WO2015115393A1 - 光照射装置 - Google Patents

光照射装置 Download PDF

Info

Publication number
WO2015115393A1
WO2015115393A1 PCT/JP2015/052105 JP2015052105W WO2015115393A1 WO 2015115393 A1 WO2015115393 A1 WO 2015115393A1 JP 2015052105 W JP2015052105 W JP 2015052105W WO 2015115393 A1 WO2015115393 A1 WO 2015115393A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
light source
led
flat plate
casing
Prior art date
Application number
PCT/JP2015/052105
Other languages
English (en)
French (fr)
Inventor
大輔 岡本
昌之 礒谷
Original Assignee
シーシーエス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーシーエス株式会社 filed Critical シーシーエス株式会社
Publication of WO2015115393A1 publication Critical patent/WO2015115393A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This invention relates to the light irradiation apparatus provided with the light source and the thermal radiation means to thermally radiate the heat
  • the line light irradiation device includes a long LED substrate on which a plurality of LEDs are mounted, a casing that accommodates the LED substrate, and a light that is fixed to the casing and collects light from the plurality of LEDs in a line shape. And a rod lens.
  • a plurality of heat radiation fins for releasing heat generated by the LEDs to the outside are provided on the back surface of the bottom wall portion of the casing where the LED substrate is provided.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light irradiation apparatus having excellent heat radiation characteristics that can sufficiently dissipate heat generated in a light source to cool the light source.
  • the light irradiation device of the present invention comprises: A light source; A light irradiating device comprising a heat radiating means for radiating heat generated by the light source,
  • the heat dissipating means is a flat plate heat pipe provided with the light source on the end side, And a heat sink provided on the surface of the flat plate heat pipe.
  • the flat plate type heat pipe for example, a thin plate shape called a vapor chamber is used.
  • This vapor chamber is a device in which a small amount of working fluid is sealed in a sealed internal space and transports heat using the heat of vaporization and heat of condensation of the working fluid.
  • the plate-shaped body provided with the several tubular body (heat pipe) arranged in parallel is also included as a flat plate-type heat pipe.
  • heat generated by the light source is quickly conducted in the surface direction from the end of the flat plate heat pipe, and is efficiently radiated by the heat sink. Therefore, the heat generated in the light source such as a high-power LED can be sufficiently dissipated to cool the light source.
  • a heat conduction member is provided in contact with the surface of the flat plate heat pipe on the end portion side where the light source is provided, and sandwiching the flat plate heat pipe in the thickness direction,
  • the light source is preferably in contact with the heat conducting member.
  • the heat conductive member is formed of a material having excellent heat conductivity, such as copper or aluminum.
  • the light source is in contact with the heat conducting member is not only the case where the light source is in direct contact with the heat conducting member.
  • the light source is an LED
  • the LED board on which the LED is mounted it also includes the case where the LED indirectly contacts the heat conducting member via
  • the heat generated by the light source can be more effectively transmitted to the flat plate type heat pipe by the heat conducting member. Further, since the heat conducting member sandwiches the flat plate heat pipe in the thickness direction, the thin flat plate heat pipe can be stably held. Furthermore, since the light source is in contact with the heat conducting member, the degree of freedom of the light source is increased and the light source is stabilized as compared with the case where the light source is directly arranged on the end side of the thin flat plate heat pipe. Can be arranged.
  • the light source a flat plate heat pipe, and a casing in which a heat sink is accommodated
  • the casing is provided with a blower fan on the opposite side to the light source side of the flat plate heat pipe
  • the heat sink preferably includes a plurality of radiating fins having a cylindrical shape, an elliptical column shape, or a polygonal column shape, or a plurality of thin radiating fins formed so as to follow an air flow generated by the blower fan.
  • the casing preferably includes an opening facing the heat sink.
  • the air sent from the blower fan and passed through the heat sink is discharged from the opening to the outside of the casing, or the external air enters from the opening and passes through the heat sink and is externally supplied by the blower fan. To be discharged. Therefore, heat can be dissipated from the heat sink to the outside without causing heat to flow into the casing.
  • the light source may be a line type light source in which a plurality of light emitting elements are arranged in a row.
  • heat generated in a light source such as a high-power LED can be sufficiently dissipated to cool the light source.
  • FIG. FIG. FIG. It is a longitudinal cross-sectional view which shows a thermal radiation means similarly. It is a bottom view which shows a thermal radiation means similarly. It is a top view which shows a thermal radiation means similarly.
  • FIG. 1 is a perspective view showing the internal structure of the light irradiation apparatus
  • FIG. 2 is a front view of the light irradiation apparatus
  • 3 is a bottom view thereof
  • FIG. 4 is a longitudinal sectional view thereof.
  • the light irradiation apparatus described in this embodiment is a line light irradiation apparatus that can irradiate ultraviolet rays to the resin in order to cure the resin, for example.
