエステルとの界面で反射する成分が減少して反射率や輝度などの光学特性が低下することがあるため好ましくない。
 [層(A)]
 本発明のポリエステルフィルムにおいて、層(A)にはポリエステル(a)、及びポリエステル(b)が含まれていることが必要である。本発明においては、層(A)は、ポリエステル(a)およびポリエステル(b)からなることがより好ましい。ポリエステル(a)とポリエステル(b)とを後述の範囲内に配合することにより、中心線平均粗さ(Ra)が300nm以上、及び十点平均粗さ(Rz)が3000nm以上である表面形状を得ることができる。
 本発明のポリエステルフィルムにおいて、ポリエステル(a)のガラス転移温度(Tg)が50℃以上、80℃未満であり、ポリエステル(b)のTgが100℃以上120℃以下であることが必要である。このようにTgの差が20℃以上のポリエステルを溶融混練して押出し、2軸延伸することにより、延伸されやすい部分とされにくい部分が生じる。これにより、連続かつ微小な延伸ムラが生じ、その結果、フィルムの表面に凹凸形状が形成される。表面にこのよう凹凸形状が形成されたポリエステルフィルムを、面光源内の反射板やリフレクターとして用いた場合、特にサイドライト型光源を使用したタイプにおいて、導光板との密着を防止できる。
 層(A)を構成するポリエステル(a)のTgが80℃以上であると、ポリエステルフィルム全体としてのTgが上がってしまうため、通常の延伸条件では延伸できない。ポリエステル(b)のTgが100℃未満であると、延伸されやすい部分とされにくい部分とに分かれ難くなり、望む表面凹凸が形成されない。ポリエステル(b)のTgが120℃以上であると、ポリエステル(a)とのTg差が大きすぎるため延伸ムラが大きくなり裂けてしまうため製膜できない。同様に、ポリエステル(a)とポリエステル(b)のTgの差が50℃を超えても製膜できない。したがって、本発明においては、ポリエステル(a)とポリエステル(b)のTgの差が50℃以下であることが必要である。
 本発明のポリエステルフィルムにおいて、層(A)表面の中心線平均粗さ(Ra)は300nm以上であることが必要である。好ましくは、400nm以上である。上限は800nm未満であることが好ましく、さらに好ましくは750nm未満である。
 また、層(A)表面の十点平均粗さ(Rz)は3000nm以上であることが必要である。好ましくは、4000nm以上である。上限は8000nm未満であることが好ましい。RaおよびRzの数値はフィルム表面の凹凸に関連がある。フィルム表面に凹凸を設けることにより、フィルム表面での光の反射のうち、正反射成分が減少し、フィルムの光沢度を低くすることができ、照明光源からの光をムラなく均一に液晶セルへ反射し、かつ、導光板と密着が起こりにくいフィルムとなる。Raが上記範囲となっても、Rzが3000nm未満となると、フィルム表面の光沢度が高くなり、液晶ディスプレイバックライトに組み込んだ際に輝度ムラを引き起こしやすい。Rzが上記範囲となっても、Raが300nm未満となると、フィルム表面の突起部分以外が平滑になり高光沢化してしまい、さらには導光板と密着しやすくなり、輝度ムラが生じてしまう。Ra値及びRz値の両者が上記の範囲内となることで、フィルムが低光沢になり、バックライト筐体への組込み等の後工程での取り扱い性も良くなり、さらに導光板との相性もよくなる。つまり、輝度ムラを大幅に抑制することができる。なお、Raが800nm以上となる表面や、Rzが8000nm以上となる表面を得ようとすると、製膜性が悪化する場合がある。
 本発明のポリエステルフィルムは、層(A)に凹凸形状を有している。該凹凸形状は、最大高さが5~30μmであることが好ましく、さらに好ましくは5~20μm、最も好ましくは5~15μmである。5μm未満の場合、エッジライト型バックライトでの輝度ムラが大きくなることがある。一方、30μmよりも大きい場合、層(B)にある気泡が潰れて、反射性能が落ち、輝度が低下することがある。
 凸部の最大高さの測定方法は、下記の通りである。(i)白色反射フィルムを5cm角にカットしてサンプルを得る。(ii)キーエンス社製レーザー顕微鏡VK-9700を用いて、対物レンズの倍率を20倍に設定してサンプルの観察を行い、高さが1μm以上で検出される部分を凸部とし、測定対象とする。(iii)サンプルの凸部側表面の任意の範囲(2cm×2cm)において、付属の解析ソフトのプロファイル機能から高さを算出して、その中から最大値を選ぶ。(iv)無作為に採取した5サンプルについて上記測定を実施し、その数平均を「凸部の最大高さ」とする。
 また、層(A)には実質的に無機及び有機粒子を含まないことが必要である。ここで、実質的に含まないとは、無機粒子や有機粒子の意図的添加が無いことを意味する。より具体的には、層(A)を、ミクロトームを用いて厚み方向に切断し、得られた断面に対し、透過型電子顕微鏡(HU-12型、日立製作所製)を用い、当該断面を観察する。観察倍率は250倍、観察範囲(観察する層(A)の断面の範囲)は1000[(μm)]とする。当該観察範囲において、観察範囲(1000[(μm)])に対する、無機粒子および有機粒子の面積の割合が0.3%以下である場合、層(A)は実質的に無機粒子及び有機粒子を実質的に含まないと判断する。観察範囲(1000[(μm)])に対する、無機粒子および有機粒子の面積の割合は0.1%以下であることが好ましく、より好ましくは0.05%以下であり、最も好ましくは無機粒子及び有機粒子が全く観察されないことである。
層(A)に無機及び有機粒子が含まれている場合、上述した方法でフィルム表面に凹凸を設けようとしても、裂けてしまうため製膜できないことがある。また、製膜できたとしても、凹部にこれらの粒子が入り込んでしまい、Ra及びRzの値がそれぞれ300nm未満、3000nm未満となってしまう。
 [ポリエステル(a)及びポリエステル(b)]
 層(A)を構成するポリエステル(a)及びポリエステル(b)は、1)ジカルボン酸成分もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称することがある。)とジオール成分の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体骨格と水酸基を有する化合物の重縮合、および1)と2)の組み合わせにより得ることができる。
 ポリエステル(a)を構成するジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸などのジカルボン酸などが挙げられるが、これらに限定されず、例えば多官能酸である、トリメリット酸、ピロメリット酸等も好適に用いることができる。また、これらは単独で用いても、必要に応じて、複数種類用いてもよい。
 また、かかるポリエステル樹脂を構成するジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、等の脂肪族ジオール類、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノールなどの芳香族ジオール類等のジオールなどが代表例としてあげられるがこれらに限定されない。また、これらは単独で用いても、必要に応じて複数種類用いてもよい。
 ポリエステル(a)は、上述の化合物を適宜組み合わせて重縮合させることで得ることができる。
 ポリエステル(a)は、結晶性でも非結晶性でも良いが、非結晶性ポリエステルを少なくとも1種含む方が、後述する表面形状形成のために好ましい。ここでいう非結晶性とは、結晶融解熱が1cal/g未満である樹脂を指す。
 ポリエステル(a)に好適に用いられるポリエステルとしては、ポリエチレンテレフタレート(以下、PETと略すことがある。)、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどが挙げられる。
 ポリエステル(a)として、上述の樹脂を用いることにより、無着色性を維持しつつ、フィルムとしたときに高い機械強度を付与することができる。より好ましくは、安価でかつ耐水性、耐久性、耐薬品性が優れるという点で、PETが好ましい。
