WO2015119091A1 - Multi-axial fibre sheet, and preform using same for producing fibre reinforced plastic - Google Patents

Multi-axial fibre sheet, and preform using same for producing fibre reinforced plastic Download PDF

Info

Publication number
WO2015119091A1
WO2015119091A1 PCT/JP2015/052911 JP2015052911W WO2015119091A1 WO 2015119091 A1 WO2015119091 A1 WO 2015119091A1 JP 2015052911 W JP2015052911 W JP 2015052911W WO 2015119091 A1 WO2015119091 A1 WO 2015119091A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
knitting
yarn
sheet
multiaxial
Prior art date
Application number
PCT/JP2015/052911
Other languages
French (fr)
Japanese (ja)
Inventor
堀本歴
田中忠玄
滝澤尚
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Publication of WO2015119091A1 publication Critical patent/WO2015119091A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/115Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by applying or inserting filamentary binding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially

Definitions

  • the present invention relates to a fiber multiaxial sheet and a preform for producing fiber reinforced plastic using the same.
  • Patent Document 1 proposes a laminated sheet in which a carbon fiber fabric layer is integrated on the surface of an inner layer (core layer) sheet made of a foam.
  • Patent Document 2 proposes that an epoxy resin is applied to the carbon fiber surface as a sizing agent to increase the adhesive strength with the thermosetting resin.
  • Patent Document 3 proposes that a thermoplastic resin layer is laminated on one side of a carbon fiber and a thermosetting resin and vacuum-molded.
  • Patent Document 4 proposes a method for opening a carbon fiber bundle.
  • Patent Documents 5 to 6 propose to open and divide carbon fibers.
  • multiaxial sheets made of conventional carbon fibers have a problem that wrinkles, openings, twists, etc. are likely to occur when forming into a preform or composite with a resin.
  • the present invention uses a fiber multiaxial sheet that is less likely to cause wrinkles, openings, twists, and the like when forming into a preform or molding a fiber with a resin.
  • preforms for manufacturing fiber reinforced plastics are provided.
  • the fiber multiaxial sheet of the present invention is a fiber multiaxial sheet obtained by laminating a plurality of layers in which a plurality of fiber bundles are arranged at a predetermined angle ⁇ , and knitting and fixing the plurality of fiber bundles with knitting yarn,
  • the width L1 (mm) of the fiber bundle and the knitting pitch L2 (mm) of the knitting yarn are L2 ⁇ (1 / sin ⁇ ) ⁇ L1 (where ⁇ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet) There is a relationship of 0 ° ⁇ ⁇ 90 °).
  • the preform for producing fiber reinforced plastic according to the present invention is a preform for producing fiber reinforced plastic obtained by molding the fiber multiaxial sheet, and the fiber multiaxial sheet has many fiber bundles at a predetermined angle ⁇ .
  • a fiber multiaxial sheet obtained by laminating a plurality of layers arranged in this order and knitting and fixing the plurality of fiber bundles with knitting yarns, wherein the width L1 of the fiber bundles and the knitting pitch L2 of the knitting yarns are L2 ⁇ (1 / sin ⁇ ) ⁇ L1 (where ⁇ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and has a relationship of 0 ° ⁇ ⁇ 90 °).
  • the present invention has a fiber multiaxial structure in which the width of the fiber bundle is not more than the knitting pitch of the knitting yarn, so that the shape of the fiber bundle is good when it is compounded with the resin, and wrinkles, openings, twists, etc. are unlikely to occur.
  • FRP fiber-reinforced resin
  • FIG. 1 is a schematic perspective view of a carbon fiber multiaxial sheet according to an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view illustrating the width of the slit yarn of the carbon fiber multiaxial sheet and the dimension of the knitting pitch of the knitting yarn.
  • FIG. 3 is a schematic perspective view of a conventional carbon fiber multiaxial sheet.
  • FIG. 4 is a schematic plan view showing a process of manufacturing a flat bundle slit yarn by slitting the spread yarn of one embodiment of the present invention.
  • FIG. 5 is a schematic perspective view of the slit yarn wound up.
  • FIG. 6 is a schematic plan view in which a scrim is attached to the spread yarn.
  • the fiber multiaxial sheet of the present invention is a fiber multiaxial sheet in which a plurality of layers in which a large number of fiber bundles are arranged at a predetermined angle are laminated, and the fiber bundle is knitted and fixed with knitting yarn.
  • fibers that can be used in the multiaxial sheet of the present invention include carbon fibers and aramid fibers. The following will be described by taking carbon fiber as an example.
  • This carbon fiber multiaxial sheet 10 is formed by laminating, for example, a slit yarn 1 made of a flat carbon fiber bundle having an angle of + 45 ° and a slit yarn 2 having an angle of ⁇ 45 °, and using a knitting needle 3 on the slit yarn 2. It is fixed by knitting with a knitting yarn 5.
  • the number of layers may be two or more, and usually about 2 to 6 are used. As a normal knitting method, tricot knitting or chain knitting is used.
  • the knitting surface has a chain shape (so-called loop shape) and the knitting back has a zigzag shape, but the knitting pitch is measured by the pitch of the chain-shaped portion of the knitting table.
  • the knitting surface has a chain shape (so-called loop shape), and the knitting surface has a linear shape.
  • the angle between the knitting yarn 5 and the slit yarn 1 is also substantially the same as the angle ⁇ of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and therefore is indicated as ⁇ in FIG.
  • the carbon fiber bundle constituting the carbon fiber multiaxial sheet of the present invention uses slit yarn.
  • the width of the slit yarn is shorter than the knitting pitch of the knitting yarn.
  • FIG. 2 is an enlarged perspective view illustrating the width of the slit yarn of the carbon fiber multiaxial sheet and the dimension of the knitting pitch of the knitting yarn.
  • the width L1 of the slit yarns 1a to 1c is set to be equal to or less than the knitting pitch L2 of the knitting yarns 5a and 5b. That is, L2 ⁇ (1 / sin ⁇ ) ⁇ L1 (where ⁇ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and has a relationship of 0 ° ⁇ ⁇ 90 °).
  • the carbon fibers constituting the slit yarn have a degree of freedom (play) and formability is improved.
  • the degree of freedom (play) is possible, each carbon fiber follows even when various stresses are applied during forming or molding, and it is difficult for wrinkles, openings, twists, and the like to occur.
  • the knitting yarns 7a and 7b need to be knitted in a plurality of locations within the wide spread yarns 6a and 6b as shown in FIG. Become. That is, the relationship between the width L1 of the spread yarns 6a and 6b and the knitting pitch L2 of the knitting yarns 7a and 7b needs to satisfy L1> L2. If it does so, carbon fiber will be firmly fixed by the knitting yarns 7a and 7b, and free movement will become impossible. Therefore, when such a multiaxial sheet is used, defects such as wrinkles, openings, and twists are likely to occur during forming or forming.
  • the fiber bundle constituting the fiber multiaxial sheet of the present invention is preferably a spread yarn obtained by opening a large number of carbon fibers composed of long fibers, and the flattened spread yarn is slit into a plurality of slits.
  • the flat bundle-shaped slit yarn is particularly preferable. Since the manufacturing method of the spread yarn is already known from Patent Document 4 and the like, detailed description thereof is omitted.
  • the reason for using the spread yarn is as follows. (1) Since the flattened spread yarn is thin, the resin is easily impregnated and a molded product with high strength is easily obtained. Further, when forming into a fiber reinforced resin (FRP), the physical strength is more easily improved by laminating a plurality of thin sheets.
  • FRP fiber reinforced resin
  • a carbon fiber multiaxial sheet having a light weight (mass) per unit area can be obtained.
  • a flattened open yarn can be obtained by using a carbon fiber bundle yarn having a large total fineness and the number of carbon fibers such as 24K (K is 1000) or more.
  • the width of the fiber bundle often exceeds the mechanical limit of the knitting pitch of the multiaxial sheet manufacturing apparatus, for example, about 30 mm.
  • a thin and flat carbon fiber such as 1K or 3K is very expensive.
  • the flat bundle-like slit thread used in the present invention can be manufactured by, for example, the method shown in FIG.
  • the carbon fiber spread yarn 12 is pulled out from the roll 11 and supplied to a slitter comprising a fixed roll 14 and a metal rotary blade 13 to form slit yarns 16a to 16e, which are passed through guides 15a to 15e and wound around reels 17a to 17e. take.
  • FIG. 5 shows the slit yarn 16 wound around the reel 17.