  • the line light irradiation device 1 includes a casing 2, a light source 3, and a heat radiating means 4.
  • the casing 2 is formed in a rectangular parallelepiped box shape by left and right side plates 2a, 2b, a front plate 2c, a back plate 2d, an upper plate 2e, and a lower plate 2f.
  • FIG. 1 shows a state where the front plate 2c and the lower plate 2f are removed.
  • the left and right side plates 2a, 2b and the back plate 2d are integrally formed, and the top plate 2e is fixed to the side plates 2a, 2b and the back plate 2d. Further, the front plate 2c and the lower plate 2f are removable.
  • the top plate 2e is thicker than the left and right side plates 2a, 2b, the front plate 2c, the back plate 2d, and the bottom plate 2f in order to attach a blower fan 12 to be described later.
  • the lower surface plate 2f is formed with a horizontally long rectangular opening 2h at a substantially central portion thereof.
  • the opening 2h is formed so as to face the light source 3 to be described later, and light (ultraviolet rays) is irradiated to the outside from the opening 2h.
  • the light source 3 is a line-type light source in which a plurality of LEDs 3a are arranged in a row, and these LEDs 3a ... are arranged in a horizontal row on the surface of a substantially central portion in the short side direction of a horizontally long rectangular LED substrate 3b. Are fixed in parallel with almost no gap.
  • the LEDs 3a may be provided in a plurality of rows instead of a single row.
  • the heat dissipating means 4 dissipates heat generated by the light source 3 and includes a vapor chamber (flat plate heat pipe) 5 and a heat sink 6 as shown in FIGS.
  • the vapor chamber 5 is a device in which a small amount of hydraulic fluid is sealed in a sealed internal space and transports heat using the vaporization heat and condensation heat of the hydraulic fluid, and is formed into a rectangular thin plate as a whole. . Although one vapor chamber 5 is used in the present embodiment, a plurality of vapor chambers may be joined in the surface direction.
  • the vapor chamber 5 is provided in the casing 2 with its lower end sandwiched between a pair of heat conducting members 7 and 7. Further, the vapor chamber 5 is arranged at a substantially center between the front plate 2c and the back plate 2d of the casing 2 and on a substantially lower half side in the casing 2 so that the surface thereof is parallel to the front plate 2c and the back plate 2d.
  • the heat conducting member 7 is formed of a metal such as copper having excellent heat conductivity and has a long section with a substantially triangular cross section, and its length is longer than the length of the vapor chamber 5 in the long side direction.
  • the casing 2 extends between the left and right side plates 2 a and 2 b.
  • a flat portion 7 a is provided in parallel with the lower surface 7 b of the heat conducting member 7 at the top in the cross section of the heat conducting member 7. Note that the width of the flat portion 7a (the length in the left-right direction in FIG. 5) is smaller than the width of the lower surface 7b and larger than the thickness of the substrate 6a of the heat sink 6.
  • the opposing side surfaces 7c and 7c of the heat conducting members 7 and 7 are spaced apart in parallel, the lower end of the vapor chamber 5 is disposed between the side surfaces 7c and 7c, and is sandwiched between the side surfaces 7c and 7c. Both surfaces of the lower end portion of the vapor chamber 5 are in close contact with the side surfaces 7c and 7c.
  • the lower end surface of the vapor chamber 5 is flush with the lower surfaces 7b, 7b of the heat conducting members 7, 7, and the LED substrate 3b is in close contact with the lower surfaces 7b, 7b. Further, the lower end surface of the vapor chamber 5 is in close contact with the back surface of the central portion of the LED substrate 3a in the width direction (left and right direction in FIG. 5). As shown in FIG.
  • the heat conducting member 7 is disposed at the lower end portion in the casing 2 with its longitudinal direction facing the left and right direction, and the left and right end faces of the heat conducting member 7 are respectively casings. 2 are fixed to the left and right side plates 2a, 2b.
  • the heat sink 6 is composed of a rectangular plate-like substrate 6a and a large number of thin-plate-like heat radiation fins 6b provided on the substrate 6a, and a pair is provided so as to sandwich the vapor chamber 5. That is, the opposing back surfaces 6c and 6c of the substrates 6a and 6a are provided in parallel and spaced apart from each other, and the entire upper side from the lower end of the vapor chamber 5 is disposed between the back surfaces 6c and 6c and is sandwiched between the back surfaces 6c and 6c. At the same time, both surfaces of the vapor chamber 5 are in close contact with the back surfaces 6c and 6c of the substrates 6a and 6a.
  • the large number of heat radiating fins 6b are each formed in a rectangular plate shape, and are fixed along the vertical direction in a state of being erected on the surface of the substrate 6a at a substantially right angle. Moreover, as shown in FIG.1, FIG2 and FIG.7, the radiation fin 6b ... is arranged in the horizontal direction with the surface facing, and the parallel arrangement direction is the same direction as the parallel arrangement direction of LED3a. (Direction perpendicular to the paper surface in FIG. 5).
  • the heat dissipating fins 6b arranged in parallel in the horizontal direction (left-right direction) are arranged in a plurality of rows (six rows in this embodiment) with a predetermined gap in the vertical direction, as shown in FIGS.
  • the heat radiation fins 6b, 6b adjacent to each other in the vertical direction are arranged with the left and right positions at the same position. Therefore, the radiation fins 6b, 6b adjacent to each other on the left and right are continuous in the vertical direction so that air can smoothly pass through the space.