 ポリエステル(b)を構成するジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸などのジカルボン酸などが挙げられるが、これらに限定されず、例えば多官能酸である、トリメリット酸、ピロメリット酸等も好適に用いることができる。また、これらは単独で用いても、必要に応じて、複数種類用いてもよい。
 また、かかるポリエステル樹脂を構成するジオール成分としては、直鎖脂肪族ジオールや、剛直な骨格を有するジオール、すなわち環式脂肪族ジオール(環状骨格を有するジオール)が挙げられる。
 直鎖脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオールなどが挙げられる。
 環式脂肪族ジオール(環状骨格を有するジオール)としては、シクロブタンジオール、シクロペンタンジオール、シクロへキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロプロパンジメタノール、シクロブタンジメタノール、シクロペンタンジメタノール、シクロへキサンジメタノール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、イソソルビド、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサンなどが挙げられる。
 本発明では、これらのジオールをジオール成分として少なくとも1種有するポリエステルが用いられることが好ましい。また、ポリエステル(b)は上記から選ばれた2つ以上の異なるジオール成分を有することが好ましく、3成分以上有することが特に好ましいが、5成分以上になると共重合比率の調整が困難になるため好ましくないことがある。
 また、本発明では、ポリエステル(b)が、ジオール成分として、上記の環状骨格を有するジオールを少なくとも1成分以上用いてなることが好ましい。かかる環状骨格を有するジオール成分を用いることによって、ポリエステル(b)のTgを高めることができる。特に本発明においては、ポリエステル(b)は、ジオール成分として、2,2,4,4-テトラメチル-1,3-シクロブタンジオールを用いてなることが好ましい。
 ポリエステル(b)として、上述した2つ以上の異なるジオール成分の一例を示すと、エチレングリコールと1,4-シクロヘキサンジメタノールを有することが好ましい。さらに、好ましくは、エチレングリコールと1,4-シクロヘキサンジメタノールを有し、さらに、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、イソソルビド、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、および5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサンからなる群より選ばれる1つのジオール成分を有する計3成分であることである。中でも、エチレングリコールと1,4-シクロヘキサンジメタノールと2,2,4,4-テトラメチル-1,3-シクロブタンジオールを有することが特に好ましい。
 ポリエステル(b)のジオール成分として、エチレングリコールと1,4-シクロヘキサンジメタノールと2,2,4,4-テトラメチル-1,3-シクロブタンジオールを用いる場合、それぞれの比率は、ジオール成分の総モル%を100モル%としたとき、エチレングリコールが0~15モル%、1,4-シクロヘキサンジメタノールが60~75モル%、2,2,4,4-テトラメチル-1,3-シクロブタンジオールが25~40モル%であることが好ましい。
 ポリエステル(b)として、上述の樹脂を用いることにより、無着色性を維持しつつ、フィルムとしたときに高い機械強度を付与することができる上、層(A)として後述するような表面形状を形成することができる。
 ポリエステル(a)、ポリエステル(b)のTgは、上記のジカルボン酸成分及びジオール成分の組み合わせ及びそれらの共重合比率にて適宜調整できる。ポリエステル(a)としては、ジカルボン酸成分としてテレフタル酸、ジオール成分としてエチレングリコールを用いたPETや、ジカルボン酸成分としてテレフタル酸及びイソフタル酸を併用したポリエステル(以下、PETIと略すことがある。)が挙げられる。また、ポリエステル(b)はジカルボン酸成分としてテレフタル酸、ジオール成分として1,4-シクロヘキサンジメタノール及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールを併用したポリエステル(例えば、“TRITAN”(Eastman Chemical Company社製))などが挙げられる。
 ポリエステル(a)、ポリエステル(b)は、それぞれ2種類以上の組み合わせでもよく、特にポリエステル(a)としては、PETとPETIの組み合わせが特に好ましい。
 本発明においては、層(A)は、ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%を含むことが必要である。また、本発明においては、前記層(A)が、ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%からなることが好ましい。
 本発明のポリエステルフィルムにおいて、ポリエステル(a)の含有量は、層(A)に対して10~90質量%であることが必要である。より好ましくは20~80質量、最も好ましくは30~70質量%である。ポリエステル(a)の含有量が10重量%に満たないと、Tgが高いポリエステル(b)の含有量が多すぎるため通常の延伸条件では延伸できないことがある。また、90重量%を超えると、後述するような表面形状が得られない。
 本発明のポリエステルフィルムにおいて、ポリエステル(b)の含有量は、層(A)に対して10~90質量%が必要である。より好ましくは20~80質量、最も好ましくは30~70質量%である。ポリエステル(b)の含有量が10重量%に満たないと、後述するような表面形状が得られない。また、90重量%を超えると、Tgが高いポリエステル(b)の含有量が多すぎるため通常の延伸条件では延伸できず、製膜破れが多発することがある。
 [層(B)]
 本発明のポリエステルフィルムの層(B)は、ポリエステル(c)と、該ポリエステル(c)に非相溶な成分(d)を少なくとも1種含む層である。ポリエステル(c)と、非相溶な成分(d)を用いることにより、後述するような方法により容易に非相溶な成分(d)を核とした気泡を含有させることが可能となり、軽量かつ、高い反射特性を有するポリエステルフィルムを製造することが可能となる。したがって、本発明のポリエステルフィルムの層(B)は、ポリエステル(c)、ポリエステル(c)と非相溶な成分(d)、および気泡を含有することが、輝度や反射率などの光学特性の点で好ましい。
 本発明のポリエステルフィルムは、上述の構成からなり、反射光の光拡散性を制御したり、高い機械的強度をフィルムに付与したり、製膜性を付与したり、帯電防止性を付与したり、耐光性を付与したり、その他付随する機能を有する層が積層されてもよい。多層構成にすることにより、多様な特性をコントロールできる。
 [ポリエステル(c)]
 ポリエステル(c)は、1)ジカルボン酸成分もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称することがある。)とジオール成分の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体骨格と水酸基を有する化合物の重縮合、および1)と2)の組み合わせにより得ることができる。
 本発明のポリエステルフィルムにおいて、ポリエステル(c)として1種以上のポリエステル樹脂を用いることができるが、後述するポリエステル(c1)とポリエステル(c2)を含むことが好ましい。ポリエステル(c1)とポリエステル(c2)を用いることにより、高い光学特性を有する白色ポリエステルフィルムを安定に得ることができる。
