WO2015119156A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2015119156A1
WO2015119156A1 PCT/JP2015/053105 JP2015053105W WO2015119156A1 WO 2015119156 A1 WO2015119156 A1 WO 2015119156A1 JP 2015053105 W JP2015053105 W JP 2015053105W WO 2015119156 A1 WO2015119156 A1 WO 2015119156A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
shock absorber
coil spring
piston
cylinder
Prior art date
Application number
PCT/JP2015/053105
Other languages
French (fr)
Japanese (ja)
Inventor
宜浩 柴田
功 黒岩
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Publication of WO2015119156A1 publication Critical patent/WO2015119156A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/06Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper
    • B60G15/061Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and fluid damper with a coil spring being mounted inside the damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/123Attachments or mountings characterised by the ends of the spring being specially adapted, e.g. to form an eye for engagement with a radial insert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/58Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder
    • F16F9/585Stroke limiting stops, e.g. arranged on the piston rod outside the cylinder within the cylinder, in contact with working fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper

Definitions

  • the present invention relates to a shock absorber.
  • the shock absorber is provided with a rebound spring consisting of a coil spring in which resin cushions are mounted on both ends between a rod guide for sealing the cylinder end and supporting the piston rod and a flange provided at the intermediate portion of the piston rod.
  • a rebound spring consisting of a coil spring in which resin cushions are mounted on both ends between a rod guide for sealing the cylinder end and supporting the piston rod and a flange provided at the intermediate portion of the piston rod.
  • the rebound spring is compressed by the rod guide and the flange that approach each other when the shock absorber is extended, thereby exhibiting a reaction force that suppresses the expansion of the shock absorber. Thereby, the impact at the time of maximum extension of a shock absorber is relieved.
  • the resin cushion has a cylindrical press-fit portion called a holder.
  • the resin cushion is fixed to the coil spring by press-fitting a holder of the resin cushion into the inner periphery at the end of the coil spring.
  • a shock absorber is interposed between a vehicle body and a suspension arm that holds wheels.
  • the stroke amount of the shock absorber is reduced with respect to the vertical displacement of the wheel.
  • An object of the present invention is to provide a shock absorber provided with a rebound spring that can reduce poor press-fitting of a resin cushion into a coil spring.
  • the shock absorber is a cylinder, a piston that is slidably inserted into the cylinder, a movably inserted through the cylinder, and one end connected to the piston.
  • the coil spring is provided with a shock absorber having an inner diameter at one or both of the end winding portions at both ends, and the resin cushion having a press-fit portion that is press-fitted into the inner periphery of the end winding portion.
  • FIG. 1 is a longitudinal sectional view of a shock absorber according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged longitudinal sectional view of the shock absorber according to the embodiment of the present invention.
  • FIG. 3 is a plan view of a rebound spring of a shock absorber according to a modification of the present invention.
  • FIG. 4A is a partially enlarged longitudinal sectional view of a rebound spring of a shock absorber according to another modification of the present invention.
  • FIG. 4B is a plan view of a rebound spring of a shock absorber according to another modification of the present invention.
  • shock absorber 100 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • the shock absorber 100 has a cylinder 1, a piston 2 slidably inserted into the cylinder 1, a movably inserted through the cylinder 1, and one end connected to the piston 2.
  • a piston rod 3 and a rebound spring S attached to the outer periphery of the piston rod 3 are provided.
  • the cylinder 1 has a bottomed cylindrical shape, and an annular rod guide 4 is attached to the upper end in FIG.
  • the rod guide 4 seals the upper end opening of the cylinder 1 and the piston rod 3 is inserted through the inner periphery thereof, and supports the piston rod 3 slidably.
  • the inside of the cylinder 1 is partitioned by a piston 2 into an extension side chamber R1 above the piston 2 in FIG. 1 and a pressure side chamber R2 below the piston 2 in FIG.
  • the extension side chamber R1 and the pressure side chamber R2 are filled with a liquid such as hydraulic oil.
  • the free piston 5 is slidably inserted below the piston 2 in the cylinder 1, and an air chamber G filled with gas is formed below the free piston 5.
  • the piston 2 is provided with a passage 2a communicating the extension side chamber R1 and the pressure side chamber R2, and a damping valve 2b as a damping force generating element provided in the middle of the passage 2a.
  • the expansion chamber R1 When the shock absorber 100 is extended, the expansion chamber R1 is compressed by the piston 2, and the liquid in the expansion chamber R1 passes through the passage 2a and moves to the compression chamber R2. At this time, the damping valve 2b applies resistance to the flow of the liquid to increase the pressure in the expansion side chamber R1, thereby generating a differential pressure between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2.
  • the pressure side chamber R2 When the shock absorber 100 is contracted, the pressure side chamber R2 is compressed by the piston 2, and the liquid in the pressure side chamber R2 passes through the passage 2a and moves to the extension side chamber R1. At this time, the damping valve 2b applies resistance to the flow of the liquid to increase the pressure in the pressure side chamber R2, thereby generating a differential pressure between the pressure in the pressure side chamber R2 and the pressure in the extension side chamber R1.
  • the shock absorber 100 compresses the expansion side chamber R1 with the piston 2 to increase the pressure in the expansion side chamber R1, and generates a differential pressure between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2. Let Then, when the differential pressure acts on the piston 2, the shock absorber 100 outputs a force that prevents the piston 2 from moving upward in FIG. 1 as a damping force.
  • the shock absorber 100 compresses the pressure side chamber R2 with the piston 2 to increase the pressure in the pressure side chamber R2, and generates a differential pressure between the pressure in the pressure side chamber R2 and the pressure in the extension side chamber R1. Then, when the differential pressure acts on the piston 2, the shock absorber 100 outputs a force that prevents the piston 2 from moving downward in FIG. 1 as a damping force.
  • the shock absorber 100 is a so-called single rod type single cylinder shock absorber.
  • an outer cylinder or a tank is provided outside the cylinder 1, and a reservoir filled with gas and liquid is formed between the outer cylinder and the cylinder 1 or inside the tank, and enters the cylinder 1 with the reservoir.
  • a reverse cylinder type absorber which absorbs the change of the volume of the piston rod 3 currently performed.
  • the damping valve 2b is a throttle that allows both the flow of liquid from the expansion side chamber R1 to the compression side chamber R2 and the flow of liquid from the compression side chamber R2 to the expansion side chamber R1.
  • a plurality of passages 2a are provided in the piston 2, a part of which is provided with a damping valve that allows only the flow of liquid from the extension side chamber R1 to the pressure side chamber R2, and the remaining part extends from the pressure side chamber R2.
  • a damping valve that allows only the flow of liquid toward the side chamber R1 may be provided.
  • the passage 2a and the damping valve 2b can be provided in addition to the piston 2, and may be provided in the piston rod 3 or outside the cylinder 1, for example.
