WO2015115604A1 - Laser melt-cutting method and plate-form glass product having melt-cut face - Google Patents

Laser melt-cutting method and plate-form glass product having melt-cut face Download PDF

Info

Publication number
WO2015115604A1
WO2015115604A1 PCT/JP2015/052697 JP2015052697W WO2015115604A1 WO 2015115604 A1 WO2015115604 A1 WO 2015115604A1 JP 2015052697 W JP2015052697 W JP 2015052697W WO 2015115604 A1 WO2015115604 A1 WO 2015115604A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
cutting line
planned cutting
start position
product
Prior art date
Application number
PCT/JP2015/052697
Other languages
French (fr)
Japanese (ja)
Inventor
尚利 稲山
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2015560041A priority Critical patent/JP6350884B2/en
Publication of WO2015115604A1 publication Critical patent/WO2015115604A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/147Features outside the nozzle for feeding the fluid stream towards the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/04Cutting or splitting in curves, especially for making spectacle lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a laser fusing method for cutting a workpiece into a predetermined shape by irradiating a workpiece such as a plate glass with a laser and melting a region irradiated with the laser, and a plate glass product having a molten section.
  • a workpiece such as a plate glass with a laser and melting a region irradiated with the laser, and a plate glass product having a molten section.
  • one of the processing methods for sheet glass products is a technique called laser fusing.
  • This method irradiates a sheet glass with a laser and scans the laser along a trajectory along the cutting line of the sheet glass, thereby melting the region of the sheet glass irradiated with the laser, It is a method of cutting out a sheet glass product having a shape according to the scanning trajectory from the sheet glass.
  • FIG. 13 is a plan view for conceptually explaining an example of cutting out the product portion 102 from the sheet glass 101 by laser cutting.
  • laser fusing to the plate glass 101 is performed by irradiating a laser 112 from the laser irradiation device 111 (indicated by a two-dot chain line in FIG. 13) toward the plate glass 101 and this laser irradiation device. This is performed by scanning the laser 112 by relative movement between the glass 111 and the plate glass 101.
  • the laser 112 scans around the product portion 102 (draws a closed curve) along a planned cutting line 103 (indicated by a one-dot chain line in FIG. 13) according to the shape of the product portion 102 to be cut out.
  • the irradiation start position P11 and the irradiation end position P12 of the laser 112 are set outside the planned cutting line 103 as viewed from the product part 102, that is, on the non-product part 104 side.
  • the laser 112 enters the straight line region 103a along the predetermined side of the product portion 102 of the planned cutting line 103 that forms a closed curve, and makes a round along the planned cutting line 103 and then on the straight line region 103a.
  • a trajectory 120 that departs from the outside is drawn.
  • FIG. 14 is an enlarged view of the vicinity of the entry start position P13 of the laser 112 on the planned cutting line 103 and the separation start position P14 on the planned cutting line 103.
  • FIG. 14 the slits 121 that have a certain width dimension L around the planned cutting line 103 and penetrate the plate glass 101 in the front and back directions are melted by the irradiation of the laser 112. It is formed. Since the width dimension L of the slit 121 is necessarily smaller than the width dimension of the irradiation region 113 of the laser 112 on the surface of the plate-like glass 101 (in FIG. 14, the region subjected to fine line hatching), that is, the spot diameter D.
  • the laser 112 is also irradiated on both sides in the width direction of the slit 121, and the regions on both sides in the width direction of the slit 121 are heated not a little. Therefore, as shown in FIGS. 13 and 14, when the laser 112 scans around the product portion 102 along the planned cutting line 103 for just one round, the laser 112 enters the start start position P13 and the start start position P14.
  • the scanning trajectory 120 of the laser 112 intersects at the entry start position P13 (that is, the departure start position P14).
  • the peripheral portion of the product portion 102 is irradiated with the laser 112 twice immediately after the start of fusing and immediately before the end of fusing.
  • the region irradiated with the laser 112 in an overlapping manner is excessively heated as compared with the other portions, so that deformation due to softening or the like is caused, resulting in deterioration of the shape quality of the product portion 102. There is a fear.
  • this fusing method irradiates a part or the whole of a plate-shaped workpiece with laser, scans the laser along the planned cutting line of the workpiece that is a closed curve, and melts the workpiece,
  • a laser fusing method that divides a workpiece into a product part and a non-product part. The laser enters the cutting line from the non-product part side, scans along the cutting line, and then the laser is cut off from the cutting line.
  • the separation start position at which the laser starts separation from the planned cutting line is set behind the laser scanning direction from the entry start position at which the laser starts entering the planned cutting line. Characterized by a point offset to the side.
  • the laser is scanned so as to make a round around the product part or the non-product part along the planned cutting line according to the shape of the product part or the non-product part to be cut.
  • the departure start position where the laser starts to leave the planned cutting line is intentionally offset to the rear side in the scanning direction of the laser from the start position where the laser starts entering the planned cutting line. In other words, the laser starts to leave the planned cutting line before going around the planned cutting line.
  • a case where a product part surrounded by the planned cutting line is cut out from the work by scanning the laser along the planned cutting line and melting the work can be considered.
  • work is considered.
  • the laser enters the cutting line from the side of the non-product part located outside the cutting line, scans along the cutting line, and then scans the laser on the cutting line. It is better to take a trajectory for separating from the non-product part side.
  • the laser enters the cutting target line from the side of the non-product part located inside the planned cutting line and follows the planned cutting line. After scanning, it is preferable to take a trajectory for separating the laser from the planned cutting line toward the non-product part.
  • the laser may enter the planned cutting line so that the laser scanning trajectory when passing through the entry start position is in contact with the planned cutting line.
  • the laser may be separated from the planned cutting line so that the scanning trajectory of the laser when passing the separation start position is in contact with the planned cutting line.
  • the scanning locus is bent at the approach start position when entering at a predetermined angle with respect to the planned cutting line because the laser takes a scanning locus to enter the planned cutting line from the non-product part side. Change of direction is necessary. In this case, since the scanning speed of the laser is lowered when the direction is changed, the laser irradiation time at the direction changing position (entrance start position) becomes longer, and there is a problem that the heating amount increases accordingly.
  • the laser is allowed to enter so that the laser scanning trajectory when passing the entry start position is in contact with the planned cutting line, the approach trajectory of the laser on the planned cutting line is asymptotic to the planned cutting line, for example. Can be curved.
  • laser fusing can be advanced without reducing the scanning speed at the start of entry, and excessive heating of the product part can be suppressed.
  • the above description applies similarly when the laser is separated from the planned cutting line toward the non-product part. Therefore, by detaching the laser so that it is parallel to the planned cutting line at the detachment start position, laser fusing can be completed without reducing the scanning speed even at the start of detachment.
  • the laser fusing method according to the present invention may be one in which the laser is scanned so that the laser starts an approach on the planned cutting line while drawing an arcuate locus.
  • the laser may be scanned so that the laser draws an arc-shaped trajectory and starts to leave the planned cutting line.
  • the laser approach angle at the approach start position (the angle formed by the laser scanning direction and the planned cutting line) should be minimized. Can do. Thereby, since the laser direction change to the direction along the planned cutting line can be minimized, the laser fusing can be advanced without reducing the scanning speed as much as possible at the start of the approach.
  • the laser should be allowed to enter the planned cutting line with an arc-shaped trajectory so that the laser scanning trajectory when passing the approach start position is in contact with the planned cutting line. It's even better.
  • the laser is separated from the planned cutting line toward the non-product part. Therefore, if the laser starts to detach from the planned cutting line to the non-product part side by drawing an arc-shaped trajectory, the laser fusing can be completed without reducing the scanning speed as much as possible at the start of detachment. it can.
  • the laser fusing method according to the present invention is such that the laser scanning trajectory is such that both the laser entry start position and the separation start position are located on a straight line region corresponding to a predetermined side of the product portion of the planned cutting line. May be set.
  • the product part to be cut out has a shape having a side (for example, a rectangular shape)
  • the laser fusing method draws an arc-shaped trajectory and starts the approach to the cutting line, the radius of the laser entering trajectory is R1, and draws an arc-shaped trajectory from the planned cutting line.
  • the radius of the laser separation locus to start is R2
  • the laser spot diameter is D
  • the width dimension of the slit formed by melting the workpiece by laser irradiation is L
  • the distance from the entry start position to the separation start position may satisfy the following formula 1.
  • the offset amount S may satisfy the following mathematical formula 2. More preferably, the offset amount may satisfy Equation 3 below.
  • the present inventor specifically examined the relationship between the offset amount from the laser entry start position to the separation start position and various parameters related to the laser scanning conditions, and in particular, the laser entry drawing an arc-shaped locus.
  • the radius R1 of the locus, the radius R2 of the separation locus, the laser spot diameter D, and the width L of the slit formed by melting the workpiece by laser irradiation are dominant to the offset amount S. found.
  • the range of the offset amount within which the peripheral shape of the product part can be tolerated can be calculated by the mathematical formula using the above parameters.
  • the above formulas 1 to 3 are based on the above intensive studies.
  • the deformation amount (protrusion amount) from the peripheral portion of the product portion is determined as the product.
  • the laser can be scanned (fused) at such a speed that the productivity can be maintained while suppressing the size so as not to cause a problem in the shape quality of the portion.
  • the product part may be a substantially rectangular plate glass.
  • the present invention suppresses excessive heating of the peripheral portion of the product portion in the vicinity of the laser entry start position, and makes it possible to prevent softening and deformation of the peripheral portion as much as possible. Since it is a thing, it can apply suitably for the plate-shaped glass product by which high shape quality is requested
  • this glass product is obtained by cutting a part or the whole of a plate-shaped workpiece from a non-product part by fusing, and in a plate-like glass product having one or more sides, a melted cross section generated by fusing Is formed along the side, and a protruding portion that protrudes toward the non-product portion side is formed on the molten cross section, and the maximum protrusion amount of the protruding portion toward the non-product portion side is 10 ⁇ m or more and 100 ⁇ m or less. Characterized with a certain point.
  • the sheet glass cut by fusing is provided as it is as a sheet glass product without subjecting the melted cross section formed along the side to end face processing such as polishing. It becomes possible.
  • the plate-like glass product according to the present invention may have a length dimension in the direction along the side of the protrusion of 100 ⁇ m or more and 2000 ⁇ m or less, and in that case, the dimension of the protrusion in the plate thickness direction may be It may be larger in the range of 5 ⁇ m or more and 100 ⁇ m or less than the dimension in the thickness direction at the portion other than the protruding portion.
  • the present invention it is possible to cut a product portion from a workpiece by laser cutting while ensuring shape quality. Moreover, when a product part is a plate glass product, it becomes possible to provide the plate glass cut
  • FIG. 2 is a cross-sectional view of the main part AA of the fusing device shown in FIG. It is a whole top view for demonstrating the scanning aspect of the laser which concerns on one Embodiment of this invention. It is a principal part top view of FIG. It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a figure which shows the mode at the time of starting the irradiation of a laser.
  • a sheet glass 1 formed by a predetermined method is a cutting object (work), and one or a plurality of sheet glass products (product part 2) are cut out from the sheet glass 1.
  • a glass having a thickness of 10 ⁇ m or more and 500 ⁇ m or less is preferable, and a glass having a thickness of 10 ⁇ m or more and 300 ⁇ m or less is better. More preferably, the thickness is 200 ⁇ m or less.
  • each rectangular part has a substantially rectangular shape.
  • the cutout shape of the product part 2 (the shape of the planned cutting line 4 serving as the boundary between the product part 2 and the non-product part 3) is set so as to have a shape (rectangular shape).
  • FIG. 1 is a schematic plan view of a laser fusing device 10 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the main part AA of the laser fusing device 10.
  • the laser fusing device 10 applies a fusing laser 11 to the plate glass 1 along a planned cutting line 4 (shown by a one-dot chain line in FIG. 1) of the plate glass 1.
  • It mainly includes a laser irradiation device 12 for irradiation, an assist gas injection device 15 for injecting an assist gas 14 toward the irradiation region 13 of the laser 11, and a support base 16 for supporting the placed glass sheet 1.
  • the laser irradiation device 12 and the assist gas injection device 15 are omitted in order to facilitate understanding of the scanning mode of the laser 11.
  • the laser irradiation device 12 includes at least an oscillator that is a generation source of a laser 11 typified by a carbon dioxide laser, a YAG laser, and the like, and a condenser lens (both not shown).
  • the laser 11 can be irradiated at a predetermined angle (substantially vertical in the present embodiment).
  • the irradiated laser 11 may be continuous light or pulsed light. Further, the output of the laser 11 is appropriately adjusted depending on the material and thickness of the sheet glass 1, the scanning speed of the laser 11, and the like.
  • the laser fusing apparatus 10 which concerns on this invention was further equipped with the laser irradiation apparatus for slow cooling which irradiates the laser for slow cooling defocused in the predetermined
  • the laser irradiation apparatus for slow cooling which irradiates the laser for slow cooling defocused in the predetermined
  • the assist gas injection device 15 is configured to be able to inject the assist gas 14 toward the irradiation region 13 of the laser 11 in order to blow off the melt generated as the plate 11 is irradiated with the laser 11.
  • the assist gas injection device 15 is disposed above the region that becomes the product part 2 of the sheet glass 1, and the assist gas 14 is directed to the irradiation region 13 of the laser 11 from above the region that becomes the product part 2.
  • An injection port is installed diagonally downward. Thereby, the melt generated in the cutting (melting) region of the sheet glass 1 is blown off toward the non-product part 3 side by the assist gas 14.
  • assist gas 14 which can be used is not specifically limited,
  • well-known gas such as oxygen gas, water vapor
  • the injection mode of the assist gas injection device 15 is not limited to the above form.
  • an assist gas injection device 15 may be arranged on the product portion 2 so that the assist gas 14 can be injected in a substantially horizontal direction with respect to the irradiation region 13 of the laser 11. Further, it is sufficient if the assist gas injection device 15 is provided as necessary, and it is not always necessary to provide it.
  • the support table 16 supports the glass sheet 1 to be cut in a horizontal posture from below.
  • the first support portion 17 capable of supporting the region that becomes the substantially rectangular product portion 2, and the product It has the 2nd support part 18 which is located in the circumference
  • the first support portion 17 and the second support portion 18 are separated by a groove portion 19. This groove portion 19 is provided under the scanning region of the laser 11 set in advance in a predetermined locus.
  • Scanning of the laser 11 is performed by moving the laser irradiation device 12 and the assist gas injection device 15 relative to the support table 16 and the plate-like glass 1 supported on the support table 16 in the horizontal direction.
  • the scanning of the laser 11 is performed by irradiating the sheet glass 1 to be melted with the laser 11 and scanning the laser 11 along the planned cutting line 4 of the sheet glass 1 having a closed curve.
  • the glass-like glass 1 is melted, and a locus capable of cutting out the product part 2 surrounded by the planned cutting line 4 from the plate-like glass 1 is drawn.
  • the laser 11 causes the laser 11 to enter the planned cutting line 4 from the outside of the planned cutting line 4 when viewed from the product portion 2, and to the planned cutting line 4.
  • a scanning trajectory 20 for taking the laser 11 away from the cutting line 4 to the outside is taken.
  • the irradiation start position P1 of the laser 11 is the starting point of the scanning locus 20 (more precisely, the starting point of the center line of the scanning locus 20) and is set outside the planned cutting line 4 (on the non-product part 3 side). .
  • the irradiation end position P2 of the laser 11 is the end point of the scanning locus 20, and is set outside the planned cutting line 4 in the same manner as the irradiation start position P1.
  • the scanning trajectory 20 here indicates the trajectory formed by the irradiation region 13 of the laser 11 precisely, and is therefore displayed as a region having a certain width direction (region surrounded by a two-dot chain line).
  • the scanning trajectory 20 (entrance locus 20a) of the laser 11 is set so that the laser 11 starts an approach on the planned cutting line 4 while drawing an arc-like locus.
  • the laser 11 is caused to enter the planned cutting line 4 so that the scanning trajectory of the laser 11 at the time of passing the approach start position P3 that starts entering the planned cutting line 4 is in contact with the planned cutting line 4 (approach trajectory). 20a is set).
  • the scanning trajectory 20 (detachment locus 20b) of the laser 11 is set so that the laser 11 draws an arc-shaped locus and starts to leave from the planned cutting line 4 when leaving. Further, the laser 11 is separated from the planned cutting line 4 so that the scanning trajectory of the laser 11 when contacting the planned cutting line 4 when passing the separation starting position P4 where the separation from the planned cutting line 4 is started (separated trace). 20b is set).
  • the corresponding planned cutting line 4 also has a substantially rectangular shape with rounded corners. Therefore, the approach start position P3 and the exit start position P4 of the laser 11 are both on the straight region 4a along the predetermined side of the product portion 2 (here, the upper short side in FIG. 3) of the planned cutting line 4.
  • the scanning trajectory 20 of the laser 11 is set so as to be positioned at.
  • FIG. 4 is an enlarged view of the crossing portion of the scanning trajectory 20, and the separation start position P ⁇ b> 4 of the laser 11 from the planned cutting line 4 is set to be higher than the approach start position P ⁇ b> 3 of the planned cutting line 4. It is offset to the rear side in the scanning direction (left side as viewed from the entry start position P3 in FIG. 4).
  • R1 is also drawn in the same arc-shaped locus, and the radius of the separation locus 20b of the laser 11 that starts separation from the planned cutting line 4 (more precisely, the radius of the center line of the separation locus 20b) is defined as R2.
  • the spot diameter (that is, the width direction dimension of the scanning region forming the scanning locus 20) is D, and the width dimension of the slit 21 (see FIG. 6 described later) formed by melting the glass sheet 1 by irradiation with the laser 11.
  • the offset amount S from the entry start position to the departure start position is preferably set so as to satisfy the above formula 1. Further, it is preferably set so as to satisfy the above formula 2, and more preferably set so as to satisfy the above formula 3.
  • the laser irradiation device 12 (indicated by a two-dot chain line in FIG. 5) is seen outside the planned cutting line 4 when viewed from the product part 2 of the sheet glass 1, that is, on the non-product part 3. It arrange
  • the laser 11 is scanned along the approach locus 20a while melting the non-product part 3 of the sheet glass 1, and enters the planned cutting line 4 (see FIG. 6). At this time, the laser 11 enters the cutting line 4 asymptotically to the cutting line 4 as shown in FIG. 6, and therefore enters the cutting line 4 while maintaining the scanning speed. can do.
  • the laser 11 is scanned along the preset scanning trajectory 20, and after about one round around the product portion 2, the laser 11 starts to be detached from the planned cutting line 4 (see FIG. 8).
  • the laser 11 is separated from the planned cutting line 4 along an arc-shaped track (detached track 20 b) that contacts the planned cutting line 4 at the separation start position P ⁇ b> 4. Therefore, the laser 11 can be detached from the planned cutting line 4 while maintaining the scanning speed.
  • the scanning of the laser 11 is continued along the scanning locus 20 (here, the separation locus 20b), and the laser irradiation device 12 is moved to the non-product part 3 side as shown in FIG.
  • the irradiation of the laser 11 is ended. In this way, the cutting operation of the product portion 2 from the plate glass 1 by scanning with the laser 11 is completed.
  • the separation start position P4 of the laser 11 is offset to the rear side in the scanning direction of the laser 11 with respect to the entry start position P3.
  • the laser 11 is detached from the planned cutting line 4 to the outside (the non-product part 3 side) as early as possible so that substantial cutting can be performed.
  • region where irradiation of the laser 11 overlaps among the peripheral parts of the product part 2 can be restrained small. Therefore, it is possible to suppress excessive heating of the peripheral portion of the product portion 2 particularly around the entry start position P3 or the separation start position P4 of the laser 11 and to prevent the peripheral portion from being softened or deformed as much as possible. It becomes. Therefore, it is possible to improve the end face shape accuracy of the side 2a of the product part 2 particularly related to the laser 11 entering and leaving.
  • FIG. 10 is an enlarged schematic view of a region closest to the entry start position P3 and the separation start position P4 of the laser 11 in the side 2a of the product portion 2 as a sheet glass product cut out by the laser fusing method according to the present invention. It is shown as an example. As shown in FIG. 10, in the vicinity of the entry start position P3 and the separation start position P4 of the side 2a (peripheral part) of the product part 2 cut out by the laser fusing method according to the present invention, along the side 2a by fusing. A protruding portion 2a1 protruding outward from the formed molten section (not shown) is seen, but the protruding degree (maximum protruding amount 2a1r described later) is slight.
  • the shape of the protruding portion 2a1 (for example, the ratio of the maximum protruding amount 2a1r to the length dimension 2a1l described later) is comparatively gentle.
  • the product part 2 cut out by the laser fusing method according to the conventional scanning locus see FIGS. 13 and 14
  • the maximum protrusion amount 2a1r (FIG. 10) to the outside of the protrusion 2a1 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 15 ⁇ m or more and 80 ⁇ m or less, and more preferably 20 ⁇ m or more. And it is more preferable that it is 60 micrometers or less.
  • the length dimension 2a1l (FIG. 10) in the direction along the side 2a of the protrusion 2a1 is preferably 100 ⁇ m or more and 2000 ⁇ m or less, more preferably 200 ⁇ m or more and 1500 ⁇ m or less, and more preferably 300 ⁇ m or more. And it is more preferable that it is 1000 micrometers or less.
  • the dimension in the plate thickness direction (not shown) of the protrusion 2a1 is preferably larger than the dimension in the thickness direction at a portion other than the protrusion 2a1 in the range of 5 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 90 ⁇ m. It is more preferable that it is large in the range, and it is more preferable that it is large in the range of 15 ⁇ m or more and 80 ⁇ m or less.
  • the size of the protrusion 2a1 is set within the above-described preferable range. By restricting), the product part 2 can be provided as a product as it is without separately performing end face processing such as polishing.
  • the laser 11 is formed such that the approach locus 20a of the laser 11 is asymptotic to the planned cutting line 4 and the scanning trace of the laser 11 when passing through the approach start position P3 is in contact with the planned cutting line 4. Since 11 is made to enter on the planned cutting line 4, the laser fusing can proceed while maintaining the scanning speed of the laser 11. Further, in the present embodiment, the laser 11 has a shape in which the separation locus 20b of the laser 11 gradually moves away from the planned cutting line 4, and the scanning track of the laser 11 when passing through the separation start position P4 is in contact with the planned cutting line 4. Since the laser beam is separated from the cutting line 4, the laser fusing can proceed while maintaining the scanning speed of the laser 11. Therefore, it becomes possible to further improve the cutout quality (shape quality) of the product part 2.
  • the appropriate offset amount S is determined so as to satisfy any one of the above formulas 1 to 3, so that the cutting quality of the product part 2 can also be improved.
  • the approach locus 20a on the planned cutting line 4 and the leaving locus 20b from the planned cutting line 4 are configured by arc regions, so that a mathematical formula (for example, the mathematical formula 1 described above) necessary for setting the offset amount S is formed. -3) can be easily derived and the accuracy thereof can be improved. Therefore, this also makes it possible to further improve the cutout accuracy.
  • the case where the offset amount S of the separation start position P4 with respect to the approach start position P3 of the laser 11 is set so as to satisfy any of the above formulas 1 to 3 is exemplified.
  • This offset amount S should be appropriately set according to the scanning trajectory 20 of the laser 11. Therefore, when taking a scanning locus 20 other than those shown in FIGS. 3 and 4, it is preferable to set an appropriate offset amount S in accordance with the scanning locus.
  • both the approach start position P3 and the leaving start position P4 of the laser 11 are both the straight area
  • the scanning trajectory 20 of the laser 11 is set so that the approach start position P3 and the departure start position P4 are located in other regions. It doesn't matter.
  • the scanning trajectory 20 of the laser 11 is set so that the entry start position P3 and the separation start position P4 are positioned on the arc region corresponding to the arcuate corner of the product part 2. It is also possible to do.
  • the part cut out from the sheet glass 1 becomes the product part 2 was illustrated, even if this invention is applied when the part cut out from the sheet glass 1 becomes a product part I do not care.
  • the present invention may be applied.
  • the laser 11 is located on the planned cutting line 4 from the inside of the planned cutting line 4 as viewed from the product part 2, in other words, from the non-product part 3 side which is an area closed by the planned cutting line 4.
  • a trajectory for separating the laser 11 from the planned cutting line 4 to the inside (the non-product part 3 side) is taken. Further, at this time, the laser 11 scans in the scanning direction of the laser 11 from the separation start position P4 where the laser 11 starts to leave the planned cutting line 4 and from the approach start position P3 where the laser 11 starts entering the planned cutting line 4. Offset backward.
  • excessive heating of the peripheral portion of the product portion 2 around the entry start position P3 or the separation start position P4 of the laser 11 is suppressed, and the peripheral portion is softened and deformed as much as possible. Therefore, it is possible to improve the end face shape accuracy of the side 2a of the product part 2 related to the laser 11 entering and leaving.
  • the irradiation start position P1 reaches the entry start position P3, the radius R1 of the approach locus 20a of the laser 11 having an arc shape, and the separation start position P4 to the irradiation end position P2 to form an arc shape.
  • the shape of the side 2a (see FIG. 10) of the product portion 2 when the radius R2 of the separation locus 20b of the laser 11 (both see FIG. 4) and the offset amount S are changed and evaluated.
  • the fusing conditions are as follows. First, as a common condition, OA-10G (thickness: 100 [ ⁇ m]) manufactured by Nippon Electric Glass Co., Ltd. was used for the sheet glass 1 to be subjected to laser fusing. Further, regarding the laser 11 for fusing, the output is 9 [W], the spot diameter D is 130 [ ⁇ m], the processing speed (scanning speed) is 10 [mm / s], and the laser 11 is irradiated to form a plate shape. The width L of the slit 21 melt-formed on the glass 1 was set to 60 [ ⁇ m]. The injection amount of the assist gas 14 from the assist gas injection device 15 was set to 60 [l / min].
  • the radius R1 of the entry locus 20a and the radius R2 of the departure locus 20b are both set to three types of 3, 5, and 10 [mm], and the offset amount S in each case is changed in several steps (for example, five steps).
  • the end face shape in the vicinity of the entry start position P3 and the separation start position P4 of the side 2a of the product part 2 at the time of the evaluation was quantified and evaluated. Specifically, an area having a predetermined length (for example, 4 mm) along the longitudinal direction of the side 2a in the peripheral end portion of the side 2a is set as a measurement target, and the measurement target is normal to the surface of the product part 2 using a microscope. An enlarged photograph of the measurement object was obtained by shooting from the direction.
  • the position of the tip of the side 2a of the product part 2 is measured at regular intervals (for example, 50 ⁇ m) using the line obtained by connecting the longitudinal end positions of this region as a reference line, and the outside (non-product part) 3) and the deviation of the amount of protrusion to the outside in the above-mentioned region (the unit is ⁇ m).
  • Fig. 12 shows the experimental results.
  • the solid plot indicates the maximum protrusion amount 2a1r
  • the white plot indicates the deviation.
  • the offset amount S is standardized based on Formulas 1 to 3 (the offset rate is used).
  • the maximum value of the protruding portion 2a1 tends to decrease as the offset rate becomes larger than 0% regardless of the sizes of the radii R1 and R2. Okay (same for deviation).
  • the offset rate (offset amount S) varies to some extent depending on the set radii R1 and R2, but has an optimum range to some extent. Specifically, it is preferably over 0% and less than 125%. , More than 25% and less than 100%, better than 40% and less than 70%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