  • the heat sinks 6 and 6 are fixed to the support member 10, and are fixed to the back surfaces of the left and right side plates 2 a and 2 b of the casing 2 through the support member 10. Arranged in the casing 2.
  • the openings 2 g formed in the front plate 2 c and the back plate 2 d of the casing 2 are arranged at positions facing the rows of the heat conducting member 7 and the lowermost radiating fins 6 b.
  • a columnar rod lens 11 is supported and supported by support portions 11a and 11a in front (downward) of the LED 3a.
  • An opening 2h formed in the lower surface plate 2f is disposed in front (downward) of the rod lens 11. Therefore, the light (ultraviolet rays) from the LED 3a is condensed by the rod lens 11 and then irradiated to the outside through the opening 2h.
  • the casing 2 includes a plurality of blower fans 12.
  • the blower fan 12 is disposed on the opposite side to the LED 3a in a direction orthogonal to the direction in which the heat dissipating fins 6b of the heat sink 6 are arranged.
  • a plurality (four) of blower fans 12 are provided in a row along the longitudinal direction of the upper surface plate 2 c on the upper surface plate 2 c of the casing 2.
  • a through hole (not shown) is formed in the upper surface plate 2c so as to face the air outlet of the blower fan 12, and wind (air) from the blower fan 12 is sent into the casing 1 through the through hole.
  • two wind direction control plates 13, 13 are provided in the casing 2. That is, the wind direction control plates 13 and 13 are rectangular plate-shaped, and upper edge portions thereof are respectively fixed to left and right edge portions of the lower surface of the upper surface plate 2e.
  • the air direction control plates 13 and 13 are inclined so as to go inward as they go downward, and their lower ends are respectively located near the left and right ends of the row of the uppermost radiating fins 6b.
  • the width of the wind direction control plate 13 is substantially equal to the length from the tip of the radiating fin 6 b of one heat sink 6 to the tip of the radiating fin 6 of the other heat sink 6.
  • the wind (air) sent from the blower fan 12 is guided inward by the wind direction control plates 13 and 13 and flows toward the heat sink 6, and the air passing between the heat radiation fins 6 b and 6 b of the heat sink 6 is It is discharged outside through the opening 2g.
  • the side surface 7d of the heat conducting member 7 facing the opening 2g is inclined so as to approach the opening 2g toward the lower end of the casing 2. The air flows on the side surface 7d, and is smoothly discharged from the opening 2g.
  • the LED 3a is provided on the lower end portion side of the vapor chamber 5, so that the heat generated in the LED 3a is in the surface direction from the lower end portion of the vapor chamber 5. Conduct quickly. At this time, since the heat sinks 6 and 6 are provided on both surfaces of the vapor chamber 5, the heat transmitted to the vapor chamber 5 is efficiently dissipated by the heat sinks 6 and 6. Therefore, the LED 3a can be cooled by sufficiently dissipating the heat generated in the high output LED 3a.
  • the vapor chamber 5 is sandwiched in the thickness direction. Most of the heat generated in the LED 3a is transferred to the vapor chamber 5 through the heat conducting members 7 and 7. Therefore, the heat generated in the LED 3 a can be more effectively conducted in the surface direction from the end of the vapor chamber 5 and can be dissipated by the heat sinks 6 and 6. Further, since the pair of heat conducting members 7 and 7 sandwich the vapor chamber 5 in the thickness direction, the thin vapor chamber 5 can be stably held.
  • the LED substrate 3b is in contact with the lower surfaces 7b, 7b of the heat conducting members 7, 7, the LED substrate 3b is more stable than when the LED 3a is directly disposed on the end side of the thin vapor chamber 5.
  • the degree of freedom of arrangement of the LED substrate 3b is increased.
  • the ventilation fan 12 is arrange
  • the blower fan 12 is fed from the blower fan 12 by rotating in the forward direction. Air passing through the heat sink 6 is discharged from the opening 2g to the outside of the casing 2. Further, by rotating the blower fan 12 in the reverse direction, external air enters through the opening 2g, passes through the heat sink 6, and is discharged to the outside by the blower fan 12. Therefore, heat can be radiated from the heat sink 6 to the outside without causing heat to flow into the casing 2. Further, at this time, since air flows on the side surface 7d of the heat conducting member 7, part of the heat transmitted through the heat conducting member 7 can be radiated to the outside by this air.
  • the light source is a line type light source in which a plurality of LEDs 3a are arranged in a line
  • the heat generated in the line type light source is sufficiently dissipated to cool the line type light source, and the line type high output light is emitted. Can be irradiated.
  • a control board for controlling the LED 3a and the blower fan 12 is provided between the heat sink 6 and the blower fan 12, heat generated by the control board can be radiated.
  • the present invention is not limited thereto, and light with various light sources is provided. It can be applied to an irradiation apparatus.
  • the heat sink 6 includes the thin plate-like heat radiation fins 6b as an example.
  • a heat sink 6 having a cylindrical shape, elliptical column shape, or polygonal column shape may be used.
  • the heat conducting member 7 may be brought into contact with only one surface of the vapor chamber 5 instead of contacting the both surfaces of the vapor chamber 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