  • the relationship between the width (L1) of the slit yarn constituting the carbon fiber multiaxial sheet of the present invention and the knitting pitch (L2) of the knitting yarn is L2 ⁇ (1 / sin ⁇ ) ⁇ L1 (where ⁇ is the fiber multiaxial sheet)
  • L2 is 30 mm or less. Knitting pitches exceeding 30 mm are difficult mechanically.
  • the predetermined angle ⁇ is usually ⁇ 30 ° to ⁇ 60 °.
  • the angle is displayed as an absolute value by removing plus and minus.
  • the slit yarn may include cut carbon fiber. This is because, as shown in FIG. 4, the carbon fiber spread yarns are slit by the metal rotary blade, so that some of the carbon fibers are cut. Even if some carbon fibers are cut, the quality of the carbon fiber reinforced resin molded product is not affected.
  • the flat bundle-like slit yarn is about 0.5 to 30 mm, usually 1 to 15 mm, more preferably 2 to 9 mm, and particularly preferably 3 to 7 mm.
  • the apparent thickness is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.3 mm.
  • the slit yarn used for the carbon fiber multiaxial sheet of the present invention is provided with a resin for temporarily fixing the form.
  • temporary fixing means that the flat shape of the slit yarn is maintained until the multiaxial sheet is formed, but the carbon fiber constituting the slit yarn can be freely adjusted by the temperature and / or pressure during molding ( Say how to stop play.
  • Temporary fixing may be performed in the state of a spread yarn, or may be performed after forming a slit yarn. From the viewpoint of good handleability, it is preferable to temporarily fix in the state of the opened yarn.
  • the resin for temporarily fixing the slit yarn is preferably an epoxy resin.
  • the epoxy resin can be sprinkled with powder, or dispersed in a liquid and sprinkled or impregnated.
  • the amount of the epoxy resin used is about 1 to 30 g / m 2 , preferably about 3 to 20 g / m 2 .
  • the temporarily fixing resin is preferably a polyolefin having the same melting point as PP or a melting point lower than PP.
  • PP polypropylene
  • PE polyethylene
  • FIG. 6 shows an example of fixing with a scrim.
  • a scrim having a low melting point fused yarn 22a, 22b, 22c in a net shape is fused to one surface of the carbon fiber spread yarn 21.
  • Reference numeral 20 denotes a carbon fiber spread yarn fixed with a scrim.
  • polyethylene yarn can be used as the low-melting-point fusion yarn constituting the scrim.
  • the mass per unit area of the carbon fiber multiaxial sheet of the present invention is preferably in the range of 50 to 400 g / m 2 , more preferably 100 to 300 g / m 2 .
  • any carbon fiber material can be used for the knitting yarn (stitch yarn) of the carbon fiber multiaxial sheet of the present invention, but polyethylene terephthalate yarn is preferred as an example.
  • Examples of the forming method using the carbon fiber multiaxial sheet of the present invention include hot press forming, vacuum forming, bending forming using thermal deformation, and the like.
  • This carbon fiber multiaxial sheet is advantageous in that it can be deep-drawn because wrinkles, openings, twists, and the like are unlikely to occur.
  • one carbon fiber multiaxial sheet may be used, or a plurality of sheets may be laminated.
  • a thermoplastic film such as polypropylene (PP) and the carbon fiber multiaxial sheet of the present invention are overlaid and formed, the film can be formed over the interlayer and both surfaces of the carbon fiber multiaxial sheet.
  • a foamed resin sheet or a non-foamed resin sheet can be put into the inner layer (core layer) and molded.
  • the fiber multiaxial sheet obtained by the present invention can be used for both fiber reinforced plastics using a thermosetting resin as a matrix resin and fiber reinforced plastics using a thermoplastic resin as a matrix resin, preferably for fiber reinforced plastics.
  • a thermosetting resin is preferably used as a matrix resin for a fiber reinforced plastic preform base material.
  • the atmospheric temperature in the hot pressing step is preferably 150 to 190 ° C., more preferably 160 to 180 ° C.
  • the applied pressure is preferably about 1 MPa.
  • the heating time is preferably 0.5 to 5 minutes, more preferably 1 to 4 minutes.
  • the time for the cooling step is preferably 0.5 to 5 minutes, more preferably 1 to 4 minutes.
  • the cooling temperature is preferably up to about 30 ° C. or less.
  • the total thickness of the laminated sheet after molding is preferably 0.3 to 5 mm.
  • the production method of the present invention is not limited to the above method, and can be produced by a heating and pressing press and a cooling method for each time. Moreover, when mass production is considered, it can also be manufactured by a continuous production method instead of the batch method.
  • ⁇ Evaluation method> Visually observe the molded product press-molded using a helmet-shaped mold, and open the mesh (opening between the fibers), wrinkles (wrinkles generated on the fiber base material), twisting the fibers (fibre folding, buckling) ) was evaluated.
  • the evaluation criteria were as follows. Opening: Number of openings between fibers of 2 mm or more Wrinkles: Number of wrinkles generated in multiaxial sheet Twisting: Number of fiber breaks and buckling
  • Example 1 The carbon fiber bundle was manufactured by Mitsubishi Rayon Co., Ltd., trade name “PYROFIL TRW 40 50L” (50K, K is 1000 pieces), total fineness 3750tex, thinned and flattened, opened to a width of 20mm with a uniform thickness. .
  • a scrim (using polyethylene yarn) shown in FIG. 6 was heat-sealed to one surface of the obtained spread yarn, and the form was temporarily fixed. Next, the spread yarn was slit to a width of 4 mm by the method shown in FIG. Five slit yarns were obtained.
  • a multi-layer sheet having a two-layer structure biased at + 45 ° and ⁇ 45 ° as shown in FIG. 1 was knitted.
  • As the knitting yarn polyethylene terephthalate filament (PET) yarn (8.3 tex) was used and knitted so as to be tied for each slit yarn.
  • the knitting pitch was 5.7 mm.
  • the mass of the obtained multiaxial sheet was 300 g / m 2 .
  • a polypropylene (PP) film having a thickness of 100 ⁇ m was laminated between the upper and lower surfaces and the layers.
  • press molding was performed using a helmet-shaped mold.
  • the atmospheric temperature in the hot pressing step was 170 ° C.
  • the applied pressure was 1 MPa
  • the heating time was 3 minutes
  • cooling was performed until the temperature became about 30 ° C. or less.
  • the total thickness of the laminated sheet after molding was 1.5 mm. Table 1 summarizes the evaluation of the obtained helmet molded product.
  • Example 2 A multiaxial sheet was prepared in the same manner as in Example 1 except that a preform epoxy resin was used instead of the scrim as the temporary fixing resin for the spread yarn.
  • the epoxy resin in powder form (trade name “XB3366” manufactured by HUNTSMAN) was sprinkled on the spread yarn at a rate of 15 g / m 2 and temporarily fixed by heating at 150 ° C. for 2 minutes. Under this condition, the epoxy resin is partially cured.
  • the spread yarn was slit into a width of 4 mm and knitted into a multiaxial sheet. The knitting pitch was 5.7 mm.
  • the mass of the obtained multiaxial sheet was 300 g / m 2 .
  • Example 1 A multiaxial sheet was knitted using a carbon fiber spread yarn having a width of 20 mm as it was.
  • the knitting was a multi-axis sheet having a two-layer structure biased at + 45 ° and ⁇ 45 °.
  • the knitting yarn was polyethylene terephthalate filament (PET) yarn (8.3 tex), and the knitting pitch was 4 mm.
  • the mass of the obtained multiaxial sheet was 300 g / m 2 .
  • the molding method was the same as in Example 1. Table 1 summarizes the evaluation of the obtained helmet molded product.
  • Example 2 A multiaxial sheet was knitted using a carbon fiber spread yarn having a width of 20 mm as it was.
  • the knitting was a multi-axis sheet having a two-layer structure biased at + 45 ° and ⁇ 45 °.
  • the knitting yarn was polyethylene terephthalate filament (PET) yarn (8.3 tex), and the knitting pitch was 4 mm.
  • the mass of the obtained multiaxial sheet was 300 g / m 2 .
  • the molding method was the same as in Example 2, but the powdery epoxy resin used in Example 2 was sprayed on the multiaxial sheet at a rate of 15 g / m 2 before the pressing step. Table 1 summarizes the evaluation of the obtained helmet molding preform.
  • the example product of the present invention is a high-quality molded product without opening, wrinkling, and twisting.
  • Molded articles using the multi-axis sheet of the present invention are automobile parts, automobile interior parts, home appliances, medical protective equipment, suitcases, containers, shelves, pallets, panels, bags, sleeve boxes for automatic warehouses, doors, rolls. It can be applied to consumer laminated products such as long boxes for collection, tatami core materials, exhibition booth-like wall materials, T-boards (track plate), and simple table sets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Abstract

