WO2015122060A1 - Surface shape measurement device, machine tool provided with same, and surface shape measurement method - Google Patents

Surface shape measurement device, machine tool provided with same, and surface shape measurement method Download PDF

Info

Publication number
WO2015122060A1
WO2015122060A1 PCT/JP2014/079052 JP2014079052W WO2015122060A1 WO 2015122060 A1 WO2015122060 A1 WO 2015122060A1 JP 2014079052 W JP2014079052 W JP 2014079052W WO 2015122060 A1 WO2015122060 A1 WO 2015122060A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
surface shape
light beam
light
receiving unit
Prior art date
Application number
PCT/JP2014/079052
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 大野
静雄 西川
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Priority to GB1612558.5A priority Critical patent/GB2544134A/en
Priority to DE112014006370.3T priority patent/DE112014006370T5/en
Publication of WO2015122060A1 publication Critical patent/WO2015122060A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2428Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring existing positions of tools or workpieces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/028Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring lateral position of a boundary of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a surface shape measuring device that measures a surface shape by a noncontact displacement sensor using a light beam, a machine tool equipped with the surface shape measuring device, and a surface shape measuring method.
  • the surface level difference (also referred to as “edge”) of the object to be processed is an important part in setting the processing start point. The reason is that how to accurately and quickly detect the edge affects processing accuracy and processing time.
  • Patent Document 1 a laser beam from a semiconductor laser is focused and irradiated onto a surface to be measured, and its reflected light is focused on a multiple division photodetector.
  • the distance between the laser light and the measurement surface is adjusted such that the plurality of output signals from the light detectors have maximum amplitude.
  • the edge of the measurement surface is detected from the output intensity difference of each detection unit constituting the multi-split photodetector.
  • the present invention has been made in consideration of the above problems, and its object is to provide a surface shape measuring device capable of detecting the position of the surface step of the object to be measured in a simpler and shorter time than in the prior art. It is to provide.
  • the present invention in one aspect, is a surface shape measuring device that measures the surface shape of a measurement object including a step, and includes a displacement gauge, a moving mechanism, a measurement control unit, and a step specifying unit.
  • the displacement meter includes a light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and a light receiving unit that detects a collection position by the optical system.
  • the displacement gauge measures the displacement of the surface of the measurement object based on the light collecting position at the light receiving unit.
  • the moving mechanism scans the light beam by relatively moving the displacement meter and the measurement object.
  • the measurement control unit is configured to perform the first measurement and the second measurement.
  • the measurement control unit continuously measures the displacement of the surface of the measurement object by the displacement gauge while scanning the light beam by the moving mechanism in the direction crossing the step.
  • the measurement control unit is the same as the first measurement in a state where the arrangement of the optical system and the light receiving unit is rotated 180 degrees with respect to the case of the first measurement with the light beam as the rotational symmetry axis. Measure the location continuously with a displacement gauge.
  • step difference identification part pinpoints the position of a level
  • the position of the step can be specified based on the position of the measurement point (separation start point) at which the difference in the measurement value starts to occur.
  • the step identifying unit is a point separated by 1/2 of the spot size of the light beam from the separation start point. As the position of the step.
  • the surface shape measuring apparatus further comprises a data correction unit.
  • the data correction unit sets the value of the surface displacement at each measurement point from the separation start point to the position of the above specified step to the average value of the measurement value by the first measurement and the measurement value by the second measurement.
  • the scanning direction of the light beam is not perpendicular to the light path including the light beam and the condensing position of the light receiving unit.
  • the light receiving portion is disposed at one of the front and the back of the scanning direction of the light beam with respect to the light beam.
  • the light receiving unit is disposed at the other of the front and rear in the scanning direction with respect to the light beam.
  • the displacement meter includes, as an optical system, a first optical system, and a second optical system disposed at a position where the first optical system is rotated 180 degrees with the light beam as a rotational symmetry axis.
  • the displacement gauge includes, as a light receiving unit, a first light receiving unit, and a second light receiving unit disposed at a position obtained by rotating the first light receiving unit by 180 degrees with the light beam as a rotational symmetry axis.
  • the first optical system and the first light receiving unit are used for the first measurement
  • the second optical system and the second light receiving unit are used for the second measurement.
  • the first light receiving unit is disposed either forward or backward of the light beam in the scanning direction of the light beam.
  • the second light receiving unit is disposed at the other of the front and the back in the scanning direction with respect to the light beam.
  • the position of the step can be specified based on the position of the measurement point (separation start point) at which the difference in the measurement value starts to occur.
  • the present invention is a surface shape measuring method of measuring the surface shape of a measurement object including a step using a noncontact displacement meter.
  • the above-described displacement meter includes a light emitting unit that emits a light beam toward an object to be measured, an optical system that condenses scattered light of the light beam from the object to be measured, and a light receiving unit that detects a condensing position by the optical system.
  • the surface shape measuring method continuously measures the displacement of the surface of the measurement object by the displacement meter while scanning the light beam in the direction crossing the step by relatively moving the displacement meter and the measurement object.
  • the same position as the first measurement step A step of determining the position of the step based on a second measurement step continuously measured by the displacement gauge, and a separation start point at which the measurement value in the first measurement step and the measurement value in the second measurement step begin to separate
  • FIG. 1 is a block diagram schematically showing a configuration example of a surface shape measuring apparatus according to a first embodiment. It is a figure for demonstrating the difference
  • FIG. 8 is a view schematically showing a configuration of a laser displacement gauge used in the surface shape measuring apparatus according to Embodiment 2. It is a flowchart which shows the measurement procedure of surface shape in the apparatus of Embodiment 2, and the processing procedure of the measured data.
  • FIG. 16 is a perspective view schematically showing a configuration of a machine tool according to a third embodiment. It is a block diagram which shows the functional structure of the part regarding surface shape measuring apparatus among the machine tools of FIG.
  • FIG. 1 is a view schematically showing the configuration of a laser displacement meter.
  • a laser displacement meter 100 includes a light emitting unit 110, a condensing lens 118 as an optical system, and a linear image sensor 120 as a light receiving unit.
  • the light emitting unit 110 includes a laser diode 112 and a lens 114.
  • the laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130.
  • the spot size w (also referred to as spot diameter) of the laser beam 116 on the measurement object is, for example, 50 ⁇ m in diameter.
  • the light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118 on the linear image sensor 120 disposed in the angular direction of the laser beam 116 and ⁇ .
  • the focal length of the condenser lens 118 is f 0, and the distance from the irradiation position of the laser beam 116 (laser spot 132) on the surface of the measurement object 130 to the condenser lens 118 is l.
  • the linear image sensor 120 is disposed at an angle based on the Scheimpflug Condition. That is, the detection surface of the linear image sensor 120 and the main surface of the condenser lens 118 intersect in one straight line, and the angle between these surfaces is ⁇ .
  • the plane including the laser beam 116 is the object plane.
  • the direction of the laser beam 116 is taken as the Z-axis direction.
  • a surface including the central axis of the laser beam 116 and the optical axis of the condenser lens 118 is referred to as an optical path.
  • a direction parallel to the light road surface and perpendicular to the Z-axis direction is taken as an X-axis direction.
  • the direction perpendicular to both the X-axis direction and the Z-axis direction is taken as the Y-axis direction.
  • the Y-axis direction is a direction perpendicular to the paper surface
  • the XZ plane is parallel to the paper surface (optical road surface).
  • the beam size of the laser beam (spot size on the measurement object)
  • spot size on the measurement object There are various definitions of the beam size of laser light.
  • a laser beam having a symmetrical beam profile such as the TEM00 mode
  • one square of e to the peak value (where e is the base of the natural logarithm)
  • the beam size is defined by the width of the intensity distribution (13.5%).
  • the beam profile is broken, for example, a circle containing 86.5% of the total power of the beam with respect to the peak power is calculated, and the diameter of the circle is defined as the beam size.
  • the beam size (the object size to be measured) is substantially in the range not less than the diameter of the circle containing 50% of the total power and not more than the diameter of the circle containing 95% of the total power. It is assumed that it is equal to the spot size above).
  • FIG. 2 is a perspective view schematically showing the configuration of the linear image sensor of FIG.
  • linear image sensor 120 includes 1024 pixels (pixels) 122 linearly arranged. Each pixel 122 outputs a signal of a luminance level from 0 to a maximum of 255 according to the light reception amount.
  • FIG. 3 is a diagram showing an example of data detected by the linear image sensor of FIG.
  • the horizontal axis in FIG. 3 indicates the pixel position, and the vertical axis indicates the brightness level.
  • the light diffusely reflected on the measurement object 130 is condensed by the condensing lens 118 to a spot 124 on the linear image sensor 120, thereby generating a Gaussian as shown in FIG. 3.
  • Distribution data are obtained.
  • the distance to the object is calculated by triangulation from the barycentric position of the data in FIG. In the case of FIG. 3, the center line 180 of the luminance distribution coincides with the center of gravity.
  • FIG. 4 is a block diagram schematically showing a configuration example of the surface shape measuring apparatus according to the first embodiment.
  • the surface shape measuring apparatus 140 includes a table 144 on which the measurement object 130 is placed, a saddle 142, a laser displacement meter 100, an X-axis drive mechanism 146X, and a Y-axis drive mechanism 146Y. , Z-axis drive mechanism 146Z, C-axis drive mechanism 146C, and computer 150.
  • the table 144 is disposed on the saddle 142 and is movable in the X-axis direction.
  • the saddle 142 is movable in the Y-axis direction.
  • the X-axis drive mechanism 146X moves the table 144 in the X-axis direction.
  • the Y-axis drive mechanism 146Y moves the saddle 142 in the Y-axis direction.
  • the Z-axis drive mechanism 146Z moves the laser displacement meter 100 in the Z-axis direction.
  • the C-axis drive mechanism 146C rotates the laser displacement meter 100 about a rotation axis (C-axis rotation center) parallel to the Z-axis.
  • the C-axis drive mechanism 146C can be set to any rotation angle with respect to the reference position.
  • the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, the Z-axis drive mechanism 146Z, and the C-axis drive mechanism 146C function as a moving mechanism 146 for relatively moving the laser displacement meter 100 and the measurement object 130. .
  • the moving mechanism 146 causes the laser beam 116 to scan over the surface of the measurement object 130.
  • the configuration of the moving mechanism 146 is not limited to the example shown in FIG.
  • the measurement object 130 may be fixed, and the laser displacement meter 100 may be movable in three directions of X, Y, and Z.
  • the laser displacement meter 100 may be fixed, and the table 144 supporting the measurement object 130 may be configured to be rotatable about the C-axis rotation center.
  • the computer 150 includes a processor 152, a memory 154, and display devices and input / output devices (not shown).
  • the processor 152 functions as a measurement control unit 156 and a data processing unit 158 by executing a program stored in the memory 154.
  • the measurement control unit 156 scans the laser beam 116 by controlling the laser displacement meter 100 and the moving mechanism 146. During the scanning of the laser beam 116, the measurement control unit 156 continuously measures the surface shape data 166 of the measurement object 130 using the laser displacement meter 100. The measured surface shape data 166 is stored in the memory 154. The surface shape data 166 is a data series in which the scanning position (the position where the laser beam is irradiated) on the measurement object 130 and the displacement of the surface of the measurement object 130 at the scanning position in the Z-axis direction are associated. is there.
  • the measurement control unit 156 further controls the C-axis drive mechanism 146C to rotate the laser displacement meter 100 180 degrees around a rotation axis (C-axis rotation center) parallel to the Z-axis direction.
  • C-axis rotation center coincides with the central axis of the laser beam 116
  • the laser displacement meter 100 rotates 180 degrees around the central axis of the laser beam 116. That is, the condenser lens 118 (optical system) and the linear image sensor 120 (light receiving unit) in FIG. 1 move to positions in line symmetry with respect to the central axis of the laser beam 116.
  • the laser beam is moved by moving the laser displacement meter 100 in the X-axis direction and the Y-axis direction along with the rotation around the C-axis rotation center.
  • the laser displacement meter 100 can be rotated 180 degrees around the central axis of the laser beam 116 while maintaining the position 116.
  • the measurement control unit 156 measures the same position as before the rotation by the laser displacement meter 100. By comparing the surface shape data of the same portion measured before and after rotation, the edge position of the step portion of the measurement object 130 can be detected easily, accurately and in a short time.
  • the data processing unit 158 performs data processing on data (surface shape data 166) measured by the laser displacement meter 100 in order to specify the step position. The contents of the data processing will be described later with reference to FIG.
  • the position of the level difference is detected by using an error generated when measuring the level difference portion with the triangulation type laser displacement meter.
  • an error generated when measuring the stepped portion will be described, and next, a data processing procedure for detecting the position of the stepped portion will be described.
  • FIG. 5 is a diagram for explaining an error that occurs when measuring the stepped portion.
  • the scanning direction of the laser beam is the + X direction.
  • the laser beam is irradiated along a straight line 136 on the surface of the measurement object 130.
  • the direction of the straight line 136 (the scanning direction of the laser beam) intersects (does not have to be orthogonal to) the edge 134 of the step.
  • the size of the laser spot 132 is shown enlarged to facilitate the illustration.
  • the condensing lens (optical system) 118 and the linear image sensor (light receiving unit) 120 that constitute the laser displacement meter are positioned in front of the laser beam in the scanning direction.
  • the direction is decided.
  • the laser spot 132 reaches the edge portion, a part of the laser spot 132 on the side close to the linear image sensor 120 is missing.
  • the position of the center of gravity of the focused spot 124 of the linear image sensor 120 moves, so that the surface flat portion 138 of the measurement object 130 is positioned above (closer to the light emitting unit 110) by ⁇ + than in reality. Observed.
  • FIG. 6 is a diagram for explaining an error that occurs when measuring the stepped portion when the arrangement of the laser displacement gauge shown in FIG. 5 is rotated by 180 degrees.
  • the laser beam is irradiated along a straight line 136 which is the same location on the surface of the measurement object 130, with the scanning direction of the laser beam as the + X direction.
  • the size of the laser spot 132 is shown enlarged for ease of illustration.
  • the arrangement of the condenser lens 118 and the linear image sensor 120 in the case of FIG. 6 is obtained by rotating the arrangement of FIG. 5 by 180 degrees around the central axis 116C of the laser beam. That is, the direction of the laser displacement meter is determined such that the condenser lens 118 and the linear image sensor 120 are located behind the laser beam in the scanning direction.
  • the center of gravity of the focused spot 124 of the linear image sensor 120 moves.
  • the moving direction of the position of the center of gravity of the focused spot 124 is opposite to that in the case of FIG. Therefore, the surface of the measurement object 130 is observed to be located by ⁇ (actually far from the light emitting unit 110) below the actual value.
  • FIG. 7 is a view schematically showing an example of the luminance distribution of the focused spot on the linear image sensor in the cases of FIG. 5 and FIG.
  • FIG. 7 (A) shows the luminance distribution in the case corresponding to FIG. 5
  • FIG. 7 (B) shows the luminance distribution in the case corresponding to FIG.
  • the luminance distribution has a shape close to a Gaussian distribution, and the center line 180 of the luminance distribution in this case is indicated by a dashed dotted line.