 ポリエステル(c1)は、1)ジカルボン酸成分もしくはそのエステル形成性誘導体(以下、「ジカルボン酸成分」と総称することがある。)とジオール成分の重縮合、2)一分子内にカルボン酸もしくはカルボン酸誘導体骨格と水酸基を有する化合物の重縮合、および1)と2)の組み合わせにより得ることができる。
 1)において、かかるポリエステル樹脂を構成するジカルボン酸成分としては、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等芳香族ジカルボン酸などのジカルボン酸、もしくはそのエステル誘導体などが代表例として挙げられるが、これらに限定されず、例えば多官能酸である、トリメリット酸、ピロメリット酸およびそのエステル誘導体等も好適に用いることができる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、上述のジカルボン酸成分のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたジカルボキシ化合物も好ましく用いられる。
 また、1)においてかかるポリエステル樹脂を構成するジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等のジオールなどが代表例としてあげられるがこれらに限定されない。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
 また、2)において、一分子内にカルボン酸もしくはカルボン酸誘導体骨格と水酸基を有する化合物の例としては、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたジカルボキシ化合物等が挙げられる。
 ポリエステル(c1)は、上述の化合物を適宜組み合わせて重縮合させることで得ることができる。ポリエステル(c1)に好適に用いられるポリエステルとしては、ポリエチレンテレフタレート(以下、PETと略すことがある。)、ポリエチレン-2,6-ナフタレンジカルボキシレート(以下、PENと略すことがある。)、ポリプロピレンテレフタレート(以下、PPTと略すことがある。)、ポリブチレンテレフタレート(以下、PBTと略すことがある。)などが挙げられる。
 ポリエステル(c1)は、層(A)のポリエステル(a)と同じポリエステルを用いることもできる。
 本発明に用いられるポリエステル(c1)として、上述の樹脂を用いることにより、無着色性を維持しつつ、フィルムとしたときに高い機械強度を付与することができる。より好ましくは、安価でかつ耐水性、耐久性、耐薬品性が優れるという点で、PETが好ましい。また、このポリエステルの中には、公知の各種添加剤、例えば、酸化防止剤、帯電防止剤などが添加されていても良い。
 ここで、本発明のポリエステルフィルムにおいて、該ポリエステル(c)がポリエステル(c2)を有し、該ポリエステル樹脂成分(c2)が炭素数4以上8以下の脂環式ジオール成分を含有することが好ましい。ここで、本発明における炭素数4以上8以下の脂環式とは、シクロアルカン(cycloalkane)のことであり、一般式 C2n(ただし4≦n≦8)であらわされる環式脂肪族炭化水素の総称である。
 炭素数4以上8以下の脂環式ジオールとは、炭素数4以上8以下の環式脂肪族炭化水素部分とジオール部分の両方の構造をあわせもつ物質をさす。すなわち、炭素数4以上8以下の脂環式ジオールの具体例としては、シクロブタンジオール、シクロペンタンジオール、シクロへキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロプロパンジメタノール、シクロブタンジメタノール、シクロペンタンジメタノール、シクロへキサンジメタノール、シクロヘプタンジメタノール、シクロオクタンジメタノールなどがあげられる。
 炭素数4以上8以下の環式脂肪族炭化水素部分に結合するジオール成分は、環式脂肪族炭化水素部分のいずれの炭素原子と結合してもかまわないが、例えば環式脂肪族炭化水素部分がシクロヘキサンの場合、1,4位にジオール成分が結合していることが好ましい。
 上記の炭素数4以上8以下の脂環式ジオールのうち、モノマー価格と、ポリエステル樹脂(特にPET)との混合が容易であるという点から、1,4-シクロヘキサンジメタノール(CHDM)が特に好適に使用される。
 なお、本発明におけるジオール成分とは、ジオールとして存在している成分に限定されず、ポリエステルの構成成分、例えば共重合体として含有、またはこれら樹脂の混合物として含有する場合も含まれる。
 本発明のポリエステルフィルムにおいて、ポリエステル(c2)の含有量は、層(B)に対して1.2~36質量%が好ましい。より好ましくは1.9~30質量%、更に好ましくは2.4~26質量、最も好ましくは3.3~20質量%である。ポリエステル(c2)の含有量が1.2質量%に満たないと、非相溶な成分(d)の微分散効果が低下し、反射性能が低下するため好ましくない。また36質量%を超えると、ポリエステルフィルムの耐熱性が低下し、高温下に曝されたときに寸法変化が大きくなることがあるため好ましくない。本発明の白色ポリエステルフィルムにおいて、ポリエステル(c2)の含有量を1.2~36質量%とすることで、製膜安定性、反射性及び寸法安定性を兼ね備えたポリエステルフィルムとすることができる。
 [非相溶な成分(d)]
 本発明のポリエステルフィルムは、層(B)内部に気泡を有することが白色性、反射特性のために必要であるが、層(B)を構成するポリエステル(c)と非相溶な成分(d)を含有させ2軸延伸することによって、非相溶な成分(d)の周りに気泡を形成させることができる。このようにして形成された気泡が光散乱作用を発揮し、ポリエステルフィルム全体に気泡を多数存在せしめることによって、ポリエステルフィルムは白色化され、高反射率を得ることが可能となる。
 本発明において、非相溶な成分(d)は、有機物でも無機物でもよく、結晶性、非晶性、どちらも好ましく用いられる。有機物の具体例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、シクロペンタジエンなどのような直鎖状、分鎖状あるいは環状のポリオレフィンが挙げられる。このポリオレフィンは単独重合体であっても共重合体であってもよく、さらには2種以上を併用してもよい。これらの中でも、透明性に優れ、かつ耐熱性に優れるという点で、結晶性ポリオレフィンとしては、ポリプロピレンやポリメチルペンテンなどが、非晶性ポリオレフィンとしては、シクロオレフィン共重合体などが好ましく用いられる。
 無機物の具体例としては、炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化アンチモン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、硫酸バリウム、硫酸カルシウム、酸化アルミニウム、酸化ケイ素(シリカ)等も用いることができる。これらの中で、長時間の製膜安定性、反射特性向上の観点から、炭酸カルシウム、酸化チタン、硫酸バリウム、シリカが好ましい。これらは、単独でも2種以上を併用してもよい。また、多孔質や中空多孔質等の形態であってもよく、本発明の効果を阻害しない範囲内において、ポリエステルに対する分散性を向上させるために、表面処理が施されていてもよい。
 また、本発明のポリエステルフィルムにおいて、非相溶な成分(d)として非晶性ポリオレフィンを用いる場合、シクロオレフィン共重合体を特に好ましく用いることができる。シクロオレフィン共重合体とは、シクロアルケン、ビシクロアルケン、トリシクロアルケン、テトラシクロアルケン及びペンタシクロアルケンからなる群から選ばれた少なくとも1種のシクロオレフィンと、エチレン、プロピレン等の直鎖オレフィンからなる共重合体である。ここでいう非晶性樹脂とは、結晶融解熱が1cal/g未満である樹脂を指す。