 高出力のLED等の光源に生じる熱を十分に放熱して当該光源を冷却できる光照射装置を提供する。 ケーシング2と、LED3aと、LED3aで発生する熱を放熱する放熱手段4とを備え、放熱手段4が、端部側にLED3aが設けられるベーパーチャンバ5と、その表面に設けられたヒートシンク6とを備えているので、LED3aで発生した熱は、平板型ヒートパイプの端部から面方向に素早く伝導していき、ヒートシンク6によって効率的に放熱される。したがって、高出力のLED3aに生じる熱を十分に放熱して当該LED3aを冷却できる。

Description

光照射装置
 本発明は、光源と、光源で生じた熱を放熱する放熱手段とを備えた光照射装置に関する。
 前記光照射装置の一例として、例えば、特許文献1に示すライン光照射装置が知られている。
 このライン光照射装置は、複数のLEDを搭載した長尺状のLED基板と、このLED基板を収容するケーシングと、当該ケーシングに固定されて前記複数のLEDからの光をライン状に集光させるロッドレンズとを有している。
 また、前記LED基板が設けられるケーシングの底壁部の裏面には、LEDで発生する熱を外部に放出するための放熱フィンが長手方向に沿って複数枚設けられている。
特開2012-186014号公報
 ところが、特許文献1に記載のライン光照射装置では、LEDの出力が比較的低く、LEDの発熱量が小さい場合には、LEDに生じる熱を放熱フィンによって十分に放熱できるものの、例えば、紫外線を射出するLEDのようにLEDの出力が高い場合には、当該LEDの発熱量が大きく、十分な放熱量を確保し難いという問題があった。
 本発明は、前記事情に鑑みてなされたもので、光源に生じた熱を十分に放熱して当該光源を冷却できる放熱特性に優れた光照射装置を提供することを目的とする。
 前記目的を達成するために、本発明の光照射装置は、
 光源と、
 前記光源で生じた熱を放熱する放熱手段とを備えた光照射装置であって、
 前記放熱手段は、端部側に前記光源が設けられる平板型ヒートパイプと、
 前記平板型ヒートパイプの表面に設けられたヒートシンクとを備えていることを特徴とする。
 ここで、前記平板型ヒートパイプとしては、例えばベーパーチャンバと称される薄板状のものが使用される。このベーパーチャンバは、密閉された内部空間に少量の作動液が封入され、作動液の気化熱と凝縮熱を利用して熱を輸送するデバイスである。また、本発明では、平板型ヒートパイプとして、並設された複数の管状体(ヒートパイプ)を備える板状体も含む。
 本発明においては、光源で発生した熱は、平板型ヒートパイプの端部から面方向に素早く伝導していき、ヒートシンクによって効率的に放熱される。したがって、高出力のLED等の光源に生じる熱を十分に放熱して当該光源を冷却できる。
 本発明の前記構成において、前記平板型ヒートパイプの前記光源が設けられた端部側の表面に接触して、当該平板型ヒートパイプを厚さ方向において挟み込む熱伝導部材を備え、
 この熱伝導部材に前記光源が接触していることが好ましい。
 ここで、熱伝導部材は、例えば銅やアルミニウム等の熱伝導性に優れた材料で形成される。
 また、熱伝導部材に光源が接触しているとは、光源が熱伝導部材に直接接触している場合は勿論のこと、例えば光源がLEDである場合等は、当該LEDが搭載されたLED基板を介してLEDが熱伝導部材に間接的に接触する場合も含む。
 このような構成によれば、光源で発生する熱を熱伝導部材によってより効果的に平板型ヒートパイプに伝えることができる。
 また、熱伝導部材が平板型ヒートパイプを厚さ方向において挟み込むので、薄い平板型ヒートパイプを安定的に保持できる。
 さらに、熱伝導部材に光源が接触しているので、薄い平板型ヒートパイプの端部側に直接光源を配置する場合に比して、光源の配置の自由度が高まるとともに、当該光源を安定して配置できる。
 また、前記本願発明の前記構成において、前記光源、平板型ヒートパイプ及びヒートシンクが収容されるケーシングを備え、
 前記ケーシングには、前記平板型ヒートパイプの前記光源側とは逆側に送風ファンが設けられ、
 前記ヒートシンクは、円柱状、楕円柱状若しくは多角柱状をした複数の放熱フィン、または、前記送風ファンによって生じる空気流に沿うように形成される薄板状をした複数の放熱フィンを備えることが好ましい。