  • the lines 180 are offset in opposite directions.
  • the measurement values of the laser displacement gauge have errors in the directions opposite to each other between the case of FIG. 5 and the case of FIG.
  • FIG. 8 is a view showing an example of measurement data of surface shape in the cases of FIG. 5 and FIG.
  • measurement data 186 in the case of FIG. 5 is shown by a solid line
  • measurement data 188 in the case of FIG. 6 is shown by a broken line.
  • FIG. 8B an average value 190 of the measurement data 186 in the case of FIG. 5 and the measurement data 188 in the case of FIG. 6 is shown.
  • measurement data 186 in the case of FIG. 5 matches measurement data 188 in the case of FIG.
  • the measurement data 186 in the case of FIG. 5 and the measurement data 188 in the case of FIG. 6 are different.
  • the measurement point P0 at which the measured value in the case of FIG. 5 and the measured value in the case of FIG. 6 begin to separate is also referred to as a separation start point.
  • the left end of the laser spot 132 coincides with the edge 134 (immediately when the laser spot 132 deviates from the upper flat surface 138), it corresponds to the point P3 moved by the spot size (w) from the point P0 in FIG. .
  • the light reception amount of the linear image sensor 120 reaches the detection limit at the point P2 before the scanning position reaches the point P3, measurement can not be performed by the laser displacement meter.
  • FIG. 9 is a flowchart showing the procedure of measuring the surface shape and the procedure of processing the measured data.
  • measurement control unit 156 performs measurement while scanning laser beam 116 with respect to a measurement range including a step by driving movement mechanism 146.
  • the surface shape of the object is continuously measured using the laser displacement meter 100 (step S100).
  • interval by a laser displacement meter since the error in the edge part mentioned above appears in the range smaller than laser spot size, it is necessary to make the sampling space
  • the measurement control unit 156 rotates the laser displacement meter 100 by 180 degrees around the central axis of the laser beam 116 by driving the C-axis drive mechanism 146C (step S105).
  • the C-axis rotation center of the C-axis drive mechanism 146C and the central axis of the laser beam 116 do not coincide with each other, the X-axis drive mechanism 146X and the X-axis drive mechanism 146X and the 180-degree rotational drive using the C-axis drive mechanism 146C.
  • the laser displacement meter 100 is moved to maintain the position of the central axis of the laser beam 116 by at least one of the Y-axis drive mechanisms 146Y.
  • the measurement control unit 156 continuously measures the same place as in the case of the first measurement step using the laser displacement meter 100 (step S110).
  • the data (surface shape data 166) measured by the first and second measurement steps are stored in the memory 154.
  • Data processing unit 158 includes a level difference identification unit 160 and a data correction unit 162.
  • the step specifying unit 160 separates the measured value (referred to as M1) in the first measurement step and the measured value (referred to as M2) in the second measurement step.
  • the separation start point (point P0 in FIG. 8A) to be started is specified (step S115).
  • various methods can be considered as a method of specifying the separation start point of the measurement value M1 and the measurement value M2 specifically. For example, a point at which the difference between the measurement values M1 and M2 exceeds a predetermined threshold may be set as the separation start point. Alternatively, an approximate curve representing the relationship between the measurement value difference M1-M2 and the scanning position may be determined, and a point at which the value of the approximate curve exceeds a predetermined threshold may be set as the separation start point.
  • step difference identification part 160 pinpoints a level
  • the data correction unit 162 corrects the measured value from the separation start point P0 to the step position P1 (step S125). Specifically, the data correction unit 162 sets the average value (190 in FIG. 8B) of the measurement value M1 in the first measurement step and the measurement value M2 in the second measurement step in the height direction in the section Displacement of the Thereafter, the surface shape data may be further corrected by performing filtering processing such as moving average, for example.
  • the scanning direction of the laser beam is, as shown in FIGS. 5 and 6, an optical road surface (XZ plane) including the central axis 116C of the laser beam and the focused spot 124 of the linear image sensor (light receiving unit) 120. It is desirable that the directions are parallel.
  • the scanning direction is parallel to the light road surface, the difference between the measurement value M1 of the edge portion in the first measurement step and the measurement value M2 of the edge portion in the second measurement step is largest.
  • Z-axis direction what angle is the scanning direction of the laser beam if it is not perpendicular to the light path (if it is not parallel to the YZ plane) (However, the step portion needs to intersect the scanning direction).
  • the laser displacement meter 100 is used as the central axis of the laser beam 116.
  • the laser displacement meter 100 measures the same position as before rotation. Then, the surface shape data of the same place measured before and after rotation are compared, and the position of the edge is specified based on the position of the measurement point (separation start point) at which the difference between both data starts to occur.
  • the position of the step (edge) of the measurement object 130 can be detected easily, accurately and in a short time.
  • FIG. 10 is a view schematically showing a configuration of a laser displacement gauge used in the surface shape measuring apparatus according to the second embodiment.
  • a laser displacement meter 100A includes a light emitting unit 110, condensing lenses 118A and 118B as first and second optical systems, and a linear image sensor 120A as first and second light receiving units. , 120B.
  • the condenser lens 118 B and the linear image sensor 120 B are disposed at positions where the condenser lens 118 A and the linear image sensor 120 A are respectively rotated 180 degrees around the central axis of the laser beam 116.
  • the light emitting unit 110 includes a laser diode 112 and a lens 114.
  • the laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130.
  • the light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118A on the linear image sensor 120A disposed at an angular direction of + ⁇ with respect to the laser beam 116, and
  • the light is condensed by the condensing lens 118B on the linear image sensor 120B disposed in the angular direction (opposite to + ⁇ ) of ⁇ .
  • the laser displacement meter 100A of FIG. 10 is attached to the surface shape measuring apparatus 140 shown in FIG. 4 instead of the laser displacement meter 100 of FIG.
  • the displacement of the surface of the measurement object 130 is determined based on the position of the focused spot 124A on the linear image sensor 120A and the position of the focused spot 124B on the linear image sensor 120B.
  • the other points in FIG. 10 are the same as in FIG. 1, and therefore, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
  • FIG. 11 is a flowchart showing the procedure of measuring the surface shape and the procedure of processing the measured data in the apparatus of the second embodiment.
  • measurement control unit 156 drives movement mechanism 146 to scan measurement object 130 while scanning laser beam 116 with respect to the measurement range including the step.
  • the surface shape of is continuously measured using the laser displacement meter 100 (step S200).
  • the condenser lenses 118A and 118B are provided in advance and linear image sensors 120A and 120B are provided in advance at positions symmetrical to each other with respect to the central axis of the laser beam 116. Therefore, it is not necessary to measure the same place twice as in the first embodiment.
  • the scanning direction of the laser beam is not perpendicular to the light path surface (XZ plane) when viewed in plan from the direction of the laser beam 116 (Z-axis direction) ( Not parallel to the YZ plane). Desirably, the scanning direction of the laser beam is parallel to the light path (XZ plane).
  • the step identification unit 160 of the data processing unit 158 measures the measurement value (referred to as M1) by the first linear image sensor 120A and the measurement by the second linear image sensor 120B within the measurement range of the surface shape data 166.
  • a separation start point at which the value (referred to as M2) starts to separate is specified (step S205).
  • the level difference identification unit 160 identifies the position of the level difference based on the identified separation start point (step S210). Specifically, in the separation section in which the measurement value M1 measured by the first linear image sensor 120A and the measurement value M2 measured by the second linear image sensor 120B are separated, the step specifying unit 160 detects the laser beam from the separation start point A point separated by a half of the spot size w of is identified as the step position (step S210).
  • the data correction unit 162 corrects the measured value from the separation start point to the step position (step S215). Specifically, the data correction unit 162 sets an average value of the measurement value M1 by the first linear image sensor 120A and the measurement value M2 by the second linear image sensor 120B as the displacement in the height direction in the section.
  • the surface shape of the measurement object including the step portion is measured by using a laser displacement meter including the two linear image sensors (light receiving units).
  • the position of the edge is specified based on the position of the measurement point (separation start point) at which the difference between the measurement values of the first and second linear image sensors starts to occur.
  • the position of the step (edge) of the object to be measured can be detected easily, accurately and in a short time.
  • Embodiment 3 discloses a machine tool provided with the surface shape measuring apparatus of Embodiment 1 or 2. Although the case where the machine tool is a vertical machining center is described below, the machine tool may be another type such as a horizontal machining center or a lathe.
  • FIG. 12 is a perspective view schematically showing the configuration of the machine tool according to the third embodiment.
  • the machine tool 200 includes a processing device 10, an NC (Numeric Control) device 24, an ATC (Automatic Tool Changer) 28, and a computer 150.
  • NC Numeric Control
  • ATC Automatic Tool Changer
  • the processing apparatus 10 comprises a bed 12, a column 14 mounted on the bed 12, a spindle head 20 with a spindle 22 and a saddle 16 with a table 18.
  • the spindle head 20 is supported on the front surface of the column 14 and is movable in the vertical direction (Z-axis direction).
  • a tool (not shown) or a measuring head 42 is removably attached to the tip of the spindle 22.
  • the main spindle 22 is supported by the main spindle head 20 so as to be rotatable about a C-axis rotation center whose central axis (CL in FIG. 2) is parallel to the Z-axis.
  • the spindle head 20 incorporates a rotary drive unit 36 for rotating the spindle 22 at a high speed for processing the workpiece 2 and a rotary drive unit 38 capable of low-speed feed control of the rotation of the spindle 22.
  • the latter rotational drive unit 38 corresponds to the C-axis drive mechanism 146C of FIG.
  • the measurement head 42 incorporates the laser displacement meter 100 or 100A shown in FIG. 1 or 10, a control circuit and a drive battery of the laser displacement meter, and a communication device for performing wireless communication.
  • the orientation of the measurement head 42 i.e., the laser displacement gauges 100 and 100A is controlled by the low speed feed controllable rotary drive 38.
  • the saddle 16 is disposed on the bed 12 and is movable in the back and forth horizontal direction (Y-axis direction).
  • a table 18 is disposed on the saddle 16.
  • the table 18 is movable in the left and right horizontal directions (X-axis direction).
  • the workpiece 2 is placed on the table 18.
  • the saddle 16 corresponds to the saddle 142 of FIG. 4 and the table 18 corresponds to the table 144 of FIG.
  • the workpiece 2 corresponds to the measurement object 130 of FIG.
  • the processing apparatus 10 linearly moves the measuring head 42 and the workpiece 2 in the directions of three axes orthogonal to the X, Y, and Z axes, and measures at least around the center of rotation of the C axis parallel to the Z axis. It is a machining center capable of rotationally driving the head 42. Unlike the configuration of FIG. 1, the processing apparatus 10 may be configured to move the spindle head 20 supporting the measurement head 42 in the X-axis and Y-axis directions with respect to the workpiece 2, or The table 18 supporting the object 2 may be rotatable around the C-axis rotation center.
  • the NC device 24 controls the overall operation of the processing device 10 including the above-described orthogonal three-axis and C-axis control.
  • ATC (Automatic Tool Changer) 28 automatically exchanges the tool and the measuring head 42 with respect to the spindle 22 respectively.
  • the ATC 28 is controlled by an NC unit 24.
  • FIG. 13 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG.
  • the Z-axis feed mechanism 34, the Y-axis feed mechanism 32, and the X-axis feed mechanism 30 provided in the processing apparatus 10 are shown in FIG.
  • Z-axis feed mechanism 34 drives spindle head 20 supported by column 14 to move in the Z-axis direction.
  • the Y-axis feed mechanism 32 drives the saddle 16 disposed on the bed 12 to move it in the Y-axis direction.
  • the X-axis feed mechanism 30 drives the table 18 mounted on the saddle 16 and supporting the workpiece 2 to move it in the X-axis direction.
  • the NC device 24 controls the Z-axis feed mechanism 34, the Y-axis feed mechanism 32 and the X-axis feed mechanism 30, respectively.
  • the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 correspond to the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z in FIG.
  • the computer 150 includes a processor 152, a memory 154, and a communication device 168 for wireless communication with the measurement head 42.
  • the processor 152 functions as the measurement control unit 156 and the data processing unit 158 described in FIG. 4 by executing the program stored in the memory 154.
  • the measurement control unit 156 cooperates with the NC device 24 to continuously change the relative positional relationship between the measurement head 42 and the workpiece 2, whereby the laser beam 116 scans along the surface of the workpiece 2. Do.
  • the measurement control unit 156 detects displacement data in the height direction (Z-axis direction) at a plurality of measurement points in the scanning direction of the laser beam 116 from the measuring head 42 as surface shape data of the workpiece 2 during scanning of the laser beam 116. get.
  • the specific procedure is as follows.
  • the NC device 24 is either one of the X-axis feed mechanism 30 and the Y-axis feed mechanism 32, or the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z axis.
  • the NC device 24 By driving at least two axes of the feed mechanism 34, the relative positional relationship between the measuring head 42 and the workpiece 2 is continuously changed.
  • a PLC (Programmable Logic Controller) 26 incorporated in the NC device 24 outputs a trigger signal to the communication device 168 at a predetermined cycle in synchronization with the driving of the above-mentioned feed mechanism.
  • the communication device 168 receives the trigger signal, it sends a measurement command f to the measurement head 42, and the measurement head 42 follows the measurement command f to determine the distance D from the measurement head 42 to the workpiece 2 (that is, the displacement of the surface of the workpiece 2) Measure Data F of the measured distance D is transmitted from the measurement head 42 to the measurement control unit 156 via the communication device 168.
  • the PLC 26 further obtains positional information of the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 in synchronization with the timing of distance measurement by the measurement head 42 described above. Detect location data.
  • the PLC 26 transmits data of the detected position of the measurement head 42 to the measurement control unit 156.
  • the measurement control unit 156 Based on the position data of the measurement head 42 acquired from the PLC 26 and the data F of the distance D acquired from the measurement head 42, the measurement control unit 156 measures the height direction at each measurement point along the scanning direction of the laser beam 116.
  • the displacement data (in the Z-axis direction) is stored in the memory 154 as surface shape data 166.
  • the measurement control unit 156 measures the height direction at each measurement point along the scanning direction of the laser beam 116.
  • the displacement data (in the Z-axis direction) is stored in the memory 154 as surface shape data 166.
  • step difference of the workpiece 2 using the laser displacement meter 100 of the structure shown in FIG. 1 before and after rotating 180 degrees of directions of the laser displacement meter 100 about the same location of the workpiece 2 A total of two measurements are taken.
  • the processor 152 further functions as a data processing unit 158 for performing data processing of the surface shape data 166 described above.
  • the operation of the data processing unit 158 is as described in the first and second embodiments. As a result of data processing by the data processing unit 158, the position of the step (edge) of the workpiece 2 can be detected easily and in a short time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

In this surface shape measurement device, through triangulation using a light beam (116), a displacement gauge (100) measures the displacement of the surface of an object being measured (130). In a first measurement, while consecutively measuring the object being measured (130) using the displacement gauge (100), a measurement control unit (156) scans the light beam (116) in a direction intersecting with an edge of the object being measured (130) by moving the displacement gauge (100) and object being measured (130) in relation to each other. In a second measurement, in a state in which the orientation of the displacement gauge (100) has been rotated 180 degrees from the orientation of the first measurement with the light beam (116) as the axis of rotational symmetry, the measurement control unit (156) consecutively measures the same positions as in the first measurement using the displacement gauge (100). An edge specification unit (160) specifies the edge position on the basis of the divergence start point at which the measurement values of the first measurement and second measurement start to diverge.

