WO2015115293A1 - Actinic-ray-curable composition for floor material - Google Patents

Actinic-ray-curable composition for floor material Download PDF

Info

Publication number
WO2015115293A1
WO2015115293A1 PCT/JP2015/051641 JP2015051641W WO2015115293A1 WO 2015115293 A1 WO2015115293 A1 WO 2015115293A1 JP 2015051641 W JP2015051641 W JP 2015051641W WO 2015115293 A1 WO2015115293 A1 WO 2015115293A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
curable composition
flooring
compound
Prior art date
Application number
PCT/JP2015/051641
Other languages
French (fr)
Japanese (ja)
Inventor
川合 一成
晋吾 草野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2015115293A1 publication Critical patent/WO2015115293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • E04F15/105Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials of organic plastics with or without reinforcements or filling materials

Definitions

  • the present invention relates to an active energy ray-curable composition for flooring and a construction method using the same.
  • the active energy ray-curable composition is a composition that is instantly cured by a crosslinking reaction when irradiated with an active energy ray, and can impart excellent stain resistance by being coated on a flooring material.
  • an apparatus that requires high power such as a high-pressure mercury lamp or a metal halide lamp as an active energy ray source. The running cost was high because it was cured with
  • UV-LED light emitting diode
  • the UV-LED light source has a longer light source life and is greatly superior in energy saving compared with existing UV lamp light sources such as low-pressure, high-pressure mercury lamps, xenon lamps, metal halide lamps and other ultraviolet lamps. The practical application of this is strongly requested by various companies in various industries.
  • a disadvantage of the UV-LED light source is that the film drying property of the active energy ray-curable composition is greatly inferior to that of the lamp light source, and this method is an obstacle that does not spread.
  • the reason for this is that although there are diodes with shorter wavelengths for testing at present, practical UV-LED light sources have a light emission wavelength range limited to 365 to 420 nm, and emit conventional ultraviolet light having a wide wavelength range. The total amount of ultraviolet energy is smaller than that of the UV lamp light source, and the amount of radicals generated from the photopolymerization initiator is small, so that the polymerization reaction is susceptible to oxygen inhibition.
  • the active energy ray-curable composition obtained by irradiating the active energy ray from the UV-LED light source generally tends to have poor curability on the surface of the film. Has been confirmed.
  • the reason for the poor curing of the active energy ray-curable composition for flooring is that many photopolymerization initiators that react favorably with UV-LEDs tend to turn yellow during the reaction and contain pigments.
  • the effect of yellowing is not a major problem with colored active energy ray-curable compositions, but it is practical for active and transparent ray energy curable compositions for colorless and transparent flooring, since the yellowing of the coating film is noticeable. In order to suppress yellowing to such a range, the type and amount of the photopolymerization initiator are greatly limited.
  • the object of the present invention is to provide sufficient physical properties and robust physical properties by irradiating active energy rays with a UV-LED light source having a peak wavelength at 350 to 420 nm while maintaining the conventional physical performance. It is providing the active energy ray-curable composition for flooring agents for obtaining. Moreover, it is providing the construction method which uses the said active energy ray curable composition for flooring.
  • the present inventors have found that the above problems can be achieved by employing a combination of an active energy ray polymerizable compound having an ethylenic double bond and a specific photopolymerization initiator. It came to.
  • the present invention comprises an active energy ray-curable composition for flooring, which comprises an active energy ray-polymerizable compound (A) having an ethylenic double bond and an acylphosphine oxide photopolymerization initiator (B). Offer things.
  • the present invention also provides an active energy ray-curable composition for flooring, further containing a thioxanthone compound (C).
  • the present invention further provides an active energy ray-curable composition for flooring, which further contains a tertiary amine compound (D) selected from aliphatic amine derivatives and / or benzoic acid amine derivatives.
  • D tertiary amine compound
  • the present invention provides an active energy ray in which the total of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C), and the tertiary amine compound (D) has the ethylenic double bond.
  • an active energy ray-curable composition for flooring that is 5 to 15% by weight based on the total amount of the polymerizable compound (A).
  • the weight ratio of the total content of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C) and the tertiary amine compound (D) is 1: 1 to 15: 1.
  • the present invention provides the acylphosphine oxide photopolymerization initiator (B) wherein 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and / or bis (2,4,6-trimethylbenzoyl) -phenylphosphine.
  • An active energy ray-curable composition for flooring that is a fin oxide is provided.
  • this invention also provides the construction method which hardens the said floor material active energy ray curable composition using a movable active energy ray irradiation apparatus.
  • the present invention also provides a flooring obtained by the construction method.
  • the present invention also provides a floor using the floor material obtained by the construction method.
  • the floor material having sufficient curability equivalent to the case of curing with a conventional UV lamp light source.
  • An active energy ray-curable composition can be obtained.
  • an active energy ray-polymerizable compound (A) having an ethylenic double bond is an essential component.
  • Specific examples thereof include the following active energy ray polymerizable compounds.
  • active energy ray-polymerizable compound having an ethylenic double bond As the active energy ray-polymerizable compound (A) having an ethylenic double bond used in the present invention, known (meth) acrylic monomers and / or (meth) acrylic that are usually used in active energy ray-curable compositions. Any oligomer can be selected and used. In the present invention, “(meth) acryl” is a general term for acrylic and methacrylic.
  • (meth) acrylic monomers include unsaturated carboxylic acids such as acrylic acid and methacrylic acid or esters thereof, such as alkyl-, cycloalkyl-, halogenated alkyl-, alkoxyalkyl-, hydroxyalkyl-, aminoalkyl-, allyl.
  • the (meth) acrylic monomer polyethylene glycol having an ethylene glycol unit in the molecule (n is 3 or more, approximately 14 or less) di (meth) acrylate, trimethylolpropane EO modification (n is 3 or more) And approximately 14 or less) tri (meth) acrylate, phenol EO-modified (n is 3 or more and approximately 14 or less) (meth) acrylate, 2-hydroxyethyl (meth) acrylate having a hydroxyl group in the molecule, 2 -Hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, pentaerythritol tri (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate and the like.
  • These (meth) acrylic monomers may be used alone or in combination of two or more.
  • cyclopentadienyl (meth) acrylate dicyclopentadienyl oxyethyl (meth) acrylate, dihydrodicyclopentadienyl (meth) acrylate such as a (meth) acrylic monomer.
  • active energy ray polymerizable compounds may be used alone or in combination of two or more.
  • Examples of the active energy ray polymerizable compound particularly suitable for the composition include methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, isooctyl, nonyl, dodecyl, hexadecyl, octadecyl, cyclohexyl, benzyl, methoxyethyl, and butoxyethyl.
  • the oligomer contained in the active energy ray-curable composition for flooring according to the embodiment is a compound that is crosslinked or polymerized by irradiation with light. Moreover, although it is a compound which has a polymer of a monomer as a principal chain, the number of monomers which comprise a principal chain is not limited. The molecular weight of the oligomer is preferably in the range of 500 to 20,000.
  • the number of functional groups of the oligomer is preferably 2-20, more preferably 4-20, and even more preferably 6-20.
  • the functional group possessed by the oligomer is a photopolymerizable functional group.
  • the photopolymerizable functional group is a carbon-carbon double bond such as an acryloyl group.
  • the glass transition temperature (Tg) of the oligomer is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and even more preferably 70 ° C. or higher.
  • the glass transition temperature (Tg) can be measured by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), or the like.
  • the viscosity of the oligomer is not particularly limited, but the viscosity at 25 ° C. is preferably from 100 to 10000 mPa ⁇ s in consideration of the influence on the handleability of the active energy ray-curable composition and the viscosity, and 5000 mPa ⁇ s. The following is preferable, and 1000 mPa ⁇ s or less is more preferable.
  • the main chain of the oligomer can be polyepoxy, aliphatic polyurethane, aromatic polyurethane, aliphatic polyester, aromatic polyester, polyamine, polyacrylate and the like.