 シクロオレフィン共重合体における環状オレフィンの代表例としては、ビシクロ〔2,2,1〕ヘプト-2-エン、6-メチルビシクロ〔2,2,1〕ヘプト-2-エン、5,6-ジメチルビシクロ〔2,2,1〕ヘプト-2-エン、1-メチルビシクロ〔2,2,1〕ヘプト-2-エン、6-エチルビシクロ〔2,2,1〕ヘプト-2-エン、6-n-ブチルビシクロ〔2,2,1〕ヘプト-2-エン、6-i-ブチルビシクロ〔2,2,1〕ヘプト-2-エン、7-メチルビシクロ〔2,2,1〕ヘプト-2-エン等がある。
 また、シクロオレフィン共重合体における直鎖オレフィンの代表例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等がある。
 本発明において、非相溶な成分(d)は、そのガラス転移温度Tgが170℃以上であることが好ましい。さらに好ましくは180℃以上である。170℃以上とすることで、混練時においてポリエステル(c)中により微細に分散し、延伸工程において気泡を形成し、熱処理工程における気泡の消失をより抑制することができるためである。上限は250℃が好ましい。250℃を越えると、製膜時の押出温度が高くなり加工性に劣ることがある。また、非相溶な成分(d)のガラス転移温度Tgが170℃に満たないと、寸法安定性を付与するためにフィルムの熱処理を実施した時に、非相溶な成分(d)が変形し、それを核として形成された気泡が減少・または消失して、反射特性が低下する場合がある。また、反射特性を維持しようとして、熱処理温度を低温化すると、その場合にフィルムの寸法安定性が低下する場合がある。
 また、非相溶な成分(d)として、環状オレフィン共重合体樹脂を用いる場合、直鎖オレフィン成分は、反応性の観点からエチレン成分が好ましい。
 さらに、環状オレフィン成分も、ビシクロ〔2,2,1〕ヘプト-2-エン(ノルボルネン)やその誘導体が生産性・透明性・高Tg化の点から好ましい。
 また、非相溶な成分(d)として、環状オレフィン共重合体樹脂を用いる場合、これを均一分散させるには、分散剤を添加することが有効である。分散剤としては例えば、ポリエステルに対しては、ポリエチレングリコール、メトキシポリエチレングリコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、エチレンオキシド/プロピレンオキシド共重合体、さらにはドデシルベンゼンスルホン酸ナトリウム、アルキルスルホネートナトリウム塩、グリセリンモノステアレート、テトラブチルホスホニウムパラアミノベンゼンスルホネートなどで代表されるものである。本発明の場合、特にポリアルキレングリコール、中でもポリエチレングリコールが好ましい。また、ポリブチレンテレフタレートとポリテトラメチレングリコールの共重合体なども、非相溶な成分(d)の分散性を向上させるために好ましく用いられる。添加量としては、層(B)の総質量に対して3質量%以上20質量%以下が好ましく、特に好ましくは5質量%以上15質量%以下である。分散剤の添加量が少なすぎると、添加の効果が薄れ、多すぎると、フィルム母材本来の特性を損なう恐れがある。このような分散剤は、予め層(B)を構成するポリマー中に添加してマスターポリマ(マスターチップ)として調整可能である。
 したがって、本発明では、ポリエステルフィルムの層(B)がポリエステル樹脂(c)及び非相溶な成分(d)を有しており、非相溶な成分(d)が有機物の場合、ガラス転移温度が170℃以上250℃以下であることが好ましい。さらに、非相溶な成分(d)は非晶性であることが好ましく、(非晶性の)シクロオレフィン共重合体であることがさらに好ましい。
 本発明において、非相溶な成分(d)の添加量は、層(B)の総質量を100質量%としたときに5~50質量%であることが好ましく、5~30質量%であることがより好ましい。非相溶な成分(d)の含有量が5質量%未満であると、フィルム内部に気泡が十分に生成されず、白色性や光反射特性に劣ることがある。一方、非相溶な成分(d)の含有量が50質量%を越えると、フィルムの強度が低下し、延伸時の破断が起こりやすくなる上、後加工の際に粉発生等の不都合を生じる場合がある。含有量をかかる範囲内にすることにより、十分な白色性・反射性・軽量性を発現せしめることができる。
 [相対反射率]
 本発明のポリエステルフィルムは相対反射率が102%以上であることが好ましい。より好ましくは102.5%以上、更に好ましくは103%以上である。相対反射率について特に上限はないが、反射率を上げるためには、気泡形成核剤となる非相溶な成分(d)の添加量を上げればよいが、製膜性が不安定になることがあるため、110%以下であることが好ましい。ここでいう相対反射率とは、内面が硫酸バリウム製の積分球、10°傾斜スペーサーを備えた分光光度計、標準白色板として酸化アルミニウムを用いて、入射角10°で光を入射させたときの反射率を波長560nmの範囲で測定し、標準白色板の反射率を100%としたときの相対反射率を、波長560nmで平均して得られる反射率のことである。本発明のポリエステルフィルムにおいて、相対反射率を100%以上とすることによって、白色性、反射特性に優れた2軸延伸フィルムとすることができ、特に液晶表示装置用として用いた場合に高い輝度向上効果を得ることができる。
 [気泡の形成]
 ここで、本発明のポリエステルフィルムの相対反射率を上述の範囲に調整するためには、フィルム内部に気泡を含有させ白色化されていることが好ましい。これにより光の散乱作用を発揮するため、反射率を向上させることができる。
 気泡の形成は、層(B)に、非相溶な成分(d)を細かく分散させ、それを2軸延伸することにより達成される。延伸に際して、この非相溶な成分(d)の周りに気泡が形成され、フィルム厚み方向における該気泡と基材との界面数が、フィルム厚み10μmあたり15以上であることが好ましく、より好ましくは20以上、さらに好ましくは25以上である。該界面数が15以上であると、これが光の反射及び散乱作用を発揮するため、白色化され、高反射率を得ることが可能となる。該界面数が15未満であると、光の反射及び散乱作用が不十分であるため、白色化及び高反射率化されにくく、好ましくない。
 [製膜方法]
 一例として、ポリエステル(a)の入手方法を説明するが、かかる例のみに限定されるものではない。ジカルボン酸成分としてテレフタル酸を、ジオール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を、得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行って、ポリエチレンテレフタレートペレット(ポリエステル(a))を得ることが出来る。ポリエステル(a)のTgは、上述したジカルボン酸成分及びジオール成分の組み合わせ及びそれらの共重合比率にて適宜調整できる。
 次に、一例として、ポリエステル(b)の入手方法を説明するが、かかる例のみに限定されるものではない。酸成分としてテレフタル酸ジメチルを、ジオール成分としてCHDM(シクロヘキサンジメタノール)及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールを、200ppmのブチルスズトリス(2-エチルヘキサノエート)の存在下で重縮合反応を行い、116℃のTgの共重合ポリエステルペレット(ポリエステル(b))を得ることが出来る。ポリエステル(b)のTgは、上述したジカルボン酸成分及びジオール成分の組み合わせ及びそれらの共重合比率にて適宜調整できる。具体的には、公知の方法(たとえば、特表2013-504650号公報、特開2012-219129号公報、特表2009-513801号公報を参照)により重合する、あるいは、上市されている商品(例えば、“ECOZEN”(SK chemicals社製)、“TRITAN”(Eastman Chemical Company社製)、“ALTESTER”(三菱ガス化学株式会社製))を購入することにより、望むTgを持つポリエステル(b)を得ることができる。