 このような構成によれば、送風ファンから送り込まれる風(空気)または送風ファンに吸い込まれる空気が複数の放熱フィン間を通るので、より効果的にヒートシンクによって熱を放熱できる。
 また、前記本願発明の前記構成において、前記ケーシングは、前記ヒートシンクに臨む開口部を備えていることが好ましい。
 このような構成によれば、送風ファンから送り込まれてヒートシンクを通った空気が開口部からケーシングの外部に排出されたり、外部の空気が開口部から入り込んでヒートシンクを通って、当該送風ファンによって外部に排出される。したがって、ケーシング内に熱を籠らせることなく、ヒートシンクから外部に熱を放熱できる。
 また、本発明の前記構成において、前記光源が、複数の発光素子を列状に配置したライン型光源であってもよい。
 このような構成によれば、ライン型光源に生じる熱を十分に放熱して当該ライン型光源を冷却しつつ、ライン状の高出力の光を照射できる。
 本発明によれば、高出力のLED等の光源に生じる熱を十分に放熱して当該光源を冷却できる。
本発明の実施の形態に係る光照射装置を示すもので、内部構造を見せた光照射装置の斜視図である。 同、正面図である。 同、底面図である。 同、縦断面図である。 同、放熱手段を示す縦断面図である。 同、放熱手段を示す底面図である。 同、放熱手段を示す平面図である。
 以下、本発明の実施の形態について図面を参照して説明する。
 図1~図4は、本発明の実施の形態に係る光照射装置の一例を示すもので、図1は光照射装置の内部構造を見せた斜視図、図2は光照射装置の正面図、図3は同底面図、図4は同縦断面図である。
 本実施の形態に示す光照射装置は、例えば樹脂を硬化させるために当該樹脂に紫外線を照射することができるライン光照射装置である。
 このライン光照射装置1は、ケーシング2と、光源3と、放熱手段4とを備えている。
 ケーシング2は、左右の側板2a,2b、正面板2c、背面板2d、上面板2e及び下面板2fによって、直方体箱状に形成されている。なお、図1においては、正面板2c及び下面板2fを外した状態を示している。
 ケーシング2においては、左右の側板2a,2bと背面板2dとが一体的に形成され、上面板2eは、側板2a,2b及び背面板2dに固定されている。また、正面板2cと下面板2fは取り外し可能となっている。また、上面板2eは、後述する送風ファン12を取り付けるために、左右の側板2a,2b、正面板2c、背面板2d、下面板2fより厚くなっている。
 正面板2c及び背面板2dの下端部近傍には、図1、図2及び図4に示すように、横長の矩形の開口部2g,2gが対向して形成されている。なお、この開口部2gの機能については後述する。
 また、前記下面板2fには、図3に示すように、その略中央部に横長の矩形の開口部2hが形成されている。この開口部2hは後述する光源3に臨んで形成されたものであり、当該開口部2hから光(紫外線)を外部に向けて照射するようになっている。
 前記光源3は、図6に示すように、複数のLED3aを列状に配置したライン型光源であり、これらLED3a…は横長矩形のLED基板3bの短辺方向における略中央部表面に、横一列にほぼ隙間なく並設されて固定されている。なお、LED3aは、一列ではなく、複数列で設けてもよい。
 前記放熱手段4は、前記光源3で発生する熱を放熱するものであり、図4及び図5に示すように、ベーパーチャンバ(平板型ヒートパイプ)5と、ヒートシンク6とから構成されている。
 ベーパーチャンバ5は、密閉された内部空間に少量の作動液が封入され、作動液の気化熱と凝縮熱を利用して熱を輸送するデバイスであり、全体的に矩形薄板状に形成されている。なお、本実施の形態で使用されるベーパーチャンバ5は1枚ものであるが、複数のベーパーチャンバを面方向に接合して構成してもよい。
 ベーパーチャンバ5は、その下端部が一対の熱伝導部材7,7により挟持された状態でケーシング2内に設けられている。また、ベーパーチャンバ5はその表面がケーシング2の正面板2c及び背面板2dと平行になるようにして、これらの間の略中央でかつケーシング2内の略下半分側に配置されている。