  • the piston rod 3 has the piston 2 attached to the lower end in FIG. 1, and the upper end in FIG. 1 protrudes out of the cylinder 1 through the inner periphery of the rod guide 4.
  • a flange-shaped spring seat 3a is provided on the outer periphery of the piston rod 3 on the lower end side in FIG.
  • the rebound spring S is attached to a coil spring 6 which is disposed on the outer periphery of the piston rod 3 through which the piston rod 3 is inserted, and a spring seat side end which is the lower end of the coil spring 6 in FIG.
  • the coil spring 6 includes an end winding portion 6 a at the spring seat side end and an end winding portion 6 b at the rod guide side end.
  • the resin cushion 7 is formed of a hard resin material. As shown in FIG. 2, the resin cushion 7 has an annular cushion body 7a and an outer diameter smaller than that of the cushion body 7a, and the inner circumference of the cushion body 7a. A cylindrical press-fit portion 7b that rises from the side, a taper portion 7c provided on the outer periphery of the upper end in FIG. 2 of the press-fit portion 7b, and a plurality of convex portions 7d provided on the inner periphery of the cushion body 7a.
  • three convex portions 7 d are provided at equal intervals in the circumferential direction of the resin cushion 7, and abut against the outer periphery of the piston rod 3 inserted in the inner periphery of the resin cushion 7 with a pressing force. . Thereby, the resin cushion 7 is fixed to the outer periphery of the piston rod 3.
  • the cushion body 7a is in contact with the spring seat 3a, and the downward movement in FIG.
  • the number of installation of the convex part 7d should just be three or more, and is arbitrary.
  • the resin cushion 8 is formed of a hard resin material. As shown in FIG. 2, the resin cushion 8 has an annular cushion body 8a and an outer diameter smaller than that of the cushion body 8a, and the inner circumference of the cushion body 8a. A cylindrical press-fit portion 8b suspended from the side, a taper portion 8c provided on the outer periphery of the lower end in FIG. 2 of the press-fit portion 8b, and an annular convex portion provided inwardly on the inner periphery of the cushion body 8a 8d.
  • the inner diameter of the resin cushion 8 is set larger than the outer diameter of the piston rod 3, and the convex portion 8d is in sliding contact with the outer periphery of the piston rod 3 inserted in the inner periphery. That is, the resin cushion 8 is slidable in the axial direction on the outer periphery of the piston rod 3.
  • the convex portion 8d may adopt a structure other than an annular shape, and may have a protruding structure similar to the convex portion 7d of the resin cushion 7, for example.
  • the resin cushion 7 is integrated with the coil spring 6 by press-fitting the press-fitting portion 7b into the inner periphery of the end winding portion 6a of the coil spring 6.
  • the resin cushion 8 is integrated with the coil spring 6 by press-fitting the press-fit portion 8 b into the inner periphery of the end winding portion 6 b of the coil spring 6.
  • the shock absorber 100 compresses the expansion side chamber R1 with the piston 2 to increase the pressure in the expansion side chamber R1, and the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2 is as described above.
  • produces the force which prevents the upward movement in FIG. 1 of the piston 2 because the said differential pressure acts on the piston 2.
  • the inner diameter of the end winding portions 6a and 6b of the coil spring 6 is between the end winding portion 6a and the end winding portion 6b, and the spring portion 6c capable of generating a reaction force as a spring of the coil spring 6 is used.
  • the diameter is larger than the inner diameter.
  • the inner diameter of the end turn part 6a is such that when the press-fitting part 7b of the resin cushion 7 is press-fitted into the end turn part 6a, it becomes difficult to insert the press-fitting part 7b due to the tight force with which the end turn part 6a tightens the press-fitting part 7b. It is set so that there is no.
  • the inner diameter of the end turn 6a is smaller than the maximum outer diameter of the press-fit portion 7b of the resin cushion 7, and the press fit allowance (from the maximum outer diameter of the press-fit portion 7b of the resin cushion 7 to the end of the end turn 6a). A value obtained by subtracting the inner diameter).
  • the inner diameter of the end turn part 6a is such that even if the press-fitting part 7b is inserted into the end turn part 6a and the end turn part 6a expands in diameter, the end of the end turn part 6a may scratch the press-fit part 7b or be damaged. Is set to a diameter that does not make it difficult to press-fit the entire press-fit portion 7b.
  • the press-fitting allowance may be determined according to the rigidity of the end winding portion 6a of the coil spring 6.
  • the press-fitting portion 7b of the resin cushion 7 is provided with a taper portion 7c. 6a is gradually expanded in diameter. Thereby, it becomes easy to press-fit the press-fit portion 7b of the resin cushion 7 into the end turn portion 6a.
  • the inner diameter of the end turn 6b is such that when the press-fit portion 8b of the resin cushion 8 is press-fitted into the end turn 6b, it is difficult to insert the press-fit portion 8b due to the tight force with which the end turn 6b tightens the press-fit portion 8b. It is set not to become.
  • the inner diameter of the end turn part 6b is smaller than the maximum outer diameter of the press-fit part 8b of the resin cushion 8, and the press-fitting allowance (from the maximum outer diameter of the press-fit part 8b of the resin cushion 8 to the end part 6b A value obtained by subtracting the inner diameter).
  • the inner diameter of the end turn 6b is such that even if the press-fit portion 8b is inserted into the end turn 6b and the end turn 6b is enlarged, the end of the end turn 6b is damaged by the press-fit portion 8b. Is set to a diameter that does not make it difficult to press-fit the entire press-fitting portion 8b.
  • the press-fitting portion 8b of the resin cushion 8 is provided with a taper portion 8c.
  • the end-fitting portion depends on the degree of insertion of the press-fitting portion 8b. 6b is gradually expanded in diameter. Thereby, it becomes easy to press-fit the press-fit portion 8b of the resin cushion 8 into the end turn portion 6b.
  • the press-fit portions 7b and 8b of the resin cushions 7 and 8 are pressed into the end turns 6a and 6b, respectively. Since it is not caught in the middle or the press-fitting portions 7b and 8b are not damaged, press-fitting failure can be reduced.
  • the rebound spring S can be configured by replacing only the coil spring 6 while using one type of resin cushions 7 and 8 respectively. For this reason, parts management is also easy, the manufacturing cost of the shock absorber 100 can be reduced, and incorrect assembly of the resin cushions 7 and 8 can be prevented.
  • the end winding part 6a , 6b when the end winding parts 6a and 6b are formed in the circumference
  • the half-circumferential portion may be expanded outward so that the curvature gradually decreases from the base T toward the tip U, or bent from the base T,
  • the base T to the tip U may be expanded outward without changing the curvature.
  • the manufacturing cost of the shock absorber 100 is very advantageous. Further, since the end of the end turns 6a, 6b is less likely to come into contact with the press-fit portions 7b, 8b, when the press-fit portions 7b, 8b are press-fit into the end turns 6a, 6b, the end portions of the press-fit portions 7b, 8b are turned. Can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Springs (AREA)
  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A rebound spring (S) for a shock absorber (100) has: a coil spring (6); and two resin cushions (7, 8) respectively mounted to the opposite ends of the coil spring (6). The inner diameter of one or both of the seat windings (6a, 6b) of the coil spring (6), which are located at the opposite ends of the coil spring (6), is expanded. The resin cushions (7, 8) have press fitting sections (7b, 8b) press fitted to the inner periphery of the seat windings (6a, 6b).