Description

表面形状測定装置およびそれを備えた工作機械ならびに表面形状測定方法Surface shape measuring device, machine tool provided with the same, and surface shape measuring method
 この発明は、光ビームを用いた非接触方式の変位センサによって表面形状を測定する表面形状測定装置、および表面形状測定装置を備えた工作機械、ならびに表面形状測定方法に関する。 The present invention relates to a surface shape measuring device that measures a surface shape by a noncontact displacement sensor using a light beam, a machine tool equipped with the surface shape measuring device, and a surface shape measuring method.
 従来から、工作機械で加工を行う際、加工対象物の形状を非接触式センサによって測定することが一般的となっている。この場合、工作機械の加工プログラムは、測定した形状に基づいて、対話システムまたは外部コンピュータ等を用いて作成される。 2. Description of the Related Art Conventionally, when machining with a machine tool, it has been common to measure the shape of a workpiece with a non-contact sensor. In this case, the machining program of the machine tool is created using an interactive system or an external computer based on the measured shape.
 加工対象物の形状を非接触式センサによって測定する際、加工対象物の表面段差(「エッジ」とも称する)は、加工開始点を設定する上で重要な部位である。なぜなら、当該エッジをいかに正確にかつ素早く検出するかが、加工精度、加工時間に影響を及ぼすからである。 When measuring the shape of the object to be processed by a non-contact sensor, the surface level difference (also referred to as “edge”) of the object to be processed is an important part in setting the processing start point. The reason is that how to accurately and quickly detect the edge affects processing accuracy and processing time.
 非接触式センサを用いてエッジを正確に検出する方法は、従来いくつか提案されている。たとえば、特開2012-194085号公報(特許文献1)に記載の技術では、半導体レーザからのレーザビームが被測定面に集光照射され、その反射光が複数分割光検出器に集光される。測定面上でレーザ光を合焦させるために、光検出器からの複数の出力信号が最大振幅を有するよう、レーザ光と測定面との距離が調整される。測定面のエッジは、複数分割光検出器を構成する各検出部の出力強度差から検出される。 Several methods for accurately detecting an edge using a noncontact sensor have been proposed. For example, in the technique described in Japanese Patent Application Laid-Open No. 2012-194085 (Patent Document 1), a laser beam from a semiconductor laser is focused and irradiated onto a surface to be measured, and its reflected light is focused on a multiple division photodetector. . In order to focus the laser light on the measurement surface, the distance between the laser light and the measurement surface is adjusted such that the plurality of output signals from the light detectors have maximum amplitude. The edge of the measurement surface is detected from the output intensity difference of each detection unit constituting the multi-split photodetector.
特開2012-194085号公報JP, 2012-194085, A
 上記の従来技術では、レーザビームの反射光を複数分割光検出器に集光させる必要があるので装置構成が複雑になる。さらに、エッジの位置を検出するために、レーザビームが測定面上でフォーカスするようにレーザ光源および光学系の調整を行う必要があるので、測定に時間がかかる。 In the above-mentioned prior art, since it is necessary to condense the reflected light of a laser beam on a plurality of split photodetectors, the apparatus configuration becomes complicated. Furthermore, in order to detect the position of the edge, it is necessary to adjust the laser light source and the optical system so that the laser beam is focused on the measurement surface, which takes time for measurement.
 この発明は、上記の問題点を考慮してなされたものであり、その目的は、従来よりも簡単かつ短時間に測定対象物の表面段差の位置を検出することが可能な表面形状測定装置を提供することである。 The present invention has been made in consideration of the above problems, and its object is to provide a surface shape measuring device capable of detecting the position of the surface step of the object to be measured in a simpler and shorter time than in the prior art. It is to provide.
 この発明は一局面において、段差を含む測定対象物の表面形状を測定する表面形状測定装置であって、変位計と、移動機構と、測定制御部と、段差特定部とを備える。変位計は、測定対象物に向けて光ビームを出射する発光部、測定対象物からの光ビームの散乱光を集光する光学系、および光学系による集光位置を検出する受光部を含む。変位計は、受光部での集光位置に基づいて測定対象物の表面の変位を測定する。移動機構は、変位計と測定対象物とを相対的に移動させることによって、光ビームを走査する。測定制御部は、第1の測定と、第2の測定とを実行するように構成される。第1の測定において、測定制御部は、段差と交差する方向に移動機構によって光ビームを走査しながら、測定対象物の表面の変位を変位計によって連続的に測定する。第2の測定において、測定制御部は、光ビームを回転対称軸にして光学系および受光部の配置を第1の測定の場合に対して180度回転させた状態で、第1の測定と同一箇所を変位計によって連続的に測定する。段差特定部は、第1の測定による測定値と第2の測定による測定値とが分離し始める分離開始点に基づいて段差の位置を特定する。 The present invention, in one aspect, is a surface shape measuring device that measures the surface shape of a measurement object including a step, and includes a displacement gauge, a moving mechanism, a measurement control unit, and a step specifying unit. The displacement meter includes a light emitting unit that emits a light beam toward a measurement target, an optical system that collects scattered light of the light beam from the measurement target, and a light receiving unit that detects a collection position by the optical system. The displacement gauge measures the displacement of the surface of the measurement object based on the light collecting position at the light receiving unit. The moving mechanism scans the light beam by relatively moving the displacement meter and the measurement object. The measurement control unit is configured to perform the first measurement and the second measurement. In the first measurement, the measurement control unit continuously measures the displacement of the surface of the measurement object by the displacement gauge while scanning the light beam by the moving mechanism in the direction crossing the step. In the second measurement, the measurement control unit is the same as the first measurement in a state where the arrangement of the optical system and the light receiving unit is rotated 180 degrees with respect to the case of the first measurement with the light beam as the rotational symmetry axis. Measure the location continuously with a displacement gauge. The level | step difference identification part pinpoints the position of a level | step difference based on the isolation | separation start point from which the measured value by 1st measurement and the measured value by 2nd measurement start to separate.
 上記の構成によれば、第1の測定での段差部の測定値と第2の測定での段差部の測定値とに差が生じる。したがって、測定値に差が生じ始めた測定点(分離開始点)の位置に基づいて段差の位置を特定することができる。 According to the above configuration, a difference occurs between the measured value of the stepped portion in the first measurement and the measured value of the stepped portion in the second measurement. Therefore, the position of the step can be specified based on the position of the measurement point (separation start point) at which the difference in the measurement value starts to occur.
 好ましくは、段差特定部は、第1の測定による測定値と第2の測定による測定値とが分離している区間内で、分離開始点から光ビームのスポットサイズの1/2だけ離れた点を段差の位置として特定する。 Preferably, in the section in which the measurement value obtained by the first measurement and the measurement value obtained by the second measurement are separated, the step identifying unit is a point separated by 1/2 of the spot size of the light beam from the separation start point. As the position of the step.
 好ましくは、表面形状測定装置はデータ補正部をさらに備える。データ補正部は、分離開始点から上記の特定された段差の位置までの各測定点における表面の変位の値を、第1の測定による測定値と第2の測定による測定値との平均値に設定する。 Preferably, the surface shape measuring apparatus further comprises a data correction unit. The data correction unit sets the value of the surface displacement at each measurement point from the separation start point to the position of the above specified step to the average value of the measurement value by the first measurement and the measurement value by the second measurement. Set
 好ましくは、光ビームに沿った方向から平面視したとき、光ビームの走査方向は、光ビームと受光部の集光位置とを含む光路面に対して垂直方向でない。 Preferably, when viewed in plan from the direction along the light beam, the scanning direction of the light beam is not perpendicular to the light path including the light beam and the condensing position of the light receiving unit.
 好ましくは、第1の測定では、光ビームに対して受光部は光ビームの走査方向の前方および後方のうちのいずれか一方に配置される。第2の測定では、光ビームに対して受光部は走査方向の前方および後方のうちの他方に配置される。 Preferably, in the first measurement, the light receiving portion is disposed at one of the front and the back of the scanning direction of the light beam with respect to the light beam. In the second measurement, the light receiving unit is disposed at the other of the front and rear in the scanning direction with respect to the light beam.
 好ましくは、変位計は、光学系として、第1の光学系と、光ビームを回転対称軸にして第1の光学系を180度回転させた位置に配置された第2の光学系とを含む。さらに、変位計は、受光部として、第1の受光部と、光ビームを回転対称軸にして第1の受光部を180度回転させた位置に配置された第2の受光部とを含む。この場合、第1の光学系および第1の受光部は、第1の測定のために用いられ、第2の光学系および第2の受光部は、第2の測定のために用いられる。 Preferably, the displacement meter includes, as an optical system, a first optical system, and a second optical system disposed at a position where the first optical system is rotated 180 degrees with the light beam as a rotational symmetry axis. . Furthermore, the displacement gauge includes, as a light receiving unit, a first light receiving unit, and a second light receiving unit disposed at a position obtained by rotating the first light receiving unit by 180 degrees with the light beam as a rotational symmetry axis. In this case, the first optical system and the first light receiving unit are used for the first measurement, and the second optical system and the second light receiving unit are used for the second measurement.
 好ましくは、第1の受光部は、光ビームに対して光ビームの走査方向の前方および後方のうちのいずれか一方に配置される。第2の受光部は、光ビームに対して走査方向の前方および後方のうちの他方に配置される。 Preferably, the first light receiving unit is disposed either forward or backward of the light beam in the scanning direction of the light beam. The second light receiving unit is disposed at the other of the front and the back in the scanning direction with respect to the light beam.
 上記の構成によれば、第1の受光部による段差部の測定値と第2の受光部による段差部の測定値とに差が生じる。したがって、測定値に差が生じ始めた測定点(分離開始点)の位置に基づいて段差の位置を特定することができる。 According to the above configuration, a difference occurs between the measured value of the stepped portion by the first light receiving unit and the measured value of the stepped portion by the second light receiving unit. Therefore, the position of the step can be specified based on the position of the measurement point (separation start point) at which the difference in the measurement value starts to occur.
 この発明はさらに他の局面において、上記の表面形状測定装置を備えた工作機械である。 According to still another aspect of the present invention, there is provided a machine tool provided with the surface shape measuring apparatus described above.
 この発明はさらに他の局面において、非接触型の変位計を用いて段差を含む測定対象物の表面形状を測定する表面形状測定方法である。上記の変位計は、測定対象物に向けて光ビームを出射する発光部、測定対象物からの光ビームの散乱光を集光する光学系、および光学系による集光位置を検出する受光部を含む。表面形状測定方法は、変位計と測定対象物とを相対的に移動させることによって段差と交差する方向に光ビームを走査しながら、測定対象物の表面の変位を変位計によって連続的に測定する第1の測定ステップと、光ビームを回転対称軸にして光学系および受光部の配置を第1の測定ステップの場合に対して180度回転させた状態で、第1の測定ステップと同一箇所を変位計によって連続的に測定する第2の測定ステップと、第1の測定ステップによる測定値と第2の測定ステップによる測定値とが分離し始める分離開始点に基づいて段差の位置を特定するステップとを備える。 In still another aspect, the present invention is a surface shape measuring method of measuring the surface shape of a measurement object including a step using a noncontact displacement meter. The above-described displacement meter includes a light emitting unit that emits a light beam toward an object to be measured, an optical system that condenses scattered light of the light beam from the object to be measured, and a light receiving unit that detects a condensing position by the optical system. Including. The surface shape measuring method continuously measures the displacement of the surface of the measurement object by the displacement meter while scanning the light beam in the direction crossing the step by relatively moving the displacement meter and the measurement object. In the state where the arrangement of the optical system and the light receiving unit is rotated 180 degrees with respect to the case of the first measurement step with the first measurement step and the light beam as the rotational symmetry axis, the same position as the first measurement step A step of determining the position of the step based on a second measurement step continuously measured by the displacement gauge, and a separation start point at which the measurement value in the first measurement step and the measurement value in the second measurement step begin to separate And
 したがって、この発明によれば、従来よりも簡単かつ短時間で測定対象物の表面段差の位置を検出することができる。 Therefore, according to the present invention, it is possible to detect the position of the surface step of the measurement object in a simpler and shorter time than in the prior art.
レーザ変位計の構成を模式的に示す図である。It is a figure which shows the structure of a laser displacement meter typically. 図1のリニアイメージセンサの構成を模式的に示す斜視図である。It is a perspective view which shows typically the structure of the linear image sensor of FIG. 図1のリニアイメージセンサによって検出されるデータの一例を示す図である。It is a figure which shows an example of the data detected by the linear image sensor of FIG. 実施の形態1による表面形状測定装置の構成例を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing a configuration example of a surface shape measuring apparatus according to a first embodiment. 段差部の測定時に生じる誤差について説明するための図である。It is a figure for demonstrating the difference | error produced at the time of the measurement of a level | step-difference part. 図5に示すレーザ変位計の配置を180度回転させた場合において、段差部の測定時に生じる誤差について説明するための図である。It is a figure for demonstrating the difference | error produced at the time of measurement of a level | step-difference part, when rotating 180 degree | times of arrangement | positioning of the laser displacement meter shown in FIG. 図5および図6の場合においてリニアイメージセンサ上の集光スポットの輝度分布の一例を模式的に示す図である。It is a figure which shows typically an example of the luminance distribution of the condensing spot on a linear image sensor in the case of FIG. 5 and FIG. 図5および図6の場合において、表面形状の測定データの一例を示す図である。In the case of FIG. 5 and FIG. 6, it is a figure which shows an example of the measurement data of surface shape. 表面形状の測定手順および測定したデータの処理手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of surface shape, and the processing procedure of the measured data. 実施の形態2による表面形状測定装置で用いられるレーザ変位計の構成を模式的に示す図である。FIG. 8 is a view schematically showing a configuration of a laser displacement gauge used in the surface shape measuring apparatus according to Embodiment 2. 実施の形態2の装置において表面形状の測定手順および測定したデータの処理手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of surface shape in the apparatus of Embodiment 2, and the processing procedure of the measured data. 実施の形態3による工作機械の構成を模式的に示す斜視図である。FIG. 16 is a perspective view schematically showing a configuration of a machine tool according to a third embodiment. 図12の工作機械のうち表面形状測定装置に関する部分の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the part regarding surface shape measuring apparatus among the machine tools of FIG.
 以下、各実施の形態について図面を参照して詳しく説明する。以下の各実施の形態では、レーザ変位計を用いた表面形状測定装置を例に挙げて説明するが、レーザ光に代えて非コヒーレントな光ビームを用いた非接触式の変位計の場合にもこの発明を適用することができる。なお、以下の説明において、同一または相当する部分には同一の参照符号を付して、その説明を繰り返さない場合がある。 Hereinafter, each embodiment will be described in detail with reference to the drawings. In each of the following embodiments, a surface shape measurement apparatus using a laser displacement meter will be described as an example, but a noncontact displacement meter using a noncoherent light beam instead of a laser beam is also described. The present invention can be applied. In the following description, the same or corresponding parts may be denoted by the same reference numerals, and the description thereof may not be repeated.
 <実施の形態1>
 [レーザ変位計の概要]
 図1は、レーザ変位計の構成を模式的に示す図である。図1を参照して、レーザ変位計100は、発光部110と、光学系としての集光レンズ118と、受光部としてのリニアイメージセンサ(Linear Image Sensor)120とを含む。発光部110は、レーザダイオード112と、レンズ114とを含む。
Embodiment 1
[Overview of Laser Displacement Gauge]
FIG. 1 is a view schematically showing the configuration of a laser displacement meter. Referring to FIG. 1, a laser displacement meter 100 includes a light emitting unit 110, a condensing lens 118 as an optical system, and a linear image sensor 120 as a light receiving unit. The light emitting unit 110 includes a laser diode 112 and a lens 114.
 レーザダイオード112から発せられたレーザビーム116はレンズ114によって略平行光に整形され、測定対象物130へ照射される。測定対象物上でのレーザビーム116のスポットサイズw(スポット径とも称する)は、たとえば、直径50μmである。 The laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130. The spot size w (also referred to as spot diameter) of the laser beam 116 on the measurement object is, for example, 50 μm in diameter.
 測定対象物130上で拡散反射された光は、レーザビーム116とγの角度方向に配置されたリニアイメージセンサ120上に、集光レンズ118によって集光される。図1では、集光レンズ118の焦点距離をf0とし、測定対象物130の表面上におけるレーザビーム116の照射位置(レーザスポット132)から集光レンズ118までの距離をlとしている。 The light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118 on the linear image sensor 120 disposed in the angular direction of the laser beam 116 and γ. In FIG. 1, the focal length of the condenser lens 118 is f 0, and the distance from the irradiation position of the laser beam 116 (laser spot 132) on the surface of the measurement object 130 to the condenser lens 118 is l.
