WO2015125253A1 - Scroll compressor and refrigeration cycle device using same - Google Patents

Scroll compressor and refrigeration cycle device using same Download PDF

Info

Publication number
WO2015125253A1
WO2015125253A1 PCT/JP2014/054032 JP2014054032W WO2015125253A1 WO 2015125253 A1 WO2015125253 A1 WO 2015125253A1 JP 2014054032 W JP2014054032 W JP 2014054032W WO 2015125253 A1 WO2015125253 A1 WO 2015125253A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint member
scroll
scroll compressor
pipe
injection
Prior art date
Application number
PCT/JP2014/054032
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 神▲崎▼
長田 淳
修平 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/054032 priority Critical patent/WO2015125253A1/en
Priority to JP2016503837A priority patent/JP6218919B2/en
Priority to GB1608791.8A priority patent/GB2538005B/en
Publication of WO2015125253A1 publication Critical patent/WO2015125253A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe
    • F16L41/082Non-disconnectible joints, e.g. soldered, adhesive or caulked joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Definitions

  • the present invention relates to a scroll compressor that compresses refrigerant circulating in a refrigeration cycle circuit, and a refrigeration cycle apparatus using the scroll compressor.
  • Patent Document 1 a scroll compressor that cools a compressor by injecting and evaporating, for example, liquid refrigerant in a receiver that forms a refrigerant circuit into an intermediate pressure portion in the course of compression has been proposed (for example, Patent Document 1).
  • the scroll compressor of Patent Document 1 two injection ports are provided on the upper surface of the fixed scroll, and injection pipes are connected to the two injection ports, respectively.
  • the injection pipe is a so-called T-shaped pipe, and the refrigerant flowing through the injection pipe is branched into two and flows into each injection port.
  • the injection piping shown in Patent Document 1 has a structure in which, for example, a hole is formed in the side wall of the pipe by burring or the like, and another pipe is inserted into the hole and brazed.
  • a high-pressure liquid refrigerant flows through the injection pipe, such as when using a high-pressure refrigerant such as a mixed refrigerant containing CO2 refrigerant, R32 refrigerant, etc.
  • the thickness of the copper pipe is increased from the viewpoint of pressure resistance.
  • the injection pipe is thick, burring and the like are difficult. For this reason, the fitting depth (fitting margin) at the time of brazing becomes short, and there is a possibility that cracks may occur in the joint portion due to excessive stress.
  • the present invention has been made to solve the above-described problems, and even when a high-pressure refrigerant is used, a scroll compressor that can reliably prevent the occurrence of cracks in the injection pipe and the like, and An object of the present invention is to provide a refrigeration cycle apparatus using the same.
  • the scroll compressor according to the present invention includes a swing scroll provided with a spiral body and performing a swing motion by driving a motor, and a spiral body fitted into the spiral body of the swing scroll, and cooperates with the swing scroll. And a fixed scroll that forms a compression chamber for compressing the working gas, the fixed scroll having a plurality of injection ports penetrating from the upper part to the compression chamber. An injection piping unit that is provided on the plurality of injection ports and supplies the working fluid to the plurality of injection ports.
  • the injection piping unit includes a main pipe through which the working fluid supplied from the outside to the plurality of injection ports flows, and one end Is connected to the main pipe and the other end has multiple injection ports It has a plurality of branch pipes that are connected respectively, and a joint member whose ends are joined fitted respectively between the pipe and a plurality of branch pipes.
  • the main pipe and the plurality of branch pipes are fitted and joined to the joint member, so that the main pipe and the branch pipe can be increased in thickness. Since it is possible to secure the fitting depth (fitting margin) at the time of joining the pipe and the plurality of branch pipes, even when a high-pressure working fluid flows, cracks occur in the joint due to excessive stress. Can be prevented.
  • FIG. 1 is a sectional view of a scroll compressor 1 according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing an example of a fixed scroll in the scroll compressor of FIG. 1
  • FIG. 3 is a fixed scroll in the scroll compressor of FIG.
  • the scroll compressor 1 will be described with reference to FIGS. 1 to 3.
  • the scroll compressor 1 shown in FIGS. 1 to 3 compresses and discharges a working fluid such as a gas refrigerant in a scroll-shaped compression chamber 10A. It has.
  • the shell (sealed container) 2 is formed in a cylindrical shape having a sealed space and has pressure resistance.
  • a suction pipe 2A for taking the working gas into the shell 2 is connected to the side surface of the shell 2
  • a discharge pipe 2B for discharging the compressed working gas from the shell 2 is connected to the upper surface.
  • Frames 2D and 2E are fixed to the upper side and the lower side of the shell 2, respectively, and an oil sump 2C for storing lubricating oil is formed at the bottom of the shell 2.
  • the main shaft 3 is rotatably supported in the shell 2 by frames 2D and 2E by bearings or the like.
  • An eccentric shaft portion is attached to the upper end of the main shaft 3 in an eccentric state with respect to the main shaft 3, and an orbiting scroll 11 is provided on the eccentric shaft portion so as to be capable of revolving.
  • An oil pump (not shown) is attached to the lower end of the main shaft 3, and the oil pump shakes oil stored in the lower portion of the shell 2 from the upper portion of the eccentric shaft portion through a passage provided in the main shaft 3. Supplied to the dynamic bearing 11A.
  • the motor 4 rotates the main shaft 3 and has a rotor 4A and a stator 4B.
  • the stator 4B is fixed to the shell 2, and the rotor 4A is fixed to the main shaft 3. And when electric power is supplied from an inverter circuit etc., the main shaft 3 and the rotor 4A rotate with respect to the stator 4B.
  • the fluid compression unit 10 compresses a working fluid such as a gas refrigerant sucked from the suction pipe 2 ⁇ / b> A, and includes a rocking scroll 11 and a fixed scroll 12.
  • a spiral body is formed on each of the upper surface of the swing scroll 11 and the lower surface of the fixed scroll 12, and the spiral bodies of the swing scroll 11 and the fixed scroll 12 are arranged to face each other.
  • a compression chamber 10 ⁇ / b> A is formed between the spiral body of the fixed scroll 12 and the spiral body of the swing scroll 11.
  • the orbiting scroll 11 is supported by the frame 2D installed inside the shell 2 so as to perform a revolving motion, and an orbiting bearing 11A is provided on the lower surface of the orbiting scroll 11.
  • An Oldham ring (not shown) supported swingably on the frame 2D between the frame 2D and the swing scroll 11 so as to give a swing motion while preventing the swing scroll 11 from rotating. Is provided.
  • the fixed scroll 12 is arranged on the upper part of the swing scroll 11 and is fixed to the frame 2D.
  • a discharge port 12A for discharging the working fluid is formed at the center of the fixed scroll 12, and a reed valve 13 for preventing the backflow of the compressed working gas is disposed on the discharge port 12A.
  • the reed valve 13 has a movable range restricted by a valve retainer 14, and the reed valve 13 and the valve retainer 14 are fixed to the upper surface of the fixed scroll 12 by a valve bolt 15.
  • a plurality of compression chambers 10 ⁇ / b> A whose volumes change relatively are formed by meshing the spiral body of the orbiting scroll 11 and the spiral body of the fixed scroll 12.
  • valve cover 20 is attached to the upper portion of the fixed scroll 12 with screws 23.
  • An insertion hole 21 into which the discharge pipe 2B is inserted is formed in the valve cover 20, and the working fluid discharged from the discharge port 12A is discharged from the discharge pipe 2B inserted into the insertion hole 21 to the outside. ing.
  • the operation of the scroll compressor 1 will be described with reference to FIG.
  • the motor 4 When the motor 4 is energized, the main shaft 3 rotates and the orbiting scroll 11 at the tip of the main shaft 3 performs a revolving motion. Then, along with the orbiting motion of the orbiting scroll 11, the compression chamber 10A moves toward the center while reducing the volume, and the refrigerant is compressed. After that, the fluid sucked into the shell 2 is compressed in the fluid compressing unit 10, passes through the discharge port 12 ⁇ / b> A of the fixed scroll 12, and passes from the discharge pipe 2 ⁇ / b> B to the outside of the shell 2 through the reed valve 13 and the valve cover 20. To be discharged.
  • the scroll compressor 1 causes the liquid refrigerant having a pressure higher than that in the compression chamber 10A to flow into the compression chamber 10A in order to increase the capacity of the refrigerant in the compression chamber 10A and to cool the compression chamber 10A.
  • the fixed scroll 12 is provided with a plurality of injection ports 12B through which liquid refrigerant flows into the compression chamber 10A, and an intermediate portion of the compression process of the fixed scroll 12 from the injection port 12B. Liquid refrigerant flows into the tank.
  • FIG. 2 although illustrated about the case where the two injection ports 12B are provided, two or more may be provided.
  • the injection port 12B is a through-hole penetrating from the upper surface of the fixed scroll 12 to the surface where the spiral body is formed, and an injection pipe for supplying a working fluid (liquid refrigerant) to the injection port 12B on the injection port 12B.
  • a unit 30 is arranged.
  • FIG. 4 is a perspective view showing an example of the injection piping unit 30.