  • the aforementioned photopolymerizable functional group is preferably added to the main chain of the oligomer.
  • the functional group of the oligomer can be introduced by reacting the following (photopolymerizable) functional group-containing compound with the main chain of the oligomer.
  • (photopolymerizable) functional group-containing compounds include (meth) acrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and other unsaturated carboxylic acids and their salts or esters, urethanes, amides and anhydrides thereof.
  • an N-vinyl compound may be included.
  • N-vinyl compounds include N-vinylformamide, N-vinylcarbazole, N-vinylacetamide, N-vinylpyrrolidone, N-vinylcaprolactam, acryloylmorpholine, and derivatives thereof.
  • Tg glass transition temperature
  • the oligomer may be a linear oligomer, a branched oligomer, or a dendritic oligomer, but may be preferably a branched oligomer or a dendritic oligomer. Since the branched-chain oligomer and the dendritic oligomer have a relatively low viscosity, the hardness of the cured film can be increased although it is difficult to increase the viscosity of the active energy ray-curable composition for flooring.
  • a dendritic oligomer means an oligomer having a plurality of branched chains in one molecule.
  • dendritic oligomers examples include dendrimers, hyperbranched oligomers, star oligomers and graft oligomers.
  • Dendrimers, hyperbranched oligomers, star oligomers and graft oligomers may be known compounds. Among these, a dendrimer and a hyperbranched oligomer are preferable, and a hyperbranched oligomer is more preferable. Dendrimers and hyperbranched oligomers are less likely to increase the viscosity of the active energy ray-curable composition.
  • Hyperbranched oligomer refers to an oligomer in which a plurality of photopolymerizable functional groups are bonded to an oligomer in which two or more monomers are bonded as repeating units. Hyperbranched oligomers generally contain a large number of photopolymerizable functional groups. Therefore, the hyperbranched oligomer can further increase the curing rate of the active energy ray-curable composition for flooring, and can further increase the hardness of the cured film.
  • the number of photopolymerizable functional groups in one molecule of hyperbranched oligomer is preferably 6 or more.
  • hyperbranched oligomers examples include polyester 6-functional acrylate, polyester 9-functional acrylate, polyester 16-functional acrylate, and the like.
  • Examples of commercially available oligomer products include the following. CN131B, CN292, CN2272, CN2303, CN2304, CN509, CN551, CN790, CN2400, CN2401, CN2402, CN9011, CN9026 (all manufactured by Sartomer Company, Inc.), EBECRYL600, EBECRYL605, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL1830, EBECRYL80, EBECRYL8210, EBECRYL 8301 (above Daicel Cytec), Ecure 6147, Ecure 6172-1, Ecure 6153-1, Ecure 6175-3, Ecure 6234, Ecure 6237 (Eternal Chemical co., LT) )
  • hyperbranched oligomers examples include the following. CN2300, CN2301, CN2302, CN2303 (above Sartomer), Ecure 6361-100, Ecure 6362-100 (above Eternal Chemical co., LTD), V # 1000, V # 1020 (Osaka Organic Chemical Industries, Ltd.)
  • the active energy ray-curable composition for flooring of the present invention must contain the acylphosphine oxide polymerization initiator (B) as a photopolymerization initiator.
  • Acylphosphine oxide polymerization initiators include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- ( 2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis -(2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,4) 6-Trimethylbenzoyl
  • 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and bis- (2,4,6-trimethylbenzoyl) -phenylphosphine oxide are By having a UV absorption wavelength which matches the emission wavelength region of the diode, suitable curing property is obtained, and, more preferred from the viewpoint yellow cured film variable is small.
  • a more suitable curability can be obtained by using a photosensitizer in combination.
  • the photosensitizer capable of reacting with a 350-420 nm UV-LED include thioxanthone compounds (C).
  • thioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 1- Chloro-4-propoxythioxanthone and the like can be mentioned, and the amount used is limited to a small amount in consideration of the yellowing property. However, when used in combination, the film curability can be preferably improved.
  • a tertiary amine compound (D) other than the above-described amine-modified acrylate as a hydrogen donor.
  • Active energy ray curing can be obtained.
  • amines of aniline derivatives include N, N-dihydroxyethylaniline, N, N-dimethylaniline, N, N-diethylaniline, and N, N-dimethyl-p-toluidine.
  • the amount of these photosensitizers used is 2.0 mass% or less in the active energy ray-curable composition for flooring in the case of the thioxanthone compound (C).
  • the content is preferably 4% by mass or less.
  • the total of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C), and the tertiary amine compound (D) is the active energy ray-polymerizable having the ethylenic double bond. It is preferably in the range of 5 to 15% by weight relative to the total amount of compound (A).
  • the addition amount is less than 5% by weight, it is difficult to obtain good curability, and when the addition amount exceeds 15% by weight, the initiator amount becomes excessive, the solubility is lowered, and the fluidity of the composition is also lowered.
  • the weight ratio of the total content of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C) and the tertiary amine compound (D) is in the range of 1: 1 to 15: 1. It is preferable.
  • Mixture of tic acid 2- [2 [oxo-2-phenyl-acetoxy-ethoxy-]-ethyl ester and oxy-phenyl-acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester, phenylglyoxylic acid methyl examples include esters and the like, and although there is some degree of yellowing, the acylphosphine oxide polymerization initiator (A) can be used in combination.
  • a photopolymerization initiator that absorbs light other than the emission wavelength of the UV-LED may be added as necessary.
  • benzoin isobutyl ether and other molecular cleavage types include 1-hydroxycyclohexyl phenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, methyl benzoyl formate, 2-hydroxy-2-methyl-1- Phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- ON or the like may be used in combination, and hydrogen abstraction type photopolymerization initiators such as benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenyl sulfide, etc. may be used in combination.
  • the active energy ray-curable composition for flooring of the present invention can be made more excellent in scratch resistance by adding organic particles or inorganic particles.
  • organic particles used in the present invention include acrylic resin, urethane resin, fluororesin, silicone, melamine resin, styrene resin, and inorganic particles include calcium carbonate, silica, alumina, titanium oxide, magnesium hydroxide, zinc oxide. , Calcium silicate, aluminum hydroxide, and the like. These can be used alone or in combination, but alumina is preferably used.
  • the average particle size of the organic particles and inorganic particles is preferably 10 ⁇ m or less.
  • the organic particles and inorganic particles may be added as a single particle, or may be added after being dispersed in a suitable dispersion medium in advance.
  • the addition amount of the organic particles and the inorganic particles is preferably 10 parts by weight or less, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray polymerizable compound.
  • the active energy ray-curable composition for flooring can be colored to impart design properties.
  • inorganic pigments and organic pigments can be used as known and commonly used colorants.
  • an inorganic pigment or an organic pigment can be used.
  • Inorganic pigments include silicas such as alkaline earth metal sulfates, carbonates, finely divided silicic acid, synthetic silicates, calcium silicates, alumina, hydrated alumina, titanium oxide, zinc oxide, talc, clay, etc.
  • An inorganic pigment, iron oxide, or carbon black produced by a known method such as a contact method, a furnace method, or a thermal method can be used.
  • Organic pigments include azo pigments (including azo lakes, insoluble azo pigments, condensed azo pigments, chelate azo pigments), polycyclic pigments (for example, phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazines). Pigments, thioindigo pigments, isoindolinone pigments, quinofullerone pigments, etc.), dye chelates (for example, basic dye chelates, acidic dye chelates, etc.), nitro pigments, nitroso pigments, aniline black, and the like.
  • azo pigments including azo lakes, insoluble azo pigments, condensed azo pigments, chelate azo pigments
  • polycyclic pigments for example, phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazines.
