WO2015117496A1 - 一种功率放大器电路及功率放大器 - Google Patents

一种功率放大器电路及功率放大器 Download PDF

Info

Publication number
WO2015117496A1
WO2015117496A1 PCT/CN2014/093609 CN2014093609W WO2015117496A1 WO 2015117496 A1 WO2015117496 A1 WO 2015117496A1 CN 2014093609 W CN2014093609 W CN 2014093609W WO 2015117496 A1 WO2015117496 A1 WO 2015117496A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
power amplifier
microstrip line
circuit
impedance
Prior art date
Application number
PCT/CN2014/093609
Other languages
English (en)
French (fr)
Inventor
余敏德
秦天银
戴丽
冯萍丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14881971.7A priority Critical patent/EP3188363A4/en
Publication of WO2015117496A1 publication Critical patent/WO2015117496A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's

Definitions

  • the present invention relates to power amplification techniques, and more particularly to a power amplifier circuit and a power amplifier.
  • the output of the power amplifier circuit with the TLLM architecture does not need to be provided with an impedance converter; moreover, the power structure of the circuit structure adopts the TLLM architecture can achieve wider channel bandwidth and reduce the output matching size of the power amplifier to improve the power amplifier. Output efficiency, therefore, power amplifiers with TLLM architecture are increasingly favored.
  • the microstrip line connected to the auxiliary power amplifier has a narrow line width and cannot be used for output of high-power data. Therefore, a new power amplifier circuit structure is needed to solve The above question.
  • the embodiments of the present invention provide a power amplifier circuit and a power amplifier, which can enable a power amplifier with a TLLM architecture to be used for high power output without lowering the advantages of the TLLM architecture.
  • an embodiment of the present invention provides a power amplifier circuit, where the circuit includes: a first amplifier, a first microstrip line connected to an input end of the first amplifier, And a second microstrip line connected to the output of the first amplifier;
  • the impedance and line width of the second microstrip line are set according to an output impedance of the power amplifier circuit
  • the first amplifier is an amplifier corresponding to the auxiliary power amplifier.
  • the circuit further includes: a second amplifier, a third microstrip line connected to the input end of the second amplifier, and a fourth microstrip line connected to the output end of the second amplifier.
  • the circuit further includes: a first quarter-wavelength transmission line; a second quarter-wavelength transmission line;
  • first quarter-wavelength transmission line is located at an input end of the first amplifier and is connected to the first microstrip line;
  • the second quarter-wavelength transmission line is located at an output of the second amplifier and is coupled to the fourth microstrip line.
  • the first amplifier, the first microstrip line, the second microstrip line, and the first quarter-wavelength transmission line are connected in series to form a first branch;
  • the second amplifier, the third microstrip line, the fourth microstrip line, and the second quarter-wave transmission line are connected in series to form a second branch; and the first branch and the second branch in parallel.
  • the embodiment of the invention further discloses a power amplifier, the circuit of the power amplifier comprising: a first amplifier, a first microstrip line connected to an input end of the first amplifier, and an output of the first amplifier a second microstrip line connected at the end; wherein
  • the impedance and line width of the second microstrip line are set according to an output impedance of the power amplifier circuit
  • the first amplifier is an amplifier corresponding to the auxiliary power amplifier.
  • the circuit of the power amplifier further includes: a second amplifier, a third microstrip line connected to the input end of the second amplifier, and a fourth microstrip connected to the output end of the second amplifier line.
  • the circuit of the power amplifier further includes: a first quarter-wavelength transmission line; a second quarter-wavelength transmission line;
  • first quarter-wavelength transmission line is located at an input end of the first amplifier and is connected to the first microstrip line;
  • the second quarter-wavelength transmission line is located at an output of the second amplifier and is coupled to the fourth microstrip line.
  • the first amplifier, the first microstrip line, the second microstrip line, and the first quarter-wave transmission line in the circuit of the power amplifier are connected in series to form a first branch;
  • the second amplifier, the third microstrip line, the fourth microstrip line, and the second quarter-wave transmission line are connected in series to form a second branch; and the first branch and the second branch in parallel.
  • the power amplifier circuit and the power amplifier provided by the embodiments of the present invention can set the impedance of the second microstrip line connected to the output end of the first amplifier according to the output impedance of the power amplifier circuit, and according to the first amplifier
  • the load impedance of one path, the matching impedance, and the impedance of the second microstrip line determine a minimum line width of the second microstrip line; thus, the second microstrip line can satisfy both embodiments of the present invention
  • the condition of the power amplifier used in the low power operating state can satisfy the condition of the power amplifier used in the embodiment of the present invention in the high power working state; and, since the second microstrip line can be set according to the actual application situation Therefore, the efficiency of the power amplifier can be improved to achieve high power output of the power amplifier while the power amplifier has low heat loss and does not burn the second microstrip line.
  • the power amplifier circuit structure of the embodiment of the present invention is an improved TLLM frame structure. Therefore, the embodiment of the present invention can enable the power amplifier with the TLLM architecture to be used for high power transmission without reducing the advantages of the TLLM architecture. Out.
  • FIG. 1 is a schematic diagram showing the circuit structure of a power amplifier of a conventional TLLM frame
  • FIG. 2 is a schematic structural diagram of a power amplifier circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a specific implementation of a power amplifier circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a specific circuit of a power amplifier of a conventional TLLM framework
  • FIG. 5 is a schematic diagram 1 of a specific circuit structure of a power amplifier circuit according to an embodiment of the present invention.
  • FIG. 6 is a second schematic structural diagram of a power amplifier circuit according to an embodiment of the present invention.
  • FIG. 7 is a third schematic structural diagram of a power amplifier circuit according to an embodiment of the present invention.