  • the injection piping unit 30 shown in FIG. 4 has a main pipe 31, branch pipes 32 ⁇ / b> A and 32 ⁇ / b> B, and a joint member 33.
  • the main pipe 31 and the branch pipes 32A and 32B are made of, for example, a copper pipe or the like, and are constituted by separate pipes.
  • the working fluid supplied from the outside to the injection port 12 ⁇ / b> B flows, and the end portion is joined to the joint member 33.
  • one end of each of the branch pipes 32A and 32B is joined to the joint member 33, and pipe covers 34A and 34B are attached to the other ends. Then, the pipe covers 34A and 34B are respectively fixed on the injection port 12B with screws 35, whereby the branch pipes 32A and 32B are connected to the plurality of injection ports 12B, respectively.
  • the joint member 33 connects the main pipe 31 and the plurality of branch pipes 32A and 32B, and is made of a high-strength material such as iron. End portions of the main pipe 31 and the plurality of branch pipes 32A and 32B are fitted and joined to the joint member 33, respectively.
  • FIG. 5 is a cross-sectional view showing a cross section of the joint member in the injection piping unit 30 of FIG. As shown in FIG. 5, the joint member 33 has a cylindrical shape having openings 33B at both ends, and is provided with holes for attaching the main pipe 31 to the side wall 33A.
  • the branch pipes 32A and 32B are fitted and fixed to the opening 33B of the joint member 33, respectively, and the main pipe 31 is fitted and fixed to the hole 33H of the side wall 33A.
  • the branch pipes 32A and 32B are formed with an outer diameter of ⁇ 1, an inner diameter of ⁇ 2, and a thickness of D1, respectively.
  • the joint member 33 is formed such that the outer diameter ⁇ 10 is larger than the outer diameter ⁇ 1 of the branch pipes 32A and 32B, and the inner diameter ⁇ 2 is the inner diameter ⁇ 2 of the branch pipes 32A and 32B.
  • the thickness D10 of the joint member 33 is larger than the thickness D1 of the branch pipes 32A and 32B.
  • the main pipe 31 and the branch pipes 32A and 32B may be pipes having the same outer diameter and inner diameter, or may be pipes having different outer diameters and inner diameters.
  • an insertion portion 33C is formed which is formed larger than the inner diameter ⁇ 2 of the joint member 33 and into which the branch pipes 32A and 32B are inserted.
  • the plurality of branch pipes 32A and 32B are inserted into the insertion portions 33C of the openings 33B at both ends of the joint member 33, and are joined by brazing or the like.
  • the insertion portion 33C has a diameter larger than the inner diameter ⁇ 2 of the joint member by the thickness D1. Then, when the branch pipes 32A and 32B are inserted into the insertion portion 33C, it is possible to prevent a step from being formed in the joint member 33. Therefore, the flow resistance when the working fluid flowing through the joint member 33 flows can be reduced.
  • a hole 33H is formed in the side wall 33A of the joint member 33, and the main pipe 31 is fitted into the hole 33H and joined.
  • the hole 33H of the side wall 33A of the joint member 33 has a fitting portion 33H1 into which the main pipe 31 is fitted, and a through portion 33H2 formed with a smaller diameter than the fitting portion 33H1.
  • the fitting portion 33 ⁇ / b> H ⁇ b> 1 has a predetermined fitting depth (fitting margin) D ⁇ b> 2 and is formed to have the same diameter as the outer diameter of the main pipe 31.
  • the main pipe 31 is fitted into the fitting portion 33H1 and joined by brazing or the like.
  • the penetrating portion 33H2 has the same size as the inner diameter ⁇ 2 of the main pipe 31.
  • the joint structure 33 is added to the direct connection portion between the main piping 31 and the branch piping 32A, 32B, and the piping structure in which the fitting depth (fitting margin) is secured.
  • a high-pressure refrigerant such as a mixed refrigerant containing CO2 refrigerant, R32 refrigerant, etc., it is necessary to increase the thickness of the piping.
  • the joint member 33 is made of a high-strength member made of iron or the like, so that the size of the joint member 33 can be made compact and space can be saved, and the injection piping is provided on the back surface of the fixed scroll 12 with little space by the valve cover 20 or the like.
  • a unit 30 can be installed.
  • the joint member 33 has a cylindrical shape with openings 33B formed at both ends, and holes 33H are formed in the side wall 33A, and a plurality of branch pipes 32A and 32B are opened at both ends of the joint member 33.
  • the fitting depth of the plurality of branch pipes 32A and 32B (fitting allowance) is set. It can be surely secured to prevent the pipe from being damaged. Further, the degree of freedom of the pipe shape or pipe diameter in the axial direction and the circumferential direction of the joint member 33 can be increased, and the injection pipe unit 30 can be installed on the back surface of the fixed scroll 12 with little space by the valve cover 20 or the like.
  • the hole 33H of the side wall 33A of the joint member 33 has a fitting part 33H1 into which the main pipe 31 is fitted and a through part 33H2 formed with a smaller diameter than the fitting part 33H1, the main pipe 31 is provided. It is possible to reliably secure the fitting depth (fitting margin) and to prevent the pipe from being damaged.
  • FIG. FIG. 6 is a perspective view showing an injection piping unit in the scroll compressor according to Embodiment 2 of the present invention, and the injection piping unit 130 will be described with reference to FIG. 6.
  • the injection piping unit 130 of FIG. 6 the part which has the same structure as the injection piping unit 30 of FIG. 4 is attached
  • the injection pipe unit 130 in FIG. 6 is different from the injection pipe unit 30 in FIG. 4 in the structure of the joint member 133.
  • the joint structure between the joint member 133 and the main pipe 31 in FIG. 6 is the same as the joint structure between the joint member 33 and the branch pipes 32A and 32B in FIG. 5, and the joint member 133 and the branch pipes 32A and 32B in FIG. Is the same as the joint structure of the joint member 33 and the main pipe 31 in FIG.
  • the joint member 133 is added to the direct connection portion between the main piping 31 and the branch piping 32A, 32B, and the insertion depth is increased.
  • FIG. FIG. 7 is a refrigerant circuit diagram showing an embodiment of an air-conditioning apparatus using the scroll compressor of the present invention, and the refrigeration cycle apparatus 200 will be described with reference to FIG.
  • the refrigeration cycle apparatus 200 includes a scroll compressor 1, a condenser 202, a first expansion valve 203 that is a decompression apparatus, and an evaporator 204 connected by a refrigerant pipe.
  • the scroll compressor 1 compresses a refrigerant and has a structure provided with an injection port 12B.
  • the condenser 202 radiates the heat of the refrigerant to the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water). For example, the condenser 202 exchanges heat between air supplied from a blower (not shown) and the refrigerant.
  • the condenser 202 includes, for example, a heat transfer tube through which the refrigerant passes and a heat transfer fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air. Heat exchange with the outside air).
  • the first expansion valve 203 decompresses and expands the refrigerant flowing through the main refrigerant circuit, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the evaporator 204 causes the refrigerant to absorb the heat of the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water).
  • the heat medium for example, air or water
  • the condenser 202 exchanges heat between air supplied from a blower (not shown) and the refrigerant.
  • the evaporator 204 includes, for example, a heat transfer tube that allows the refrigerant to pass therethrough and a heat transfer fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air. Heat is exchanged between them, and the refrigerant is evaporated and gasified.
  • an injection pipe 205 and an inter-refrigerant heat exchanger 206 for injecting the scroll compressor 1 are connected between the condenser 202 and the first expansion valve 203.
  • the injection pipe 205 circulates the refrigerant to be injected from between the condenser 202 and the first expansion valve 203 to the injection port 12B (see FIGS. 1 to 6) via the injection pipe units 30 and 130 of the scroll compressor 1. Is.
  • the inter-refrigerant heat exchanger 206 exchanges heat between the refrigerant flowing from the condenser 202 to the first expansion valve 203 and the refrigerant flowing through the injection pipe 205.
  • the injection pipe 205 is provided with a second expansion valve 207, which decompresses one refrigerant flowing into the inter-refrigerant heat exchanger 206 and adjusts the flow rate of the refrigerant flowing through the injection pipe 205.
  • the injection piping units 30 and 130 used for the high-pressure refrigerant such as the mixed refrigerant containing the CO2 refrigerant, the R32 refrigerant, and the like.
  • FIG. 7 illustrates the case where the injection pipe 205 is heat-exchanged in the inter-refrigerant heat exchanger 206, but is not limited to this as long as it is a circuit for injecting refrigerant into the injection port 12B of the scroll compressor 1.
  • various known refrigeration cycle circuits can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

The stationary scroll of a scroll compressor has: injection ports extending from the upper part of the stationary scroll to the compression chamber of the scroll compressor; and an injection piping unit provided on the injection ports in the upper part of the stationary scroll and supplying operating fluid to the injection ports. The injection piping unit has: main piping through which operating fluid supplied from the outside to the injection ports flows; lines of branch piping, each having one end connected to the main piping and the other end connected to one of the injection ports; and a joint member to which an end of the main piping and an end of each of the lines of branch piping are fitted and joined.