Description

緩衝器Shock absorber
 本発明は、緩衝器に関する。 The present invention relates to a shock absorber.
 緩衝器には、シリンダ端部を封止するとともにピストンロッドを支持するロッドガイドとピストンロッドの中間部に設けたフランジとの間に、両端に樹脂クッションを装着したコイルスプリングでなるリバウンドスプリングを介装したものがある。 The shock absorber is provided with a rebound spring consisting of a coil spring in which resin cushions are mounted on both ends between a rod guide for sealing the cylinder end and supporting the piston rod and a flange provided at the intermediate portion of the piston rod. There is a disguise.
 リバウンドスプリングは、緩衝器の伸長時において互いに接近するロッドガイドとフランジとによって圧縮されることで、緩衝器の伸長を抑制する反力を発揮する。これにより、緩衝器の最大伸切時の衝撃が緩和される。 The rebound spring is compressed by the rod guide and the flange that approach each other when the shock absorber is extended, thereby exhibiting a reaction force that suppresses the expansion of the shock absorber. Thereby, the impact at the time of maximum extension of a shock absorber is relieved.
 例えば、JP2004-84776Aに開示されたリバウンドスプリングにあっては、樹脂クッションがホルダと称される筒状の圧入部を有している。そして、コイルスプリングの端部における内周に樹脂クッションのホルダを圧入することで、当該樹脂クッションがコイルスプリングに固定されるようになっている。 For example, in the rebound spring disclosed in JP2004-84776A, the resin cushion has a cylindrical press-fit portion called a holder. The resin cushion is fixed to the coil spring by press-fitting a holder of the resin cushion into the inner periphery at the end of the coil spring.
 一般的に、緩衝器は、車両の車体と車輪を保持するサスペンションアームとの間に介装される。ここで、サスペンションのレバー比を小さくする場合は、車輪の上下方向の変位に対して緩衝器のストローク量が小さくなる。 Generally, a shock absorber is interposed between a vehicle body and a suspension arm that holds wheels. Here, when the lever ratio of the suspension is reduced, the stroke amount of the shock absorber is reduced with respect to the vertical displacement of the wheel.
 このようにレバー比を小さくした場合は、緩衝器は、少ないストローク量で大きな減衰力を発揮しなければならない。そこで、リバウンドスプリングが圧縮される際に発生する反力を利用することで、緩衝器に大きな減衰力を発揮させる工夫がなされることがある。 When the lever ratio is reduced in this way, the shock absorber must exert a large damping force with a small stroke amount. Thus, there is a case in which a shock absorber is devised to exert a large damping force by utilizing a reaction force generated when the rebound spring is compressed.
 リバウンドスプリングの反力を利用する場合は、コイルスプリングのばね定数を大きくすると有利になる。緩衝器の外径の大径化を極力回避しつつ、コイルスプリングのばね定数を大きくするには、コイルスプリングの線径を太くすることが考えられる。 ∙ When using the reaction force of the rebound spring, it is advantageous to increase the spring constant of the coil spring. In order to increase the spring constant of the coil spring while avoiding an increase in the outer diameter of the shock absorber as much as possible, it is conceivable to increase the wire diameter of the coil spring.
 しかしながら、この場合は、コイルスプリングの剛性が高くなるので、樹脂クッションをコイルスプリングの端部の内周に圧入する際に、当該端部が拡径し難くなる。このため、圧入の途中で樹脂クッションの圧入部がコイルスプリングの端部で齧られて傷ついたり、圧入途中で圧入部がコイルスプリングに引っ掛かったりして、それ以上の圧入部のコイルスプリング内への侵入が困難となって圧入不良が発生する場合がある。 However, in this case, since the rigidity of the coil spring is increased, when the resin cushion is press-fitted into the inner periphery of the end portion of the coil spring, the end portion is difficult to expand. For this reason, the press-fitting part of the resin cushion is crushed and damaged by the end of the coil spring during press-fitting, or the press-fitting part is caught by the coil spring in the middle of press-fitting, and the press-fitting part beyond that is inserted into the coil spring. Intrusion may be difficult and a press-fit failure may occur.
 本発明は、樹脂クッションのコイルスプリングへの圧入不良を低減することができるリバウンドスプリングを備えた緩衝器を提供することを目的とする。 An object of the present invention is to provide a shock absorber provided with a rebound spring that can reduce poor press-fitting of a resin cushion into a coil spring.
 本発明のある態様によれば、緩衝器であって、シリンダと、前記シリンダ内に摺動自在に挿入されるピストンと、前記シリンダ内に移動自在に挿通されるとともに一端が前記ピストンに連結されるピストンロッドと、前記ピストンロッドの外周に装着されるリバウンドスプリングと、を備え、前記リバウンドスプリングは、コイルスプリングと、前記コイルスプリングの両端にそれぞれ装着される二つの樹脂クッションと、を有し、前記コイルスプリングは、両端の座巻部の一方又は両方における内径が拡径されており、前記樹脂クッションは、前記座巻部の内周に圧入される圧入部を有する緩衝器が提供される。 According to an aspect of the present invention, the shock absorber is a cylinder, a piston that is slidably inserted into the cylinder, a movably inserted through the cylinder, and one end connected to the piston. A piston rod, and a rebound spring attached to the outer periphery of the piston rod, the rebound spring having a coil spring and two resin cushions attached to both ends of the coil spring, The coil spring is provided with a shock absorber having an inner diameter at one or both of the end winding portions at both ends, and the resin cushion having a press-fit portion that is press-fitted into the inner periphery of the end winding portion.
図1は、本発明の実施形態に係る緩衝器の縦断面図である。FIG. 1 is a longitudinal sectional view of a shock absorber according to an embodiment of the present invention. 図2は、本発明の実施形態に係る緩衝器の部分拡大縦断面図である。FIG. 2 is a partially enlarged longitudinal sectional view of the shock absorber according to the embodiment of the present invention. 図3は、本発明の変形例に係る緩衝器のリバウンドスプリングの平面図である。FIG. 3 is a plan view of a rebound spring of a shock absorber according to a modification of the present invention. 図4Aは、本発明の他の変形例に係る緩衝器のリバウンドスプリングの部分拡大縦断面図である。FIG. 4A is a partially enlarged longitudinal sectional view of a rebound spring of a shock absorber according to another modification of the present invention. 図4Bは、本発明の他の変形例に係る緩衝器のリバウンドスプリングの平面図である。FIG. 4B is a plan view of a rebound spring of a shock absorber according to another modification of the present invention.
 以下、添付図面を参照しながら本発明の実施形態に係る緩衝器100について説明する。 Hereinafter, a shock absorber 100 according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 緩衝器100は、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されたピストン2と、シリンダ1内に移動自在に挿通されるとともに一端がピストン2に連結されるピストンロッド3と、ピストンロッド3の外周に装着されるリバウンドスプリングSと、を備えている。 As shown in FIG. 1, the shock absorber 100 has a cylinder 1, a piston 2 slidably inserted into the cylinder 1, a movably inserted through the cylinder 1, and one end connected to the piston 2. A piston rod 3 and a rebound spring S attached to the outer periphery of the piston rod 3 are provided.
 シリンダ1は、有底筒状とされており、図1における上端には、環状のロッドガイド4が取り付けられている。 The cylinder 1 has a bottomed cylindrical shape, and an annular rod guide 4 is attached to the upper end in FIG.
