WO2015122723A1 - 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치 - Google Patents

기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치 Download PDF

Info

Publication number
WO2015122723A1
WO2015122723A1 PCT/KR2015/001496 KR2015001496W WO2015122723A1 WO 2015122723 A1 WO2015122723 A1 WO 2015122723A1 KR 2015001496 W KR2015001496 W KR 2015001496W WO 2015122723 A1 WO2015122723 A1 WO 2015122723A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmission
terminal
subframe
cell
Prior art date
Application number
PCT/KR2015/001496
Other languages
English (en)
French (fr)
Inventor
김봉회
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167024051A priority Critical patent/KR101923454B1/ko
Priority to CN201580008207.6A priority patent/CN105981316B/zh
Priority to JP2016546487A priority patent/JP6393764B2/ja
Priority to US15/111,408 priority patent/US10506585B2/en
Priority to EP15748723.2A priority patent/EP3107229B1/en
Publication of WO2015122723A1 publication Critical patent/WO2015122723A1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present invention relates to a wireless access system supporting Machine Type Communication (MTC), and more particularly, to a method for transmitting a sounding reference signal (SRS) by an MTC terminal and an apparatus for supporting the same. It is about. Background Art
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and SC-FDMA (single) carrier frequency division multiple access) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • the present invention relates to a method for transmitting a sounding reference signal (SRS) in a wireless communication environment supporting MTC and an apparatus supporting the same.
  • SRS sounding reference signal
  • An object of the present invention is to provide an SRS configuration method and an SRS transmission method for repeatedly transmitting an SRS in an MTC environment.
  • Another object of the present invention is to provide apparatuses for supporting such methods.
  • the present invention provides methods for transmitting an SRS in a wireless access system supporting machine type communication and apparatuses supporting the same.
  • a method of transmitting a sounding reference signal (SRS) by a terminal in a wireless access system supporting machine type communication includes an SRS transmission parameter configured for SRS repetitive transmission from a base station. And receiving the SRS repetitive transmission during a predetermined SRS repetitive transmission interval according to the receiving and the SRS transmission parameter. If the subframe in which the SRS repetitive transmission interval and the uplink control information transmission are performed overlaps, the SRS repetitive transmission may not be performed in the overlapping subframe.
  • a terminal for transmitting a sounding reference signal (SRS) in a wireless access system supporting machine type communication may include a receiver, a transmitter, and a processor for supporting SRS transmission.
  • the processor may be configured to control the receiver to receive the SRS transmission parameter configured for SRS repeated transmission from the base station, and to control the transmitter to perform the SRS repeated transmission during the predetermined SRS repeated transmission interval according to the SRS transmission parameter. have. If the SRS repetitive transmission interval overlaps with a subframe in which uplink control information is transmitted, the SRS repetitive transmission may not be performed in the overlapping subframe.
  • repetitive transmission of the SRS may be performed periodically according to a predetermined SRS transmission period, or may be performed aperiodically only when there is a request from the base station.
  • repetitive transmission of the SRS may be performed only in Sal specific SRS subframes.
  • subframes in which repeated transmission of the SRS is performed among the cell specific SRS subframes may be indicated by the base station.
  • repeated transmission of the SRS may be performed only in the indicated subframes.
  • the SRS transmission parameter may include a parameter for generating an SRS sequence for SRS repetitive transmission, and the SRS parameter may be set such that an SRS sequence generates the same SRS sequence during a predetermined SRS repetitive transmission interval.
  • the base station can more reliably estimate the uplink channel for the MTC terminal located in a poor environment by receiving the repeated SRS.
  • an uplink channel for the MTC terminal can be efficiently used.
  • FIG. 1 is a diagram for explaining physical channels and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a wireless frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system.
  • FIG. 7 shows a subframe structure of an LTE-A system based on cross carrier scheduling.
  • 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
  • FIG. 10 (a) is a diagram illustrating the concept of periodic SRS transmission
  • FIG. 10 (b) is a diagram illustrating the concept of non-periodic SRS transmission.
  • FIG. 11 is a diagram illustrating an example of a method of repeatedly transmitting an SRS by an MTC terminal in the case of trigger type 0 among SRS transmission schemes.
  • FIG. 12 is a diagram illustrating an example of a method of repeatedly transmitting an SRS by an MTC terminal in the case of an SRS transmission scheme increase trigger type 1.
  • FIG. 12 is a diagram illustrating an example of a method of repeatedly transmitting an SRS by an MTC terminal in the case of an SRS transmission scheme increase trigger type 1.
  • the apparatus described with reference to FIG. 13 is a means in which the methods described with reference to FIGS. 1 to 12 may be implemented.
  • Embodiments of the present invention described in detail below relate to methods for transmitting an SRS in a wireless access system supporting machine type communication and devices supporting the same.
  • each component or feature may be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for components or features of another embodiment.
  • procedures or steps that may obscure the gist of the present invention are not described, and procedures or steps that can be understood by those skilled in the art are not described.
  • the terms “... unit”, “!”mode”, etc. described in the specification mean a unit for processing at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software.
  • “a” or “an”, “one”, “the”, and the like shall be used herein in the context of describing the present invention (particularly in the context of the following claims). Unless otherwise indicated or clearly contradicted by context, the terms may be used in the sense including both the singular and the plural.
  • Embodiments of the present invention have been described with reference to data transmission / reception relations between a base station and a mobile station.
  • the base station is meant as a network and a terminal node that directly communicates with the mobile station. Certain operations described as being performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS) Mobile. It may be replaced with terms such as Subscriber Station, Mobile Terminal, or Advanced Mobile Station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS Advanced Mobile Station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station can be a transmitting end and a base station can be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.XX system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems.
  • 3GPP 3rd Generation Partnership Project
  • Embodiments of the present invention may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents. In addition, all terms disclosed in this document may be described by the above standard document.
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA is IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA (Evolved UTRA) and the like can be implemented in a wireless technology.
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to the IEEE 802.16e / m system.
  • a terminal receives information from a base station through downlink (DL) and transmits information to a base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the UE In the state in which the power is turned off, the UE is turned on again or enters a new cell, and performs an initial cell search operation such as synchronizing with the base station in step S11. To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. . Subsequently, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to acquire broadcast information in a cell.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • PBCH physical broadcast channel
  • the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell discovery step.
  • DL RS downlink reference signal
  • the UE After the initial cell discovery, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to physical downlink control channel information in step S12. By doing so, more specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure such as step S 13 to step S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), and answers a preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the message may be received (S14).
  • the UE may perform additional layer resolution procedures such as transmitting additional physical random access channel signals (S15) and receiving physical downlink control channel signals and corresponding physical downlink shared channel signals (S16). Resolution Procedure).
  • the UE may receive a physical downlink control channel signal and / or a physical downlink shared channel signal (S) and a physical uplink shared channel (A) as a general uplink / downlink signal transmission procedure.
  • a PUSCH (Physical Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through a PUCCH, but may be transmitted through a PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI can be aperiodically transmitted through the PUSCH according to a network request / instruction.
  • FIG. 2 shows the structure of a wireless frame used in embodiments of the present invention.
  • FIG. 2 (a) shows a frame structure type 1.
  • the type 1 frame structure can be applied to both a full duplex Frequency Division Duplex (FDD) system and a half duplex FDD system.
  • FDD Frequency Division Duplex
  • TTI transmission time interval
  • a slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain.
  • a plurality of resource blocks are included in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • 3GPP LTE uses the OFDMA in the "downlink OFDM symbols, so is to represent one symbol period (symbol period).
  • the OFDM symbol may be referred to as one SC-FDMA symbol or a symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10 ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed. have.
  • FIG. 2 (b) shows a frame structure type 2.
  • Type 2 frame structure is applied to the TDD system.
  • Each half frame consists of five subframes having a length of 30720 ' 7 l ms .
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization, or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of a special frame (length of DwPTS / GP UpPTS).
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols and one resource block includes 12 subcarriers in the frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 X 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • the data area is allocated a PUSCH carrying user data.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to an RB pair have different portions in each of the two slots. Occupies a carrier. This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot of a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. data region).
  • Examples of the downlink control channel used in 3 GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH is a male answer channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • PDCCH Physical Downlink Control Channel
  • the PDCCH includes resource allocation and transmission format of downlink shared channel (DL-SCH) (ie, DL-Grant) and resource allocation information of uplink shared channel (UL-SCH) (ie, uplink grant).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • upper-layer control such as paging information in paging channel (PCH), system information in DL-SCH, random access response transmitted in PDSCH
  • PCH paging information in paging channel
  • It may carry resource allocation for a message, a set of transmission power control commands for individual terminals in a certain terminal group, information on whether voice over IP (VoIP) is activated or the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of an aggregation of one or several consecutive CCEs (control channel elements).
  • the PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • CCEs are treated in multiple resource element groups (REGs).
  • the format of the PDCCH and the number of possible bits of the PDCCH are determined by the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the multiplexed PDCCHs for the plurality of UEs may be transmitted in the control region.
  • the PDCCH is composed of one or more consecutive CCE aggregations (CCE aggregation).
  • CCE refers to a unit based on nine sets of REGs consisting of four resource elements. Each REG has four Quadrature Phase Shift Keying (QPSK) symbols. Resource elements occupied by a reference signal (RS) are not included in the REG. That is, the total number of REGs in the OFDM symbol may vary depending on whether a cell talk reference signal exists.
  • the concept of REG which maps four resource elements to one group, can also be applied to other downlink control channels (eg, PCFICH or PHICH). If REG is not assigned to PCFICH or PHICH, the number of CCEs available in the system is ⁇ CCE REG ⁇ J, and each CCE is from 0
  • ⁇ CCE 1 has syntax.
  • the base station may use ⁇ 1, 2, 4, 8 ⁇ CCEs to configure one PDCCH signal, wherein ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level. It is.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel condition / ⁇ . For example, a PDCCH for a terminal having a good downlink channel state (close to the base station) may be sufficient with only one CCE. half In case of a UE having a bad channel state (when it is at a cell boundary), eight CCEs may be required for sufficient robustness.
  • the power level of the PDCCH may also be adjusted to match the channel state.
  • Table 2 below shows the PDCCH format, and four PDCCH formats are supported as shown in Table 2 according to the CCE aggregation level.
  • MCS level refers to the code rate and modulation order used for data coding.
  • the depressive MCS level is used for link adaptation. In general, three to four MCS levels may be considered in a control channel for transmitting control information.
  • control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI downlink control information
  • the configuration of information carried in the PDCCH payload may vary depending on the DCI format.
  • the PDCCH payload means an information bit. Table 3 below shows DCI according to DCI format.
  • the DCI format includes a format 0 for PUSCH scheduling, a format 1 for scheduling one PDSCH codeword, and a simple format of one PDSCH codeword.
  • Format 1A for compact scheduling Format 1C for very simple scheduling of DL-SCH, Format 2, PD for scheduling PDSCH in closed-loop spatial multiplexing mode Openloop) format 2A for PDSCH scheduling in spatial multiplexing mode, and formats 3 and 3A for transmission of a TPC command for uplink channel.
  • DCI format 1A may be used for PDSCH scheduling regardless of any transmission mode configured in the terminal.
  • the PDCCH payload length may vary depending on the DCI format.
  • the type and length thereof according to the PDCCH payload may vary depending on whether it is a simple scheduling or a transmission mode configured in the terminal.
  • the transmission mode may be configured for the UE to receive downlink data through the PDSCH.
  • the downlink data through PDSCH ' includes scheduled data, paging, random access response, or broadcast information through BCCH.
  • Downlink data through the PDSCH is related to the DCI format signaled through the PDCCH.
  • the transmission mode may be set semi-statically to the terminal through higher layer signaling (eg, RRC (Radio Resource Control) signaling).
  • the transmission mode may be classified into single antenna transmission or multi-antenna transmission.
  • the UE is set to a semi-static transmission mode through higher layer signaling.
  • multi-antenna transmissions include transmit diversity, open-loop or closed-loop spatial multiplexing, and multi-user-multiple input multiple outputs.
  • beamforming Transmit diversity is a technique of increasing transmission reliability by transmitting the same data in multiple transmit antennas.
  • Spatial multiplexing is a technique that allows high-speed data transmission without increasing the bandwidth of the system by simultaneously transmitting different data from multiple transmit antennas.
  • Beamforming is a technique of increasing the signal to interference plus noise ratio (SINR) of a signal by applying weights according to channel conditions in a multiple antenna.
  • SINR signal to interference plus noise ratio
  • the DCI format is dependent on a transmission mode configured in the terminal.
  • the UE has a reference DCI format for monitoring according to a transmission mode configured for the UE.
  • the transmission mode set in the terminal may have ten transmission modes as follows.
  • transmission mode 1 a single antenna port; Port 0
  • Transmission mode 7 recording supporting single layer transmission, not based on codebook
  • Transport mode 8 Recording supporting up to two layers, not based on codebook
  • Transmission mode 9 Precoding supporting up to eight layers not based on codebook
  • Transmission mode 10 precoding supporting up to eight layers, used for CoMP, not based on codebook
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (eg, Radio Network Temporary Identifier (RNTI)) according to the owner usage of the PDCCH. If it is a PDCCH for a specific terminal, a unique identifier (eg, C-RNTI (Cell-RNTI)) of the terminal may be masked on the CRC.
  • a paging indication identifier eg, P-RNTI (Paging-RNTI)
  • P-RNTI Paging-RNTI
  • a system information identifier eg, a System Information RNTI (SI-RNTI)
  • SI-RNTI System Information RNTI
  • RA-RNTI random access-RNTI
  • the base station performs channel coding on the control information added with the CRC to generate coded data.
  • channel coding may be performed at a code rate according to the MCS level.
  • the base station performs rate matching according to the CCE aggregation level allocated to the PDCCH format, and modulates coded data to generate modulation symbols.
  • a modulation sequence according to the MCS level can be used.
  • Configure one PDCCH The modulation symbols may have one of 1, 2, 4, and 8 CCE aggregation levels.
  • the base station maps modulation symbols to physical resource elements (CCE to RE mapping).
  • a plurality of PDCCHs may be transmitted in one subframe. That is, the control region of one subframe includes a plurality of CCEs having indexes 0 to ⁇ « ⁇ ⁇ 1 .
  • N ccE, k means the total number of CCEs in the control region of the k- th subframe.
  • the UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
  • blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE monitors the PDCCH of every subframe in order to receive data transmitted to the UE.
  • the UE wakes up in the monitoring interval of every DRX cycle and monitors the PDCCH in the subframe corresponding to the monitoring interval.
  • the subframe in which PDCCH monitoring is performed is called a non-DRX subframe.
  • the UE In order to receive the PDCCH transmitted to the UE, the UE should perform blind decoding on all CCEs present in the control region of the non-DRX subframe. Since the UE does not know which PDCCH format is transmitted, it is necessary to decode all PDCCHs at the CCE aggregation level possible until blind decoding of the PDCCH is successful in every non-DRX subframe. Since the UE does not know how many CCEs the PDCCH uses, it should attempt detection at all possible CCE aggregation levels until the blind decoding of the PDCCH succeeds. In the 1113 LTE system, a search space (SS) concept is defined for blind decoding of a UE.
  • SS search space
  • the search space means a PDCCH candidate set for the UE to monitor and may have a different size according to each PDCCH format.
  • the search space may be configured as a common search space (CSS) and a UE-specific / dedicated search space (USS).
  • the UE In the case of the common search space, all terminals can know the size of the common search space, but the terminal specific search space can be set individually for each terminal. Accordingly, the UE must monitor both the UE-specific search space and the common search space in order to decode the PDCCH. Accordingly, the UE performs up to 44 blind decoding (BD) in one subframe. This does not include blind decoding performed according to different CRC values (eg C-RNTI, P-RNTI, SI-RNTI, RA—RNTI).
  • CRC values eg C-RNTI, P-RNTI, SI-RNTI, RA—RNTI
  • the base station may not be able to secure the CCE resources for transmitting the PDCCH to all the terminals to transmit the PDCCH in a given subframe. This is because resources remaining after the CCE location is allocated may not be included in the search space of a specific UE.
  • a terminal specific hopping sequence may be applied to the starting point of the terminal specific search space to minimize this barrier that may continue to the next subframe.
  • Table 4 shows the sizes of the common search space and the terminal specific search space.
  • the UE does not simultaneously perform searches according to all defined DCI formats. Specifically: The UE always performs a search for DCI formats 0 and 1A in the UE-specific search space. In this case, the DCI formats 0 and 1A have the same size, but the UE may distinguish the DCI formats by using a flag used for distinguishing DCI formats 0 and 1A included in the PDCCH. In addition, the terminal DCI 0 In addition to the DCI format 1A and other DCI formats may be required, for example DCI formats 1, 1B, 2.
  • the UE may search for DCI formats 1A and 1C.
  • the terminal may be configured to search for DCI format 3 or 3A, and DCI formats 3 and 3A have the same size as DCI formats 0 and 1A, but the terminal may use the CRC scrambled by another identifier other than the UE-specific identifier. DCI format can be distinguished by using.
  • the search space means a PDCCH candidate set according to the aggregation level ⁇ ⁇ 1, 2, 4, 8 ⁇ .
  • the CCE according to the PDCCH candidate set of the search space may be determined by Equation 1 below.
  • the UE monitors both the UE-specific search space and the common search space to decode the PDCCH.
  • the common search space (CSS) supports PDCCHs having an aggregation level of ⁇ 4, 8 ⁇
  • the UE specific search space supports PDCCHs having an aggregation level of ⁇ 1, 2, 4, 8 ⁇ . do.
  • Table 5 shows PDCCH candidates monitored by the terminal.
  • LTE system 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (Lel-8 or Rel-9) system
  • LTE system is a multi-carrier modulation (CC) using a single component carrier (CC) by dividing into multiple bands.
  • MCM Multi-Carrier Modulation
  • LTE-A system a method such as Carrier Aggregation (CA), which combines one or more component carriers to support a wider system bandwidth than the LTE system, may be used.
  • CA Carrier Aggregation
  • Carrier aggregation may be replaced with the words carrier aggregation, carrier matching, multi-component carrier environment (Multi-CC) or multicarrier environment.
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), and the aggregation of carriers means not only merging between contiguous carriers but also merging between noncontiguous carriers.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • a case in which the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC)' is the same is called symmetric merging.
  • Such carrier merging may include carrier aggregation, Such as bandwidth aggregation, spectrum aggregation, etc. It may be used interchangeably with the term.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system Juk, LTE-A
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the carrier aggregation may be divided into an intra-band CA and an inter-band CA.
  • Intra-band carrier coalescing means that multiple E> L CCs and / or UL CCs are located adjacent or proximate on frequency. In other words, it may mean that the carrier frequencies of the DL CCs and / or UL CCs are located in the same band.
  • inter-band environments are far from the frequency domain.
  • inter-band CA It may be called an inter-band CA.
  • the terminal may use a plurality of radio frequency (RF) terminals to perform communication in a carrier aggregation environment.
  • RF radio frequency
  • LTE-A system uses the concept of a cell (cell) to manage radio resources.
  • the aforementioned carrier merging environment may be referred to as a multiple cells environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC). Uplink resources are not required. Therefore, the SAL may be composed of only downlink resources, or downlink resources and uplink resources.
  • a specific UE when a specific UE has only one configured serving cell, it may have one DL CC and one UL CC. However, when a specific terminal has two or more configured serving cells, it may have as many DL CCs as the number of cells and the number of UL CCs may be equal to or smaller than that. Or, conversely, DL CC and UL CC may be configured. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported.
  • Carrier coupling may also be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the term 'cell' in carrier combining is described in terms of frequency and should be distinguished from 'cell' as a geographic area covered by a commonly used base station.
  • intra-band multi-cell the above-described intra-band carrier merging is referred to as intra-band multi-cell, and inter-band carrier merging is referred to as inter-band multi-cell.
  • a cell used in the LTE-A system includes a primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • P cell and S cell may be used as a serving cell.
  • the UE that is in the RRC_CONNECTED state but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving 3 ⁇ 4 consisting of P cells.
  • one or more serving cells may exist, and a total serving cell includes a P cell and one or more S cells.
  • the serving cells may be configured through an RRC parameter.
  • PhysCellld is a Sal's physical layer identifier, which has an integer value from 0 to 503.
  • SCelllndex is a short identifier used to identify an S cell and has an integer value from 1 to 7.
  • ServCelllndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7.
  • a value of 0 applies to P cells, SCelllndex It is given in advance to apply to S Sal. That is, a cell having the smallest cell ID (or sal index) in ServCelllndex becomes a P cell.
  • a P cell means a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process and may also refer to a cell indicated in a handover process.
  • P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the UE may transmit a PUCCH by being allocated only from its own P cell, and may use only the P cell to obtain system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one Pcell is allocated to a specific terminal, and one or more S3 ⁇ 4 may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources. PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among serving 3 ⁇ 4 configured in the carrier aggregation environment.
  • the E-UTRAN adds an S cell to a UE supporting a carrier aggregation environment, all system information related to the operation of a related cell in an RRC—CONNECTED state can be provided through a specific signal. have.
  • the change of the system information can be controlled by the release and addition of the related S cell, and at this time, an RRC connection reconfigutaion message of a higher layer can be used.
  • the E-UTRAN may perform dedicated signaling with different parameters for each terminal, rather than broadcasting in a related S cell.
  • the E-UTRAN may configure a network including one or more S cells in addition to the P cells initially configured in the connection establishment process. Can be.
  • the P cell and the S cell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the P cell
  • the secondary component carrier (SCC) may be used in the same sense as the S cell.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE ⁇ A system used in embodiments of the present invention.
  • CC component carrier
  • LTE ⁇ LTE ⁇
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • 6 (b) shows a carrier aggregation structure used in the LTE_A system.
  • 6 (b) shows a case where three component carriers having a frequency size of 20 MHz are combined.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • M M ⁇ N
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a primary DL CC to the UE. In this case, the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or, UL CC) of the uplink resource may be indicated by a higher layer message such as an RRC message or system information.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage is a DL on which a PDCCH carrying a UL grant is transmitted.
  • This may mean a mapping relationship between a CC and an UL CC using the UL grant, and may include a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which a HARQ ACK / NACK signal is transmitted. It can also mean a mapping relationship.
  • a mapping relationship between a CC and an UL CC using the UL grant, and may include a DL CC (or UL CC) in which data for HARQ is transmitted and a UL CC (or DL CC) in which a HARQ ACK / NACK signal is transmitted. It can also mean a mapping relationship. [149] 2.2 Cross Carrier Scheduling
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • Self-scheduling is a UL in which a PDCCH (DL Grant) and a PDSCH are transmitted in the same DL CC, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC in which the UL Grant has been received. It means to be transmitted through the CC.
  • DL Grant DL Grant
  • UL Grant UL Grant
  • a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted from a DL CC is linked to a DL CC having received an UL grant. This means that it is transmitted through other UL CCs rather than UL CCs.
  • the cross carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling). .
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resources or PUSCH resources to one of a plurality of component carriers using CIF. That is, CIF is set when a PDSCH or a PUSCH resource is allocated to one of the DL JL CCs in which the PDCCH on the DL CC is multi-aggregated.
  • LTE The DCI format in Release-8 can be extended according to the CIF.
  • the configured CIF may be fixed as a 3 bit field or the position of the configured CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE Release-8 may be reused.
  • CIF is not configured when the PDCCH on E> L CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC.
  • the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as in LTE Release-8 may be used.
  • the UE When cross-carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Configuration and PDCCH monitoring is required.
  • the terminal DL CC set indicates a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set indicates a set of UL CCs scheduled for the UE to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the UE DL CC set or a subset of the UE DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the UE DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
  • the PDCCH monitoring set is always the same as the UE DL CC set. In this case, the PDCCH No instructions such as separate signaling for the monitoring set are needed.
  • the PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule the PDSCH or the PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG. 7 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
  • DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured.
  • each DL CC may transmit a PDCCH scheduling its PDSCH without CIF.
  • the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF.
  • DL CCs ' ⁇ ' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
  • FIG. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling used in embodiments of the present invention.
  • a base station and / or terminals may be configured with one or more serving cells.
  • the base station can support a total of four serving cells, such as A cell, B cell, C cell, and D cell, and terminal A is composed of A cell, B cell, and C cell, and terminal B is B cell, C cell, and C cell. It is assumed that the D cell is configured, and the terminal C is configured with a B cell.
  • at least one of the cells configured in each terminal may be configured as a P cell.
  • the P cell is always in an activated state, and the S cell may be activated or deactivated by the base station and / or the terminal.
  • the cell configured in FIG. 8 is a cell capable of adding one CA cell based on a measurement report message from a terminal among cells of a base station and may be configured for each terminal.
  • Configured cell is an ACK / NACK message for PDSCH signal transmission Reserve resources for transmission in advance.
  • An activated cell is a cell configured to transmit an actual PDSCH signal and / or a PUSCH signal among configured cells, and performs CSI reporting and SRS (Sounding Reference Signal) transmission.
  • a deactivated cell (3 ⁇ 4) is a cell configured not to perform PDSCH / PUSCH signal transmission or reception by a command or timer operation of a base station, and also stops CSI reporting and SRS transmission.
  • FIG. 9 is a diagram illustrating one proof of the SRS transmission method used in the embodiments of the present invention.
  • the SRS is used for channel quality estimation to enable frequency-selective scheduling on the uplink.
  • SRS transmission is performed regardless of uplink data transmission and / or uplink control information transmission.