Description

スクロール圧縮機及びこれを用いた冷凍サイクル装置Scroll compressor and refrigeration cycle apparatus using the same
 本発明は、冷凍サイクル回路を循環する冷媒等を圧縮するスクロール圧縮機及びこれを用いた冷凍サイクル装置に関するものである。 The present invention relates to a scroll compressor that compresses refrigerant circulating in a refrigeration cycle circuit, and a refrigeration cycle apparatus using the scroll compressor.
 従来から、圧縮途中の過程の中間圧部に、たとえば冷媒回路を構成する受液器内の液冷媒をインジェクションして蒸発させて圧縮機の冷却を行うスクロール圧縮機が提案されている(たとえば、特許文献1参照)。特許文献1のスクロール圧縮機において、インジェクションポートが固定スクロールの上面に2つ設けられており、2つのインジェクションポートにそれぞれインジェクション配管が接続されている。インジェクション配管はいわゆるT字管からなっており、インジェクション配管内を流れた冷媒が2分岐して各インジェクションポートに流入するようになっている。 Conventionally, a scroll compressor that cools a compressor by injecting and evaporating, for example, liquid refrigerant in a receiver that forms a refrigerant circuit into an intermediate pressure portion in the course of compression has been proposed (for example, Patent Document 1). In the scroll compressor of Patent Document 1, two injection ports are provided on the upper surface of the fixed scroll, and injection pipes are connected to the two injection ports, respectively. The injection pipe is a so-called T-shaped pipe, and the refrigerant flowing through the injection pipe is branched into two and flows into each injection port.
特開平11-159479号公報JP 11-159479 A
 特許文献1に示すインジェクション配管は、例えば管の側壁にバーリング加工等で穴を開け、この穴に別の管を挿入してロウ付けした構造を有している。ここで、インジェクション配管には、CO2冷媒、R32冷媒等を含有する混合冷媒のような高圧冷媒の使用時のように高圧の液冷媒が流通する場合、耐圧の観点から銅配管の肉厚を厚くする必要がある。しかしながら、インジェクション配管の肉厚が厚いとバーリング加工等が困難になる。このため、ロウ付け時の嵌り込み深さ(はまり代)が短くなってしまい、過大な応力で接合部分において亀裂が発生する可能性がある。 The injection piping shown in Patent Document 1 has a structure in which, for example, a hole is formed in the side wall of the pipe by burring or the like, and another pipe is inserted into the hole and brazed. Here, when a high-pressure liquid refrigerant flows through the injection pipe, such as when using a high-pressure refrigerant such as a mixed refrigerant containing CO2 refrigerant, R32 refrigerant, etc., the thickness of the copper pipe is increased from the viewpoint of pressure resistance. There is a need to. However, if the injection pipe is thick, burring and the like are difficult. For this reason, the fitting depth (fitting margin) at the time of brazing becomes short, and there is a possibility that cracks may occur in the joint portion due to excessive stress.
 本発明は、上記のような課題を解決するためになされたものであり、高圧冷媒を使用した場合であっても、インジェクション配管の亀裂等の発生を確実に防止することができるスクロール圧縮機及びこれを用いた冷凍サイクル装置を提供することを目的とするものである。 The present invention has been made to solve the above-described problems, and even when a high-pressure refrigerant is used, a scroll compressor that can reliably prevent the occurrence of cracks in the injection pipe and the like, and An object of the present invention is to provide a refrigeration cycle apparatus using the same.
 本発明のスクロール圧縮機は、渦巻き体が設けられ、モータの駆動により揺動運動を行う揺動スクロールと、揺動スクロールの渦巻き体に嵌め込まれる渦巻き体を有し、揺動スクロールと協働して作動ガスを圧縮する圧縮室を形成する固定スクロールとを備えたスクロール圧縮機であって、固定スクロールは、上部から圧縮室に貫通する複数のインジェクションポートを有するものであり、固定スクロールの上部の複数のインジェクションポート上に設けられ、複数のインジェクションポートに作動流体を供給するインジェクション配管ユニットとを備え、インジェクション配管ユニットは、外部から複数のインジェクションポートに供給される作動流体が流れる本配管と、一端が本配管に接続され、他端が複数のインジェクションポートにそれぞれ接続された複数の枝配管と、本配管と複数の枝配管との端部がそれぞれ嵌め込まれて接合された継ぎ手部材とを有する。 The scroll compressor according to the present invention includes a swing scroll provided with a spiral body and performing a swing motion by driving a motor, and a spiral body fitted into the spiral body of the swing scroll, and cooperates with the swing scroll. And a fixed scroll that forms a compression chamber for compressing the working gas, the fixed scroll having a plurality of injection ports penetrating from the upper part to the compression chamber. An injection piping unit that is provided on the plurality of injection ports and supplies the working fluid to the plurality of injection ports. The injection piping unit includes a main pipe through which the working fluid supplied from the outside to the plurality of injection ports flows, and one end Is connected to the main pipe and the other end has multiple injection ports It has a plurality of branch pipes that are connected respectively, and a joint member whose ends are joined fitted respectively between the pipe and a plurality of branch pipes.
 本発明のスクロール圧縮機によれば、本配管と複数の枝配管とが継ぎ手部材に嵌め込まれて接合されていることにより、本配管及び枝配管の肉厚を厚くした場合であっても、本配管及び複数の枝配管の接合時の嵌り込み深さ(はまり代)を確保することができるため、高圧の作動流体が流通した場合であっても、過大な応力で接合部分に亀裂が発生するのを防止することができる。 According to the scroll compressor of the present invention, the main pipe and the plurality of branch pipes are fitted and joined to the joint member, so that the main pipe and the branch pipe can be increased in thickness. Since it is possible to secure the fitting depth (fitting margin) at the time of joining the pipe and the plurality of branch pipes, even when a high-pressure working fluid flows, cracks occur in the joint due to excessive stress. Can be prevented.
本発明の実施形態1に係るスクロール圧縮機の断面図である。It is sectional drawing of the scroll compressor which concerns on Embodiment 1 of this invention. 図1のスクロール圧縮機における固定スクロールの一例を示す斜視図である。It is a perspective view which shows an example of the fixed scroll in the scroll compressor of FIG. 図1のスクロール圧縮機における固定スクロールの一例を示す断面図である。It is sectional drawing which shows an example of the fixed scroll in the scroll compressor of FIG. 図2の固定スクロールに取り付けられたインジェクション配管の一例を示す斜視図である。It is a perspective view which shows an example of the injection piping attached to the fixed scroll of FIG. 図4のインジェクション配管における継ぎ手部材の断面を示す断面図である。It is sectional drawing which shows the cross section of the joint member in the injection piping of FIG. 本発明の実施形態2に係るスクロール圧縮機におけるインジェクション配管ユニットを示す斜視図である。It is a perspective view which shows the injection piping unit in the scroll compressor which concerns on Embodiment 2 of this invention. 本発明のスクロール圧縮機を用いた空気調和装置の実施形態を示す冷媒回路図である。It is a refrigerant circuit figure showing an embodiment of an air harmony device using a scroll compressor of the present invention.
実施形態1.
 以下、図面を参照しながら本発明のスクロール圧縮機の実施形態について説明する。図1は本発明の実施形態1に係るスクロール圧縮機1の断面図、図2は図1のスクロール圧縮機における固定スクロールの一例を示す斜視図、図3は図1のスクロール圧縮機における固定スクロールの一例を示す断面図であり、図1から図3を参照してスクロール圧縮機1について説明する。図1から図3のスクロール圧縮機1は、例えばガス冷媒等の作動流体をスクロール状の圧縮室10Aにおいて圧縮して吐出するものであって、シェル2、主軸3、モータ4、流体圧縮部10を備えている。
Embodiment 1. FIG.
Hereinafter, an embodiment of a scroll compressor of the present invention will be described with reference to the drawings. 1 is a sectional view of a scroll compressor 1 according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing an example of a fixed scroll in the scroll compressor of FIG. 1, and FIG. 3 is a fixed scroll in the scroll compressor of FIG. The scroll compressor 1 will be described with reference to FIGS. 1 to 3. The scroll compressor 1 shown in FIGS. 1 to 3 compresses and discharges a working fluid such as a gas refrigerant in a scroll-shaped compression chamber 10A. It has.
 シェル(密閉容器)2は、密閉空間を有する円筒形状に形成されたものであって耐圧性を有している。シェル2の側面には作動ガスをシェル2内に取り込むための吸入配管2Aが接続されており、上面には圧縮した作動ガスをシェル2から吐き出す吐出配管2Bが接続されている。シェル2の上部側及び下部側にはそれぞれフレーム2D、2Eが固定されており、シェル2の底部には潤滑油を貯留する油溜め2Cが形成されている。 The shell (sealed container) 2 is formed in a cylindrical shape having a sealed space and has pressure resistance. A suction pipe 2A for taking the working gas into the shell 2 is connected to the side surface of the shell 2, and a discharge pipe 2B for discharging the compressed working gas from the shell 2 is connected to the upper surface. Frames 2D and 2E are fixed to the upper side and the lower side of the shell 2, respectively, and an oil sump 2C for storing lubricating oil is formed at the bottom of the shell 2.
 主軸3は、シェル2内にフレーム2D、2Eにベアリング等により回転可能に支持されている。主軸3の上端には偏心軸部が主軸3に対し偏心した状態で取付けられており、偏心軸部には揺動スクロール11が公転運動可能に設けられている。また、主軸3の下端には図示しない油ポンプが取付けられており、油ポンプは、主軸3の内部に設けた通路を介してシェル2の下部に貯蔵された油を偏心軸部の上部から揺動軸受11Aに供給する。 The main shaft 3 is rotatably supported in the shell 2 by frames 2D and 2E by bearings or the like. An eccentric shaft portion is attached to the upper end of the main shaft 3 in an eccentric state with respect to the main shaft 3, and an orbiting scroll 11 is provided on the eccentric shaft portion so as to be capable of revolving. An oil pump (not shown) is attached to the lower end of the main shaft 3, and the oil pump shakes oil stored in the lower portion of the shell 2 from the upper portion of the eccentric shaft portion through a passage provided in the main shaft 3. Supplied to the dynamic bearing 11A.