 ロッドガイド4は、シリンダ1の上端開口部を封止するとともに内周にピストンロッド3が挿通されていて、当該ピストンロッド3を摺動自在に支持している。 The rod guide 4 seals the upper end opening of the cylinder 1 and the piston rod 3 is inserted through the inner periphery thereof, and supports the piston rod 3 slidably.
 シリンダ1内は、ピストン2によって、図1におけるピストン2の上方の伸側室R1と、図1におけるピストン2の下方の圧側室R2と、に区画されている。伸側室R1内及び圧側室R2内には、作動油等の液体が充填されている。 The inside of the cylinder 1 is partitioned by a piston 2 into an extension side chamber R1 above the piston 2 in FIG. 1 and a pressure side chamber R2 below the piston 2 in FIG. The extension side chamber R1 and the pressure side chamber R2 are filled with a liquid such as hydraulic oil.
 また、本実施形態では、シリンダ1内におけるピストン2よりも下方にフリーピストン5が摺動自在に挿入され、フリーピストン5の下方には、気体が充填される気室Gが形成されている。 In this embodiment, the free piston 5 is slidably inserted below the piston 2 in the cylinder 1, and an air chamber G filled with gas is formed below the free piston 5.
 ピストン2には、伸側室R1と圧側室R2とを連通する通路2aと、通路2aの途中に設けた減衰力発生要素としての減衰弁2bと、が設けられている。 The piston 2 is provided with a passage 2a communicating the extension side chamber R1 and the pressure side chamber R2, and a damping valve 2b as a damping force generating element provided in the middle of the passage 2a.
 緩衝器100が伸長作動する場合には、ピストン2によって伸側室R1が圧縮され、伸側室R1の液体が通路2aを通過して圧側室R2へ移動する。このとき、減衰弁2bが液体の流れに抵抗を与えて伸側室R1の圧力を上昇させ、伸側室R1の圧力と圧側室R2の圧力とに差圧を生じさせるようになっている。 When the shock absorber 100 is extended, the expansion chamber R1 is compressed by the piston 2, and the liquid in the expansion chamber R1 passes through the passage 2a and moves to the compression chamber R2. At this time, the damping valve 2b applies resistance to the flow of the liquid to increase the pressure in the expansion side chamber R1, thereby generating a differential pressure between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2.
 また、緩衝器100が収縮作動する場合には、ピストン2によって圧側室R2が圧縮され、圧側室R2の液体が通路2aを通過して伸側室R1へ移動する。このとき、減衰弁2bが液体の流れに抵抗を与えて圧側室R2の圧力を上昇させ、圧側室R2の圧力と伸側室R1の圧力とに差圧を生じさせるようになっている。 When the shock absorber 100 is contracted, the pressure side chamber R2 is compressed by the piston 2, and the liquid in the pressure side chamber R2 passes through the passage 2a and moves to the extension side chamber R1. At this time, the damping valve 2b applies resistance to the flow of the liquid to increase the pressure in the pressure side chamber R2, thereby generating a differential pressure between the pressure in the pressure side chamber R2 and the pressure in the extension side chamber R1.
 このように、緩衝器100は、伸長作動時には、ピストン2で伸側室R1を圧縮して伸側室R1の圧力を上昇させて、伸側室R1の圧力と圧側室R2の圧力とに差圧を生じさせる。そして、当該差圧がピストン2に作用することで、緩衝器100は、ピストン2の図1における上方への移動を妨げる力を減衰力として出力する。 Thus, during the expansion operation, the shock absorber 100 compresses the expansion side chamber R1 with the piston 2 to increase the pressure in the expansion side chamber R1, and generates a differential pressure between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2. Let Then, when the differential pressure acts on the piston 2, the shock absorber 100 outputs a force that prevents the piston 2 from moving upward in FIG. 1 as a damping force.
 また、緩衝器100は、収縮作動時には、ピストン2で圧側室R2を圧縮して圧側室R2の圧力を上昇させて、圧側室R2の圧力と伸側室R1の圧力とに差圧を生じさせる。そして、当該差圧がピストン2に作用することで、緩衝器100は、ピストン2の図1における下方への移動を妨げる力を減衰力として出力する。 Further, during the contraction operation, the shock absorber 100 compresses the pressure side chamber R2 with the piston 2 to increase the pressure in the pressure side chamber R2, and generates a differential pressure between the pressure in the pressure side chamber R2 and the pressure in the extension side chamber R1. Then, when the differential pressure acts on the piston 2, the shock absorber 100 outputs a force that prevents the piston 2 from moving downward in FIG. 1 as a damping force.
 なお、緩衝器100は、伸縮作動を呈すると、シリンダ1内にピストンロッド3が出入りするので、シリンダ1内に進入しているピストンロッド3の体積が変化する。この体積変化は、フリーピストン5がシリンダ1内で上下動して気室Gの体積が変化することで吸収される。 Note that, when the shock absorber 100 expands and contracts, the piston rod 3 moves in and out of the cylinder 1, so that the volume of the piston rod 3 entering the cylinder 1 changes. This volume change is absorbed when the free piston 5 moves up and down in the cylinder 1 and the volume of the air chamber G changes.
 このように、緩衝器100は、所謂、片ロッド型の単筒型緩衝器となっている。これに対して、シリンダ1外に外筒やタンクを設けて、外筒とシリンダ1との間、或いはタンク内に気体と液体とを充填したリザーバを形成し、当該リザーバでシリンダ1内に進入しているピストンロッド3の体積の変化を吸収する復筒型緩衝器としてもよい。また、ピストンロッド3が伸側室R1と圧側室R2とに挿通される両ロッド型の緩衝器としもよい。 Thus, the shock absorber 100 is a so-called single rod type single cylinder shock absorber. On the other hand, an outer cylinder or a tank is provided outside the cylinder 1, and a reservoir filled with gas and liquid is formed between the outer cylinder and the cylinder 1 or inside the tank, and enters the cylinder 1 with the reservoir. It is good also as a reverse cylinder type absorber which absorbs the change of the volume of the piston rod 3 currently performed. Moreover, it is good also as a double rod type shock absorber by which the piston rod 3 is penetrated by the expansion side chamber R1 and the compression side chamber R2.
 また、減衰弁2bは、伸側室R1から圧側室R2へ向かう液体の流れと、圧側室R2から伸側室R1へ向かう液体の流れと、の両方を許容する絞りとされている。これに対して、通路2aをピストン2に複数設けておき、その一部に伸側室R1から圧側室R2へ向かう液体の流れのみを許容する減衰弁を設け、残りの全部に圧側室R2から伸側室R1へ向かう液体の流れのみを許容する減衰弁を設けるようにしてもよい。さらに、通路2aおよび減衰弁2bは、ピストン2以外に設けることも可能であり、例えば、ピストンロッド3に設けてもよいし、シリンダ1外に設けてもよい。 The damping valve 2b is a throttle that allows both the flow of liquid from the expansion side chamber R1 to the compression side chamber R2 and the flow of liquid from the compression side chamber R2 to the expansion side chamber R1. In contrast, a plurality of passages 2a are provided in the piston 2, a part of which is provided with a damping valve that allows only the flow of liquid from the extension side chamber R1 to the pressure side chamber R2, and the remaining part extends from the pressure side chamber R2. A damping valve that allows only the flow of liquid toward the side chamber R1 may be provided. Furthermore, the passage 2a and the damping valve 2b can be provided in addition to the piston 2, and may be provided in the piston rod 3 or outside the cylinder 1, for example.
 ピストンロッド3は、図1における下端にピストン2が装着されており、図1における上端がロッドガイド4の内周を通ってシリンダ1外に突出している。また、ピストンロッド3の図1における下端側の外周には、フランジ状のスプリングシート3aが設けられている。 The piston rod 3 has the piston 2 attached to the lower end in FIG. 1, and the upper end in FIG. 1 protrudes out of the cylinder 1 through the inner periphery of the rod guide 4. A flange-shaped spring seat 3a is provided on the outer periphery of the piston rod 3 on the lower end side in FIG.