  • SRS may be used for the purpose of improving power control or for providing various new functions for unscheduled terminals.
  • various new functions include initial Modulation and Coding Scheme (MCS) selection, initial power control for data transmission, Timing Advacned (TA) and so-called frequency quasi-selective scheduling.
  • MCS Modulation and Coding Scheme
  • TA Timing Advacned
  • frequency quasi-selective scheduling means that a frequency resource is selectively allocated to the first slot of a subframe and pseudo-randomly hops to another frequency of the second slot.
  • the SRS may be used for downlink channel quality estimation under the assumption that the uplink and the downlink of the radio channel are mutually different. This assumption is particularly valid for time division multiplexing (TDD) systems that share the same frequency spectrum in uplink and downlink and are separated in the time domain.
  • TDD time division multiplexing
  • Subframes through which SRSs transmitted by a user equipment in cells are transmitted are indicated by cell-specific broadcast signaling.
  • the cell specific 'srsSubframeConfiguration' parameter indicates the set of 15 possible subframes to which an SRS can be transmitted within each radio frame.
  • Such a configuration can give flexibility in adjusting SRS overhead according to deployment scenarios. 16th within cell
  • the configuration is mainly for access to the high speed terminal, and is changed to completely turn off the SRS in the sal.
  • S S transmission is configured in the last SC-FDMA symbol of the subframe. Therefore, the SRS and DM-RS are located in different SC-FDMA symbols. In addition, PUSCH data transmission is not allowed on the SC-FDMA symbol assigned to the SRS, and in the worst case, SRS overhead may occur about 7% in every subframe.
  • Each SRS symbol is generated by basic sequences in a given time interval and bandwidth, and all terminals in a cell use the same basic sequence.
  • SRS transmissions from multiple terminals in a cell may be orthogonally divided by different cyclic shifts of basic sequences.
  • SRS sequences from different sals can be distinguished by assigning different base sequences between the sals. However, orthogonality between basic sequences is not guaranteed.
  • the UE may transmit SRS on SRS resources for each serving cell based on two trigger types.
  • Trigger type 0 refers to a cyclic SRS transmission method indicated by higher layer signaling
  • trigger type 1 refers to a DCI format 0 / transmitted through PDCCH for FDD and TDD schemes.
  • a non-periodic SRS transmission method requested through DCI format 2B / 2C / 2D transmitted through PDCCH for 4/1 A or TDD scheme.
  • the UE When SRS transmission according to trigger types 0 and 1 occurs in the same subframe within the same serving cell, the UE performs only SRS transmission according to trigger type 1.
  • the UE may be configured with SRS parameters for trigger type 0 and / or trigger type 1 for each serving cell.
  • SRS parameters configured for serving cell specific or semi-statically by higher layer signals for trigger type 0 and / or trigger type 1 will be described.
  • the transmission comb defined in section 5.5.3.2 of the 3GPP TS 36.211 standard document is configured for trigger type 0 and each trigger type 1.
  • (Starting physical resource block assignment) parameter is configured for trigger type 0 and each trigger type 1.
  • a duration parameter may be configured for a single subframe or indefinitely until released.
  • the srs-Configlndex I SRS parameter indicating the SRS transmission period r s RS and SRS subframe offset for trigger type 0 is defined in Tables 7 and 8 described below, and SRS transmission for trigger type 1 is described below.
  • the srs-Configlndex I SRS parameters, which are shown as examples, are defined in Tables 10 and 11 described below.
  • the SRS bandwidth B ⁇ parameter defined in section 5.5.3.2 of the 3GPP TS 36.211 standard document is configured for trigger type 0 and each trigger type 1.
  • the frequency absorbing bandwidth 6 parameter defined in section 5.5.3.2 of the 3GPP TS 36.211 standard document is configured for trigger type 0.
  • the cyclic shift " ⁇ parameter defined in section 5.5.3.1 of the 3GPP TS 36.211 standard document is configured for trigger type 0 and for each trigger type 1.
  • the antenna port number N P parameter is configured for trigger type 0 and each trigger type 1.
  • Three SRS parameter sets (eg, srs-y? IpDC / -rwa) are configured by a higher layer signal for trigger type 1 and DCI format 4.
  • a 2-bit SRS included in DCI format 4 The request field indicates the set of SRS parameters given in Table 6 below.
  • the 1 st SRS parameter set configured by
  • the 2 nd SRS parameter set configured by
  • the 3 RD SRS parameter set configured by
  • One trigger set Ss-ConflgApCDI-FormatO is configured by higher layer signaling for trigger type 1 and DCI format 0.
  • ⁇ -ConfigApCDI-Formatlci2b 2 is configured by higher layer signaling.
  • the 1-bit SRS request field included in the DCI format 0 / 1A / 2B / 2C / 2D is set to '1,' trigger type 1 may be triggered (ie, a positive SRS request).
  • a 1-bit SRS request field is included in DCI format 0 / 1A for frame structure type 1
  • a 1-bit SRS request field is included in DCI format 0 / 1A / 2B / 2C / 2D.
  • the serving cell specific SRS transmission band C SRS and the serving cell specific SRS transmission subframes are configured by higher layer signaling (eg, MAC, RRC message, etc.).
  • Equation 3 the index of the terminal antenna transmitting the SRS transmitted at time n SRS is expressed by Equation 3 or Equation 4 below. Is given.
  • Equation 3 represents a terminal antenna index when frequency hopping is disabled for some or all of the sounding band (ie, b kop ⁇ B SRS ).
  • Equation 4 indicates the frequency hopping is enabled (that is, b hop ⁇ B SR ⁇ UE antenna index.
  • a UE configured to transmit SRS on multiple antenna ports of a serving cell should transmit SRS for all transmission antenna ports configured in one SC-FDAM symbol of the same subframe of the serving cell.
  • SRS transmission bandwidth and starting physical resource block allocation parameters are set identically for all configured antenna ports of the corresponding serving cell.
  • a UE that is not configured with multiple time priority groups (TAGs) does not transmit SRS whenever SRS and PUSCH transmissions overlap in the same symbol.
  • TAG refers to a group of identical serving TAs for uplink synchronization with a base station in a carrier coupling (CA) environment.
  • CA carrier coupling
  • the SC-FDMA symbol may be used for SRS transmission. If two SC-FDMA symbols exist in the UpPTS of a given serving cell, two SC-FDAM symbols may be allocated to the same UE, and both may be used for SRS transmission.
  • a UE not configured with multiple TA0s does not perform trigger type 0 SRS transmission when a trigger type 0 SRS transmission and a PUCCH format 2 / 2a / 2b transmission collide in the same subframe.
  • a UE not configured with multiple TAGs does not perform trigger type 1 SRS transmission when a trigger type 1 SRS transmission collides with a PUCCH format 2a / 2b transmission or a PUCCH format 2 transmission for HARQ information transmission in the same subframe.
  • UE not configured with multiple TAGs excludes transmission of HARQ information within the same subframe.
  • a UE not configured with multiple TAGs transmits SRS when PUCCH transmission and / or a positive SR collide for SRS transmission and HARQ-ACK information within the same subframe. Do not perform. If the ackNackSRS-SimuhamousTrammission parameter is set to 'TRUE,' : a UE not configured with multiple TAGs collides with a positive SR using PUCCH transmission and / or a reduced format for SRS transmission and HARQ-ACK information transmission within the same subframe. SRS transmission is performed.
  • a UE not configured with multiple TAGs does not perform SRS transmission when a positive SR using PUCCH transmission and / or a general PUCCH format for SRS transmission and HARQ information transmission within the same subframe.
  • the UE does not perform the SRS transmission.
  • the UE determines whether the UE simultaneously transmits PUCCH and SRS including HARQ-ACK information in the same subframe by the ackNackSRS-Si- ItaneousTransmission parameter provided by the higher layer. If the UE is configured to transmit HARQ-ACK and SRS over PUCCH in the same subframe, the UE transmits HARQ-ACK and SR using a reduced PUCCH format in cell specific SRS subframes of the primary cell. At this time, the HARQ-ACK or SR symbol floating at the SRS position is punctured. Even when the UE does not perform SRS transmission in the cell specific SRS subframe of the primary cell, the reduced PUCCH format is used in the corresponding subframe. Otherwise, the terminal uses general PUCCH format 1 / Ia / lb or general PUCCH format 3 for HARQ-ACK and SR transmission.
  • Trigger Type 0 SRS configuration for the SRS period r SRS parameter and the SRS subframe offset T offsel parameter are defined for FDD and TDD in Tables 7 and 8, respectively.
  • 320 ⁇ ms is selected from a set or subframes.
  • r SRS period parameter of 2ms in TDD two SRS resources are configured in a half frame containing UL subframes in a given serving cell.
  • SRS transmission period r SRS 1 and r SRS 2 For SRS transmission of trigger type 1 in the serving cell, SRS transmission period r SRS 1 and
  • SRS subframe offset 7 ⁇ is defined as FDD and TDD in Table 10 and U, respectively.
  • the periodic parameter ⁇ for the SRS transmission is a serving cell specific value and is selected from subframes or a set of ⁇ 2, 5, 10 ⁇ ms.
  • ⁇ 2 For an SRS transmission period of 2ms in TDD, two SRS resources are configured in a half frame containing UL subframes at a given serving 3 ⁇ 4.
  • the UE configured with type 1 SRS transmission and not configured by the carrier indicator field detects the positive SRS request in the PDCCH / EPDCCH scheduling the PUSCH / PDSCH on the serving cell c. Send it.
  • a terminal configured with type 1 SRS transmission and configured by a carrier indicator field is positive in PDCCH / EPDCCH scheduling a PUSCH PDSCH.
  • the SRS request is detected, the SRS is transmitted on the serving cell c corresponding to the carrier indicator field.
  • the serving Sal terminal c is configured as a Type 1 SRS sent by the detection of the positive SRS request in subframe n c of the serving cell for the FDD and SRSJ r> 2 the TDD n + k, and k ⁇ 4 (io. n / + ⁇ 1)
  • Start SRS transmission within the first subframe that satisfies the mo d 3 ⁇ 4SJ o.
  • ⁇ 0,1 .., 9 ⁇ in frame ⁇ for FDD indicates a subframe index.
  • a UE configured with trigger type 1 SRS transmission is expected to receive a type 1 SRS triggering event associated with a trigger type 1 SRS transmission parameter configured with different values by higher layer signaling for the same serving cell and the same subframe. Don't.
  • the UE does not transmit the SRS when the SRS collides with a PUSCH transmission corresponding to retransmission or random access response of the same transport block as part of contention based on a random access procedure in the same subframe.
  • FIG. 10 (a) is a diagram illustrating the concept of periodic SRS transmission
  • FIG. 10 (b) is a diagram illustrating the concept of non-periodic SRS transmission.
  • periodic SRS transmission means SRS transmission of trigger type 0
  • aperiodic SRS transmission means SRS transmission of trigger type 1.
  • SRS transmission parameters for SRS transmission are transmitted from the base station to the terminal through an upper layer signal (eg, an RRC signal) (S1010).
  • an upper layer signal eg, an RRC signal
  • the SRS transmission parameter is an SRS transmission bandwidth parameter indicating a bandwidth occupied by one SRS transmission, a hopping bandwidth parameter indicating a frequency domain in which the SRS transmission hops on frequency, and a frequency indicating a position at which SRS transmission starts on the frequency domain.
  • a frequency position parameter, a transmission comb parameter for indicating an SRS transmission position or pattern, a cyclic shift parameter for distinguishing between SRSs, a cycle parameter for indicating an SRS transmission period, and an SRS are transmitted.
  • the subframe offset parameter may indicate a specific SRS subframe or a UE specific SRS subframe.
  • the UE may perform SRS transmission periodically at a predetermined time interval of 2ms to 160ms based on the SRS transmission parameter (S1030).
  • all UEs in the cell may know in advance which subframe in the cell occurs.
  • Aperiodic SRS transmission is triggered by signaling on the PDCCH as part of the scheduling grant.
  • the frequency domain structure of aperiodic SRS transmission is the same as that of periodic SRS. However, when aperiodic SRS is transmitted is set for each terminal through higher layer signaling.
  • SRS transmission parameters for SRS transmission are transmitted from the base station to the terminal through an upper layer signal (eg, an RRC signal) (S1020).
  • an upper layer signal eg, an RRC signal
  • the SRS transmission parameters used in the aperiodic SRS transmission are basically the same as the SRS transmission parameter stones used in the periodic SRS transmission.
  • the base station When the base station requests aperiodic SRS transmission, the base station transmits a PDCCH signal or an E-PDCCH signal with the SRS request field set to the terminal.
  • the E-PDCCH signal means control information transmitted through the PDSCH region.
  • the description of the PDCCH signal can refer to the above section 1 (S1040).
  • step S1040 the UE explicitly requested for aperiodic SRS transmission may perform aperiodic SRS transmission in the corresponding subframe (S1060).
  • the LTE-A system is considering the construction of a low cost / low specification terminal for data communication such as meter reading, water level measurement, surveillance camera utilization, and vending machine inventory reporting as the next wireless communication system.
  • a machine type communication terminal for convenience.
  • MTC terminal since the amount of transmission data is small and up / down link data transmission and reception occur occasionally, it is efficient to lower the unit cost and reduce battery consumption in accordance with such low data transmission.
  • the MTC terminal is characterized by low mobility, and thus has a characteristic that the channel environment is hardly changed.
  • LTE-A considers such an MTC terminal to have wider coverage than the conventional one, and various coverage enhancement techniques for the MTC terminal are discussed for this purpose.
  • the MTC terminal may be installed in an area (e.g. basement, etc.) in which a transmission environment is worse than that of a legacy UE (ie, a general terminal). If a repeater or the like is installed for the MTC terminal, a lot of money may be spent on facility investment. Therefore, it may be efficient to provide stable communication by repeatedly transmitting a downlink or an uplink channel to an MTC terminal operating in an area having a poor propagation environment.
  • the SRS transmission methods of the MTC terminal will be described in detail, wherein the SRS transmission method may operate based on the methods described in Sections 1 to 3.
  • the SRS is transmitted on the uplink channel to support uplink channel measurement at the base station and then used to schedule the PUSCH.
  • the channel environment in which the MTC terminal is located may be poor propagation environment. Therefore, the MTC terminal may be configured to repeatedly transmit the SRS so that the base station can effectively estimate the uplink channel.
  • the SRS transmitted by the MTC terminal may be configured to be repeatedly transmitted. Transmission of the SRS sequence is determined by a cell specific parameter and a UE specific parameter. At this time, repeated transmission of the SRS is time It is preferably made in the area. To this end, during the repetitive transmission period of the SRS, the sequence characteristics and the transmission band of the SRS may be set identically.
  • the SRS transmission band is determined by the SRS bandwidth and the SRS hopping related parameters, and the SRS bandwidth and the SRS hopping parameter may be set to maintain the same value during the SRS repetitive transmission interval for the SRS repetitive transmission.
  • the SRS sequence as defined in the 3GPP TS 36.211 specification document, is based on (1) sequence group number u and (2) base sequence determined by transmission band and sequence hopping. It can be determined by the number V (base sequence number v), (3) the cyclic shift parameter which is an SRS transmission parameter, and (4) the SRS transmission antenna port.
  • the repeated transmission of the SRS in the time domain is to improve the uplink channel estimation performance by combining the SRS repeatedly received by the base station. Therefore, it is desirable that the SRS sequence does not change during the repeated transmission interval. That is, the same SRS sequences may be repeatedly transmitted.
  • the parameter values u and V used to determine the SRS sequence are preferably fixed during the repetition interval.
  • u and V may be set to a constant value during deactivation of sequence group hopping for SRS or during a repetitive transmission interval.
  • the parameter value u for SRS repetitive transmission may be defined as in Equation 5 below.
  • f gh is a function representing a group hopping pattern
  • f ss is an SRS sequence transition pattern.
  • go is determined as a value, "means a cell identifier
  • n p represents the SRS transmission period. That is, in this case, the same SRS sequence in all SRS repeated transmission intervals Is set to be used.
  • an SRS transmission period is performed at f gh (n p ).
  • the V value may be set to '0' like the existing LTE / LTE-A system. If the SRS transmission band is 6 RB or more, the V value may be set to '0' by deactivating sequence hopping. That is, in the existing LTE / LTE-A system, V values have different values when activating sequence hopping, but when MTC UE repeatedly transmits SRS, V values are set to be the same.
  • the SRS sequence hopping may be configured to have the same V value during one repetitive transmission interval in the same manner as sequence group hopping, and to have another V value during the next repetitive transmission interval.
  • the V value may be set so that the SRS transmission period (n p ) function becomes an arbitrary value.
  • the terminal may generate and transmit the SRS according to parameter values set by the base station.
  • the UE may repeatedly transmit and generate the same SRS sequence in all SRS transmission periods, or may generate and repeatedly transmit different SRS sequences for each SRS transmission period.
  • the transmission bandwidth of the MTC terminal may be limited to a specific bandwidth (eg, 6 PRBs).
  • the transmission bandwidth of the SRS to be transmitted by the terminal may also be limited.
  • the SRS since the system bandwidth may be larger than the transmission bandwidth supported by the MTC terminal, in order for the MTC terminal to be scheduled in a subband of the system bandwidth, the SRS may also be set to be transmitted in the subband.
  • the system band may be divided into a plurality of subbands corresponding to the bandwidth of the MTC terminal, and the SRS may be set to be transmitted in one or more of the corresponding subbands.
  • the order in which the SRSs are transmitted in the subbands may be set in a subband index order (e.g., a low frequency subband index order) or a predetermined order. Accordingly, the terminal may transmit the SRS through the subbend in this order.
  • a subband index order e.g., a low frequency subband index order
  • the terminal may transmit the SRS through the subbend in this order.
  • the SRS repetitive transmission is started in the next subband after all the SRS repetitive transmissions are completed in one subband.
  • the base station is configured to repeatedly perform the SRS transmission by the terminal in the SRS subframe configured in common to the serving cell.
  • the SRS subframes commonly set in the serving cell are (1) cell specific SRS subframes for SRS transmission allocated to a general terminal of an existing LTE / LTE-A system, or (2) an MTC terminal. It may be set to a cell-specific SRS subframe newly defined. That is, a Sal specific MTC SRS subframe for repeatedly transmitting the SRS by the MTC UE may be defined.
  • Method 1 The base station can explicitly inform the UE of a subframe to be used for SRS repeated transmission among cell specific SRS subframes.
  • SRS repetitive transmission may occur only in subframes indicated by the base station, and general SRS transmission may be performed in the remaining subframes. That is, repeated SRS transmission may not occur continuously in every SRS transmission period.
  • Method 2 The base station may indicate the number of subframes necessary for repetitive transmission from the UE specific SRS subframe offset in the cell specific SRS subframes.
  • UE-specific SRS subframes may be defined as a concept included in cell-specific SRS subframes.
  • SRS repetitive transmission may be performed continuously only in UE-specific SRS subframes indicated by a base station among cell-specific SRS subframes. For example, SRS transmission may be performed only in subframes indicated by the base station, and SRS repetitive transmission may not occur in the remaining SRS transmission periods.
  • Method 3 The base station explicitly specifies the first subframe number (ie, subframe offset) and the last SRS subframe of the UE-specific SRS subframe to perform SRS repetitive transmission in cell-specific SRS subframes. Can be indicated.
  • the UE may repeatedly transmit SRS for cell specific SRS subframes from the first subframe corresponding to the SRS subframe offset to the SRS subframe indicated by the base station last.
  • SRS repetitive transmission may not be performed in consecutive SRS subframes according to the configuration of a sal specific SRS subframe. For example, when a sal specific SRS subframe is not set continuously, the SRS repetitive transmission may be repeatedly transmitted only in a cell specific SRS subframe included in an SRS repetitive transmission period, and may not be repeatedly transmitted in the remaining subframes. have.
  • FIG. 11 is a diagram illustrating one method of repeatedly transmitting an SRS by an MTC terminal when the trigger type is 0 in the SRS transmission scheme.
  • FIG. U (a) shows a method in which a general terminal periodically transmits an SRS
  • FIG. 11 (b) shows a method in which an MTC terminal periodically transmits an SRS.
  • FIG. 12 is a diagram illustrating one of methods for repeatedly transmitting an SRS by an MTC terminal in the case of trigger type 1 among SRS transmission schemes.
  • Figure 12 (a) is general 12 illustrates a method for a UE to transmit SRS aperiodically
  • FIG. 12B illustrates a method for MTC UE to transmit SRS aperiodically.
  • 11 (a) and 12 (a) may refer to the SRS transmission method described in Section 3 for the SRS transmission method.
  • the methods 1 to 3 described in Section 4.2.2 may be applied.
  • the MTC terminal may repeatedly transmit an SRS generated according to the SRS configuration method described in Section 4.2.1, a predetermined number of times in each SRS transmission period or a subframe in which SRS transmission is requested. have.
  • SRS repetitive transmission is repeatedly transmitted only in SRS subframes indicated by the base station among cell-specific SRS subframes (Method 1), or is indicated by the base station among UE-specific SRS subframes among cell-specific SRS subframes. It may be repeatedly transmitted in only one SRS subframes (Method 2 or 3).
  • the MTC terminal (1) repeatedly transmits the SRS only in specific SRS subframes within a predetermined number of subframes for SRS repeated transmission. Or (2) If the SRS is repeatedly transmitted in the cell specific SRS subframes of the first SRS repetitive transmission interval, but the repetitive transmission of the SRS is not repeated for the number of repetitions, the remaining SRS in the cell specific SRS subframes of the next SRS repeated transmission interval Can be sent repeatedly.
  • the MTC terminal uses the first SRS transmission comb in a repetitive transmission interval for SRS repetitive transmission, and transmits SRS transmitted in another sub-frame. May be configured to use the second SRS transmission comb.
  • the base station may inform the setting of the SRS transmission comb through higher layer signaling / MAC signaling / L1 signaling.
  • the SRS transmission may be classified into a trigger type 0 (ie, periodic SRS transmission) transmitted according to a configuration of a higher layer and a trigger type 1 (ie, aperiodic SRS transmission) in which transmission start is indicated by a PDCCH.
  • a trigger type 0 ie, periodic SRS transmission
  • a trigger type 1 ie, aperiodic SRS transmission
  • the MTC terminal since the MTC terminal is disposed in a poor MTC propagation environment, the MTC terminal may be configured to support only one mode of trigger type 0 or 1.
  • the MTC terminal may be configured to support only trigger type 1.
  • the MTC terminal may perform SRS repetitive transmission only at the request of the base station.
  • the MTC terminal may be configured to support only trigger type 0.
  • the MTC terminal may assume that there is no aperiodic SRS request from the base station.
  • the SRS request field of the DCI format for performing the aperiodic SRS request may not be transmitted or may be used for other purposes.
  • a sub-carrier performing uplink control information (eg, HARQ-ACK, SR (Scheduling Request) transmission, periodic CSI transmission, and / or aperiodic CSI transmission) is performed.
  • uplink control information eg, HARQ-ACK, SR (Scheduling Request) transmission, periodic CSI transmission, and / or aperiodic CSI transmission
  • the base station may be configured not to perform SRS transmission in the same subframe using an upper layer signal (eg, RRC, MAC signal, etc.) in advance. That is, when the SRS repeating transmission interval and the subframe in which uplink control information is transmitted overlap, the SRS repeating transmission may not be performed in the overlapping subframe.
  • the BS and / or the UE may calculate the number of repetitive transmissions considering that the actual SRS transmission has been performed.
  • This can compensate for the drawback of increasing complexity in multiplexing because SRS repeated transmission cycles are different from terminal to terminal due to frequent simultaneous uplink channel and SRS transmission. have. That is, even after the MTC terminal has set the start time of the SRS repetitive transmission, even if the MRS terminal fails to transmit all the SRSs to be repeatedly transmitted until the next repetitive transmission due to the SRS drop, the MTC terminal and / or the base station is based on the SRS configuration information or the SRS configuration parameters. To initiate a new SRS repetitive transmission.
  • This method has the advantage of facilitating management of the base station and reducing the complexity of the system.
  • the MTC terminal may complete the SRS repetitive transmission by calculating only the number of repetitive transmissions of the actual SRS. This increases the complexity of SRS multiplexing, but can relatively improve channel estimation performance using SRS.
  • the MTC terminal performs HARQ-ACK / SR transmission in a cell specific SRS subframe. It may be configured to perform using a shortened format. For example, it may be assumed that the ackNackSRS-SimtdtcineousTransmission parameter for the general terminal of the LTE / LTE-A system and the CackNackSRS-SimultaneousTransmission parameter for the MTC terminal.
  • a transmission format may be determined.
  • the SRS transport format is always set to the reduced format.
  • the MTC terminal may be configured to use a general format for HARQ-ACK / SR transmission in a subframe other than the cell specific SRS subframe in the SRS repeating transmission interval.
  • the base station (receiver) receiving the HARQ-ACK7SR separately combines the HARQ-ACK / SR transmitted in the cell-specific SRS subframe and the HARQ-ACK / SR transmitted in the subframe other than the cell-specific SRS subframe.
  • Final decoding can be performed.
  • the present invention in order to increase channel estimation performance for UL data transmitted through a PUSCH, it may be configured to use a DM-RS in different subframes.
  • the DM RSs of different subframes have the same frequency band and the same sequence by setting a parameter of repetitive transmission of the SRS. That is, the base station preferably transmits a higher layer parameter indicating whether to estimate the channel of the DM-RS of different subframes to the terminal. For example, the base station can inform the MTC terminal that it can be used to estimate the uplink channel by using the DM-RS of a certain subframe together with the SRS repetitive transmission.
  • the base station uses the PUSCH for uplink channel estimation together with the SRS repetitive transmission
  • Group hopping to determine u of the DM-RS may be deactivated. This is to have the same DM-RS sequence while the PUSCH 1DM-RS is repeatedly transmitted.
  • the base station may set the u value of the PUSCH DM-RS to maintain the same value in the first subframe set, and have a different u value in the second subframe set.
  • the u value of the DM-RS may be expressed as in Equation 6 below.
  • i ⁇ MRS means a parameter to which a new random value is allocated for each p subframes.
  • the value of the DM RS transmission band is 6 RB or less, it is preferable to set the v value to '0,' as before. If the DM RS transmission band is 6 RB or more, it is preferable to disable sequence hopping and set the V value to '0,' to transmit.
  • the sequence call 3 ⁇ 4 is set to have the same V value in a subframe set that performs channel estimation using DM-RS in the same manner as the sequence group call 3 ⁇ 4, and different V values are set during the next transmission interval. It can be set to have.
  • V is a parameter representing the number of subframes for performing channel estimation using DM RS. It can be set to be a random value as a function of n ⁇ s. That is, it can be set to have a different V value for each subframe set that performs channel estimation using DM-RS.
  • the apparatus described with reference to FIG. 13 is means for implementing the methods described with reference to FIGS. 1 to 12.
  • a UE User Equipment
  • e-Node B eNB
  • eNB e-Node B
  • the terminal and the base station include Tx modules 1340 and 1350 and Rx modules 1350 and 1370 to control transmission and reception of information, data and / or messages, respectively. And may include antennas 1300 and 1310 for transmitting and receiving information, data, and / or messages.
  • the terminal and the base station each of the processor (processor 1320, 1330) for performing the above-described embodiments of the present invention and the memory (1380, 1390) that can temporarily or continuously store the processing of the processor Can contain each one.
  • Embodiments of the present invention can be performed using the components and functions of the terminal and the base station apparatus.
  • the processor of the base station may allocate the uplink channel region for SRS transmission in advance between the small cells by combining the methods disclosed in the above-described sections 1 to 5.
  • the processor of the base station may explicitly transmit the resource allocation information for the channel region allocated by controlling the transmission modem to the terminal using the higher layer signal.
  • the processor of the terminal may generate an SRS based on the SRS transmission parameter received through the higher layer signal, and transmit the SRS through the channel region indicated by the SRS transmission parameter. See Sections 1 through 5 for details.
  • the transmission and reception modules included in the terminal and the base station include a packet modulation and demodulation function for fast data transmission, a fast packet channel coding function, orthogonal frequency division multiple access (OFDMA) pattern scheduling, Time Division Duplex (TDD) packet scheduling and / or channel multiplexing may be performed.
  • the terminal and the base station of FIG. 13 may further include low-power radio frequency (RF) / intermediate frequency (IF) models.
  • RF radio frequency
  • IF intermediate frequency
  • the terminal is a personal digital assistant (PDA), a cell phone phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA).
  • PDA personal digital assistant
  • MCS mobile broadband system
  • PCs Portable Network Access
  • notebook PCs notebook PCs
  • smart phones or multi-mode multi-band (MM-MB) terminals.
  • MM-MB multi-mode multi-band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and includes a terminal incorporating a data communication function such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal has a built-in multi-moment chip that can operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), and PLDs (PLDs).
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs PLDs
  • FPGAs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of modules, procedures, or functions that perform the functions or operations described above.
  • software code may be stored in the memory units 1380 and 1390 and driven by the processors 1320 and 1330.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.XX (Institute of Electrical and Electronic Engineers 802) systems.
  • 3GPP 3rd Generation Partnership Project
  • 3GPP2 3rd Generation Partnership Project2
  • IEEE 802.XX Institute of Electrical and Electronic Engineers 802