In this multi-axial fibre sheet, a plurality of layers having a plurality of fibre bundles arranged at a prescribed angle (θ) therein are stacked, and knitting yarn is used to knit together and secure the plurality of fibre bundles. The width (L1) of each of the fibre bundles and the knitting pitch (L2) of the knitting yarn satisfy the relationship L2≥(1/sinθ)×L1 (with the caveat that θ is the absolute angle of the fibre bundles with respect to the length direction of the multi-axial fibre sheet, and 0˚<θ<90˚). Accordingly, provided are: a multi-axial fibre sheet in which a degree of freedom (gaps) can be imparted to carbon fibres forming slit yarns, and in which creases, apertures, and twists do not readily form, even if deformation occurs during molding; and a preform which uses said multi-axial fibre sheet, and which is used to produce fibre reinforced plastic.

Description

繊維多軸シート及びこれを用いた繊維強化プラスチック製造用プリフォームFiber multiaxial sheet and preform for manufacturing fiber reinforced plastic using the same
 本発明は、繊維多軸シート及びこれを用いた繊維強化プラスチック製造用プリフォームに関する。 The present invention relates to a fiber multiaxial sheet and a preform for producing fiber reinforced plastic using the same.
 従来から、炭素繊維やアラミド繊維などの強化繊維織物を複数枚積層したり、発泡体シートなどと一体化した積層体は知られている。特許文献1には、発泡体からなる内層(コア層)シートの表面に炭素繊維織物層を一体化した積層シートが提案されている。特許文献2には炭素繊維表面にエポキシ樹脂をサイジング剤として塗布し、熱硬化性樹脂との接着強度を高めることが提案されている。特許文献3には炭素繊維と熱硬化性樹脂の片面に熱可塑性樹脂層を積層し、真空成形することが提案されている。特許文献4には炭素繊維束の開繊方法が提案されている。また、特許文献5~6には炭素繊維を開繊し分繊することが提案されている。 Conventionally, a laminate in which a plurality of reinforcing fiber fabrics such as carbon fibers and aramid fibers are laminated or integrated with a foam sheet is known. Patent Document 1 proposes a laminated sheet in which a carbon fiber fabric layer is integrated on the surface of an inner layer (core layer) sheet made of a foam. Patent Document 2 proposes that an epoxy resin is applied to the carbon fiber surface as a sizing agent to increase the adhesive strength with the thermosetting resin. Patent Document 3 proposes that a thermoplastic resin layer is laminated on one side of a carbon fiber and a thermosetting resin and vacuum-molded. Patent Document 4 proposes a method for opening a carbon fiber bundle. Patent Documents 5 to 6 propose to open and divide carbon fibers.
特開2012-096482号公報JP 2012-096482 A 特開2013-116998号公報JP 2013-116998 A 特開2009-184239号公報JP 2009-184239 A 特開2010-270420号公報JP 2010-270420 A 特開2009-280430号公報JP 2009-280430 A 特開2009-191116号公報JP 2009-191116 A
 しかし、従来の炭素繊維で作成した多軸シートは、プリフォーム化する際や樹脂と複合化して成形する際にシワ、目開き、撚れなどが発生しやすい問題があった。 However, multiaxial sheets made of conventional carbon fibers have a problem that wrinkles, openings, twists, etc. are likely to occur when forming into a preform or composite with a resin.
 本発明は、前記従来の問題を解決するため、プリフォーム化する際や繊維を樹脂と複合して成形する際にシワ、目開き、撚れなどが発生しにくい繊維多軸シート及びこれを用いた繊維強化プラスチック製造用プリフォームを提供する。 In order to solve the above-mentioned conventional problems, the present invention uses a fiber multiaxial sheet that is less likely to cause wrinkles, openings, twists, and the like when forming into a preform or molding a fiber with a resin. We provide preforms for manufacturing fiber reinforced plastics.
 本発明の繊維多軸シートは、繊維束を所定角度θに多数本配列した層を複数層積層し、前記多数本の繊維束を編糸で編んで固定した繊維多軸シートであって、前記繊維束の幅L1(mm)と前記編糸の編みピッチL2(mm)は、L2≧(1/sinθ)×L1(但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)の関係であることを特徴とする。 The fiber multiaxial sheet of the present invention is a fiber multiaxial sheet obtained by laminating a plurality of layers in which a plurality of fiber bundles are arranged at a predetermined angle θ, and knitting and fixing the plurality of fiber bundles with knitting yarn, The width L1 (mm) of the fiber bundle and the knitting pitch L2 (mm) of the knitting yarn are L2 ≧ (1 / sinθ) × L1 (where θ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet) There is a relationship of 0 ° <θ <90 °).
 本発明の繊維強化プラスチック製造用プリフォームは、前記の繊維多軸シートを成形して得られる繊維強化プラスチック製造用プリフォームであって、前記繊維多軸シートは、繊維束を所定角度θに多数本配列した層を複数層積層し、前記多数本の繊維束を編糸で編んで固定した繊維多軸シートであって、前記繊維束の幅L1と前記編糸の編みピッチL2は、L2≧(1/sinθ)×L1(但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)の関係であることを特徴とする。 The preform for producing fiber reinforced plastic according to the present invention is a preform for producing fiber reinforced plastic obtained by molding the fiber multiaxial sheet, and the fiber multiaxial sheet has many fiber bundles at a predetermined angle θ. A fiber multiaxial sheet obtained by laminating a plurality of layers arranged in this order and knitting and fixing the plurality of fiber bundles with knitting yarns, wherein the width L1 of the fiber bundles and the knitting pitch L2 of the knitting yarns are L2 ≧ (1 / sinθ) × L1 (where θ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and has a relationship of 0 ° <θ <90 °).
 本発明は、繊維束の幅は編糸の編みピッチ以下とすることにより、樹脂と複合化して成形する際の賦形性が良く、シワ、目開き、撚れなどが発生しにくい繊維多軸シートを提供できる。すなわち、繊維束の幅は編糸の編みピッチより短いことにより、繊維束を構成する繊維には自由度(遊び)ができ、成形時に変形してもシワ、目開き、撚れなどが発生しにくくなり、高品位な繊維強化樹脂(FRP,CFRP)成形品が得られる。 The present invention has a fiber multiaxial structure in which the width of the fiber bundle is not more than the knitting pitch of the knitting yarn, so that the shape of the fiber bundle is good when it is compounded with the resin, and wrinkles, openings, twists, etc. are unlikely to occur. Can provide a sheet. That is, the width of the fiber bundle is shorter than the knitting pitch of the knitting yarn, so that the fibers constituting the fiber bundle can have a degree of freedom (play), and even when deformed during molding, wrinkles, openings, twists, etc. occur. It becomes difficult to obtain a high-quality fiber-reinforced resin (FRP, CFRP) molded product.
図1は本発明の一実施態様の炭素繊維多軸シートの模式的斜視図である。FIG. 1 is a schematic perspective view of a carbon fiber multiaxial sheet according to an embodiment of the present invention. 図2は同、炭素繊維多軸シートのスリット糸の幅と編糸の編みピッチの寸法を説明する拡大斜視図である。FIG. 2 is an enlarged perspective view illustrating the width of the slit yarn of the carbon fiber multiaxial sheet and the dimension of the knitting pitch of the knitting yarn. 図3は従来例の炭素繊維多軸シートの模式的斜視図である。FIG. 3 is a schematic perspective view of a conventional carbon fiber multiaxial sheet. 図4は本発明の一実施態様の開繊糸をスリットし扁平束状のスリット糸を製造する工程を示す模式的平面図である。FIG. 4 is a schematic plan view showing a process of manufacturing a flat bundle slit yarn by slitting the spread yarn of one embodiment of the present invention. 図5は同、スリット糸を巻き取った模式的斜視図である。FIG. 5 is a schematic perspective view of the slit yarn wound up. 図6は同、開繊糸にスクリムを貼り付けた模式的平面図である。FIG. 6 is a schematic plan view in which a scrim is attached to the spread yarn.
 本発明の繊維多軸シートは、繊維束を所定角度に多数本配列した層を複数層積層し、繊維束を編糸で編んで固定した繊維多軸シートである。本発明の多軸シートに使用できる繊維は、炭素繊維、アラミド繊維などがある。以下は炭素繊維を例に挙げて説明する。 The fiber multiaxial sheet of the present invention is a fiber multiaxial sheet in which a plurality of layers in which a large number of fiber bundles are arranged at a predetermined angle are laminated, and the fiber bundle is knitted and fixed with knitting yarn. Examples of fibers that can be used in the multiaxial sheet of the present invention include carbon fibers and aramid fibers. The following will be described by taking carbon fiber as an example.