 モータ4は、主軸3を回転駆動させるものであり、ロータ4A及びステータ4Bを有している。ステータ4Bはシェル2に固定されており、ロータ4Aは主軸3に固定されている。そして、インバータ回路等から電力が供給された際、主軸3及びロータ4Aがステータ4Bに対し回転する。 The motor 4 rotates the main shaft 3 and has a rotor 4A and a stator 4B. The stator 4B is fixed to the shell 2, and the rotor 4A is fixed to the main shaft 3. And when electric power is supplied from an inverter circuit etc., the main shaft 3 and the rotor 4A rotate with respect to the stator 4B.
 流体圧縮部10は、吸入配管2Aから吸入されるガス冷媒等の作動流体を圧縮するものであり、揺動スクロール11及び固定スクロール12を備えている。揺動スクロール11の上面及び固定スクロール12の下面にはそれぞれ渦巻き体が形成されており、揺動スクロール11及び固定スクロール12の渦巻き体は向き合うように配置されている。そして、固定スクロール12の渦巻き体および揺動スクロール11の渦巻き体との間に圧縮室10Aが形成される。 The fluid compression unit 10 compresses a working fluid such as a gas refrigerant sucked from the suction pipe 2 </ b> A, and includes a rocking scroll 11 and a fixed scroll 12. A spiral body is formed on each of the upper surface of the swing scroll 11 and the lower surface of the fixed scroll 12, and the spiral bodies of the swing scroll 11 and the fixed scroll 12 are arranged to face each other. A compression chamber 10 </ b> A is formed between the spiral body of the fixed scroll 12 and the spiral body of the swing scroll 11.
 揺動スクロール11は、シェル2の内部に設置されたフレーム2Dに公転運動を行うように支持されており、揺動スクロール11の下面には揺動軸受11Aが設けられている。なお、フレーム2Dと揺動スクロール11との間には、揺動スクロール11の自転を防止しながら揺動運動を与えるために、フレーム2Dに揺動自在に支持されたオルダムリング(図示せず)が設けられている。 The orbiting scroll 11 is supported by the frame 2D installed inside the shell 2 so as to perform a revolving motion, and an orbiting bearing 11A is provided on the lower surface of the orbiting scroll 11. An Oldham ring (not shown) supported swingably on the frame 2D between the frame 2D and the swing scroll 11 so as to give a swing motion while preventing the swing scroll 11 from rotating. Is provided.
 固定スクロール12は、揺動スクロール11の上部に配置されたものであってフレーム2Dに固定されている。固定スクロール12の中心には作動流体を吐出するための吐出口12Aが形成されており、吐出口12A上には圧縮された作動ガスの逆流を防止するリード弁13が配置されている。このリード弁13は弁押さえ14により可動範囲を規制されており、リード弁13及び弁押さえ14はそれらを弁ボルト15により固定スクロール12の上面に固定されている。そして、揺動スクロール11の渦巻体と固定スクロール12の渦巻体とが互いに噛み合わされることで相対的に容積が変化する圧縮室10Aが複数形成される。 The fixed scroll 12 is arranged on the upper part of the swing scroll 11 and is fixed to the frame 2D. A discharge port 12A for discharging the working fluid is formed at the center of the fixed scroll 12, and a reed valve 13 for preventing the backflow of the compressed working gas is disposed on the discharge port 12A. The reed valve 13 has a movable range restricted by a valve retainer 14, and the reed valve 13 and the valve retainer 14 are fixed to the upper surface of the fixed scroll 12 by a valve bolt 15. A plurality of compression chambers 10 </ b> A whose volumes change relatively are formed by meshing the spiral body of the orbiting scroll 11 and the spiral body of the fixed scroll 12.
 また、固定スクロール12の上部には弁カバー20がネジ23により取り付けられている。弁カバー20には吐出配管2Bが挿入される挿入穴21が形成されており、吐出口12Aから吐出された作動流体が挿入穴21に挿入された吐出配管2Bから外部に排出されるようになっている。 Further, a valve cover 20 is attached to the upper portion of the fixed scroll 12 with screws 23. An insertion hole 21 into which the discharge pipe 2B is inserted is formed in the valve cover 20, and the working fluid discharged from the discharge port 12A is discharged from the discharge pipe 2B inserted into the insertion hole 21 to the outside. ing.
 次に、図1を参照してスクロール圧縮機1の動作について説明する。モータ4に通電されると主軸3が回転し、主軸3の先端部の揺動スクロール11が公転運動を行う。すると、揺動スクロール11の旋回運動とともに圧縮室10Aが中心に向かって容積を減少させながら移動し、冷媒が圧縮される。その後、シェル2内に吸入された流体が、流体圧縮部10において圧縮された後、固定スクロール12の吐出口12Aを通り、リード弁13及び弁カバー20を介して吐出配管2Bからシェル2の外部に排出される。 Next, the operation of the scroll compressor 1 will be described with reference to FIG. When the motor 4 is energized, the main shaft 3 rotates and the orbiting scroll 11 at the tip of the main shaft 3 performs a revolving motion. Then, along with the orbiting motion of the orbiting scroll 11, the compression chamber 10A moves toward the center while reducing the volume, and the refrigerant is compressed. After that, the fluid sucked into the shell 2 is compressed in the fluid compressing unit 10, passes through the discharge port 12 </ b> A of the fixed scroll 12, and passes from the discharge pipe 2 </ b> B to the outside of the shell 2 through the reed valve 13 and the valve cover 20. To be discharged.
 ここで、スクロール圧縮機1は、圧縮室10A内の冷媒の容量を増やし、かつ圧縮室10A内の冷却を行うために、圧縮室10A内より高い圧力の液冷媒を圧縮室10Aに流入させるインジェクションが可能な構造を有している。具体的には、図2に示すように、固定スクロール12には圧縮室10Aに液冷媒を流入する複数のインジェクションポート12Bが設けられており、インジェクションポート12Bから固定スクロール12の圧縮過程の中間部に液冷媒が流入するようになっている。なお、図2において、インジェクションポート12Bが2つ設けられている場合について例示しているが、2つ以上設けられていてもよい。インジェクションポート12Bは、固定スクロール12の上面から渦巻き体の形成面まで貫通した貫通孔からなっており、インジェクションポート12B上には、インジェクションポート12Bに作動流体(液冷媒)を供給するためのインジェクション配管ユニット30が配置されている。 Here, the scroll compressor 1 causes the liquid refrigerant having a pressure higher than that in the compression chamber 10A to flow into the compression chamber 10A in order to increase the capacity of the refrigerant in the compression chamber 10A and to cool the compression chamber 10A. Has a possible structure. Specifically, as shown in FIG. 2, the fixed scroll 12 is provided with a plurality of injection ports 12B through which liquid refrigerant flows into the compression chamber 10A, and an intermediate portion of the compression process of the fixed scroll 12 from the injection port 12B. Liquid refrigerant flows into the tank. In addition, in FIG. 2, although illustrated about the case where the two injection ports 12B are provided, two or more may be provided. The injection port 12B is a through-hole penetrating from the upper surface of the fixed scroll 12 to the surface where the spiral body is formed, and an injection pipe for supplying a working fluid (liquid refrigerant) to the injection port 12B on the injection port 12B. A unit 30 is arranged.
 図4はインジェクション配管ユニット30の一例を示す斜視図である。図4のインジェクション配管ユニット30は、本配管31、枝配管32A、32B、継ぎ手部材33を有している。本配管31と枝配管32A、32Bとは、例えば銅管等からなっており、それぞれ別体の配管から構成されている。本配管31は、外部からインジェクションポート12Bに供給される作動流体が流れるものであり、端部が継ぎ手部材33に接合されている。一方、枝配管32A、32Bは、それぞれ一端が継ぎ手部材33に接合されており、他端には配管カバー34A、34Bが取り付けられている。そして、配管カバー34A、34Bがネジ35によりインジェクションポート12B上にそれぞれ固定されることにより、枝配管32A、32Bが複数のインジェクションポート12Bにそれぞれ接続されることになる。 FIG. 4 is a perspective view showing an example of the injection piping unit 30. The injection piping unit 30 shown in FIG. 4 has a main pipe 31, branch pipes 32 </ b> A and 32 </ b> B, and a joint member 33. The main pipe 31 and the branch pipes 32A and 32B are made of, for example, a copper pipe or the like, and are constituted by separate pipes. In the main pipe 31, the working fluid supplied from the outside to the injection port 12 </ b> B flows, and the end portion is joined to the joint member 33. On the other hand, one end of each of the branch pipes 32A and 32B is joined to the joint member 33, and pipe covers 34A and 34B are attached to the other ends. Then, the pipe covers 34A and 34B are respectively fixed on the injection port 12B with screws 35, whereby the branch pipes 32A and 32B are connected to the plurality of injection ports 12B, respectively.
 継ぎ手部材33は、本配管31と複数の枝配管32A、32Bとを接続するものであって、例えば鉄製等の高強度な材料からなっている。継ぎ手部材33には本配管31と複数の枝配管32A、32Bとの端部がそれぞれ嵌め込まれて接合されている。図5は、図4のインジェクション配管ユニット30における継ぎ手部材の断面を示す断面図である。図5に示すように、継ぎ手部材33は、両端に開口33Bを有する円筒形状を有するものであって、側壁33Aに本配管31を取り付けるための穴が設けられている。そして、継ぎ手部材33の開口33Bにそれぞれ枝配管32A、32Bが嵌め込まれて固定され、側壁33Aの穴33Hに本配管31が嵌め込まれて固定されている。 The joint member 33 connects the main pipe 31 and the plurality of branch pipes 32A and 32B, and is made of a high-strength material such as iron. End portions of the main pipe 31 and the plurality of branch pipes 32A and 32B are fitted and joined to the joint member 33, respectively. FIG. 5 is a cross-sectional view showing a cross section of the joint member in the injection piping unit 30 of FIG. As shown in FIG. 5, the joint member 33 has a cylindrical shape having openings 33B at both ends, and is provided with holes for attaching the main pipe 31 to the side wall 33A. The branch pipes 32A and 32B are fitted and fixed to the opening 33B of the joint member 33, respectively, and the main pipe 31 is fitted and fixed to the hole 33H of the side wall 33A.