 次に、一例として、ポリエステル(c1)の入手方法を説明するが、かかる例のみに限定されるものではない。ジカルボン酸成分としてテレフタル酸を、ジオール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を、得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行って、ポリエチレンテレフタレートペレット(ポリエステル(c1))を得ることが出来る。
 次に、一例として、ポリエステル(c2)の入手方法を説明するが、かかる例のみに限定されるものではない。ジカルボン酸成分としてテレフタル酸を、ジオール成分として炭素数4以上8以下の脂環式ジオールを用い、触媒として酢酸マグネシウム、三酸化アンチモン、亜リン酸を用いてアンチモン原子換算で300ppmとなるように添加し重縮合反応を行って、炭素数4以上8以下の脂環式ジオールとテレフタル酸を共重合したポリエステル(c2)を得ることが出来る。
 次に、一例として、非相溶な成分(d)の入手方法を説明するが、かかる例のみに限定されるものではない。非相溶な成分(d)は、上述したシクロオレフィンとオレフィンを公知の方法(例えば、特開昭61-271308号公報、国際公開第2007/060723号を参照)により重合する、あるいは上市されている商品(例えば“TOPAS”(ポリプラスチックス(株)製))を購入することにより得ることができる。また、上述した無機物を含有するポリエステル(a)等のマスターペレットを使用することが出来る。
 次に、一例として、分散剤の入手方法を説明するが、かかる例のみに限定されるものではない。分散剤はPBT(ポリブチレンテレフタレート)とPAG(主としてポリテトラメチレングリコール)のブロック共重合体であり、メルトインデックス(MI)が14(2.160g、240℃)である。なお、共重合比率は、ブチレンテレフタレート:アルキレングリコール=70mol%:30molである(例えば“ハイトレル”(東レデュポン(株)製))。
 次に、本発明の2軸延伸フィルムの製造方法について、その一例を説明するが、本発明は、かかる例のみに限定されるものではない。
 層(A)については、ポリエステル(a)とポリエステル(b)、及び必要に応じて各種添加剤を含む混合物を、十分真空乾燥を行い、加熱された押出機に供給する。ポリエステル(b)の添加は、事前に均一に溶融混練して作製されたマスターチップを用いても、もしくは直接混練押出機に供給してもよい。
 層(B)については、ポリエステル(c)と非相溶な成分(d)、及び必要に応じて分散剤を含む混合物を、十分真空乾燥を行い、加熱された押出機に供給する。非相溶な成分(d)の添加は、事前に均一に溶融混練して作製されたマスターチップを用いても、もしくは直接混練押出機に供給してもよい。
 また、溶融押出に際してはメッシュ40μm以下のフィルターにて濾過した後に、Tダイ口金内に導入し押出成形により溶融シートを得ることが好ましい。
 この溶融シートを表面温度10~60℃に冷却されたドラム上で静電気により密着冷却固化し、未延伸A/B/A3層フィルムを作製する。該未延伸3層フィルムを70~120℃、好ましくは70~100℃に加熱されたロール群に導き、長手方向(すなわち、フィルムの進行方向。「縦方向」と称されることもある。)に2.5~4倍延伸し、20~50℃の温度のロール群で冷却する。
 続いて、フィルムの両端をクリップで把持しながらテンターに導き、90~150℃の温度に加熱された雰囲気中で、長手方向に直角な方向(「幅方向」や「横方向」と称されることもある。)に2.5~4倍に延伸する。
 延伸倍率は、長手方向と幅方向それぞれ2.5~4倍とするが、その面積倍率(長手方向の延伸倍率×幅方向の延伸倍率)は9~16倍であることが必要であり、10~12倍であることがより好ましい。面積倍率が9倍未満であると、得られるポリエステルフィルムの気泡や凹凸の形成、及びフィルム強度が不十分となり、面積倍率が16倍を超えると延伸時に破れを生じ易くなる。
 得られた2軸延伸フィルムの結晶配向を完了させて、寸法安定性を付与するために、引き続きテンター内にて150~240℃の温度で1~30秒間の熱処理を行い、均一に徐冷後、室温まで冷却し、その後必要に応じて、他素材との密着性をさらに高めるためにコロナ放電処理などを行い、巻き取ることにより、本発明のポリエステルフィルムを得ることができる。上記熱処理工程中に、幅方向あるいは長手方向に3~12%の弛緩処理を施すのが好ましい。
 尚、一般に熱処理温度が高いほど、高い熱寸法安定性も高くなるため、製膜工程において高温(190℃以上)で熱処理されることが好ましい。本発明のポリエステルフィルムは、液晶ディスプレイなどに搭載されている面光源(バックライト)の反射フィルムとして用いられることがあるため、一定の熱寸法安定性を有することが望まれるためである。バックライトによっては内部の雰囲気温度が100℃程度まで上昇することがある。
 また、2軸延伸の方法は逐次あるいは同時のいずれでもよい。また2軸延伸後に長手方向、幅方向いずれかの方向に再延伸してもよい。
 かくして得られた2軸延伸フィルムは、後述する方法により測定された熱収縮率が、80℃で30分処理する条件において0.5%以下であることが好ましい。熱収縮率が、80℃において0.5%を超えると、液晶ディスプレイ用反射板として使用された場合に、フィルムが大きく収縮し、筐体ディスプレイ全面を覆うことができなくなり、その結果、画面端部に暗部が生じることがあるため、好ましくないことがある。
 本発明のポリエステルフィルムは、比重が1.2未満であることが好ましい。比重が該範囲にあると、フィルム強度を保ったまま微細な気泡を多数存在させることが出来、高反射率を得ることが出来る。すなわち、液晶ディスプレイ反射板として使用した場合、画面の明るさにおいて、顕著に優れた性能を発揮する。また、0.3以上1.0未満であることが、機械的特性を保ちながら軽量化できるため、好ましい。
 本発明のポリエステルフィルムは、少なくとも片面の表層を形成する層(A)に無機物などの粒子を含有せしめたりせず、かつ、コーティングやエンボス加工など後工程も用いずに設けられた凹凸形状を有し、かつフィルム内部に気泡が形成され高反射率であり、軽量であり、液晶ディスプレイ用反射板、特にエッジライト型ディスプレイ用反射板として使用された場合に、他部材、特に導光板との相性が良く、かつ、高い輝度を得ることができる。特に層(A)の表面が導光板に対向するような態様で用いられることが好ましく、そのような態様で用いられた場合、輝度ムラを抑制しつつ、特に高い輝度を得ることができる。
 本発明のポリエステルフィルムの効果がより効果的に発現されるのは、エッジライト型バックライトにおける導光板の表面に高さ5μm以上の凹部もしくは凸部が設けられている場合である。更に10μm以上の凹部もしくは凸部が設けられている場合には効果がより顕著に発現される。導光板表面の凹部、凸部の高さの上限は特に限定されないが、100μm以下である場合に効果が顕著に発現されるので好ましい。より好ましくは60μm以下である。
[物性の測定ならびに効果の評価方法]
 測定方法
 本発明の物性値の評価方法ならびに効果の評価方法は次の通りである。
 A.表面粗さ
層(A)の表面を、JIS B0601(2001)に基づき、中心線平均粗さ(Ra)および十点平均粗さ(Rz)を小坂研究所製、触針式表面粗さ計(型番:SE-3FA)を用いて測定した。条件は下記の通りであり、5回の測定の平均値をもって値とした。
・触針先端半径:0.5μm
・触針荷重 :5mg
・測定長 :0.8mm
・カットオフ値:0.08mm。
 B.反射率
 日立ハイテクノロジーズ製分光光度計(U―3310)に積分球を取り付け、標準白色板(酸化アルミニウム)を100%とした時のポリエステルフィルムの層(A)表面における分光反射率を400~700nmにわたって測定する。得られたチャートより5nm間隔で反射率を読み取り、平均値を計算し、平均反射率とする。
 C.フィルムの比重
 ポリエステルフィルムを5cm×5cmの大きさに切りだし、JIS K7112(1980)に基づいて電子比重計SD-120L(ミラージュ貿易(株)製)を用いて測定した。なお、各ポリエステルフィルムについて5枚用意し、それぞれを測定し、その平均値でもって該ポリエステルフィルムの比重とした。