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 기계 타입 통신을 지원하는 무선 접속 시스템에서 SRS를 송신하는 방법들 및 이를 지원하는 장치들을 제공한다. 본 발명의 일 실시예로서 기계타입통신(MTC)을 지원하는 무선접속시스템에서 단말이 사운딩참조신호(SRS)를 전송하는 방법은, 기지국으로부터 SRS 반복 전송을 위해 구성된 SRS 전송 파라미터를 수신하는 단계와 SRS 전송 파라미터에 따라 소정의 SRS 반복 전송 구간 동안 SRS 반복 전송을 수행하는 단계를 포함할 수 있다.

Description

【명세서】
【발명의 명칭】
기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방 법 및 ᅳ치
【기술분야】
[1] 본 발명은 기계 타입 통신 (MTC: Machine Type Communication)을 지원하는 무선 접속 시스템에 관한 것으로, 특히 MTC 단말이 사운딩 참조 신호 (SRS: Sounding Reference Signal) 를 송신하는 방법 및 이를 지원하는 장치에 관한 것이다. 【배경기술】
[2] 무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비 스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원 (대역폭, 전송 파워 등)을 공유하여 다중사용자와의 통신을 지 원할 수 있는 다증 접속 (multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access)시스.템 , FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
【발명의 상세한 설명】
【기술적 과제】
[3] 본 발명은 MTC 를 지원하는 무선 통신 환경에서 사운딩 참조 신호 (SRS: Sounding Reference Signal)를 송신하는 방법 및 이를 지원하는 장치에 관한 것이다.
[4] 본 발명의 목적은 MTC환경에서 SRS를 반복 전송하기 위한 SRS 구성 방 법 및 SRS 전송 방법을 제공하는 것이다.
[5] 본 발명의 또 다론 목적은 이러한 방법들을 지원하는 장치들을 제공하는 것이다.
[6] 본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한사항들로 제 한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고 려될 수 있다. 【기술적 해결방법】
[7] 본 발명은 기계 타입 통신을 지원하는 무선 접속 시스템에서 SRS 를 송신 하는 방법들 및 이를 지원하는 장치들을 제공한다.
[8] 본 발명의 일 양태로서 기계타입통신 (MTC)을 지원하는 무선접속시스템에 서 단말이 사운딩참조신호 (SRS)를 전송하는 방법은, 기지국으로부터 SRS 반복 전 송을 위해 구성된 SRS 전송 파라미터를 수신하는 단계와 SRS 전송 파라미터에 따라 소정의 SRS 반복 전송 구간 동안 SRS 반복 전송을 수행하는 단계를 포함할 수 있다. 만약, SRS 반복 전송 구간과 상향링크 제어 정보의 전송이 수행되는 서 브프레임이 겹치는 경우, 겹치는 서브프레임에서는 SRS 반복 전송이 수행되지 않 도록 설정될 수 있다.
[9] 본 발명의 다른 양태로서 기계타입통신 (MTC)을 지원하는 무선접속시스템 에서 사운딩참조신호 (SRS)를 전송하는 단말은 수신기, 송신기 및 SRS 전송을지원 하기 위한 프로세서를 포함할 수 있다. 이때, 프로세서는 수신기를 제어하여 기지 국으로부터 SRS 반복 전송을 위해 구성된 SRS 전송 파라미터를 수신하고,송신기 를 제어하여 SRS 전송 파라미터에 따라소정의 SRS 반복 전송 구간동안 SRS 반 복 전송을 수행하도록 구성될 수 있다. 만약, SRS 반복 전송 구간과 상향링크 제 어 정보의 전송이 수행되는 서브프레임이 겹치는 경우, 겹치는 서브프레임에서는 SRS 반복 전송이 수행되지 않도록 설정될 수 있다.
[10] 이때, SRS 의 반복 전송은 소정의 SRS 전송 주기에 따라주기적으로 수행 되거나, 기지국으로부터의 요청이 있는 경우에만 비주기적으로 수행될 수 있다.
[11] 또한, SRS 의 반복 전송은 샐 특정 SRS 서브프레임들에서만 수행될 수 있 다. 이때, 기지국으로부터 셀 특정 SRS서브프레임들 중 SRS의 반복 전송이 수행 되는 서브프레임들을 지시 받을 수 있다. 이러한 경우, SRS의 반복 전송은 지시된 서브프레임들에서만수행될 수 있다.
[12] 또한, SRS 전송 파라미터는 SRS 반복 전송을 위한 SRS 시퀀스를 생성하기 위한 파라미터를 포함하되, SRS 파라미터는 SRS 시뭔스가 소정의 SRS 반복 전송 구간동안동일한 SRS 시퀀스가 생성되도록 설정될 수 있다.
[13] 상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과 하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다. 【유리한효과】
[14] 본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
[15] 첫째, 기지국은 반복 전송되는 SRS 를 수신함으로써 열악한 환경에 위치한 MTC 단말에 대한상향링크 채널을보다신뢰성 있게 추정할수 있다.
[16] 둘째, MTC 단말 특유의 SRS 반복 전송을 위한 SRS 생성 방법 및 SRS 전 송 방법을 이용함으로써, MTC 단말에 대한 상향링크 채널이 효율적으로 이용될 수 있다.
[17] 본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식올 가진 자에게 명확 하게 도출되고 이해될 수 있다. 즉, 본 발명올 실시함에 따론 의도하지 않은 효과 들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의 해 도출될 수 있다.
【도면의 간단한 설명】
[18] 본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상 세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
[19] 도 1 은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
[20] 도 2는무선 프레임의 구조의 일례를 나타내는 도면이다.
[21] 도 3는 하향링크 슬롯에 대한자원 그리드 (resource grid)를 예시한도면이다.
[22] 도 4는상향링크서브 프레임의 구조의 일례를 나타내는 도면이다.
[23] 도 5는 하향링크서브 프레임의 구조의 일례를 나타내는 도면이다.
[24] 도 6은 컴포년트 캐리어 (CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는도면이다.
[25] 도 7은크로스 캐리어 스케줄링에 따른 LTE-A시스템의 서브 프레임 구조를 나타낸다. [26] 도 8 은 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일례를 나타내는 도면이다.
[27] 도 9 는 본 발명의 실시예들에서 사용되는 SRS 전송 방법 중 하나를 나타 내는 도면이다.
[28] 도 10(a)는 주기적 SRS 전송의 개념을 나타내는 도면이고, 도 10(b)는 비주 기적 SRS 전송의 개념을 나타내는 도면이다.
[29] 도 11은 SRS 전송 방식 중트리거 타입 0인 경우에, MTC 단말이 SRS를 반복하여 전송하는 방법 증 하나를 나타내는 도면이다.
[30] 도 12는 SRS 전송 방식 증 트리거 타입 1 인 경우에, MTC 단말이 SRS를 반복하여 전송하는 방법 증 하나를 나타내는 도면이다.
[31] 도 13에서 설명하는 장치는도 1 내지 도 12에서 설명한 방법들이 구현될 수 있는 수단이다.
【발명의 실시를 위한 형태】
[32] 이하에서 상세히 설명하는 본 발명의 실시예들은 기계 타입 통신을 지원하 는 무선 접속 시스템에서 SRS 를 송신하는 방법들 및 이를 지원하는 장치들에 관 한 것이다.
[33] 이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으 로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들 의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과교체될 수 있다. [34] 도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
[35] 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함 (comprising 또는 including)1'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것올 의미한다. 또한, 명세서에 기재된 "...부", "…기 "모들" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며 , 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일 (a또는 an)", "하나 (one)", "그 (the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서 (특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로사용될 수 있다.
[36] 본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크와 종단 노드 (terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드 (upper node)에 의해 수행될 수도 있다.
[37] 즉, 기지국을 포함하는 다수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국 (fixed station), Node B, eNode B(eNB), 발전된 기지국 (ABS: Advanced Base Station) 또는 억세스 포인트 (access point)등의 용어에 의해 대체될 수 있다.
[38] 또한, 본 발명의 실시예들에서 단말 (Terminal)은 사용자 기기 (UE: User Equipment), 이동국 (MS: Mobile Station), 가입자 단말 (SS: Subscriber Station), 이동 가입자 단말 (MSS: Mobile Subscriber Station), 이동 단말 (Mobile Terminal)또는 발전된 이동단말 (AMS: Advanced Mobile Station)등의 용어로 대체될 수 있다.
[39] 또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및 /또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및 /또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다. [40] 본 발명의 실시예들은 무선 접속시스템들인 IEEE 802.XX 시스템, 3GPP(3rd Generation Partnership Project) 시스템 , 3GPP LTE시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
[41] 이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자하는 것이 아니다.
[42] 또한, 본 발명의 실시예들에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
[43] 이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A시스템에 대해서 설명한다.
[44] 이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한무선 접속 시스템에 적용될 수 있다.
[45] CDMA 는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000 과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA 는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA 는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA)등과 같은 무선 기술로 구현될 수 있다.
[46] UTRA 는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A시스템을 위주로 기술하지만 IEEE 802.16e/m시스템 등에도 적용될 수 있다.
[47] 1. 3GPP LTE/LTEᅳ A시스템
[48] 무선 접속 시스템에서 단말은 하향링크 (DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크 (UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류 /용도에 따라 다양한 물리 채널이 존재한다.
[49] 1.1 시스템 일반
[50] 도 1 은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한신호 전송 방법을 설명하기 위한도면이다.
[51] 전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 샐에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 치!널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과동기를 맞추고, 셀 ID 등의 정보를 획득한다. [52] 그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel)신호를 수신하여 셀 내 방송 정보를 획득할수 있다.
[53] 한편, 단말은 초기 샐 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
[54] 초기 샐 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
[55] 이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S 13 내지 단계 S16 과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)올 통해 프리앰블 (preamble)을 전송하고 (S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리램불에 대한 웅답 메시지를 수신할 수 있다 (S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송 (S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신 (S 16)과 같은 층돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
[56] 상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상 /하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및 /또는 물리하향링크공유채널 신호의 수신 (S ) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및 /또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송 (S18)을수행할수 있다.
[57] 단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보 (UCI: Uplink Control Information)라고 지칭한다. UCI 는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
[58] LTE 시스템에서 UCI 는 일반적으로 PUCCH 를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH 를 통해 전송될 수 있다. 또한, 네트워크의 요청 /지시에 의해 PUSCH 를 통해 UCI를 비주기적으로 전송할 수 있다.
[59] 도 2는본 발명의 실시예들에서 사용되는무선 프레임의 구조를 나타낸다.
[60] 도 2(a)는 타입 1 프레임 구조 (frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중 (Hill duplex) FDD(Frequency Division Duplex) 시스템과 반이중 (half duplex) FDD 시스템 모두에 적용될 수 있다.
[61] 하나의 무선 프레임 (radio frame)은 = 307200' ^ = 10 ms의 길이를 가지고, rslot = 15360·!; = 0'5 ms의 균등한 길이를 가지며 0 부터 ι9 의 인덱스가 부여된
20 개의 슬롯으로 구성된다. 하나의 서브프레임은 2 개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+l 에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임 (radio frame)은 10 개의 서브프레임 (subfmme)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=l/(15kHzx2048)=3.2552x l(T8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고,주파수 영역에서 복수의 자원블록 (Resource Block)을 포함한다.
[62] 하나의 슬 ^은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing)심볼을포함한다. 3GPP LTE는 '하향링크에서 OFDMA를사용하므로 OFDM 심볼은 하나의 심볼 구간 (symbol period)을 표현하기 위한 것이다. OFDM 심불은 하나의 SC-FDMA 심블 또는 심불 구간이라고 할 수 있다. 자원 블록 (resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파 (subcarrier)를 포함한다. [63] 전이증 FDD 시스템에서는 각 10ms 구간 동안 10 개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과수신을 동시에 할수 없다.
[64] 상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 술롯의 수, 슬롯에 포함되는 OFDM심볼의 수는 다양하게 변경될 수 있다.
[65] 도 2(b)는 타입 2 프레임 구조 (frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임 (radio frame)은 f = 30720이7 = 10 ms의 길이를 가지며, 153600 .7; = 5 ms 길이를 가지는 2 개의 하프프레임 (half-frame)으로 구성된다. 각 하프프레임은 30720 ' 7 l ms 의 길이를 가지는 5 개의 서브프레임으로 구성된다. i 번째 서브프레임은 ¾ 와 2i+1 에 해당하는 각 ot = l5360^s =으 5 ms의 길이를 가지는 2 개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간올 나타내고, Ts=l/(15kHzx2048)=3.2552x l0-8(약 33ns)로 표시된다,
[66] 타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간 (GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3 가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS 는 단말에서의 초기 셀 탐색, 동기화또는 채널 추정에 사용된다. UpPTS 는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
[67] 다음 표 1는 특별 프레임의 구성 (DwPTS/GP UpPTS의 길이)을 나타낸다.
[68] 【표 1】 Special stibfrattie Norma 1 cytlic refiit i n do hlink: Exte hded cyclic prefix irj downlink configuration DwPTS Up PTS DwPTS Up PTS
Normal Extended Normal cyclic Extended cyclic cyclic prefix cyclic prefix prefix in uplink prefix in uplink i:n: uplink in uplink
ό 6592' 7; 76:80' ¾
1; Ί 976(^ 7 . 20480-T
¾56(ί·:7 ;
*2 21,9¾· ¾: 5560 ¾: 2304(I ¾
3 2' l:44- TS,
4: 26336- 7 768(1· rs.
:5 5Ι¾ ·¾
6 :!¾¾ · 7 , 33040'-?;
51
7 2:1 - - -
8 241·4φ·¾ - - -
[69] 도 3 은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드 (resource grid)를 예시한 도면이다.
[70] 도 3 을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심블을 포함하고, 하나의 자원 블록은 주파수 영역에서 12 개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
[71] 자원 그리드 상에서 각 요소 (element)를 자원 요소 (resource element)하고, 하나의 자원 블특은 12 X 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL 은 하향링크 전송 대역폭 (bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와동일할 수 있다.
[72] 도 4 는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