 リバウンドスプリングSは、内方にピストンロッド3が挿通されてピストンロッド3の外周に配置されるコイルスプリング6と、コイルスプリング6の図1における下端であるスプリングシート側端に取付けられてピストンロッド3の外周に固定される環状の樹脂クッション7と、コイルスプリング2の図1における上端であるロッドガイド側端に取付けられてピストンロッド3の外周に摺動自在に装着される環状の樹脂クッション8と、を備える。 The rebound spring S is attached to a coil spring 6 which is disposed on the outer periphery of the piston rod 3 through which the piston rod 3 is inserted, and a spring seat side end which is the lower end of the coil spring 6 in FIG. An annular resin cushion 7 fixed to the outer periphery of the coil spring 2 and an annular resin cushion 8 attached to the rod guide side end, which is the upper end of the coil spring 2 in FIG. .
 コイルスプリング6は、図1及び図2に示すように、スプリングシート側端に座巻部6aを備えるとともに、ロッドガイド側端に座巻部6bを備えている。 As shown in FIGS. 1 and 2, the coil spring 6 includes an end winding portion 6 a at the spring seat side end and an end winding portion 6 b at the rod guide side end.
 樹脂クッション7は、本実施形態では、硬質の樹脂材料で形成され、図2に示すように、環状のクッション本体7aと、外径がクッション本体7aよりも小径であってクッション本体7aの内周側から立ち上がる筒状の圧入部7bと、圧入部7bの図2における上端外周に設けられたテーパ部7cと、クッション本体7aの内周に設けられた複数の凸部7dと、を備える。 In the present embodiment, the resin cushion 7 is formed of a hard resin material. As shown in FIG. 2, the resin cushion 7 has an annular cushion body 7a and an outer diameter smaller than that of the cushion body 7a, and the inner circumference of the cushion body 7a. A cylindrical press-fit portion 7b that rises from the side, a taper portion 7c provided on the outer periphery of the upper end in FIG. 2 of the press-fit portion 7b, and a plurality of convex portions 7d provided on the inner periphery of the cushion body 7a.
 本実施形態では、凸部7dは、樹脂クッション7の周方向に等間隔を持って3つ設けられており、樹脂クッション7の内周に挿入されたピストンロッド3の外周に緊迫力をもって当接する。これにより、樹脂クッション7が、ピストンロッド3の外周に固定されるようになっている。 In the present embodiment, three convex portions 7 d are provided at equal intervals in the circumferential direction of the resin cushion 7, and abut against the outer periphery of the piston rod 3 inserted in the inner periphery of the resin cushion 7 with a pressing force. . Thereby, the resin cushion 7 is fixed to the outer periphery of the piston rod 3.
 また、樹脂クッション7は、クッション本体7aがスプリングシート3aに当接しており、ピストンロッド3に対して図1における下方への移動が規制されている。なお、凸部7dの設置数は、3つ以上であればよく、任意である。 In the resin cushion 7, the cushion body 7a is in contact with the spring seat 3a, and the downward movement in FIG. In addition, the number of installation of the convex part 7d should just be three or more, and is arbitrary.
 樹脂クッション8は、本実施形態では、硬質の樹脂材料で形成され、図2に示すように、環状のクッション本体8aと、外径がクッション本体8aよりも小径であってクッション本体8aの内周側から垂下される筒状の圧入部8bと、圧入部8bの図2における下端外周に設けられたテーパ部8cと、クッション本体8aの内周に内方へ向けて設けられた環状の凸部8dと、を備える。 In this embodiment, the resin cushion 8 is formed of a hard resin material. As shown in FIG. 2, the resin cushion 8 has an annular cushion body 8a and an outer diameter smaller than that of the cushion body 8a, and the inner circumference of the cushion body 8a. A cylindrical press-fit portion 8b suspended from the side, a taper portion 8c provided on the outer periphery of the lower end in FIG. 2 of the press-fit portion 8b, and an annular convex portion provided inwardly on the inner periphery of the cushion body 8a 8d.
 樹脂クッション8の内径は、ピストンロッド3の外径よりも大きく設定されており、内周に挿入されたピストンロッド3の外周に凸部8dが摺接する。つまり、樹脂クッション8は、ピストンロッド3の外周を軸方向に摺動自在となっている。なお、凸部8dは、環状以外の構造を採用してもよく、例えば、樹脂クッション7の凸部7dと同様の突起状の構造としてもよい。 The inner diameter of the resin cushion 8 is set larger than the outer diameter of the piston rod 3, and the convex portion 8d is in sliding contact with the outer periphery of the piston rod 3 inserted in the inner periphery. That is, the resin cushion 8 is slidable in the axial direction on the outer periphery of the piston rod 3. The convex portion 8d may adopt a structure other than an annular shape, and may have a protruding structure similar to the convex portion 7d of the resin cushion 7, for example.
 樹脂クッション7は、コイルスプリング6の座巻部6aの内周に圧入部7bを圧入することでコイルスプリング6に一体化される。また、樹脂クッション8は、コイルスプリング6の座巻部6bの内周に圧入部8bを圧入することでコイルスプリング6に一体化される。 The resin cushion 7 is integrated with the coil spring 6 by press-fitting the press-fitting portion 7b into the inner periphery of the end winding portion 6a of the coil spring 6. The resin cushion 8 is integrated with the coil spring 6 by press-fitting the press-fit portion 8 b into the inner periphery of the end winding portion 6 b of the coil spring 6.
 リバウンドスプリングSをピストンロッド3の外周に装着すると、ピストン2が図1における上方へ移動する緩衝器100の伸長作動時に、樹脂クッション8がロッドガイド4に当接してコイルスプリング2が圧縮される。これにより、コイルスプリング2が、ピストン2の図1における上方への移動を妨げる反力を発生する。 When the rebound spring S is mounted on the outer periphery of the piston rod 3, the resin cushion 8 comes into contact with the rod guide 4 and the coil spring 2 is compressed during the extension operation of the shock absorber 100 in which the piston 2 moves upward in FIG. As a result, the coil spring 2 generates a reaction force that prevents the piston 2 from moving upward in FIG.
 また、緩衝器100は、伸長作動時には、上述したように、ピストン2で伸側室R1を圧縮して伸側室R1の圧力を上昇させて、伸側室R1の圧力と圧側室R2の圧力とに差を生じさせる。そして、当該差圧がピストン2に作用することで、緩衝器100は、ピストン2の図1における上方への移動を妨げる力を発生する。 Further, as described above, the shock absorber 100 compresses the expansion side chamber R1 with the piston 2 to increase the pressure in the expansion side chamber R1, and the difference between the pressure in the expansion side chamber R1 and the pressure in the compression side chamber R2 is as described above. Give rise to And the buffer 100 generate | occur | produces the force which prevents the upward movement in FIG. 1 of the piston 2 because the said differential pressure acts on the piston 2. FIG.
 したがって、緩衝器100の伸長作動時においてリバウンドスプリングSが圧縮される状況では、リバウンドスプリングSが発生するピストン2の移動を妨げる反力と、圧力差によってピストン2の移動を妨げる力との総和が、緩衝器100が発生するトータルの減衰力となる。 Therefore, in a situation where the rebound spring S is compressed during the extension operation of the shock absorber 100, the sum of the reaction force that prevents the movement of the piston 2 generated by the rebound spring S and the force that prevents the movement of the piston 2 due to a pressure difference is obtained. The total damping force generated by the shock absorber 100 is obtained.