  • pigments include carbon black, No. manufactured by Mitsubishi Chemical Corporation. 2300, no. 900, no. 960, MCF88, No. 33, no. 40, no. 45, no. 52, MA7, MA8, MA100, no. 2200B, etc. are Raven 5750, 5250, 5000, 3500, 1255, 700, etc. manufactured by Columbia, and Regal 400R, 330R, 660R, Mogulu L, 700, Monarch 800, 880, manufactured by Cabot, The same 900, 1000, 1100, 1300, 1300, 1400, etc.
  • the pigment used for the yellow color is C.I. I. Pigment Yellow 1, 2, 3, 12, 13, 14, 16, 17, 73, 74, 75, 83, 93, 95, 97, 98, 109, 110, 114, 120, 128, 129, 138, 150, 151, 154, 155, 180, 185, 213 and the like.
  • pigments used for magenta color C.I. I. Pigment Red 5, 7, 12, 48 (Ca), 48 (Mn), 57 (Ca), 57: 1, 112, 122, 123, 168, 184, 202, 209, C.I. I. And CI Pigment Violet 19.
  • pigments used for cyan C.I. I. And CI Pigment Blue 1, 2, 3, 15: 3, 15: 4, 60, 16, and 22.
  • C.I. I. Pigment White 6, 18, 21 and the like can be used depending on the purpose, but titanium oxide having a high hiding power is preferable.
  • titanium oxide having a high hiding power is preferable.
  • additives such as photosensitizers, antifoaming agents, leveling agents, ultraviolet absorbers, light stabilizers, lubricants, and matting materials are added to the active energy ray-curable composition for flooring. be able to.
  • an antibacterial agent, an antistatic agent, etc. can be suitably added as needed for the purpose of providing functionality.
  • the active energy ray-curable composition for flooring of the present invention includes hydroquinone, methoquinone, hindered amine light stabilizer, hindered phenol light stabilizer, di-t-butyl hydroquinone, P—
  • a polymerization inhibitor such as methoxyphenol, butylhydroxytoluene or nitrosamine salt may be added to the active energy ray-curable composition for flooring in the range of 0.01 to 2% by mass.
  • Dispersants include Ajimoto PB821, PB822, PB881, PB817 manufactured by Ajinomoto Fine-Techno Co., Ltd., Solspers 24000GR manufactured by Lubrizol Co., Ltd., 32000, 33000, 36000, 39000, 41000, 71000, EFKA-7701 manufactured by BASF Corporation Examples include, but are not limited to, Disparon DA-703-50, DA-705, DA-725, etc.
  • the amount of the dispersant used is preferably in the range of 10 to 80% by weight, particularly preferably in the range of 20 to 60% by weight with respect to the filler.
  • the amount used is less than 10% by weight, the dispersion stability tends to be insufficient, and when it exceeds 80% by weight, the viscosity of the active energy ray-curable composition for flooring tends to be high, The leveling property of the active energy ray-curable composition for flooring is lowered.
  • non-reactive resins such as acrylic resin, epoxy resin, terpene phenol resin, rosin ester, and the like can be blended for the purpose of imparting adhesiveness to the substrate to be printed.
  • An active energy ray-curable composition can be obtained by blending the necessary active energy ray-polymerizable compound and heating while stirring and mixing the photopolymerization initiator and the photopolymerization inhibitor.
  • an additive such as a surface tension adjusting agent or a lubricant necessary for the active energy ray-curable composition for flooring is further added and stirred.
  • an active energy ray-curable composition can be obtained.
  • the viscosity of the active energy ray-curable composition for flooring in the present invention is preferably 50 to 1000 mPa ⁇ sec, and is preferably 100 to 1000 mPa ⁇ sec, because if the viscosity is too high, streaks may occur in the finished product after curing. 400 mPa ⁇ sec is most preferable.
  • the application method of the active energy ray-curable composition for flooring is applied using a roller, a brush or the like.
  • the active energy ray-curable composition for flooring can be used for various inks and coating applications.
  • Coating methods include, for example, roll coaters, gravure coaters, flexo coaters, air doctor coaters, blade coaters, air knife coaters, squeeze coaters, impregnation coaters, transfer roll coaters, kiss coaters, curtain coaters, cast coaters, spray coaters, die coaters, and offsets.
  • Known means such as a printing machine or a screen printing machine can be appropriately employed.
  • the active energy ray-curable composition for flooring is subjected to a curing reaction by irradiation with active energy rays, preferably light such as ultraviolet rays.
  • active energy rays preferably light such as ultraviolet rays.
  • a light source such as an ultraviolet ray
  • a light source usually used for a UV curable coating agent for example, a metal halide lamp, a xenon lamp, a carbon arc lamp, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp can be cured without any problem.
  • a commercially available product such as an H lamp, D lamp, or V lamp manufactured by Fusion System can be used.
  • an active energy ray-curable composition for flooring by using an active energy ray irradiation source such as a UV-LED or an ultraviolet light emitting semiconductor laser.
  • an active energy ray irradiation source such as a UV-LED or an ultraviolet light emitting semiconductor laser.
  • the active energy ray is irradiated with an active energy ray having a wavelength peak in the range of 365 to 420 nm using a light emitting diode (LED). It is possible to form a flooring by curing the linear curable composition.
  • LED light emitting diode
  • a light source that emits the active energy ray preferably ultraviolet rays
  • a main body supported by two or more frames and at least a wheel that contacts a flooring. It is fixed to the frame.
  • the wheel that contacts the floor material passes through the area where the active energy ray is irradiated and passes over the active energy ray-curable composition cured by the active energy ray, so there is no defect such as a wheel mark. .
  • the light source of the movable active energy ray irradiation apparatus used in the present invention uses a UV-LED.
  • UV-LEDs are preferably water-cooled because UV-LEDs generate heat more easily, but are preferably air-cooled when the movable active energy ray irradiation device is small.
  • the movable active energy ray irradiation apparatus preferably includes a mechanism for satisfying the curing condition when the active energy ray is irradiated. For that purpose, it is more preferable to provide a mechanism capable of automatically controlling the moving speed, or a mechanism for notifying when the moving speed is too fast.
  • Example 1 Preparation of active energy ray-curable composition (1) for flooring
  • a high-pressure mercury lamp is applied to the U -Active energy ray curing for flooring by irradiating active energy rays (irradiation amount: 500 mJ / cm 2 ) with a movable active energy ray irradiation device TIGER made by HIDUltraviolet, LLC, replaced with FirePower, a UV-LED made by VIX
  • the flooring composition was obtained by curing the composition.
  • Oligo (2-hydroxy-2-methyl-1- (4- (methylvinyl) phenyl) propanone manufactured by Lamberti) Chemcure-JETX ... CHEMBRIDGE INTERNATIONAL CORP. Photopolymerization initiator 2,4-diethylthioxanthone SB-PI704 ... Shuang-Bang Industrial Corp. Photopolymerization initiator 4-Methylquinone, dimethylaminobenzoate manufactured by Seiko Chemical Co., Ltd. Polymerization inhibitor p-methoxyphenol BYK-350, acrylic leveling agent CC7610 manufactured by BYK-CHMIE, polyethylene dispersion manufactured by Lubrizol body
  • the active energy ray-curable composition for flooring of Example or Comparative Example was applied to a hard PVC board (Mitsubishi Resin Co., Ltd .: Hishi Plate 303GE) with a film thickness of 6 ⁇ m by the aforementioned printing method, Next, irradiation is performed with an LED irradiation device (emission wavelength: 385 nm, peak intensity: 500 mW / cm 2) manufactured by Hamamatsu Photonics Co., Ltd. equipped with a stage moving device so that the amount of irradiation energy per irradiation is 50 mJ / cm 2. And the integrated value of the irradiation energy amount until it became tack-free was measured.
  • the sensitivity of the active energy ray-curable composition for flooring is preferably a sensitivity that cures with an integrated light amount of up to 500 mJ / cm 2 in order to correspond to practical curing conditions.
  • the active energy ray curable composition for flooring obtained in the examples can be sufficiently cured even when a movable curing device having a UV-LED light source is used.