[73] 도 4 를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH이 할당된다. 데이터 영역은사용자 데이터를 나르는 PUSCH 이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH 와 PUSCH 을 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH 에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB 들은 2 개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH 에 할당된 RB 쌍은 슬롯 경계 (slot boundary)에서 주파수 도약 (frequency hopping)된다고 한다.
[74] 도 5 는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다. [75] 도 5 를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0 부터 최대 3 개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역 (control region)이고, 나머지 OFDM 심볼들은 PDSCH 이 할당되는 데이터 영역 (data region)이다. 3 GPP LTE 에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid- ARQ Indicator Channel) 등이 있다.
[76] PCFICH 는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수 (즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH 는 상향 링크에 대한 웅답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Aclmowledgement)/NACK(Negative- Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보 (DCI: downlink control information)라 고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송 (Tx) 파워 제어 명령을 포함한다. [77] 1.2 PDCCH(Physical Downlink Control Channel)
[78] 1,2.1 PDCCH 일반
[79] PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷 (즉, 하향링크 그랜트 (DL-Grant)), UL-SCH(Uplink Shared Channel)의 자원 할당 정보 (즉, 상향링크 그랜트 (UL-Grant)), PCH(Paging Channel)에서의 페이징 (paging) 정보, DL- SCH 에서의 시스템 정보, PDSCH 에서 전송되는 랜덤 액세스 웅답 (random access response)과 같은 상위 레이어 (upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 여부에 관한 정보 등을 나를 수 있다. [80] 복수의 PDCCH 가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH 는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합 (aggregation)으로 구성된다. 하나 또는 몇몇 연속적인 CCE 의 집합으로 구성된 PDCCH는 서브블톡 인터리빙 (subblock interleaving)을 거친 후 에 제어 영역을 통해 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는논리적 할당단위이다. CCE는복수의 자원 요소 그룹 (REG: resource element group)에 대웅된다. CCE의 수와 CCE들에 의해 제 공되는 부호화율의 연관 관계에 따라 PDCCH 의 포맷 및 가능한 PDCCH 의 비트 수가 결정된다
[81] 1.2.2 PDCCH구조
[82] 복수의 단말에 대한 다증화된 복수의 PDCCH 가 제어영역 내에서 전송될 수 있다. PDCCH는 하나또는 2 이상의 연속적인 CCE의 집합 (CCE aggregation)으 로 구성된다. CCE는 4개의 자원 요소로 구성된 REG의 9개의 세트에 대웅하는 단위를 말한다. 각 REG에는 4개의 QPSK(Quadrature Phase Shift Keying) 심볼이 매 ¾ 된다. 참조 신호 (RS: Reference Signal)에 의하여 점유된 자원 요소들은 REG 에 포함되지 않는다. 즉, OFDM심볼 내에서 REG 의 총 개수는 셀 톡정 참조신호가 존재하는지 여부에 따라 달라질 수 있다. 4 개의 자원 요소를 하나의 그룹에 매¾ 하는 REG의 개념은 다른 하향링크 제어 채널 (예를 들어, PCFICH또는 PHICH)에 도 적용될 수 있다. PCFICH또는 PHICH 에 할당되지 않는 REG를 라 하면 시스템에서 이용 가능한 CCE의 개수는 ^CCE REG ^J이며,각 CCE는 0부터
^CCE 1까지 인택스를 가진다.
[83] 단말의 디코딩 프로세스를 단순화하기 위해서, n 개의 CCE 를 포함하는 PDCCH 포맷은 n 의 배수와 동일한 인텍스를 가지는 CCE 부터 시작될 수 있다. 즉, CCE 인텍스가 i인 경우 z'mod" = 0을 만족하는 CCE부터 시작될 수 있다.
[84] 기지국은 하나의 PDCCH신호를 구성하기 위해 {1, 2, 4, 8} 개의 CCE들을 사용할 수 있으며, 이때의 {1, 2, 4, 8}은 CCE집합 레벨 (aggregation level)이라고 부 른다. 특정 PDCCH 의 전송을 위해 사용되는 CCE 의 개수는 채널 상태에 /ᅥ 따라 기지국에 의하여 결정된다. 예를 들어, 양호한 하향링크 채널 상태 (기지국에 가까 운 경우)를 가지는 단말을 위한 PDCCH는 하나의 CCE만으로충분할 수 있다. 반 면, 좋지 않은 채널 상태 (셀 경계에 있는 경우)를 가지는 단말의 경우는 8 개의 CCE 들이 층분한 강인함 (robustness)을 위하여 요구될 수 있다. 게다가, PDCCH 의 파워 레벨도 채널 상태에 매칭되어 조절될 수 있다.
[85] 다음표 2 는 PDCCH포맷올 나타내며, CCE 집합 레벨에 따라표 2 과 같 이 4가지의 PDCCH포맷이 지원된다.
[86] 【표 2】
PDCCH format Number of CCEs (n) Number of REGs Number of PDCCH bits
0 1 9 72
1 2 18 144
2 4 36 288
3 8 72 576
[87] 단말마다 CCE 집합 레벨이 다른 이유는 PDCCH 에 실리는 제어정보의 포 맷 또는 MCS(Modulation and Coding Scheme) 레벨이 다르기 때문이다. MCS 레벨은 데이터 코딩에 사용되는 코드 레이트 (code rate)와 변조 서열 (modulation order)을 의 미한다. 적웅적인 MCS 레벨은 링크 적웅 (link adaptation)을 위해 사용된다. 일반적 으로 제어정보를 전송하는 제어채널에서는 3~4 개 정도의 MCS 레벨을 고려할 수 있다.
[88] 제어정보의 포맷을 설명하면, PDCCH를 통해 전송되는 제어정보를 하향링 크 제어정보 (DCI)라고 한다. DCI 포맷에 따라 PDCCH 페이로드 (payload)에 실리는 정보의 구성이 달라질 수 있다. PDCCH페이로드는 정보 비트 (information bit)를 의 미한다. 다음표 3은 DCI포맷에 따른 DCI를 나타낸다.
[89] 【표 3】
Figure imgf000015_0001
[90] 표 3을 참조하면, DCI포맷으로는 PUSCH스케줄링을 위한포맷 0, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한 (compact) 스케줄링을 위한 포¾ 1A, DL-SCH 의 매우 간단한 스케즐링을 위한포 맷 1C, 폐루프 (Closed-loop) 공간 다중화 (spatial multiplexing) 모드에서 PDSCH 스케 줄링을 위한 포맷 2, 개루프 (Openloop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송 을 위한포맷 3 및 3A가 있다. DCI 포맷 1A는 단말에 어떤 전송 모드가설정되 어도 PDSCH스케줄링을 위해 사용될 수 있다.
[91] DCI포맷에 따라 PDCCH 페이로드 길이가 달라질 수 있다. 또, PDCCH 페 이로드의 종류와 그에 따른 길이는 간단한 (compact) 스케줄링인지 여부 또는 단말 에 설정된 전송 모드 (transmission mode)등에 의해 달라질 수 있다.
[92] 전송 모드는 단말이 PDSCH 를 통한 하향링크 데이터를 수신하기 위해 설 정 (configuration)될 수 있다. 예를 들어, PDSCH '를 통한 하향링크 데이터는 단말에 대한스케즐된 데이터 (scheduled data), 페이징, 랜덤 액세스응답또는 BCCH를통 한 브로드캐스트 정보 등이 있다. PDSCH 를 통한 하향링크 데이터는 PDCCH 를 통해 시그널되는 DCI 포맷과 관계가 있다. 전송 모드는 상위 계층 시그널링 (예를 들어, RRC(Radio Resource Control) 시그널링)을 통해 단말에 반정적으로 (semi- statically) 설정될 수 있다. 전송 모드는 싱글 안테나 전송 (Single antenna transmission) 또는 멀티 안테나 (Multi-antenna) 전송으로 구분할 수 있다.
[93] 단말은 상위 계층 시그널링을 통해 반정적 (semi-static)으로 전송 모드가 설 정된다. 예를 들어, 멀티 안테나 전송에는 전송 다이버시티 (Transmit diversity), 개루 프 (Open-loop) 또는 폐루프 (Closed-loop) 공간 다중화 (Spatial multiplexing), MU- MIMO(Multi-user-Multiple Input Multiple Output)또는 빔 형성 (Beamforming)등이 있 다. 전송 다이버시티는 다중 송신 안테나에서 동일한 데이터를 전송하여 전송 신 뢰도를 높이는 기술이다. 공간 다중화는 다증 송신 안테나에서 서로 다른 데이터 를 동시에 전송하여 시스템의 대역폭을 증가시키지 않고 고속의 데이터를 전송할 수 있는 기술이다. 빔 형성은 다증 안테나에서 채널 상태에 따른 가중치를 가하여 신호의 SINR(Signal to Interference plus Noise Ratio)올 증가시키는 기술이다.
[94] DCI 포맷은 단말에 설정된 전송 모드에 종속된다 (depend on). 단말은 자신 에게 설정된 전송 모드에 따라 모니터링하는 참조 (Reference) DCI 포맷이 있다. 단 말에 설정되는 전송 모드는 다음과 같이 10개의 전송 모드를 가질 수 있다.
[95] (1) 전송모드 1 : 단일 안테나포트; 포트 0
[96] (2) 전송모드 2: 전송 다이버시티 (Transmit Diversity) [97] (3) 전송모드 3: 개루프 공간다중화 (Open-loop Spatial Multiplexing)
[98] (4) 전송모드 4: 폐루프 공간다중화 (Closed-loop Spatial Multiplexing)
[99] (5) 전송모드 5: 다중사용자 MIMO
[100] (6) 전송모드 6: 폐루프 탱크 = 1 프리코딩
[101] (7) 전송모드 7: 코드북에 기반하지 않는, 단일 레이어 전송을 지원하는 리코딩
[102] (8) 전송모드 8: 코드북에 기반하지 않는, 두 개까지 레이어를 지원하는 리코딩
[103] (9) 전송모드 9: 코드북에 기반하지 않는, 여덟 개까지 레이어를 지원하는 프리코딩
[104] (10) 전송모드 10: 코드북에 기반하지 않는, CoMP 를 위해 사용되는, 여덟 개까지 레이어를 지원하는프리코딩
[105] 1.2.3 PDCCH 전송
[106] 기지국은 단말에게 전송하려는 DCI에 따라 PDCCH포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다 . CRC에는 PDCCH의 소유자 (owner) 나용도에 따라 고유한식별자 (예를 들어, RNTI(Radio Network Temporary Identifier)) 가마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한식별자 (예를 들어, C-RNTI(Cell-RNTI))가 CRC 에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자 (예를들어, P-RNTI(Paging-RNTI))가 CRC에 마스 킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록 (SIB: System Information Block)를 위한 PDCCH 라면 시스템 정보 식별자 (예를 들어, SI- RNTI(System Information RNTI))가 CRC 에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여 RA- RNTI(random access-RNTI)가 CRC에 마스 ¾될 수 있다. 1
[107] 이어, 기지국은 CRC가부가된 제어정보를 채널 코딩을 수행하여 부호화된 데이터 (coded data)를 생성한다. 이때, MCS 레벨에 따른 코드 레이트로 채널 코딩을 수행할 수 있다. 기지국은 PDCCH 포떳에 할당된 CCE 집합 레벨에 따른 전송률 매칭 (rate matching)을 수행하고,부호화된 데이터를 변조하여 변조 심벌들을 생성한 다. 이때, MCS 레벨에 따른 변조 서열을 사용할 수 있다. 하나의 PDCCH를 구성 하는 변조 심벌들은 CCE 집합 레벨이 1, 2, 4, 8 중 하나일 수 있다. 이후, 기지국은 변조심벌들을 물리적인 자원요소에 맵핑 (CCE to RE mapping)한다.
[108] 1.2.4 블라인드디코딩 (BS: Blind Decoding)
[109] 하나의 서브프레임 내에서 복수의 PDCCH 가 전송될 수 있다. 즉, 하나의 서브프레임의 제어영역은 인덱스 0 ~ ^« ^ᅳ1올 가지는 복수의 CCE로 구성된다. 여기서, NccE,k는 k번째 서브프레임의 제어 영역 내에 총 CCE의 개수를 의미한다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이 란 단말이 모니터링되는 PDCCH포떳에 따라 PDCCH 들의 각각의 디코딩을 시도 하는 것을 말한다.
[110] 서브프레임 내에서 할당된 제어영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 기지국으로부터 전송된 제어채널을 수신하기 위해서 자신의 PDCCH 가 어느 위치에서 어떤 CCE 집합 레벨이나 DCI포맷으로 전송되는지 알수 없으므로, 단말은 서브프레임 내에 서 PDCCH후보 (candidate)들의 집합을 모니터링하여 자신의 PDCCH 를 찾는다. 이 를 블라인드 디코딩 (BD)이라 한다. 블라인드 디코딩은 단말이 CRC 부분에 자신의 단말 식별자 (UE ID)를 디 마스킹 (De-Masking) 시킨 후, CRC오류를 검토하여 해당 PDCCH가자신의 제어채널인지 여부를 확인하는 방법을 말한다.
[111] 활성 모드 (active mode)에서 단말은 자신에게 전송되는 데이터를 수신하기 위해 매 서브프레임의 PDCCH를 모니터링한다. DRX모드에서 단말은 매 DRX주 기의 모니터링 구간에서 깨어나 (wake up) 모니터링 구간에 해당하는 서브프레임에 서 PDCCH 를 모니터링한다. PDCCH 의 모니터링이 수행되는 서브프레임을 non- DRX서브프레임이라 한다.
[112] 단말은 자신에게 전송되는 PDCCH 를 수신하기 위해서는 non-DRX 서브프 레임의 제어영역에 존재하는 모든 CCE에 대해 블라인드 디코딩을 수행해야 한다. 단말은 어떤 PDCCH 포맷이 전송될지 모르므로, 매 non-DRX 서브프레임 내에서 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 CCE 집단 레벨로 PDCCH를 모두 디코딩해야 한다. 단말은 자신을 위한 PDCCH 가 몇 개의 CCE 를 사용하는 지 모르기 때문에 PDCCH 의 블라인드 디코딩이 성공할 때까지 가능한모든 CCE 집단 레벨로 검출을 시도해야 한다. 【1131 LTE 시스템에서는 단말의 블라인드 디코딩을 위해서 서치 스페이스 (SS: Search Space) 개념을 정의한다. 서치 스페이스는 단말이 모니터링하기 위한 PDCCH후보 세트를 의미하며,각 PDCCH포맷에 따라상이한크기를 가질 수 있 다. 서치 스페이스는 공용 서치 스페이스 (CSS: Common Search Space)와 단말 특정 서치 스페이스 (USS: UE-specific/Dedicated Search Space)로 구성될 수 있다.
[114] 공용서치 스페이스의 경우, 모든 단말이 공용 서치 스페이스의 크기에 대 하여 알 수 있으나, 단말 특정 서치 스페이스는 각 단말마다 개별적으로 설정될 수 있다. 따라서, 단말은 PDCCH를 디코딩하기 위해 단말특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링해야 하며ᅳ 따라서 하나의 서브프레임에서 최 대 44 번의 블라인드 디코딩 (BD)을 수행하게 된다. 여기에는 상이한 CRC 값 (예를 들어, C-RNTI, P-RNTI, SI-RNTI, RA— RNTI)에 따라수행하는 블라인드 디코딩은 포함 되지 않는다.
[115] 서치 스페이스의 제약으로 인하여, 기지국은 주어진 서브프레임 내에서 PDCCH를 전송하고자 하는 단말들 모두에게 PDCCH를 전송하기 위한 CCE자원 이 확보될 수 없는 경우가 발생할 수 있다. 왜냐하면, CCE 위치가 할당되고 남은 자원들은 특정 단말의 서치 스페이스 내에 포함되지 않을 수 있기 때문이다. 다음 서브프레임에도 계속될 수 있는 이러한 장벽을 최소화하기 위하여 단말 특정 도약 (hopping) 시퀀스가 단말 특정 서치 스페이스의 시작 지점에 적용될 수 있다.
[116] 표 4 는 공용 서치 스페이스와 단말 특정 서치 스페이스의 크기를 나타낸 다.
[117] 【표 4】
Number of CCEs Number of candidates Number of candidates
PDCCH format («) in common search space in dedicated search space
0 1 一 6
I 2 一 6
2 4 4 2
3 8 2 2
[118] 블라인드 디코딩을 시도하는 횟수에 따른 단말의 부하를 경감하기 위해, 단말은 정의된 모든 DCI포맷에 따른서치를 동시에 수행하지 않는다. 구체적으로: 단말은 단말 특정 서치 스페이스에서 항상 DCI 포맷 0 과 1A 에 대한서치를 수 행한다. 이때, DCI포맷 0과 1A는동일한크기를 가지나, 단말은 PDCCH에 포함 된 DCI 포맷 0 과 1A를 구분하는데 사용되는 플래그 (flag for format 0/format 1A differentiation)를 이용하여 DCI 포맷을 구분할 수 있다. 또한, 단말에 DCI 0 과 DCI포떳 1A 외에 다른 DCI포맷이 요구될 수 있는데, 그 일례로 DCI포맷 1, 1B, 2가 있다.
[119] 공용서치 스페이스에서 단말은 DCI포맷 1A와 1C를서치할 수 있다. 또 한 단말은 DCI 포맷 3 또는 3A를 서치하도록 설정될 수 있으며, DCI 포맷 3 과 3A는 DCI포맷 0과 1A와동일한크기를 가지나, 단말은 단말특정 식별자가 아 닌 다른 식별자에 의하여 스크램블된 CRC 를 이용하여 DCI 포맷을 구별할 수 있 다.
[120] 서치 스페이스 는 집합 레벨 ^ {1,2,4,8}에 따른 PDCCH후보 세트를 의미한다. 서치 스페이스의 PDCCH 후보 세트 에 따른 CCE 는 다음과 같은 수 학식 1에 의해 결정될 수 있다.
[121] 【수학식 1】
Figure imgf000020_0001
[122] 여기서, M( "은 서치 스페이스에서 모니터하기 위한 CCE 집합 레벨 L 에 따른 PDCCH 후보들의 개수를 나타내며, = 0' ··' ' Μ^ -1이다ᅳ /는 pDCCH 에서 각 PDCCH 후보에서 개별 CCE 를 지정하는 인덱스로서 ί' = 0,…쓰 1 이다ᅳ
= L"S/2J이며, 는 무선 프레임 내에서 슬릇 인텍스를 나타낸다.
[123] 상술한 바와 같이, 단말은 PDCCH 를 디코딩하기 위해 단말 특정 서치 스 페이스 및 공용 서치 스페이스를 모두 모니터링한다. 여기서, 공용 서치 스페이스 (CSS)는 {4, 8}의 집합 레벨을 갖는 PDCCH들을 지원하고, 단말 특정 서치 스페이 스 (USS)는 {1, 2, 4, 8}의 집합 레벨을 갖는 PDCCH들을 지원한다. 표 5는 단말에 의하여 모니터링되는 PDCCH후보를 나타낸다.
[124] 【표 5】
Figure imgf000020_0002
[125] 수학식 1 을 참 하면, 공용 서치 스페이스의 경우 2 개의 집합 레벨, L=4 및 L=8에 대해 ^는 0으로 설정된다. 반면, 집합 레벨 L에 대해 단말특정 서치 스페이스의 경우 는수학식 2와 같이 정의된다.
[126] 【수학식 2】
Yk = (A - Yk_l )modD
[127] 여기서, r-i = "RNTi≠0이며, f 값을 나타낸다ᅳ 또한, ^4 = 39827이고,
Z) = 65537이다
[128] 2. 캐리어 병합 (CA: Carrier Aggregation)환경
[129] 2.1 CA 일반
[1301 3GPP LTE(3rd Generation Partnership Project Long Term Evolution; Rel-8또는 Rel-9) 시스템 (이하, LTE 시스템)은 단일 컴포넌트 캐리어 (CC: Component Carrier)를 여러 대역으로 분할하여 사용하는 다중 반송파 변조 (MCM: Multi-Carrier Modulation) 방식을 사용한다. 그러나, 3GPP LTE-Advanced 시스템 (이하, LTE-A 시스템) 에서는 LTE 시스템보다 광대역의 시스템 대역폭을 지원하기 위해서 하나 이상의 컴포넌트 캐리어를 결합하여 사용하는 캐리어 병합 (CA: Carrier Aggregation)과 같은 방법을 사용할 수 있다. 캐리어 병합은 반송파 집성, 반송파 정합, 멀티 컴포넌트 캐리어 환경 (Multi-CC)또는 멀티캐리어 환경이라는 말로 대체될 수 있다.