 ここで、枝配管32A、32Bは、それぞれ外径がφ1、内径がφ2、肉厚がD1で形成されている。一方、継ぎ手部材33は、外径φ10が枝配管32A、32Bの外径φ1よりも大きく形成されており、内径φ2が枝配管32A、32Bの内径φ2になるように形成されている。また、継ぎ手部材33の肉厚D10は枝配管32A、32Bの肉厚D1よりも厚くなっている。なお、本配管31と枝配管32A、32Bとは、同一の外径及び内径を有する配管からなっていてもよいし、異なる外径及び内径の配管であってもよい。 Here, the branch pipes 32A and 32B are formed with an outer diameter of φ1, an inner diameter of φ2, and a thickness of D1, respectively. On the other hand, the joint member 33 is formed such that the outer diameter φ10 is larger than the outer diameter φ1 of the branch pipes 32A and 32B, and the inner diameter φ2 is the inner diameter φ2 of the branch pipes 32A and 32B. Further, the thickness D10 of the joint member 33 is larger than the thickness D1 of the branch pipes 32A and 32B. The main pipe 31 and the branch pipes 32A and 32B may be pipes having the same outer diameter and inner diameter, or may be pipes having different outer diameters and inner diameters.
 継ぎ手部材33の開口33B側には、継ぎ手部材33の内径φ2よりも大きく形成され、枝配管32A、32Bが挿入される挿入部33Cが形成されている。そして、複数の枝配管32A、32Bは、継ぎ手部材33の両端の開口33Bの挿入部33Cに挿入され、ロウ付け等により接合されることになる。特に、挿入部33Cは、継ぎ手部材の内径φ2よりも肉厚D1分だけ大きい径を有している。すると、挿入部33Cに枝配管32A、32Bが挿入された際、継ぎ手部材33内において段差が形成されることを防止することができる。よって、継ぎ手部材33内を流れる作動流体が流通した際の流動抵抗を低減することができる。 On the opening 33B side of the joint member 33, an insertion portion 33C is formed which is formed larger than the inner diameter φ2 of the joint member 33 and into which the branch pipes 32A and 32B are inserted. The plurality of branch pipes 32A and 32B are inserted into the insertion portions 33C of the openings 33B at both ends of the joint member 33, and are joined by brazing or the like. In particular, the insertion portion 33C has a diameter larger than the inner diameter φ2 of the joint member by the thickness D1. Then, when the branch pipes 32A and 32B are inserted into the insertion portion 33C, it is possible to prevent a step from being formed in the joint member 33. Therefore, the flow resistance when the working fluid flowing through the joint member 33 flows can be reduced.
 一方、継ぎ手部材33の側壁33Aには穴33Hが形成されており、本配管31は穴33Hに嵌り込んで接合される。継ぎ手部材33の側壁33Aの穴33Hは、本配管31が嵌め込まれる嵌め込み部33H1と、嵌め込み部33H1よりも小さい径で形成された貫通部33H2とを有している。嵌め込み部33H1は、所定の嵌め込み深さ(はまり代)D2であって、本配管31の外径と同一の径になるように形成されている。そして、本配管31は嵌め込み部33H1に嵌め込まれ、ロウ付け等により接合される。なお、貫通部33H2は本配管31の内径φ2と同一の大きさを有している。これにより、継ぎ手部材33内に段差が形成されることを防止することができ、継ぎ手部材33内を流れる作動流体が流通した際の流動抵抗を低減することができる。 On the other hand, a hole 33H is formed in the side wall 33A of the joint member 33, and the main pipe 31 is fitted into the hole 33H and joined. The hole 33H of the side wall 33A of the joint member 33 has a fitting portion 33H1 into which the main pipe 31 is fitted, and a through portion 33H2 formed with a smaller diameter than the fitting portion 33H1. The fitting portion 33 </ b> H <b> 1 has a predetermined fitting depth (fitting margin) D <b> 2 and is formed to have the same diameter as the outer diameter of the main pipe 31. The main pipe 31 is fitted into the fitting portion 33H1 and joined by brazing or the like. The penetrating portion 33H2 has the same size as the inner diameter φ2 of the main pipe 31. Thereby, it is possible to prevent a step from being formed in the joint member 33, and to reduce the flow resistance when the working fluid flowing through the joint member 33 flows.
 このように、高い圧力の液冷媒を導くインジェクション配管ユニット30において、本配管31と枝配管32A、32Bの直結部に継ぎ手部材33を追加し、嵌り込み深さ(はまり代)を確保した配管構造にすることで、作用圧力の上昇による過大な応力での配管破損を防止することができる。すなわち、CO2冷媒、R32冷媒等を含有する混合冷媒のような高圧冷媒の使用時、配管の肉厚をアップさせる必要がある。従来のように、1本の枝配管の両端がインジェクションポートに接続し、この枝配管の側壁にバーリング加工等により穴を開けて本配管が接合する構造を採用した場合、バーリング加工等が困難になるため、ロウ付け時の嵌め込み深さ(はまり代)が短い結果となり、過大な応力で亀裂が発生する可能性がある。一方、図1から図5に示すインジェクション配管ユニット30においては、本配管31と枝配管32A、32Bとの直結部に継ぎ手部材33を追加し、嵌め込み深さ(はまり代)を確保した配管形状にすることにより、作用圧力の上昇による過大な応力での配管の破損等を確実に防止することができる。 In this way, in the injection piping unit 30 that guides the high-pressure liquid refrigerant, the joint structure 33 is added to the direct connection portion between the main piping 31 and the branch piping 32A, 32B, and the piping structure in which the fitting depth (fitting margin) is secured. By doing so, it is possible to prevent a pipe from being damaged due to an excessive stress due to an increase in working pressure. That is, when using a high-pressure refrigerant such as a mixed refrigerant containing CO2 refrigerant, R32 refrigerant, etc., it is necessary to increase the thickness of the piping. When a structure is adopted in which both ends of one branch pipe are connected to the injection port as in the prior art, and a hole is formed in the side wall of this branch pipe by burring or the like to join this pipe, burring or the like becomes difficult For this reason, the fitting depth at the time of brazing (the fit margin) is short, and cracks may occur due to excessive stress. On the other hand, in the injection piping unit 30 shown in FIGS. 1 to 5, a joint member 33 is added to the direct connection portion between the main pipe 31 and the branch pipes 32A and 32B, so that the pipe shape is secured with a fitting depth (fitting margin). By doing so, it is possible to reliably prevent the piping from being damaged by an excessive stress due to an increase in the working pressure.
 さらに、継ぎ手部材33が鉄製等の高強度部材にすることで、継ぎ手部材33の大きさをコンパクトにし、省スペース化を可能にし、弁カバー20等によるスペースの少ない固定スクロール12の背面にインジェクション配管ユニット30を設置することができる。 Furthermore, the joint member 33 is made of a high-strength member made of iron or the like, so that the size of the joint member 33 can be made compact and space can be saved, and the injection piping is provided on the back surface of the fixed scroll 12 with little space by the valve cover 20 or the like. A unit 30 can be installed.
 また、継ぎ手部材33が、両端に開口33Bが形成された円筒形状を有し、側壁33Aに穴33Hが形成されたものであり、複数の枝配管32A、32Bが、継ぎ手部材33の両端の開口33Bに嵌り込んで接合されており、本配管31は、継ぎ手部材33の側壁33Aの穴33Hに嵌り込んで接合されているとき、複数の枝配管32A、32Bの嵌め込み深さ(はまり代)を確実に確保して配管の破損等を確実に防止することができる。また、継ぎ手部材33の軸方向及び周方向の配管形状または配管径の自由度をあげ、弁カバー20等によるスペースの少ない固定スクロール12の背面にインジェクション配管ユニット30を設置することができる。 In addition, the joint member 33 has a cylindrical shape with openings 33B formed at both ends, and holes 33H are formed in the side wall 33A, and a plurality of branch pipes 32A and 32B are opened at both ends of the joint member 33. When the pipe 31 is fitted and joined to the hole 33H of the side wall 33A of the joint member 33, the fitting depth of the plurality of branch pipes 32A and 32B (fitting allowance) is set. It can be surely secured to prevent the pipe from being damaged. Further, the degree of freedom of the pipe shape or pipe diameter in the axial direction and the circumferential direction of the joint member 33 can be increased, and the injection pipe unit 30 can be installed on the back surface of the fixed scroll 12 with little space by the valve cover 20 or the like.
 さらに、継ぎ手部材33の側壁33Aの穴33Hは、本配管31が嵌め込まれる嵌め込み部33H1と、嵌め込み部33H1よりも小さい径で形成された貫通部33H2とを有するものであれば、本配管31の嵌め込み深さ(はまり代)を確実に確保して配管の破損等を確実に防止することができる。 Furthermore, if the hole 33H of the side wall 33A of the joint member 33 has a fitting part 33H1 into which the main pipe 31 is fitted and a through part 33H2 formed with a smaller diameter than the fitting part 33H1, the main pipe 31 is provided. It is possible to reliably secure the fitting depth (fitting margin) and to prevent the pipe from being damaged.
実施形態2.
 図6は、本発明の実施形態2に係るスクロール圧縮機におけるインジェクション配管ユニットを示す斜視図であり、図6を参照してインジェクション配管ユニット130について説明する。なお、図6のインジェクション配管ユニット130において、図4のインジェクション配管ユニット30と同一の構成を有する部位には、同一の符号を付してその説明を省略する。図6のインジェクション配管ユニット130が、図4のインジェクション配管ユニット30と異なる点は、継ぎ手部材133の構造である。
Embodiment 2. FIG.
FIG. 6 is a perspective view showing an injection piping unit in the scroll compressor according to Embodiment 2 of the present invention, and the injection piping unit 130 will be described with reference to FIG. 6. In addition, in the injection piping unit 130 of FIG. 6, the part which has the same structure as the injection piping unit 30 of FIG. 4 is attached | subjected, and the description is abbreviate | omitted. The injection pipe unit 130 in FIG. 6 is different from the injection pipe unit 30 in FIG. 4 in the structure of the joint member 133.