  • the construction method which hardens the composition and the composition was able to be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The purpose of the present invention is to provide an actinic-ray-curable composition for floor materials which retains conventional physical performance and which, despite this, shows sufficient curability when irradiated with actinic rays by a UV-LED light source having a peak wavelength of 350-420 nm, to have durable physical properties. The actinic-ray-curable composition for floor materials comprises an actinic-ray-polymerizable compound (A) having an ethylenic double bond and an acylphosphine oxide photopolymerization initiator (B).

Description

床材用活性エネルギー線硬化性組成物Active energy ray curable composition for flooring
 本発明は、床材用活性エネルギー線硬化性組成物とこれを用いた施工方法に関する。 The present invention relates to an active energy ray-curable composition for flooring and a construction method using the same.
 従来、建築物や車輌などの床仕上げ材としてポリ塩化ビニルなどの合成樹脂製床材が広く使用されている。この合成樹脂製床材靴を履いて歩行する際の靴底との摩擦による汚れ(ヒールマーク)が付きやすいなど、一般的に耐汚染性に劣る為、通常施工後にワックス処理などの防汚処理が施されるが、防汚性を維持する為に定期的に古いワックスを除去してから再度ワックス処理を行うといったメンテナンスを行わなければならない。それらメンテナンス作業はコストと時間がかかる上、廃液が大量に出るなどの環境面でのデメリットも多い。 Conventionally, synthetic resin floor materials such as polyvinyl chloride have been widely used as floor finishing materials for buildings and vehicles. Antifouling treatment such as wax treatment after normal construction because it is generally inferior in stain resistance, such as easy to get dirt (heel mark) due to friction with the sole when walking with this synthetic resin flooring shoe However, in order to maintain antifouling properties, it is necessary to periodically perform maintenance such as removing old wax and then performing wax treatment again. These maintenance operations are costly and time consuming, and have many environmental disadvantages such as a large amount of waste liquid.
 ワックスなどの防汚処理が不要な床材として、紫外線や電子線などの活性エネルギー線により硬化する組成物を被覆した合成樹脂製床材が提案されている(例えば、特許文献1、2参照)。活性エネルギー線硬化性組成物は活性エネルギー線を照射することにより瞬時に架橋反応によって硬化する組成物であり、床材に被覆することにより優れた耐汚染性を付与することが可能である。
しかしながら、これら活性エネルギー線により硬化する組成物を被覆した合成樹脂製床材は耐汚染性には優れていても、活性エネルギー線源として高圧水銀ランプやメタルハライドランプ等の大電力が要求される装置で硬化させるためランニングコストが高価であった。
As floor materials that do not require antifouling treatment such as wax, synthetic resin floor materials that are coated with a composition that is cured by active energy rays such as ultraviolet rays and electron beams have been proposed (for example, see Patent Documents 1 and 2). . The active energy ray-curable composition is a composition that is instantly cured by a crosslinking reaction when irradiated with an active energy ray, and can impart excellent stain resistance by being coated on a flooring material.
However, even though the synthetic resin flooring coated with a composition that is cured by these active energy rays is excellent in stain resistance, an apparatus that requires high power such as a high-pressure mercury lamp or a metal halide lamp as an active energy ray source. The running cost was high because it was cured with
 そこで新しい活性エネルギー線源として紫外線波長の活性エネルギー線を出力する発光ダイオード(以下UV-LEDと略記)が開発されてきた。UV-LEDは光源として低圧、高圧水銀灯、キセノンランプ、メタルハライドランプ等の紫外線ランプ等の既存のUVランプ光源と比較して光源寿命が長く、省エネルギー性において大きく優れていることから、UV-LED光源の実用化は多岐にわたる業界各社から強く要望されるものである。 Therefore, a light emitting diode (hereinafter abbreviated as UV-LED) that outputs an active energy ray having an ultraviolet wavelength has been developed as a new active energy ray source. The UV-LED light source has a longer light source life and is greatly superior in energy saving compared with existing UV lamp light sources such as low-pressure, high-pressure mercury lamps, xenon lamps, metal halide lamps and other ultraviolet lamps. The practical application of this is strongly requested by various companies in various industries.
 一方、UV-LED光源の短所として、ランプ光源と比較して、活性エネルギー線硬化性組成物の皮膜乾燥性が大きく劣る点が挙げられ、本方式が広まらない障害と成っている。原因として、現在のところ、試験用にはより短波長のダイオードも存在するものの、実用のUV-LED光源は発光波長域が365~420nmに限られており、広域波長の紫外線を発する従来からのUVランプ光源と比較して紫外線エネルギーの総量が小さく、光重合開始剤から生成するラジカルの発生量が少ない為に、重合反応が酸素阻害の影響を受けやすいことが挙げられる。また、相対的に短波長領域の活性エネルギー線量が不足することから、UV-LED光源からの活性エネルギー線照射により得られた活性エネルギー線硬化性組成物は、一般に皮膜表面の硬化性が劣る傾向が確認されている。 On the other hand, a disadvantage of the UV-LED light source is that the film drying property of the active energy ray-curable composition is greatly inferior to that of the lamp light source, and this method is an obstacle that does not spread. The reason for this is that although there are diodes with shorter wavelengths for testing at present, practical UV-LED light sources have a light emission wavelength range limited to 365 to 420 nm, and emit conventional ultraviolet light having a wide wavelength range. The total amount of ultraviolet energy is smaller than that of the UV lamp light source, and the amount of radicals generated from the photopolymerization initiator is small, so that the polymerization reaction is susceptible to oxygen inhibition. In addition, since the active energy dose in the relatively short wavelength region is insufficient, the active energy ray-curable composition obtained by irradiating the active energy ray from the UV-LED light source generally tends to have poor curability on the surface of the film. Has been confirmed.
 また床剤用活性エネルギー線硬化性組成物の硬化が劣る理由として、UV-LEDと好適に反応する光重合開始剤の多くが、反応時に黄変を呈する傾向を有しており、顔料を含む着色活性エネルギー線硬化性組成物では黄変の影響は大きな問題とはならないが、無色透明の床剤用活性エネルギー線硬化性組成物では塗膜の黄変が顕著に現れてしまう為、実用可能な範囲に黄変を抑える為には、光重合開始剤の種別、使用量が大幅に制限されてしまうことが挙げられる。 Also, the reason for the poor curing of the active energy ray-curable composition for flooring is that many photopolymerization initiators that react favorably with UV-LEDs tend to turn yellow during the reaction and contain pigments. The effect of yellowing is not a major problem with colored active energy ray-curable compositions, but it is practical for active and transparent ray energy curable compositions for colorless and transparent flooring, since the yellowing of the coating film is noticeable. In order to suppress yellowing to such a range, the type and amount of the photopolymerization initiator are greatly limited.
特開平6-136668号公報JP-A-6-136668 特開平6-256444号公報JP-A-6-256444
 本発明の目的は、従来の物理的性能を維持しながら、350~420nmにピーク波長を有するUV-LED光源で活性エネルギー線を照射することにより、充分な硬化性を有し堅牢な物理的特性を得るための床剤用活性エネルギー線硬化性組成物を提供することにある。また前記床材用活性エネルギー線硬化性組成物を使用した施工方法を提供することにある。 The object of the present invention is to provide sufficient physical properties and robust physical properties by irradiating active energy rays with a UV-LED light source having a peak wavelength at 350 to 420 nm while maintaining the conventional physical performance. It is providing the active energy ray-curable composition for flooring agents for obtaining. Moreover, it is providing the construction method which uses the said active energy ray curable composition for flooring.
 本発明者らは、上記課題の解決手段として、エチレン性二重結合を有する活性エネルギー線重合性化合物と特定の光重合開始剤を組み合わせ採用することで、上記課題を達成できることを見出し、本発明に至った。 As a means for solving the above problems, the present inventors have found that the above problems can be achieved by employing a combination of an active energy ray polymerizable compound having an ethylenic double bond and a specific photopolymerization initiator. It came to.