[131] 본 발명에서 멀티 캐리어는 캐리어의 병합 (또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한 (contiguous) 캐리어 간의 병합뿐 아니라 비 인접한 (noncontiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포년트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포년트 캐리어 (이하, 'DL CC'라 한다)수와상향링크 컴포넌트 캐리어 (이하, 'UL CC라 한다) 수가 동일한 경우를 대칭적 (symmetric) 병합이라고 하고, 그 수가 다른 경우를 비대칭적 (asymmetric) 병합이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성 (bandwidth aggregation), 스펙트럼 집성 (spectrum aggregation) 등과 같은 . 용어와흔용되어 사용될 수 있다.
[132] 두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 lOOMHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1 개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성 (backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할수 있다.
[133] 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템 (죽, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할수도 있다.
[134] 또한, 위와 같은 캐리어 병합은 인트라 -밴드 CA(Intra-band CA) 및 인터ᅳ밴드 CA(Inter-band CA)로 구분될 수 있다. 인트라 -밴드 캐리어 병합이란, 다수의 E>L CC 및 /또는 UL CC 들이 주파수상에서 인접하거나 근접하여 위치하는 것을 의미한다. 다시 말해, DL CC 및 /또는 UL CC들의 캐리어 주파수가동일한 밴드 내에 위치하는 것을 의미할 수 있다. 반면, 주파수 영역에서 멀리 떨어져 있는 환경을 인터 -밴드
CA(Inter-Band CA)라고 부를 수 있다. 다시 말해, 다수의 DL CC 및 /또는 UL CC들의 - 캐리어 주파수가 서로 다른 밴드들에 위치하는 것을 의미할 수 있다. 이와 같은 경우, 단말은 캐리어 병합 환경에서의 통신을 수행하기 위해서 복수의 RF(radio frequency)단을 사용할 수도 있다.
[135] LTE-A 시스템은 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다. 상술한 캐리어 병합 환경은 다증 셀 (multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원 (DL CC)과 상향링크 자원 (UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 샐은 하향링크 자원 단독, 또는 하향링크 자원과상향링크 자원으로 구성될 수 있다.
[136] 예를 들어, 특정 단말이 단 하나의 설정된 서빙 샐 (configured serving cell)을 가지는 경우 1 개의 DL CC와 1 개의 UL CC를 가질 수 있다. 그러나,특정 단말이 2개 이상의 설정된 서빙 샐을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다작을 수 있다. 또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 샐을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합환경도 지원될 수 있다.
[137] 또한, 캐리어 결합 (CA)은 각각 캐리어 주파수 (셀의 중심 주파수)가서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 캐리어 결합에서 말하는 셀 (Cell)'은 주파수 관점에서 설명되는 것으로, 일반적으로 사용되는 기지국이 커버하는 지리적 영역으로서의 '셀ᅳ과는 구분되어야 한다. 이하, 상술한 인트라 -밴드 캐리어 병합을 인트라 -밴드 다중 셀이라고 지칭하며, 인터 -밴드 캐리어 병합을 인터 -밴드 다중 셀이라고 지칭한다.
[138] LTE-A 시스템에서 사용되는 셀은 프라이머리 셀 (PCell: Primary Cell) 및 세컨더리 셀 (SCell: Secondary Cell)을포함한다. P셀과 S샐은 서빙 셀 (Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P 셀로만구성된 서빙 ¾이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P 샐과 하나 이상의 S샐이 포함된다.
[139] 서빙 셀 (P 셀과 S ¾)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellld는 샐의 물리 계층 식별자로 0 부터 503 까지의 정수값을 가진다. SCelllndex는 S 셀을 식별하기 위하여 사용되는 간략한 (short) 식별자로 1 부터 7까지의 정수값을 가진다. ServCelllndex 는 서빙 셀 (P 셀 또는 S 셀)을 식별하기 위하여 사용되는 간략한 (short) 식별자로 0 부터 7 까지의 정수값을 가진다. 0 값은 P 셀에 적용되며, SCelllndex는 S샐에 적용하기 위하여 미리 부여된다. 즉, ServCelllndex에서 가장 작은 셀 ID (또는 샐 인텍스)을 가지는 셀이 P셀이 된다.
[140] P셀은 프라이머리 주파수 (또는, primary CC)상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하거나 연결 재- 설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P 샐은 캐리어 병합환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P 셀에서만 PUCCH 를 할당 받아 전송할수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P 샐만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보 (mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P샐만을 변경할수도 있다.
【141] S셀은 세컨더리 주파수 (또는, Secondary CC)상에서 동작하는 샐을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S ¾은 하나 이상할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 ¾ 중에서 P 셀을 제외한나머지 셀들,즉 S셀에는 PUCCH가존재하지 않는다.
[142] E-UTRAN 은 S 셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC— CONNECTED 상태에 있는 관련된 셀의 동작과 ¾련된 모든 시스템 정보를 특정 시그널 (dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S 셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할수 있다. E-UTRAN은 관련된 S 샐 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링 (dedicated signaling) 할수 있다.
[143] 초기 보안 활성화 과정이 시작된 이후에, E-UTRAN 은 연결 설정 과정에서 초기에 구성되는 P 셀에 부가하여 하나 이상의 S 셀을 포함하는 네트워크를 구,성할 수 있다. 캐리어 병합환경에서 P 셀 및 S 셀은 각각의 컴포년트 캐리어로서 동작할 수 있다. 이하의 실시예에서는 프라이머리 컴포년트 캐리어 (PCC)는 P 셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어 (SCC)는 S 샐과 동일한 의미로 사용될 수 있다.
[144] 도 6 은 본 발명의 실시예들에서 사용되는 컴포넌트 캐리어 (CC) 및 LTEᅳ A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.
[145] 도 6(a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
[146] 도 6(b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6(b)의 경우에 20MHz 의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC 와 UL CC 가 각각 3 개씩 있으나, DL CC와 UL CC 의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3 개의 CC 를 동시에 모니터링할 수 있고, 하향링크 신호 /데이터를 수신할 수 있고 상향링크 신호 /데이터를 송신할 수 있다.
[147] 만약, 특정 셀에서 N 개의 DL CC 가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC 를 할당할수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC 에 우선순위를 주어 주된 DL CC 를 단말에 할당할 수 있으며, 이러한 경우 UE 는 L 개의 DL CC 는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
[148] 하향링크 자원의 반송파 주파수 (또는 DL CC)와 상향링크 자원의 반송파 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL그랜트를 나르는 PDCCH가 전송되는 DL CC 와 상기 UL 그랜트를 사용하는 UL CC 간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC (또는 UL CC)와 HARQ ACK/NACK신호가 전송되는 UL CC (또는 DL CC)간의 맵핑 관계를 의미할수도 있다. [149] 2.2 크로스 캐리어 스케줄링 (Cross Carrier Scheduling)
【150] 캐리어 병합 시스템에서는 캐리어 (또는 반송파) 또는 서빙 셀 (Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링 (Self-Scheduling) 방법 및 크로스 캐리어 스케줄링 (Cross Carrier Scheduling)방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포년트 캐리어 스케줄링 (Cross Component Carrier Scheduling)또는 크로스 셀 스케줄링 (Cross Cell Scheduling)으로 일컬을 수 있다.
【151] 자가스케줄링은 PDCCH(DL Grant)와 PDSCH가동일한 DL CC로 전송되거나, DL CC 에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH 가 UL Grant 를 수신한 DL CC와 링크되어 있는 UL CC를 통해 전송되는 것올 의미한다.
[152] 크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH 가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL그랜트를 수신한 DL CC와 링크되어 있는 UL CC가아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
[153] 크로스 캐리어 스케줄링 여부는 단말 특정 (UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링 (예를 들어, RRC 시그널링)을 통해서 반정적 (semi-static)으로 각 단말 별로 알려질 수 있다.
[154] 크로스 캐리어 스케줄링이 활성화된 경우, PDCCH 에 해당 PDCCH 가 지시하는 PDSCH/PUSCH 가 어느 DL/UL CC 를 통해서 전송되는지를 알려주는 캐리어 지시자 필드 (CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH 는 PDSCH 자원 또는 PUSCH 자원을 CIF 를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할수 있다. 즉, DL CC상에서의 PDCCH 가 다중 집성된 DL JL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF 가 설정된다. 이 경우, LTE Release-8 의 DCI 포떳은 CIF 에 따라 확장될 수 있다. 이때 설정된 CIF 는 3bit 필드로 고정되거나, 설정된 CIF 의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE Release-8 의 PDCCH 구조 (동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할수도 있다.
[155] 반면, E>L CC 상에서의 PDCCH 가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나단일 링크된 UL CC상에서의 PUSCH자원을 할당하는 경우에는 CIF 가 설정되지 않는다. 이 경우, LTE Release-8 과 동일한 PDCCH 구조 (동일 코딩 및 동일한 CCE기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
[156] 크로스 캐리어 스케줄링이 가능할 때, 단말은 CC 별 전송 모드 및 /또는 대역폭에 따라 모니터링 CC 의 제어영역에서 복수의 DCI 에 대한 PDCCH 를 모니터링하는 것이 필요하다ᅳ 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH모니터링이 필요하다.
[157] 캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH 를 수신하도록 스케줄링된 DL CC 의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH 를 전송하도록 스케줄링된 UL CC 의 집합을 나타낸다. 또한, PDCCH 모니터링 집합 (monitoring set)은 PDCCH모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합 (subset)일 수 있다. PDCCH모니터링 집합은 단말 DL CC 집합내의 DL CC들 증 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC 는 링크된 UL CC 에 대한 자기-스케줄링 (self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH모니터링 집합은 단말 특정 (UE-specific), 단말 그룹 특정 (UE group-specific) 또는 셀 특정 (Cell- specific)하게 설정될 수 있다.
[158] 크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH 를 스케즐링하기 위하여 기지국은 PDCCH모니터링 집합만을통해 PDCCH를 전송한다.
[1591 도 7 은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 LTE-A시스템의 서브 프레임 구조를 나타낸다.
[160] 도 7 을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3 개의 하향링크 컴포년트 캐리어 (DL CC)가 결합되어 있으며, DL CC 'A'는 PDCCH모니터링 DL CC로 설정된 경우를 나타낸다. CIF가사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH 를 스케줄링하는 PDCCH 를 전송할 수 있다. 반면, CIF 가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF 를 이용하여 자신의 PDSCH또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할수 있다. 이때, PDCCH모니터링 DL CC로 설정되지 않은 DL CC 'Β' 와 'C'는 PDCCH를 전송하지 않는다.
[161] 도 8 은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케즐링에 따른 서빙셀 구성의 일례를 나타내는 도면이다.
[162] 캐리어 결합 (CA)을 지원하는 무선 접속 시스템에서 기지국 및 /또는 단말들은 하나 이상의 서빙 셀들로 구성될 수 있다. 도 8 에서 기지국은 A 셀, B 셀, C 셀 및 D 셀 등 총 4 개의 서빙샐을 지원할 수 있으며, 단말 A 는 A 셀 , B 셀 및 C 샐로 구성되고, 단말 B 는 B 샐, C 샐 및 D 샐로 구성되며, 단말 C 는 B 셀로 구성된 경우를 가정한다. 이때, 각 단말에 구성된 셀들 중 적어도 하나는 P 셀로 설정될 수 있다. 이때, P 셀은 항상 활성화된 상태이며, S 샐은 기지국 및 /또는 단말에 의해 활성화또는 비활성화될 수 있다.
[163] 도 8 에서 구성된 셀은 기지국의 셀 중에서 단말로부터의 측정 보고 (measurement report) 메시지를 기반으로 CA 어 1 셀 추가가 가능한 샐로서 단말별로 설정 가능하다. 구성된 셀은 PDSCH 신호 전송에 대한 ACK/NACK 메시지 전송을 위한 자원을 미리 예약해 둔다. 활성화된 샐 (Activated cell)은 구성된 셀들 중에서 실제 PDSCH 신호 및 /또는 PUSCH 신호를 전송하도록 설정된 샐이며, CSI 보고 및 SRS(Sounding Reference Signal) 전송을 수행하게 된다. 비활성화된 ¾(De- Activated cell)은 기지국의 명령 또는 타이머 동작에 의해서 PDSCH/PUSCH 신호 송수신을 수행하지 않도톡 구성되는 셀이며, CSI보고 및 SRS 전송도 중단된다.
[164] 3.사운딩 참조신호 (SRS)
[165] 3.1 LTE/LTE-A시스템의 SRS
[166] 도 9 는 본 발명의 실시예들에서 사용되는 SRS 전송 방법 증 하나를 나타 내는 도면이다.
[167] SRS 는 상향링크 상에서 주파수-선택적 (Frequency-Selective) 스케줄링을 가 능하게 하기 위한 채널 품질 추정을 위해 사용된다. 이때, SRS 전송은 상향링크 데이터 전송 및 /또는상향링크 제어정보 전송과 관계 없이 수행된다. 다만, SRS는 전력 제어 향상을 위한 목적 또는 근래 스케줄링되지 않은 단말들에 대한 다양한 신규 기능들을 제공하기 위한 목적으로 사용될 수 있다. 예를 들어, 다양한 신규 기능들은 초기 MCS (Modulation and Coding Scheme)선택, 데이터 전송을 위한 초기 전력 제어, 시간 우선 (TA: Timing Advacned) 및 소위 주파수 준 선택적 스케즐링 을 포함한다. 이때, 주파수 준 선택적 스케즐링은 주파수 자원이 서브프레임의 첫 번째 슬롯에 선택적으로 할당되고 의사 랜덤하게 두 번째 슬롯의 다른 주파수로 호핑되는 것을 의미한다.
[168] 또한, SRS는 무선 채널의 상향링크 및 하향링크가서로 상호적이라는 가정 하에 하향링크 채널 품질 추정을 위해서 사용될 수 있다. 이런 가정은 상향링크 및 하향링크에서 동일한 주파수 스팩트럼을 공유하고 시간 영역에서 분리되어 있 는 시간 분할 다증 (TDD) 시스템에 특히 유효하다.
[169] 샐들 내에서 어떠한 단말이 전송하는 SRS 가 전송되는 서브프레임들은 셀 특정 방송 시그널링 (Cell-Specific broadcast signaling)에 의해 지시된다. 셀 특정 'srsSubframeConfiguration' 파라미터는 각무선 프레임 내에서 SRS가 전송될 수 있 는 15개의 가능한서브프레임들의 집합을지시한다. 이러한 구성은 배치 시나리오 상에 따른 SRS 오버헤드를 조정하는데 유연성을 줄 수 있다. 셀 내에서 16 번째 구성은 주로 고속 단말에 대한 접근으로, 샐 내에서 SRS를 완전히 오프하도록 변 경한다.
[170] S S 전송은 서브프레임의 마지막 SC-FDMA 심볼에 구성된다. 그러므로, SRS 및 DM-RS 는 서로 다른 SC-FDMA 심볼들에 위치한다. 또한, PUSCH 데이터 전송은 SRS 에 할당된 SC-FDMA 심볼 상에는 허락되지 않으며, 최악의 경우에 SRS오버헤드는 매 서브프레임에서 약 7% 정도 발생할수 있다.
[171] 각 SRS 심블은 주어진 시간 구간 및 대역폭에서 기본 시¾스들에 의해 생 성되고, 셀 내의 모든 단말들은 동일한 기본 시뭔스를 이용한다. 이때, 셀 내에서 다수의 단말들로부터의 SRS 전송들은 각각 기본 시뭔스의 서로 다른 순환 천이에 의해 직교적으로 구분될 수 있다. 다른 샐들로부터의 SRS 시원스들은 샐들 간에 서로 다른 기본 시퀀스들을 할당함으로써 구분될 수 있다. 다만, 기본 기퀀스들 간 에는 직교성이 보장되지는 않는다.
[172] 3.2 단말사운딩 신호 전송 방법
[173] 이하에서는 단말이 사운딩 참조 신호를 전송하는 방법들에 대해서 설명한 다.
[174] 단말은 두 가지 트리거 타입에 기반하여 서빙 셀마다 SRS 자원 상에서 SRS를 전송할 수 있다. 트리커 타입 0 (trigger type 0)은 상위 계층 시그널링에 의 해 지시되는 주기적 SRS 전송 방법을 의미하고, 트리거 타입 1 (trigger type 1)은 FDD 및 TDD 방식에 대해 PDCCH 를 통해 전송되는 DCI 포맷 0/4/1 A또는 TDD 방식에 대해 PDCCH를 통해 전송되는 DCI포맷 2B/2C/2D을통해 요청되는 비주 기적 SRS 전송 방법을 의미한다.
[175] 트리거 타입 0 및 1 에 따른 SRS 전송이 동일한서빙 샐 내의 동일한서브 프레임에서 발생하는 경우에, 단말은 트리거 타입 1 에 따른 SRS 전송만을 수행한 다. 단말은 각서빙 셀마다 트리거 타입 0 및 /또는 트리거 타입 1 에 대한 SRS 파 라미터로 구성될 수 있다. 이하에서는 트리거 타입 0 및 /또는 트리거 타입 1 에 대 해 상위 계층 신호에 의해 서빙 셀 특정 또는 반-정적으로 구성되는 SRS 파라미 터들에 대해 설명한다.
[176] 3GPP TS 36.211 규격 문서의 5.5.3.2 절에 정의된 전송 콤브 (Transmission comb)는 트리거 타입 0 및 각각의 트리거 타입 1에 대해 구성된다. [177] 3GPP TS 36.211 규격 문서의 5.5.3.2 절에 정의된 물리 자원 블록 할당 시작