When irradiating a laser (11) onto a workpiece (1) having a plate form, while causing the laser (11) to scan along a planned cutting line which is a closed curve (4) on the workpiece (1), and melting the workpiece (1) in order to cut the work piece (1) into a product portion (2) and a non-product portion (3), the method adopts a trajectory wherein the laser (11) is caused to enter from the non-product portion (3) side onto the planned cutting line (4) and scan along the planned cutting line (4), and then the laser (11) is caused to leave from above the planned cutting line (4) to the non-product portion (3) side. Then, a leaving start position (P4), which is where the laser (11) starts leaving from above the planned cutting line (4), is offset more to the tailing side of the laser (11) scanning direction than an entry start position (P3), which is where the laser (11) starts entering onto the planned cutting line (4).

Description

レーザー溶断方法及び溶断面を有する板状ガラス製品Laser cutting method and sheet glass product having a melting section
 本発明は、板状ガラスなどのワークにレーザーを照射して、レーザーが照射された領域を溶融させることで当該ワークを所定の形状に切断するレーザー溶断方法と、溶断面を有する板状ガラス製品に関する。 The present invention relates to a laser fusing method for cutting a workpiece into a predetermined shape by irradiating a workpiece such as a plate glass with a laser and melting a region irradiated with the laser, and a plate glass product having a molten section. About.
 例えば板状ガラス製品の加工方法の1つにレーザー溶断と呼ばれる手法がある。この手法は、板状ガラスにレーザーを照射すると共に、板状ガラスの切断予定線に沿った軌跡でレーザーを走査することにより、板状ガラスのうちレーザーが照射された領域を溶融させて、板状ガラスから走査軌跡に準じた形状の板状ガラス製品を切り出す方法である。 For example, one of the processing methods for sheet glass products is a technique called laser fusing. This method irradiates a sheet glass with a laser and scans the laser along a trajectory along the cutting line of the sheet glass, thereby melting the region of the sheet glass irradiated with the laser, It is a method of cutting out a sheet glass product having a shape according to the scanning trajectory from the sheet glass.
 板状ガラス製品の製造工程においては、公知の方法で成形した板状ガラスの周縁部を切断して製品部を切り出すことや、1枚の板状ガラスから複数枚の製品部を切り出すことが行われている。このような切り出し作業は、例えばレーザー溶断により板状ガラスから製品部を切り抜くことで行われる(例えば、特許文献1の第2図(c)を参照)。 In the manufacturing process of a sheet glass product, cutting the peripheral part of the sheet glass formed by a known method to cut out the product part, or cutting out a plurality of product parts from one sheet of glass is performed. It has been broken. Such a cut-out operation is performed, for example, by cutting a product portion from a sheet glass by laser fusing (see, for example, FIG. 2 (c) of Patent Document 1).
 このように、レーザー溶断で板状ガラスから製品部を切り抜くことを考えた場合、切断予定線上にレーザーの照射開始位置を設けることになるが、このような位置からレーザーの照射を開始すると、照射開始位置の近傍にマイクロクラックが発生し易い、との問題がある。また、照射終了位置についても同様の問題がある。そのため、レーザーの照射開始位置及び照射終了位置を、ワークの製品部(又は切断予定線)よりも外側に離れた位置に設定して、製品部におけるマイクロクラックの発生を防止する手段が提案されている(特許文献2を参照)。 In this way, when considering cutting out the product part from the sheet glass by laser cutting, a laser irradiation start position will be provided on the planned cutting line, but if laser irradiation is started from such a position, irradiation will be performed. There is a problem that microcracks are likely to occur in the vicinity of the start position. There is a similar problem with respect to the irradiation end position. Therefore, means for preventing the occurrence of microcracks in the product part by setting the irradiation start position and the irradiation end position of the laser at positions away from the product part (or planned cutting line) of the workpiece has been proposed. (See Patent Document 2).
特開昭60-251138号公報JP-A-60-251138 特開2007-319888号公報JP 2007-319888 A
 このように、レーザー溶断による板状ガラス製品の切り出しは、レーザーの照射による加熱でワークを溶融させることにより行われるものであるから、製品部への加熱の影響を小さくするために、製品部になるべくレーザーを照射しないような工夫が必要となる。ここで、実際の板状ガラス製品の切り出しにレーザー溶断を採用することを検討したところ、特許文献2に記載の方法を板状ガラス製品の切り出しに応用すれば、製品部(板状ガラス製品)へのマイクロクラックの発生に対して一定の抑止効果が認められた。しかし、その一方で、レーザーの走査軌跡が交差する領域の周辺においては、製品部が無視できない程度にまで加熱されていることが判明した。以下、図面に基づき詳述する。 In this way, the cutting of the sheet glass product by laser fusing is performed by melting the workpiece by heating by laser irradiation, so in order to reduce the influence of heating on the product portion, It is necessary to devise ways to avoid laser irradiation as much as possible. Here, when laser cutting was examined for cutting out an actual sheet glass product, if the method described in Patent Document 2 was applied to cutting out a sheet glass product, the product portion (sheet glass product) A certain deterrent effect was observed against the occurrence of microcracks. However, on the other hand, it has been found that the product portion is heated to a level that cannot be ignored in the vicinity of the region where the laser scanning traces intersect. Hereinafter, it will be described in detail with reference to the drawings.
 図13は、レーザー溶断による、板状ガラス101からの製品部102の切り出し作業の一例を概念的に説明するための平面図である。図13に示すように、板状ガラス101に対するレーザー溶断は、レーザー照射装置111(図13中、二点鎖線で表示)から板状ガラス101に向けてレーザー112を照射すると共に、このレーザー照射装置111と板状ガラス101との相対移動によりレーザー112を走査することで行われる。また、このレーザー112の走査は、切り出すべき製品部102の形状に準じた切断予定線103(図13中、一点鎖線で表示)に沿って製品部102のまわりを一周する(閉曲線を描く)ようにして行われる。ここで、特許文献2に記載の如く、レーザー112の照射開始位置P11及び照射終了位置P12を、製品部102から見て切断予定線103よりも外側、すなわち非製品部104の側に設定した場合、レーザー112は、例えば閉曲線をなす切断予定線103のうち、製品部102の所定の辺に沿った直線領域103a上に進入して、切断予定線103に沿って一周した後、直線領域103a上からその外側に離脱する軌跡120を描く。 FIG. 13 is a plan view for conceptually explaining an example of cutting out the product portion 102 from the sheet glass 101 by laser cutting. As shown in FIG. 13, laser fusing to the plate glass 101 is performed by irradiating a laser 112 from the laser irradiation device 111 (indicated by a two-dot chain line in FIG. 13) toward the plate glass 101 and this laser irradiation device. This is performed by scanning the laser 112 by relative movement between the glass 111 and the plate glass 101. The laser 112 scans around the product portion 102 (draws a closed curve) along a planned cutting line 103 (indicated by a one-dot chain line in FIG. 13) according to the shape of the product portion 102 to be cut out. Is done. Here, as described in Patent Document 2, the irradiation start position P11 and the irradiation end position P12 of the laser 112 are set outside the planned cutting line 103 as viewed from the product part 102, that is, on the non-product part 104 side. The laser 112, for example, enters the straight line region 103a along the predetermined side of the product portion 102 of the planned cutting line 103 that forms a closed curve, and makes a round along the planned cutting line 103 and then on the straight line region 103a. A trajectory 120 that departs from the outside is drawn.
 図14は、レーザー112の切断予定線103上への進入開始位置P13、及び切断予定線103上からの離脱開始位置P14の周辺を拡大した図である。図14に示すように、レーザー112の照射によって板状ガラス101には、その切断予定線103を中心として一定の幅寸法Lを有し、板状ガラス101を表裏方向に貫通するスリット121が溶融形成される。このスリット121の幅寸法Lは、板状ガラス101の表面におけるレーザー112の照射領域113(図14中、細線ハッチングを施した領域)の幅寸法、すなわちスポット径Dよりも必ず小さくなることから、スリット121の幅方向両側にもレーザー112が照射され、スリット121の幅方向両側の領域が少なからず加熱される。そのため、図13及び図14に示すように、レーザー112が切断予定線103に沿って製品部102のまわりをちょうど一周分走査するようにした場合、レーザー112の進入開始位置P13と離脱開始位置P14とは一致し、レーザー112の走査軌跡120は、進入開始位置P13(すなわち離脱開始位置P14)で交差する。その結果、製品部102の周縁部が、溶断開始直後と溶断終了直前の2回にわたってレーザー112の照射を受ける。このように、重複してレーザー112の照射を受けた領域は、他所に比べて過剰に加熱されることになるので、軟化等による変形を生じ、ひいては製品部102の形状品質の低下を招来するおそれが生じる。 FIG. 14 is an enlarged view of the vicinity of the entry start position P13 of the laser 112 on the planned cutting line 103 and the separation start position P14 on the planned cutting line 103. FIG. As shown in FIG. 14, the slits 121 that have a certain width dimension L around the planned cutting line 103 and penetrate the plate glass 101 in the front and back directions are melted by the irradiation of the laser 112. It is formed. Since the width dimension L of the slit 121 is necessarily smaller than the width dimension of the irradiation region 113 of the laser 112 on the surface of the plate-like glass 101 (in FIG. 14, the region subjected to fine line hatching), that is, the spot diameter D. The laser 112 is also irradiated on both sides in the width direction of the slit 121, and the regions on both sides in the width direction of the slit 121 are heated not a little. Therefore, as shown in FIGS. 13 and 14, when the laser 112 scans around the product portion 102 along the planned cutting line 103 for just one round, the laser 112 enters the start start position P13 and the start start position P14. The scanning trajectory 120 of the laser 112 intersects at the entry start position P13 (that is, the departure start position P14). As a result, the peripheral portion of the product portion 102 is irradiated with the laser 112 twice immediately after the start of fusing and immediately before the end of fusing. As described above, the region irradiated with the laser 112 in an overlapping manner is excessively heated as compared with the other portions, so that deformation due to softening or the like is caused, resulting in deterioration of the shape quality of the product portion 102. There is a fear.
 以上の事情に鑑み、形状品質を確保しつつ、レーザー溶断でワークから製品部を切り出すことを、本発明により解決すべき技術的課題とする。 In view of the above circumstances, it is a technical problem to be solved by the present invention to cut out a product part from a workpiece by laser cutting while ensuring shape quality.
 前記課題の解決は、本発明に係るレーザー溶断方法により達成される。すなわち、この溶断方法は、一部又は全体が板状をなすワークに対してレーザーを照射すると共に、閉曲線となるワークの切断予定線に沿ってレーザーを走査して、ワークを溶融させることにより、ワークを製品部と非製品部とに切り分けるレーザー溶断方法であって、非製品部の側からレーザーを切断予定線上に進入させ、切断予定線に沿って走査した後、レーザーを切断予定線上から非製品部の側に離脱させる軌跡をとるものにおいて、レーザーが切断予定線上からの離脱を開始する離脱開始位置を、レーザーが切断予定線上への進入を開始する進入開始位置よりもレーザーの走査方向後方側にオフセットした点をもって特徴付けられる。 The solution to the above problem is achieved by the laser fusing method according to the present invention. That is, this fusing method irradiates a part or the whole of a plate-shaped workpiece with laser, scans the laser along the planned cutting line of the workpiece that is a closed curve, and melts the workpiece, A laser fusing method that divides a workpiece into a product part and a non-product part. The laser enters the cutting line from the non-product part side, scans along the cutting line, and then the laser is cut off from the cutting line. In a product that has a trajectory to be separated to the product part side, the separation start position at which the laser starts separation from the planned cutting line is set behind the laser scanning direction from the entry start position at which the laser starts entering the planned cutting line. Characterized by a point offset to the side.
 このように、本発明では、通常であれば、切り分けるべき製品部又は非製品部の形状に準じた切断予定線に沿って製品部又は非製品部のまわりをちょうど一周するようにレーザーを走査させるべきところ、敢えて、レーザーが切断予定線上からの離脱を開始する離脱開始位置を、レーザーが切断予定線上への進入を開始する進入開始位置よりもレーザーの走査方向後方側にオフセットするようにした。言い換えると、切断予定線上を一周する手前でレーザーの切断予定線上からの離脱を開始するようにした。このように、切断予定線の形状に固執することなく、実質的な切り出しが可能な程度にレーザーを早めに切断予定線から非製品部の側に離脱させることで、製品部の周縁部のうちレーザー照射が重複して行われる領域の面積を小さく抑えることができる。これにより、レーザーの進入開始位置の周辺における製品部の周縁部の過剰な加熱を抑止して、当該周縁部の軟化、変形を可及的に防止することが可能となる。 As described above, in the present invention, normally, the laser is scanned so as to make a round around the product part or the non-product part along the planned cutting line according to the shape of the product part or the non-product part to be cut. However, the departure start position where the laser starts to leave the planned cutting line is intentionally offset to the rear side in the scanning direction of the laser from the start position where the laser starts entering the planned cutting line. In other words, the laser starts to leave the planned cutting line before going around the planned cutting line. In this way, without sticking to the shape of the planned cutting line, by separating the laser from the planned cutting line to the non-product part side as early as possible so that substantial cutting is possible, out of the peripheral part of the product part The area of the region where laser irradiation is performed in an overlapping manner can be kept small. As a result, excessive heating of the peripheral portion of the product portion around the laser entry start position can be suppressed, and softening and deformation of the peripheral portion can be prevented as much as possible.