 即ち本発明は、エチレン性二重結合を有する活性エネルギー線重合性化合物(A)とアシルホスフィンオキサイド系光重合開始剤(B)を含有することを特徴とする床材用活性エネルギー線硬化性組成物を提供する。 That is, the present invention comprises an active energy ray-curable composition for flooring, which comprises an active energy ray-polymerizable compound (A) having an ethylenic double bond and an acylphosphine oxide photopolymerization initiator (B). Offer things.
 また本発明は、更にチオキサントン系化合物(C)を含有する床材用活性エネルギー線硬化性組成物を提供する。 The present invention also provides an active energy ray-curable composition for flooring, further containing a thioxanthone compound (C).
 また本発明は、更に脂肪族アミン誘導体及び/又は安息香酸アミン誘導体から選ばれる3級アミン化合物(D)を含有する床材用活性エネルギー線硬化性組成物を提供する。 The present invention further provides an active energy ray-curable composition for flooring, which further contains a tertiary amine compound (D) selected from aliphatic amine derivatives and / or benzoic acid amine derivatives.
 更に本発明は、前記アシルホスフィンオキサイド系光重合開始剤(B)、前記チオキサントン系化合物(C)、及び前記3級アミン化合物(D)の合計が、前記エチレン性二重結合を有する活性エネルギー線重合性化合物(A)全量に対し5~15重量%である床剤用活性エネルギー線硬化性組成物を提供する。 Furthermore, the present invention provides an active energy ray in which the total of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C), and the tertiary amine compound (D) has the ethylenic double bond. Provided is an active energy ray-curable composition for flooring that is 5 to 15% by weight based on the total amount of the polymerizable compound (A).
 更に本発明は、前記アシルホスフィンオキサイド系光重合開始剤(B)と、前記チオキサントン系化合物(C)及び3級アミン化合物(D)の含有量総計の重量比が1:1~15:1である床材用活性エネルギー線硬化性組成物を提供する。 Further, in the present invention, the weight ratio of the total content of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C) and the tertiary amine compound (D) is 1: 1 to 15: 1. An active energy ray-curable composition for a flooring is provided.
 更に本発明は、前記アシルフォスフィンオキサイド系光重合開始剤(B)が、2、4、6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド及び/又はビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドである床剤用活性エネルギー線硬化性組成物を提供する。 Furthermore, the present invention provides the acylphosphine oxide photopolymerization initiator (B) wherein 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and / or bis (2,4,6-trimethylbenzoyl) -phenylphosphine. An active energy ray-curable composition for flooring that is a fin oxide is provided.
 更に本発明は、可動式活性エネルギー線照射装置を用いて前記床材活性エネルギー線硬化性組成物を硬化させる施工方法をも提供する。 Furthermore, this invention also provides the construction method which hardens the said floor material active energy ray curable composition using a movable active energy ray irradiation apparatus.
 更に本発明は、前記施工方法で得られた床材をも提供する。 Furthermore, the present invention also provides a flooring obtained by the construction method.
 更に本発明は、前記施工方法で得られた床材を用いた床をも提供する。 Furthermore, the present invention also provides a floor using the floor material obtained by the construction method.
 本発明により、350~420nmにピーク波長を有するUV-LED光源で活性エネルギー線を照射することにより、従来からのUVランプ光源による硬化の場合と同等の、充分な硬化性を有した床材用活性エネルギー線硬化性組成物を得ることができる。 By irradiating active energy rays with a UV-LED light source having a peak wavelength of 350 to 420 nm according to the present invention, the floor material having sufficient curability equivalent to the case of curing with a conventional UV lamp light source. An active energy ray-curable composition can be obtained.
 本発明の床材用活性エネルギー線硬化性組成物では、エチレン性二重結合を有する活性エネルギー線重合性化合物(A)を必須成分とする。具体例としては、下記のような活性エネルギー線重合性化合物を挙げることができる。 In the active energy ray-curable composition for flooring of the present invention, an active energy ray-polymerizable compound (A) having an ethylenic double bond is an essential component. Specific examples thereof include the following active energy ray polymerizable compounds.
〔エチレン性二重結合を有する活性エネルギー線重合性化合物(A)〕
 本発明で使用するエチレン性二重結合を有する活性エネルギー線重合性化合物(A)としては、通常活性エネルギー線硬化性組成物に使用される公知の(メタ)アクリルモノマーおよび/または(メタ)アクリルオリゴマーから任意に選んで用いることができる。なお本発明において「(メタ)アクリル」とはアクリルとメタクリルとを総称したものである。
 (メタ)アクリルモノマーとしては、例えばアクリル酸やメタクリル酸などの不飽和カルボン酸又はそのエステル、例えばアルキル-、シクロアルキル-、ハロゲン化アルキル-、アルコキシアルキル-、ヒドロキシアルキル-、アミノアルキル-、アリル-、グリシジル-、ベンジル-、フェノキシ-(メタ)アクリレート、アルキレングリコール、ポリオキシアルキレングリコールのモノ又はジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなど、(メタ)アクリルアミド又はその誘導体、例えばアルキル基やヒドロキシアルキル基でモノ置換又はジ置換された(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N,N’-アルキレンビス(メタ)アクリルアミドなど、アリル化合物、例えばアリルアルコール、アリルイソシアネート、ジアリルフタレート、トリアリルイソシアヌレートなどを挙げることができる。
[Active energy ray-polymerizable compound having an ethylenic double bond (A)]
As the active energy ray-polymerizable compound (A) having an ethylenic double bond used in the present invention, known (meth) acrylic monomers and / or (meth) acrylic that are usually used in active energy ray-curable compositions. Any oligomer can be selected and used. In the present invention, “(meth) acryl” is a general term for acrylic and methacrylic.
Examples of (meth) acrylic monomers include unsaturated carboxylic acids such as acrylic acid and methacrylic acid or esters thereof, such as alkyl-, cycloalkyl-, halogenated alkyl-, alkoxyalkyl-, hydroxyalkyl-, aminoalkyl-, allyl. -, Glycidyl-, benzyl-, phenoxy- (meth) acrylate, alkylene glycol, mono or di (meth) acrylate of polyoxyalkylene glycol, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, (Meth) acrylamide or a derivative thereof, for example, (meth) acrylamide, diacetone (meth) acrylamide, N, N′-alkylenebis (meth) monosubstituted or disubstituted with an alkyl group or a hydroxyalkyl group T) Acrylamide and allyl compounds such as allyl alcohol, allyl isocyanate, diallyl phthalate, triallyl isocyanurate and the like.
 (メタ)アクリルモノマーの他の例としては、エチレングリコール単位を分子内にもつポリエチレングリコール(nは3以上であり、およそ14以下)ジ(メタ)アクリレート、トリメチロールプロパンEO変性(nは3以上であり、およそ14以下)トリ(メタ)アクリレート、フェノールEO変性(nは3以上であり、およそ14以下)(メタ)アクリレートや、水酸基を分子内にもつ2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレートなどを挙げることができる。
 これらの(メタ)アクリルモノマーは単独で用いてもよいし2種以上組み合わせて用いてもよい。
As another example of the (meth) acrylic monomer, polyethylene glycol having an ethylene glycol unit in the molecule (n is 3 or more, approximately 14 or less) di (meth) acrylate, trimethylolpropane EO modification (n is 3 or more) And approximately 14 or less) tri (meth) acrylate, phenol EO-modified (n is 3 or more and approximately 14 or less) (meth) acrylate, 2-hydroxyethyl (meth) acrylate having a hydroxyl group in the molecule, 2 -Hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, pentaerythritol tri (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate and the like.
These (meth) acrylic monomers may be used alone or in combination of two or more.