(Starting physical resource block assignment) 파라미터는 트리거 타입 0 및 각각 의 트리거 타입 1에 대해 구성된다.
[178] 트리거 타입 0 에 대해서 지속 시간 (duration) 파라미터는 단일 서브프레임 또는 해제될 때까지 무기한으로 대해 구성될 수 있다.
[179] 트리거 타입 0 에 대해서 SRS 전송 주기 rsRS 및 SRS 서브프레임 오프셋 '을 나타내는 srs-Configlndex ISRS 파라미터는 이하에서 설명할 표 7 및 8에 정 의되어 있고, 트리거 타입 1 에 대해서 SRS 전송 주기 및 SRS 서브프레임 오프셋 7예 나타내는 srs-Configlndex ISRS 파라미터는 이하에서 설명할 표 10 및 11에 정의되어 있다.
[180] 3GPP TS 36.211 규격 문서의 5.5.3.2절에 정의된 SRS 대역폭 B^ 파라미터 는 트리거 타입 0 및 각각의 트리거 타입 1에 대해 구성된다.
[181] 3GPP TS 36.211 규격 문서의 5.5.3.2 절에 정의된 주파수 흡핑 대역폭 6 파라미터는 트리거 타입 0에 대해 구성된다. [182] 3GPP TS 36.211 규격 문서의 5.5.3.1 절에 정의된 순환 천이"^ 파라미터는 트리거 타입 0 및 각각의 트리거 타입 1에 대해 구성된다.
[183] 안테나 포트 번호 NP 파라미터는 트리거 타입 0 및 각각의 트리거 타입 1 에 대해 구성된다.
[184] 트리거 타입 1 및 DCI 포떳 4 를 위해 세 개의 SRS 파라미터 집합들 (예를 들어, srs- y? ipDC/- rwa 이 상위 계층 신호에 의해 구성된다. DCI 포맷 4에 포함된 2 비트의 SRS 요청 필드는 다음 표 6 에 주어진 SRS 파라미터 집합을 지 시한다.
[185] 【표 6】 SRS 요청 필드의 값 내용
*00' No type 1 SRS trigger
The 1st SRS parameter set configured by
401'
higher layers
The 2nd SRS parameter set configured by
110, higher layers
The 3RD SRS parameter set configured by
' 11, higher layers
[186] 트리거 타입 1 및 DCI 포맷 0 에 대해서 하나의 SRS 파라미터 집합 srs- ConflgApCDI-FormatO 이 상위 계층 시그널링에 의해 구성된다. 트리거 타입 1 및 DCI 포맷 1A/2B/2C/2D 에 대해서 하나의 공통 SRS 파라미터 집합 ·Ϊ - ConfigApCDI-Formatlci2b2(:는상위 계층 시그널링에 의해 구성된다.
[187] DCI포맷 0/1A/2B/2C/2D에 포함된 1비트의 SRS 요청 필드가 '1,로 설정되 면 트리거 타입 1 을 트리거할 수 있다 (즉, 포지티브 SRS 요청). 단말이 상위 계 층 시그널링에 의해 DCI포맷 0/1A/2B/2C/2D에 대해 SRS 파라미터들로 구성되면, 프레임 구조 타입 1 에 대해 DCI포맷 0/1A내에 1 비트의 SRS요청 필드가포함 되고, 프레임 구조 타입 2에 대해 DCI포떳 0/1A/2B/2C/2D 내에 1 비트의 SRS 요 청 필드가포함된다.
[188] 서빙 샐 특정 SRS 전송 대역 CSRS 및 서빙 셀 특정 SRS 전송 서브프레임 들은상위 계층 시그널링 (예를 들어, MAC, RRC 메시지 등)에 의해 구성된다.
[189] 전송 안테나 선택올 지원하는 단말에 대해서 주어진 서빙 셀에 대해 안테 나 선택이 활성화되면, 시간 nSRS 에 전송되는 SRS 를 전송하는 단말 안테나의 인 덱스는 다음수학식 3 또는 수학식 4와 같이 주어진다.
[190] 【수학식 3】
a(»SRs ) = nSRS m0li 2
[191] 수학식 3 은 사운딩 대역의 일부 또는 전부에 대해서 주파수 호핑이 비활 성화된 경우 (즉, bkop≥BSRS)^ 단말 안테나 인덱스를 나타낸다.
[192] 【수학식 4】
l where mod 4 = 0
Figure imgf000032_0001
0 otherwise
[193] 수학식 4 는 주파수 호핑이 활성화 된 경우 (즉, bhop < BSR^^ 단말 안테나 인덱스를 나타낸다. 수학식 3 및 4 에서 파라미터 값들 SRS, bhop> Nb, 및 «SRS은 3GPP TS 36.211 규격 문서의 5.5.3.2 절을 참조할 수 있다. 또한, 단일 SRS 전송이 단말에 구성된 경우를 제외하고 K = ΐ ]ν6 로 설정된다. 이때, Nb 값에 관계 없 이 N = i임을 가정한다. 만약, 단말이 하나 이상의 서빙셀들로 구성되면, 단말은 서로 다른 안테나 포트들을 통해 동시에 SRS 를 전송하는 것으로 기대하지 않는 다- [194] 단말이 서빙셀에서 Np 개의 안테나 포트들 상에서 SRS 을 전송하도록 구 성될 수 있다. Np 값은 상위 계층 신호로 단말에 알려질 수 있다. PUSCH 전송모 드 1 에 대해서 Wp e {0,1,2,4}이고, 두 개의 안테나 포트로 구성된 PUSCH 에 대한
PUSCH전송 모드 2에 대해서 E {0,1,2}이고, PUSCH를 위해 구성된 4 안테나포 트에 대해 ^ e {0,l,4}이다.
[195] 서빙샐의 다증 안테나포트들상에서 SRS를 전송하도록 구성된 단말은 해 당 서빙 셀의 동일 서브프레임의 하나의 SC-FDAM심볼 내에서 구성된 전송 안테 나 포트들 모두에 대해 SRS 를 전송해야 한다. SRS 전송 대역폭 및 시작 물리 자 원 블록 할당 파라미터들은 해당 서빙 샐의 구성된 모든 안테나 포트들에 대해서 동일하게 설정된다.
[196] 다중 시간 우선 그룹 (TAG: Timing Advanced Group)들로 구성되지 않은 단말 은 SRS 및 PUSCH 전송이 동일한 심볼에서 중복될 때 마다 SRS 를 전송하지 않 는다. TAG 는 캐리어 결합 (CA) 환경에서 기지국과 상향링크 동기를 맞추기 위한 TA가동일한서빙 샐들의 그룹을 의미한다.
[197] TDD 에 대해서, 주어진 서빙 셀의 UpPTS 내에 SC-FDMA심볼이 하나 존 재하면, SC-FDMA 심볼은 SRS 전송을 위해 사용될 수 있다. 주어진 서빙 셀의 UpPTS 내에 SC-FDMA 심볼이 두 개 존재하면, 두 개의 SC-FDAM 심볼들이 동일 단말에 할당될 수 있고,모두 SRS 전송에 사용될 수 있다.
[198] 다중 TA0 로 구성되지 않은 단말은 동일 서브프레임 내에서 트리거 타입 0 SRS 전송과 PUCCH포맷 2/2a/2b전송이 충돌하면 트리거 타입 0 SRS 전송을 수 행하지 않는다. 다중 TAG로 구성되지 않은 단말은 동일 서브프레임 내에서 트리 거 타입 1 SRS 전송과 PUCCH 포맷 2a/2b 전송 또는 HARQ 정보 전송을 위한 PUCCH 포맷 2 전송이 충돌하면 트리거 타입 1 SRS 전송을 수행하지 않는다. 다 중 TAG로 구성되지 않은 단말은 동일 서브프레임 내에서 HARQ 정보 전송을 제 외한 PUCCH 포맷 2 전송과 트리거 타입 1 SRS 전송이 층돌하면 HARQ 정보 전 송을 제외한 PUCCH포맷 2 전송을 수행하지 않는다.
[199] ackNackSRS-SimultaneousTransmission 파라미터가 'FALSE'로 설정되면, 다중 TAG 로 구성되지 않은 단말은 동일 서브프레임 내에서 SRS 전송과 HARQ-ACK 정보 전송을 위한 PUCCH 전송 및 /또는 포지티브 SR 이 층돌하면 SRS 전송을 수 행하지 않는다 . ackNackSRS-SimuhamousTrammission 파라미터가 'TRUE,로 설정되면: 다증 TAG 로 구성되지 않은 단말은 동일 서브프레임 내에서 SRS 전송과 HARQ- ACK 정보 전송을 위한 PUCCH 전송 및 /또는 축소된 포맷을 사용하는 포지티브 SR이 충돌하면 SRS 전송을 수행한다.
[200] 다중 TAG 로 구성되지 않은 단말은 동일 서브프레임 내에서 SRS 전송과 HARQ 정보 전송을 위한 PUCCH 전송 및 /또는 일반 PUCCH 포맷을 사용하는 포 지티브 SR이 층돌하면 SRS 전송을 수행하지 않는다.
[201] UpPTS 에서 SRS 전송 구간이 프리엠블 포맷 4 를 위한 PRACH 영역과 중 첩되거나 서빙 셀 내에 구성된 상향링크 시스템 대역폭의 범위를 초과하면, 단말 은 SRS 전송을 수행하지 않는다.
[202] 상위 계층에 의해 제공되는 ackNackSRS-Si觀 ItaneousTransmission파라미터에 의해 동일 서브프레임 내에서 단말이 HARQ-ACK 정보를 포함하는 PUCCH 와 SRS 를 동시에 전송할지 여부가 결정된다. 만약 단말이 동일 서브프레임에서 PUCCH를 통한 HARQ-ACK 및 SRS를 전송하도록 구성되면, 프라이머리 셀의 셀 특정 SRS 서브프레임들에서 단말은 축소된 PUCCH 포맷을 이용하여 HARQ-ACK 및 SR을 전송한다. 이때, SRS 위치에 상웅하는 HARQ-ACK또는 SR심볼은 펑쳐 링된다. 단말이 프라이머리 셀의 셀 특정 SRS 서브프레임 내에서 SRS 전송을 하 지 않는 경우에도, 축약된 PUCCH포맷은 해당 서브프레임 내에서 사용된다. 그렇 지 않으면, 단말은 일반 PUCCH포맷 1/Ia/lb또는 일반 PUCCH포맷 3을 HARQ- ACK 및 SR전송에 사용한다.
[203] SRS 주기 rSRS 파라미터 및 SRS 서브프레임 오프셋 Toffsel 파라미터에 대한 트리거 타입 0 SRS 구성은 다음 표 7 및 8 에 FDD 및 TDD 에 대해서 각각 정의 되어 있다.
[204] 【표 7】 [206]
Figure imgf000035_0001
320} ms 의 집합 또는 서브프레임들로부터 선택된다. TDD 에서 2ms 의 rSRS 주기 파라미터에 대해서 두 개의 SRS 자원들은 주어진 해당 서빙 셀에서 UL 서브프레 임들을 포함하는 하프 프레임 내에 구성된다.
[207] rSRS >2 인 TDD 또는 FDD 에 대해, 주어진 서빙 샐 내에서 트리거 타입 0 인 SRS 전송 인스턴스들 (instances)은 (ιο·Μ/ +ASRS -7;#JC,)modrSRS =0을 만족하는 서브프 레임들로 결정된다. 이때, FDD 에 대해서 ={0,1,...,9}는 프레임 내의 서브프레임 인덱스를 의미하고, TDD에 대해 feSRS는 다음 표 9에 의해 정의된다. 또한, rSRS=2 인 TDD 에 대해 SRS 전송 인스턴스는 (tSRS- i,)mod5 = o를 만족하는 서브프레임 들이다.
[208] 【표 9】 subframe index n
0 1 2 3 4 5 6 7 8 9
1st symbol 2nd symbol 1st symbol 2nd symbol of UpPTS of UpPTS of UpPTS of UpPTS
0 1 2 3 4 5 6 7 8 9
UpPTS length of
2 symbols
1 2 3 4 6 7 8 9 in case
UpPTS length of
1 symbol
[209】 서빙셀 내에서 트리거 타입 1 인 SRS 전송에 대해, SRS 전송 주기 rSRS 1
SRS 서브프레임 오프셋 7:쮀은 다음 표 10 및 U 에 FDD 및 TDD 로 각각 정의 된다.
[210] 【표 10】
Figure imgf000036_0002
[211
Figure imgf000036_0001
Figure imgf000036_0003
[212] SRS 전송에 대한 주기 파라미터 ^는 서빙 셀 특정 값이고 서브프레임 들 또는 {2, 5, 10}ms 집합으로부터 선택된다. TDD에서 2ms의 SRS 전송주기에 대 해서, 두 개의 SRS 자원들은 주어진 서빙 ¾에서 UL 서브프레임들을 포함하는 하 프 프레임 내에 구성된다.
[213] 서빙샐 c 에서 타입 1 SRS 전송으로 구성되고 캐리어 지시자 필드에 의해 구성되지 않은 단말은 서빙셀 c 상에서 PUSCH/PDSCH 를 스케줄링하는 PDCCH/EPDCCH 내의 포지티브 SRS 요청을 검출하는 경우 서빙셀 c 에서 SRS 를 전송한다.
[214] 서빙셀 c 에서 타입 1 SRS 전송으로 구성되고 캐리어 지시자 필드에 의해 구성된 단말은 PUSCH PDSCH 를 스케줄링하는 PDCCH/EPDCCH 내의 포지티브 SRS 요청의 검출시 캐리어 지시자필드와상응하는서빙셀 c상에서 SRS 를 전송 한다.
[215] 서빙샐 c에서 타입 1 SRS 전송으로 구성된 단말이 서빙셀 c의 서브프레임 n 에서 포지티브 SRS 요청을 검출하면 FDD 및 rSRSJ > 2인 TDD 에 대해 n + k,k≥4 및 (io.n/ + ^1) mod¾SJ = o을 만족하는 첫 번째 서브프레임 내에서 SRS 전송 을 시작한다. 또는, 단말은 rSRS,, = 2인 TDD 에 대해서 tSRS - ᅳ,) mod 5 = o을 만족하 는 첫 번째 서브프레임에서 SRS 전송을시작한다. 이때, FDD에 대해 프레임 ^내 에서 Μ = {0,1 ..,9}는서브프레임 인덱스를 나타낸다.
[216] 트리거 타입 1 SRS 전송으로 구성된 단말은 동일 서빙 셀 및 동일 서브프 레임에 대해 상위 계층 시그널링에 의해 다른 값으로 구성된 트리거 타입 1 SRS 전송 파라미터와 관련된 타입 1 SRS 트리거링 이벤트를 수신하는 것으로 기대하 지 않는다.
[217] 단말은 동일 서브프레임 내에서 랜덤 접속 과정에 기반한 경쟁의 일부로 동일한 전송 블록의 재전송 또는 임의 접속 웅답에 상응하는 PUSCH 전송과 SRS 가 충돌하면 SRS를 전송하지 않는다.
[218] 3.3 주기적 SRS 전송 및 비주기적 SRS 전송
[219] 도 10(a)는 주기적 SRS 전송의 개념을 나타내는 도면이고, 도 10(b)는 비주 기적 SRS 전송의 개념을 나타내는 도면이다. 이때, 주기적 SRS 전송은 트리거 타 입 0 인 SRS 전송을 의미하고, 비주기적 SRS 전송은 트리거 타입 1 인 SRS 전송 을 의미한다,
【220] 먼저 주기적 SRS 전송에 대해서 설명한다. 도 10(a)를 참조하면, SRS 전송 을 위한 SRS 전송 파라미터들은 기지국으로부터 상위계층 시그널 (예를 들어, RRC 신호)를 통해 단말에 전송된다 (S1010).
[221] SRS 전송 파라미터는 하나의 SRS 전송이 차지하는 대역폭을 나타내는 SRS 전송 대역폭 파라미터, SRS 전송이 주파수 상으로 호핑하는 주파수 영역을 나타내는 호핑 대역폭 파라미터, 주파수 영역 상 SRS 전송이 시작하는 위치를 나 타내는 주파수 위치 (frequency position) 파라미터, SRS 전송 위치 또는 패턴을 나타 내기 위한 전송 콤브 (transmission comb) 파라미터, SRS 간 구별을 위한 순환 천이 (cyclic shift) 파라미터, SRS 전송 주기를 나타내는주기 파라미터 및 SRS가 전송되
35 는 서브프레임을 지시하는 서브프레임 오프셋 파라미터가 포함될 수 있다. 이때, 서브프레임 오프셋 파라미터는 특정 SRS 서브프레임 또는 단말 특정 SRS 서 브프레임 등을 지시할 수 있다.
[222] 단말은 SRS 전송 파라미터를 기반으로 2ms 내지 160ms 의 정해진 시간 간 격에서 주기적으로 SRS 전송올 수행할수 있다 (S1030).
[223] 이때, SRS 심볼들은 PUSCH 전송에 사용되면 안되므로, 셀 내 모든 단말들 은 해당 샐 내 어떤 서브프레임에서 SRS 전송이 일어나는지 여부를 미리 알고 있 을수 있다.
[224] 다음으로 비주기적 SRS 전송에 대해서 설명한다. 비주기적 SRS 전송은 스 케줄링 승인의 일부로써 PDCCH상의 시그널링으로 트리거된다. 비주기적 SRS 전 송의 주파수 영역 구조는 주기적 SRS 와 동일하다. 다만, 비주기적 SRS 가 언제 전송되는지는 상위 계층 시그널링을 통해 단말 별로 설정된다.
[225] 도 10(b)를 참조하면, SRS 전송을 위한 SRS 전송 파라미터들은 기지국으로 부터 상위계층 시그널 (예를 들어, RRC신호)를 통해 단말에 전송된다 (S1020).
[226] 이때, 비주기적 SRS 전송에서 사용되는 SRS 전송 파라미터들은 기본적으 로 주기적 SRS 전송에 사용되는 SRS 전송 파라미터돌과동일하다.
[227] 기지국은 비주기적 SRS 전송올 요구하는 경우에, SRS 요청 필드가 설정된 PDCCH 신호 또는 E-PDCCH 신호를 단말에 전송한다. 이때, E-PDCCH 신호는 PDSCH 영역을 통해 전송되는 제어 정보를 의미한다. 또한, PDCCH 신호에 대한 설명은상술한 1절을 참조할수 있다 (S1040).
[228] S1040 단계에서 명시적으로 비주기적 SRS 전송을 요구 받은 단말은 해당 서브프레임에서 비주기적 SRS 전송을수행할수 있다 (S1060).
[229] 4. MTC 단말의 SRS 전송 방법
[230] 4.1 MTC 단말
[231] LTE-A 시스템은 차기 무선 통신 시스템으로 계량기 검침, 수위측정, 감시 카메라의 활용, 자판기의 재고보고 등의 데이터 통신을 위주로 하는 저가 /저사양의 단말을 구성하는 것을 고려하고 있다. 본 발명의 실시예들에서는 이러한 단말을 편의상 MTC (Machine Type Communication) 단말이라고 부르기로 한다. [232] MTC 단말의 경우 전송 데이터 량이 적고 상 /하향 링크 데이터 송수신이 가끔씩 발생하기 때문에 이러한 낮은 데이터 전송를에 맞춰서 단말기의 단가를 낮추고 배터리 소모를 줄이는 것이 효율적이다. 이러한 MTC 단말은 이동성이 적은 것을 특징으로 하며, 따라서 채널 환경이 거의 변하지 않는 특성을 지니고 있다. 현재 LTE-A 에서는 이러한 MTC 단말이 기존에 비해 넓은 커버리지 (coverage)를 지닐 수 있도록 할 것을 고려하고 있으며, 이를 위해 MTC 단말을 위한 다양한 커버리지 향상 (coverage enhancement) 기법들이 논의되고 있다.
[2331 MTC 단말은 레가시 UE (즉, 일반 단말)에 비해 전송 환경이 좋지 않은 영역 (e.g, 지하실 등)에 설치될 수 있다. 이러한 MTC 단말을 위해 중계기 등을 설치하는 경우 설비 투자에 많은 비용이 소모될 수 있다. 따라서, 전파 환경이 열악한 지역에 서 동작하는 MTC 단말에 대해서는 하향링크 또는 상향링크 채널을 반복하여 전송 함으로써 안정적인 통신을 제공하는 것이 효율적일 수 있다.
(234] 이하에서는 MTC 단말의 SRS 전송 방법들에 대해서 자세히 설명한다. 이때, SRS 전송 방법은 1절 내지 3절에서 설명한 방법들을 기반으로 동작할수 있다.
[235] 4.2 SRS 전송 방법 -1
[236] SRS 는 기지국에서의 상향링크 채널 측정을 지원하기 위해 상향링크 채널로 전송됨으로써 이후 PUSCH 를 스케줄링하기 위해 사용된다. 이때, MTC 단말이 위치하는 채널 환경은 전파 환경이 열악할 수 있다. 따라서, MTC 단말은 기지국이 효과적으로 상향링크 채널을 추정하도록 할 수 있도톡 반복적으로 SRS 를 전송하도록 구성될 수 있다.
[237] 4.2.1 MTC 단말을위한 SRS구성 방법
[238] MTC 단말이 전송하는 SRS 는 반복하여 전송되는 형태로 구성될 수 있다. SRS 시뭔스의 전송은 셀 특정 파라미터 (cell specific parameter)와 단말 특정 파라미터 (UE specific parameter)에 의해서 결정된다. 이때, SRS 의 반복 전송은 시간 영역에서 이루어지는 것이 바람직하다. 이를 위해서, SRS 의 반복 전송 기간 동안 SRS의 시퀀스 특성 및 전송 대역은 동일하게 설정될 수 있다.
[239] SRS 전송 대역은 SRS 대역폭 및 SRS 호핑 (SRS hopping) 관련 파라미터로 결정되며, SRS 반복 전송을 위해 SRS 대역폭 및 SRS 호핑 파라미터는 SRS 반복 전송구간동안 동일한 값을 유지하도톡 설정될 수 있다.
[240】 SRS 시¾스는 3GPP TS 36.211 규격 문서에서 정의하고 있듯이, (1) 시¾스 그룹 번호 u (sequence group number u)와 (2) 전송 대역 및 시뭔스 호핑 여부에 따라 결정되는 기저 시뭔스 번호 V (base sequence number v), (3) SRS 전송 파라미터인 순환 천이 파라미터 및 (4) SRS 전송 안테나포트에 의해서 결정될 수 있다. [241] SRS 를 시간 영역에서 반복 전송하는 것은, 기지국에서 반복적으로 수신한 SRS 를 결합하여 상향링크 채널 추정 성능을 향상시킬 수 있도록 하기 위함이다. 따라서, 반복 전송 구간 동안 SRS 시뭔스가 변하지 않는 것이 바람직하다. 즉, 동일한 SRS 시원스들이 반복 전송될 수 있다.
[242] 이를 위해, SRS 시뭔스를 결정하는데 사용되는 파라미터 값 u 및 V 는 반복 구간 동안 고정되는 것이 바람직하다. 또한, SRS 에 대한 시뭔스 그룹 호핑을 비활성화시키거나 반복 전송 구간 동안에는 u 및 V 를 일정한 값으로 설정할 수 있다.
[243] 이하에서는, 시퀀스 그룹 번호 u 를 설정하는 방법에 대해서 설명한다. SRS 반복 전송을 위한 파라미터 값 u는 다음 수학식 5와 같이 정의될 수 있다.
[244] 【수학식 5】 u = (fgh(np) + fss) mod 30
【2451 수학식 5 에서 fgh는 그룹 호핑 패턴을 나타내는 함수이고, fss는 SRS 시퀀스 천이 패턴을 의미한다. 이때, fss = fPUCCH = Nceii mod go 을 만족하는 값으로 결정되며, "는 셀 식별자를 의미하고 , np는 SRS 전송 주기를 나타낸다. 즉, 이러한 경우에는 모든 SRS 반복 전송 구간에서 동일한 SRS 시퀀스가사용되도톡 설정된다. 이때, 만약 시퀀스 그룹 호핑이 비활성화되는 경우에는 fgh(np) = 0으로 설정될 수 있다.
[246】 다른 방법으로서, 시퀀스 그룹 호핑을 처음 SRS 반복 전송 구간 동안 일정하게 유지한 후 다음 SRS 반복 전송 구간에서 다른 SRS 시뭔스를 사용하도록 설정되는 경우에는, fgh(np)에 SRS 전송 주기 ( np) 함수를 임의 (random) 값으로 설정할 수 있다. 즉, 단말은 매 SRS 반복 전송 주기마다 서로 다른 SRS 시퀀스를 이용하여 SRS 를 전송할 수 있다. 이때에도 하나의 SRS 반복 전송 주기 내에서는 동일한 SRS 시뭔스가 반복 전송된다.
[247] 이하에서는 기저 시퀀스 번호 V를설정하는 방법에 대해서 설명한다. V값은 SRS 전송 대역이 6 RB 이하인 경우에는 기존 LTE/LTE-A 시스템과 같이 '0'으로 설정될 수 있다. 만약, SRS 전송 대역이 6 RB 이상인 경우에는 시퀀스 호핑을 비활성화하여 V 값 역시 '0'으로 설정되도록 구성될 수 있다. 즉, 기존 LTE/LTE-A 시스템에서는 시퀀스 호핑을 활성화하는 경우에 V 값이 서로 다른 값들을 갖게 되지만, MTC 단말이 SRS 를 반복 전송하는 경우에는 V 값을 서로 동일하게 설정하기 위함이다.