 図面を用いて説明すると、例えば図1に示す炭素繊維多軸シート10となる。この炭素繊維多軸シート10は、例えば+45°の角度の扁平状炭素繊維束からなるスリット糸1と、-45°の角度のスリット糸2を積層し、スリット糸2に対し編み針3を用いて編糸5で編んで固定されている。積層数は2以上であればよく、通常2~6程度の積層数が用いられる。通常編み方としては、トリコット編みやチェーン編みが用いられる。トリコット編みの場合、編表はチェーン状(いわゆるループ状)になり、編裏はジグザグ状になるが、編みピッチは編表のチェーン状の部分のピッチで測定する。チェーン編みの場合、編表はチェーン状(いわゆるループ状)になり、編裏は直線状になるが、この場合は編表及び編裏、いずれで測定しても良い。なお、トリコット編みの場合、図1のように編み針が下からシートを突き刺す場合は、上面側がジグザグとなるのが通常であるが、図1では説明のため便宜的に上面側にチェーン状のステッチ状態の概略を示している。また、編糸5とスリット糸1との角度も、繊維多軸シートの長さ方向に対する繊維束の角度θと実質的に同一であるので、図1ではθと表示している。 If it demonstrates using drawing, it will become the carbon fiber multiaxial sheet 10 shown, for example in FIG. This carbon fiber multiaxial sheet 10 is formed by laminating, for example, a slit yarn 1 made of a flat carbon fiber bundle having an angle of + 45 ° and a slit yarn 2 having an angle of −45 °, and using a knitting needle 3 on the slit yarn 2. It is fixed by knitting with a knitting yarn 5. The number of layers may be two or more, and usually about 2 to 6 are used. As a normal knitting method, tricot knitting or chain knitting is used. In the case of tricot knitting, the knitting surface has a chain shape (so-called loop shape) and the knitting back has a zigzag shape, but the knitting pitch is measured by the pitch of the chain-shaped portion of the knitting table. In the case of chain knitting, the knitting surface has a chain shape (so-called loop shape), and the knitting surface has a linear shape. In the case of tricot knitting, when the knitting needle pierces the sheet from the bottom as shown in FIG. 1, the upper surface side is usually zigzag, but in FIG. 1, for convenience of explanation, a chain-like stitch is formed on the upper surface side. The outline of a state is shown. Further, the angle between the knitting yarn 5 and the slit yarn 1 is also substantially the same as the angle θ of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and therefore is indicated as θ in FIG.
 本発明の炭素繊維多軸シートを構成する炭素繊維束はスリット糸を使用する。このスリット糸の幅は編糸の編みピッチより短い。図2は炭素繊維多軸シートのスリット糸の幅と編糸の編みピッチの寸法を説明する拡大斜視図である。スリット糸1a~1cの幅L1は、編糸5a,5bの編みピッチL2以下とする。すなわち、L2≧(1/sinθ)×L1(但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)の関係とする。これによりスリット糸を構成する炭素繊維には自由度(遊び)がとれ、賦形性が良くなる。自由度(遊び)ができると、プリフォーム化時や成形時に様々なストレスが掛かっても各炭素繊維は追従し、シワ、目開き、撚れなどが発生しにくくなる。 The carbon fiber bundle constituting the carbon fiber multiaxial sheet of the present invention uses slit yarn. The width of the slit yarn is shorter than the knitting pitch of the knitting yarn. FIG. 2 is an enlarged perspective view illustrating the width of the slit yarn of the carbon fiber multiaxial sheet and the dimension of the knitting pitch of the knitting yarn. The width L1 of the slit yarns 1a to 1c is set to be equal to or less than the knitting pitch L2 of the knitting yarns 5a and 5b. That is, L2 ≧ (1 / sin θ) × L1 (where θ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, and has a relationship of 0 ° <θ <90 °). As a result, the carbon fibers constituting the slit yarn have a degree of freedom (play) and formability is improved. When the degree of freedom (play) is possible, each carbon fiber follows even when various stresses are applied during forming or molding, and it is difficult for wrinkles, openings, twists, and the like to occur.
 これに対して従来技術の炭素繊維開繊糸をスリットせずに使用すると、編糸7a,7bは図3に示すように幅広な開繊糸6a,6bの内部を複数個所編み込むことが必要になる。すなわち、開繊糸6a,6bの幅L1と編糸7a,7bの編みピッチL2の関係は、L1>L2とする必要がある。そうすると、炭素繊維は編糸7a,7bでしっかり固定されてしまい、自由な動きはできなくなる。したがって、このような多軸シートを使用するとプリフォーム化時や成形時にシワ、目開き、撚れなどの欠点が発生しやすくなる。 On the other hand, when the conventional carbon fiber spread yarn is used without slitting, the knitting yarns 7a and 7b need to be knitted in a plurality of locations within the wide spread yarns 6a and 6b as shown in FIG. Become. That is, the relationship between the width L1 of the spread yarns 6a and 6b and the knitting pitch L2 of the knitting yarns 7a and 7b needs to satisfy L1> L2. If it does so, carbon fiber will be firmly fixed by the knitting yarns 7a and 7b, and free movement will become impossible. Therefore, when such a multiaxial sheet is used, defects such as wrinkles, openings, and twists are likely to occur during forming or forming.
 本発明の繊維多軸シートを構成する繊維束は、長繊維からなる多数本の炭素繊維を開繊して得られる開繊糸が好ましく、当該扁平化された開繊糸を、複数本にスリットした扁平束状のスリット糸が特に好ましい。開繊糸の製造方法については、前記特許文献4等により既に知られているので、詳細説明は省略する。開繊糸を用いる理由は、次の通りである。
(1)扁平化された開繊糸は薄いため、樹脂が含浸しやすく、強度の高い成形品が得やすい。また、繊維強化樹脂(FRP)に成形する際、薄いシートを複数枚積層した方が物理的強度が向上しやすい。
(2)扁平化された開繊糸を使用すると、単位面積当たりの重量(質量)の軽い炭素繊維多軸シートが得られる。
(3)例えば24K(Kは1000本のこと)品以上の炭素繊維のような繊維本数とトータル繊度の大きい炭素繊維束原糸を開繊糸とすることで、扁平化された開繊糸が得られるが、それでは繊維束の幅が、多軸シート製造装置の編みピッチの機械的限界、例えば30mm程度を超えてしまうことが多い。また、1Kや3Kのような最初から薄く扁平状の炭素繊維は極めてコストが高い。そこで、コスト的に安い上記24K品以上のような炭素繊維を扁平化された開繊糸とし、それを複数本にスリットした扁平束状のスリット糸とすることで、コスト的にも有利となる。
The fiber bundle constituting the fiber multiaxial sheet of the present invention is preferably a spread yarn obtained by opening a large number of carbon fibers composed of long fibers, and the flattened spread yarn is slit into a plurality of slits. The flat bundle-shaped slit yarn is particularly preferable. Since the manufacturing method of the spread yarn is already known from Patent Document 4 and the like, detailed description thereof is omitted. The reason for using the spread yarn is as follows.
(1) Since the flattened spread yarn is thin, the resin is easily impregnated and a molded product with high strength is easily obtained. Further, when forming into a fiber reinforced resin (FRP), the physical strength is more easily improved by laminating a plurality of thin sheets.
(2) When a flattened spread yarn is used, a carbon fiber multiaxial sheet having a light weight (mass) per unit area can be obtained.
(3) For example, a flattened open yarn can be obtained by using a carbon fiber bundle yarn having a large total fineness and the number of carbon fibers such as 24K (K is 1000) or more. However, the width of the fiber bundle often exceeds the mechanical limit of the knitting pitch of the multiaxial sheet manufacturing apparatus, for example, about 30 mm. In addition, a thin and flat carbon fiber such as 1K or 3K is very expensive. Therefore, it is advantageous in terms of cost by making the carbon fiber such as the above-mentioned 24K product or more cheap in terms of cost into a flattened open yarn and making it into a flat bundle-like slit yarn slit into a plurality of pieces. .
 本発明で使用する扁平束状のスリット糸は、例えば図4に示す方法で製造できる。ロール11から炭素繊維の開繊糸12を引き出し、固定ロール14と金属製回転刃13からなるスリッターに供給してスリット糸16a~16eとし、ガイド15a~15eを通過させてリール17a~17eに巻き取る。図5はリール17に巻き取ったスリット糸16を示している。 The flat bundle-like slit thread used in the present invention can be manufactured by, for example, the method shown in FIG. The carbon fiber spread yarn 12 is pulled out from the roll 11 and supplied to a slitter comprising a fixed roll 14 and a metal rotary blade 13 to form slit yarns 16a to 16e, which are passed through guides 15a to 15e and wound around reels 17a to 17e. take. FIG. 5 shows the slit yarn 16 wound around the reel 17.
 本発明の炭素繊維多軸シートを構成するスリット糸の幅(L1)と編糸の編みピッチ(L2)の関係は、L2≧(1/sinθ)×L1(但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)である。上記関係であることより、成形体やプリフォーム作成時の目開きやシワが少なくなり、賦形性に有利となる。本発明の炭素繊維多軸シートを構成するスリット糸の幅(L1)と編糸の編みピッチ(L2)の関係として、さらに好ましくは、大略L2=n×(1/sinθ)×L1(但し、nは1以上の整数であり、L2は30以下。)である。隣り合うスリット糸の境界部分に編み糸が位置する方が、より賦形性に有利だからである。なお、nは1以上であるが、好ましくはn=1~3である。この範囲であれば、賦形性を低下させない程度の自由度(遊び)が得られ、より高品位な成形品やプリフォームを得ることができる。ただし、L2は30mm以下である。30mmを超える編みピッチは、編み機械的に困難である。 The relationship between the width (L1) of the slit yarn constituting the carbon fiber multiaxial sheet of the present invention and the knitting pitch (L2) of the knitting yarn is L2 ≧ (1 / sinθ) × L1 (where θ is the fiber multiaxial sheet) The absolute angle of the fiber bundle with respect to the length direction, and 0 ° <θ <90 °. Since it is the said relationship, the opening and wrinkles at the time of a molded object and preform preparation reduce, and it is advantageous to a shaping property. The relationship between the width (L1) of the slit yarn constituting the carbon fiber multiaxial sheet of the present invention and the knitting pitch (L2) of the knitting yarn is more preferably approximately L2 = n × (1 / sinθ) × L1 (however, n is an integer of 1 or more, and L2 is 30 or less.). This is because it is more advantageous to formability when the knitting yarn is located at the boundary portion between the adjacent slit yarns. Note that n is 1 or more, but preferably n = 1 to 3. If it is this range, the freedom degree (play) of the grade which does not reduce a shaping property will be obtained, and a higher quality molded article and preform can be obtained. However, L2 is 30 mm or less. Knitting pitches exceeding 30 mm are difficult mechanically.