 図6の継ぎ手部材133は、一方に開口33Bが形成され他方が閉塞している円筒形状を有しており、側壁33Aに複数の穴33Hが形成されている。そして、本配管31は、継ぎ手部材133の開口33Bに嵌り込んで接合されており、複数の枝配管32A、32Bは、継ぎ手部材133の複数の穴33Hにそれぞれ嵌り込んで接合されている。なお、図6の継ぎ手部材133と本配管31との接合構造は、図5の継ぎ手部材33と枝配管32A、32Bの接合構造と同一であり、図6の継ぎ手部材133と枝配管32A、32Bとの接合構造は、図5の継ぎ手部材33と本配管31の接合構造と同一である。 6 has a cylindrical shape in which an opening 33B is formed on one side and the other is closed, and a plurality of holes 33H are formed on the side wall 33A. The main pipe 31 is fitted and joined to the opening 33B of the joint member 133, and the plurality of branch pipes 32A and 32B are fitted and joined to the plurality of holes 33H of the joint member 133, respectively. The joint structure between the joint member 133 and the main pipe 31 in FIG. 6 is the same as the joint structure between the joint member 33 and the branch pipes 32A and 32B in FIG. 5, and the joint member 133 and the branch pipes 32A and 32B in FIG. Is the same as the joint structure of the joint member 33 and the main pipe 31 in FIG.
 このような場合であっても、実施形態1と同様、高い圧力の液冷媒を導くインジェクション配管ユニット30において、本配管31と枝配管32A、32Bの直結部に継ぎ手部材133を追加し、嵌め込み深さ(はまり代)を確保した配管形状とすることで、作用圧力の上昇による過大な応力での配管破損を防止することができる。 Even in such a case, as in the first embodiment, in the injection piping unit 30 that guides the high-pressure liquid refrigerant, the joint member 133 is added to the direct connection portion between the main piping 31 and the branch piping 32A, 32B, and the insertion depth is increased. By adopting a pipe shape that secures the margin (tightening allowance), it is possible to prevent pipe breakage due to excessive stress due to an increase in working pressure.
実施形態3.
 図7は、本発明のスクロール圧縮機を用いた空気調和装置の実施形態を示す冷媒回路図であり、図7を参照して冷凍サイクル装置200について説明する。冷凍サイクル装置200は、スクロール圧縮機1と、凝縮器202と、減圧装置である第1膨張弁203と、蒸発器204とが冷媒配管により接続されたものである。スクロール圧縮機1は、図1から図6に示すように、冷媒を圧縮するものであって、インジェクションポート12Bが設けられた構造を有している。
Embodiment 3. FIG.
FIG. 7 is a refrigerant circuit diagram showing an embodiment of an air-conditioning apparatus using the scroll compressor of the present invention, and the refrigeration cycle apparatus 200 will be described with reference to FIG. The refrigeration cycle apparatus 200 includes a scroll compressor 1, a condenser 202, a first expansion valve 203 that is a decompression apparatus, and an evaporator 204 connected by a refrigerant pipe. As shown in FIGS. 1 to 6, the scroll compressor 1 compresses a refrigerant and has a structure provided with an injection port 12B.
 凝縮器202は、主冷媒回路を流れる冷媒と熱媒体(たとえば空気や水等)とが熱交換することで、冷媒が有している熱を熱媒体に放熱するものである。凝縮器202は、たとえば図示省略の送風機から供給される空気と冷媒との間で熱交換を行なうようになっている。この凝縮器202は、たとえば冷媒を通過させる伝熱管およびその伝熱管を流れる冷媒と空気との間の伝熱面積を大きくするための伝熱フィン(図示せず)を有し、冷媒と空気(外気)との熱交換を行うものである。 The condenser 202 radiates the heat of the refrigerant to the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water). For example, the condenser 202 exchanges heat between air supplied from a blower (not shown) and the refrigerant. The condenser 202 includes, for example, a heat transfer tube through which the refrigerant passes and a heat transfer fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air. Heat exchange with the outside air).
 第1膨張弁203は、主冷媒回路を流れる冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。蒸発器204は、主冷媒回路を流れる冷媒と熱媒体(たとえば空気や水等)とが熱交換することで、熱媒体が有している熱を冷媒に吸熱させるものである。凝縮器202は、たとえば図示省略の送風機から供給される空気と冷媒との間で熱交換を行なうようになっている。この蒸発器204は、たとえば冷媒を通過させる伝熱管及び伝熱管を流れる冷媒と空気との間の伝熱面積を大きくするための伝熱フィン(図示せず)を有し、冷媒と室内空気と間での熱交換を行ない、冷媒を蒸発させてガス化させる。 The first expansion valve 203 decompresses and expands the refrigerant flowing through the main refrigerant circuit, and may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve. The evaporator 204 causes the refrigerant to absorb the heat of the heat medium by exchanging heat between the refrigerant flowing through the main refrigerant circuit and the heat medium (for example, air or water). For example, the condenser 202 exchanges heat between air supplied from a blower (not shown) and the refrigerant. The evaporator 204 includes, for example, a heat transfer tube that allows the refrigerant to pass therethrough and a heat transfer fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the air. Heat is exchanged between them, and the refrigerant is evaporated and gasified.
 さらに、冷凍サイクル装置200は、凝縮器202と第1膨張弁203との間に、スクロール圧縮機1にインジェクションを行うためのインジェクション配管205及び冷媒間熱交換器206が接続されている。インジェクション配管205は、凝縮器202と第1膨張弁203との間からスクロール圧縮機1のインジェクション配管ユニット30、130を介してインジェクションポート12B(図1~図6参照)へインジェクションする冷媒を流通させるものである。冷媒間熱交換器206は、凝縮器202から第1膨張弁203へ流れる冷媒と、インジェクション配管205を流れる冷媒との間で熱交換を行うものである。また、インジェクション配管205には、第2膨張弁207が設けられており、冷媒間熱交換器206に流入する一方の冷媒を減圧するとともに、インジェクション配管205を流れる冷媒流量を調整する。 Furthermore, in the refrigeration cycle apparatus 200, an injection pipe 205 and an inter-refrigerant heat exchanger 206 for injecting the scroll compressor 1 are connected between the condenser 202 and the first expansion valve 203. The injection pipe 205 circulates the refrigerant to be injected from between the condenser 202 and the first expansion valve 203 to the injection port 12B (see FIGS. 1 to 6) via the injection pipe units 30 and 130 of the scroll compressor 1. Is. The inter-refrigerant heat exchanger 206 exchanges heat between the refrigerant flowing from the condenser 202 to the first expansion valve 203 and the refrigerant flowing through the injection pipe 205. Further, the injection pipe 205 is provided with a second expansion valve 207, which decompresses one refrigerant flowing into the inter-refrigerant heat exchanger 206 and adjusts the flow rate of the refrigerant flowing through the injection pipe 205.
 上記実施形態3の冷凍サイクル装置200の場合であっても、実施形態1、2と同様、CO2冷媒、R32冷媒等を含有する混合冷媒のような高圧冷媒に使用するインジェクション配管ユニット30、130の直結部に継ぎ手部材33、133を追加し、嵌め込み深さ(はまり代)を確保した配管形状とすることにより、作用圧力の上昇による過大な応力での配管破損を防止することができる。 Even in the case of the refrigeration cycle apparatus 200 of the third embodiment, as in the first and second embodiments, the injection piping units 30 and 130 used for the high-pressure refrigerant such as the mixed refrigerant containing the CO2 refrigerant, the R32 refrigerant, and the like. By adding the joint members 33 and 133 to the direct connection portion to form a pipe shape that secures the fitting depth (fitting allowance), it is possible to prevent the pipe from being damaged due to excessive stress due to an increase in working pressure.
 本発明の実施形態は、上記各実施形態に限定されない。たとえば、図7において、インジェクション配管205は冷媒間熱交換器206において熱交換される場合について例示しているが、スクロール圧縮機1のインジェクションポート12Bに冷媒をインジェクションする回路であればこれに限定されず、公知の種々の冷凍サイクル回路を用いることができる。 The embodiments of the present invention are not limited to the above embodiments. For example, FIG. 7 illustrates the case where the injection pipe 205 is heat-exchanged in the inter-refrigerant heat exchanger 206, but is not limited to this as long as it is a circuit for injecting refrigerant into the injection port 12B of the scroll compressor 1. Instead, various known refrigeration cycle circuits can be used.
 1 スクロール圧縮機、2 シェル、2A 吸入配管、2B 吐出配管、2C 油溜め、2D、2E フレーム、3 主軸、4 モータ、4A ロータ、4B ステータ、10 流体圧縮部、10A 圧縮室、11 揺動スクロール、11A 揺動軸受、12 固定スクロール、12A 吐出口、12B インジェクションポート、13 リード弁、14 弁押さえ、15 弁ボルト、20 弁カバー、21 挿入穴、23 ネジ、30、130 インジェクション配管ユニット、31 本配管、32A、32B 枝配管、33、133 継ぎ手部材、33A 側壁、33B 開口、33C 挿入部、33H 穴、33H1 嵌め込み部、33H2 貫通部、34A、34B 配管カバー、35 ネジ、200 冷凍サイクル装置、202 凝縮器、203 第1膨張弁、204 蒸発器、205 インジェクション配管、206 冷媒間熱交換器、207 第2膨張弁、D1、D10 肉厚、φ1、φ10 外径φ2 内径。 1 Scroll compressor, 2 shell, 2A suction pipe, 2B discharge pipe, 2C oil sump, 2D, 2E frame, 3 spindle, 4 motor, 4A rotor, 4B stator, 10 fluid compression unit, 10A compression chamber, 11 swing scroll , 11A rocking bearing, 12 fixed scroll, 12A discharge port, 12B injection port, 13 reed valve, 14 valve presser, 15 valve bolt, 20 valve cover, 21 insertion hole, 23 screws, 30, 130 injection piping unit, 31 Pipe, 32A, 32B branch pipe, 33, 133 joint member, 33A side wall, 33B opening, 33C insertion part, 33H hole, 33H1 insertion part, 33H2 penetration part, 34A, 34B pipe cover, 35 screws, 200 refrigeration cycle apparatus, 202 Condenser, 203 first expansion valve, 204 an evaporator, 205 injection line, 206 refrigerant heat exchanger, 207 second expansion valve, D1, D10 thickness, .phi.1, .phi.10 outer diameter φ2 inner diameter.