 リニアイメージセンサ120はシャインプルーフ条件(Scheimpflug Condition)に基付いた角度で配置される。すなわち、リニアイメージセンサ120の検出面と集光レンズ118の主面とは1直線で交わり、これらの面のなす角度をβとする。レーザビーム116を含む面が被写体面となる。この配置により、測定対象物130とレーザ変位計100の距離が変化しても、レーザスポット132はリニアイメージセンサ120上にボケることなく結像される。 The linear image sensor 120 is disposed at an angle based on the Scheimpflug Condition. That is, the detection surface of the linear image sensor 120 and the main surface of the condenser lens 118 intersect in one straight line, and the angle between these surfaces is β. The plane including the laser beam 116 is the object plane. By this arrangement, even if the distance between the measurement object 130 and the laser displacement meter 100 changes, the laser spot 132 is imaged without blurring on the linear image sensor 120.
 図1において、レーザビーム116の方向をZ軸方向とする。レーザビーム116の中心軸と集光レンズ118の光軸とを含む面を光路面と称する。この光路面に平行でありかつZ軸方向に垂直な方向をX軸方向とする。X軸方向およびZ軸方向の両方に垂直な方向をY軸方向とする。図1の場合、Y軸方向は紙面に垂直な方向であり、XZ平面は紙面(光路面)と平行である。 In FIG. 1, the direction of the laser beam 116 is taken as the Z-axis direction. A surface including the central axis of the laser beam 116 and the optical axis of the condenser lens 118 is referred to as an optical path. A direction parallel to the light road surface and perpendicular to the Z-axis direction is taken as an X-axis direction. The direction perpendicular to both the X-axis direction and the Z-axis direction is taken as the Y-axis direction. In the case of FIG. 1, the Y-axis direction is a direction perpendicular to the paper surface, and the XZ plane is parallel to the paper surface (optical road surface).
 ここで、レーザ光のビームサイズ(測定対象物上でのスポットサイズ)について説明する。レーザ光のビームサイズには種々の定義がある。たとえば、TEM00モードのように対称なビームプロファイルのレーザ光の場合には、光軸に直交する面において、ピーク値に対してeの2乗分の1(ただし、eは自然対数の底)(13.5%)の強度分布の幅でビームサイズが定義される。ビームプロファイルが崩れている場合には、たとえば、ビームの全パワーのうち、ピークパワーを基準として86.5%が含まれる円を算出し、この円の直径がビームサイズとして定義される。この明細書では、種々の定義を含めるために、全パワーの50%が含まれる円の直径以上、全パワーの95%が含まれる円の直径以下の範囲を実質的にビームサイズ(測定対象物上でのスポットサイズ)に等しいとする。 Here, the beam size of the laser beam (spot size on the measurement object) will be described. There are various definitions of the beam size of laser light. For example, in the case of a laser beam having a symmetrical beam profile such as the TEM00 mode, in a plane orthogonal to the optical axis, one square of e to the peak value (where e is the base of the natural logarithm) ( The beam size is defined by the width of the intensity distribution (13.5%). When the beam profile is broken, for example, a circle containing 86.5% of the total power of the beam with respect to the peak power is calculated, and the diameter of the circle is defined as the beam size. In this specification, in order to include various definitions, the beam size (the object size to be measured) is substantially in the range not less than the diameter of the circle containing 50% of the total power and not more than the diameter of the circle containing 95% of the total power. It is assumed that it is equal to the spot size above).
 図2は、図1のリニアイメージセンサの構成を模式的に示す斜視図である。図2を参照して、リニアイメージセンサ120は、直線状に配列された1024個の画素(ピクセル)122を含む。各画素122は、受光量に応じて0から最大255までの輝度レベルの信号を出力する。 FIG. 2 is a perspective view schematically showing the configuration of the linear image sensor of FIG. Referring to FIG. 2, linear image sensor 120 includes 1024 pixels (pixels) 122 linearly arranged. Each pixel 122 outputs a signal of a luminance level from 0 to a maximum of 255 according to the light reception amount.
 図3は、図1のリニアイメージセンサによって検出されるデータの一例を示す図である。図3の横軸がピクセル位置を示し、縦軸が輝度レベルを示す。図2および図3を参照して、測定対象物130上で拡散反射された光が集光レンズ118によってリニアイメージセンサ120上のスポット124に集光されることによって、図3に示すようなガウス分布状のデータが得られる。図3のデータの重心位置から三角測量により対象物までの距離が計算される。図3の場合には、輝度分布の中心線180と重心とが一致している。 FIG. 3 is a diagram showing an example of data detected by the linear image sensor of FIG. The horizontal axis in FIG. 3 indicates the pixel position, and the vertical axis indicates the brightness level. Referring to FIGS. 2 and 3, the light diffusely reflected on the measurement object 130 is condensed by the condensing lens 118 to a spot 124 on the linear image sensor 120, thereby generating a Gaussian as shown in FIG. 3. Distribution data are obtained. The distance to the object is calculated by triangulation from the barycentric position of the data in FIG. In the case of FIG. 3, the center line 180 of the luminance distribution coincides with the center of gravity.
 [表面形状測定装置の構成]
 図4は、実施の形態1による表面形状測定装置の構成例を概略的に示すブロック図である。図4を参照して、表面形状測定装置140は、測定対象物130が載置されるテーブル144と、サドル142と、レーザ変位計100と、X軸駆動機構146Xと、Y軸駆動機構146Yと、Z軸駆動機構146Zと、C軸駆動機構146Cと、コンピュータ150とを含む。
[Configuration of surface shape measuring apparatus]
FIG. 4 is a block diagram schematically showing a configuration example of the surface shape measuring apparatus according to the first embodiment. Referring to FIG. 4, the surface shape measuring apparatus 140 includes a table 144 on which the measurement object 130 is placed, a saddle 142, a laser displacement meter 100, an X-axis drive mechanism 146X, and a Y-axis drive mechanism 146Y. , Z-axis drive mechanism 146Z, C-axis drive mechanism 146C, and computer 150.
 テーブル144はサドル142上に配置され、X軸方向に移動可能である。サドル142はY軸方向に移動可能である。X軸駆動機構146Xは、テーブル144をX軸方向に移動させる。Y軸駆動機構146Yは、サドル142をY軸方向に移動させる。Z軸駆動機構146Zは、レーザ変位計100をZ軸方向に移動させる。C軸駆動機構146Cは、レーザ変位計100をZ軸と平行な回転軸(C軸回転中心)の回りに回転させる。C軸駆動機構146Cは、基準位置に対して任意の回転角度に設定可能である。 The table 144 is disposed on the saddle 142 and is movable in the X-axis direction. The saddle 142 is movable in the Y-axis direction. The X-axis drive mechanism 146X moves the table 144 in the X-axis direction. The Y-axis drive mechanism 146Y moves the saddle 142 in the Y-axis direction. The Z-axis drive mechanism 146Z moves the laser displacement meter 100 in the Z-axis direction. The C-axis drive mechanism 146C rotates the laser displacement meter 100 about a rotation axis (C-axis rotation center) parallel to the Z-axis. The C-axis drive mechanism 146C can be set to any rotation angle with respect to the reference position.
 X軸駆動機構146X、Y軸駆動機構146Y、Z軸駆動機構146Z、およびC軸駆動機構146Cは、レーザ変位計100と測定対象物130とを相対的に移動させるための移動機構146として機能する。したがって、移動機構146によってレーザビーム116は、測定対象物130の表面上を走査する。 The X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, the Z-axis drive mechanism 146Z, and the C-axis drive mechanism 146C function as a moving mechanism 146 for relatively moving the laser displacement meter 100 and the measurement object 130. . Thus, the moving mechanism 146 causes the laser beam 116 to scan over the surface of the measurement object 130.
 なお、移動機構146の構成は図4の例には限られない。たとえば、測定対象物130が固定され、レーザ変位計100がX、Y、Zの3方向に移動可能な構成であってもよい。レーザ変位計100が固定され、測定対象物130を支持するテーブル144がC軸回転中心の回りに回転可能なように構成されていてもよい。 The configuration of the moving mechanism 146 is not limited to the example shown in FIG. For example, the measurement object 130 may be fixed, and the laser displacement meter 100 may be movable in three directions of X, Y, and Z. The laser displacement meter 100 may be fixed, and the table 144 supporting the measurement object 130 may be configured to be rotatable about the C-axis rotation center.
 コンピュータ150は、プロセッサ152、メモリ154、ならびに図示しない表示装置および入出力装置等を含む。プロセッサ152は、メモリ154に格納されたプログラムを実行することによって、測定制御部156およびデータ処理部158として機能する。 The computer 150 includes a processor 152, a memory 154, and display devices and input / output devices (not shown). The processor 152 functions as a measurement control unit 156 and a data processing unit 158 by executing a program stored in the memory 154.
 測定制御部156は、レーザ変位計100および移動機構146を制御することによって、レーザビーム116を走査させる。このレーザビーム116の走査中に、測定制御部156は、レーザ変位計100を用いて測定対象物130の表面形状データ166を連続的に測定する。測定された表面形状データ166はメモリ154に格納される。表面形状データ166は、測定対象物130上の走査位置(レーザビームが照射される位置)と、当該走査位置における測定対象物130の表面のZ軸方向の変位とが対応付けられたデータ系列である。 The measurement control unit 156 scans the laser beam 116 by controlling the laser displacement meter 100 and the moving mechanism 146. During the scanning of the laser beam 116, the measurement control unit 156 continuously measures the surface shape data 166 of the measurement object 130 using the laser displacement meter 100. The measured surface shape data 166 is stored in the memory 154. The surface shape data 166 is a data series in which the scanning position (the position where the laser beam is irradiated) on the measurement object 130 and the displacement of the surface of the measurement object 130 at the scanning position in the Z-axis direction are associated. is there.
 測定制御部156は、さらに、C軸駆動機構146Cを制御することによって、レーザ変位計100をZ軸方向と平行な回転軸(C軸回転中心)の回りに180度回転させる。これにより、C軸回転中心とレーザビーム116の中心軸とが一致している場合には、レーザ変位計100はレーザビーム116の中心軸の回りに180度回転する。すなわち、図1の集光レンズ118(光学系)およびリニアイメージセンサ120(受光部)は、レーザビーム116の中心軸について線対称な位置に移動する。レーザビーム116の中心軸とC軸回転中心とが一致していない場合には、C軸回転中心の回りの回転とともにX軸方向およびY軸方向にレーザ変位計100を移動させることによって、レーザビーム116の位置を保ったままレーザ変位計100をレーザビーム116の中心軸の回りに180度回転させることができる。 The measurement control unit 156 further controls the C-axis drive mechanism 146C to rotate the laser displacement meter 100 180 degrees around a rotation axis (C-axis rotation center) parallel to the Z-axis direction. Thus, when the C-axis rotation center coincides with the central axis of the laser beam 116, the laser displacement meter 100 rotates 180 degrees around the central axis of the laser beam 116. That is, the condenser lens 118 (optical system) and the linear image sensor 120 (light receiving unit) in FIG. 1 move to positions in line symmetry with respect to the central axis of the laser beam 116. When the central axis of the laser beam 116 and the C-axis rotation center do not match, the laser beam is moved by moving the laser displacement meter 100 in the X-axis direction and the Y-axis direction along with the rotation around the C-axis rotation center. The laser displacement meter 100 can be rotated 180 degrees around the central axis of the laser beam 116 while maintaining the position 116.
 後述するように、測定制御部156は、レーザ変位計100をレーザビーム116の中心軸の回りに180度回転させた後に、回転させる前と同一箇所をレーザ変位計100によって測定する。回転の前後で測定した同一箇所の表面形状データを比較することによって、測定対象物130の段差部のエッジ位置を簡単かつ正確かつ短時間に検出することができる。 As described later, after the laser displacement meter 100 is rotated 180 degrees around the central axis of the laser beam 116, the measurement control unit 156 measures the same position as before the rotation by the laser displacement meter 100. By comparing the surface shape data of the same portion measured before and after rotation, the edge position of the step portion of the measurement object 130 can be detected easily, accurately and in a short time.
 データ処理部158は、段差位置を特定するために、レーザ変位計100によって測定されたデータ(表面形状データ166)に対してデータ処理を行う。データ処理の内容については図9を参照して後述する。 The data processing unit 158 performs data processing on data (surface shape data 166) measured by the laser displacement meter 100 in order to specify the step position. The contents of the data processing will be described later with reference to FIG.
 次に、具体的な段差位置の検出方法について説明する。本実施の形態の装置では、三角測量方式のレーザ変位計で段差部を測定する際に生じる誤差を利用することによって、段差位置を検出する。以下では、まず、段差部の測定時に生じる誤差について説明し、次に、段差位置を検出するためのデータ処理手順について説明する。 Next, a specific method of detecting the level difference position will be described. In the apparatus of the present embodiment, the position of the level difference is detected by using an error generated when measuring the level difference portion with the triangulation type laser displacement meter. In the following, first, an error generated when measuring the stepped portion will be described, and next, a data processing procedure for detecting the position of the stepped portion will be described.
 [段差部の測定時に生じる誤差について]
 図5は、段差部の測定時に生じる誤差について説明するための図である。図5では、レーザビームの走査方向を+X方向とする。測定対象物130の表面上の直線136に沿ってレーザビームが照射される。直線136の方向(レーザビームの走査方向)は、段差部のエッジ134と交差している(直交している必要はない)。なお、図5では図解を容易にするために、レーザスポット132のサイズを拡大して示している。
[About the error that occurs when measuring the level difference part]
FIG. 5 is a diagram for explaining an error that occurs when measuring the stepped portion. In FIG. 5, the scanning direction of the laser beam is the + X direction. The laser beam is irradiated along a straight line 136 on the surface of the measurement object 130. The direction of the straight line 136 (the scanning direction of the laser beam) intersects (does not have to be orthogonal to) the edge 134 of the step. In FIG. 5, the size of the laser spot 132 is shown enlarged to facilitate the illustration.
 図5に示す例では、レーザ変位計を構成する集光レンズ(光学系)118およびリニアイメージセンサ(受光部)120は、レーザビームに対して走査方向前方に位置するように、レーザ変位計の向きが決められている。この場合、レーザスポット132がエッジ部に差し掛かると、レーザスポット132のうちリニアイメージセンサ120に近接する側の一部が欠けるようになる。この結果、リニアイメージセンサ120の集光スポット124の重心位置が移動するため、測定対象物130の表面平坦部138は、実際よりもε+だけ上方に(発光部110のより近くに)位置するように観測される。 In the example shown in FIG. 5, the condensing lens (optical system) 118 and the linear image sensor (light receiving unit) 120 that constitute the laser displacement meter are positioned in front of the laser beam in the scanning direction. The direction is decided. In this case, when the laser spot 132 reaches the edge portion, a part of the laser spot 132 on the side close to the linear image sensor 120 is missing. As a result, the position of the center of gravity of the focused spot 124 of the linear image sensor 120 moves, so that the surface flat portion 138 of the measurement object 130 is positioned above (closer to the light emitting unit 110) by ε + than in reality. Observed.
 図6は、図5に示すレーザ変位計の配置を180度回転させた場合において、段差部の測定時に生じる誤差について説明するための図である。図5の場合と同様に、レーザビームの走査方向を+X方向とし、測定対象物130の表面の同一箇所である直線136に沿ってレーザビームが照射される。図解を容易にするために、レーザスポット132のサイズを拡大して示している。 FIG. 6 is a diagram for explaining an error that occurs when measuring the stepped portion when the arrangement of the laser displacement gauge shown in FIG. 5 is rotated by 180 degrees. As in the case of FIG. 5, the laser beam is irradiated along a straight line 136 which is the same location on the surface of the measurement object 130, with the scanning direction of the laser beam as the + X direction. The size of the laser spot 132 is shown enlarged for ease of illustration.
 図6の場合における集光レンズ118およびリニアイメージセンサ120の配置は、図5の場合の配置をレーザビームの中心軸116Cの回りに180度回転させたものである。すなわち、集光レンズ118およびリニアイメージセンサ120は、レーザビームに対して走査方向後方に位置するように、レーザ変位計の向きが定められている。この場合、レーザスポット132がエッジ部に差し掛かると、レーザスポット132のうちリニアイメージセンサ120から遠い側の一部が欠けるようになる。この結果、リニアイメージセンサ120の集光スポット124の重心位置が移動する。ただし、集光スポット124の重心位置の移動方向は図5の場合とは反対方向である。したがって、測定対象物130の表面は、実際よりもε-だけ下方に(発光部110から遠方に)位置するように観測される。 The arrangement of the condenser lens 118 and the linear image sensor 120 in the case of FIG. 6 is obtained by rotating the arrangement of FIG. 5 by 180 degrees around the central axis 116C of the laser beam. That is, the direction of the laser displacement meter is determined such that the condenser lens 118 and the linear image sensor 120 are located behind the laser beam in the scanning direction. In this case, when the laser spot 132 reaches the edge portion, a part of the laser spot 132 on the side far from the linear image sensor 120 is missing. As a result, the center of gravity of the focused spot 124 of the linear image sensor 120 moves. However, the moving direction of the position of the center of gravity of the focused spot 124 is opposite to that in the case of FIG. Therefore, the surface of the measurement object 130 is observed to be located by ε− (actually far from the light emitting unit 110) below the actual value.
 図7は、図5および図6の場合においてリニアイメージセンサ上の集光スポットの輝度分布の一例を模式的に示す図である。図7(A)が図5に対応する場合の輝度分布を表し、図7(B)が図6に対応する場合の輝度分布を表す。レーザビームが平坦な表面上に照射されている場合には輝度分布はガウス分布に近い形状を示し、この場合の輝度分布の中心線180を一点鎖線で示している。図示されるように、図5に対応する図7(A)の場合の輝度分布の重心位置182と、図6に対応する図7(B)の場合の輝度分布の重心位置184とは、中心線180に対して互いに反対方向にずれる。この結果、レーザ変位計の測定値は、図5の場合と図6の場合とで互いに反対方向の誤差を有するようになる。 FIG. 7 is a view schematically showing an example of the luminance distribution of the focused spot on the linear image sensor in the cases of FIG. 5 and FIG. FIG. 7 (A) shows the luminance distribution in the case corresponding to FIG. 5, and FIG. 7 (B) shows the luminance distribution in the case corresponding to FIG. When the laser beam is irradiated on a flat surface, the luminance distribution has a shape close to a Gaussian distribution, and the center line 180 of the luminance distribution in this case is indicated by a dashed dotted line. As shown, the barycentric position 182 of the brightness distribution in the case of FIG. 7A corresponding to FIG. 5 and the barycentric position 184 of the brightness distribution in the case of FIG. 7B corresponding to FIG. The lines 180 are offset in opposite directions. As a result, the measurement values of the laser displacement gauge have errors in the directions opposite to each other between the case of FIG. 5 and the case of FIG.