 所定角度θは通常±30°~±60°であり、例えば+30°と-30°の組み合わせ、+45°と-45°の組み合わせ、+60°と-60°の組み合わせ、及びこれらの中から任意の複数組の組み合わせがある。本発明においては、前記角度はプラスマイナスを削除し、絶対値で表示する。 The predetermined angle θ is usually ± 30 ° to ± 60 °. For example, a combination of + 30 ° and −30 °, a combination of + 45 ° and −45 °, a combination of + 60 ° and −60 °, and any combination of these There are multiple combinations. In the present invention, the angle is displayed as an absolute value by removing plus and minus.
 前記スリット糸はカットされた炭素繊維を含んでも良い。図4に示すように、炭素繊維の開繊糸を金属製回転刃によってスリットするので、一部の炭素繊維はカットされるからである。一部の炭素繊維がカットされても、炭素繊維強化樹脂成形体の品質には影響しない。 The slit yarn may include cut carbon fiber. This is because, as shown in FIG. 4, the carbon fiber spread yarns are slit by the metal rotary blade, so that some of the carbon fibers are cut. Even if some carbon fibers are cut, the quality of the carbon fiber reinforced resin molded product is not affected.
 扁平束状のスリット糸は0.5~30mm程度であり、通常は1~15mmが好ましく、さらに好ましくは2~9mmであり、とくに好ましくは3~7mmである。見かけ厚さは0.01~0.5mmが好ましく、さらに好ましくは0.03~0.3mmである。 The flat bundle-like slit yarn is about 0.5 to 30 mm, usually 1 to 15 mm, more preferably 2 to 9 mm, and particularly preferably 3 to 7 mm. The apparent thickness is preferably 0.01 to 0.5 mm, more preferably 0.03 to 0.3 mm.
 本発明の炭素繊維多軸シートに使用するスリット糸には形態を仮固定しておくための樹脂が付与されていることが好ましい。ここで「仮固定」とは、多軸シートを形成するまではスリット糸の扁平化した形態を維持するが、成形時の温度及び/又は圧力によって、スリット糸を構成する炭素繊維に自由度(遊び)が生ずる止め方を言う。仮固定は開繊糸の状態でしてもよいし、スリット糸にしてからでもよい。取扱い性の良さから、開繊糸の状態で仮固定するのが好ましい。 It is preferable that the slit yarn used for the carbon fiber multiaxial sheet of the present invention is provided with a resin for temporarily fixing the form. Here, “temporary fixing” means that the flat shape of the slit yarn is maintained until the multiaxial sheet is formed, but the carbon fiber constituting the slit yarn can be freely adjusted by the temperature and / or pressure during molding ( Say how to stop play. Temporary fixing may be performed in the state of a spread yarn, or may be performed after forming a slit yarn. From the viewpoint of good handleability, it is preferable to temporarily fix in the state of the opened yarn.
 スリット糸の形態を仮固定しておくための樹脂は、熱硬化性樹脂の場合はエポキシ樹脂が好ましい。エポキシ樹脂は炭素繊維との親和性ないしは接着性が良好で、成形性も良いからである。エポキシ樹脂は粉体で振り掛けることもできるし、液体に分散させて振り掛け又は含浸させてもよい。エポキシ樹脂の使用量は1~30g/m2程度、好ましくは3~20g/m2程度が用いられる。 In the case of a thermosetting resin, the resin for temporarily fixing the slit yarn is preferably an epoxy resin. This is because the epoxy resin has good affinity or adhesion with the carbon fiber and good moldability. The epoxy resin can be sprinkled with powder, or dispersed in a liquid and sprinkled or impregnated. The amount of the epoxy resin used is about 1 to 30 g / m 2 , preferably about 3 to 20 g / m 2 .
 仮固定用樹脂として熱可塑性樹脂を使用する場合は、成形温度より低い軟化点の樹脂を使用することが好ましい。成形時に炭素繊維に自由度(遊び)を発生させるためである。例えば成形時にポリプロピレン(PP)フィルムと炭素繊維を一体成形する場合(成形温度はPPの融点より高い)、仮固定用樹脂はPPと同じ融点又はPPより低い融点のポリオレフィンが好ましい。例えばPP、ポリエチレン(PE)、又は他のポリオレフィンを使用する。 When using a thermoplastic resin as the temporary fixing resin, it is preferable to use a resin having a softening point lower than the molding temperature. This is because a degree of freedom (play) is generated in the carbon fiber during molding. For example, when a polypropylene (PP) film and carbon fiber are integrally formed during molding (molding temperature is higher than the melting point of PP), the temporarily fixing resin is preferably a polyolefin having the same melting point as PP or a melting point lower than PP. For example, PP, polyethylene (PE), or other polyolefin is used.
 仮固定手段としてスクリム(支持体)を固定しておくこともできる。図6にスクリムで固定した例を示す。炭素繊維開繊糸21の一表面に低融点融着糸22a,22b,22cをネット状にしたスクリムを融着している。20はスクリムで固定した炭素繊維開繊糸である。スクリムを構成する低融点融着糸は例えばポリエチレン糸を使用できる。 ス ク A scrim (support) can be fixed as a temporary fixing means. FIG. 6 shows an example of fixing with a scrim. A scrim having a low melting point fused yarn 22a, 22b, 22c in a net shape is fused to one surface of the carbon fiber spread yarn 21. Reference numeral 20 denotes a carbon fiber spread yarn fixed with a scrim. For example, polyethylene yarn can be used as the low-melting-point fusion yarn constituting the scrim.
 本発明の炭素繊維多軸シートの単位面積当たりの質量は50~400g/m2の範囲が好ましく、さらに好ましくは100~300g/m2である。 The mass per unit area of the carbon fiber multiaxial sheet of the present invention is preferably in the range of 50 to 400 g / m 2 , more preferably 100 to 300 g / m 2 .
 本発明の炭素繊維多軸シートの編み糸(ステッチ糸)は任意の繊維素材を使用できるが、一例としてポリエチレンテレフタレート糸が好ましい。 Any carbon fiber material can be used for the knitting yarn (stitch yarn) of the carbon fiber multiaxial sheet of the present invention, but polyethylene terephthalate yarn is preferred as an example.
 本発明の炭素繊維多軸シートを用いた成形方法としては、熱プレス成形、真空成形、熱変形を利用した曲げ加工成形等がある。この炭素繊維多軸シートは、シワ、目開き、撚れなどが発生しにくいことから、深絞り成形できる利点がある。 Examples of the forming method using the carbon fiber multiaxial sheet of the present invention include hot press forming, vacuum forming, bending forming using thermal deformation, and the like. This carbon fiber multiaxial sheet is advantageous in that it can be deep-drawn because wrinkles, openings, twists, and the like are unlikely to occur.
 成形する際には、炭素繊維多軸シートを1枚使用しても良いし、複数枚積層しても良い。ポリプロピレン(PP)等の熱可塑性フィルムと本発明の炭素繊維多軸シートを重ねて成形する際には、フィルムは炭素繊維多軸シートの層間と両表面に重ねて成形することもできる。別の方法としては、内層(コア層)に発泡樹脂シート又は非発泡樹脂シートを入れて成形することもできる。本発明で得られる繊維多軸シートは、熱硬化樹脂をマトリックス樹脂として用いた繊維強化プラスチックや熱可塑性樹脂をマトリックス樹脂として用いた繊維強化プラスチックのいずれにも使用でき、好ましくは、繊維強化プラスチック用プリフォーム基材として、特に熱硬化樹脂をマトリックス樹脂として繊維強化プラスチック用プリフォーム基材として好ましく用いられる。 When molding, one carbon fiber multiaxial sheet may be used, or a plurality of sheets may be laminated. When a thermoplastic film such as polypropylene (PP) and the carbon fiber multiaxial sheet of the present invention are overlaid and formed, the film can be formed over the interlayer and both surfaces of the carbon fiber multiaxial sheet. As another method, a foamed resin sheet or a non-foamed resin sheet can be put into the inner layer (core layer) and molded. The fiber multiaxial sheet obtained by the present invention can be used for both fiber reinforced plastics using a thermosetting resin as a matrix resin and fiber reinforced plastics using a thermoplastic resin as a matrix resin, preferably for fiber reinforced plastics. As a preform base material, in particular, a thermosetting resin is preferably used as a matrix resin for a fiber reinforced plastic preform base material.
 本発明の炭素繊維多軸シートを使用した成形方法の一例として熱プレス法を挙げると、熱プレス工程の雰囲気温度は150~190℃が好ましく、さらに好ましくは160~180℃である。加圧力は1MPa程度が好ましい。加熱時間は0.5~5分間が好ましく、さらに好ましくは1~4分間である。冷却工程の時間は0.5~5分間が好ましく、さらに好ましくは1~4分間である。冷却温度は30℃程度以下になるまでが好ましい。成形後の積層シート全体の厚みは0.3~5mmが好ましい。 As an example of a molding method using the carbon fiber multiaxial sheet of the present invention, the atmospheric temperature in the hot pressing step is preferably 150 to 190 ° C., more preferably 160 to 180 ° C. The applied pressure is preferably about 1 MPa. The heating time is preferably 0.5 to 5 minutes, more preferably 1 to 4 minutes. The time for the cooling step is preferably 0.5 to 5 minutes, more preferably 1 to 4 minutes. The cooling temperature is preferably up to about 30 ° C. or less. The total thickness of the laminated sheet after molding is preferably 0.3 to 5 mm.