 熱伝導部材7は、熱伝導性に優れた銅等の金属で形成された、断面略三角形状の長尺状のものであり、その長さはベーパーチャンバ5の長辺方向の長さより長く、図1に示すように、ケーシング2の左右の側板2a,2b間に延在している。また、図5に示すように、熱伝導部材7の断面における頂部には、平面部7aが、当該熱伝導部材7の下面7bと平行に設けられている。なお、この平面部7aの幅(図5における左右方向の長さ)は下面7bの幅より小さく、かつヒートシンク6の基板6aの板厚より大きくなっている。
 熱伝導部材7,7の対向する側面7c,7cは平行に離間して設けられ、この側面7c,7c間にベーパーチャンバ5の下端部が配置され、当該側面7c,7cによって挟持されるとともに、当該ベーパーチャンバ5の下端部の両表面が側面7c,7cに密接されている。
 ベーパーチャンバ5の下端面は熱伝導部材7,7の下面7b,7bと面一になっており、当該下面7b,7bにLED基板3bが密接されている。また、LED基板3aの幅方向(図5における左右方向)の中央部の裏面にベーパーチャンバ5の下端面が密接されている。
 また、図1に示すように、熱伝導部材7は、その長手方向を左右方向に向けて、ケーシング2内の下端部に配設されており、当該熱伝導部材7の左右両端面がそれぞれケーシング2の左右の側板2a,2bに固定されている。
 前記ヒートシンク6は、矩形板状の基板6aと、この基板6aに設けられた多数の薄板状の放熱フィン6b…とによって構成され、前記ベーパーチャンバ5を挟み込むようにして一対設けられている。
 すなわち、基板6a,6aの対向する裏面6c,6cは平行に離間して設けられ、この裏面6c,6c間にベーパーチャンバ5の下端部より上側全部が配置され、当該裏面6c,6cによって挟持されるとともに、当該ベーパーチャンバ5の両表面が基板6a,6aの裏面6c,6cに密接されている。
 多数の放熱フィン6b…はそれぞれ矩形板状に形成され、基板6aの表面にほぼ直角に立設した状態で上下方向に沿うように固定されている。また、図1、図2及び図7に示すように、放熱フィン6b…は、その表面を対向させて横方向に並設されており、その並設方向は、LED3aの並設方向と同方向(図5において紙面と直交する方向)である。
 横方向(左右方向)に並設された放熱フィン6b…は、図4及び図5に示すように、上下方向に所定の隙間をもって複数列(本実施の形態では6列)配置されている。これら複数列の放熱フィン6b…においては、上下に隣り合う放熱フィン6b,6bどうしが左右の位置を同位置にして配置されている。したがって、左右に隣り合う放熱フィン6b,6bどうしの間は、上下方向において連続し、その間を空気がスムーズに通り抜けることができるようになっている。
 このようなヒートシンク6,6は、図1及び図7に示すように、支持部材10に固定されており、この支持部材10を介してケーシング2の左右の側板2a,2bの裏面に固定され、ケーシング2内に配置される。
 図2及び図4に示すように、前記ケーシング2の正面板2c及び背面板2dにそれぞれ形成されている開口部2gは、熱伝導部材7と最下段の放熱フィン6bの列を臨む位置に配置されている。
 また、前記LED3aの前方(下方)には、円柱状のロッドレンズ11が支持部11a,11aによって支持されて設けられている。このロッドレンズ11の前方(下方)に、前記下面板2fに形成された開口部2hが配置されている。したがって、LED3aからの光(紫外線)は、ロッドレンズ11により集光されたうえで、開口部2hから外部に照射されるようになっている。
 また、ケーシング2は複数の送風ファン12を備えている。この送風ファン12は、前記ヒートシンク6の放熱フィン6bの並設方向と直交する方向において、LED3aと逆側に配置されている。
 具体的には、ケーシング2の上面板2cに、複数(4個)の送風ファン12が上面板2cの長手方向に沿って一列に設けられている。上面板2cには送風ファン12の送風口に対向して図示しない貫通孔が形成されており、この貫通孔から送風ファン12による風(空気)がケーシング1内に送り込まれるようになっている。
 また、図1及び図2に示すように、前記ケーシング2内には、2枚の風向制御板13,13が設けられている。すなわち、風向制御板13,13は矩形板状のものであり、その上端縁部が前記上面板2eの下面の左右両縁部にそれぞれ固定されている。風向制御板13,13は下方に向かうにしたがって、内側に向かうように傾斜しており、その下端部は最上段の放熱フィン6bの列の左右端近傍にそれぞれ位置している。また、風向制御板13の幅は、一方のヒートシンク6の放熱フィン6bの先端から他方のヒートシンク6の放熱フィン6の先端までの長さとほぼ等しくなっている。