 図8は、図5および図6の場合において、表面形状の測定データの一例を示す図である。図8(A)において、図5の場合の測定データ186は実線で示され、図6の場合の測定データ188は破線で示される。図8(B)において、図5の場合の測定データ186と図6の場合の測定データ188との平均値190が示されている。 FIG. 8 is a view showing an example of measurement data of surface shape in the cases of FIG. 5 and FIG. In FIG. 8A, measurement data 186 in the case of FIG. 5 is shown by a solid line, and measurement data 188 in the case of FIG. 6 is shown by a broken line. In FIG. 8B, an average value 190 of the measurement data 186 in the case of FIG. 5 and the measurement data 188 in the case of FIG. 6 is shown.
 図8(A)を参照して、点P0より左側の領域では、図5の場合の測定データ186と図6の場合の測定データ188とは一致している。点P0より右側の領域では、図5の場合の測定データ186と図6の場合の測定データ188とは異なっている。しかも、レーザビームの走査位置が点P0から離れるにつれて両測定値の隔たりが大きくなる。この明細書では、図5の場合の測定値と図6の場合の測定値とが分離し始める測定点P0を分離開始点とも称する。 Referring to FIG. 8A, in the region on the left side of point P0, measurement data 186 in the case of FIG. 5 matches measurement data 188 in the case of FIG. In the region to the right of the point P0, the measurement data 186 in the case of FIG. 5 and the measurement data 188 in the case of FIG. 6 are different. Moreover, as the scanning position of the laser beam moves away from the point P0, the distance between the two measured values increases. In this specification, the measurement point P0 at which the measured value in the case of FIG. 5 and the measured value in the case of FIG. 6 begin to separate is also referred to as a separation start point.
 上記の測定結果は、測定対象物上のレーザスポットの位置と段差部のエッジの位置との相対関係によって説明することができる。具体的に、図5および図6においてレーザスポット132が測定対象物130の上部平坦面138の上にありエッジ134に掛かっていない場合は、図8(A)において走査位置が点P0よりも左側の場合に相当する。レーザスポット132の右端がエッジ134に一致する場合(レーザスポット132がエッジ134に掛かり始めたとき)は、図8(A)の点P0に相当する。レーザスポット132の中央点がエッジ134に一致する場合は、図8(A)の点P0からスポットサイズの半分(w/2)だけ移動した点P1に相当する。レーザスポット132の左端がエッジ134に一致する場合(レーザスポット132が上部平坦面138から外れた瞬間)は、図8(A)の点P0からスポットサイズ(w)だけ移動した点P3に相当する。ただし、走査位置が点P3に達する前の点P2においてリニアイメージセンサ120の受光量が検出限界に達するためにレーザ変位計によって測定ができなくなる。 The above measurement results can be explained by the relative relationship between the position of the laser spot on the measurement object and the position of the edge of the stepped portion. Specifically, in FIG. 5 and FIG. 6, when the laser spot 132 is on the upper flat surface 138 of the measurement object 130 and does not hang on the edge 134, the scanning position is to the left of the point P0 in FIG. Corresponds to the case of When the right end of the laser spot 132 coincides with the edge 134 (when the laser spot 132 starts to be engaged with the edge 134), it corresponds to the point P0 in FIG. When the center point of the laser spot 132 coincides with the edge 134, it corresponds to a point P1 moved by half the spot size (w / 2) from the point P0 in FIG. 8A. When the left end of the laser spot 132 coincides with the edge 134 (immediately when the laser spot 132 deviates from the upper flat surface 138), it corresponds to the point P3 moved by the spot size (w) from the point P0 in FIG. . However, since the light reception amount of the linear image sensor 120 reaches the detection limit at the point P2 before the scanning position reaches the point P3, measurement can not be performed by the laser displacement meter.
 [データ処理手順]
 以上に説明したように、三角測量方式のレーザ変位計を用いて段差部を測定する際には測定誤差が生じる。この測定誤差を利用すれば、段差部のエッジの位置を簡単かつ正確に検出することができる。具体的手順を図9に示す。
[Data processing procedure]
As described above, measurement errors occur when measuring the stepped portion using a triangulation-type laser displacement meter. By using this measurement error, the position of the edge of the stepped portion can be detected easily and accurately. The specific procedure is shown in FIG.
 図9は、表面形状の測定手順および測定したデータの処理手順を示すフローチャートである。図4および図9を参照して、まず第1の測定ステップにおいて、測定制御部156は、移動機構146を駆動することによって、段差を含む測定範囲に対してレーザビーム116を走査させながら、測定対象物の表面形状を、レーザ変位計100を用いて連続的に測定する(ステップS100)。 FIG. 9 is a flowchart showing the procedure of measuring the surface shape and the procedure of processing the measured data. Referring to FIGS. 4 and 9, in the first measurement step, measurement control unit 156 performs measurement while scanning laser beam 116 with respect to a measurement range including a step by driving movement mechanism 146. The surface shape of the object is continuously measured using the laser displacement meter 100 (step S100).
 なお、前述したエッジ部分での誤差はレーザスポットサイズよりも小さい範囲で現れるので、レーザ変位計によるサンプリング間隔は、レーザスポットサイズの1/2以下にする必要がある。この場合、測定値の上下の変化を正確に捉えるためには、レーザ変位計のサンプリング間隔はスポットサイズの1/10以下が望ましい。さらに望ましくは、レーザ変位計のサンプリング間隔をスポットサイズの1/20以下とする。 In addition, since the error in the edge part mentioned above appears in the range smaller than laser spot size, it is necessary to make the sampling space | interval by a laser displacement meter into 1/2 or less of laser spot size. In this case, it is desirable that the sampling interval of the laser displacement gauge be 1/10 or less of the spot size in order to accurately capture changes in the upper and lower sides of the measured value. More preferably, the sampling interval of the laser displacement meter is set to 1/20 or less of the spot size.
 次に、測定制御部156は、C軸駆動機構146Cを駆動することによって、レーザビーム116の中心軸の回りにレーザ変位計100を180度回転させる(ステップS105)。なお、C軸駆動機構146CのC軸回転中心とレーザビーム116の中心軸とが一致していない場合には、C軸駆動機構146Cを用いた180度の回転駆動とともに、X軸駆動機構146XおよびY軸駆動機構146Yの少なくとも一方によって、レーザビーム116の中心軸の位置を保つようにレーザ変位計100を移動させる。 Next, the measurement control unit 156 rotates the laser displacement meter 100 by 180 degrees around the central axis of the laser beam 116 by driving the C-axis drive mechanism 146C (step S105). When the C-axis rotation center of the C-axis drive mechanism 146C and the central axis of the laser beam 116 do not coincide with each other, the X-axis drive mechanism 146X and the X-axis drive mechanism 146X and the 180-degree rotational drive using the C-axis drive mechanism 146C. The laser displacement meter 100 is moved to maintain the position of the central axis of the laser beam 116 by at least one of the Y-axis drive mechanisms 146Y.
 次に、測定制御部156は、第2の測定ステップにおいて、第1の測定ステップの場合と同一箇所をレーザ変位計100によって連続的に測定する(ステップS110)。第1および第2の測定ステップによって測定されたデータ(表面形状データ166)は、メモリ154に格納される。 Next, in the second measurement step, the measurement control unit 156 continuously measures the same place as in the case of the first measurement step using the laser displacement meter 100 (step S110). The data (surface shape data 166) measured by the first and second measurement steps are stored in the memory 154.
 次に、データ処理部158によって表面形状データ166のデータ処理を行う。データ処理部158は、段差特定部160とデータ補正部162とを含む。まず、段差特定部160は、表面形状データ166の測定範囲のうちで、第1の測定ステップの測定値(M1と称する)と第2の測定ステップの測定値(M2と称する)とが分離し始める分離開始点(図8(A)の点P0)を特定する(ステップS115)。 Next, data processing of the surface shape data 166 is performed by the data processing unit 158. Data processing unit 158 includes a level difference identification unit 160 and a data correction unit 162. First, in the measurement range of the surface shape data 166, the step specifying unit 160 separates the measured value (referred to as M1) in the first measurement step and the measured value (referred to as M2) in the second measurement step. The separation start point (point P0 in FIG. 8A) to be started is specified (step S115).
 なお、具体的に測定値M1と測定値M2との分離開始点を特定する方法として種々の方法が考えられる。たとえば、測定値の差M1-M2が予め定める閾値を超えた点を分離開始点としてもよい。あるいは、測定値の差M1-M2と走査位置との関係を表す近似曲線を求め、当該近似曲線の値が予め定める閾値を超えた点を分離開始点としてもよい。 In addition, various methods can be considered as a method of specifying the separation start point of the measurement value M1 and the measurement value M2 specifically. For example, a point at which the difference between the measurement values M1 and M2 exceeds a predetermined threshold may be set as the separation start point. Alternatively, an approximate curve representing the relationship between the measurement value difference M1-M2 and the scanning position may be determined, and a point at which the value of the approximate curve exceeds a predetermined threshold may be set as the separation start point.
 次に、段差特定部160は、特定した分離開始点P0に基づいて段差位置を特定する(ステップS120)。具体的に、段差特定部160は、第1の測定ステップによる測定値M1と第2の測定ステップによる測定値M2とが分離している分離区間内(図8(A)の点P0よりも右側)で、分離開始点P0からレーザビームのスポットサイズwの1/2だけ離れた点P1を段差位置として特定する。 Next, the level | step difference identification part 160 pinpoints a level | step difference position based on the identified isolation | separation start point P0 (step S120). Specifically, the step identification unit 160 determines that the measurement value M1 in the first measurement step and the measurement value M2 in the second measurement step are separated from each other in the separation section (right of the point P0 in FIG. 8A). The point P1 separated from the separation start point P0 by 1/2 of the spot size w of the laser beam is specified as the step position.
 次に、データ補正部162は、分離開始点P0から段差位置P1までの測定値を補正する(ステップS125)。具体的に、データ補正部162は、第1の測定ステップによる測定値M1と第2の測定ステップによる測定値M2との平均値(図8(B)の190)を、当該区間における高さ方向の変位とする。その後、例えば、移動平均などのフィルタリング処理を行うことによって、さらに表面形状データを補正してもよい。 Next, the data correction unit 162 corrects the measured value from the separation start point P0 to the step position P1 (step S125). Specifically, the data correction unit 162 sets the average value (190 in FIG. 8B) of the measurement value M1 in the first measurement step and the measurement value M2 in the second measurement step in the height direction in the section Displacement of the Thereafter, the surface shape data may be further corrected by performing filtering processing such as moving average, for example.
 上記において、レーザビームの走査方向は、図5および図6に示すように、レーザビームの中心軸116Cとリニアイメージセンサ(受光部)120の集光スポット124とを含む光路面(XZ平面)と平行な方向であることが望ましい。走査方向と光路面とが平行のとき、第1の測定ステップによるエッジ部の測定値M1と第2の測定ステップによるエッジ部の測定値M2との差が最も大きくなるからである。一般的には、レーザビームに沿った方向(Z軸方向)から平面視したとき、レーザビームの走査方向が光路面と垂直でなければ(YZ平面と平行でなければ)どのような角度であっても構わない(ただし、段差部は走査方向と交差している必要がある)。図5および図6においてレーザビームの走査方向がYZ平面と平行でなければ、第1の測定ステップによる段差部の測定値M1と第2の測定ステップによる段差部の測定値M2とに差が生じるので、段差位置を特定することができる。 In the above, the scanning direction of the laser beam is, as shown in FIGS. 5 and 6, an optical road surface (XZ plane) including the central axis 116C of the laser beam and the focused spot 124 of the linear image sensor (light receiving unit) 120. It is desirable that the directions are parallel. When the scanning direction is parallel to the light road surface, the difference between the measurement value M1 of the edge portion in the first measurement step and the measurement value M2 of the edge portion in the second measurement step is largest. Generally, when viewed in plan from the direction along the laser beam (Z-axis direction), what angle is the scanning direction of the laser beam if it is not perpendicular to the light path (if it is not parallel to the YZ plane) (However, the step portion needs to intersect the scanning direction). In FIGS. 5 and 6, if the scanning direction of the laser beam is not parallel to the YZ plane, a difference occurs between the measured value M1 of the stepped portion in the first measurement step and the measured value M2 of the stepped portion in the second measurement step. Therefore, the step position can be identified.
 [実施の形態1の効果]
 以上のとおり、実施の形態1による表面形状測定装置140によれば、段差部を含む測定対象物130の表面形状をレーザ変位計100によって測定した後、レーザ変位計100をレーザビーム116の中心軸の回りに180度回転させてから、回転させる前と同一箇所を再度レーザ変位計100によって測定する。そして、回転の前後で測定した同一箇所の表面形状データを比較し、両データに違いが生じ始める測定点の位置(分離開始点)に基づいてエッジの位置を特定する。これによって、測定対象物130の段差(エッジ)の位置を簡単かつ正確かつ短時間に検出することができる。
[Effect of Embodiment 1]
As described above, according to the surface shape measuring apparatus 140 according to the first embodiment, after the surface shape of the measurement object 130 including the step portion is measured by the laser displacement meter 100, the laser displacement meter 100 is used as the central axis of the laser beam 116. The laser displacement meter 100 measures the same position as before rotation. Then, the surface shape data of the same place measured before and after rotation are compared, and the position of the edge is specified based on the position of the measurement point (separation start point) at which the difference between both data starts to occur. Thus, the position of the step (edge) of the measurement object 130 can be detected easily, accurately and in a short time.
 <実施の形態2>
 実施の形態2による表面形状測定装置では、レーザ変位計の構成が実施の形態1の場合と異なる。図10は、実施の形態2による表面形状測定装置で用いられるレーザ変位計の構成を模式的に示す図である。
Second Embodiment
The surface profile measurement apparatus according to the second embodiment differs from that of the first embodiment in the configuration of the laser displacement meter. FIG. 10 is a view schematically showing a configuration of a laser displacement gauge used in the surface shape measuring apparatus according to the second embodiment.
 図10を参照して、レーザ変位計100Aは、発光部110と、第1および第2の光学系としての集光レンズ118A,118Bと、第1および第2の受光部としてのリニアイメージセンサ120A,120Bとを含む。集光レンズ118Bおよびリニアイメージセンサ120Bは、レーザビーム116の中心軸の回りに集光レンズ118Aおよびリニアイメージセンサ120Aをそれぞれ180度回転させた位置に配置される。発光部110は、レーザダイオード112と、レンズ114とを含む。 Referring to FIG. 10, a laser displacement meter 100A includes a light emitting unit 110, condensing lenses 118A and 118B as first and second optical systems, and a linear image sensor 120A as first and second light receiving units. , 120B. The condenser lens 118 B and the linear image sensor 120 B are disposed at positions where the condenser lens 118 A and the linear image sensor 120 A are respectively rotated 180 degrees around the central axis of the laser beam 116. The light emitting unit 110 includes a laser diode 112 and a lens 114.
 レーザダイオード112から発せられたレーザビーム116はレンズ114によって略平行光に整形され、測定対象物130へ照射される。測定対象物130上で拡散反射された光は、レーザビーム116に対して+γの角度方向に配置されたリニアイメージセンサ120A上に集光レンズ118Aによって集光されるとともに、レーザビーム116に対して-γの角度方向(+γと反対方向)に配置されたリニアイメージセンサ120B上に集光レンズ118Bによって集光される。 The laser beam 116 emitted from the laser diode 112 is shaped into substantially parallel light by the lens 114 and irradiated to the measurement object 130. The light diffusely reflected on the measurement object 130 is condensed by the condenser lens 118A on the linear image sensor 120A disposed at an angular direction of + γ with respect to the laser beam 116, and The light is condensed by the condensing lens 118B on the linear image sensor 120B disposed in the angular direction (opposite to + γ) of −γ.
 図10のレーザ変位計100Aは、図4に示す表面形状測定装置140に図1のレーザ変位計100に代えて取付けられる。測定対象物130の表面の変位は、リニアイメージセンサ120A上の集光スポット124Aの位置およびリニアイメージセンサ120B上の集光スポット124Bの位置に基づいて決定される。図10のその他の点は、図1の場合と同じであるので同一または相当する部分には同一の参照符号を付して説明を繰り返さない。 The laser displacement meter 100A of FIG. 10 is attached to the surface shape measuring apparatus 140 shown in FIG. 4 instead of the laser displacement meter 100 of FIG. The displacement of the surface of the measurement object 130 is determined based on the position of the focused spot 124A on the linear image sensor 120A and the position of the focused spot 124B on the linear image sensor 120B. The other points in FIG. 10 are the same as in FIG. 1, and therefore, the same or corresponding portions are denoted by the same reference characters and description thereof will not be repeated.
 図11は、実施の形態2の装置において表面形状の測定手順および測定したデータの処理手順を示すフローチャートである。図4、図10および図11を参照して、まず、測定制御部156は、移動機構146を駆動することによって、段差を含む測定範囲に対してレーザビーム116を走査させながら、測定対象物130の表面形状を、レーザ変位計100を用いて連続的に測定する(ステップS200)。 FIG. 11 is a flowchart showing the procedure of measuring the surface shape and the procedure of processing the measured data in the apparatus of the second embodiment. Referring to FIGS. 4, 10 and 11, first, measurement control unit 156 drives movement mechanism 146 to scan measurement object 130 while scanning laser beam 116 with respect to the measurement range including the step. The surface shape of is continuously measured using the laser displacement meter 100 (step S200).