 本発明の製造方法は前記方法に限らず、1回ごとの加熱加圧プレスと冷却法によっても製造できる。また、大量生産を考える場合、上記バッチ法ではなく連続生産法で製造することもできる。 The production method of the present invention is not limited to the above method, and can be produced by a heating and pressing press and a cooling method for each time. Moreover, when mass production is considered, it can also be manufactured by a continuous production method instead of the batch method.
 以下実施例により、本発明をさらに具体的に説明する。なお本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
<評価方法>
 ヘルメット形状の金型を用いてプレス成形した成形品を目視観察して、目開き(繊維間の開き)、シワ(繊維基材に発生するシワ)、繊維の撚れ(繊維の折れ、座屈)の有無を評価した。評価基準は次の通りとした。
目開き:2mm以上の繊維間の開き箇所の数
シワ:多軸シートに発生するシワの数
撚れ:繊維の折れ及び座屈の数
<Evaluation method>
Visually observe the molded product press-molded using a helmet-shaped mold, and open the mesh (opening between the fibers), wrinkles (wrinkles generated on the fiber base material), twisting the fibers (fibre folding, buckling) ) Was evaluated. The evaluation criteria were as follows.
Opening: Number of openings between fibers of 2 mm or more Wrinkles: Number of wrinkles generated in multiaxial sheet Twisting: Number of fiber breaks and buckling
 (実施例1)
 炭素繊維束として、三菱レイヨン社製、商品名“PYROFIL TRW 40 50L”(50K,Kは1000本のこと)、トータル繊度3750texを使用し、薄く扁平化し、均一厚さで幅20mmに開繊した。得られた開繊糸の一表面に図6に示すスクリム(ポリエチレン糸を使用)を熱融着して形態の仮固定をした。次に図4に示す方法で開繊糸を幅4mmにスリットした。スリット糸は5本得られた。
Example 1
The carbon fiber bundle was manufactured by Mitsubishi Rayon Co., Ltd., trade name “PYROFIL TRW 40 50L” (50K, K is 1000 pieces), total fineness 3750tex, thinned and flattened, opened to a width of 20mm with a uniform thickness. . A scrim (using polyethylene yarn) shown in FIG. 6 was heat-sealed to one surface of the obtained spread yarn, and the form was temporarily fixed. Next, the spread yarn was slit to a width of 4 mm by the method shown in FIG. Five slit yarns were obtained.
 得られた幅4mmのスリット糸を使用して、図1に示すように+45°と-45°にバイアスした2層構造の多軸シートを編成した。編糸はポリエチレンテレフタレートフィラメント(PET)糸(8.3tex)を用い、スリット糸1本ごとに縛るように編成した。編みピッチは5.7mmとした。得られた多軸シートの質量は300g/m2であった。 Using the obtained slit yarn having a width of 4 mm, a multi-layer sheet having a two-layer structure biased at + 45 ° and −45 ° as shown in FIG. 1 was knitted. As the knitting yarn, polyethylene terephthalate filament (PET) yarn (8.3 tex) was used and knitted so as to be tied for each slit yarn. The knitting pitch was 5.7 mm. The mass of the obtained multiaxial sheet was 300 g / m 2 .
 得られた炭素繊維多軸シートを4枚使用し、上下表面と層間に厚さ100μmのポリプロピレン(PP)フィルムを積層し、この状態でヘルメット形状の金型を用いてプレス成形した。熱プレス工程の雰囲気温度は170℃、加圧力は1MPa、加熱時間は3分間とし、30℃程度以下になるまで冷却した。成形後の積層シート全体の厚みは1.5mmであった。得られたヘルメット成形品の評価はまとめて表1に示す。 Four carbon fiber multiaxial sheets obtained were used, and a polypropylene (PP) film having a thickness of 100 μm was laminated between the upper and lower surfaces and the layers. In this state, press molding was performed using a helmet-shaped mold. The atmospheric temperature in the hot pressing step was 170 ° C., the applied pressure was 1 MPa, the heating time was 3 minutes, and cooling was performed until the temperature became about 30 ° C. or less. The total thickness of the laminated sheet after molding was 1.5 mm. Table 1 summarizes the evaluation of the obtained helmet molded product.
 (実施例2)
 開繊糸の形態仮固定用樹脂として、スクリムに換えてプリフォーム用のエポキシ樹脂を使用した以外は実施例1と同様に多軸シートを作成した。エポキシ樹脂はパウダー状態のもの(HUNTSMAN社製、商品名"XB3366")を15g/m2の割合で開繊糸に振り掛けて、150℃、2分間加熱して仮固定した。この条件ではエポキシ樹脂は部分硬化状態である。この開繊糸を幅4mmにスリットし多軸シートに編成した。編みピッチは5.7mmとした。得られた多軸シートの質量は300g/m2であった。
(Example 2)
A multiaxial sheet was prepared in the same manner as in Example 1 except that a preform epoxy resin was used instead of the scrim as the temporary fixing resin for the spread yarn. The epoxy resin in powder form (trade name “XB3366” manufactured by HUNTSMAN) was sprinkled on the spread yarn at a rate of 15 g / m 2 and temporarily fixed by heating at 150 ° C. for 2 minutes. Under this condition, the epoxy resin is partially cured. The spread yarn was slit into a width of 4 mm and knitted into a multiaxial sheet. The knitting pitch was 5.7 mm. The mass of the obtained multiaxial sheet was 300 g / m 2 .
 得られた炭素繊維多軸シートを4枚使用し、この状態でヘルメット形状の金型を用いてプレス成形した。熱プレス工程の雰囲気温度は170℃、加圧力は1MPa、加熱時間は2分間とし、30℃程度以下になるまで冷却した。成形後の積層シート全体の厚みは1.5mmであった。得られたヘルメット成形用プリフォームの評価はまとめて表1に示す。 Four carbon fiber multiaxial sheets obtained were used, and in this state, press molding was performed using a helmet-shaped mold. The atmospheric temperature in the hot pressing step was 170 ° C., the applied pressure was 1 MPa, the heating time was 2 minutes, and cooling was performed until the temperature became about 30 ° C. or less. The total thickness of the laminated sheet after molding was 1.5 mm. Table 1 summarizes the evaluation of the obtained helmet molding preform.
 (比較例1)
 幅20mmの炭素繊維の開繊糸をそのままの状態で使用して多軸シートを編成した。編成は、+45°と-45°にバイアスした2層構造の多軸シートとした。編糸はポリエチレンテレフタレートフィラメント(PET)糸(8.3tex)を用い、編みピッチは4mmとした。得られた多軸シートの質量は300g/m2であった。成形方法は実施例1と同様にした。得られたヘルメット成形品の評価はまとめて表1に示す。
(Comparative Example 1)
A multiaxial sheet was knitted using a carbon fiber spread yarn having a width of 20 mm as it was. The knitting was a multi-axis sheet having a two-layer structure biased at + 45 ° and −45 °. The knitting yarn was polyethylene terephthalate filament (PET) yarn (8.3 tex), and the knitting pitch was 4 mm. The mass of the obtained multiaxial sheet was 300 g / m 2 . The molding method was the same as in Example 1. Table 1 summarizes the evaluation of the obtained helmet molded product.
 (比較例2)
 幅20mmの炭素繊維の開繊糸をそのままの状態で使用して多軸シートを編成した。編成は、+45°と-45°にバイアスした2層構造の多軸シートとした。編糸はポリエチレンテレフタレートフィラメント(PET)糸(8.3tex)を用い、編みピッチは4mmとした。得られた多軸シートの質量は300g/m2であった。成形方法は実施例2と同様であるが、プレス工程前に実施例2で用いたパウダー状エポキシ樹脂を15g/m2の割合で多軸シートに散布した。得られたヘルメット成形用プリフォームの評価はまとめて表1に示す。
(Comparative Example 2)
A multiaxial sheet was knitted using a carbon fiber spread yarn having a width of 20 mm as it was. The knitting was a multi-axis sheet having a two-layer structure biased at + 45 ° and −45 °. The knitting yarn was polyethylene terephthalate filament (PET) yarn (8.3 tex), and the knitting pitch was 4 mm. The mass of the obtained multiaxial sheet was 300 g / m 2 . The molding method was the same as in Example 2, but the powdery epoxy resin used in Example 2 was sprayed on the multiaxial sheet at a rate of 15 g / m 2 before the pressing step. Table 1 summarizes the evaluation of the obtained helmet molding preform.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例品は目開き、シワ、撚れがなく、高品位な成形品であることがわかる。 From Table 1, it can be seen that the example product of the present invention is a high-quality molded product without opening, wrinkling, and twisting.
 本発明の多軸シートを用いた成形品は、自動車部品、自動車内装品、家電製品、医療用保護具、スーツケース、容器、棚、パレット、パネル、バッグ、自動倉庫用スリーブボックス、ドア、ロール回収用長尺ボックス、畳の芯材、展示ブース様壁材、Tボード(トラック用当て板)、簡易テーブルセット等の民生用積層品に適用できる。 Molded articles using the multi-axis sheet of the present invention are automobile parts, automobile interior parts, home appliances, medical protective equipment, suitcases, containers, shelves, pallets, panels, bags, sleeve boxes for automatic warehouses, doors, rolls. It can be applied to consumer laminated products such as long boxes for collection, tatami core materials, exhibition booth-like wall materials, T-boards (track plate), and simple table sets.
1,1a~1c,2,16,16a~16e スリット糸
3 編み針
4,5,5a,5b,7a,7b 編糸
6a,6b,12 開繊糸
10 炭素繊維多軸シート
11 ロール
13 金属製回転刃
14 固定ロール
17a~17e リール
20 スクリムで固定した炭素繊維開繊糸
21 炭素繊維開繊糸
22a,22b,22c 低融点融着糸
1, 1a to 1c, 2, 16, 16a to 16e Slit yarn 3 Knitting needles 4, 5, 5a, 5b, 7a, 7b Knitting yarns 6a, 6b, 12 Opening yarn 10 Carbon fiber multiaxial sheet 11 Roll 13 Metal rotation Blade 14 Fixing rolls 17a to 17e Reel 20 Carbon fiber spread yarn 21 fixed by scrim Carbon fiber spread yarns 22a, 22b, 22c Low melting point fusion yarn