  • FIG. 8 is a fourth schematic structural diagram of a power amplifier circuit according to an embodiment of the present invention.
  • the traditional TLLM architecture used in the power amplifier circuit includes two power amplifiers: one is the main power amplifier and the other is the auxiliary power amplifier; among them, the main power amplifier works in class B or class AB, and the auxiliary power amplifier works in class C.
  • the power point matching of the two power amplifiers can obtain 100 ohms, the efficiency point matching can obtain 50 ohms, and the output combining end directly adopts the 50 ohm microstrip line output.
  • the first power amplifier is an auxiliary power amplifier
  • the second power amplifier is a main power amplifier
  • an output end of the auxiliary power amplifier is connected to a microstrip line having an impedance of 100 ohms and a line width of 0.3 mm
  • a microstrip line having an impedance of 100 ohms and a line width of 0.3 mm
  • the traditional TLLM architecture is used.
  • Power amplifier because the line width is narrow, when the high power output will inevitably have a large heat loss; and the heat loss will inevitably cause the temperature of the microstrip line itself to rise, resulting in power amplification.
  • an embodiment of the present invention provides an improved power amplifier circuit structure. The embodiments of the present invention are further described in detail below with reference to the accompanying drawings.
  • the power amplifier circuit includes: a first amplifier, a first microstrip line connected to an input end of the first amplifier, and a a second microstrip line connected to the output of the first amplifier;
  • the impedance and line width of the second microstrip line are set according to an output impedance of the power amplifier circuit
  • the first amplifier is an amplifier corresponding to the auxiliary power amplifier.
  • the impedance of the second microstrip line can be set according to an output impedance of the power amplifier circuit and a matching circuit; the line width of the second microstrip line can be according to the first branch where the first amplifier is located
  • the load impedance, the matching impedance, and the impedance of the second microstrip line are set; it is noted that the second microstrip line may be composed of N microstrip lines, each of which has its own Characteristic impedance and line width; when the second microstrip line is composed of N microstrip lines, the line width of the second microstrip line is the narrowest line width among the N microstrip lines; wherein N is greater than A positive integer equal to 1.
  • the power amplifier circuit further includes: a second amplifier, a third microstrip line connected to an input end of the second amplifier, and the second A fourth microstrip line connected to the output of the amplifier.
  • the power amplifier circuit further includes: a first quarter-wavelength transmission line; a second quarter-wavelength transmission line;
  • first quarter-wavelength transmission line is located at an input end of the first amplifier and is connected to the first microstrip line;
  • the second quarter-wavelength transmission line is located at an output end of the second amplifier, and Said fourth microstrip line connection.
  • the first amplifier, the first microstrip line, the second microstrip line, and the first quarter-wavelength transmission line are connected in series to form a first branch;
  • the second amplifier, the third microstrip line, the fourth microstrip line, and the second quarter-wave transmission line are connected in series to form a second branch; and the first branch and the second branch in parallel.
  • the circuit structure shown in FIG. 3 is compared with the circuit structure shown in FIG. 1, and it can be seen that the microstrip line having an impedance of 100 ohms and a line width of 0.3 mm is replaced in the circuit structure shown in FIG. a second microstrip line arbitrarily set according to an output impedance; and, the second microstrip line can function to match the first branch when the first amplifier is in an active state, that is, in the power amplifier circuit When in a high power operating state, the second microstrip line can match the matching circuit to match the impedance of the first branch; and the impedance of the first branch when the first amplifier is in the off state Pulling to infinity, that is, when the power amplifier circuit is in a low power working body, the second microstrip line can pull the matching impedance of the first branch to infinity with the matching circuit; thus, adopting the second The microstrip line can simultaneously achieve the effect of impedance matching and turn-off impedance of the first branch where the first amplifier is located, so that the
  • the power amplifier having the circuit structure shown in FIG. 3 can realize the broadband high efficiency and small size of the TLLM architecture. excellent Moreover, since the impedance and the line width of the second microstrip line described in FIG. 3 can be set according to the output impedance of the power amplifier circuit, the power amplifier having the circuit structure shown in FIG. 3 can be used without lowering the TLLM. Based on the architectural advantages, a power amplifier having the circuit structure shown in FIG. 3 is used for high power output.
  • the output load impedance of the first branch, the matching impedance, and the minimum line width of the second microstrip line determine an output matching circuit of the first branch such that the first branch satisfies both the output and the output The signal saturates the output power point impedance, which in turn satisfies the small signal shutdown impedance.
  • the minimum line width of the second microstrip line and the setting order of the impedance and the matching circuit are not limited to the above, and the matching circuit may be preset, and then the second is determined according to the matching circuit.
  • the minimum line width and impedance of the microstrip line, etc., but any order purpose is to make the line width and impedance of the second microstrip line meet the specific practical application, so that the power amplifier circuit structure of the embodiment of the present invention can A power amplifier with a TLLM architecture is used for high power output without reducing the advantages of the TLLM architecture.
  • the first amplifier operates in a class C state, and the second amplifier operates in a class AB; when the entire power amplifier is in a small signal operating state, that is, in a 0.25 Pomax operating state, at this time, The first amplifier operates in class C.
  • the small signal is in the working state, the first amplifier does not work, and the open state is in the direction from the combining point to the micro-dot line 4 (offset4), that is, the impedance infinity state;
  • offset4 micro-dot line 4
  • the second amplifier load impedance is 50 ohms; when the entire power amplifier is in a large signal Working, that is, in a state of saturation (Pomax), at this time, the first amplifier is turned on as the input power increases, to finally reach the saturation power point, when the preset output impedance is 50 ohms, that is, When the output impedance at the waypoint is 50 ohms, the impedance of the first branch where the first amplifier is located and the second branch of the second amplifier are matched to 100 ohms.