Claims (8)

  1.  渦巻き体が設けられ、モータの駆動により揺動運動を行う揺動スクロールと、前記揺動スクロールの渦巻き体に嵌め込まれる渦巻き体を有し、前記揺動スクロールと協働して作動ガスを圧縮する圧縮室を形成する固定スクロールとを備えたスクロール圧縮機であって、
     前記固定スクロールは、上部から前記圧縮室に貫通する複数のインジェクションポートを有するものであり、
     前記固定スクロールの上部の前記複数のインジェクションポート上に設けられ、前記複数のインジェクションポートに作動流体を供給するインジェクション配管ユニットと
     を備え、
     前記インジェクション配管ユニットは、
     外部から前記複数のインジェクションポートに供給される作動流体が流れる本配管と、
     一端が前記本配管に接続され、他端が前記複数のインジェクションポートにそれぞれ接続された複数の枝配管と、
     前記本配管と前記複数の枝配管との端部がそれぞれ嵌め込まれて接合された継ぎ手部材と
     を有するスクロール圧縮機。
    A scroll body provided with a spiral body that swings when driven by a motor, and a spiral body that is fitted into the spiral body of the swing scroll, and compresses the working gas in cooperation with the swing scroll. A scroll compressor comprising a fixed scroll forming a compression chamber,
    The fixed scroll has a plurality of injection ports penetrating from the upper part to the compression chamber,
    An injection piping unit that is provided on the plurality of injection ports above the fixed scroll and supplies a working fluid to the plurality of injection ports;
    The injection piping unit is
    A main pipe through which the working fluid supplied to the plurality of injection ports from the outside flows;
    A plurality of branch pipes each having one end connected to the main pipe and the other end connected to the plurality of injection ports;
    A scroll compressor having a joint member in which ends of the main pipe and the plurality of branch pipes are fitted and joined.
  2.  前記継ぎ手部材は、両端に開口が形成された円筒形状を有し、側壁に穴が形成されたものであり、
     前記複数の枝配管は、前記継ぎ手部材の両端の開口に嵌り込んで接合されており、
     前記本配管は、前記継ぎ手部材の側壁の穴に嵌り込んで接合されている請求項1に記載のスクロール圧縮機。
    The joint member has a cylindrical shape in which openings are formed at both ends, and a hole is formed in a side wall;
    The plurality of branch pipes are fitted and joined to openings at both ends of the joint member,
    The scroll compressor according to claim 1, wherein the main pipe is fitted into and joined to a hole in a side wall of the joint member.
  3.  前記継ぎ手部材の側壁の穴は、前記本配管が嵌め込まれる嵌め込み部と、前記嵌め込み部よりも小さい径で形成された貫通部とを有することを特徴とする請求項2に記載のスクロール圧縮機。 The scroll compressor according to claim 2, wherein the hole in the side wall of the joint member has a fitting portion into which the main pipe is fitted, and a through portion formed with a smaller diameter than the fitting portion.
  4.  前記継ぎ手部材の内径は、前記枝配管の外径よりも小さく形成されており、
     前記継ぎ手部材の開口には、前記継ぎ手部材の内径よりも大きく形成され前記枝配管を挿入するための挿入部が形成されている請求項2または3に記載のスクロール圧縮機。
    An inner diameter of the joint member is formed smaller than an outer diameter of the branch pipe,
    4. The scroll compressor according to claim 2, wherein an opening of the joint member is formed to be larger than an inner diameter of the joint member and into which the branch pipe is inserted.
  5.  前記継ぎ手部材は、一方に開口が形成され他方が閉塞している円筒形状を有し、側壁に複数の穴が形成されたものであり、
     前記本配管は、前記継ぎ手部材の開口に嵌り込んで接合されており、
     前記複数の枝配管は、前記継ぎ手部材の複数の穴にそれぞれ嵌り込んで接合されている請求項1に記載のスクロール圧縮機。
    The joint member has a cylindrical shape in which an opening is formed on one side and the other is closed, and a plurality of holes are formed on the side wall.
    The main pipe is fitted into and joined to the opening of the joint member,
    The scroll compressor according to claim 1, wherein the plurality of branch pipes are fitted into and joined to the plurality of holes of the joint member.
  6.  前記作動流体は、CO2冷媒、R32冷媒を含有する混合冷媒である請求項1~5のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 5, wherein the working fluid is a mixed refrigerant containing CO2 refrigerant and R32 refrigerant.
  7.  前記継ぎ手部材は、鉄製からなるものである請求項1~6のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 1 to 6, wherein the joint member is made of iron.
  8.  請求項1~7のいずれか1項に記載の圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the compressor according to any one of claims 1 to 7.
PCT/JP2014/054032 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle device using same WO2015125253A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/054032 WO2015125253A1 (en) 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle device using same
JP2016503837A JP6218919B2 (en) 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle apparatus using the same
GB1608791.8A GB2538005B (en) 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054032 WO2015125253A1 (en) 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle device using same