Claims (8)

  1.  繊維束を所定角度θに多数本配列した層を複数層積層し、前記多数本の繊維束を編糸で編んで固定した繊維多軸シートであって、
     前記繊維束の幅L1(mm)と前記編糸の編みピッチL2(mm)は、
     L2≧(1/sinθ)×L1
    (但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)
    の関係であることを特徴とする繊維多軸シート。
    A fiber multiaxial sheet obtained by laminating a plurality of layers in which a plurality of fiber bundles are arranged at a predetermined angle θ, and knitting and fixing the plurality of fiber bundles with a knitting yarn,
    A width L1 (mm) of the fiber bundle and a knitting pitch L2 (mm) of the knitting yarn are as follows:
    L2 ≧ (1 / sinθ) × L1
    (However, θ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, 0 ° <θ <90 °)
    A multiaxial fiber sheet characterized by the following relationship.
  2.  前記繊維束の幅L1と前記編糸の編みピッチL2は、
     L2=n×(1/sinθ)×L1
    (但し、nは1以上の整数であり、L2は30以下である。)
    の関係である請求項1に記載の繊維多軸シート。
    A width L1 of the fiber bundle and a knitting pitch L2 of the knitting yarn are as follows:
    L2 = n × (1 / sinθ) × L1
    (However, n is an integer of 1 or more, and L2 is 30 or less.)
    The multiaxial fiber sheet according to claim 1, wherein
  3.  前記繊維束は炭素繊維束である請求項1又は2に記載の繊維多軸シート。 The fiber multiaxial sheet according to claim 1 or 2, wherein the fiber bundle is a carbon fiber bundle.
  4.  前記炭素繊維束は、長繊維からなる多数本の炭素繊維を開繊して扁平化した開繊糸である請求項1~3のいずれかに記載の繊維多軸シート。 The fiber multiaxial sheet according to any one of claims 1 to 3, wherein the carbon fiber bundle is a spread yarn obtained by opening and flattening a plurality of carbon fibers made of long fibers.
  5.  前記炭素繊維束は、長繊維からなる多数本の炭素繊維を開繊して扁平化し、さらにスリットした扁平束状のスリット糸である請求項1~4のいずれかに記載の繊維多軸シート。 5. The fiber multiaxial sheet according to any one of claims 1 to 4, wherein the carbon fiber bundle is a flat bundle slit yarn obtained by opening a plurality of carbon fibers made of long fibers, flattening, and further slitting.
  6.  前記スリット糸には形態を仮固定しておくための樹脂が付与されている請求項1~5のいずれかに記載の繊維多軸シート。 The fiber multiaxial sheet according to any one of claims 1 to 5, wherein a resin for temporarily fixing the form is applied to the slit yarn.
  7.  前記スリット糸には形態を仮固定しておくためのスクリムが固定されている請求項1~6のいずれかに記載の繊維多軸シート。 The fiber multiaxial sheet according to any one of claims 1 to 6, wherein a scrim for temporarily fixing the form is fixed to the slit yarn.
  8.  請求項1~7の繊維多軸シートを成形して得られる繊維強化プラスチック製造用プリフォームであって、
     繊維束を所定角度θに多数本配列した層を複数層積層し、前記多数本の繊維束を編糸で編んで固定した繊維多軸シートであって、
     前記繊維束の幅L1と前記編糸の編みピッチL2は、
     L2≧(1/sinθ)×L1
    (但し、θは繊維多軸シートの長さ方向に対する繊維束の絶対角度であり、0°<θ<90°)
    の関係であることを特徴とする繊維強化プラスチック製造用プリフォーム。
    A preform for producing a fiber reinforced plastic obtained by molding the fiber multiaxial sheet according to any one of claims 1 to 7,
    A fiber multiaxial sheet obtained by laminating a plurality of layers in which a plurality of fiber bundles are arranged at a predetermined angle θ, and knitting and fixing the plurality of fiber bundles with a knitting yarn,
    A width L1 of the fiber bundle and a knitting pitch L2 of the knitting yarn are as follows:
    L2 ≧ (1 / sinθ) × L1
    (However, θ is the absolute angle of the fiber bundle with respect to the length direction of the fiber multiaxial sheet, 0 ° <θ <90 °)
    A preform for the production of fiber-reinforced plastic, characterized in that
PCT/JP2015/052911 2014-02-04 2015-02-03 Multi-axial fibre sheet, and preform using same for producing fibre reinforced plastic WO2015119091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-019474 2014-02-04
JP2014019474A JP6277007B2 (en) 2014-02-04 2014-02-04 Fiber multiaxial sheet and preform for manufacturing fiber reinforced plastic using the same