  • the impedance is matched according to the target and the microstrip line. 4 impedance and line width, determine the matching circuit structure shown in Figure 4, at this time, because the power of the circuit is large, and the line width of the micro-dot line 4 of 100 ohms is narrow, resulting in the micro
  • the dotted line 4 has more heat loss and more temperature rise, so it will inevitably cause lower power amplifier efficiency, and there is a risk that the microstrip line 4 will rise too high and burn out.
  • FIG. 5 is a schematic diagram of a specific circuit structure of a power amplifier circuit according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a specific circuit structure of a power amplifier circuit according to an embodiment of the present invention
  • FIG. 8 is a fourth schematic structural diagram of a power amplifier circuit according to an embodiment of the present invention.
  • the output power is 900mhz.
  • the first part of the second microstrip line passes through The impedance of the output after the second portion and the third portion is 100 ohms; wherein the first portion, the second portion, and the third portion are each a microstrip line having a specific impedance and a specific line width; further, when When the power amplifier circuit is in a low power operating state, the matching circuit is the structure shown in FIG. 6. At this time, the impedance of the first branch where the first amplifier is located is pulled to infinity by the matching matching circuit.
  • FIG. 7 and FIG. 8 The working principle of FIG. 7 and FIG. 8 is similar to the working principle of FIG. 5 and FIG. 6, except that in the circuit structure shown in FIG. 6 and FIG. 7, only the second microstrip line is disposed on the first amplifier. in.
  • the output power is 900 mhz, and at this time, the entire power is amplified.
  • the impedance or the like determines the impedance and the line width of the second microstrip line, thereby determining the matching circuit structure as shown in FIG. 5, and the output of the circuit shown in FIG. 7 is assumed when the output impedance at the combining point is 50 ohms.
  • the impedance should be 100 ohms.
  • the first part of the second microstrip line passes through that is, the line width is 28.6. Mm, length 5.14mm
  • microstrip line with a characteristic impedance of 3 ohms will match the impedance to 4.29-j ⁇ 4.33 ohms; then, after the second part, the line width is 3.11mm, the length is 25.84mm, and the characteristic impedance is 20
  • the ohmic microstrip line matches the impedance to 100 ohms, that is, the output impedance is 100 ohms; further, when the power amplifier circuit is in a low power operating state, the matching circuit is the structure shown in FIG. At this time, combined with the matching circuit
  • the impedance of the first branch is located a first amplifier pulled infinity.
  • circuit structure shown in FIG. 4 to FIG. 8 only shows the first amplifier in the power amplifier circuit structure, the microstrip line connected to the output end of the first amplifier, and the specific structure of the matching circuit. The other components in the power amplifier circuit structure are not shown.
  • the line width and impedance of the second microstrip line may be arbitrarily set according to the matching circuit, as long as the preset output impedance can be obtained according to the matching circuit and the second microstrip line.
  • the matching circuit When the circuit of the embodiment of the present invention is in a high power state, the matching circuit is adjusted to widen the line width of the second microstrip line, so that the circuit described in the embodiment of the present invention can still match the target impedance. To achieve high power operation; therefore, the power amplifier circuit of the embodiment of the present invention can use the power amplifier for high power output without reducing the advantages of the TLLM architecture.
  • An embodiment of the present invention further provides a power amplifier, the circuit of the power amplifier comprising: a first amplifier, a first microstrip line connected to an input end of the first amplifier, and an output of the first amplifier a second microstrip line connected at the end; wherein
  • the impedance and the line width of the second microstrip line are set according to the output impedance of the power amplifier circuit Set
  • the first amplifier is an amplifier corresponding to the auxiliary power amplifier.
  • the circuit of the power amplifier further includes: a second amplifier, a third microstrip line connected to the input end of the second amplifier, and a fourth microstrip connected to the output end of the second amplifier line.
  • the circuit of the power amplifier further includes: a first quarter-wavelength transmission line; a second quarter-wavelength transmission line;
  • first quarter-wavelength transmission line is located at an input end of the first amplifier and is connected to the first microstrip line;
  • the second quarter-wavelength transmission line is located at an output of the second amplifier and is coupled to the fourth microstrip line.
  • the first amplifier, the first microstrip line, the second microstrip line, and the first quarter-wave transmission line in the circuit of the power amplifier are connected in series to form a first branch;
  • the second amplifier, the third microstrip line, the fourth microstrip line, and the second quarter-wave transmission line are connected in series to form a second branch; and the first branch and the second branch in parallel.
  • the embodiment of the present invention can set the impedance of the second microstrip line connected to the output end of the first amplifier according to the output impedance of the power amplifier circuit, and according to the load impedance, the matching impedance of the first branch where the first amplifier is located, And determining, by the impedance of the second microstrip line, a minimum line width of the second microstrip line; thus, the second microstrip line can satisfy the power amplifier used in the embodiment of the present invention when operating in a low power state
  • the condition can satisfy the condition of the power amplifier used in the embodiment of the present invention in a high power working state; moreover, since the second microstrip line can be based on The application situation is set by itself, so that the power amplifier can achieve high power output while the power amplifier has low heat loss and does not burn the second microstrip line.
  • the power amplifier circuit structure of the embodiment of the present invention is an improved TLLM frame structure. Therefore, the embodiment of the present invention can enable a power amplifier having a TLLM architecture to be used for high power output without lowering the advantages of the TLLM architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