 したがって、送風ファン12から送り込まれた風(空気)は風向制御板13,13によって内側に案内されて、ヒートシンク6に向けて流れ、ヒートシンク6の放熱フィン6b,6b間を通り抜けた空気は、前記開口部2gから外部に排出される。
 また、図4に示すように、開口部2gに臨んでいる熱伝導部材7の側面7dは、ケーシング2の下端に向かうにしたがって、開口部2gに近付くように傾斜しているので、この傾斜している側面7d上を空気が流れて、開口部2gからスムーズに排出される。
 以上のように、本実施の形態のライン光照射装置1では、ベーパーチャンバ5の下端部側にLED3aが設けられているので、当該LED3aで発生した熱は、ベーパーチャンバ5の下端部から面方向に素早く伝導していく。その際、このベーパーチャンバ5の両表面にはヒートシンク6,6が設けられているので、ベーパーチャンバ5に伝わった熱がヒートシンク6,6によって効率的に放熱される。
 したがって、高出力のLED3aで生じる熱を十分に放熱して当該LED3aを冷却できる。
 また、一対の熱伝導部材7,7の側面7c,7cが、ベーパーチャンバ5のLED3aが設けられた下端部側の表面に接触して、当該ベーパーチャンバ5を厚さ方向において挟み込んでいるので、LED3aで発生する熱の大部分が熱伝導部材7,7を介してベーパーチャンバ5に伝わる。したがって、LED3aで発生する熱を、より効果的にベーパーチャンバ5の端部から面方向に伝導して、ヒートシンク6,6によって放熱できる。
 また、一対の熱伝導部材7,7がベーパーチャンバ5を厚さ方向において挟み込むので、薄いベーパーチャンバ5を安定的に保持できる。
 加えて、熱伝導部材7,7の下面7b,7bにLED基板3bが接触しているので、薄いベーパーチャンバ5の端部側に直接LED3aを配置する場合に比して、LED基板3bを安定的に配置できるとともに、LED基板3bの配置の自由度が高まる。
 また、送風ファン12が、ヒートシンク6の放熱フィン6bの並設方向と直交する方向において、LED3aと逆側に配置されているので、送風ファン12から送り込まれる風(空気)または送風ファン12に吸い込まれる空気が、並設された放熱フィン6b,6b間を通るので、より効果的にヒートシンク6,6から熱を放熱できる。
 また、開口部2g,2gがヒートシンク6の最下段の放熱フィン6bの列及び熱伝導部材7に臨んでいるので、送風ファン12を正方向に回転させることによって、当該送風ファン12から送り込まれてヒートシンク6を通った空気が開口部2gからケーシング2の外部に排出される。また、送風ファン12を逆方向に回転させることによって、外部の空気が開口部2gから入り込んでヒートシンク6を通って、当該送風ファン12によって外部に排出される。
 したがって、ケーシング2内に熱を籠らせることなく、ヒートシンク6から外部に熱を放熱できる。
 さらに、この際、熱伝導部材7の側面7d上を空気が流れるので、この空気によって熱伝導部材7を伝わる熱の一部を外部に放熱できる。
 さらに、光源が、複数のLED3aを列状に配置したライン型光源であるので、ライン型光源に生じる熱を十分に放熱して当該ライン型光源を冷却しつつ、ライン状の高出力の光を照射できる。
 また、ヒートシンク6と送風ファン12との間に、LED3aや送風ファン12を制御する制御基板を設ければ、この制御基板で発生する熱を放熱することもできる。
 なお、本実施の形態では、本発明を、樹脂硬化用の紫外線を照射するライン光照射装置に適用した場合を例にとって説明したが、本発明はこれに限ることなく、各種光源を備えた光照射装置に適用することができる。
 また、本例では、ヒートシンク6として、薄板状の放熱フィン6bを備えたものを一例に挙げたが、円柱状、楕円柱状若しくは多角柱状の放熱フィンを備えた剣山型のヒートシンクとすることもできる。
 さらに、熱伝導部材7はベーパーチャンバ5の表裏両面に接触させるのではなく、ベーパーチャンバ5のいずれか一方の面にのみ接触させるようにしても良い。
1  ライン光照射装置
2  ケーシング
2g 開口部
3a LED(光源)
4  放熱手段
5  ベーパーチャンバ(平板型ヒートパイプ)
6  ヒートシンク
6b 放熱フィン
7  熱伝導部材
12 送風ファン