 ここで、具体的な本発明の適用対象としては、切断予定線に沿ってレーザーを走査して、ワークを溶融させることにより、ワークから切断予定線で囲まれた製品部を切り出す場合が考えられる。あるいは、切断予定線に沿ってレーザーを走査して、ワークを溶融させることにより、切断予定線で囲まれた領域をくり抜いた製品部を得る場合が考えられる。ここで、製品部を切り出す場合、レーザーは、切断予定線の外側に位置する非製品部の側からレーザーを切断予定線上に進入させ、切断予定線に沿って走査した後、レーザーを切断予定線上から非製品部の側に離脱させる軌跡をとるのがよい。また、切断予定線に囲まれた領域をくり抜いた製品部を得る場合、レーザーは、切断予定線の内側に位置する非製品部の側からレーザーを切断予定線上に進入させ、切断予定線に沿って走査した後、レーザーを切断予定線上から非製品部の側に離脱させる軌跡をとるのがよい。 Here, as a specific application target of the present invention, a case where a product part surrounded by the planned cutting line is cut out from the work by scanning the laser along the planned cutting line and melting the work can be considered. . Or the case where the product part which hollowed out the area | region enclosed by the cutting cutting line is considered by scanning a laser along a cutting cutting line and fuse | melting a workpiece | work is considered. Here, when cutting out the product part, the laser enters the cutting line from the side of the non-product part located outside the cutting line, scans along the cutting line, and then scans the laser on the cutting line. It is better to take a trajectory for separating from the non-product part side. In addition, when obtaining a product part in which the area surrounded by the planned cutting line is cut out, the laser enters the cutting target line from the side of the non-product part located inside the planned cutting line and follows the planned cutting line. After scanning, it is preferable to take a trajectory for separating the laser from the planned cutting line toward the non-product part.
 また、本発明に係るレーザー溶断方法は、進入開始位置を通過する際のレーザーの走査軌跡が切断予定線と接するよう、レーザーを切断予定線上に進入させるものであってもよい。あるいは、離脱開始位置を通過する際のレーザーの走査軌跡が切断予定線と接するよう、レーザーを切断予定線上から離脱させるものであってもよい。 Further, in the laser fusing method according to the present invention, the laser may enter the planned cutting line so that the laser scanning trajectory when passing through the entry start position is in contact with the planned cutting line. Alternatively, the laser may be separated from the planned cutting line so that the scanning trajectory of the laser when passing the separation start position is in contact with the planned cutting line.
 本発明は、レーザーを、非製品部の側から切断予定線上に進入させる走査軌跡をとる関係上、切断予定線に対して所定の角度をもって進入した場合、進入開始位置において走査軌跡を屈曲させるような方向転換が必要となる。これでは、方向転換の際にレーザーの走査速度が落ちてしまうため、方向転換位置(進入開始位置)におけるレーザーの照射時間が長くなり、その分加熱量が増大する、との問題が起こり得る。ここで、進入開始位置を通過する際のレーザーの走査軌跡が切断予定線と接するようレーザーを進入させるようにすれば、レーザーの切断予定線上への進入軌跡を、例えば切断予定線に漸近するような曲線状にすることができる。そのため、進入開始時において走査速度を落とすことなくレーザー溶断を進行させることができ、製品部への過剰な加熱を抑止することが可能となる。以上の説明は、切断予定線から非製品部の側にレーザーを離脱させる際にも同様に当てはまる。よって、離脱開始位置において切断予定線と平行になるようレーザーを離脱させることで、離脱開始時においても走査速度を落とすことなくレーザー溶断を完了することができる。 According to the present invention, the scanning locus is bent at the approach start position when entering at a predetermined angle with respect to the planned cutting line because the laser takes a scanning locus to enter the planned cutting line from the non-product part side. Change of direction is necessary. In this case, since the scanning speed of the laser is lowered when the direction is changed, the laser irradiation time at the direction changing position (entrance start position) becomes longer, and there is a problem that the heating amount increases accordingly. Here, if the laser is allowed to enter so that the laser scanning trajectory when passing the entry start position is in contact with the planned cutting line, the approach trajectory of the laser on the planned cutting line is asymptotic to the planned cutting line, for example. Can be curved. Therefore, laser fusing can be advanced without reducing the scanning speed at the start of entry, and excessive heating of the product part can be suppressed. The above description applies similarly when the laser is separated from the planned cutting line toward the non-product part. Therefore, by detaching the laser so that it is parallel to the planned cutting line at the detachment start position, laser fusing can be completed without reducing the scanning speed even at the start of detachment.
 また、本発明に係るレーザー溶断方法は、レーザーが円弧状の軌跡を描いて切断予定線上への進入を開始するよう、レーザーを走査するものであってもよい。あるいは、レーザーが円弧状の軌跡を描いて切断予定線上からの離脱を開始するよう、レーザーを走査するものであってもよい。 Further, the laser fusing method according to the present invention may be one in which the laser is scanned so that the laser starts an approach on the planned cutting line while drawing an arcuate locus. Alternatively, the laser may be scanned so that the laser draws an arc-shaped trajectory and starts to leave the planned cutting line.
 円弧状の軌跡を描いてレーザーが切断予定線上への進入を開始するようにすれば、進入開始位置におけるレーザーの進入角(レーザーの走査方向と切断予定線とがなす角)を極力小さくすることができる。これにより、切断予定線に沿った向きへのレーザーの方向転換が最小限で済むので、進入開始時において走査速度を極力落とすことなくレーザー溶断を進行させることができる。もちろん、既述の如く、走査速度の維持の観点からは、進入開始位置を通過する際のレーザーの走査軌跡が切断予定線と接するよう、円弧状の軌跡でレーザーを切断予定線上に進入させるようにすればなお良い。また、以上の説明は、切断予定線から非製品部の側にレーザーを離脱させる際にも同様に当てはまる。よって、円弧状の軌跡を描いてレーザーが切断予定線上から非製品部の側への離脱を開始するようにすれば、離脱開始時においても走査速度を極力落とすことなくレーザー溶断を完了することができる。 If the laser starts to enter the planned cutting line by drawing an arc-shaped trajectory, the laser approach angle at the approach start position (the angle formed by the laser scanning direction and the planned cutting line) should be minimized. Can do. Thereby, since the laser direction change to the direction along the planned cutting line can be minimized, the laser fusing can be advanced without reducing the scanning speed as much as possible at the start of the approach. Of course, as described above, from the viewpoint of maintaining the scanning speed, the laser should be allowed to enter the planned cutting line with an arc-shaped trajectory so that the laser scanning trajectory when passing the approach start position is in contact with the planned cutting line. It's even better. The above description also applies to the case where the laser is separated from the planned cutting line toward the non-product part. Therefore, if the laser starts to detach from the planned cutting line to the non-product part side by drawing an arc-shaped trajectory, the laser fusing can be completed without reducing the scanning speed as much as possible at the start of detachment. it can.
 また、本発明に係るレーザー溶断方法は、レーザーの進入開始位置と離脱開始位置とが共に、切断予定線のうち製品部の所定の辺に対応する直線領域上に位置するよう、レーザーの走査軌跡を設定するものであってもよい。 Further, the laser fusing method according to the present invention is such that the laser scanning trajectory is such that both the laser entry start position and the separation start position are located on a straight line region corresponding to a predetermined side of the product portion of the planned cutting line. May be set.
 切り出すべき製品部が辺を有する形状(例えば矩形状)を成すものである場合、この辺に対応する切断予定線の直線領域上にレーザーの進入開始位置と離脱開始位置とを配置するのがよい。このように走査軌跡を定めることで、切断予定線上への進入速度やその進入軌跡の具体的形状又は寸法など、レーザーの走査条件を容易に設定できる。また、走査条件の設定が容易な分、実際の走査も精度良く行い易い。よって、高品質の製品部を安定して切り出すことが可能となる。 When the product part to be cut out has a shape having a side (for example, a rectangular shape), it is preferable to arrange the laser entry start position and the release start position on the straight line region of the planned cutting line corresponding to this side. By determining the scanning trajectory in this way, it is possible to easily set the laser scanning conditions such as the approach speed on the planned cutting line and the specific shape or size of the approach trajectory. In addition, since scanning conditions can be easily set, actual scanning can be easily performed with high accuracy. Therefore, it is possible to stably cut out a high-quality product part.
 また、本発明に係るレーザー溶断方法は、円弧状の軌跡を描いて切断予定線上への進入を開始するレーザーの進入軌跡の半径をR1、円弧状の軌跡を描いて切断予定線上からの離脱を開始するレーザーの離脱軌跡の半径をR2、レーザーのスポット径をD、レーザーの照射によりワークを溶融することで形成されるスリットの幅寸法をLとした場合、進入開始位置から離脱開始位置までのオフセット量Sが、下記の数式1を満足するものであってもよい。
Figure JPOXMLDOC01-appb-M000004
        また、好ましくは、上記オフセット量Sが、下記の数式2を満足するものであってもよく、
Figure JPOXMLDOC01-appb-M000005
        より好ましくは、上記オフセット量が、下記の数式3を満足するものであってもよい。  
Figure JPOXMLDOC01-appb-M000006
In addition, the laser fusing method according to the present invention draws an arc-shaped trajectory and starts the approach to the cutting line, the radius of the laser entering trajectory is R1, and draws an arc-shaped trajectory from the planned cutting line. When the radius of the laser separation locus to start is R2, the laser spot diameter is D, and the width dimension of the slit formed by melting the workpiece by laser irradiation is L, the distance from the entry start position to the separation start position The offset amount S may satisfy the following formula 1.
Figure JPOXMLDOC01-appb-M000004
Preferably, the offset amount S may satisfy the following mathematical formula 2.
Figure JPOXMLDOC01-appb-M000005
More preferably, the offset amount may satisfy Equation 3 below.
Figure JPOXMLDOC01-appb-M000006
 本発明者が、具体的に、レーザーの進入開始位置から離脱開始位置までのオフセット量と、レーザーの走査条件に関する各種パラメータとの関係を精査したところ、特に、円弧状の軌跡を描くレーザーの進入軌跡の半径R1、離脱軌跡の半径R2、レーザーのスポット径D、及びレーザーの照射によりワークを溶融することで形成されるスリットの幅寸法Lが、オフセット量Sに対して支配的であることが判明した。そこで、更なる精査、検討を行ったところ、製品部の周縁部形状が許容できる範囲に収まるオフセット量の範囲を上記パラメータによる数式により算出可能なことが判明した。上記数式1~3は、以上の鋭意検討に基づき成されたもので、上記数式を満たす範囲内でオフセット量Sを設定すれば、製品部の周縁部からの変形量(突出量)を、製品部の形状品質に問題がない程度の大きさに抑えつつ、生産性を維持可能な程度の速度でレーザーを走査(溶断)することが可能となる。 The present inventor specifically examined the relationship between the offset amount from the laser entry start position to the separation start position and various parameters related to the laser scanning conditions, and in particular, the laser entry drawing an arc-shaped locus. The radius R1 of the locus, the radius R2 of the separation locus, the laser spot diameter D, and the width L of the slit formed by melting the workpiece by laser irradiation are dominant to the offset amount S. found. As a result of further scrutiny and examination, it has been found that the range of the offset amount within which the peripheral shape of the product part can be tolerated can be calculated by the mathematical formula using the above parameters. The above formulas 1 to 3 are based on the above intensive studies. If the offset amount S is set within the range satisfying the above formula, the deformation amount (protrusion amount) from the peripheral portion of the product portion is determined as the product. The laser can be scanned (fused) at such a speed that the productivity can be maintained while suppressing the size so as not to cause a problem in the shape quality of the portion.
 また、本発明に係るレーザー溶断方法は、製品部が略矩形状の板ガラスであるものであってもよい。 Further, in the laser fusing method according to the present invention, the product part may be a substantially rectangular plate glass.
 上述のように、本発明は、レーザーの進入開始位置の周辺における製品部の周縁部の過剰な加熱を抑止して、当該周縁部の軟化、変形を可及的に防止することを可能とするものであるから、略矩形状の板ガラスのように高い形状品質が要求される板状ガラス製品に好適に適用することができる。 As described above, the present invention suppresses excessive heating of the peripheral portion of the product portion in the vicinity of the laser entry start position, and makes it possible to prevent softening and deformation of the peripheral portion as much as possible. Since it is a thing, it can apply suitably for the plate-shaped glass product by which high shape quality is requested | required like a substantially rectangular plate glass.
 また、前記課題の解決は、本発明に係る板状ガラス製品によっても達成される。すなわち、このガラス製品は、一部又は全体が板状をなすワークを、溶断により非製品部と切り分けることで得られ、一又は複数の辺を有する板状ガラス製品において、溶断により生じた溶断面が辺に沿って形成され、溶断面には、非製品部の側に向けて突出する突出部が形成され、突出部の非製品部の側への最大突出量が10μm以上でかつ100μm以下である点をもって特徴付けられる。 The solution to the above problem can also be achieved by the sheet glass product according to the present invention. That is, this glass product is obtained by cutting a part or the whole of a plate-shaped workpiece from a non-product part by fusing, and in a plate-like glass product having one or more sides, a melted cross section generated by fusing Is formed along the side, and a protruding portion that protrudes toward the non-product portion side is formed on the molten cross section, and the maximum protrusion amount of the protruding portion toward the non-product portion side is 10 μm or more and 100 μm or less. Characterized with a certain point.
 上記範囲に突出部のサイズを規制することで、辺に沿って形成された溶断面に研磨等の端面加工を施すことなく、溶断により切り分けられた板状ガラスをそのまま板状ガラス製品として提供することが可能となる。 By restricting the size of the protruding portion within the above range, the sheet glass cut by fusing is provided as it is as a sheet glass product without subjecting the melted cross section formed along the side to end face processing such as polishing. It becomes possible.
 また、本発明に係る板状ガラス製品は、突出部の辺に沿った方向の長さ寸法が100μm以上でかつ2000μm以下であってもよく、またその場合に突出部の板厚方向の寸法が突出部以外の部位における厚み方向の寸法よりも5μm以上でかつ100μm以下の範囲で大きいものであってもよい。 Further, the plate-like glass product according to the present invention may have a length dimension in the direction along the side of the protrusion of 100 μm or more and 2000 μm or less, and in that case, the dimension of the protrusion in the plate thickness direction may be It may be larger in the range of 5 μm or more and 100 μm or less than the dimension in the thickness direction at the portion other than the protruding portion.
 以上に述べたように、本発明によれば、形状品質を確保しつつ、レーザー溶断でワークから製品部を切り出すことが可能となる。また、製品部が板状ガラス製品の場合、板状ワークから溶断により切り分けられた板状ガラスをそのまま板状ガラス製品として提供することが可能となる。 As described above, according to the present invention, it is possible to cut a product portion from a workpiece by laser cutting while ensuring shape quality. Moreover, when a product part is a plate glass product, it becomes possible to provide the plate glass cut | disconnected from the plate workpiece by fusing as it is as a plate glass product.