 ここで、コイルスプリング6の座巻部6a、6bの内径は、座巻部6aと座巻部6bとの間であって、コイルスプリング6のばねとして反力の発生が可能なばね部6cの内径よりも拡径してある。 Here, the inner diameter of the end winding portions 6a and 6b of the coil spring 6 is between the end winding portion 6a and the end winding portion 6b, and the spring portion 6c capable of generating a reaction force as a spring of the coil spring 6 is used. The diameter is larger than the inner diameter.
 座巻部6aの内径は、樹脂クッション7の圧入部7bを座巻部6a内に圧入したときに、座巻部6aが圧入部7bを締め付ける緊迫力によって圧入部7bの挿入が困難になることがないように設定されている。 The inner diameter of the end turn part 6a is such that when the press-fitting part 7b of the resin cushion 7 is press-fitted into the end turn part 6a, it becomes difficult to insert the press-fitting part 7b due to the tight force with which the end turn part 6a tightens the press-fitting part 7b. It is set so that there is no.
 具体的には、座巻部6aの内径は、樹脂クッション7の圧入部7bにおける最大外径よりも小径とされ、圧入代(樹脂クッション7の圧入部7bの最大外径から座巻部6aの内径を差し引きした値)が設けられる。 Specifically, the inner diameter of the end turn 6a is smaller than the maximum outer diameter of the press-fit portion 7b of the resin cushion 7, and the press fit allowance (from the maximum outer diameter of the press-fit portion 7b of the resin cushion 7 to the end of the end turn 6a). A value obtained by subtracting the inner diameter).
 座巻部6aの内径は、圧入部7bが座巻部6a内に挿入されて座巻部6aが拡径しても、座巻部6aの先端が圧入部7bを齧って傷つけたり、当該先端が圧入部7bに引っ掛かったりして、圧入部7bの全部の圧入が困難となることがない径に設定される。 The inner diameter of the end turn part 6a is such that even if the press-fitting part 7b is inserted into the end turn part 6a and the end turn part 6a expands in diameter, the end of the end turn part 6a may scratch the press-fit part 7b or be damaged. Is set to a diameter that does not make it difficult to press-fit the entire press-fit portion 7b.
 圧入部7bを圧入したときに座巻部6aが圧入部7bを緊迫する緊迫力は、コイルスプリング6の線径(太さ)によって変化する。よって、圧入代については、コイルスプリング6の座巻部6aの剛性に応じて、どの程度にするのか決定すればよい。 When the press-fitting portion 7b is press-fitted, the tightening force with which the end winding portion 6a presses the press-fitting portion 7b varies depending on the wire diameter (thickness) of the coil spring 6. Therefore, the press-fitting allowance may be determined according to the rigidity of the end winding portion 6a of the coil spring 6.
 なお、樹脂クッション7の圧入部7bにはテーパ部7cが設けてあり、コイルスプリング6の座巻部6aの内周に圧入部7bを圧入する際に、圧入部7bの挿入度合により座巻部6aが徐々に拡径される。これにより、樹脂クッション7の圧入部7bを座巻部6aに圧入し易くなっている。 In addition, the press-fitting portion 7b of the resin cushion 7 is provided with a taper portion 7c. 6a is gradually expanded in diameter. Thereby, it becomes easy to press-fit the press-fit portion 7b of the resin cushion 7 into the end turn portion 6a.
 また、座巻部6bの内径は、樹脂クッション8の圧入部8bを座巻部6b内に圧入したときに、座巻部6bが圧入部8bを締め付ける緊迫力によって圧入部8bの挿入が困難になることがないように設定されている。 The inner diameter of the end turn 6b is such that when the press-fit portion 8b of the resin cushion 8 is press-fitted into the end turn 6b, it is difficult to insert the press-fit portion 8b due to the tight force with which the end turn 6b tightens the press-fit portion 8b. It is set not to become.
 具体的には、座巻部6bの内径は、樹脂クッション8の圧入部8bにおける最大外径よりも小径とされ、圧入代(樹脂クッション8の圧入部8bの最大外径から座巻部6bの内径を差し引きした値)が設けられる。 Specifically, the inner diameter of the end turn part 6b is smaller than the maximum outer diameter of the press-fit part 8b of the resin cushion 8, and the press-fitting allowance (from the maximum outer diameter of the press-fit part 8b of the resin cushion 8 to the end part 6b A value obtained by subtracting the inner diameter).
 座巻部6bの内径は、圧入部8bが座巻部6b内に挿入されて座巻部6bが拡径しても、座巻部6bの先端が圧入部8bを齧って傷つけたり、当該先端が圧入部8bに引っ掛かったりして、圧入部8bの全部の圧入が困難となることがない径に設定される。 The inner diameter of the end turn 6b is such that even if the press-fit portion 8b is inserted into the end turn 6b and the end turn 6b is enlarged, the end of the end turn 6b is damaged by the press-fit portion 8b. Is set to a diameter that does not make it difficult to press-fit the entire press-fitting portion 8b.
 圧入部8bを圧入したときに座巻部6bが圧入部8bを緊迫する緊迫力は、コイルスプリング6の線径(太さ)によって変化する。よって、圧入代については、コイルスプリング6の座巻部6bの剛性に応じて、どの程度にするのか決定すればよい。 When the press-fit portion 8b is press-fitted, the tightening force with which the end winding portion 6b presses the press-fit portion 8b varies depending on the wire diameter (thickness) of the coil spring 6. Therefore, what is necessary is just to determine how much about a press-fitting allowance according to the rigidity of the end winding part 6b of the coil spring 6. FIG.
 なお、樹脂クッション8の圧入部8bにはテーパ部8cが設けてあり、コイルスプリング6の座巻部6bの内周に圧入部8bを圧入する際に、圧入部8bの挿入度合により座巻部6bが徐々に拡径される。これにより、樹脂クッション8の圧入部8bを座巻部6bに圧入し易くなっている。 The press-fitting portion 8b of the resin cushion 8 is provided with a taper portion 8c. When the press-fitting portion 8b is press-fitted into the inner periphery of the end winding portion 6b of the coil spring 6, the end-fitting portion depends on the degree of insertion of the press-fitting portion 8b. 6b is gradually expanded in diameter. Thereby, it becomes easy to press-fit the press-fit portion 8b of the resin cushion 8 into the end turn portion 6b.
 以上より、本実施形態によれば、リバウンドスプリングSのコイルスプリング6における線径を太くしても、樹脂クッション7、8の圧入部7b、8bを座巻部6a、6bへそれぞれ圧入する際に、途中で引っ掛かったり、圧入部7b、8bを傷つけたりすることがなくなるので、圧入不良を低減することができる。 As described above, according to the present embodiment, even when the wire diameter of the coil spring 6 of the rebound spring S is increased, the press- fit portions 7b and 8b of the resin cushions 7 and 8 are pressed into the end turns 6a and 6b, respectively. Since it is not caught in the middle or the press-fitting portions 7b and 8b are not damaged, press-fitting failure can be reduced.
 また、コイルスプリング6のばね定数を大きくする場合にあっても樹脂クッション7、8の形状を変更する必要がないので、異なる仕様のコイルスプリング6に合わせて圧入部7b、8bの外径が異なる樹脂クッション7、8をいくつも用意する必要がない。 Further, even when the spring constant of the coil spring 6 is increased, it is not necessary to change the shape of the resin cushions 7 and 8, so that the outer diameters of the press- fit portions 7b and 8b are different according to the coil springs 6 having different specifications. It is not necessary to prepare a number of resin cushions 7 and 8.