[248] 또는, SRS 시뭔스 호핑을 시퀀스 그룹 호핑과 같은 방법으로 하나의 반복 전송 구간 동안에는 동일한 V 값올 갖도록 하고, 다음 반복 전송 구간 동안에서는 다른 V 값을 갖도록 설정할 수 있다. 이때, V 값은 SRS 전송 주기 (np) 함수를 임의 값이 되도록 설정할 수 있다.
[249] 상술한 방법들과 같이, 단말은 기지국이 설정하는 파라미터값들에 따라서 SRS 을 생성 및 전송할수 있다. 이때, 단말은 모든 SRS 전송 주기에서 동일한 SRS 시뭔스를 생성하여 반복 전송하거나, SRS 전송 주기마다 서로 다른 SRS 시뭔스를 생성하여 반복 전송할수 있다.
[250] 4.2.2 SRS 전송 방법 [251】 MTC 환경에서 MTC 단말의 전송 대역폭은 특정 대역폭 (e.g., 6 PRB)로 제한될 수 있다. 이러한 경우에, 단말이 전송할 SRS 의 전송 대역폭도 제한될 수 있다. 그러나, 시스템 대역폭은 MTC 단말이 지원하는 전송 대역폭보다 클 수가 있기 때문에, MTC 단말이 시스템 대역폭의 서브밴드 (subband)로 스케줄링 받기 위해서는 SRS 도 서브밴드로 전송되도록 설정될 수 있다. 예를 들어, 시스템 대역을 MTC 단말의 대역폭에 해당하는 다수 개의 서브밴드로 나누고 SRS 를 해당 서브밴드 중 하나 이상에서 전송되도록 설정할수 있다.
[252] 이때, SRS 가 서브밴드에서 전송되는 순서는 서브밴드 인텍스 순서 (e.g., 주파수가 낮은 서브밴드 인덱스 순서) 또는 미리 정해진 순서로 설점될 수 있다. 따라서, 단말은 이러한 순서로 SRS 를 서브벤드를 통해 전송할 수 있다. SRS 가 전송되는 서브밴드가 하나 이상인 경우에는, 하나의 서브밴드에서 SRS 반복 전송이 모두 완료된 후에 다음서브밴드에서 SRS 반복 전송이 개시되는 것 이 바람직하다.
[253] 시간 영역에서 SRS 를 반복 전송하기 위해세 단말은 다수 개의 SRS 구성을 설정 받는 것이 필요하다. 예를 들어, 기지국은 서빙 셀에 공통적으로 설정된 SRS 서브프레임에서 단말이 SRS 전송을 반복적으로 수행하도록 설정하는 것이 바람직하다. 예를 들어, 서빙 셀에 공통적으로 설정된 SRS 서브프레임은 (1) 기존의 LTE/LTE-A 시스템의 일반 단말에 할당되는 SRS 전송을 위한 셀 특정 SRS 서브프레임들로 설정되거나 또는 (2) MTC 단말을 위해 새로이 정의되는 셀 특정 SRS 서브프레임으로 설정될 수 있다. 즉, MTC 단말이 SRS 를 반복 전송하기 위한 샐 특정 MTC SRS 서브프레임이 정의될 수 있다.
[254] SRS 반복 전송을 위해 다음과 같은 방법들을 고려할수 있다.
[255] (1) 방법 1 : 기지국은 셀 특정 SRS 서브프레임들 중에서 SRS 반복 전송을 위해 사용할 서브프레임을 단말에 명시적으로 알려줄 수 있다. 이러한 경우 기지국이 지시한 서브프레임들에서만 SRS 반복 전송이 일어나고, 나머지 서브프레임들에서는 일반적인 SRS 전송이 수행될 수 있다. 즉, SRS 반복 전송이 매 SRS 전송 주기에서 연속적으로 일어나지 않을 수 있다. [256] (2) 방법 2: 기지국은 셀 특정 SRS 서브프레임들에서 단말 특정 SRS 서브프레임 오프셋 (UE specific SRS subframe offset)부터 반복 전송에 필요한 서브프레임들의 개수를 지시할 수 있다. 본 발명의 실시예들에서, 단말 특정 SRS 서브프레임들은 셀 특정 SRS 서브프레임들에 포함되는 개념으로 정의될 수 있다.
[257] 방법 2 의 경우, 샐 특정 SRS 서브프레임들 중에서 기지국으로부터 지시된 단말 특정 SRS 서브프레임들에서만 연속적으로 SRS 반복 전송이 수행될 수 있다. 예를 들어, 기지국이 지시한 서브프레임들에서만 SRS 전송이 수행되고, 나머지 SRS 전송 주기에서는 SRS 반복 전송이 발생하지 않을 수 있다.
[258] (3) 방법 3: 기지국은 셀 특정 SRS 서브프레임들 증에서 SRS 반복 전송을 수행할 단말 특정 SRS 서브프레임의 처음 서브프레임 번호 (즉, 서브프레임 오프셋)와마지막 SRS서브프레임을 명시적으로 지시할 수 있다.
[259] 방법 3 의 경우, 단말은 SRS 서브프레임 오프셋에 해당하는 처음 서브프레임부터 기지국이 마지막으로 지시한 SRS 서브프레임까지 셀 특정 SRS 서브프레임들에 대해서 SRS 를 반복적으로 전송할 수 있다. 방법 3 의 경우에 샐 특정 SRS 서브프레임의 설정에 따라 SRS 반복 전송이 연속적인 SRS 서브프레임들에서 수행되지 않을 수 있다. 예를 들어, 샐 특정 SRS 서브프레임이 연속적으로 설정되지 않은 경우에는, SRS 반복 전송은 SRS 반복 전송 주기 내에 포함된 셀 특정 SRS 서브프레임에서만 반복하여 전송되고, 나머지 서브프레임들에서는 반복 전송되지 않을 수 있다.
[260】 도 11 은 SRS 전송 방식 중 트리거 타입 0 인 경우에, MTC 단말이 SRS 를 반복하여 전송하는 방법 중 하나를 나타내는 도면이다. 특히, 도 U (a)는 일반 단말이 SRS 를 주기적으로 전송하는 방법을 나타내고, 도 11(b)는 MTC 단말이 SRS를 주기적으로 전송하는 방법을 나타낸다.
[261] 도 12 는 SRS 전송 방식 중 트리거 타입 1 인 경우에, MTC 단말이 SRS 를 반복하여 전송하는 방법 중 하나를 나타내는 도면이다. 특히, 도 12 (a)는 일반 단말이 SRS 를 비주기적으로 전송하는 방법을 나타내고, 도 12(b)는 MTC 단말이 SRS를 비주기적으로 전송하는 방법을 나타낸다.
[262] 도 11 (a) 및 도 12(a)의 SRS 전송 방식은 3 절에서 설명한 SRS 전송 방법을 참조할수 있다. 도 11 (b) 및 도 12(b)의 MTC단말이 SRS를 반복 전송하는 방법은 4.2.2 절에서 설명한 방법 1 내지 3 의 방법이 적용될 수 있다. 도 H(b) 및 도 12(b)에서, MTC 단말은 4.2.1절에서 설명한 SRS 구성 방법에 따라 생성한 SRS를 각 SRS 전송 주기 또는 SRS 전송을 요청 받은 서브프레임에서 소정 횟수 반복하여 전송할수 있다.
[263] 이때, SRS 반복 전송은 셀 특정 SRS 서브프레임들 중에서 기지국이 지시한 SRS 서브프레임들에서만 반복 전송되거나 (방법 1), 샐 특정 SRS 서브프레임들 중에서 단말 특정 SRS 서브프레임돌 중 기지국이 지시한 SRS 서브프레임들에서만 반복 전송될 수 있다 (방법 2또는 3).
[264] 이때, 셀 특정 SRS 서브프레임들이 연속적으로 구성되지 않은 경우에는, MTC 단말은 (1) SRS 반복 전송을 위한 소정 횟수만큼의 서브프레임들 내에서 샐 특정 SRS 서브프레임들에서만 SRS 를 반복 전송하거나, (2) 처음 SRS 반복 전송 구간의 셀 특정 SRS 서브프레임들에서 SRS 를 반복 전송하되, 반복 횟수만큼 SRS 를 반복 전송하지 못한 경우에는 다음 SRS 반복 전송 구간의 셀 특정 SRS 서브프레임들에서 나머지 SRS를 반복 전송할수 있다.
[265] 또는, 기지국이 SRS 반복 전송 횟수 및 구간을 설정할 수 있다. 예를 들어, MTC 환경에서 MTC 단말은 n 회의 SRS 반복 전송이 필요한 것을 가정한다. 이때, 기지국은 SRS 반복 전송 구간을 설정시 반복 전송 횟수 n, 셀 특정 SRS 서브프레임의 개수 X 및 단말 특정 SRS 서브프레임의 개수 y를 고려하여 SRS 반복 전송 구간을 설정할 수 있다. 만약, y>x>=n 인 경우, 기지국은 단말에 n 회의 SRS 반복 전송만을 지시할수 있다. 만약, y>n>x또는 x>n>y인 경우, 기지국은 단말에 n- X번 또는 n-y번의 반복 전송 횟수만큼 반복 전송 주기를 늘리도록 설정할 수 있다. [266] 4.3 SRS 전송 방법 -2
[267] 단말이 SRS 를 반복하여 전송하는 동안, 다른 단말의 SRS 와 다중화를 용이하게 하기 위해서 SRS 전송 콤브 (SRS transmission comb)를 서로 다른 것을 사용할수 있다.
[268] 즉, 하나의 RB 에는 2 개의 SRS 전송 콤브가 존재하는 데, MTC 단말이 SRS 반복 전송을 위해 반복 전송 구간 내에서 제 1 SRS 전송 콤브를 사용하고, 다른 -서브프레임에서 전송되는 SRS 전송은 제 2 SRS 전송 콤브를 사용하도록 구성될 수 있다. 이를 위해서 기지국은 상위 계층 시그널링 /MAC 시그널링 /L1 시그널링 등을 통하여 SRS 전송콤브의 설정을 알려줄 수 있다.
[269] 4.4 SRS 전송 제한
[270] 이하에서는 상술한 SRS 전송 방법들에 적용될 수 있는 SRS 전송 제한 방법들에 대해서 설명한다. [271] 4.4.1트리거 타입에 따른 SRS 전송제한
[272] SRS 전송은 상위 계층의 설정에 따라 전송되는 트리거 타입 0 (즉, 주기적 SRS 전송)과 PDCCH 에 의해 전송 개시가 지시되는 트리거 타입 1(즉, 비주기적 SRS 전송)로 구분될 수 있다. 이때, MTC 단말은 열악한 MTC 전파 환경에 배치되므로, 트리거 타입 0또는 1 중 하나의 모드만 지원하도록 설정할수 있다.
[273] 예를 들어, MTC 단말은 트리거 타입 1 만 지원하도록 설정될 수 있다. 이러한 경우, 기지국의 요청이 있는 경우에만 MTC 단말은 SRS 반복전송을 수행할 수 있다. 물론, MTC 단말은 트리거 타입 0 만 지원하도특 설정될 수 있다. 트리거 타입 0 만 지원 푀는 경우, MTC 단말은 기지국으로부터의 비주기적 SRS 요청은 없는 것으로 가정할 수 있다. 이때, 비주기적 SRS 요청을 수행하는 DCI포맷의 SRS 요청 필드는 전송되지 않거나 다른목적으로사용될 수 있다. [274] 4.4.2 SRS와다른상향링크채널의 동시 전송시 동작
[275] MTC 단말이 SRS 를 반복 전송하는 경우 상향링크 제어 정보 (예를 들어, HARQ-ACK, SR(Scheduling Request) 전송, 주기적 CSI 전송 및 /또는 비주기적 CSI 전송 등)의 전송이 수행되는 서브프레임에서 SRS 반복 전송이 같이 수행되는 상황이 발생할 수 있다. 이러한 경우, 기지국은 미리 상위 계층 신호 (예를 들어, RRC, MAC 신호 등)를 이용하여 해당 동일 서브프레임에서 SRS 전송을 수행하지 않도록 설정할 수 있다. 즉, SRS 반복 전송 구간과 상향링크 제어 정보의 전송이 수행되는 서브프레임이 겹치는 경우, 겹치는 서브프레임에서는 SRS 반복 전송이 수행되지 않도록 설정될 수 있다.
[276] 이 경우, 기지국 및 /또는 단말은 SRS 전송이 실제 전송되지 않는 경우에도, 실제 SRS 전송이 수행된 것으로 간주하여 반복 전송의 횟수를 계산할 수 있다. 이는 다론 상향 링크 채널과 SRS 전송이 동시에 이뤄짐으로 인해 SRS 와드롭이 자주 발생되는 경우, SRS 반복 전송 주기가 단말마다 서로 다르게 되어 다증화 (multiplexing)하는 데 복잡도를 증가시킬 수 있는 단점을 보완할 수 있다. 즉, MTC 단말이 SRS 반복 전송 시작 시점을 설정한 이후 SRS 드롭으로 인해 다음 반복 전송 시점까지 반복 전송할 SRS 를 모두 전송하지 못하였다 하더라도, MTC 단말 및 /또는 기지국은 SRS 구성 정보 또는 SRS 구성 파라미터에 기반하여 새로운 SRS 반복 전송을 개시할 수 있다. 이러한 방법은 기지국의 관리를 용이하게 하고 시스템의 복잡도를 낮출 수 있는 장점이 있다.
[277] 다른 실시예로서 MTC 단말은 실제 SRS 를 반복 전송한 개수만 계산하여 SRS 반복 전송을 완료할 수 있다. 이는 SRS 다증화의 복잡도는 증가하지만, SRS를 이용한 채널 추정 성능을상대적으로 향상시킬 수 있다.
[278】 4.4.3 전송포¾ 제한방법
[279] SRS 반복 전송과 HARQ-ACK/SR 반복 전송이 동시에 수행되는 서브프레임들에서, MTC 단말은 HARQ-ACK/SR전송은 셀 특정 SRS서브프레임에서 축소된 포맷 (shortened format)을 사용하여 수행하도록 구성될 수 있다. 예를 들어, LTE/LTE-A 시스템의 일반 단말을 위한 ackNackSRS-SimtdtcineousTransmission 파라미터 및 MTC 단말을 위한 CackNackSRS-SimultaneousTransmission 파라미터를 가정할 수 있다. 예를 들어, ackNackSRS-SimulhineousTrcmsmission 파라미터가 'TRUE,로 설정되고, CackNackSRS-SimultaneousTra mission 파라미터가 'FAiSE,로 설정될 경우에 두 파라미터의 설정에 따라서, 레가시 셀 특정 SRS 서브프레임과 MTC 셀 특정 SRS 서브프레임에서 SRS 의 전송 포맷이 결정될 수 있다. 다른 예로서 상술한 두'파라미터 대신 LTE/LTE-A 시스템에서 정의하는 다른 파라미터를 이용할수 있다. 이러한 경우에는, SRS 전송포¾은 항상축소된 포맷으로 설정된다. 【280] 그러나, MTC 단말은 SRS 반복 전송 구간에서 셀 특정 SRS 서브프레임이 아닌 서브프레임에서는 HARQ-ACK/SR 전송을 위해 일반 포맷을 사용하도록 구성될 수 있다. 이 경우, HARQ-ACK7SR 을 수신하는 기지국 (수신기)에서는 셀 특정 SRS 서브프레임에서 전송되는 HARQ-ACK/SR 과 샐 특정 SRS 서브프레임이 아닌 서브프레임에서 전송되는 HARQ-ACK/SR 을 각각 별도로 결합한 후 최종 디코딩을 수행할수 있다.
[281] 4.5 DM-RS 이용방법
[282] 상술한 본 발명의 실시예들에서 PUSCH을 통해 전송되는 UL 데이터에 대한 채널 추정 성능을 높이기 위해 서로 다른 서브프레임에 있는 DM-RS 를 이용하도톡 설정될 수 있다.
[283] 이를 위해서, SRS 의 반복 전송의 파라미터 설정과 갈은 방법으로 서로 다른 서브프레임의 DM RS 는 동일한 주파수 대역, 동일한 시퀀스를 갖도록 구성되는 것이 바람직하다. 즉, 기지국은 서로 다른서브프레임의 DM-RS를 채널 추정 여부를 알려주는 상위 계층 파라미터를 단말에 전송하는 것이 바람직하다. [284] 예를 들어, 기지국은 MTC 단말에게 어떤 서브프레임의 DM-RS 를 SRS 반복 전송과 함께 사용하여 상향링크 채널을 추정하는데 사용할 수 있다는 정보를 알려줄 수 있다.
[285] 이하에서는 DM-RS 시뭔스의 u값을 설정하는 방법을 설명한다. [286] 기지국은 SRS 반복 전송과 함께 상향링크 채널 추정에 사용되는 PUSCH
DM-RS의 u를 결정하는 그룹호핑은 비활성화시킬 수 있다. 이는 PUSCH 1DM-RS가 반복 전송되는 동안에는 동일한 DM-RS 시퀀스를 갖도록 하기 위함이다. 또는, 기지국은 제 1 서브프레임 집합 내에서 PUSCH DM-RS 의 u 값을 동일한 값을 유지하도록 설정하고, 제 2 서브프레임 집합 내에서는 서로 다른 u 값을 갖도록 설정할수 있다 . DM-RS의 u값은 다음 수학식 6과 같이 표현될 수 있다.
[287] 【수학식 6】 u = (fgh(n^MRS) + fss) mod 30
[288] 수학식 6 에서 n MRS는 DM-RS 를 함께 사용하여 UL 채널을 추정할 서브프레임들의 개수를 나타내는 파라미터이고, fss = fs p s U SCH = ( fs p s U CCH + Ass) , Ass E {0,1, - ,29} 이다. 이때, 연속적인 p 개의 서브프레임의 DM RS 를 사용하는 경우 i^MRS는 p 개의 서브프레임마다 새로운 임의 값을 할당 받는 파라미터를 의미한다.
[289] 이하에서는 DM-RS 시¾스의 V 값을 설정하는 방법을 설명한다. v 값은 DM RS 전송 대역이 6 RB 이하인 경우에는 기존과 같이 '0,으로 설정하여 전송하는 것이 바람직하다. DM RS 전송 대역이 6 RB 이상인 경우에는 시퀀스 호핑을 비활성화 하여 V 값 역시 '0,으로 설정하여 전송하는 것이 바람직하다.
[290] 또는, 시퀀스 호¾을 시퀀스 그룹 호 ¾과 같은 방법으로 DM-RS 를 이용하여 채널 추정을 수행하는 서브프레임 집합에서는 동일한 V 값을 갖도록 설정하고, 다음 전송 구간 동안에서는 서로 다른 V 값을 갖도록 설정할 수 있다. 이때, V 값이 DM RS 를 이용하여 채널 추정을 수행할 서브프레임들의 개수를 나타내는 파라미터인 n^ s의 함수로 임의 값이 되도록 설정될 수 있다ᅳ 즉, DM-RS 를 이용하여 채널 추정을수행하는서브프레임 집합 별로 서로 다른 V값을 가지도록 설정될 수 있다.
[291] 6. 구현 장치
[292] 도 13에서 설명하는 장치는 도 1 내지 도 12에서 설명한방법들이 구현될 수 있는 수단이다.
[293] 단말 (UE: User Equipment)은 상향링크에서는 송신기로동작하고,하향링크에 서는 수신기로 동작할수 있다. 또한, 기지국 (eNB: e-Node B)은 상향링크에서는 수 신기로 동작하고, 하향링크에서는송신기로 동작할수 있다.
[294] 즉, 단말 및 기지국은 정보, 데이터 및 /또는 메시지의 전송 및 수신을 제어 하기 위해 각각송신모들 (Tx module: 1340, 1350) 및 수신모들 (Rx module: 1350, 1370) 을 포함할 수 있으며, 정보, 데이터 및 /또는 메시지를 송수신하기 위한 안테나 (1300, 1310)등을 포함할 수 있다.
[295] 또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서 (Processor: 1320, 1330)와 프로세서의 처리 과정을 임시적으로 또는 지속적 으로 저장할 수 있는 메모리 (1380, 1390)를 각각포함할수 있다.
[296] 상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명 의 실시예들이 수행될 수 있다. 예를 들어, 기지국의 프로세서는 상술한 1 절 내지 5 절에 개시된 방법들을 조합하여, 스몰셀들간 미리 SRS 전송을 위한상향링크 채 널영역을 할당할수 있다. 또한, 기지국의 프로세서는 송신모들을 제어하여 할당한 채널영역에 대한 자원할당정보를 상위 계층 시그널을 이용하여 단말에 명시적으로 전송할 수 있다. 또한, 단말의 프로세서는 상위 계층 시그널을 통해 수신한 SRS 전송 파라미터에 기반하여 SRS 를 생성하고, SRS 전송 파라미터가 나타내는 채널 영역을 통해 SRS를 전송할 수 있다. 상세한 내용은 제 1절 내지 제 5절을 참조할 수 있다.
[297] 단말 및 기지국에 포함된 송신모들 및 수신모들은 데이터 전송을 위한 패 킷 변복조 기능, 고속 패¾ 채널 코딩 기능, 직교주파수분할다중접속 (OFDMA: Orthogonal Frequency Division Multiple Access) 패¾ 스케줄링, 시분할듀플렉스 (TDD: Time Division Duplex) 패킷 스케줄링 및 /또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 13 의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency)모들을 더 포함할 수 있다. [298] 한편,본 발명에서 단말로 개인휴대단말기 (PDA: Personal Digital Assistant), 셀 를러폰, 개인통신서비스 (PCS: Personal Communication Service)폰, GSM(Global System for Mobile)폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸 드헬드 PC(Hand-Held PC), 노트북 PC, 스마트 (Smart) 폰 또는 멀티모드 멀티밴드 (MM-MB: ulti Mode-Multi Band) 단말기 둥이 이용될 수 있다.
[299] 여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 흔 합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모템칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템 (예를 들어, CDMA(Code Division Multiple Access) 2000시스템, WCDMA(Wideband CDMA)시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
[300] 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등 에 의해 구현될 수 있다.
[301] 하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또 는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays),프로세서, 콘트를러, 마이크로 콘트를러, 마이 크로프로세서 등에 의해 구현될 수 있다.
[302] 펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방 법은 이상에서 설명된 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 둥의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛 (1380, 1390)에 저장되어 프로세서 (1320, 1330)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
[303] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서,상기의 상세한 설명은 모든 면에서 제한 적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위 는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한,특허청구범위에서 명시적 인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할수 있다.
【산업상 이용가능성】
[304] 본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및 /또 는 IEEE 802.XX (Institute of Electrical and Electronic Engineers 802)시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선 접속 시스템을웅용한모든 기술 분야에 적용될 수 있다. ,