本発明の一実施形態に係るレーザー溶断装置の概略平面図である。It is a schematic plan view of the laser cutting apparatus which concerns on one Embodiment of this invention. 図1に示す溶断装置の要部A-A断面図である。FIG. 2 is a cross-sectional view of the main part AA of the fusing device shown in FIG. 本発明の一実施形態に係るレーザーの走査態様を説明するための全体平面図である。It is a whole top view for demonstrating the scanning aspect of the laser which concerns on one Embodiment of this invention. 図3の要部平面図である。It is a principal part top view of FIG. 図1及び図2に示す溶断装置を用いたレーザー溶断方法の一例を説明するための図であって、レーザーの照射を開始する際の様子を示す図である。It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a figure which shows the mode at the time of starting the irradiation of a laser. 図1及び図2に示す溶断装置を用いたレーザー溶断方法の一例を説明するための図であって、レーザーが切断予定線上に進入する際の様子を示す要部拡大図である。It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a principal part enlarged view which shows a mode at the time of a laser approaching on a cutting projected line. 図1及び図2に示す溶断装置を用いたレーザー溶断方法の一例を説明するための図であって、レーザーが切断予定線に沿って走査されている様子を示す図である。It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a figure which shows a mode that the laser is scanned along the cutting plan line. 図1及び図2に示す溶断装置を用いたレーザー溶断方法の一例を説明するための図であって、レーザーが切断予定線上から離脱する際の様子を示す要部拡大図である。It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a principal part enlarged view which shows a mode when a laser detaches | leaves from a cutting planned line. 図1及び図2に示す溶断装置を用いたレーザー溶断方法の一例を説明するための図であって、レーザーの照射を終了した際の様子を示す図である。It is a figure for demonstrating an example of the laser fusing method using the fusing apparatus shown in FIG.1 and FIG.2, Comprising: It is a figure which shows a mode when the irradiation of a laser is complete | finished. 図1に示す溶断装置を用いたレーザー溶断方法により切り出された製品部の周縁部の様子を示す要部拡大図である。It is a principal part enlarged view which shows the mode of the peripheral part of the product part cut out by the laser cutting method using the fusing apparatus shown in FIG. 本発明の他の実施形態に係るレーザーの走査態様を説明するための全体平面図である。It is a whole top view for demonstrating the scanning aspect of the laser which concerns on other embodiment of this invention. 本発明の効果を実証するための実験結果を示すグラフである。It is a graph which shows the experimental result for demonstrating the effect of this invention. 従来のレーザー溶断方法を利用した板状ガラスの切り出しに係るレーザーの走査態様を説明するための概略平面図である。It is a schematic plan view for demonstrating the scanning aspect of the laser which concerns on cutting out of the sheet glass using the conventional laser fusing method. 従来の走査態様でレーザーが切断予定線上から離脱する際の様子を示す要部拡大図である。It is a principal part enlarged view which shows a mode when a laser detaches | leaves from the cutting planned line in the conventional scanning mode.
 以下、本発明に係るレーザー溶断方法の一実施形態を図1~図10を参照して説明する。本実施形態では、所定の方法で成形された板状ガラス1を切断対象(ワーク)とし、この板状ガラス1から1枚又は複数枚の板状ガラス製品(製品部2)を切り出す場合を例にとって説明する。なお、以下の方法によりレーザー溶断処理が施される板状ガラス1としては、10μm以上でかつ500μm以下の厚みを有するものが良く、10μm以上でかつ300μm以下の厚みを有するものがより良く、10μm以上でかつ200μm以下の厚みを有するものがさらに良い。また、板状ガラス1から切り出される製品部2は、例えば携帯用電子デバイスに組み込まれるタッチパネルのカバー材(保護カバー)に用いられるもので、本実施形態では、各々の角部を丸めた略矩形状(長方形状)となるよう、製品部2の切り出し形状(製品部2と非製品部3との境界となる切断予定線4の形状)が設定される。 Hereinafter, an embodiment of the laser fusing method according to the present invention will be described with reference to FIGS. In the present embodiment, an example is described in which a sheet glass 1 formed by a predetermined method is a cutting object (work), and one or a plurality of sheet glass products (product part 2) are cut out from the sheet glass 1. I will explain to you. In addition, as the sheet glass 1 to which the laser fusing treatment is performed by the following method, a glass having a thickness of 10 μm or more and 500 μm or less is preferable, and a glass having a thickness of 10 μm or more and 300 μm or less is better. More preferably, the thickness is 200 μm or less. Moreover, the product part 2 cut out from the plate-like glass 1 is used, for example, as a cover material (protective cover) for a touch panel incorporated in a portable electronic device. In this embodiment, each rectangular part has a substantially rectangular shape. The cutout shape of the product part 2 (the shape of the planned cutting line 4 serving as the boundary between the product part 2 and the non-product part 3) is set so as to have a shape (rectangular shape).
 図1は、本発明の一実施形態に係るレーザー溶断装置10の概略平面図、図2はこのレーザー溶断装置10の要部A-A断面図をそれぞれ示している。図1及び図2に示すように、このレーザー溶断装置10は、板状ガラス1の切断予定線4(図1中、一点鎖線で示す)に沿って板状ガラス1に溶断用のレーザー11を照射するレーザー照射装置12と、レーザー11の照射領域13に向けてアシストガス14を噴射するアシストガス噴射装置15と、載置された板状ガラス1を支持する支持台16とを主に備える。なお、図3以降においては、レーザー11の走査態様に関する理解を容易にするため、レーザー照射装置12及びアシストガス噴射装置15を省略している。 FIG. 1 is a schematic plan view of a laser fusing device 10 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the main part AA of the laser fusing device 10. As shown in FIGS. 1 and 2, the laser fusing device 10 applies a fusing laser 11 to the plate glass 1 along a planned cutting line 4 (shown by a one-dot chain line in FIG. 1) of the plate glass 1. It mainly includes a laser irradiation device 12 for irradiation, an assist gas injection device 15 for injecting an assist gas 14 toward the irradiation region 13 of the laser 11, and a support base 16 for supporting the placed glass sheet 1. In FIG. 3 and subsequent figures, the laser irradiation device 12 and the assist gas injection device 15 are omitted in order to facilitate understanding of the scanning mode of the laser 11.
 レーザー照射装置12は、例えば炭酸ガスレーザーやYAGレーザー等に代表されるレーザー11の発生源である発振器と、集光レンズ(何れも図示は省略)とを少なくとも有するもので、板状ガラス1に向けて所定の角度(本実施形態では略垂直)でレーザー11を照射可能となるよう構成されている。なお、照射されるレーザー11は、連続光であってもよいし、パルス光であってもよい。また、レーザー11の出力は、板状ガラス1の材質や厚み、レーザー11の走査速度等によって適宜に調整される。 The laser irradiation device 12 includes at least an oscillator that is a generation source of a laser 11 typified by a carbon dioxide laser, a YAG laser, and the like, and a condenser lens (both not shown). The laser 11 can be irradiated at a predetermined angle (substantially vertical in the present embodiment). The irradiated laser 11 may be continuous light or pulsed light. Further, the output of the laser 11 is appropriately adjusted depending on the material and thickness of the sheet glass 1, the scanning speed of the laser 11, and the like.
 なお、図示は省略するが、本発明に係るレーザー溶断装置10は、所定の態様でデフォーカスした徐冷用レーザーを板状ガラス1に向けて照射する徐冷用レーザー照射装置をさらに備えたものであってもよい。このように徐冷用レーザーを板状ガラス1のうちレーザー11の照射領域13の前後、言い換えると、レーザー11の走査方向前方側及び後方側の領域に向けて照射することにより、走査方向前方側の領域を予め加熱しておくと共に、溶断(溶融切断)直後の領域周辺を引き続き加熱することができる。これにより、板状ガラス1の急冷を抑制して、製品部2の周縁部(切断端部)における残留歪みの発生を可及的に防止することができる。 In addition, although illustration is abbreviate | omitted, the laser fusing apparatus 10 which concerns on this invention was further equipped with the laser irradiation apparatus for slow cooling which irradiates the laser for slow cooling defocused in the predetermined | prescribed aspect toward the sheet glass 1 It may be. In this way, by irradiating the slow cooling laser to the front and rear of the irradiation region 13 of the laser 11 in the plate-like glass 1, in other words, toward the front and rear regions of the laser 11 in the scanning direction, This area can be heated in advance, and the area around the area immediately after fusing (melt cutting) can be continuously heated. Thereby, rapid cooling of the sheet glass 1 can be suppressed, and the occurrence of residual strain at the peripheral edge portion (cut end portion) of the product portion 2 can be prevented as much as possible.
 アシストガス噴射装置15は、板状ガラス1にレーザー11を照射するのに伴って発生する溶融物を吹き飛ばすために、レーザー11の照射領域13に向けてアシストガス14を噴射可能なように構成される。本実施形態では、板状ガラス1の製品部2となる領域の上方にアシストガス噴射装置15が配置されており、アシストガス14が製品部2となる領域の上方からレーザー11の照射領域13に向けて斜め下方に噴射口が設置される。これにより、板状ガラス1の切断(溶融)領域で発生した溶融物は、アシストガス14によって非製品部3の側に向けて吹き飛ばされる。そのため、製品部2の切断端面等に異物としての溶融物が付着し、製品部2に形状不良が生じるような事態が可及的に防止される。なお、使用可能なアシストガス14の種類は特に限定されず、例えば酸素ガス、水蒸気、二酸化炭素ガス、窒素ガス、アルゴンガスなど、公知のガスが単独で若しくは複数種混合して使用される。 The assist gas injection device 15 is configured to be able to inject the assist gas 14 toward the irradiation region 13 of the laser 11 in order to blow off the melt generated as the plate 11 is irradiated with the laser 11. The In the present embodiment, the assist gas injection device 15 is disposed above the region that becomes the product part 2 of the sheet glass 1, and the assist gas 14 is directed to the irradiation region 13 of the laser 11 from above the region that becomes the product part 2. An injection port is installed diagonally downward. Thereby, the melt generated in the cutting (melting) region of the sheet glass 1 is blown off toward the non-product part 3 side by the assist gas 14. Therefore, a situation in which a melt as a foreign matter adheres to the cut end face or the like of the product part 2 and a defective shape occurs in the product part 2 is prevented as much as possible. In addition, the kind of assist gas 14 which can be used is not specifically limited, For example, well-known gas, such as oxygen gas, water vapor | steam, carbon dioxide gas, nitrogen gas, argon gas, is used individually or in mixture of multiple types.
 もちろん、アシストガス噴射装置15の噴射態様は上記形態に限定されるものではない。例えば図示は省略するが、製品部2上にアシストガス噴射装置15を配置し、レーザー11の照射領域13に対して略水平方向にアシストガス14を噴射可能なように構成してもよい。また、アシストガス噴射装置15は必要に応じて設ければ足り、必ずしも設ける必要はない。 Of course, the injection mode of the assist gas injection device 15 is not limited to the above form. For example, although illustration is omitted, an assist gas injection device 15 may be arranged on the product portion 2 so that the assist gas 14 can be injected in a substantially horizontal direction with respect to the irradiation region 13 of the laser 11. Further, it is sufficient if the assist gas injection device 15 is provided as necessary, and it is not always necessary to provide it.
 支持台16は、切断すべき板状ガラス1を下方から横姿勢で支持するもので、本実施形態では、略長方形状の製品部2となる領域を支持可能な第1支持部17と、製品部2の周囲に位置し、中抜き矩形状の非製品部3となる領域を支持可能な第2支持部18とを有する。これら第1支持部17と第2支持部18とは、溝部19によって区分されている。この溝部19は、予め所定の軌跡に設定されるレーザー11の走査領域下に設けられる。 The support table 16 supports the glass sheet 1 to be cut in a horizontal posture from below. In the present embodiment, the first support portion 17 capable of supporting the region that becomes the substantially rectangular product portion 2, and the product It has the 2nd support part 18 which is located in the circumference | surroundings of the part 2 and can support the area | region used as the non-product part 3 of a hollow rectangular shape. The first support portion 17 and the second support portion 18 are separated by a groove portion 19. This groove portion 19 is provided under the scanning region of the laser 11 set in advance in a predetermined locus.
 なお、図示は省略するが、本発明に係るレーザー溶断装置10は、板状ガラス1を下方から吸着した状態で支持台16により支持可能とするための吸着手段をさらに備えたものであってもよい。このような吸着手段を設け、板状ガラス1を支持台16に吸着支持した状態で切断予定線4に沿った板状ガラス1のレーザー溶断(溶融切断)処理を順次実行することで、板状ガラス1の支持台16に対する位置ずれを防止することができる。よって、切断精度の向上、ひいては高品質な製品部2の切り出しを図ることが可能となる。 In addition, although illustration is abbreviate | omitted, even if the laser fusing apparatus 10 which concerns on this invention is further provided with the adsorption | suction means for enabling it to be supported by the support stand 16 in the state which adsorb | sucked the sheet glass 1 from the downward direction. Good. By providing such suction means and sequentially performing laser fusing (melting cutting) processing of the glass sheet 1 along the planned cutting line 4 in a state where the glass sheet 1 is sucked and supported by the support 16, The positional deviation of the glass 1 with respect to the support 16 can be prevented. Therefore, it is possible to improve the cutting accuracy and to cut out the high-quality product part 2.
 次に、レーザー11の走査態様について説明する。 Next, the scanning mode of the laser 11 will be described.
 レーザー11の走査は、レーザー照射装置12とアシストガス噴射装置15を、支持台16とこれに支持された状態の板状ガラス1に対して水平方向に相対移動させることにより行われる。そして、このレーザー11の走査は、溶断対象となる板状ガラス1に対してレーザー11を照射し、かつ閉曲線となる板状ガラス1の切断予定線4に沿ってレーザー11を走査することで板状ガラス1を溶融させ、板状ガラス1から切断予定線4で囲まれた製品部2を切り出し可能な軌跡を描くようにして行われる。 Scanning of the laser 11 is performed by moving the laser irradiation device 12 and the assist gas injection device 15 relative to the support table 16 and the plate-like glass 1 supported on the support table 16 in the horizontal direction. The scanning of the laser 11 is performed by irradiating the sheet glass 1 to be melted with the laser 11 and scanning the laser 11 along the planned cutting line 4 of the sheet glass 1 having a closed curve. The glass-like glass 1 is melted, and a locus capable of cutting out the product part 2 surrounded by the planned cutting line 4 from the plate-like glass 1 is drawn.