公开了一种功率放大器电路,所述电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,所述第二微带线的阻抗和线宽能够根据所述功率放大器电路的输出阻抗而设置;所述第一放大器为辅助功放对应的放大器。还公开了包括所述功率放大器电路的功率放大器。

Description

一种功率放大器电路及功率放大器 技术领域
本发明涉及功率放大技术,尤其涉及一种功率放大器电路及功率放大器。
背景技术
面对目前日益激烈的市场竞争,大功率的宽带基站产品已经成为行业竞争的焦点,而且在现代无线通信标准中,所述大功率的宽带基站产品均采用具有高峰均比的数字调制信号的宽带线性调制方式,因此,对应用于宽带基站产品中的功率放大器(简称功放)的线性度提出了严格的要求,同时也对功率放大器的信道带宽提出了更高的要求;其中,用于功率放大器电路结构中的TLLM(transformer-less loadmodulated)架构是一种宽带Doherty架构的改进结构。具有所述TLLM架构的功率放大器电路的输出端无需设置阻抗变换器;而且,电路结构采用TLLM架构的功率放大器既能实现更宽的信道带宽,又能够缩小功率放大器的输出匹配尺寸,以提高功放输出效率,因此,具有TLLM架构的功率放大器越来越被人们所青睐。
但是,传统具有TLLM架构的功率放大器电路中,与辅助功放连接的微带线的线宽较窄,无法用于大功率数据的输出,因此,亟需一种新型功率放大器的电路结构,以解决上述问题。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种功率放大器电路及功率放大器,能够在不降低TLLM架构优势的基础上,使得具有TLLM架构的功率放大器用于大功率输出。
本发明实施例的技术方案是这样实现的:本发明实施例提供了一种功率放大器电路,所述电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设置;
所述第一放大器为辅助功放对应的放大器。
上述方案中,所述电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
上述方案中,所述电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所述第四微带线连接。
上述方案中,所述第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
本发明实施例还公开了一种功率放大器,所述功率放大器的电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设置;
所述第一放大器为辅助功放对应的放大器。
上述方案中,所述功率放大器的电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
上述方案中,所述功率放大器的电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所述第四微带线连接。
上述方案中,所述功率放大器的电路中的第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
本发明实施例所提供的功率放大器电路及功率放大器,能够根据功率放大器电路的输出阻抗设置与第一放大器的输出端连接的第二微带线的阻抗,且根据所述第一放大器所处第一支路的负载阻抗、匹配阻抗、以及所述第二微带线的阻抗确定所述第二微带线的最小线宽;如此,使所述第二微带线既能满足本发明实施例中所用功率放大器在小功率工作状态时的条件,又能满足本发明实施例中所用功率放大器在大功率工作状态时的条件;而且,由于所述第二微带线能够根据实际应用情况自行设置,因此,能够在功率放大器热损耗较低,且不烧毁所述第二微带线的同时,提升功率放大器的效率,以实现功率放大器的大功率输出。另外,本发明实施例功率放大器电路结构为改进的TLLM框架结构,因此,本发明实施例能在不降低TLLM架构优势的同时,使具有TLLM架构的功率放大器用于大功率输 出。
附图说明
图1为传统TLLM框架的功率放大器的电路结构示意图;
图2为本发明实施例功率放大器电路的结构示意图;
图3为本发明实施例功率放大器电路的具体实现的结构示意图;
图4为传统TLLM框架的功率放大器具体电路结构示意图;
图5为本发明实施例功率放大器电路的具体电路结构示意图一;
图6为本发明实施例功率放大器电路的具体电路结构示意图二;
图7为本发明实施例功率放大器电路的具体电路结构示意图三;
图8为本发明实施例功率放大器电路的具体电路结构示意图四。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明。
应用于功率放大器电路中的传统的TLLM架构包括两个功放:一个为主功放,一个为辅助功放;其中,主功放工作在B类或者AB类,辅助功放工作在C类。两个功放的功率点匹配能够得到100欧姆,效率点匹配能够得到50欧姆,输出合路端直接采用50欧姆微带线输出。