Claims

【청구의 범위】
【청구항 1】
기계타입통신 (MTC)을 지원하는 무선접속시스템에서 단말이 사운딩참조신 호 (SRS)를 전송하는 방법에 있어서,
기지국으로부터 SRS 반복 전송을 위해 구성된 SRS 전송 파라미터를 수신 하는 단계; 및
상기 SRS 전송 파라미터에 따라 소정의 SRS 반복 전송 구간동안 SRS 반 복 전송을수행하는 단계를포함하되,
상기 SRS 반복 전송 구간과 상향링크 제어 정보의 전송이 수행되는 서브 프레임이 겹치는 경우, 겹치는 서브프레임에서는 상기 SRS 반복 전송이 수행되지 않는, SRS 전송 방법 .
【청구항 2】
제 1항에 있어서,
상기 SRS 의 반복 전송은 소정의 SRS 전송 주기에 따라 주기적으로 수행 되는, SRS 전송 방법.
【청구항 3】
제 1항에 있어서,
상기 SRS 의 반복 전송은 상기 기지국으로부터의 요청이 있는 경우에만 비주기적으로 수행되는, SRS 전송 방법.
【청구항 4】
제 1항에 있어서,
상기 SRS의 반복 전송은 셀 특정 SRS 서브프레임들에서만수행되는, SRS 전송 방법.
【청구항 5】
제 4항에 있어서,
상기 기지국으로부터 상가셀 특정 SRS 서브프레임들 중 상기 SRS 의 반 복 전송이 수행되는서브프레임돌을지시 받는 단계를 더 포함하고;
상기 SRS 의 반복 전송은 상기 지시된 서브프레임들에서만수행되는, SRS 전송 방법.
【청구항 6】
제 1항에 있어서, 상기 SRS 전송 파라미터는 상기 SRS 반복 전송을 위한 SRS 시퀀스를 생 성하기 위한파라미터를 포함하되,
상기 SRS 파라미터는 상기 SRS 시뭔스가 상기 소정의 SRS 반복 전송 구 간 동안동일한 SRS 시퀀스가생성되도록 설정되는, SRS 전송 방법.
【청구항 7】
기계타입통신 (MTC)을 지원하는 무선접속시스템에서 사운딩참조신호 (SRS) 를 전송하는 단말은,
수신기;
송신기; 및
상기 SRS 전송을 지원하기 위한프로세서를 포함하되,
상기 프로세서는:
상기 수신기를 제어하여 기지국으로부터 SRS 반복 전송을 위해 구성된 SRS 전송 파라미터를 수신하고;
상기 송신기를 제어하여 상기 SRS 전송 파라미터에 따라 소정의 SRS 반 복 전송구간동안 SRS 반복 전송을수행하도록 구성되되,
상기 SRS 반복 전송 구간과 상향링크 제어 정보의 전송이 수행되는 서브 프레임이 겹치는 경우, 겹치는 서브프레임에서는 상기 SRS 반복 전송이 수행되지 않는, 단말.
【청구항 8】
제 7항에 있어서,
상기 SRS 의 반복 전송은 소정의 SRS 전송 주기에 따라 주기적으로 수행 되는, 단말.
【청구항 9】
제 7항에 있어서,
상기 SRS 의 반복 전송은 상기 기지국으로부터의 요청이 있는 경우에만 비주기적으로 수행되는, 단말.
【청구항 10】
제 7항에 있어서,
상기 SRS 의 반복 전송은 샐 특정 SRS 서브프레임들에서만 수행되는, 단 말.
【청구항 111 제 10항에 있어서,
상기 프로세서는 상기 수신기를 제어하여 상기 기지국으로부터 상기 샐 특정 SRS 서브프레임들 증 상기 SRS의 반복 전송이 수행되는서브프레임들을 지 시 받도록 더 구성되고,
상기 SRS의 반복 전송은상기 지시된 서브프레임들에서만수행되는, 단말. 【청구항 12]
제 7항에 있어서,
상기 SRS 전송 파라미터는 상기 SRS 반복 전송을 위한 SRS 시¾스를 생 성하기 위한 파라미터를 포함하되,
상기 SRS 파라미터는 상기 SRS 시뭔스가 상기 소정의 SRS 반복 전송 구 간동안동일한 SRS 시퀀스가 생성되도록 설정되는, 단말.
PCT/KR2015/001496 2014-02-13 2015-02-13 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치 WO2015122723A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167024051A KR101923454B1 (ko) 2014-02-13 2015-02-13 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치
CN201580008207.6A CN105981316B (zh) 2014-02-13 2015-02-13 在支持机器型通信的无线接入***中发送探测参考信号的方法和设备
JP2016546487A JP6393764B2 (ja) 2014-02-13 2015-02-13 機械タイプ通信を支援する無線接続システムにおけるサウンディング参照信号送信方法及び装置
US15/111,408 US10506585B2 (en) 2014-02-13 2015-02-13 Method and apparatus for transmitting sounding reference signal in wireless access system supporting machine type communication
EP15748723.2A EP3107229B1 (en) 2014-02-13 2015-02-13 Method and apparatus for transmitting sounding reference signal in wireless access system supporting machine type communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461939283P 2014-02-13 2014-02-13
US61/939,283 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122723A1 true WO2015122723A1 (ko) 2015-08-20

Family

ID=53800390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001496 WO2015122723A1 (ko) 2014-02-13 2015-02-13 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치

Country Status (6)

Country Link
US (1) US10506585B2 (ko)
EP (1) EP3107229B1 (ko)
JP (1) JP6393764B2 (ko)
KR (1) KR101923454B1 (ko)
CN (1) CN105981316B (ko)
WO (1) WO2015122723A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685616A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 测量参考信号srs的发送方法及装置
CN108432197A (zh) * 2016-02-05 2018-08-21 松下电器(美国)知识产权公司 终端及发送方法
RU2772302C2 (ru) * 2016-02-05 2022-05-18 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Терминал и способ передачи
EP4033689A1 (en) * 2015-11-14 2022-07-27 QUALCOMM Incorporated Sounding reference signal transmissions in enhanced machine type communication

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013698A1 (ko) * 2014-07-24 2016-01-28 엘지전자 주식회사 피드백 신호를 전송하는 방법 및 장치
WO2016163805A1 (ko) * 2015-04-10 2016-10-13 엘지전자 주식회사 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호의 전송을 제어하는 방법 및 장치
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
CN108702779B (zh) * 2016-02-18 2023-03-21 瑞典爱立信有限公司 确定用于上行链路控制信道上的发送的参数的方法
US10476642B2 (en) * 2016-09-30 2019-11-12 Qualcomm Incorporated Reference signal design
CN108512642B (zh) 2017-05-05 2021-03-02 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
CN109274628B (zh) * 2017-07-17 2021-08-03 普天信息技术有限公司 一种多子带***中的上行业务发送方法及装置
SG11201913228YA (en) 2017-07-27 2020-01-30 Lg Electronics Inc Method for transmitting srs and terminal therefor
WO2019098712A1 (ko) * 2017-11-16 2019-05-23 엘지전자 주식회사 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
CN109802810B (zh) * 2017-11-17 2021-07-09 华为技术有限公司 发送探测参考信号srs的方法和装置
US11757572B2 (en) * 2018-02-14 2023-09-12 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink transmission
US11695528B2 (en) 2018-08-10 2023-07-04 Qualcomm Incorporated Delay minimization for CSI-RS and SRS transmission
WO2020034435A1 (en) 2018-11-02 2020-02-20 Zte Corporation Interference management in wireless systems
WO2020103030A1 (en) * 2018-11-21 2020-05-28 Qualcomm Incorporated Techniques for determining timing advance in wireless communications
PT3909336T (pt) * 2019-01-11 2024-02-06 Zte Corp Configuração de recursos para mitigação de interferência remota
US11902215B2 (en) * 2019-02-15 2024-02-13 Lenovo (Beijing) Limited Method and apparatus for resource mapping in unlicensed spectrum
CN111756507B (zh) * 2019-03-29 2021-10-22 成都华为技术有限公司 一种远程干扰管理方法及装置
GB2586155B (en) * 2019-08-08 2021-10-27 Samsung Electronics Co Ltd Improvements in and relating to UTDoA Positioning in a telecommunication system
US11528600B2 (en) * 2019-09-24 2022-12-13 Qualcomm Incorporated Massive MIMO physical layer based cryptography
CN112788750B (zh) * 2019-11-06 2023-09-29 大唐移动通信设备有限公司 Srs传输方法、装置、网络设备、终端和存储介质
JP2023505678A (ja) * 2019-12-12 2023-02-10 クアルコム,インコーポレイテッド 非接続状態または非アクティブ状態の間のue測位信号の送信
CN115211182A (zh) 2020-03-12 2022-10-18 高通股份有限公司 用于nr-u中的探测参考信号传输的循环前缀扩展
WO2021206499A1 (ko) * 2020-04-09 2021-10-14 엘지전자 주식회사 무선 통신 시스템에서 동작하는 장치 및 동작 방법
CN116671218A (zh) * 2021-01-18 2023-08-29 Oppo广东移动通信有限公司 配置srs传输资源的方法、终端设备及网络设备
WO2023204606A1 (ko) * 2022-04-19 2023-10-26 엘지전자 주식회사 무선 통신 시스템에서 복수의 심볼을 기반으로 srs의 송수신을 수행하기 위한 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096755A2 (ko) * 2010-02-05 2011-08-11 엘지전자 주식회사 사운딩 참조신호 전송방법 및 장치
WO2012099412A2 (ko) * 2011-01-23 2012-07-26 엘지전자 주식회사 무선 통신 시스템에서 중계기의 상향링크 신호 전송 방법 및 장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441147B1 (ko) * 2008-08-12 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 sr 전송 방법
EP2166694A3 (en) * 2008-09-18 2012-01-04 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in TDD communication systems
KR101781854B1 (ko) * 2010-02-04 2017-09-26 엘지전자 주식회사 사운딩 참조 신호를 전송하는 방법 및 장치
US8848520B2 (en) * 2010-02-10 2014-09-30 Qualcomm Incorporated Aperiodic sounding reference signal transmission method and apparatus
KR101253197B1 (ko) * 2010-03-26 2013-04-10 엘지전자 주식회사 참조신호 수신 방법 및 사용자기기, 참조신호 전송 방법 및 기지국
CN103069739B (zh) 2010-04-02 2016-09-21 交互数字专利控股公司 上行链路探测参考信号配置和传输
CN102083128B (zh) 2010-04-02 2013-07-24 电信科学技术研究院 一种机器型通信设备的离线检测方法、装置及***
CN106059737B (zh) 2010-06-04 2019-12-03 Lg电子株式会社 发送非周期性探测参考信号的用户设备及其方法
US20130044713A1 (en) * 2010-06-22 2013-02-21 Pantech Co., Ltd. Method and apparatus for transmitting and receiving resource allocation information for aperiodic transmission of sounding reference signal
ES2654346T3 (es) 2010-09-14 2018-02-13 Lg Electronics Inc. Método y dispositivo para asignación de recursos de enlace ascendente
JP2012095184A (ja) 2010-10-28 2012-05-17 Sharp Corp 移動局装置、通信システム、通信方法および集積回路
JP5097279B2 (ja) 2011-01-07 2012-12-12 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置、無線通信方法及び無線通信システム
WO2012148141A2 (ko) * 2011-04-25 2012-11-01 엘지전자 주식회사 캐리어 병합을 위한 자원 구성 방법 및 이를 위한 장치
KR101306377B1 (ko) * 2011-09-29 2013-09-09 엘지전자 주식회사 상향링크 전송 방법 및 장치
US9060343B2 (en) * 2011-10-03 2015-06-16 Mediatek, Inc. Support of network based positioning by sounding reference signal
WO2013066075A1 (ko) * 2011-11-01 2013-05-10 엘지전자 주식회사 무선통신 시스템에서 단말의 사운딩 참조신호 전송 결정 방법 및 이를 위한 단말
US9144065B2 (en) * 2011-12-16 2015-09-22 Samsung Electronics Co., Ltd Communication support for low capability devices
GB2498709B (en) * 2012-01-17 2013-12-18 Renesas Mobile Corp Method and apparatus for scheduling an uplink data transmission
US9319952B2 (en) * 2012-03-30 2016-04-19 Apple Inc. Apparatus and methods for synchronization recovery in a hybrid network
CN104335631B (zh) * 2012-04-09 2018-06-19 瑞典爱立信有限公司 用于通过管理不确定测量时机来增强网络定位测量性能的方法和设备
US8971280B2 (en) * 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
KR101525048B1 (ko) 2012-06-11 2015-06-08 주식회사 케이티 단말의 상향링크 사운딩 참조신호 전송방법 및 그 단말
KR20140009902A (ko) 2012-07-12 2014-01-23 주식회사 케이티 상향링크 사운딩 참조신호 전송전력 제어방법 및 그 단말, 송수신포인트
EP2879453B1 (en) * 2012-07-27 2017-03-29 Kyocera Corporation Mobile communication system, user device and method
KR20140032545A (ko) * 2012-08-31 2014-03-17 삼성전자주식회사 상향링크 제어 채널 자원이 동적으로 변하는 무선통신 시스템에서 사운딩 운용 방법 및 장치
US9967079B2 (en) * 2012-10-12 2018-05-08 Google Llc Controlling uplink power for transmission of an uplink channel and an uplink reference signal
KR102058609B1 (ko) * 2013-01-10 2019-12-23 한국전자통신연구원 소형 셀 향상 방법
CN117856836A (zh) * 2013-01-25 2024-04-09 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
US20150036666A1 (en) * 2013-07-30 2015-02-05 Blackberry Limited Timing Advance Group in LTE Small Cell Enhancement
US9386602B2 (en) * 2013-09-20 2016-07-05 Blackberry Limited Method and system for HARQ operation and scheduling in joint TDD and FDD carrier aggregation
US9787387B2 (en) * 2015-05-15 2017-10-10 Electronics And Telecommunications Research Institute Method and apparatus for virtualizing antenna in multi-antenna system, and method and apparatus for transmitting and receiving signal using the same
US10536940B2 (en) * 2016-01-12 2020-01-14 Nokia Solutions And Networks Oy Discovery signal block mapping

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096755A2 (ko) * 2010-02-05 2011-08-11 엘지전자 주식회사 사운딩 참조신호 전송방법 및 장치
WO2012099412A2 (ko) * 2011-01-23 2012-07-26 엘지전자 주식회사 무선 통신 시스템에서 중계기의 상향링크 신호 전송 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "UL channel transmission for MTC coverage enhancement", RL-140308, 3GPP TSG-RAN WG1 #76, 1 February 2014 (2014-02-01), PRAGUE, CZECH REPUBLIC, XP050735858 *
SAMSUNG: "Periodic CSI and SRS for eIMTA", RL-140346, 3GPP TSG-RAN WG1 #76, 1 February 2014 (2014-02-01), PRAGUE, CZECH REPUBLIC, XP050735893 *
SAMSUNG: "SRS transmission for TDD-FDD CA", R1-140362, 3GPP TSG-RAN WG1 #76, 1 February 2014 (2014-02-01), PRAGUE, CZECH REPUBLIC, XP050735909 *
See also references of EP3107229A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106685616A (zh) * 2015-11-06 2017-05-17 中兴通讯股份有限公司 测量参考信号srs的发送方法及装置
CN106685616B (zh) * 2015-11-06 2020-10-13 中兴通讯股份有限公司 测量参考信号srs的发送方法及装置
US11258552B2 (en) 2015-11-06 2022-02-22 Xi'an Zhongxing New Software Co., Ltd. Method of transmitting sounding reference signal and device utilizing same
EP4033689A1 (en) * 2015-11-14 2022-07-27 QUALCOMM Incorporated Sounding reference signal transmissions in enhanced machine type communication
US11637673B2 (en) 2015-11-14 2023-04-25 Qualcomm Incorporated Sounding reference signal transmissions in enhanced machine type communication
CN108432197A (zh) * 2016-02-05 2018-08-21 松下电器(美国)知识产权公司 终端及发送方法
EP3413526A4 (en) * 2016-02-05 2019-02-20 Panasonic Intellectual Property Corporation of America END DEVICE AND TRANSMISSION METHOD
RU2719359C2 (ru) * 2016-02-05 2020-04-17 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Терминал и способ передачи
CN108432197B (zh) * 2016-02-05 2021-10-22 松下电器(美国)知识产权公司 终端及发送方法
EP3907952A1 (en) * 2016-02-05 2021-11-10 Panasonic Intellectual Property Corporation of America Base station and transmission method
RU2772302C2 (ru) * 2016-02-05 2022-05-18 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Терминал и способ передачи

Also Published As

Publication number Publication date
JP6393764B2 (ja) 2018-09-19
CN105981316B (zh) 2018-07-06
US20160338050A1 (en) 2016-11-17
KR20160119138A (ko) 2016-10-12
CN105981316A (zh) 2016-09-28
US10506585B2 (en) 2019-12-10
KR101923454B1 (ko) 2019-02-27
EP3107229A1 (en) 2016-12-21
JP2017508355A (ja) 2017-03-23
EP3107229B1 (en) 2021-06-16
EP3107229A4 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
US11799605B2 (en) Method and device for controlling transmission of sounding reference signal in wireless access system supporting machine type communication
KR101923454B1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 사운딩 참조 신호 전송 방법 및 장치
CN106664706B (zh) 在支持未授权带的无线接入***中配置传输机会时段的方法和设备
CN112492613B (zh) 在支持未授权带的无线接入***中执行cca的方法及其装置
KR101923456B1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
KR102068568B1 (ko) 기계타입통신을 지원하는 무선 접속 시스템에서 기계타입통신 단말을 위해 정의되는 전송블록크기를 이용한 데이터를 송수신하는 방법 및 장치
CN111278134B (zh) 在无线通信***中收发无线信号的方法及其设备
JP6370808B2 (ja) 無線接続システムにおいて擬似コロケーションを行う方法および装置
US10225035B2 (en) Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same
WO2015186989A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 전송기회구간을 설정하는 방법 및 이를 지원하는 장치
KR20170051410A (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법
US10034280B2 (en) Method and apparatus for transmitting physical downlink control channel in wireless access system supporting machine-type communication
WO2015163707A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 데이터 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546487

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111408

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015748723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167024051

Country of ref document: KR

Kind code of ref document: A