 詳述すると、レーザー11は、図3中の二点鎖線で示すように、製品部2から見て切断予定線4の外側からレーザー11を切断予定線4上に進入させ、切断予定線4に沿って走査した後、レーザー11を切断予定線4上からその外側に離脱させる走査軌跡20をとる。この場合、レーザー11の照射開始位置P1は走査軌跡20の始点(正確には、走査軌跡20の中心線の始点)となり、切断予定線4の外側(非製品部3の側)に設定される。また、レーザー11の照射終了位置P2は走査軌跡20の終点となり、照射開始位置P1と同様、切断予定線4の外側に設定される。なお、ここでいう走査軌跡20は、正確にはレーザー11の照射領域13がなす軌跡を示しており、それが故に、一定の幅方向を有する領域(二点鎖線で囲まれた領域)として表示されている。本実施形態では、レーザー11が円弧状の軌跡を描いて切断予定線4上への進入を開始するよう、レーザー11の走査軌跡20(進入軌跡20a)が設定される。また、切断予定線4上への進入を開始する進入開始位置P3を通過する際のレーザー11の走査軌跡が切断予定線4と接するよう、レーザー11を切断予定線4上に進入させる(進入軌跡20aを設定する)ようにしている。 More specifically, as shown by a two-dot chain line in FIG. 3, the laser 11 causes the laser 11 to enter the planned cutting line 4 from the outside of the planned cutting line 4 when viewed from the product portion 2, and to the planned cutting line 4. After scanning along, a scanning trajectory 20 for taking the laser 11 away from the cutting line 4 to the outside is taken. In this case, the irradiation start position P1 of the laser 11 is the starting point of the scanning locus 20 (more precisely, the starting point of the center line of the scanning locus 20) and is set outside the planned cutting line 4 (on the non-product part 3 side). . Further, the irradiation end position P2 of the laser 11 is the end point of the scanning locus 20, and is set outside the planned cutting line 4 in the same manner as the irradiation start position P1. Note that the scanning trajectory 20 here indicates the trajectory formed by the irradiation region 13 of the laser 11 precisely, and is therefore displayed as a region having a certain width direction (region surrounded by a two-dot chain line). Has been. In the present embodiment, the scanning trajectory 20 (entrance locus 20a) of the laser 11 is set so that the laser 11 starts an approach on the planned cutting line 4 while drawing an arc-like locus. Further, the laser 11 is caused to enter the planned cutting line 4 so that the scanning trajectory of the laser 11 at the time of passing the approach start position P3 that starts entering the planned cutting line 4 is in contact with the planned cutting line 4 (approach trajectory). 20a is set).
 離脱する際も同様に、レーザー11が円弧状の軌跡を描いて切断予定線4上からの離脱を開始するよう、レーザー11の走査軌跡20(離脱軌跡20b)が設定される。また、切断予定線4上からの離脱を開始する離脱開始位置P4を通過する際のレーザー11の走査軌跡が切断予定線4と接するよう、レーザー11を切断予定線4上から離脱させる(離脱軌跡20bを設定する)ようにしている。 Similarly, the scanning trajectory 20 (detachment locus 20b) of the laser 11 is set so that the laser 11 draws an arc-shaped locus and starts to leave from the planned cutting line 4 when leaving. Further, the laser 11 is separated from the planned cutting line 4 so that the scanning trajectory of the laser 11 when contacting the planned cutting line 4 when passing the separation starting position P4 where the separation from the planned cutting line 4 is started (separated trace). 20b is set).
 また、本実施形態では、製品部2が各々の角部を丸めた略長方形状をなすことから、対応する切断予定線4もまた各々の角部を丸めた略長方形状をなす。そこで、レーザー11の進入開始位置P3と離脱開始位置P4とが共に、切断予定線4のうち製品部2の所定の辺(ここでは図3中、上側の短辺)に沿った直線領域4a上に位置するよう、レーザー11の走査軌跡20が設定される。 Further, in the present embodiment, since the product part 2 has a substantially rectangular shape with rounded corners, the corresponding planned cutting line 4 also has a substantially rectangular shape with rounded corners. Therefore, the approach start position P3 and the exit start position P4 of the laser 11 are both on the straight region 4a along the predetermined side of the product portion 2 (here, the upper short side in FIG. 3) of the planned cutting line 4. The scanning trajectory 20 of the laser 11 is set so as to be positioned at.
 図3に示すような走査軌跡20をとった場合、この走査軌跡20は、切断予定線4の直線領域4a上で交差することになる。図4は走査軌跡20の交差部を拡大して示したもので、レーザー11の切断予定線4上からの離脱開始位置P4を、切断予定線4上への進入開始位置P3よりもレーザー11の走査方向後方側(図4でいえば、進入開始位置P3からみて左側)にオフセットしている。 When the scanning trajectory 20 as shown in FIG. 3 is taken, the scanning trajectory 20 intersects the straight line area 4 a of the planned cutting line 4. FIG. 4 is an enlarged view of the crossing portion of the scanning trajectory 20, and the separation start position P <b> 4 of the laser 11 from the planned cutting line 4 is set to be higher than the approach start position P <b> 3 of the planned cutting line 4. It is offset to the rear side in the scanning direction (left side as viewed from the entry start position P3 in FIG. 4).
 ここで、図4に示すように、円弧状の軌跡を描いて切断予定線4上への進入を開始するレーザー11の進入軌跡20aの半径(正確には、進入軌跡20aの中心線の半径)をR1、同じく円弧状の軌跡を描いて切断予定線4上からの離脱を開始するレーザー11の離脱軌跡20bの半径(正確には、離脱軌跡20bの中心線の半径)をR2、レーザー11のスポット径(すなわち、走査軌跡20をなす走査領域の幅方向寸法)をD、レーザー11の照射により板状ガラス1を溶融することで形成されるスリット21(後述する図6を参照)の幅寸法をLとした場合、前記進入開始位置から前記離脱開始位置までのオフセット量Sは、上記の数式1を満足するように設定されるのがよい。また、好ましくは、上記の数式2を満足するように設定されるのがよく、さらに好ましくは、上記の数式3を満足するように設定されるのがよい。 Here, as shown in FIG. 4, the radius of the approach locus 20a of the laser 11 that starts the approach to the planned cutting line 4 while drawing an arc-like locus (more precisely, the radius of the center line of the approach locus 20a). R1 is also drawn in the same arc-shaped locus, and the radius of the separation locus 20b of the laser 11 that starts separation from the planned cutting line 4 (more precisely, the radius of the center line of the separation locus 20b) is defined as R2. The spot diameter (that is, the width direction dimension of the scanning region forming the scanning locus 20) is D, and the width dimension of the slit 21 (see FIG. 6 described later) formed by melting the glass sheet 1 by irradiation with the laser 11. When L is set to L, the offset amount S from the entry start position to the departure start position is preferably set so as to satisfy the above formula 1. Further, it is preferably set so as to satisfy the above formula 2, and more preferably set so as to satisfy the above formula 3.
 以下、上記構成の溶断装置10を用いた板状ガラス1に対するレーザー溶断方法の一例を説明する。 Hereinafter, an example of a laser fusing method for the sheet glass 1 using the fusing device 10 having the above configuration will be described.
 まず、図5に示すように、レーザー照射装置12(図5中、二点鎖線で表示)を、板状ガラス1の製品部2から見て切断予定線4の外側、すなわち非製品部3の側に位置する照射開始位置P1上に配置する。そして、レーザー照射装置12からレーザー11を照射すると共に、上述の如く予め設定した走査軌跡20(この段階では円弧状の進入軌跡20a)に沿ってレーザー11を走査することで、板状ガラス1に対するレーザー溶断を開始する。 First, as shown in FIG. 5, the laser irradiation device 12 (indicated by a two-dot chain line in FIG. 5) is seen outside the planned cutting line 4 when viewed from the product part 2 of the sheet glass 1, that is, on the non-product part 3. It arrange | positions on the irradiation start position P1 located in the side. And while irradiating the laser 11 from the laser irradiation apparatus 12, while scanning the laser 11 along the scanning locus | trajectory 20 (arc-shaped approach locus | trajectory 20a in this step) preset as mentioned above, it is with respect to the sheet glass 1 Start laser fusing.
 こうして、板状ガラス1の非製品部3を溶融しながらレーザー11を進入軌跡20aに沿って走査していき、切断予定線4上に進入させる(図6を参照)。この際、レーザー11は、図6に示すように切断予定線4に漸近するようにして切断予定線4上に進入することになるため、走査速度を維持した状態で切断予定線4上に進入することができる。 In this way, the laser 11 is scanned along the approach locus 20a while melting the non-product part 3 of the sheet glass 1, and enters the planned cutting line 4 (see FIG. 6). At this time, the laser 11 enters the cutting line 4 asymptotically to the cutting line 4 as shown in FIG. 6, and therefore enters the cutting line 4 while maintaining the scanning speed. can do.
 このようにして切断予定線4上に進入し、レーザー11を切断予定線4に沿って走査することにより、切断予定線4を含む領域を溶融して、切断予定線4を中心とし、板状ガラス1を表裏方向に貫通するスリット21を切断予定線4に沿って順次形成していく(図7を参照)。 In this way, by entering the planned cutting line 4 and scanning the laser 11 along the planned cutting line 4, the region including the planned cutting line 4 is melted, with the planned cutting line 4 as the center, and a plate shape Slits 21 penetrating the glass 1 in the front and back directions are sequentially formed along the planned cutting line 4 (see FIG. 7).
 こうしてレーザー11を予め設定した走査軌跡20に沿って走査し、製品部2のまわりを約一周した後、レーザー11の切断予定線4上からの離脱を開始する(図8を参照)。この際、レーザー11は、図8に示すように、切断予定線4と離脱開始位置P4において接する円弧状の軌跡(離脱軌跡20b)に沿って切断予定線4上から離脱していくことになるため、走査速度を維持した状態で切断予定線4上からレーザー11を離脱させることができる。 Thus, the laser 11 is scanned along the preset scanning trajectory 20, and after about one round around the product portion 2, the laser 11 starts to be detached from the planned cutting line 4 (see FIG. 8). At this time, as shown in FIG. 8, the laser 11 is separated from the planned cutting line 4 along an arc-shaped track (detached track 20 b) that contacts the planned cutting line 4 at the separation start position P <b> 4. Therefore, the laser 11 can be detached from the planned cutting line 4 while maintaining the scanning speed.
 そして、引き続き走査軌跡20(ここでは、離脱軌跡20b)に沿ってレーザー11の走査を続行し、図9に示すように、レーザー照射装置12を、非製品部3の側にまで移動し、レーザー11が非製品部3上の照射終了位置P2に到達したら、レーザー11の照射を終了する。このようにして、レーザー11の走査による板状ガラス1からの製品部2の切り出し作業が完了する。 Then, the scanning of the laser 11 is continued along the scanning locus 20 (here, the separation locus 20b), and the laser irradiation device 12 is moved to the non-product part 3 side as shown in FIG. When 11 reaches the irradiation end position P2 on the non-product part 3, the irradiation of the laser 11 is ended. In this way, the cutting operation of the product portion 2 from the plate glass 1 by scanning with the laser 11 is completed.
 このように、本発明では、レーザー11の離脱開始位置P4を、進入開始位置P3よりもレーザー11の走査方向後方側にオフセットするようにした。言い換えると、実質的な切り出しが可能な程度にレーザー11を早めに切断予定線4からその外側(非製品部3の側)に離脱させるようにした。これにより、製品部2の周縁部のうちレーザー11の照射が重複して行われる領域の面積を小さく抑えることができる。そのため、特にレーザー11の進入開始位置P3又は離脱開始位置P4の周辺における製品部2の周縁部の過剰な加熱を抑止して、当該周縁部の軟化、変形を可及的に防止することが可能となる。よって、特にレーザー11の進入、離脱に係る製品部2の辺2aの端面形状精度を高めることが可能となる。 Thus, in the present invention, the separation start position P4 of the laser 11 is offset to the rear side in the scanning direction of the laser 11 with respect to the entry start position P3. In other words, the laser 11 is detached from the planned cutting line 4 to the outside (the non-product part 3 side) as early as possible so that substantial cutting can be performed. Thereby, the area of the area | region where irradiation of the laser 11 overlaps among the peripheral parts of the product part 2 can be restrained small. Therefore, it is possible to suppress excessive heating of the peripheral portion of the product portion 2 particularly around the entry start position P3 or the separation start position P4 of the laser 11 and to prevent the peripheral portion from being softened or deformed as much as possible. It becomes. Therefore, it is possible to improve the end face shape accuracy of the side 2a of the product part 2 particularly related to the laser 11 entering and leaving.
 図10は、本発明に係るレーザー溶断方法により切り出した板状ガラス製品としての製品部2の辺2aのうち、レーザー11の進入開始位置P3及び離脱開始位置P4に最も近い領域を拡大して模式的に示したものである。図10に示すように、本発明に係るレーザー溶断方法で切り出した製品部2の辺2a(周縁部)の、進入開始位置P3及び離脱開始位置P4の付近においては、溶断により辺2aに沿って形成された溶断面(図示は省略)から外側に突出した突出部2a1がみられるが、その突出度合い(後述する最大突出量2a1r)は僅かである。また、突出部2a1の形状(例えば、後述する長さ寸法2a1lに対する最大突出量2a1rの比)も比較的なだらかである。対して、従来の走査軌跡(図13及び図14を参照)に係るレーザー溶断方法で切り出した製品部2においては、図10中の二点鎖線で示すように、外側に大きく突出した形態の突出部2a1’がみれらる。このことからも、本発明に係るレーザー溶断方法で切り出した製品部の端面形状精度が向上していることがわかる。 FIG. 10 is an enlarged schematic view of a region closest to the entry start position P3 and the separation start position P4 of the laser 11 in the side 2a of the product portion 2 as a sheet glass product cut out by the laser fusing method according to the present invention. It is shown as an example. As shown in FIG. 10, in the vicinity of the entry start position P3 and the separation start position P4 of the side 2a (peripheral part) of the product part 2 cut out by the laser fusing method according to the present invention, along the side 2a by fusing. A protruding portion 2a1 protruding outward from the formed molten section (not shown) is seen, but the protruding degree (maximum protruding amount 2a1r described later) is slight. Further, the shape of the protruding portion 2a1 (for example, the ratio of the maximum protruding amount 2a1r to the length dimension 2a1l described later) is comparatively gentle. On the other hand, in the product part 2 cut out by the laser fusing method according to the conventional scanning locus (see FIGS. 13 and 14), as shown by the two-dot chain line in FIG. Part 2a1 'can be seen. This also shows that the end surface shape accuracy of the product part cut out by the laser fusing method according to the present invention is improved.
 なお、ここで、突出部2a1の外側への最大突出量2a1r(図10)は、10μm以上でかつ100μm以下であることが好ましく、15μm以上でかつ80μm以下であることがより好ましく、20μm以上でかつ60μm以下であることがさらに好ましい。また、突出部2a1の辺2aに沿った方向の長さ寸法2a1l(図10)は100μm以上でかつ2000μm以下であることが好ましく、200μm以上でかつ1500μm以下であることがより好ましく、300μm以上でかつ1000μm以下であることがさらに好ましい。また、突出部2a1の板厚方向の寸法(図示は省略)は突出部2a1以外の部位における厚み方向の寸法よりも5μm以上でかつ100μm以下の範囲で大きいことが好ましく、10μm以上でかつ90μm以下の範囲で大きいことがより好ましく、15μm以上でかつ80μm以下の範囲で大きいことがさらに好ましい。上記範囲に突出部2a1のサイズを規制することで(特に、上述したサイズの板状ガラス1から上述した用途の製品部2を切り出す場合には、上述したより好ましい範囲に突出部2a1のサイズを規制することで)、研磨等の端面加工を別途に施すことなく、製品部2をそのまま製品として提供することが可能となる。 Here, the maximum protrusion amount 2a1r (FIG. 10) to the outside of the protrusion 2a1 is preferably 10 μm or more and 100 μm or less, more preferably 15 μm or more and 80 μm or less, and more preferably 20 μm or more. And it is more preferable that it is 60 micrometers or less. Further, the length dimension 2a1l (FIG. 10) in the direction along the side 2a of the protrusion 2a1 is preferably 100 μm or more and 2000 μm or less, more preferably 200 μm or more and 1500 μm or less, and more preferably 300 μm or more. And it is more preferable that it is 1000 micrometers or less. In addition, the dimension in the plate thickness direction (not shown) of the protrusion 2a1 is preferably larger than the dimension in the thickness direction at a portion other than the protrusion 2a1 in the range of 5 μm to 100 μm, preferably 10 μm to 90 μm. It is more preferable that it is large in the range, and it is more preferable that it is large in the range of 15 μm or more and 80 μm or less. By restricting the size of the protrusion 2a1 within the above range (especially when the product part 2 for the above-mentioned use is cut out from the above-described size of the sheet glass 1, the size of the protrusion 2a1 is set within the above-described preferable range. By restricting), the product part 2 can be provided as a product as it is without separately performing end face processing such as polishing.