如图1所示,所述第一功放为辅助功放;所述第二功放为主功放;其中,所述辅助功放的输出端与阻抗为100ohm、线宽为0.3mm的微带线连接;由于大功率输出时,微带线的金属导体带和接地板上都存在高频表面电流,因此存在热损耗;又由于微带线的线宽和热损耗成正比关系,如此,具有传统TLLM架构的功率放大器,由于线宽较窄,当大功率输出时必然会较大的热损耗;且热损耗必然会造成微带线自身的温度升高,导致功率放大 器的效率降低,因而存在微带线自身温度过高而导致烧毁的风险。基于此,具有传统TLLM架构的功率放大器无法用于大功率输出。为解决上述问题,本发明实施例提供了一种改进的功率放大器电路结构,下面结合附图,对本发明实施例做进一步详细说明。
图2为本发明实施例功率放大器电路的示意图,如图2所示,所述功率放大器电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设置;
所述第一放大器为辅助功放对应的放大器。
具体地,所述第二微带线的阻抗能够根据功率放大器电路的输出阻抗、以及匹配电路而设置;所述第二微带线的线宽能够根据所述第一放大器所处第一支路的负载阻抗、匹配阻抗、以及所述第二微带线的阻抗而设置;值得注意的是,所述第二微带线可以由N条微带线组成,每条微带线均有自身的特征阻抗以及线宽;当所述第二微带线由N条微带线组成时,所述第二微带线的线宽为N条微带线中线宽最窄的;其中,N为大于等于1的正整数。
参见图3所示,在图2所示方案基础上,所述功率放大器电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
上述方案中,所述功率放大器电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所 述第四微带线连接。
上述方案中,所述第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
图3所示的电路结构与图1所示的电路结构相比,可以看出,由于图3所示的电路结构中将阻抗为100欧姆(ohm)、线宽为0.3mm的微带线替换为根据输出阻抗而任意设置的第二微带线;而且,所述第二微带线能够在第一放大器处于工作状态时起到匹配第一支路的作用,即:在所述功率放大器电路处于大功率工作状态时,所述第二微带线能够与匹配电路实现匹配所述第一支路的匹配阻抗作用;又能在第一放大器处于关断状态时,将第一支路的阻抗拉到无穷大,即:在所述功率放大器电路处于小功率工作状体时,所述第二微带线能够与匹配电路将所述第一支路的匹配阻抗拉到无穷大;如此,采用第二微带线能够同时达到所述第一放大器所处第一支路的阻抗匹配和关断阻抗的效果,使得具有图3所示电路结构的功率放大器能够发挥TLLM架构的宽带高效率、小尺寸的优势;而且,由于图3中所述第二微带线的阻抗和线宽能够根据所述功率放大器电路的输出阻抗而设置,因此,具有图3所示电路结构的功率放大器,能够在不降低TLLM架构优势的基础上,使得具有图3所示电路结构的功率放大器用于大功率输出。
在实际应用中,首先确定第一放大器所处第一支路的输出负载阻抗、以及所述第一支路的匹配阻抗;其中,所述第一放大器的匹配阻抗包括输出饱和功率点阻抗和关断阻抗;其次,根据所述第一放大器的输出负载阻抗和匹配阻抗、以及所述第一支路的输出电流确定与所述第一放大器的输出端连接的第二微带线的最小线宽和阻抗;最后,根据所述第一放大器所 处第一支路的输出负载阻抗、匹配阻抗、以及第二微带线的最小线宽确定所述第一支路的输出匹配电路,使得所述第一支路在输出匹配同时既能满足大信号饱和输出功率点阻抗,又能满足小信号关断阻抗。
值得注意的是,在实际应用中,所述第二微带线的最小线宽和阻抗、匹配电路的设置顺序并不仅限于上述情况,还可以先预设匹配电路,然后根据匹配电路确定第二微带线的最小线宽和阻抗等,但是,任何顺序目的都是使所述第二微带线的线宽和阻抗能够满足具体实际应用情况,以使本发明实施例功率放大器电路结构能够在不降低TLLM架构优势的同时,使具有TLLM架构的功率放大器用于大功率输出。
如下结合具体实施例对本发明做进一步详细说明。
具体地,如图1所示,所述第一放大器工作于C类状态,第二放大器工作于AB类;当整个功率放大器处于小信号工作状态,即处于0.25Pomax工作状态,此时,由于所述第一放大器工作于C类,在小信号工作状态时,所述第一放大器不工作,从合路点到微点线4(offset4)方向上呈现开路状态,即阻抗无穷大状态;此时,整个功率放大器电路只有第二放大器工作,当预设输出阻抗为50欧姆时,即合路点处输出阻抗为50欧姆时,所述第二放大器负载阻抗为50欧姆;当整个功率放大器处于大信号工作,即处于饱和(Pomax)工作状态,此时,所述第一放大器随着输入功率的增大而处于开启状态,以最终达到饱和功率点,当预设输出阻抗为50欧姆时,即合路点处输出阻抗为50欧姆时,所述第一放大器所处第一支路和第二放大器所处第二支路匹配后的阻抗均为100欧姆。