 実施の形態2の場合、レーザビーム116の中心軸に関して互いに線対称な位置に、集光レンズ118A,118Bが予め設けられ、リニアイメージセンサ120A,120Bが予め設けられている。したがって、実施の形態1のように同一箇所を2回測定する必要はない。なお、実施の形態1の場合と同様に、レーザビーム116の方向(Z軸方向)から平面視したとき、レーザビームの走査方向は光路面(XZ平面)に対して垂直にならないようにする(YZ平面と平行にならないようにする)。望ましくは、レーザビームの走査方向は光路面(XZ平面)と平行にする。 In the case of the second embodiment, the condenser lenses 118A and 118B are provided in advance and linear image sensors 120A and 120B are provided in advance at positions symmetrical to each other with respect to the central axis of the laser beam 116. Therefore, it is not necessary to measure the same place twice as in the first embodiment. As in the case of the first embodiment, the scanning direction of the laser beam is not perpendicular to the light path surface (XZ plane) when viewed in plan from the direction of the laser beam 116 (Z-axis direction) ( Not parallel to the YZ plane). Desirably, the scanning direction of the laser beam is parallel to the light path (XZ plane).
 次に、データ処理部158の段差特定部160は、表面形状データ166の測定範囲のうちで、第1のリニアイメージセンサ120Aによる測定値(M1と称する)と第2のリニアイメージセンサ120Bによる測定値(M2と称する)とが分離し始める分離開始点を特定する(ステップS205)。 Next, the step identification unit 160 of the data processing unit 158 measures the measurement value (referred to as M1) by the first linear image sensor 120A and the measurement by the second linear image sensor 120B within the measurement range of the surface shape data 166. A separation start point at which the value (referred to as M2) starts to separate is specified (step S205).
 次に、段差特定部160は、特定した分離開始点に基づいて段差位置を特定する(ステップS210)。具体的に、段差特定部160は、第1のリニアイメージセンサ120Aによる測定値M1と第2のリニアイメージセンサ120Bによる測定値M2とが分離している分離区間内で、分離開始点からレーザビームのスポットサイズwの1/2だけ離れた点を段差位置として特定する(ステップS210)。 Next, the level difference identification unit 160 identifies the position of the level difference based on the identified separation start point (step S210). Specifically, in the separation section in which the measurement value M1 measured by the first linear image sensor 120A and the measurement value M2 measured by the second linear image sensor 120B are separated, the step specifying unit 160 detects the laser beam from the separation start point A point separated by a half of the spot size w of is identified as the step position (step S210).
 次に、データ補正部162は、分離開始点から段差位置までの測定値を補正する(ステップS215)。具体的に、データ補正部162は、第1のリニアイメージセンサ120Aによる測定値M1と第2のリニアイメージセンサ120Bによる測定値M2との平均値を、当該区間における高さ方向の変位とする。 Next, the data correction unit 162 corrects the measured value from the separation start point to the step position (step S215). Specifically, the data correction unit 162 sets an average value of the measurement value M1 by the first linear image sensor 120A and the measurement value M2 by the second linear image sensor 120B as the displacement in the height direction in the section.
 以上のとおり、実施の形態2による表面形状測定装置によれば、レーザビームの中心軸に関して互いに線対称の位置に配置された第1および第2の集光レンズ(光学系)ならびに第1および第2のリニアイメージセンサ(受光部)を含むレーザ変位計を用いて、段差部を含む測定対象物の表面形状が測定される。そして、第1および第2のリニアイメージセンサによる測定値に違いが生じ始める測定点(分離開始点)の位置に基づいてエッジの位置が特定される。この結果測定対象物の段差(エッジ)の位置を簡単かつ正確かつ短時間に検出することができる。 As described above, according to the surface shape measurement apparatus of the second embodiment, the first and second condenser lenses (optical systems) and the first and second condenser lenses (optical systems) arranged at positions symmetrical to each other with respect to the central axis of the laser beam. The surface shape of the measurement object including the step portion is measured by using a laser displacement meter including the two linear image sensors (light receiving units). Then, the position of the edge is specified based on the position of the measurement point (separation start point) at which the difference between the measurement values of the first and second linear image sensors starts to occur. As a result, the position of the step (edge) of the object to be measured can be detected easily, accurately and in a short time.
 <実施の形態3>
 実施の形態3は、実施の形態1または2の表面形状測定装置を備えた工作機械を開示する。以下では、工作機械が立形マシンニングセンタである場合について説明しているが、工作機械は、横形マシニングセンタまたは旋盤など、他の種類のものであっても構わない。
Embodiment 3
Embodiment 3 discloses a machine tool provided with the surface shape measuring apparatus of Embodiment 1 or 2. Although the case where the machine tool is a vertical machining center is described below, the machine tool may be another type such as a horizontal machining center or a lathe.
 図12は、実施の形態3による工作機械の構成を模式的に示す斜視図である。図12を参照して、工作機械200は、加工装置10と、NC(Numerical Control)装置24と、ATC(自動工具交換装置:Automatic Tool Changer)28と、コンピュータ150とを含む。 FIG. 12 is a perspective view schematically showing the configuration of the machine tool according to the third embodiment. Referring to FIG. 12, the machine tool 200 includes a processing device 10, an NC (Numeric Control) device 24, an ATC (Automatic Tool Changer) 28, and a computer 150.
 加工装置10は、ベッド12と、ベッド12上に設置されたコラム14と、主軸22を有する主軸頭20と、テーブル18を有するサドル16とを含む。 The processing apparatus 10 comprises a bed 12, a column 14 mounted on the bed 12, a spindle head 20 with a spindle 22 and a saddle 16 with a table 18.
 主軸頭20は、コラム14の前面に支持されて、上下方向(Z軸方向)に移動可能である。主軸22の先端には、工具(図示せず)または測定ヘッド42が着脱可能に装着される。主軸22は、その中心軸線(図2のCL)がZ軸と平行なC軸回転中心のまわりに回転可能に、主軸頭20に支持されている。主軸頭20は、工作物2の加工のために主軸22を高速回転させる回転駆動部36と、主軸22の回転を低速送り制御可能な回転駆動部38とを内蔵する。後者の回転駆動部38は、図4のC軸駆動機構146Cに対応する。 The spindle head 20 is supported on the front surface of the column 14 and is movable in the vertical direction (Z-axis direction). A tool (not shown) or a measuring head 42 is removably attached to the tip of the spindle 22. The main spindle 22 is supported by the main spindle head 20 so as to be rotatable about a C-axis rotation center whose central axis (CL in FIG. 2) is parallel to the Z-axis. The spindle head 20 incorporates a rotary drive unit 36 for rotating the spindle 22 at a high speed for processing the workpiece 2 and a rotary drive unit 38 capable of low-speed feed control of the rotation of the spindle 22. The latter rotational drive unit 38 corresponds to the C-axis drive mechanism 146C of FIG.
 測定ヘッド42は、図1または図10に示すレーザ変位計100,100Aと、このレーザ変位計の制御回路および駆動用バッテリと、無線通信を行うための通信装置とを内蔵する。低速送り制御可能な回転駆動部38によって、測定ヘッド42(すなわち、レーザ変位計100,100A)の向きが制御される。 The measurement head 42 incorporates the laser displacement meter 100 or 100A shown in FIG. 1 or 10, a control circuit and a drive battery of the laser displacement meter, and a communication device for performing wireless communication. The orientation of the measurement head 42 (i.e., the laser displacement gauges 100 and 100A) is controlled by the low speed feed controllable rotary drive 38.
 サドル16は、ベッド12上に配置されて前後の水平方向(Y軸方向)に移動可能である。サドル16上にはテーブル18が配置されている。テーブル18は、左右の水平方向(X軸方向)に移動可能である。テーブル18上には工作物2が載置されている。サドル16は図4のサドル142に対応し、テーブル18は図4のテーブル144に対応する。工作物2は図4の測定対象物130に対応する。 The saddle 16 is disposed on the bed 12 and is movable in the back and forth horizontal direction (Y-axis direction). A table 18 is disposed on the saddle 16. The table 18 is movable in the left and right horizontal directions (X-axis direction). The workpiece 2 is placed on the table 18. The saddle 16 corresponds to the saddle 142 of FIG. 4 and the table 18 corresponds to the table 144 of FIG. The workpiece 2 corresponds to the measurement object 130 of FIG.
 加工装置10は、測定ヘッド42と工作物2とを相対的にX軸、Y軸、Z軸の直交3軸方向に直線移動させるともに、少なくともZ軸と平行なC軸回転中心の回りに測定ヘッド42を回転駆動可能なマシニングセンタである。なお、図1の構成と異なり、加工装置10は、測定ヘッド42を支持する主軸頭20を、工作物2に対してX軸、Y軸方向にそれぞれ移動させる構成であってもよいし、工作物2を支持するテーブル18をC軸回転中心の回りに回転可能な構成であってもよい。 The processing apparatus 10 linearly moves the measuring head 42 and the workpiece 2 in the directions of three axes orthogonal to the X, Y, and Z axes, and measures at least around the center of rotation of the C axis parallel to the Z axis. It is a machining center capable of rotationally driving the head 42. Unlike the configuration of FIG. 1, the processing apparatus 10 may be configured to move the spindle head 20 supporting the measurement head 42 in the X-axis and Y-axis directions with respect to the workpiece 2, or The table 18 supporting the object 2 may be rotatable around the C-axis rotation center.
 NC装置24は、上記の直交3軸およびC軸制御を含めて加工装置10全体の動作を制御する。ATC(自動工具交換装置)28は、主軸22に対して工具と測定ヘッド42をそれぞれ自動的に交換する。ATC28は、NC装置24によって制御される。 The NC device 24 controls the overall operation of the processing device 10 including the above-described orthogonal three-axis and C-axis control. ATC (Automatic Tool Changer) 28 automatically exchanges the tool and the measuring head 42 with respect to the spindle 22 respectively. The ATC 28 is controlled by an NC unit 24.
 図13は、図12の工作機械のうち表面形状測定装置に関する部分の機能的構成を示すブロック図である。図13には、加工装置10に備えられているZ軸送り機構34、Y軸送り機構32およびX軸送り機構30が示されている。 FIG. 13 is a block diagram showing a functional configuration of a portion related to the surface shape measuring device in the machine tool of FIG. The Z-axis feed mechanism 34, the Y-axis feed mechanism 32, and the X-axis feed mechanism 30 provided in the processing apparatus 10 are shown in FIG.
 図12、図13を参照して、Z軸送り機構34は、コラム14に支持されている主軸頭20を駆動してZ軸方向に移動させる。Y軸送り機構32は、ベッド12上に配置されているサドル16を駆動してY軸方向に移動させる。X軸送り機構30は、サドル16上に載置されて工作物2を支持するテーブル18を駆動してX軸方向に移動させる。NC装置24は、Z軸送り機構34、Y軸送り機構32およびX軸送り機構30をそれぞれ制御する。X軸送り機構30、Y軸送り機構32、および、Z軸送り機構34は、図4のX軸駆動機構146X、Y軸駆動機構146Y、およびZ軸駆動機構146Zにそれぞれ対応する。 Referring to FIGS. 12 and 13, Z-axis feed mechanism 34 drives spindle head 20 supported by column 14 to move in the Z-axis direction. The Y-axis feed mechanism 32 drives the saddle 16 disposed on the bed 12 to move it in the Y-axis direction. The X-axis feed mechanism 30 drives the table 18 mounted on the saddle 16 and supporting the workpiece 2 to move it in the X-axis direction. The NC device 24 controls the Z-axis feed mechanism 34, the Y-axis feed mechanism 32 and the X-axis feed mechanism 30, respectively. The X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 correspond to the X-axis drive mechanism 146X, the Y-axis drive mechanism 146Y, and the Z-axis drive mechanism 146Z in FIG.
 コンピュータ150は、プロセッサ152、メモリ154、および測定ヘッド42との間で無線通信を行うための通信装置168等を含む。プロセッサ152は、メモリ154に格納されたプログラムを実行することによって、図4で説明した測定制御部156およびデータ処理部158として機能する。 The computer 150 includes a processor 152, a memory 154, and a communication device 168 for wireless communication with the measurement head 42. The processor 152 functions as the measurement control unit 156 and the data processing unit 158 described in FIG. 4 by executing the program stored in the memory 154.
 測定制御部156は、NC装置24と連携することによって、測定ヘッド42と工作物2との相対的位置関係を連続的に変化させ、これによってレーザビーム116が工作物2の表面に沿って走査する。測定制御部156は、レーザビーム116の走査中に、レーザビーム116の走査方向の複数の測定点における高さ方向(Z軸方向)の変位データを工作物2の表面形状データとして測定ヘッド42から取得する。具体的な手順は以下のとおりである。 The measurement control unit 156 cooperates with the NC device 24 to continuously change the relative positional relationship between the measurement head 42 and the workpiece 2, whereby the laser beam 116 scans along the surface of the workpiece 2. Do. The measurement control unit 156 detects displacement data in the height direction (Z-axis direction) at a plurality of measurement points in the scanning direction of the laser beam 116 from the measuring head 42 as surface shape data of the workpiece 2 during scanning of the laser beam 116. get. The specific procedure is as follows.
 まず、測定制御部156からの制御に基づいて、NC装置24は、X軸送り機構30およびY軸送り機構32のいずれか一方、もしくはX軸送り機構30、Y軸送り機構32、およびZ軸送り機構34のうちの少なくとも2軸を駆動することによって、測定ヘッド42と工作物2との相対的位置関係を連続的に変化させる。 First, based on the control from the measurement control unit 156, the NC device 24 is either one of the X-axis feed mechanism 30 and the Y-axis feed mechanism 32, or the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z axis. By driving at least two axes of the feed mechanism 34, the relative positional relationship between the measuring head 42 and the workpiece 2 is continuously changed.
 NC装置24に内蔵されたPLC(プログラマブル・ロジック・コントローラ:Programmable Logic Controller)26は、上記の送り機構の駆動に同期して、所定周期でトリガ信号を通信装置168に出力する。通信装置168はトリガ信号を受信すると測定指令fを測定ヘッド42に送信し、測定ヘッド42は測定指令fに従って測定ヘッド42から工作物2までの距離D(すなわち、工作物2の表面の変位)を測定する。測定された距離DのデータFは、測定ヘッド42から通信装置168を介して測定制御部156に送信される。 A PLC (Programmable Logic Controller) 26 incorporated in the NC device 24 outputs a trigger signal to the communication device 168 at a predetermined cycle in synchronization with the driving of the above-mentioned feed mechanism. When the communication device 168 receives the trigger signal, it sends a measurement command f to the measurement head 42, and the measurement head 42 follows the measurement command f to determine the distance D from the measurement head 42 to the workpiece 2 (that is, the displacement of the surface of the workpiece 2) Measure Data F of the measured distance D is transmitted from the measurement head 42 to the measurement control unit 156 via the communication device 168.
 PLC26は、さらに、上記の測定ヘッド42による距離測定のタイミングに合わせて、X軸送り機構30、Y軸送り機構32、およびZ軸送り機構34の位置情報を取得することによって、測定ヘッド42の位置のデータを検出する。PLC26は、検出した測定ヘッド42の位置のデータを測定制御部156に送信する。 The PLC 26 further obtains positional information of the X-axis feed mechanism 30, the Y-axis feed mechanism 32, and the Z-axis feed mechanism 34 in synchronization with the timing of distance measurement by the measurement head 42 described above. Detect location data. The PLC 26 transmits data of the detected position of the measurement head 42 to the measurement control unit 156.
 測定制御部156は、PLC26から取得した測定ヘッド42の位置データと、測定ヘッド42から取得した距離DのデータFとに基づいて、レーザビーム116の走査方向に沿った各測定点における高さ方向(Z軸方向)の変位データを表面形状データ166として、メモリ154に格納する。なお、図1に示す構成のレーザ変位計100を用いて工作物2の段差の位置を検出する場合には、工作物2の同一箇所についてレーザ変位計100の向きを180度回転させる前と後の合計2回の測定が行われる。 Based on the position data of the measurement head 42 acquired from the PLC 26 and the data F of the distance D acquired from the measurement head 42, the measurement control unit 156 measures the height direction at each measurement point along the scanning direction of the laser beam 116. The displacement data (in the Z-axis direction) is stored in the memory 154 as surface shape data 166. In addition, when detecting the position of the level | step difference of the workpiece 2 using the laser displacement meter 100 of the structure shown in FIG. 1, before and after rotating 180 degrees of directions of the laser displacement meter 100 about the same location of the workpiece 2 A total of two measurements are taken.
 プロセッサ152は、さらに、上記の表面形状データ166のデータ処理を行うためのデータ処理部158として機能する。データ処理部158の動作は、実施の形態1および2で説明したとおりである。データ処理部158によるデータ処理の結果、工作物2の段差(エッジ)の位置を簡単かつ短時間で検出することができる。 The processor 152 further functions as a data processing unit 158 for performing data processing of the surface shape data 166 described above. The operation of the data processing unit 158 is as described in the first and second embodiments. As a result of data processing by the data processing unit 158, the position of the step (edge) of the workpiece 2 can be detected easily and in a short time.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above description but by the scope of claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of claims.
 2 工作物、10 加工装置、16,142 サドル、18,144 テーブル、20 主軸頭、22 主軸、24 NC装置、30 X軸送り機構、32 Y軸送り機構、34 Z軸送り機構、36,38 回転駆動部、42 測定ヘッド、100,100A レーザ変位計、110 発光部、112 レーザダイオード、114 レンズ、116 レーザビーム、118,118A,118B 集光レンズ(光学系)、120,120A,120B リニアイメージセンサ(受光部)、130 測定対象物、132 レーザスポット、134 エッジ、140 表面形状測定装置、146 移動機構、146X X軸駆動機構、146Y Y軸駆動機構、146Z Z軸駆動機構、146C C軸駆動機構、150 コンピュータ、152 プロセッサ、154 メモリ、156 測定制御部、158 データ処理部、160 段差特定部、162 データ補正部、166 表面形状データ、200 工作機械、P0 分離開始点、P1 段差位置。 2 Workpiece, 10 Machining device, 16, 142 Saddle, 18, 144 Table, 20 Spindle head, 22 Spindle, 24 NC device, 30 X axis feed mechanism, 32 Y axis feed mechanism, 34 Z axis feed mechanism, 36, 38 Rotational drive unit, 42 measuring head, 100, 100A laser displacement meter, 110 light emitting unit, 112 laser diode, 114 lens, 116 laser beam, 118, 118A, 118B focusing lens (optical system), 120, 120A, 120B linear image Sensor (light receiving unit), 130 measurement object, 132 laser spot, 134 edge, 140 surface shape measuring device, 146 moving mechanism, 146 X X axis drive mechanism, 146 Y Y axis drive mechanism, 146 Z Z axis drive mechanism, 146 C C axis drive Mechanism, 150 computers, 1 2 processor, 154 a memory, 156 measurement control portion, 158 data processing unit, 160 stepped particular unit, 162 data correction unit, 166 surface shape data, 200 a machine tool, P0 separation start point, P1 step position.