 D.熱収縮率
 ポリエステルフィルムを、測定したい方向を長さ(長辺)方向として、長さ(長辺)300mm×幅(短辺)20mmに切断して試験片とし、室温で試験片の中央部に200mm(=L0)の距離をおいて標点を付ける。ここで、2つの標点を結ぶ直線は長辺に平行となるようにする。次に80℃に保持した恒温槽中に、一方の短辺をクリップで挟んで試験片を垂直につるし30分間放置する。その後、同じ室温まで除冷した後に、試験片の標点間の距離(=L)を測定する。LとL0より熱収縮率を次式にて算出した。
熱収縮率(%)={(L0-L)/L0}×100。
 E.製膜性
 実施例・比較例において製膜した際に、フィルム破れが1回/日以下しか生じず、かつ粒子脱落などによる工程汚染ないものを“AA”、フィルム破れは1回/日以下しか生じないが、ロール表面への汚れの蓄積が肉眼で確認できるものを“A”、フィルム破れが2回/日以上3回/日以下発生するものを“B”、フィルム破れが4回/日以上発生するものを“C”とした。大量生産には“B”以上の製膜性が必要であり、“A”以上であるとさらにコスト低減効果がある。
 F.ポリエステルのガラス転移温度(Tg)
 ポリエステルフィルムサンプルを、JIS K7122(1987)に準じて、セイコー電子工業(株)製示差走査熱量測定装置“ロボットDSC-RDC220”を使用して、データ解析にはディスクセッション“SSC/5200”を用いて、下記の要領にて、測定を実施した。
 粘着テープ等を用いてポリエステルフィルムを各層に剥離した後、層(A)をサンプルパンに5mgずつ秤量し、25℃から300℃まで20℃/分の昇温速度で加熱し、その状態で5分間保持し、次いで25℃以下となるよう急冷した。直ちに引き続いて、再度室温から20℃/分の昇温速度で300℃まで昇温を行って測定を行い、示差走査熱量測定チャートを得た。
JIS K7121(1987)に基づき、JIS K7121(1987)の9.3の(1)に記載の中間点ガラス転移温度の求め方に準じて、ポリエステル(b)のガラス転移温度を求めた。すなわち、ガラス転移温度は、得られた示差走査熱量測定チャートにおいて、ガラス転移の階段状の変化部分において、各ベースラインの延長した直線から縦軸方向に等距離にある直線とガラス転移の階段状の変化部分の曲線とが交わる点から求めた。この点が2点以上観測された場合、50℃以上80℃未満に観測された点をポリエステル(a)のガラス転移温度、100℃以上120℃以下に観測された点をポリエステル(b)のガラス転移温度とした。
 G.導光板との相性
 (i)削れ
 40インチ液晶テレビ(ソニー社製、KDL-40EX700)を分解し、LEDを光源とするエッジライト型のバックライトを取り出した。発光面の大きさは、89cm×50cmであり、対角の長さは102.2cmであった。このバックライトから導光板を取り出し、該導光板を5cm角に切り出した。導光板の上にポリエステルフィルムを、ポリエステルフィルムの層(A)の表面が導光板と接するように(対向するように)重ねた。さらにその上に500gの分銅を載せ、本発明のポリエステルフィルム表面を擦るように3cm×5往復させる。その後、5cm角の導光板の、本発明のポリエステルフィルム表面に接触していた面を顕微鏡にて観察し、下記の通りの評価結果とした。
“AA”:優良 (傷が見えない)
“A”:良好 (よく観察すると傷が見える)
“B”:劣る (傷が見える)
“C”:非常に劣る (強い傷が見える)
上記の“AA”および“A”を合格とした。
 (ii)輝度ムラ
 新品のハイセンスジャパン株式会社製32型液晶TV LHD32K15JPバックライト内に張り合わせてある反射フィルムを取り外し、ポリエステルフィルムに変更し、点灯させた(ここで、ポリエステルフィルム層(A)の表面が導光板に対向するように組み込んだ)。
その状態で1時間待機して光源を安定化させた後、500lxの照明環境下または暗所環境下において目視で輝度ムラとして認識できるものを観察し、下記の通りの評価結果とした。なお、ここでいう輝度ムラとは、反射フィルムと導光板が接触することによる輝点によるものである。
“AA”:優良 (500lxの照明環境下、暗所環境下ともに、輝度ムラが見えない。)
“A”:良好 (500lxの暗所環境下においては、輝度ムラが見えるが、照明環境下においては、輝度ムラが見えない。)
“B”:劣る (500lxの照明環境下、暗所環境下ともに、輝度ムラが見える。)
“C”:非常に劣る (500lxの照明環境下、暗所環境下ともに、非常に強い輝度ムラが見える。)
上記の”AA”および”A”を合格とした。
 以下実施例等によって本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
 (原料)
 ・ポリエステル(a)
 酸成分としてテレフタル酸を、ジオール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行い、極限粘度0.63dl/g、カルボキシル末端基量40当量/トンのポリエチレンテレフタレートペレット(PET)を得た。
 同様の方法でイソフタル酸を添加することでポリエチレンテレフタレート/イソフタレート共重合物(PETI)を得た。
 同様の方法でブタンジオールを添加することでポリブチレンテレフタレート(PBT)を得た。
 また、上市されている商品(例えば、“VYLON”(東洋紡株式会社))を用いた。
 これらのTgはそれぞれ、PETが78℃、PETIが75℃、PBTが60℃、VYLONが47℃であった。
 ・ポリエステル(b)
 酸成分としてテレフタル酸ジメチルを、ジオール成分としてCHDM(シクロヘキサンジメタノール)及び2,2,4,4-テトラメチル-1,3-シクロブタンジオールを、200ppmのブチルスズトリス(2-エチルヘキサノエート)の存在下で重縮合反応を行い、116℃のTgの共重合ポリエステルを得た。
 また、上市されている商品(例えば、“ECOZEN”(SK chemicals社製)、“TRITAN” (Eastman Chemical Company社製)、“ALTESTER”(三菱ガス化学株式会社製))を用いた。これらは、ジオール成分を構成する共重合成分が特徴的であり、例えば、ECOZENはイソソルビド成分、TRITANは2,2,4,4-テトラメチル-1,3-シクロブタンジオール成分、ALTESTERは3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン成分をそれぞれ有し、これらの成分は環状骨格を有するジオール成分であり、嵩高いため、ポリエステルとしては高いTgを有していると考えられる。(表にはECOZENを「ECZ」、TRITANを「TRT」、ALTESTERを「AST」とそれぞれ略記した)
 なお、以下の実施例や比較例においては、「TRITAN」として、「Tgが108℃のTRITANを」および「Tgが116℃のTRITANを」の何れかを用いた。また、「ECOZEN」として、「Tgが100℃のECOZEN」、「Tgが120℃のECOZEN」および「Tgが95℃のECOZEN」の何れかを用いた。また、「ALTESTER」として、「Tgが100℃のALTESTER」、「Tgが110℃のALTESTER」および「Tgが95℃のALTESTER」の何れかを用いた。
 ・ポリエステル(c)
 酸成分としてテレフタル酸を、グリコール成分としてエチレングリコールを用い、三酸化アンチモン(重合触媒)を得られるポリエステルペレットに対してアンチモン原子換算で300ppmとなるように添加し、重縮合反応を行い、極限粘度0.63dl/g、カルボキシル末端基量40当量/トンのポリエチレンテレフタレートペレット(PET)を得た。
 また、PETと併せてCHDM(シクロヘキサンジメタノール)共重合PETを用いた。これはグリコール成分に対し、シクロヘキサンジメタノール60mol%を前述の方法で共重合したPETである(表にはTPA/EG/CHDMと記載した)。