 また、硬化収縮が支障となる用途の場合には、例えばイソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテノキシエチル(メタ)アクリレート、ジシクロペンテノキシプロピル(メタ)アクリレートなど、ジエチレングリコールジシクロペンテニルモノエーテルのアクリル酸エステル又はメタクリル酸エステル、ポリオキシエチレン若しくはポリプロピレングリコールジシクロペンテニルモノエーテルのアクリル酸エステル又はメタクリル酸エステルなど、ジシクロペンテニルシンナメート、ジシクロペンテノキシエチルシンナメート、ジシクロペンテノキシエチルモノフマレート又はジフマレートなど、3,9-ビス(1,1-ビスメチル-2-オキシエチル)-スピロ[5,5]ウンデカン、3,9-ビス(1,1-ビスメチル-2-オキシエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、3,9-ビス(2-オキシエチル)-スピロ[5,5]ウンデカン、3,9-ビス(2-オキシエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどのモノマ-、ジアクリレート又はモノ-、ジメタアクリレート、あるいはこれらのスピログリコールのエチレンオキシド又はプロピレンオキシド付加重合体のモノ-、ジアクリレート、又はモノ-、ジメタアクリレート、あるいは前記モノ(メタ)アクリレートのメチルエーテル、1-アザビシクロ[2,2,2]-3-オクテニル(メタ)アクリレート、ビシクロ[2,2,1]-5-ヘプテン-2,3-ジカルボキシルモノアリルエステルなど、ジシクロペンタジエニル(メタ)アクリレート、ジシクロペンタジエニルオキシエチル(メタ)アクリレート、ジヒドロジシクロペンタジエニル(メタ)アクリレートなどの(メタ)アクリルモノマーを用いることができる。
 これらの活性エネルギー線重合性化合物は単独で用いてもよいし2種以上組み合わせて用いてもよい。
In addition, in the case of applications where curing shrinkage is an obstacle, for example, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclopentenoxyethyl (meth) acrylate, dicyclopentenoxypropyl (meth) acrylate, etc. Acrylic ester or methacrylic ester of diethylene glycol dicyclopentenyl monoether, acrylic ester or methacrylic ester of polyoxyethylene or polypropylene glycol dicyclopentenyl monoether, dicyclopentenyl cinnamate, dicyclopentenoxyethyl cinnamate 3,9-bis (1,1-bismethyl-2-oxyethyl) -spiro [5,5] undecane, such as dicyclopentenoxyethyl monofumarate or difumarate, Bis (1,1-bismethyl-2-oxyethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, 3,9-bis (2-oxyethyl) -spiro [5,5] undecane, Monomers such as 3,9-bis (2-oxyethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, diacrylate or mono-, dimethacrylate, or ethylene oxide of these spiroglycols Or propylene oxide addition polymer mono-, diacrylate, or mono-, dimethacrylate, or methyl ether of the mono (meth) acrylate, 1-azabicyclo [2,2,2] -3-octenyl (meth) acrylate Bicyclo [2,2,1] -5-heptene-2,3-dicarboxyl monoallyl ester, etc. It can be used cyclopentadienyl (meth) acrylate, dicyclopentadienyl oxyethyl (meth) acrylate, dihydrodicyclopentadienyl (meth) acrylate such as a (meth) acrylic monomer.
These active energy ray polymerizable compounds may be used alone or in combination of two or more.
 組成物に特に好適な活性エネルギー線重合性化合物としては、例えば、メチル、エチル、プロピル、ブチル、アミル、2-エチルヘキシル、イソオクチル、ノニル、ドデシル、ヘキサデシル、オクタデシル、シクロヘキシル、ベンジル、メトキシエチル、ブトキシエチル、フェノキシエチル、ノニルフェノキシエチル、グリシジル、ジメチルアミノエチル、ジエチルアミノエチル、イソボルニル、ジシクロペンタニル、ジシクロペンテニル、ジシクロペンテニロキシエチル等の置換基を有する(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ビニルピロリドン、N-アクリロイルモルホリン、N-ビニルホルムアミド等の1官能モノマー、 Examples of the active energy ray polymerizable compound particularly suitable for the composition include methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, isooctyl, nonyl, dodecyl, hexadecyl, octadecyl, cyclohexyl, benzyl, methoxyethyl, and butoxyethyl. (Meth) acrylate having a substituent such as phenoxyethyl, nonylphenoxyethyl, glycidyl, dimethylaminoethyl, diethylaminoethyl, isobornyl, dicyclopentanyl, dicyclopentenyl, dicyclopentenyloxyethyl, ω-carboxy-poly Caprolactone monoacrylate, phthalic acid monohydroxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, vinylpyrrolidone, N-acryloylmorpholine, N-vinylphenol Monofunctional monomers such as lumamide,
 1,3-ブチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、トリシクロデカンジメタノール、エチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレート、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、オペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート,ペンタエリスリトールトリ(メタ)アクリレート,ジペンタエリスリトールのポリ(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレート等の多官能モノマーを挙げることができる。これらは2種類以上併用して用いることができる。 1,3-butylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, tricyclodecane dimethanol, ethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol and other di (meth) acrylates, tris (2-hydroxyethyl) isocyanurate Di (meth) acrylate of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of di (meth) acrylate, 2- (2-vinyloxyethoxy) ethyl (meth) acrylate, and 1 mol of pentyl glycol Lilate, di (meth) acrylate of diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A, triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane Di (tri) methacrylate, di (meth) acrylate obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, dipentaerythritol poly (meth) acrylate, ethylene oxide modified phosphoric acid (meth) acrylate, ethylene oxide modified alkyl phosphoric acid (meth) acrylate Mention may be made of a multi-functional monomer. Two or more of these can be used in combination.
((メタ)アクリルオリゴマー)
 実施形態に係る床材用活性エネルギー線硬化性組成物に含有されるオリゴマーは、光の照射により架橋又は重合する化合物である。また、モノマーの重合体を主鎖とする化合物であるが、主鎖を構成するモノマーの数は限定されない。前記オリゴマーの分子量は、500~20,000の範囲であることが好ましい。
((Meth) acrylic oligomer)
The oligomer contained in the active energy ray-curable composition for flooring according to the embodiment is a compound that is crosslinked or polymerized by irradiation with light. Moreover, although it is a compound which has a polymer of a monomer as a principal chain, the number of monomers which comprise a principal chain is not limited. The molecular weight of the oligomer is preferably in the range of 500 to 20,000.
 オリゴマーの官能基数は2~20であることが好ましく、4~20であることがより好ましく、6~20であるとさらに好ましい。オリゴマーが有する官能基とは光重合性官能基である。光重合性官能基とは、アクリロイル基などの炭素-炭素の二重結合などである。官能基数が多いと、硬化性オリゴマーの硬化感度が高まり、かつ硬化塗膜の硬度も高まる。一方で、官能基数が多すぎると、硬化塗膜の収縮が生じやすくなり、塗膜表面が歪みやすくなる。 The number of functional groups of the oligomer is preferably 2-20, more preferably 4-20, and even more preferably 6-20. The functional group possessed by the oligomer is a photopolymerizable functional group. The photopolymerizable functional group is a carbon-carbon double bond such as an acryloyl group. When the number of functional groups is large, the curing sensitivity of the curable oligomer increases and the hardness of the cured coating film also increases. On the other hand, when the number of functional groups is too large, shrinkage of the cured coating film tends to occur, and the coating film surface is easily distorted.
 オリゴマーのガラス転移温度(Tg)は40℃以上であることが好ましく、50℃以上であるとより好ましく、70℃以上であると更に好ましい。ガラス転移温度(Tg)の測定は示差走査熱量測定(DSC)、熱機械分析(TMA)等で測定することができる。 The glass transition temperature (Tg) of the oligomer is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, and even more preferably 70 ° C. or higher. The glass transition temperature (Tg) can be measured by differential scanning calorimetry (DSC), thermomechanical analysis (TMA), or the like.