Publications (1)

Publication Number Publication Date
WO2015125253A1 true WO2015125253A1 (en) 2015-08-27

Family

ID=53877788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054032 WO2015125253A1 (en) 2014-02-20 2014-02-20 Scroll compressor and refrigeration cycle device using same

Country Status (3)

Country Link
JP (1) JP6218919B2 (en)
GB (1) GB2538005B (en)
WO (1) WO2015125253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087227A1 (en) * 2017-10-30 2019-05-09 三菱電機株式会社 Scroll compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126220U (en) * 1978-02-23 1979-09-03
JPS5744615U (en) * 1980-08-28 1982-03-11
JPS63115991A (en) * 1986-10-31 1988-05-20 ゲオルク・フィッシャー・アクチエンゲゼルシャフト Piping connecting joint made of plastic
JPH01299399A (en) * 1988-05-24 1989-12-04 Usui Internatl Ind Co Ltd Production for branch pipe fitting
JPH08173526A (en) * 1994-12-22 1996-07-09 Cytec Kk Blood circuit and blood circuit parts
JPH11159479A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Scroll compressor
JP2001173868A (en) * 1999-12-22 2001-06-29 Mitsubishi Plastics Ind Ltd Synthetic resin made tube fitting
JP2003254488A (en) * 2002-03-06 2003-09-10 Asahi Organic Chem Ind Co Ltd Pipe joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047117B2 (en) * 1977-07-06 1985-10-19 エプソン株式会社 small printer
DE3025222A1 (en) * 1980-07-03 1982-01-28 Bayer Ag, 5090 Leverkusen UNSATURATED POLYESTER RESIN MATERIALS CURABLE AT ROOM TEMPERATURE, METHOD FOR THEIR CURING AND MOLDED BODIES MADE THEREOF
JP3753881B2 (en) * 1999-02-15 2006-03-08 三菱樹脂株式会社 Branch pipe mounting structure
JP2005221231A (en) * 2005-04-26 2005-08-18 Daikin Ind Ltd Refrigerating device and deterioration determination method of refrigerating machine oil
WO2010122988A1 (en) * 2009-04-23 2010-10-28 株式会社ジェイ・エム・エス Medical connector structure
JP2011116822A (en) * 2009-12-01 2011-06-16 Kansai Electric Power Co Inc:The Mixed refrigerant and mixed refrigerant circulation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126220U (en) * 1978-02-23 1979-09-03
JPS5744615U (en) * 1980-08-28 1982-03-11
JPS63115991A (en) * 1986-10-31 1988-05-20 ゲオルク・フィッシャー・アクチエンゲゼルシャフト Piping connecting joint made of plastic
JPH01299399A (en) * 1988-05-24 1989-12-04 Usui Internatl Ind Co Ltd Production for branch pipe fitting
JPH08173526A (en) * 1994-12-22 1996-07-09 Cytec Kk Blood circuit and blood circuit parts
JPH11159479A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Scroll compressor
JP2001173868A (en) * 1999-12-22 2001-06-29 Mitsubishi Plastics Ind Ltd Synthetic resin made tube fitting
JP2003254488A (en) * 2002-03-06 2003-09-10 Asahi Organic Chem Ind Co Ltd Pipe joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087227A1 (en) * 2017-10-30 2019-05-09 三菱電機株式会社 Scroll compressor
JPWO2019087227A1 (en) * 2017-10-30 2020-06-18 三菱電機株式会社 Scroll compressor

Also Published As

Publication number Publication date
JPWO2015125253A1 (en) 2017-03-30
GB2538005A (en) 2016-11-02
GB2538005B (en) 2020-06-24
JP6218919B2 (en) 2017-10-25
GB201608791D0 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
EP2093374A1 (en) Fluid machine and refrigeration cycle device
KR20100096791A (en) Scoroll compressor and refrigsrator having the same
JP6253278B2 (en) Refrigeration cycle
EP3382205B1 (en) Compressor
JP6218919B2 (en) Scroll compressor and refrigeration cycle apparatus using the same
US10851787B2 (en) Compressor bearing housing drain
JP2008038915A (en) Compressor integrated with inflator
JP2017194064A (en) Refrigeration cycle
JP2006132377A (en) Fluid machine
JP6655327B2 (en) Hermetic scroll compressor and refrigeration air conditioner
US8245528B2 (en) Fluid machine
JP4626635B2 (en) Fluid machinery
JP7170887B2 (en) scroll compressor
JP5493958B2 (en) Compressor
JP2006132332A (en) Fluid machine
JP2006214610A (en) Refrigerating device
JP6399637B2 (en) Compressor
JP2015152260A (en) Gas-liquid separator and refrigeration cycle device including the same
JP6285816B2 (en) Compressor
JP5791760B2 (en) Refrigerant compressor
JP5304679B2 (en) Compressor
WO2021245754A1 (en) Scroll compressor and refrigeration cycle device
JP2008163831A (en) Fluid machine
EP2169180A1 (en) Fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503837

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201608791

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140220

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883054

Country of ref document: EP

Kind code of ref document: A1