 また、本実施形態では、レーザー11の進入軌跡20aを切断予定線4に漸近するような形状とし、進入開始位置P3を通過する際のレーザー11の走査軌跡が切断予定線4と接するよう、レーザー11を切断予定線4上に進入させるようにしたので、レーザー11の走査速度を維持してレーザー溶断を進行することができる。また、本実施形態では、レーザー11の離脱軌跡20bを切断予定線4から徐々に遠ざかる形状とし、離脱開始位置P4を通過する際のレーザー11の走査軌跡が切断予定線4と接するよう、レーザー11を切断予定線4上から離脱させるようにしたので、これによってもレーザー11の走査速度を維持してレーザー溶断を進行することができる。従って、製品部2の切り出し品質(形状品質)をより高めることが可能となる。 Further, in the present embodiment, the laser 11 is formed such that the approach locus 20a of the laser 11 is asymptotic to the planned cutting line 4 and the scanning trace of the laser 11 when passing through the approach start position P3 is in contact with the planned cutting line 4. Since 11 is made to enter on the planned cutting line 4, the laser fusing can proceed while maintaining the scanning speed of the laser 11. Further, in the present embodiment, the laser 11 has a shape in which the separation locus 20b of the laser 11 gradually moves away from the planned cutting line 4, and the scanning track of the laser 11 when passing through the separation start position P4 is in contact with the planned cutting line 4. Since the laser beam is separated from the cutting line 4, the laser fusing can proceed while maintaining the scanning speed of the laser 11. Therefore, it becomes possible to further improve the cutout quality (shape quality) of the product part 2.
 また、本実施形態では、上述した数式1~3の何れかを満足するよう、適切なオフセット量Sを定めるようにしたので、これによっても製品部2の切り出し品質を高めることができる。また、この際、切断予定線4上への進入軌跡20a、及び切断予定線4上からの離脱軌跡20bを、円弧領域で構成したので、オフセット量Sの設定に必要な数式(例えば上記数式1~3)の導出が容易にでき、かつその精度を高めることができる。よって、このことによっても、更なる切り出し精度の向上を図ることが可能となる。 Further, in the present embodiment, the appropriate offset amount S is determined so as to satisfy any one of the above formulas 1 to 3, so that the cutting quality of the product part 2 can also be improved. At this time, the approach locus 20a on the planned cutting line 4 and the leaving locus 20b from the planned cutting line 4 are configured by arc regions, so that a mathematical formula (for example, the mathematical formula 1 described above) necessary for setting the offset amount S is formed. -3) can be easily derived and the accuracy thereof can be improved. Therefore, this also makes it possible to further improve the cutout accuracy.
 以上、本発明に係るレーザー溶断方法の一実施形態を説明したが、この溶断方法は、当然に本発明の範囲内において任意の形態を採ることができる。 As mentioned above, although one embodiment of the laser fusing method according to the present invention has been described, this fusing method can naturally take any form within the scope of the present invention.
 例えば、上記実施形態では、レーザー11の進入開始位置P3に対する離脱開始位置P4のオフセット量Sを、上記の数式1~3の何れかを満足するように設定した場合を例示視したが、もちろん、このオフセット量Sは、レーザー11の走査軌跡20によって適宜設定するべきものである。よって、図3及び図4以外の走査軌跡20をとる場合には、その走査軌跡に合わせて適切なオフセット量Sを設定するのがよい。 For example, in the above embodiment, the case where the offset amount S of the separation start position P4 with respect to the approach start position P3 of the laser 11 is set so as to satisfy any of the above formulas 1 to 3 is exemplified. This offset amount S should be appropriately set according to the scanning trajectory 20 of the laser 11. Therefore, when taking a scanning locus 20 other than those shown in FIGS. 3 and 4, it is preferable to set an appropriate offset amount S in accordance with the scanning locus.
 また、上記実施形態では、レーザー11の進入開始位置P3と離脱開始位置P4とが共に、切断予定線4のうち製品部2の所定の辺(例えば図10に示す2a)に対応する直線領域4a上に位置するよう、レーザー11の走査軌跡20を設定した場合を例示したが、もちろんこれ以外の領域に進入開始位置P3と離脱開始位置P4とが位置するよう、レーザー11の走査軌跡20を設定しても構わない。例えば図示の形態であれば、製品部2のうち円弧状をなす角部に対応する円弧領域上に、進入開始位置P3と離脱開始位置P4とが位置するよう、レーザー11の走査軌跡20を設定することも可能である。 Moreover, in the said embodiment, both the approach start position P3 and the leaving start position P4 of the laser 11 are both the straight area | region 4a corresponding to the predetermined | prescribed side (for example, 2a shown in FIG. 10) of the product part 2 among the cutting projected lines 4. Although the case where the scanning trajectory 20 of the laser 11 is set so as to be positioned above is illustrated, of course, the scanning trajectory 20 of the laser 11 is set so that the approach start position P3 and the departure start position P4 are located in other regions. It doesn't matter. For example, in the form shown in the figure, the scanning trajectory 20 of the laser 11 is set so that the entry start position P3 and the separation start position P4 are positioned on the arc region corresponding to the arcuate corner of the product part 2. It is also possible to do.
 また、上記実施形態では、板状ガラス1から切り出した部分が製品部2となる場合を例示したが、板状ガラス1から切り出された部分が製品部となる場合に本発明を適用しても構わない。換言すれば、図11に示すように、切断予定線4の外側が製品部2で、内側が非製品部3となる場合(例えば、各々の角部を丸めた略矩形状の穴を製品部2に開ける場合)に本発明を適用しても構わない。この場合、レーザー11は、製品部2から見て切断予定線4の内側から、言い換えると、切断予定線4により閉じられた領域である非製品部3の側からレーザー11を切断予定線4上に進入させ、切断予定線4に沿って走査した後、レーザー11を切断予定線4上からその内側(非製品部3の側)に離脱させる軌跡をとる。また、この際、レーザー11が切断予定線4上からの離脱を開始する離脱開始位置P4を、レーザー11が切断予定線4上への進入を開始する進入開始位置P3よりもレーザー11の走査方向後方側にオフセットする。これにより、上記実施形態と同様、レーザー11の進入開始位置P3又は離脱開始位置P4の周辺における製品部2の周縁部の過剰な加熱を抑止して、当該周縁部の軟化、変形を可及的に防止することができ、これによりレーザー11の進入、離脱に係る製品部2の辺2aの端面形状精度を高めることが可能となる。 Moreover, in the said embodiment, although the case where the part cut out from the sheet glass 1 becomes the product part 2 was illustrated, even if this invention is applied when the part cut out from the sheet glass 1 becomes a product part I do not care. In other words, as illustrated in FIG. 11, when the outside of the planned cutting line 4 is the product portion 2 and the inside is the non-product portion 3 (for example, a substantially rectangular hole with rounded corners is defined as the product portion. 2), the present invention may be applied. In this case, the laser 11 is located on the planned cutting line 4 from the inside of the planned cutting line 4 as viewed from the product part 2, in other words, from the non-product part 3 side which is an area closed by the planned cutting line 4. Then, after scanning along the planned cutting line 4, a trajectory for separating the laser 11 from the planned cutting line 4 to the inside (the non-product part 3 side) is taken. Further, at this time, the laser 11 scans in the scanning direction of the laser 11 from the separation start position P4 where the laser 11 starts to leave the planned cutting line 4 and from the approach start position P3 where the laser 11 starts entering the planned cutting line 4. Offset backward. As a result, as in the above embodiment, excessive heating of the peripheral portion of the product portion 2 around the entry start position P3 or the separation start position P4 of the laser 11 is suppressed, and the peripheral portion is softened and deformed as much as possible. Therefore, it is possible to improve the end face shape accuracy of the side 2a of the product part 2 related to the laser 11 entering and leaving.
 以下、本発明の実施例を示す。なお、以下の説明において、既述の構成要素と同一の機能、又は形状を有するものについては、上記実施形態と同一の符号を付し、重複する説明を省略している。 Examples of the present invention will be described below. In the following description, components having the same functions or shapes as those of the above-described constituent elements are given the same reference numerals as those in the above embodiment, and redundant descriptions are omitted.
 本実施例では、照射開始位置P1から進入開始位置P3へと至り、円弧状をなすレーザー11の進入軌跡20aの半径R1と、離脱開始位置P4から照射終了位置P2へと至り、円弧状をなすレーザー11の離脱軌跡20bの半径R2(共に図4を参照)、及びオフセット量Sを変化させた場合における、製品部2の辺2a(図10を参照)の形状を数値化して評価した。 In this embodiment, the irradiation start position P1 reaches the entry start position P3, the radius R1 of the approach locus 20a of the laser 11 having an arc shape, and the separation start position P4 to the irradiation end position P2 to form an arc shape. The shape of the side 2a (see FIG. 10) of the product portion 2 when the radius R2 of the separation locus 20b of the laser 11 (both see FIG. 4) and the offset amount S are changed and evaluated.
 溶断条件は以下の通りである。まず共通条件として、レーザー溶断の対象となる板状ガラス1には、日本電気硝子株式会社製のOA-10G(厚み:100[μm])を使用した。また、溶断用のレーザー11に関し、その出力を9[W]、スポット径Dの大きさを130[μm]、加工速度(走査速度)を10[mm/s]、レーザー11の照射により板状ガラス1に溶融形成されたスリット21の幅寸法Lの大きさを60[μm]とした。アシストガス噴射装置15からのアシストガス14の噴射量を60[l/min]とした。 The fusing conditions are as follows. First, as a common condition, OA-10G (thickness: 100 [μm]) manufactured by Nippon Electric Glass Co., Ltd. was used for the sheet glass 1 to be subjected to laser fusing. Further, regarding the laser 11 for fusing, the output is 9 [W], the spot diameter D is 130 [μm], the processing speed (scanning speed) is 10 [mm / s], and the laser 11 is irradiated to form a plate shape. The width L of the slit 21 melt-formed on the glass 1 was set to 60 [μm]. The injection amount of the assist gas 14 from the assist gas injection device 15 was set to 60 [l / min].
 また、進入軌跡20aの半径R1と離脱軌跡20bの半径R2を共に3,5,10[mm]の3種類に設定すると共に、各々の場合におけるオフセット量Sを数段階(例えば5段階)に変化させた際の、製品部2の辺2aの進入開始位置P3及び離脱開始位置P4付近の端面形状を数値化して評価した。具体的には、辺2aの周端部のうち、辺2aの長手方向に沿った所定長さ(例えば4mm)の領域を測定対象とし、顕微鏡にて当該測定対象を製品部2表面の法線方向から撮影することで、当該測定対象の拡大写真を得た。その後、この領域の長手方向両端位置を結んで得た線を基準線として製品部2の辺2aの先端の位置を一定間隔(例えば50μm)ごとに測定し、この基準線から外側(非製品部3の側)に突出した量の最大値(最大突出量2a1r)と、上記領域における外側への突出量の偏差(何れも単位はμm)を測定した。 Further, the radius R1 of the entry locus 20a and the radius R2 of the departure locus 20b are both set to three types of 3, 5, and 10 [mm], and the offset amount S in each case is changed in several steps (for example, five steps). The end face shape in the vicinity of the entry start position P3 and the separation start position P4 of the side 2a of the product part 2 at the time of the evaluation was quantified and evaluated. Specifically, an area having a predetermined length (for example, 4 mm) along the longitudinal direction of the side 2a in the peripheral end portion of the side 2a is set as a measurement target, and the measurement target is normal to the surface of the product part 2 using a microscope. An enlarged photograph of the measurement object was obtained by shooting from the direction. Thereafter, the position of the tip of the side 2a of the product part 2 is measured at regular intervals (for example, 50 μm) using the line obtained by connecting the longitudinal end positions of this region as a reference line, and the outside (non-product part) 3) and the deviation of the amount of protrusion to the outside in the above-mentioned region (the unit is μm).
 図12に、実験結果を示す。なお、図12中における中実プロットは最大突出量2a1r、白抜きプロットは偏差をそれぞれ示している。また、オフセット量Sは何れも、数式1~3に基づき規格化している(オフセット率としている)。同図に示すように、半径R1,R2の大きさ如何によらず、オフセット率を0%よりも大きくするにつれて、突出部2a1の最大値(最大突出量2a1r)は減少する傾向にあることが分かった(偏差についても同様である)。また、オフセット率(オフセット量S)には、設定した半径R1,R2の大きさによって多少のばらつきはあるものの、ある程度最適な範囲があり、具体的には0%を超えかつ125%未満がよく、25%を超えかつ100%未満がよりよく、40%を超えかつ70%未満がさらによいことが分かった。 Fig. 12 shows the experimental results. In FIG. 12, the solid plot indicates the maximum protrusion amount 2a1r, and the white plot indicates the deviation. Further, the offset amount S is standardized based on Formulas 1 to 3 (the offset rate is used). As shown in the figure, the maximum value of the protruding portion 2a1 (maximum protruding amount 2a1r) tends to decrease as the offset rate becomes larger than 0% regardless of the sizes of the radii R1 and R2. Okay (same for deviation). In addition, the offset rate (offset amount S) varies to some extent depending on the set radii R1 and R2, but has an optimum range to some extent. Specifically, it is preferably over 0% and less than 125%. , More than 25% and less than 100%, better than 40% and less than 70%.
1   板状ガラス
2   製品部
3   非製品部
4   切断予定線
10  レーザー溶断装置
11  レーザー
12  レーザー照射装置
13  照射領域
14  アシストガス
15  アシストガス噴射装置
16  支持台
20  走査軌跡
20a 進入軌跡
20b 離脱軌跡
21  スリット
D   スポット径(レーザー)
L   幅寸法(スリット)
P1  照射開始位置
P2  照射終了位置
P3  進入開始位置
P4  離脱開始位置
S   オフセット量
2a1r 突出部の最大突出量
2a1l 突出部の辺に沿った方向の長さ寸法
DESCRIPTION OF SYMBOLS 1 Sheet glass 2 Product part 3 Non-product part 4 Planned cutting line 10 Laser cutting apparatus 11 Laser 12 Laser irradiation apparatus 13 Irradiation area 14 Assist gas 15 Assist gas injection apparatus 16 Support stand 20 Scanning locus 20a Entrance locus 20b Departure locus 21 Slit D Spot diameter (laser)
L width dimension (slit)
P1 Irradiation start position P2 Irradiation end position P3 Approach start position P4 Release start position S Offset amount 2a1r Maximum protrusion amount 2a1l of the protruding portion Length dimension in the direction along the side of the protruding portion