图4传统TLLM框架的功率放大器具体电路结构示意图;以输出功率为900mhz为例,此时,所述整个功率放大器处于大功率工作状态,如图4所示,预设目标匹配阻抗为Z=2+j3,其中,所述2+j3表示阻抗点,即将阻抗匹配到2+j3点上,且阻抗值为2+j3,j可由微带线结构而确定;为使图4 所示的电路结构适应于功率放大器的关断状态,需设置一微带线4,所述微带线4的阻抗为100欧姆,线宽为0.3mm,根据目标匹配阻抗以及所述微带线4的阻抗和线宽,确定出图4所示的匹配电路结构,此时,由于所述电路的功率较大,且100欧姆的所述微点线4的线宽较窄,导致所述微点线4热损耗较多,温度升高较多,因此,必然会引起功放效率的较低,且存在所述微带线4温升过高而烧毁的风险。
为对现有图4所示的TLLM框架进行改进,本发明实施例提出了一种新型功率放大器电路;图5为本发明实施例功率放大器电路的具体电路结构示意图一;图6为本发明实施例功率放大器电路的具体电路结构示意图二;图7为本发明实施例功率放大器电路的具体电路结构示意图三;图8为本发明实施例功率放大器电路的具体电路结构示意图四。
同样假设输出功率为900mhz为例,此时,所述整个功率放大器处于大功率工作状态,如图5所示,此时,所述功率放大器处于大功率工作状态,预设目标匹配阻抗为Z=2+j3,根据目标匹配阻抗、所述第一放大器的负载阻抗等确定出所述第二微带线的阻抗和线宽,进而确定出如图5所示的匹配电路结构,假设合路点处输出阻抗为50欧姆时,图5所示的电路的输出阻抗则应为100欧姆,此时,由于目标匹配阻抗点为2+j×3,经过所述第二微带线的第一部分、第二部分、第三部分后输出的阻抗为100欧姆;其中,所述第一部分、第二部分和第三部分均为一有特定阻抗、特定线宽的微带线;进一步地,当所述功率放大器电路处于小功率工作状态时,所述匹配电路即为图6所示的结构,此时,结合匹配电路将所述第一放大器所处的第一支路的阻抗拉到无穷大。
图7和图8的工作原理、与图5和图6的工作原理相似,只是图6和图7所示的电路结构中,仅是将所述第二微带线设置于所述第一放大器中。
具体地,同样假设输出功率为900mhz为例,此时,所述整个功率放大 器处于大功率工作状态,如图7所示,此时,所述功率放大器处于大功率工作状态,预设目标匹配阻抗为Z=2+j3,根据目标匹配阻抗、所述第一放大器的负载阻抗等确定出所述第二微带线的阻抗和线宽,进而确定出如图5所示的匹配电路结构,假设合路点处输出阻抗为50欧姆时,图7所示的电路的输出阻抗则应为100欧姆,若采用介电常数为9.6的微波板材,此时,由于目标匹配阻抗点为2+j×3,经过所述第二微带线的第一部分,即线宽为28.6mm、长度为5.14mm、特征阻抗为3欧姆的微带线将阻抗匹配到4.29-j×4.33欧姆;随后,经过第二部分,即线宽为3.11mm、长度为25.84mm、特征阻抗为20欧姆的微带线将阻抗匹配到100欧姆,即实现输出阻抗为100欧姆的目的;进一步地,当所述功率放大器电路处于小功率工作状态时,所述匹配电路即为图8所示的结构,此时,结合匹配电路将所述第一放大器所处的第一支路的阻抗拉到无穷大。
值得注意的是,图4至图8所示的电路结构仅给出了功率放大器电路结构中的第一放大器、与所述第一放大器的输出端连接的微带线、以及匹配电路的具体结构,所述功率放大器电路结构中的其他组成均未示出。另外,所述第二微带线的线宽、阻抗可以根据匹配电路而任意设置,只要根据匹配电路以及第二微带线能够得到预设输出阻抗即可。
当本发明实施例所述的电路处于大功率状态时,调节匹配电路,以将所述第二微带线的线宽加宽后,使本发明实施例所述的电路依然能够匹配得到目标阻抗,以实现大功率工作;因此,采用本发明实施例功率放大器电路能在不降低TLLM架构优势的同时,使功率放大器用于大功率输出。
本发明实施例还提供了一种功率放大器,所述功率放大器的电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设 置;
所述第一放大器为辅助功放对应的放大器。
上述方案中,所述功率放大器的电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
上述方案中,所述功率放大器的电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所述第四微带线连接。
上述方案中,所述功率放大器的电路中的第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
以上所述仅是本发明实施例的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明实施例的保护范围。
工业实用性
本发明实施例能够根据功率放大器电路的输出阻抗设置与第一放大器的输出端连接的第二微带线的阻抗,且根据所述第一放大器所处第一支路的负载阻抗、匹配阻抗、以及所述第二微带线的阻抗确定所述第二微带线的最小线宽;如此,使所述第二微带线既能满足本发明实施例中所用功率放大器在小功率工作状态时的条件,又能满足本发明实施例中所用功率放大器在大功率工作状态时的条件;而且,由于所述第二微带线能够根据实 际应用情况自行设置,因此,能够在功率放大器热损耗较低,且不烧毁所述第二微带线的同时,提升功率放大器的效率,以实现功率放大器的大功率输出。另外,本发明实施例功率放大器电路结构为改进的TLLM框架结构,因此,本发明实施例能在不降低TLLM架构优势的同时,使具有TLLM架构的功率放大器用于大功率输出。