 したがって、それぞれ一種類の樹脂クッション7、8を利用しつつ、コイルスプリング6のみを換装することでリバウンドスプリングSを構成することができる。このため、部品管理も容易であり、緩衝器100の製造コストを低減することができるとともに、樹脂クッション7、8の誤組を防止することができる。 Therefore, the rebound spring S can be configured by replacing only the coil spring 6 while using one type of resin cushions 7 and 8 respectively. For this reason, parts management is also easy, the manufacturing cost of the shock absorber 100 can be reduced, and incorrect assembly of the resin cushions 7 and 8 can be prevented.
 なお、図3に示すように、座巻部6a、6bが線条の一周分で形成されている場合には、座巻部6a、6bの内径を拡径するにあたり、例えば、座巻部6a、6bの終端である先端Uから半周までの部分(以下、半周部分という。)を外側へ向けて拡げることで拡径してもよい。 In addition, as shown in FIG. 3, when the end winding parts 6a and 6b are formed in the circumference | surroundings of a wire, when expanding the internal diameter of the end winding parts 6a and 6b, for example, the end winding part 6a , 6b may be expanded by expanding a portion from the tip U to the half circumference (hereinafter referred to as a half circumference portion) toward the outside.
 この場合は、図3に示すように、半周部分を、その付け根Tから先端Uへ向かうほど徐々に曲率が小さくなるように外側へ向けて拡げてもよいし、付け根Tから曲げるようにして、付け根Tから先端Uまでを曲率を変えずに外側へ向けて拡げるようにしてもよい。 In this case, as shown in FIG. 3, the half-circumferential portion may be expanded outward so that the curvature gradually decreases from the base T toward the tip U, or bent from the base T, The base T to the tip U may be expanded outward without changing the curvature.
 座巻部6a、6bの終端から半周部分を外側へ拡げる加工は工賃が安く済むので、緩衝器100の製造コスト面で非常に有利となる。また、座巻部6a、6bの終端が圧入部7b、8bに接触しにくくなるので、圧入部7b、8bを座巻部6a、6bへ圧入する際に、終端による圧入部7b、8bの齧りを防止できる。 Since the work for expanding the half-circumferential portion from the end of the end turns 6a, 6b to the outside is cheaper, the manufacturing cost of the shock absorber 100 is very advantageous. Further, since the end of the end turns 6a, 6b is less likely to come into contact with the press- fit portions 7b, 8b, when the press- fit portions 7b, 8b are press-fit into the end turns 6a, 6b, the end portions of the press- fit portions 7b, 8b are turned. Can be prevented.
 また、図4A、図4Bに示すように、座巻部6a、6bが線条の一周分で形成されている場合には、座巻部6a、6bの終端である先端から少なくとも半周部分を平面研削して平らな平面部6d、6eを形成し、当該半周部分の内周側を面取りして面取部6f、6gを設けることで、コイルスプリング6の線条の中心径自体を変化させずに、面取部6f、6gの内径を拡径させることができる。よって、座巻部6a、6bの全体の内径をばね部6cの内径よりも大きくすることができる。 In addition, as shown in FIGS. 4A and 4B, when the end winding portions 6a and 6b are formed by one round of the filament, at least a half-circumferential portion is planar from the tip which is the end of the end winding portions 6a and 6b. Grinding to form flat flat portions 6d and 6e, and chamfering the inner peripheral side of the semicircular portion to provide chamfered portions 6f and 6g, so that the center diameter of the coil spring 6 does not change itself. Further, the inner diameters of the chamfered portions 6f and 6g can be increased. Therefore, the overall inner diameter of the end turns 6a, 6b can be made larger than the inner diameter of the spring portion 6c.
 座巻部6a、6bの平面研削加工および面取加工は工賃が安く済むので、緩衝器100の製造コスト面で非常に有利となる。また、座巻部6a、6bの内周が面取りされるので、圧入部7b、8を齧りにくくなる。よって、圧入部7b、8bを座巻部6a、6bへ圧入する際に、終端による圧入部7b、8bの齧りを防止できる。 Since surface grinding and chamfering of the end turns 6a and 6b can be inexpensive, it is very advantageous in terms of the manufacturing cost of the shock absorber 100. Moreover, since the inner periphery of the end winding parts 6a and 6b is chamfered, it becomes difficult to beat the press-fitting parts 7b and 8. Therefore, when the press-fitting portions 7b and 8b are press-fitted into the end turns 6a and 6b, the press-fitting portions 7b and 8b can be prevented from being twisted due to the terminal ends.
 なお、座巻部6a、6bの終端から半周部分を外側に拡げつつ、当該半周部分を平面研削するとともに内周に面取りを施すことで、座巻部6a、6bの内径を拡径することもできる。 It is also possible to expand the inner diameter of the end turns 6a and 6b by expanding the outer periphery from the end of the end turns 6a and 6b to the outside and grinding the half periphery and chamfering the inner periphery. it can.
 また、上記実施形態では、コイルスプリング6の座巻部6a、6bの両方の内径を拡径させているが、座巻部6a、6bのいずれか一方の内径を拡径するようにしてもよい。この場合でも、圧入不良の低減が可能である。 Moreover, in the said embodiment, although the internal diameter of both the end winding parts 6a and 6b of the coil spring 6 is expanded, you may make it expand the internal diameter of either one of the end winding parts 6a and 6b. . Even in this case, the press-fitting failure can be reduced.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above, but the above embodiment is merely a part of an application example of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. is not.
 本願は2014年2月6日に日本国特許庁に出願された特願2014-21015に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-21015 filed with the Japan Patent Office on February 6, 2014, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  緩衝器であって、
     シリンダと、
     前記シリンダ内に摺動自在に挿入されるピストンと、
     前記シリンダ内に移動自在に挿通されるとともに一端が前記ピストンに連結されるピストンロッドと、
     前記ピストンロッドの外周に装着されるリバウンドスプリングと、
    を備え、
     前記リバウンドスプリングは、
     コイルスプリングと、
     前記コイルスプリングの両端にそれぞれ装着される二つの樹脂クッションと、
    を有し、
     前記コイルスプリングは、両端の座巻部の一方又は両方における内径が拡径されており、
     前記樹脂クッションは、前記座巻部の内周に圧入される圧入部を有する、
    緩衝器。
    A shock absorber,
    A cylinder,
    A piston slidably inserted into the cylinder;
    A piston rod that is movably inserted into the cylinder and has one end coupled to the piston;
    A rebound spring mounted on the outer periphery of the piston rod;
    With
    The rebound spring is
    Coil springs,
    Two resin cushions respectively attached to both ends of the coil spring;
    Have
    The coil spring has an enlarged inner diameter at one or both of the end winding portions at both ends,
    The resin cushion has a press-fit portion that is press-fitted into the inner periphery of the end winding portion.
    Shock absorber.
  2.  請求項1に記載の緩衝器であって、
     前記座巻部は、終端から半周部分が外側へ拡げられている、
    緩衝器。
    The shock absorber according to claim 1,
    The end winding part has a half-circumferential part extending outward from the end,
    Shock absorber.
  3.  請求項1に記載の緩衝器であって、
     前記座巻部は、終端から少なくとも半周部分が平面研削され、前記半周部分の内周側が面取りされている、
    緩衝器。
    The shock absorber according to claim 1,
    The end winding part has at least a half circumference surface ground from the end, and the inner circumference side of the half circumference part is chamfered,
    Shock absorber.
PCT/JP2015/053105 2014-02-06 2015-02-04 Shock absorber WO2015119156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021015 2014-02-06
JP2014021015A JP6128652B2 (en) 2014-02-06 2014-02-06 Shock absorber