 オリゴマーの粘度は特に制限はないが、活性エネルギー線硬化性組成物取扱性および粘度への影響を考慮して、25℃での粘度が、100~10000mPa・sであることが好ましく、5000mPa・s以下が好ましく、1000mPa・s以下がより好ましい。 The viscosity of the oligomer is not particularly limited, but the viscosity at 25 ° C. is preferably from 100 to 10000 mPa · s in consideration of the influence on the handleability of the active energy ray-curable composition and the viscosity, and 5000 mPa · s. The following is preferable, and 1000 mPa · s or less is more preferable.
 オリゴマーの主鎖は、ポリエポキシ、脂肪族ポリウレタン、芳香族ポリウレタン、脂肪族ポリエステル、芳香族ポリエステル、ポリアミン、ポリアクリレートなどでありうる。オリゴマーの主鎖に、前述の光重合性官能基が付加していることが好ましい。 The main chain of the oligomer can be polyepoxy, aliphatic polyurethane, aromatic polyurethane, aliphatic polyester, aromatic polyester, polyamine, polyacrylate and the like. The aforementioned photopolymerizable functional group is preferably added to the main chain of the oligomer.
 オリゴマーの官能基は、オリゴマーの主鎖に以下の(光重合性)官能基含有化合物を反応させて導入することができる。(光重合性)官能基含有化合物の例には、(メタ)アクリル酸、イタコン酸、クロトン酸、イソクロトン酸及びマレイン酸等の不飽和カルボン酸やそれらの塩又はエステル、ウレタン、アミド及びその無水物、アクリロニトリル、スチレン、種々の不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、並びに不飽和ウレタンが挙げられる。その他にN-ビニル化合物を含んでいてもよい。N-ビニル化合物には、N-ビニルフォルムアミド、N-ビニルカルバゾール、N-ビニルアセトアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、アクリロイルモルホリン、及びそれらの誘導体などが含まれる。 The functional group of the oligomer can be introduced by reacting the following (photopolymerizable) functional group-containing compound with the main chain of the oligomer. Examples of (photopolymerizable) functional group-containing compounds include (meth) acrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and other unsaturated carboxylic acids and their salts or esters, urethanes, amides and anhydrides thereof. Products, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, and unsaturated urethanes. In addition, an N-vinyl compound may be included. N-vinyl compounds include N-vinylformamide, N-vinylcarbazole, N-vinylacetamide, N-vinylpyrrolidone, N-vinylcaprolactam, acryloylmorpholine, and derivatives thereof.
 オリゴマーのガラス転移温度(Tg)を高くするには、オリゴマーの主鎖に芳香環やアミド構造等を導入して、主鎖構造を剛直にしたり、オリゴマーの側鎖に大きな置換基を導入したりすればよい。 In order to increase the glass transition temperature (Tg) of the oligomer, an aromatic ring or an amide structure is introduced into the main chain of the oligomer to make the main chain rigid, or a large substituent is introduced into the side chain of the oligomer. do it.
 オリゴマーは、直鎖状オリゴマーであっても、分岐鎖状オリゴマーであっても、樹枝状オリゴマーであってもよいが、分岐鎖状オリゴマーまたは樹枝状オリゴマーであることが好ましい場合がある。分岐鎖状オリゴマーおよび樹枝状オリゴマーは、比較的低粘度であるため、床材用活性エネルギー線硬化性組成物の粘度を上昇させにくいにも係わらず、硬化膜の硬度を高めることができる。樹枝状オリゴマーとは、1分子中に複数の分岐鎖を有するオリゴマーを意味する。 The oligomer may be a linear oligomer, a branched oligomer, or a dendritic oligomer, but may be preferably a branched oligomer or a dendritic oligomer. Since the branched-chain oligomer and the dendritic oligomer have a relatively low viscosity, the hardness of the cured film can be increased although it is difficult to increase the viscosity of the active energy ray-curable composition for flooring. A dendritic oligomer means an oligomer having a plurality of branched chains in one molecule.
 樹枝状オリゴマーの例には、デンドリマー、ハイパーブランチオリゴマー、スターオリゴマー及びグラフトオリゴマーなどが含まれる。デンドリマー、ハイパーブランチオリゴマー、スターオリゴマー及びグラフトオリゴマーは、公知の化合物でありうる。これらのなかでも、デンドリマー及びハイパーブランチオリゴマーであることが好ましく、ハイパーブランチオリゴマーがより好ましい。デンドリマーやハイパーブランチオリゴマーは、活性エネルギー線硬化性組成物の粘度をより上昇させにくい。 Examples of dendritic oligomers include dendrimers, hyperbranched oligomers, star oligomers and graft oligomers. Dendrimers, hyperbranched oligomers, star oligomers and graft oligomers may be known compounds. Among these, a dendrimer and a hyperbranched oligomer are preferable, and a hyperbranched oligomer is more preferable. Dendrimers and hyperbranched oligomers are less likely to increase the viscosity of the active energy ray-curable composition.
 ハイパーブランチオリゴマーは、2個以上のモノマーが繰り返し単位として結合したオリゴマーに複数の光重合性官能基が結合したオリゴマーをいう。ハイパーブランチオリゴマーには、一般に多数の光重合性官能基が含まれる。そのため、ハイパーブランチオリゴマーは、床材用活性エネルギー線硬化性組成物の硬化速度を一層高めることができ、硬化膜の硬度も一層高めることができる。一分子のハイパーブランチオリゴマーが有する光重合性官能基の数は、6以上であることが好ましい。 Hyperbranched oligomer refers to an oligomer in which a plurality of photopolymerizable functional groups are bonded to an oligomer in which two or more monomers are bonded as repeating units. Hyperbranched oligomers generally contain a large number of photopolymerizable functional groups. Therefore, the hyperbranched oligomer can further increase the curing rate of the active energy ray-curable composition for flooring, and can further increase the hardness of the cured film. The number of photopolymerizable functional groups in one molecule of hyperbranched oligomer is preferably 6 or more.
 ハイパーブランチオリゴマーの例には、ポリエステル6官能アクリレート、ポリエステル9官能アクリレート、ポリエステル16官能アクリレートなどが含まれる。 Examples of hyperbranched oligomers include polyester 6-functional acrylate, polyester 9-functional acrylate, polyester 16-functional acrylate, and the like.
 オリゴマーの市販品の例には以下のものがある。
 CN131B、CN292、CN2272、CN2303、CN2304、CN509、CN551、CN790、CN2400、CN2401、CN2402、CN9011、CN9026(以上サートマー社製)、EBECRYL600、EBECRYL605、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL1830、EBECRYL80、EBECRYL8210、EBECRYL8301(以上ダイセルサイテック)、Etercure6147、Etercure6172-1、Etercure6153-1、Etercure6175-3、Etercure6234、Etercure6237(以上Eternal Chemical co.,LTD)
Examples of commercially available oligomer products include the following.
CN131B, CN292, CN2272, CN2303, CN2304, CN509, CN551, CN790, CN2400, CN2401, CN2402, CN9011, CN9026 (all manufactured by Sartomer Company, Inc.), EBECRYL600, EBECRYL605, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRYL1830, EBECRYL80, EBECRYL8210, EBECRYL 8301 (above Daicel Cytec), Ecure 6147, Ecure 6172-1, Ecure 6153-1, Ecure 6175-3, Ecure 6234, Ecure 6237 (Eternal Chemical co., LT) )
 なかでも、ハイパーブランチオリゴマーの市販品の例には以下のものがある。
CN2300、CN2301、CN2302、CN2303(以上サートマー社製)、Etercure6361-100、Etercure6362-100(以上Eternal Chemical co.,LTD)、V#1000、V#1020(以上、大阪有機化学工業社製)
Among these, examples of commercially available hyperbranched oligomers include the following.
CN2300, CN2301, CN2302, CN2303 (above Sartomer), Ecure 6361-100, Ecure 6362-100 (above Eternal Chemical co., LTD), V # 1000, V # 1020 (Osaka Organic Chemical Industries, Ltd.)