Claims (8)

  1. 一种功率放大器电路,所述电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
    所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设置;
    所述第一放大器为辅助功放对应的放大器。
  2. 根据权利要求1所述的电路,其中,所述电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
  3. 根据权利要求2所述的电路,其中,所述电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
    其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
    所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所述第四微带线连接。
  4. 根据权利要求3所述的电路,其中,所述第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
    所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
  5. 一种功率放大器,所述功率放大器的电路包括:第一放大器、与所述第一放大器的输入端连接的第一微带线、以及与所述第一放大器的输出端连接的第二微带线;其中,
    所述第二微带线的阻抗和线宽根据所述功率放大器电路的输出阻抗设 置;
    所述第一放大器为辅助功放对应的放大器。
  6. 根据权利要求5所述的功率放大器,其中,所述功率放大器的电路还包括:第二放大器、与所述第二放大器的输入端连接的第三微带线、以及与所述第二放大器的输出端连接的第四微带线。
  7. 根据权利要求6所述的功率放大器,其中,所述功率放大器的电路还包括:第一四分之一波长传输线;第二四分之一波长传输线;
    其中,所述第一四分之一波长传输线位于所述第一放大器的输入端,并与所述第一微带线连接;
    所述第二四分之一波长传输线位于所述第二放大器的输出端,并与所述第四微带线连接。
  8. 根据权利要求7所述的功率放大器,其中,所述功率放大器的电路中的第一放大器、第一微带线、第二微带线以及第一四分之一波长传输线四者串联,形成第一支路;
    所述第二放大器、第三微带线、第四微带线以及第二四分之一波长传输线四者串联,形成第二支路;且所述第一支路与所述第二支路并联。
PCT/CN2014/093609 2014-08-25 2014-12-11 一种功率放大器电路及功率放大器 WO2015117496A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14881971.7A EP3188363A4 (en) 2014-08-25 2014-12-11 Power amplifier circuit and power amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422449.7 2014-08-25
CN201410422449.7A CN105471398A (zh) 2014-08-25 2014-08-25 一种功率放大器电路及功率放大器

Publications (1)

Publication Number Publication Date
WO2015117496A1 true WO2015117496A1 (zh) 2015-08-13

Family

ID=53777302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093609 WO2015117496A1 (zh) 2014-08-25 2014-12-11 一种功率放大器电路及功率放大器

Country Status (3)