Publications (1)

Publication Number Publication Date
WO2015119156A1 true WO2015119156A1 (en) 2015-08-13

Family

ID=53777960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053105 WO2015119156A1 (en) 2014-02-06 2015-02-04 Shock absorber

Country Status (2)

Country Link
JP (1) JP6128652B2 (en)
WO (1) WO2015119156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555615A (en) * 2016-11-04 2018-05-09 Jaguar Land Rover Ltd Shock absorber and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011902A (en) * 2019-07-05 2021-02-04 Kyb株式会社 Buffer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196940U (en) * 1986-06-05 1987-12-15
JPH09291949A (en) * 1996-04-26 1997-11-11 F C C:Kk Spring for clutch return mechanism
JP2004084776A (en) * 2002-08-27 2004-03-18 Kayaba Ind Co Ltd Rebound spring and shock absorber
WO2006129710A1 (en) * 2005-05-31 2006-12-07 Nhk Spring Co., Ltd. Coiled spring

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543305Y2 (en) * 1975-03-07 1980-10-11
JPS644235Y2 (en) * 1979-10-25 1989-02-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196940U (en) * 1986-06-05 1987-12-15
JPH09291949A (en) * 1996-04-26 1997-11-11 F C C:Kk Spring for clutch return mechanism
JP2004084776A (en) * 2002-08-27 2004-03-18 Kayaba Ind Co Ltd Rebound spring and shock absorber
WO2006129710A1 (en) * 2005-05-31 2006-12-07 Nhk Spring Co., Ltd. Coiled spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555615A (en) * 2016-11-04 2018-05-09 Jaguar Land Rover Ltd Shock absorber and vehicle

Also Published As

Publication number Publication date
JP6128652B2 (en) 2017-05-17
JP2015148267A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6363843B2 (en) Shock absorber
JP2007057088A (en) Cylinder device
WO2015119156A1 (en) Shock absorber
WO2014021103A1 (en) Shock absorber
CN107923469B (en) The valve of buffer constructs
WO2018163444A1 (en) Pressure buffering device
US20180017129A1 (en) Cylinder apparatus
JP2017187110A (en) Shock absorber and its manufacturing method
JP6224929B2 (en) Shock absorber
JP6169769B1 (en) Rebound spring structure
JP5112985B2 (en) Rebound spring
JP4473105B2 (en) Hydraulic shock absorber for vehicles
WO2019163265A1 (en) Shock absorber
US10451135B2 (en) Air spring sleeves swage assembly
JP2011127703A (en) Bump cushion
US7559272B2 (en) Cylinder apparatus
JP4839201B2 (en) Buffer valve structure
JP2007155080A (en) Base valve structure for hydraulic shock absorber
JP5193123B2 (en) Damper device
JP2015148267A5 (en)
JP2014029175A (en) Fluid pressure shock absorber
JP5368930B2 (en) Rebound spring
WO2018092327A1 (en) Buffer
JP7389447B2 (en) hydraulic shock absorber
JP7037307B2 (en) Buffer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746798

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746798

Country of ref document: EP

Kind code of ref document: A1