Claims (9)

  1.  段差を含む測定対象物の表面形状を測定する表面形状測定装置であって、
     前記測定対象物に向けて光ビームを出射する発光部、前記測定対象物からの前記光ビームの散乱光を集光する光学系、および前記光学系による集光位置を検出する受光部を含み、前記受光部での集光位置に基づいて前記測定対象物の表面の変位を測定する変位計と、
     前記変位計と前記測定対象物とを相対的に移動させることによって、前記光ビームを走査する移動機構と、
     前記段差と交差する方向に前記移動機構によって前記光ビームを走査しながら、前記測定対象物の表面の変位を前記変位計によって連続的に測定する第1の測定と、前記光ビームを回転対称軸にして前記光学系および前記受光部の配置を前記第1の測定の場合に対して180度回転させた状態で、前記第1の測定と同一箇所を前記変位計によって連続的に測定する第2の測定とを実行するように構成された測定制御部と、
     前記第1の測定による測定値と前記第2の測定による測定値とが分離し始める分離開始点に基づいて前記段差の位置を特定する段差特定部とを備える、表面形状測定装置。
    A surface shape measuring device for measuring the surface shape of a measurement object including a step,
    A light emitting unit for emitting a light beam toward the measurement object, an optical system for collecting scattered light of the light beam from the measurement object, and a light receiving unit for detecting a light collecting position by the optical system; A displacement gauge that measures the displacement of the surface of the measurement object based on the light collecting position at the light receiving unit;
    A moving mechanism for scanning the light beam by relatively moving the displacement meter and the measurement object;
    A first measurement of continuously measuring the displacement of the surface of the measurement object by the displacement gauge while scanning the light beam by the moving mechanism in a direction intersecting the step, and a rotational symmetry axis of the light beam A second measurement in which the same position as the first measurement is continuously measured by the displacement meter while the arrangement of the optical system and the light receiving unit is rotated 180 degrees with respect to the first measurement. A measurement control unit configured to perform the measurement of
    A surface shape measuring apparatus, comprising: a step identification unit that identifies the position of the step based on a separation start point at which the measurement value by the first measurement and the measurement value by the second measurement start to separate.
  2.  前記段差特定部は、前記第1の測定による測定値と前記第2の測定による測定値とが分離している区間内で、前記分離開始点から前記光ビームのスポットサイズの1/2だけ離れた点を段差の位置として特定する、請求項1に記載の表面形状測定装置。 The step identifying unit is separated from the separation start point by a half of the spot size of the light beam within a section where the measurement value by the first measurement and the measurement value by the second measurement are separated. The surface shape measuring apparatus according to claim 1, wherein the curved point is specified as the position of the step.
  3.  前記分離開始点から前記特定された段差の位置までの各測定点における表面の変位の値を、前記第1の測定による測定値と前記第2の測定による測定値との平均値に設定するデータ補正部をさらに備える、請求項2に記載の表面形状測定装置。 Data in which the value of displacement of the surface at each measurement point from the separation start point to the position of the specified level difference is set as the average value of the measurement value by the first measurement and the measurement value by the second measurement The surface shape measuring device according to claim 2, further comprising a correction unit.
  4.  前記光ビームに沿った方向から平面視したとき、前記光ビームの走査方向は、前記光ビームと前記受光部の集光位置とを含む光路面に対して垂直方向でない、請求項1~3のいずれか1項に記載の表面形状測定装置。 The scanning direction of the light beam is not perpendicular to the light road surface including the light beam and the condensing position of the light receiving unit when viewed in plan from the direction along the light beam. The surface shape measuring device according to any one of the items.
  5.  前記第1の測定では、前記光ビームに対して前記受光部は前記光ビームの走査方向の前方および後方のうちのいずれか一方に配置され、
     前記第2の測定では、前記光ビームに対して前記受光部は前記走査方向の前方および後方のうちの他方に配置される、請求項1~4のいずれか1項に記載の表面形状測定装置。
    In the first measurement, the light receiving unit is disposed at one of a front side and a rear side in a scanning direction of the light beam with respect to the light beam,
    The surface shape measuring apparatus according to any one of claims 1 to 4, wherein in the second measurement, the light receiving unit is disposed on the other of the front and the rear in the scanning direction with respect to the light beam. .
  6.  前記変位計は、前記光学系として、第1の光学系と、前記前記光ビームを回転対称軸にして前記第1の光学系を180度回転させた位置に配置された第2の光学系とを含み、
     前記変位計は、前記受光部として、第1の受光部と、前記前記光ビームを回転対称軸にして前記第1の受光部を180度回転させた位置に配置された第2の受光部とを含み、
     前記第1の光学系および前記第1の受光部は、前記第1の測定のために用いられ、
     前記第2の光学系および前記第2の受光部は、前記第2の測定のために用いられる、請求項1~4のいずれか1項に記載の表面形状測定装置。
    The displacement gauge includes, as the optical system, a first optical system, and a second optical system disposed at a position where the first optical system is rotated 180 degrees about the light beam as a rotational symmetry axis. Including
    The displacement gauge includes, as the light receiving unit, a first light receiving unit, and a second light receiving unit disposed at a position where the first light receiving unit is rotated 180 degrees about the light beam as a rotational symmetry axis. Including
    The first optical system and the first light receiving unit are used for the first measurement,
    The surface shape measuring apparatus according to any one of claims 1 to 4, wherein the second optical system and the second light receiving unit are used for the second measurement.
  7.  前記第1の受光部は、前記光ビームに対して前記光ビームの走査方向の前方および後方のうちのいずれか一方に配置され、
     前記第2の受光部は、前記光ビームに対して前記走査方向の前方および後方のうちの他方に配置される、請求項6に記載の表面形状測定装置。
    The first light receiving unit is disposed at one of a front side and a rear side with respect to the light beam in a scanning direction of the light beam,
    The surface shape measuring apparatus according to claim 6, wherein the second light receiving unit is disposed at the other of the front and the rear in the scanning direction with respect to the light beam.
  8.  請求項1~7のいずれか1項に記載の表面形状測定装置を備える、工作機械。 A machine tool comprising the surface shape measuring device according to any one of claims 1 to 7.
  9.  非接触型の変位計を用いて段差を含む測定対象物の表面形状を測定する表面形状測定方法であって、
     前記変位計は、前記測定対象物に向けて光ビームを出射する発光部、前記測定対象物からの前記光ビームの散乱光を集光する光学系、および前記光学系による集光位置を検出する受光部を含み、
     前記表面形状測定方法は、
     前記変位計と前記測定対象物とを相対的に移動させることによって前記段差と交差する方向に前記光ビームを走査しながら、前記測定対象物の表面の変位を前記変位計によって連続的に測定する第1の測定ステップと、
     前記光ビームを回転対称軸にして前記光学系および前記受光部の配置を前記第1の測定ステップの場合に対して180度回転させた状態で、前記第1の測定ステップと同一箇所を前記変位計によって連続的に測定する第2の測定ステップと、
     前記第1の測定ステップによる測定値と前記第2の測定ステップによる測定値とが分離し始める分離開始点に基づいて前記段差の位置を特定するステップとを備える、表面形状測定方法。
    A surface shape measuring method for measuring the surface shape of an object to be measured including a step using a noncontact displacement meter,
    The displacement gage detects a light emitting unit that emits a light beam toward the measurement object, an optical system that collects scattered light of the light beam from the measurement object, and a light collection position by the optical system Including a light receiver,
    The surface shape measuring method is
    The displacement of the surface of the measurement object is continuously measured by the displacement meter while the light beam is scanned in the direction intersecting the step by relatively moving the displacement meter and the measurement object. A first measuring step,
    In the state where the arrangement of the optical system and the light receiving unit is rotated 180 degrees with respect to the case of the first measurement step with the light beam as the rotational symmetry axis, the displacement of the same portion as the first measurement step is A second measuring step, measuring continuously by means of a meter;
    Determining the position of the step on the basis of a separation start point at which the measurement value in the first measurement step and the measurement value in the second measurement step begin to separate.
PCT/JP2014/079052 2014-02-13 2014-10-31 Surface shape measurement device, machine tool provided with same, and surface shape measurement method WO2015122060A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1612558.5A GB2544134A (en) 2014-02-13 2014-10-31 Surface shape measurement device, machine tool provided with same, and surface shape measurement method
DE112014006370.3T DE112014006370T5 (en) 2014-02-13 2014-10-31 Surface shape measuring device, machine tool equipped therewith and surface shape measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025310 2014-02-13
JP2014025310A JP5789010B2 (en) 2014-02-13 2014-02-13 Surface shape measuring device and machine tool provided with the same