Claims (14)

  1.  一部又は全体が板状をなすワークに対してレーザーを照射すると共に、閉曲線となる前記ワークの切断予定線に沿って前記レーザーを走査して、前記ワークを溶融させることにより、前記ワークを製品部と非製品部とに切り分けるレーザー溶断方法であって、
     前記非製品部の側から前記レーザーを前記切断予定線上に進入させ、前記切断予定線に沿って走査した後、前記レーザーを前記切断予定線上から前記非製品部の側に離脱させる軌跡をとり、
     前記レーザーが前記切断予定線上からの離脱を開始する離脱開始位置を、前記レーザーが前記切断予定線上への進入を開始する進入開始位置よりも前記レーザーの走査方向後方側にオフセットしたことを特徴とするレーザー溶断方法。
    By irradiating a part or the whole of a plate-shaped workpiece with a laser and scanning the laser along a planned cutting line of the workpiece that is a closed curve, the workpiece is melted to obtain a product. A laser fusing method that divides a part into a non-product part,
    After entering the laser on the planned cutting line from the non-product part side, and scanning along the planned cutting line, take a trajectory to detach the laser from the planned cutting line to the non-product part side,
    The departure start position at which the laser starts to leave the planned cutting line is offset from the approach start position at which the laser starts to enter the planned cutting line to the rear side in the scanning direction of the laser, Laser fusing method to do.
  2.  前記切断予定線に沿って前記レーザーを走査して、前記ワークを溶融させることにより、前記ワークから前記切断予定線で囲まれた製品部を切り出す場合において、
     前記レーザーは、前記切断予定線の外側に位置する前記非製品部の側から前記レーザーを前記切断予定線上に進入させ、前記切断予定線に沿って走査した後、前記レーザーを前記切断予定線上から前記非製品部の側に離脱させる軌跡をとる請求項1に記載のレーザー溶断方法。
    In the case of cutting the product part surrounded by the planned cutting line from the workpiece by scanning the laser along the planned cutting line and melting the workpiece,
    The laser enters the cutting line from the side of the non-product portion located outside the planned cutting line, scans along the planned cutting line, and then scans the laser from the planned cutting line. The laser fusing method according to claim 1, wherein a locus to be separated toward the non-product part is taken.
  3.  前記切断予定線に沿って前記レーザーを走査して、前記ワークを溶融させることにより、前記切断予定線で囲まれた領域をくり抜いた前記製品部を得る場合において、
     前記レーザーは、前記切断予定線の内側に位置する前記非製品部の側から前記レーザーを前記切断予定線上に進入させ、前記切断予定線に沿って走査した後、前記レーザーを前記切断予定線上から前記非製品部の側に離脱させる軌跡をとる請求項1に記載のレーザー溶断方法。
    By scanning the laser along the planned cutting line and melting the workpiece, when obtaining the product part hollowed out the region surrounded by the planned cutting line,
    The laser makes the laser enter the planned cutting line from the non-product portion side located inside the planned cutting line, scans along the planned cutting line, and then scans the laser from the planned cutting line. The laser fusing method according to claim 1, wherein a locus to be separated toward the non-product part is taken.
  4.  前記進入開始位置を通過する際の前記レーザーの走査軌跡が前記切断予定線と接するよう、前記レーザーを前記切断予定線上に進入させる請求項1~3の何れかに記載のレーザー溶断方法。 The laser fusing method according to any one of claims 1 to 3, wherein the laser enters the planned cutting line so that a scanning trajectory of the laser when passing through the entry start position is in contact with the planned cutting line.
  5.  前記離脱開始位置を通過する際の前記レーザーの走査軌跡が前記切断予定線と接するよう、前記レーザーを前記切断予定線上から離脱させる請求項1~4の何れかに記載のレーザー溶断方法。 The laser fusing method according to any one of claims 1 to 4, wherein the laser is separated from the planned cutting line so that a scanning trajectory of the laser when passing the separation start position is in contact with the planned cutting line.
  6.  前記レーザーが円弧状の軌跡を描いて前記切断予定線上への進入を開始するよう、前記レーザーを走査する請求項1~5の何れかに記載のレーザー溶断方法。 The laser fusing method according to any one of claims 1 to 5, wherein the laser is scanned so that the laser draws an arc-shaped trajectory and starts entering the planned cutting line.
  7.  前記レーザーが円弧状の軌跡を描いて前記切断予定線上からの離脱を開始するよう、前記レーザーを走査する請求項1~6の何れかに記載のレーザー溶断方法。 The laser fusing method according to any one of claims 1 to 6, wherein the laser is scanned so that the laser draws an arc-shaped trajectory and starts to be detached from the planned cutting line.
  8.  前記レーザーの前記進入開始位置と前記離脱開始位置とが共に、前記切断予定線のうち前記製品部の所定の辺に対応する直線領域上に位置するよう、前記レーザーの走査軌跡を設定する請求項1~7の何れかに記載のレーザー溶断方法。 The laser scanning trajectory is set so that both the entry start position and the separation start position of the laser are located on a straight line region corresponding to a predetermined side of the product portion of the planned cutting line. 8. The laser fusing method according to any one of 1 to 7.
  9.  円弧状の軌跡を描いて前記切断予定線上への進入を開始する前記レーザーの進入軌跡の半径をR1、円弧状の軌跡を描いて前記切断予定線上からの離脱を開始する前記レーザーの離脱軌跡の半径をR2、前記レーザーのスポット径をD、前記レーザーの照射により前記ワークを溶融することで形成されるスリットの幅寸法をLとした場合、前記進入開始位置から前記離脱開始位置までのオフセット量Sが、数式1を満足する請求項8に記載のレーザー溶断方法。
    Figure JPOXMLDOC01-appb-M000001
    R1 is the radius of the laser entering locus that starts to enter the planned cutting line by drawing an arc-shaped locus, and R1 of the laser leaving locus that starts to leave from the planned cutting line by drawing an arc-shaped locus. When the radius is R2, the spot diameter of the laser is D, and the width dimension of the slit formed by melting the workpiece by laser irradiation is L, the offset amount from the entry start position to the release start position The laser fusing method according to claim 8, wherein S satisfies Formula 1.
    Figure JPOXMLDOC01-appb-M000001
  10.  円弧状の軌跡を描いて前記切断予定線上への進入を開始する前記レーザーの進入軌跡の半径をR1、円弧状の軌跡を描いて前記切断予定線上からの離脱を開始する前記レーザーの離脱軌跡の半径をR2、前記レーザーのスポット径をD、前記レーザーの照射により前記ワークを溶融することで形成されるスリットの幅寸法をLとした場合、前記進入開始位置から前記離脱開始位置までのオフセット量Sが、数式2を満足する請求項8に記載のレーザー溶断方法。
    Figure JPOXMLDOC01-appb-M000002
    R1 is the radius of the laser entering locus that starts to enter the planned cutting line by drawing an arc-shaped locus, and R1 of the laser leaving locus that starts to leave from the planned cutting line by drawing an arc-shaped locus. When the radius is R2, the spot diameter of the laser is D, and the width dimension of the slit formed by melting the workpiece by laser irradiation is L, the offset amount from the entry start position to the release start position The laser fusing method according to claim 8, wherein S satisfies Formula 2.
    Figure JPOXMLDOC01-appb-M000002
  11.  円弧状の軌跡を描いて前記切断予定線上への進入を開始する前記レーザーの進入軌跡の半径をR1、円弧状の軌跡を描いて前記切断予定線上からの離脱を開始する前記レーザーの離脱軌跡の半径をR2、前記レーザーのスポット径をD、前記レーザーの照射により前記ワークを溶融することで形成されるスリットの幅寸法をLとした場合、前記進入開始位置から前記離脱開始位置までのオフセット量Sが、数式3を満足する請求項8に記載のレーザー溶断方法。
    Figure JPOXMLDOC01-appb-M000003
    R1 is the radius of the laser entering locus that starts to enter the planned cutting line by drawing an arc-shaped locus, and R1 of the laser leaving locus that starts to leave from the planned cutting line by drawing an arc-shaped locus. When the radius is R2, the spot diameter of the laser is D, and the width dimension of the slit formed by melting the workpiece by laser irradiation is L, the offset amount from the entry start position to the release start position The laser fusing method according to claim 8, wherein S satisfies Formula 3.
    Figure JPOXMLDOC01-appb-M000003
  12.  前記製品部が略矩形状の板ガラスである請求項1~11の何れかに記載のレーザー溶断方法。 The laser fusing method according to any one of claims 1 to 11, wherein the product part is a substantially rectangular plate glass.
  13.  一部又は全体が板状をなすワークを、溶断により非製品部と切り分けることで得られ、一又は複数の辺を有する板状ガラス製品において、
     溶断により生じた溶断面が前記辺に沿って形成され、前記溶断面には、前記非製品部の側に向けて突出する突出部が形成され、
     前記突出部の前記非製品部の側への最大突出量が10μm以上でかつ100μm以下であることを特徴とする、板状ガラス製品。
    In a plate-shaped glass product having one or more sides obtained by cutting a part or the whole of a plate-shaped workpiece from a non-product part by fusing,
    A melted cross section generated by fusing is formed along the side, and a protrusion that protrudes toward the non-product part is formed on the melt cross section.
    A plate-like glass product, wherein the maximum protruding amount of the protruding portion toward the non-product portion is 10 μm or more and 100 μm or less.
  14.  前記突出部の前記辺に沿った方向の長さ寸法が100μm以上でかつ2000μm以下で、前記突出部の厚み方向の寸法が、前記突出部以外の部位における厚み方向の寸法よりも5μm以上でかつ100μm以下の範囲で大きい請求項13に記載の板状ガラス製品。 The length dimension in the direction along the side of the protrusion is not less than 100 μm and not more than 2000 μm, and the dimension in the thickness direction of the protrusion is 5 μm or more than the dimension in the thickness direction in the portion other than the protrusion, and The plate-like glass product according to claim 13, which is large in a range of 100 µm or less.
PCT/JP2015/052697 2014-02-03 2015-01-30 Laser melt-cutting method and plate-form glass product having melt-cut face WO2015115604A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015560041A JP6350884B2 (en) 2014-02-03 2015-01-30 Laser cutting method and sheet glass product having a melting section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-018441 2014-02-03
JP2014018441 2014-02-03