 なお、いくつかの比較例においては、当該共重合PET(TPA/EG/CHDM)をポリエステル(a)またはポリエステル(b)としても用いた。
 ・非相溶な成分(d)
 ガラス転移温度が180℃であるシクロオレフィン系コポリマー“TOPAS”(ポリプラスチックス(株)製)を用いた(表にはCOCと記載した)。
 酸化チタン及び硫酸バリウムはDIC(株)等が販売している、酸化チタンマスターペレットを使用した(基材樹脂はポリエステル(c)のPETである)。
 ・分散剤
 PBT-PAG(ポリブチレンテレフタレート-ポリアルキレングリコール)共重合体を用いた(東レデュポン(株)製、商品名:ハイトレル)。該樹脂はPBT(ポリブチレンテレフタレート)とPTMG(主としてポリテトラメチレングリコール)のブロック共重合体であり、メルトインデックス(MI)が14(2.160g、240℃)である。なお、共重合比率は、ブチレンテレフタレート:アルキレングリコール=70mol%:30mol%である(表にはPBT/PTMGと記載した)。
 (実施例1~19、21、23~26)
主押出機と副押出機を有する複合製膜装置において、表1の層(B)として示した原料の混合物を180℃の温度で3時間真空乾燥した後、主押出機側に供給し、280℃の温度で溶融押出後、30μmカットフィルターにより濾過を行った後に、Tダイ複合口金に導入した。一方、表1の層(A)として示した原料の混合物を180℃の温度で3時間真空乾燥した後、副押出機に供給し、280℃の温度で溶融押出後30μmカットフィルターにより濾過を行った後に、Tダイ複合口金に導入した。次いで、該Tダイ複合口金内で、副押出機より押出される層(A)が主押出機より押出される層(B)の両側に積層(A/B/A)されるよう合流せしめた後、シート状に共押出して溶融積層シートとし、該溶融積層シートを、表面温度20℃に保たれたドラム上に静電荷法で密着冷却固化させて未延伸積層フィルムを得た。続いて、該未延伸積層フィルムを常法に従い85℃に加熱したロール群で予熱した後、90℃の加熱ロールを用いて長手方向(縦方向)に面積倍率が表1のようになるよう延伸を行い、25℃の温度のロール群で冷却して1軸延伸フィルムを得た。
 得られた1軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に105℃の温度の加熱ゾーンで長手方向に直角な方向(幅方向)に面積倍率が表1のようになるよう延伸した。さらに引き続いて、テンター内の熱処理ゾーンにて125℃で20秒間の熱処理を施し、さらに180℃の温度で幅方向に弛緩処理(弛緩率:4%)を行った後、更に140℃の温度で幅方向に弛緩処理(弛緩率:1%)を行った。次いで、均一に徐冷後、巻き取って、ポリエステルフィルムを得た。その各種特性を表1に示す。このように本発明のポリエステルフィルムは安定に製膜でき、反射性・軽量性・表面形状(輝度ムラ低減、導光板との相性良好)・熱寸法安定性に優れた特性を示した。
 (実施例20、22)
副押出機より押出される層(A)が主押出機より押出される層(B)に積層(B/A)させる以外は、実施例1~19と同様に製膜し、ポリエステルフィルムを得た。その各種特性を表1に示す。このように本発明のポリエステルフィルムは安定に製膜でき、反射性・軽量性・表面形状(輝度ムラ低減、導光板との相性良好)・熱寸法安定性に優れた特性を示した。
 (比較例1~16)
主押出機と副押出機を有する複合製膜装置において、表2に示した原料の混合物と条件にて実施例1と同様にポリエステルフィルムの製膜を試みたが、比較例2、7、9、13については、製膜できなかった。各種特性を表2に示す。比較例2、7、9、13以外の製膜できた例(ただし、比較例16を除く)については、表面形状が実施例のものに比べて平坦であり、Ra及びRzが本発明の範囲外であった。導光板との相性を検討したところ、削れることはなかったものの、凹凸が不十分でありポリエステルフィルムと導光板が密着してしまい、輝度ムラが生じた。なお、比較例16においては、輝度ムラは生じなかったが、反射率が低いために輝度が著しく低く、全く実用的ではなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明のポリエステルフィルムは、経済性、製膜性、白色性、反射性、軽量性、表面形状に優れ、このポリエステルフィルムを用いることにより輝度特性及び他部材との相性に優れた面光源を安価に提供することができる。
 本発明のポリエステルフィルムは、白色性、反射性、隠蔽性、熱寸法安定性が必要な用途に適用可能であるが、特に好ましい用途としては、光反射のために面光源に組込まれる板状材があげられる。具体的には、液晶画面用のエッジライトの反射板、直下型ライトの反射板、および冷陰極線管やLED照明周囲のリフレクターに好ましく用いられる。

Claims (5)

  1.  ガラス転移温度(Tg)が50℃以上80℃未満であるポリエステル(a)10~90質量%、及びTgが100℃以上120℃以下であるポリエステル(b)10~90質量%を含み、ポリエステル(a)とポリエステル(b)のTgの差が50℃以下であり、かつ、実質的に無機及び有機粒子を含まない層(A)と、
    ポリエステル(c)と、該ポリエステル(c)に非相溶な成分(d)を少なくとも1種含む層(B)を有し、
     層(A)が少なくとも一方の表面となる構成であり、この表面の中心線平均粗さ(Ra)が300nm以上、及び十点平均粗さ(Rz)が3000nm以上である2軸延伸ポリエステルフィルム。
  2. 前記ポリエステル(a)がポリエチレンテレフタレートである請求項1記載の2軸延伸ポリエステルフィルム。
  3. 前記ポリエステル(b)が、ジオール成分として、環状骨格を有するジオールを用いてなる、請求項1または2に記載の2軸延伸ポリエステルフィルム。
  4. 前記ポリエステル(b)が、ジオール成分として、2,2,4,4-テトラメチル-1,3-シクロブタンジオールを用いている請求項1~3のいずれかに記載の2軸延伸ポリエステルフィルム。
  5. 請求項1~4のいずれかに記載の2軸延伸ポリエステルフィルムを用いた液晶ディスプレイ用反射板。
     
PCT/JP2015/053503 2014-02-24 2015-02-09 ポリエステルフィルム WO2015125644A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015513928A JP6489012B2 (ja) 2014-02-24 2015-02-09 ポリエステルフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-032514 2014-02-24
JP2014032514 2014-02-24

Publications (1)

Publication Number Publication Date
WO2015125644A1 true WO2015125644A1 (ja) 2015-08-27

Family

ID=53878150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053503 WO2015125644A1 (ja) 2014-02-24 2015-02-09 ポリエステルフィルム

Country Status (3)

Country Link
JP (2) JP6489012B2 (ja)
TW (1) TW201538329A (ja)
WO (1) WO2015125644A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200348780A1 (en) * 2017-11-30 2020-11-05 3M Innovative Properties Company Substrate including a self-supporting tri-layer stack