Publications (1)

Publication Number Publication Date
WO2015122060A1 true WO2015122060A1 (en) 2015-08-20

Family

ID=53799816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079052 WO2015122060A1 (en) 2014-02-13 2014-10-31 Surface shape measurement device, machine tool provided with same, and surface shape measurement method

Country Status (4)

Country Link
JP (1) JP5789010B2 (en)
DE (1) DE112014006370T5 (en)
GB (1) GB2544134A (en)
WO (1) WO2015122060A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046852B1 (en) * 2016-07-06 2016-12-21 株式会社エクサ Shape analysis program
JP6466633B1 (en) * 2018-08-10 2019-02-06 ヤマザキマザック株式会社 Gear phase detecting method, gear manufacturing method, workpiece edge position detecting method, and machine tool for detecting gear phase
JP6941333B6 (en) * 2019-10-28 2021-11-02 智責 山口 Color change identification method
JP6923097B1 (en) * 2021-03-03 2021-08-18 オムロン株式会社 Work shape measuring device, work shape measuring system, work shape measuring method and work shape measuring program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222504A (en) * 1988-07-11 1990-01-25 Juki Corp Measuring method for outward shape size of substrate by position detecting element
JPH10103915A (en) * 1996-09-26 1998-04-24 Nikon Corp Apparatus for detecting position of face
JP2011099729A (en) * 2009-11-05 2011-05-19 Jfe Steel Corp Surface shape measuring device and method
US20110290989A1 (en) * 2010-05-31 2011-12-01 Sick Ag Optoelectronic sensor for detecting object edges
JP2012194085A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Edge detection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222504A (en) * 1988-07-11 1990-01-25 Juki Corp Measuring method for outward shape size of substrate by position detecting element
JPH10103915A (en) * 1996-09-26 1998-04-24 Nikon Corp Apparatus for detecting position of face
JP2011099729A (en) * 2009-11-05 2011-05-19 Jfe Steel Corp Surface shape measuring device and method
US20110290989A1 (en) * 2010-05-31 2011-12-01 Sick Ag Optoelectronic sensor for detecting object edges
JP2012194085A (en) * 2011-03-17 2012-10-11 Mitsubishi Electric Corp Edge detection apparatus

Also Published As

Publication number Publication date
DE112014006370T5 (en) 2016-10-27
GB2544134A (en) 2017-05-10
JP5789010B2 (en) 2015-10-07
JP2015152381A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
CN108072322B (en) Coordinate measuring device with optical sensor and corresponding method
US10481590B2 (en) Control system of machine tool
JP6423662B2 (en) Thread groove shape measuring device and machine tool using it
EP1887315B1 (en) Multi-range non-contact probe
EP2251120A1 (en) Machining method and machining system
JP6189191B2 (en) Surface shape measuring device and machine tool
WO2015122060A1 (en) Surface shape measurement device, machine tool provided with same, and surface shape measurement method
US10585418B2 (en) Control system of machine tool
JP5813143B2 (en) Surface shape measuring device and machine tool provided with the same
EP2770297B1 (en) Shape measuring apparatus
JP2014130091A (en) Measurement device and measurement method
JP2017019072A (en) Position measurement system
JP6013139B2 (en) Tool length measuring method and machine tool
JP2007101197A (en) Object search system, robot system equipped with object searchsystem and object search method
US20170052024A1 (en) Optical profiler and methods of use thereof
CN109719714B (en) Robot, robot system, and robot coordinate system setting method
JP2010058239A (en) Machining method
JP2003117778A (en) Precision measurement device for machine tool
JP2018522240A (en) Method for measuring artifacts
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP2006300817A (en) Optical measuring instrument, optical measuring device, and optical measuring system
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2004034278A (en) Tool measuring method and machine tool equipped with tool measurement function
JP6158730B2 (en) Surface shape measuring device and machine tool provided with the same
JP6565367B2 (en) Position correction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201612558

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141031

WWE Wipo information: entry into national phase

Ref document number: 112014006370

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882496

Country of ref document: EP

Kind code of ref document: A1

ENPC Correction to former announcement of entry into national phase, pct application did not enter into the national phase

Ref country code: GB