Publications (1)

Publication Number Publication Date
WO2015115604A1 true WO2015115604A1 (en) 2015-08-06

Family

ID=53757171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052697 WO2015115604A1 (en) 2014-02-03 2015-01-30 Laser melt-cutting method and plate-form glass product having melt-cut face

Country Status (3)

Country Link
JP (1) JP6350884B2 (en)
TW (1) TW201542479A (en)
WO (1) WO2015115604A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144668B2 (en) 2014-08-20 2018-12-04 Corning Incorporated Method and apparatus for yielding high edge strength in cutting of flexible thin glass
EP3646983A4 (en) * 2017-06-29 2020-09-02 Panasonic Intellectual Property Management Co., Ltd. Laser machining system and method for controlling laser machining system
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2720791C1 (en) * 2019-09-06 2020-05-13 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКОЕ ОБЪЕДИНЕНИЕ "ИРЭ-Полюс" (ООО НТО "ИРЭ-Полюс") Method of laser processing of transparent brittle material and device for its implementation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269057A (en) * 2008-05-08 2009-11-19 Miyachi Technos Corp Laser beam machining method and apparatus
JP2013507253A (en) * 2009-10-08 2013-03-04 トモロジック アーベー Control rules and variables for cutting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251138A (en) * 1984-05-28 1985-12-11 Hoya Corp Method for cutting glass
JP2007319888A (en) * 2006-05-31 2007-12-13 Sharp Corp Laser beam fusion-cutting method of brittle member to be worked
JP2009090598A (en) * 2007-10-11 2009-04-30 Mitsuboshi Diamond Industrial Co Ltd Curved crack-forming method of brittle material substrate, and brittle material substrate
US8269138B2 (en) * 2009-05-21 2012-09-18 Corning Incorporated Method for separating a sheet of brittle material
JP2013053019A (en) * 2011-09-01 2013-03-21 Asahi Glass Co Ltd Method for boring tempered glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269057A (en) * 2008-05-08 2009-11-19 Miyachi Technos Corp Laser beam machining method and apparatus
JP2013507253A (en) * 2009-10-08 2013-03-04 トモロジック アーベー Control rules and variables for cutting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144668B2 (en) 2014-08-20 2018-12-04 Corning Incorporated Method and apparatus for yielding high edge strength in cutting of flexible thin glass
US20210181397A1 (en) * 2017-04-28 2021-06-17 Samsung Display Co., Ltd. Polarizing layer, display device with the same, and fabricating method for the display device
EP3646983A4 (en) * 2017-06-29 2020-09-02 Panasonic Intellectual Property Management Co., Ltd. Laser machining system and method for controlling laser machining system

Also Published As

Publication number Publication date
JP6350884B2 (en) 2018-07-04
TW201542479A (en) 2015-11-16
JPWO2015115604A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6350884B2 (en) Laser cutting method and sheet glass product having a melting section
KR100849696B1 (en) Brittle material scribing method and scribing apparatus
TWI629249B (en) Method for cutting tempered glass sheets
KR101641748B1 (en) Non-contact glass shearing device and method for scribing or cutting a moving glass sheet
WO2013039230A1 (en) Method for cutting glass sheet
US20130221053A1 (en) Method and apparatus for separation of strengthened glass and articles produced thereby
JP5861864B2 (en) Glass plate cutting method and glass plate cutting device
TWI299293B (en)
KR101440481B1 (en) Method for scribing brittle material substrate and device for scribing brittle material substrate
US20150059411A1 (en) Method of separating a glass sheet from a carrier
TWI587955B (en) Glass plate cutting method
JP2014097905A5 (en)
JP2011230940A (en) Cutting method for brittle material substrate
JP2013063454A (en) Laser machining method and laser machining device
JP6094816B2 (en) Sheet glass cutting method
JP2010070388A (en) Laser beam machining device and laser beam machining method
JP5907019B2 (en) Thin glass cutting method and thin glass
JP2013063864A (en) Glass plate cutting method and glass plate cutting device
JP5825551B2 (en) Glass plate cutting method and glass plate cutting device
TWI491574B (en) Method of cutting brittle workpiece and cutting device
TWI587960B (en) Laser processing method and laser processing device
JP6673061B2 (en) Method for manufacturing glass articles
TWI469938B (en) Scribing method of glass substrate
JP5884691B2 (en) Glass plate cutting method
JP2022032620A (en) Laser processing method and laser processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743531

Country of ref document: EP

Kind code of ref document: A1