CN113752660A (zh) * 2020-06-04 2021-12-07 东丽先端素材株式会社 白色聚酯膜及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409337B (zh) * 2019-12-31 2022-05-31 树业环保科技股份有限公司 门板用环保柔性亚光聚酯薄膜及其制备方法
KR102510619B1 (ko) * 2021-02-23 2023-03-15 도레이첨단소재 주식회사 이축 연신 폴리에스테르 무광택 필름 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160533A (ja) * 1988-08-29 1990-06-20 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH11269283A (ja) * 1998-03-23 1999-10-05 Toray Ind Inc 二軸配向ポリエステルフィルム
JP2010507716A (ja) * 2006-10-27 2010-03-11 イーストマン ケミカル カンパニー テトラメチルシクロブタンジオール、シクロヘキサンジメタノール及びエチレングリコールを含むポリエステル組成物並びにその製造方法
JP2011209499A (ja) * 2010-03-30 2011-10-20 Toray Ind Inc 面光源反射板用白色ポリエステルフィルム及びそれを用いた液晶ディスプレイ用面光源反射板
JP2012137618A (ja) * 2010-12-27 2012-07-19 Toray Ind Inc 面光源反射板用白色ポリエステルフィルム
JP2013120313A (ja) * 2011-12-08 2013-06-17 Toray Ind Inc 白色ポリエステルフィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481858B2 (ja) * 2007-06-07 2014-04-23 東レ株式会社 白色ポリエステルフィルムおよびそれを用いた面光源
JP5428553B2 (ja) * 2008-06-09 2014-02-26 東レ株式会社 ポリエステルフィルム
JP5736845B2 (ja) * 2011-03-02 2015-06-17 東レ株式会社 白色積層ポリエステルフィルム
JP2014065817A (ja) * 2012-09-26 2014-04-17 Toray Ind Inc 2軸延伸フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160533A (ja) * 1988-08-29 1990-06-20 Toray Ind Inc 二軸配向ポリエステルフィルム
JPH11269283A (ja) * 1998-03-23 1999-10-05 Toray Ind Inc 二軸配向ポリエステルフィルム
JP2010507716A (ja) * 2006-10-27 2010-03-11 イーストマン ケミカル カンパニー テトラメチルシクロブタンジオール、シクロヘキサンジメタノール及びエチレングリコールを含むポリエステル組成物並びにその製造方法
JP2011209499A (ja) * 2010-03-30 2011-10-20 Toray Ind Inc 面光源反射板用白色ポリエステルフィルム及びそれを用いた液晶ディスプレイ用面光源反射板
JP2012137618A (ja) * 2010-12-27 2012-07-19 Toray Ind Inc 面光源反射板用白色ポリエステルフィルム
JP2013120313A (ja) * 2011-12-08 2013-06-17 Toray Ind Inc 白色ポリエステルフィルム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200348780A1 (en) * 2017-11-30 2020-11-05 3M Innovative Properties Company Substrate including a self-supporting tri-layer stack
US11683977B2 (en) * 2017-11-30 2023-06-20 3M Innovative Properties Company Substrate including a self-supporting tri-layer stack
CN113752660A (zh) * 2020-06-04 2021-12-07 东丽先端素材株式会社 白色聚酯膜及其制造方法
CN113752660B (zh) * 2020-06-04 2023-07-25 东丽先端素材株式会社 白色聚酯膜及其制造方法

Also Published As

Publication number Publication date
TW201538329A (zh) 2015-10-16
JPWO2015125644A1 (ja) 2017-03-30
JP2019116099A (ja) 2019-07-18
JP6756387B2 (ja) 2020-09-16
JP6489012B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
JP2011209499A (ja) 面光源反射板用白色ポリエステルフィルム及びそれを用いた液晶ディスプレイ用面光源反射板
JP6756387B2 (ja) ポリエステルフィルム
JP5970815B2 (ja) 白色積層フィルムの製造方法および白色積層ポリエステルフィルム
JP5564895B2 (ja) 白色単層ポリエステルフィルム及びそれを用いた面光源反射部材
JP5729296B2 (ja) 白色フィルムおよびそれを用いた面光源
JP6597306B2 (ja) ポリエステルフィルム
JP7247887B2 (ja) 白色ポリエステルフィルム
JP2013120313A (ja) 白色ポリエステルフィルム
WO2015129500A1 (ja) 積層フィルム
JP2012137618A (ja) 面光源反射板用白色ポリエステルフィルム
JP5817165B2 (ja) 反射板用白色積層ポリエステルフィルムおよびバックライト装置
WO2017013976A1 (ja) 白色反射フィルム
JP2018072496A (ja) エッジライト型バックライト用白色反射フィルム及びそれを用いた液晶ディスプレイ用バックライト
JP2014065817A (ja) 2軸延伸フィルム
JP2006168313A (ja) 共押出し積層ポリエテルフィルム
JP2016031486A (ja) ポリエステルフィルム
JP2019045779A (ja) エッジライト型バックライト用白色反射フィルム及びそれを用いた液晶ディスプレイ用バックライト
JP2007144733A (ja) 光学用積層ポリエステルフィルム
JP2012051960A (ja) 白色フィルム
JP2017100288A (ja) 二軸延伸ポリエステルフィルム
JP2014126638A (ja) 液晶ディスプレイ用反射フィルム
JP2017027035A (ja) エッジライト型バックライト用白色反射フィルム及び液晶ディスプレイ用バックライト
JP2018072497A (ja) エッジライト型バックライト用白色反射フィルム及び液晶ディスプレイ用バックライト
JP2017027034A (ja) エッジライト型バックライト用白色反射フィルム及びそれを用いた液晶ディスプレイ用バックライト
JP2015208864A (ja) 二軸延伸積層ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015513928

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751501

Country of ref document: EP

Kind code of ref document: A1