Country Link
EP (1) EP3188363A4 (zh)
CN (1) CN105471398A (zh)
WO (1) WO2015117496A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545081A (zh) * 2019-09-06 2019-12-06 北京国联万众半导体科技有限公司 一种超宽带高功率射频放大器合成匹配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834139A (zh) * 2017-10-20 2018-03-23 绵阳鑫阳知识产权运营有限公司 一种低噪声放大器的传输线结构
CN111416578B (zh) * 2020-05-20 2023-05-26 优镓科技(北京)有限公司 基于低Q输出网络的宽带集成Doherty功率放大器
CN117674747B (zh) * 2024-01-31 2024-04-12 苏州悉芯射频微电子有限公司 一种高线性高效率的非对Doherty功率放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086825A (ja) * 2004-09-16 2006-03-30 Seiko Epson Corp 多層配線基板,及び、信号安定化方法
CN101106358A (zh) * 2007-08-01 2008-01-16 锐迪科无线通信技术(上海)有限公司 线性射频功率放大器电路及其优化方法
CN101582682A (zh) * 2009-06-12 2009-11-18 华为技术有限公司 一种功率放大器和发射机
CN102137518A (zh) * 2010-01-25 2011-07-27 上海华为技术有限公司 Doherty功放和多频段信号参数调整装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890810A (ja) * 1981-11-26 1983-05-30 Alps Electric Co Ltd マイクロ波回路装置
US5420541A (en) * 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
KR20060077818A (ko) * 2004-12-31 2006-07-05 학교법인 포항공과대학교 비대칭 전력 구동을 이용한 전력 증폭 장치
EP2159912A1 (en) * 2008-08-29 2010-03-03 Alcatel, Lucent Multi-band Doherty amplifier
KR101677555B1 (ko) * 2010-02-25 2016-11-21 삼성전자주식회사 도허티 증폭기에서 낮은 전력 영역에서의 효율을 향상시키기 위한 장치
CN102185564A (zh) * 2011-04-29 2011-09-14 中兴通讯股份有限公司 功率放大装置及功放电路
CN103178785B (zh) * 2011-12-20 2016-08-03 上海贝尔股份有限公司 一种新型道尔蒂功率放大器
US8653889B1 (en) * 2012-09-06 2014-02-18 Alcatel Lucent Doherty amplifier having compact output matching and combining networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086825A (ja) * 2004-09-16 2006-03-30 Seiko Epson Corp 多層配線基板,及び、信号安定化方法
CN101106358A (zh) * 2007-08-01 2008-01-16 锐迪科无线通信技术(上海)有限公司 线性射频功率放大器电路及其优化方法
CN101582682A (zh) * 2009-06-12 2009-11-18 华为技术有限公司 一种功率放大器和发射机
CN102137518A (zh) * 2010-01-25 2011-07-27 上海华为技术有限公司 Doherty功放和多频段信号参数调整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188363A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545081A (zh) * 2019-09-06 2019-12-06 北京国联万众半导体科技有限公司 一种超宽带高功率射频放大器合成匹配方法

Also Published As

Publication number Publication date
EP3188363A4 (en) 2017-08-09
EP3188363A1 (en) 2017-07-05
CN105471398A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN110785926B (zh) 具有大rf分数和瞬时带宽的反向多尔蒂功率放大器
TWI766983B (zh) 具有大的射頻及瞬時頻寬的反相杜赫功率放大器
WO2015117496A1 (zh) 一种功率放大器电路及功率放大器
US20180026588A1 (en) Doherty amplifier and power amplifier
EP2536025A1 (en) Power amplifier device and power amplifier circuit
US20150070094A1 (en) Doherty power amplifier with coupling mechanism independent of device ratios
EP2704317A1 (en) Power amplifier device and power amplifier circuit
Merrick et al. A wideband sequential power amplifier
WO2024139069A1 (zh) 射频发射装置及其实现方法
Kang et al. 1.6–2.1 GHz broadband Doherty power amplifiers for LTE handset applications
Imai et al. An 80-W packaged GaN high power amplifier for CW operation in the 13.75–14.5 GHz band
KR102225751B1 (ko) GaN FET를 이용한 펄스드 레이더용 200W급 전력증폭기
KR101094067B1 (ko) 클래스 f 및 인버스 클래스 f 도허티 증폭기
Meng et al. A broadband high-efficiency Doherty power amplifier with continuous inverse class-F design
US10601375B2 (en) Modified three-stage doherty amplifier
Li et al. A 600W broadband three-way Doherty power amplifier for multi-standard wireless communications
JP6109868B2 (ja) 高周波増幅器
CN210327509U (zh) 一种新型的反向doherty放大器
Dani et al. 4W X-band high efficiency MMIC PA with output harmonic injection
KR102224203B1 (ko) IMFET를 이용한 광대역 Class-J 전력증폭기
Wong et al. Doherty amplifier combines high power and efficiency
Jafari et al. Linear doherty power amplifier with enhanced back-off efficiency mode for LTE applications
Tuffy et al. A linearized, high efficiency 2.7 GHz wideband Doherty power amplifier with Class-J based performance enhancement
KR101654927B1 (ko) 광대역 도허티 전력 증폭기
Barthwal et al. Wideband tri-stage Doherty power amplifier with asymmetric current ratios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014881971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881971

Country of ref document: EP