Claims (5)

  1.  光源と、
     前記光源で生じた熱を放熱する放熱手段とを備えた光照射装置であって、
     前記放熱手段は、端部側に前記光源が設けられる平板型ヒートパイプと、
     前記平板型ヒートパイプの表面に設けられたヒートシンクとを備えていることを特徴とする光照射装置。
  2.  前記平板型ヒートパイプの前記光源が設けられた端部側の表面に接触して、当該平板型ヒートパイプを厚さ方向において挟み込む熱伝導部材を備え、
     この熱伝導部材に前記光源が接触していることを特徴とする請求項1に記載の光照射装置。
  3.  前記光源、平板型ヒートパイプ及びヒートシンクが収容されるケーシングを備え、
     前記ケーシングには、前記平板型ヒートパイプの前記光源側とは逆側に送風ファンが設けられ、
     前記ヒートシンクは、円柱状、楕円柱状若しくは多角柱状をした複数の放熱フィン、または、前記送風ファンによって生じる空気流に沿うように形成される薄板状をした複数の放熱フィンを備えることを特徴とする請求項1に記載の光照射装置。
  4.  前記ケーシングは、前記ヒートシンクに臨む開口部を備えていることを特徴とする請求項3に記載の光照射装置。
  5.  前記光源が、複数の発光素子を列状に配置したライン型光源であることを特徴とする請求項1に記載の光照射装置。
PCT/JP2015/052105 2014-01-28 2015-01-27 光照射装置 WO2015115393A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013151A JP6295455B2 (ja) 2014-01-28 2014-01-28 光照射装置
JP2014-013151 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115393A1 true WO2015115393A1 (ja) 2015-08-06

Family

ID=53756966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052105 WO2015115393A1 (ja) 2014-01-28 2015-01-27 光照射装置

Country Status (2)

Country Link
JP (1) JP6295455B2 (ja)
WO (1) WO2015115393A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498548B2 (ja) * 2015-07-02 2019-04-10 シーシーエス株式会社 光射出装置
JP6301423B1 (ja) * 2016-09-30 2018-03-28 株式会社テレビ東京 照明装置
CN110671686A (zh) * 2019-10-28 2020-01-10 广州筑梦灯光设备有限公司 一种led光源散热平台

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030521A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp 面発光光源
JP2009081091A (ja) * 2007-09-27 2009-04-16 Toyoda Gosei Co Ltd 光源装置
JP2009111255A (ja) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd 光源装置
JP2009130204A (ja) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd 光源装置
US20100128484A1 (en) * 2008-11-26 2010-05-27 Shuang-Shan Lin Led heat dissipation structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100572908C (zh) * 2006-11-17 2009-12-23 富准精密工业(深圳)有限公司 发光二极管灯具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030521A (ja) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp 面発光光源
JP2009081091A (ja) * 2007-09-27 2009-04-16 Toyoda Gosei Co Ltd 光源装置
JP2009111255A (ja) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd 光源装置
JP2009130204A (ja) * 2007-11-26 2009-06-11 Toyoda Gosei Co Ltd 光源装置
US20100128484A1 (en) * 2008-11-26 2010-05-27 Shuang-Shan Lin Led heat dissipation structure

Also Published As

Publication number Publication date
JP6295455B2 (ja) 2018-03-20
JP2015141785A (ja) 2015-08-03

Similar Documents

Publication Publication Date Title
US9190591B2 (en) Ultraviolet irradiation head and ultraviolet irradiator
KR101848318B1 (ko) 광조사 장치
JP5555084B2 (ja) 光源装置
TW201500685A (zh) Led照明裝置及其散熱器(二)
JP5940116B2 (ja) 光照射装置
KR20160021100A (ko) 내부 편향 배기
JP6862803B2 (ja) 照射装置
WO2015076258A1 (ja) 光源装置
WO2015115393A1 (ja) 光照射装置
TWI664372B (zh) Light irradiation device
KR200491878Y1 (ko) 광 조사 모듈
JP6634848B2 (ja) 照射装置、及び放熱ユニット
JP2014036050A (ja) 放熱器および放熱システム
WO2017187898A1 (ja) ヒートシンクおよび筐体
KR20160023517A (ko) 열전도성 코어를 갖는 히트싱크 및 이를 포함하는 엘이디 광원 장치
JP2016062677A (ja) 光照射装置
JP6787219B2 (ja) 照射ユニット、及び照射装置
JP2014078413A (ja) Led照射装置及びled照射システム
JP2010129530A (ja) 照明装置
TW201708771A (zh) 發光裝置
JP2012119521A (ja) Led光源の冷却装置
CN108332069B (zh) Led灯具
JP2019125669A (ja) ヒートシンク
JP2014077837A (ja) 液晶表示装置
KR101548323B1 (ko) 히트싱크 및 이것이 장착된 방열장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742546

Country of ref document: EP

Kind code of ref document: A1