Publications (1)

Publication Number Publication Date
WO2015119091A1 true WO2015119091A1 (en) 2015-08-13

Family

ID=53777896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052911 WO2015119091A1 (en) 2014-02-04 2015-02-03 Multi-axial fibre sheet, and preform using same for producing fibre reinforced plastic

Country Status (2)

Country Link
JP (1) JP6277007B2 (en)
WO (1) WO2015119091A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154471A (en) * 2016-03-04 2017-09-07 倉敷紡績株式会社 Preform for fiber-reinforced plastic and method for manufacturing the same
CN111936281A (en) * 2018-04-04 2020-11-13 三菱化学株式会社 Method for producing fiber-reinforced resin molding material and apparatus for producing fiber-reinforced resin molding material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699752B2 (en) 2016-11-01 2020-05-27 日産自動車株式会社 Reinforcement base material for composite material, composite material, and method for manufacturing reinforcement base material for composite material
CN109923254B (en) 2016-11-01 2020-03-31 日产自动车株式会社 Reinforcing base material for composite material, and method for producing reinforcing base material for composite material
KR102124282B1 (en) * 2019-11-27 2020-06-17 강성회 Air cushion for cosmetic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160587A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Multilayered base material, preform and manufacturing method of preform
JP2007162151A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Biaxial stitch base material and preform
JP2012148568A (en) * 2006-11-22 2012-08-09 Fukui Prefecture Thermoplastic resin-reinforced sheet material, reinforced thermoplastic-resin multilayer sheet material, method for producing the same, and multilayer thermoplastic-resin-reinforced molding

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761380B1 (en) * 1997-03-28 1999-07-02 Europ Propulsion METHOD AND MACHINE FOR PRODUCING MULTIAXIAL FIBROUS MATS
FR2939451B1 (en) * 2008-12-09 2011-01-07 Hexcel Reinforcements NEW INTERMEDIATE MATERIAL FOR LIMITING THE MICROFISSURATIONS OF COMPOSITE PIECES.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160587A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Multilayered base material, preform and manufacturing method of preform
JP2007162151A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Biaxial stitch base material and preform
JP2012148568A (en) * 2006-11-22 2012-08-09 Fukui Prefecture Thermoplastic resin-reinforced sheet material, reinforced thermoplastic-resin multilayer sheet material, method for producing the same, and multilayer thermoplastic-resin-reinforced molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154471A (en) * 2016-03-04 2017-09-07 倉敷紡績株式会社 Preform for fiber-reinforced plastic and method for manufacturing the same
CN111936281A (en) * 2018-04-04 2020-11-13 三菱化学株式会社 Method for producing fiber-reinforced resin molding material and apparatus for producing fiber-reinforced resin molding material

Also Published As

Publication number Publication date
JP6277007B2 (en) 2018-02-07
JP2015145547A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015119091A1 (en) Multi-axial fibre sheet, and preform using same for producing fibre reinforced plastic
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
TWI500665B (en) Composites
JP2018080442A (en) Plane composite material
WO2013089235A1 (en) Fibre-reinforced resin moulding, and vehicle interior material using same
ES2698958T3 (en) Procedure for the manufacture of a semi-finished product for the production of a composite molded part
JPH02134233A (en) Manufacture of moldable composite material
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
JP6946666B2 (en) Reinforced fiber laminated sheet and fiber reinforced resin molded product
JP2007160587A (en) Multilayered base material, preform and manufacturing method of preform
JP2009019202A (en) Molding material, preform and fiber-reinforced resin
WO2018083734A1 (en) Composite material reinforcement substrate, composite material, and production method for composite material reinforcement substrate
JP6801321B2 (en) Laminated base material for rib molding
KR102307989B1 (en) Fiber reinforced composite material having a hollow section and method for manufacturing the same
JP2008132775A (en) Multilayer substrate and preform
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
JP2007046197A (en) Multiaxial nonwoven fabric sheet for fiber-reinforced plastic and method for producing the same
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
JP7344472B2 (en) Reinforced fiber tape material and its manufacturing method, reinforced fiber laminate and fiber reinforced resin molded product using reinforced fiber tape material
JP2005313455A (en) Multi-axis fabric, its production method, preform material, and fiber-reinfoced plastic molding
JP4962632B2 (en) Multilayer substrate, preform, and preform manufacturing method
JP5918171B2 (en) FRP fabric, molding material using FRP fabric, and method for manufacturing FRP fabric
JP2012241183A (en) Fiber composite material and sandwich material using the same
JP2008307818A (en) Multiaxial material for fiber-reinforced thermoplastic resin, and molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746641

Country of ref document: EP

Kind code of ref document: A1