 本発明の床材用活性エネルギー線硬化性組成物は、光重合開始剤としてアシルフォスフィンオキサイド系重合開始剤(B)を含有することを必須とする。 The active energy ray-curable composition for flooring of the present invention must contain the acylphosphine oxide polymerization initiator (B) as a photopolymerization initiator.
〔アシルフォスフィンオキサイド系重合開始剤(B)〕
 アシルフォスフィンオキサイド系重合開始剤としては、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジメトキシベンゾイル-ジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイル-ジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニルフォスフィン酸メチルエステル、2-メチルベンゾイル-ジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル等のモノアシルフォスフィンオキサイド類等が挙げられ、特に、これらの中でも、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、及びビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドは、紫外線発光ダイオードの発光波長領域に合致するUV吸収波長を有することで、好適な硬化性が得られ、且つ、硬化皮膜の黄変が少ない点でより好ましい。
[Acylphosphine oxide polymerization initiator (B)]
Acylphosphine oxide polymerization initiators include bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- ( 2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis -(2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,4) 6-Trimethylbenzoyl) -phenyl Bisacylphosphine oxides such as sphinoxide, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2,6-dimethoxybenzoyl-diphenylphosphine oxide, 2,6-dichlorobenzoyl-diphenylphosphine oxide, 2 , 4,6-trimethylbenzoyl-phenylphosphinic acid methyl ester, 2-methylbenzoyl-diphenylphosphine oxide, pivaloylphenylphosphinic acid isopropyl ester, and the like. Of these, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and bis- (2,4,6-trimethylbenzoyl) -phenylphosphine oxide are By having a UV absorption wavelength which matches the emission wavelength region of the diode, suitable curing property is obtained, and, more preferred from the viewpoint yellow cured film variable is small.
 更に前記光重合開始剤に加えて、光増感剤を併用することで、より好適な硬化性を得ることが出来る。350~420nmのUV-LEDに反応し得る光増感剤としては、例えば、チオキサントン系化合物(C)が挙げられる。 具体的には、チオキサントン、2,4-ジエチルチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン等が挙げられ、黄変の発現性を考慮すると使用量は少量に限定されるが、併用することで皮膜硬化性を好適に向上させることが可能である。 Furthermore, in addition to the photopolymerization initiator, a more suitable curability can be obtained by using a photosensitizer in combination. Examples of the photosensitizer capable of reacting with a 350-420 nm UV-LED include thioxanthone compounds (C). Specifically, thioxanthone, 2,4-diethylthioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 1- Chloro-4-propoxythioxanthone and the like can be mentioned, and the amount used is limited to a small amount in consideration of the yellowing property. However, when used in combination, the film curability can be preferably improved.
 またUV-LED発光波長領域に合致するUV吸収特性を有していないものであっても、上述したアミン変性アクリレート以外の3級アミン化合物(D)を水素供与体として併用することでも、好適な活性エネルギー線硬化を得ることが出来る。例えば、脂肪族アミン誘導体としてトリエタノールアミン、メチルジエタノールアミン、トリエチルアミン、ジブチルエタノールアミン等が、安息香酸誘導体のアミンとして2-ジメチルアミノエチル安息香酸、2-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸エチル等が、アニリン誘導体のアミンとしてN,N-ジヒドロキシエチルアニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン等が挙げられる。 Further, even if it does not have UV absorption characteristics that match the UV-LED emission wavelength region, it is also suitable to use a tertiary amine compound (D) other than the above-described amine-modified acrylate as a hydrogen donor. Active energy ray curing can be obtained. For example, triethanolamine, methyldiethanolamine, triethylamine, dibutylethanolamine and the like as aliphatic amine derivatives, and 2-dimethylaminoethylbenzoic acid, ethyl 2-dimethylaminobenzoate, 4-dimethylaminobenzoic acid as amines of benzoic acid derivatives. Examples of amines of aniline derivatives include N, N-dihydroxyethylaniline, N, N-dimethylaniline, N, N-diethylaniline, and N, N-dimethyl-p-toluidine.
 これら光増感剤の使用量は黄変への影響を考慮すると、チオキサントン系化合物(C)の場合、床材用活性エネルギー線硬化性組成物中の含有量は2.0質量%以下であり、3級アミン化合物(D)の場合、4質量%以下であることが好ましい。 In consideration of the effect on yellowing, the amount of these photosensitizers used is 2.0 mass% or less in the active energy ray-curable composition for flooring in the case of the thioxanthone compound (C). In the case of the tertiary amine compound (D), the content is preferably 4% by mass or less.
 尚、前記したアシルホスフィンオキサイド系光重合開始剤(B)、前記チオキサントン系化合物(C)、及び前記3級アミン化合物(D)の合計は、前記エチレン性二重結合を有する活性エネルギー線重合性化合物(A)全量に対し5~15重量%の範囲にあることが好ましい。5重量%未満の添加量では良好な硬化性を得ることが困難であり、また15重量%を超える添加量では開始剤量が過剰となり、溶解性が低下し組成物の流動性も低下する。 The total of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C), and the tertiary amine compound (D) is the active energy ray-polymerizable having the ethylenic double bond. It is preferably in the range of 5 to 15% by weight relative to the total amount of compound (A). When the addition amount is less than 5% by weight, it is difficult to obtain good curability, and when the addition amount exceeds 15% by weight, the initiator amount becomes excessive, the solubility is lowered, and the fluidity of the composition is also lowered.
 更に、前記アシルホスフィンオキサイド系光重合開始剤(B)と、前記チオキサントン系化合物(C)及び3級アミン化合物(D)の含有量総計の重量比が1:1~15:1の範囲にあることが好ましい。 Furthermore, the weight ratio of the total content of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C) and the tertiary amine compound (D) is in the range of 1: 1 to 15: 1. It is preferable.
 その他、UV-LEDの発光波長に反応し得る光重合開始剤としては、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、オキシ-フェニル-アセチックアシッド2-[2[オキソ-2-フェニル-アセトキシ-エトキシ-]-エチルエステルとオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物、フェニルグリオキシリックアシッドメチルエステル等が挙げられ、黄変の発現性はある程度あるものの、前記したアシルフォスフィンオキサイド系重合開始剤(A)と併用することが可能である。 Other examples of photopolymerization initiators that can react to the emission wavelength of UV-LED include 2-methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, oxy-phenyl-acetate. Mixture of tic acid 2- [2 [oxo-2-phenyl-acetoxy-ethoxy-]-ethyl ester and oxy-phenyl-acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester, phenylglyoxylic acid methyl Examples include esters and the like, and although there is some degree of yellowing, the acylphosphine oxide polymerization initiator (A) can be used in combination.
 また硬化をより促進させるため紫外線ランプなどで更に活性エネルギー線を照射する場合は、必要に応じてUV-LEDの発光波長以外に吸収する光重合開始剤を加えても良い。 In order to further accelerate curing, when further irradiating active energy rays with an ultraviolet lamp or the like, a photopolymerization initiator that absorbs light other than the emission wavelength of the UV-LED may be added as necessary.
 具体的には、ベンゾインイソブチルエーテル、さらにこれら以外の分子開裂型のものとして、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、メチルベンゾイルホルマート、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オンおよび2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等を併用しても良いし、さらに水素引き抜き型光重合開始剤である、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等も併用できる。 Specifically, benzoin isobutyl ether and other molecular cleavage types include 1-hydroxycyclohexyl phenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, methyl benzoyl formate, 2-hydroxy-2-methyl-1- Phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- ON or the like may be used in combination, and hydrogen abstraction type photopolymerization initiators such as benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenyl sulfide, etc. may be used in combination.
(フィラー)
 本発明の床材用活性エネルギー線硬化性組成物は有機粒子又は無機粒子を添加することにより、より耐擦り傷性に優れるものとすることができる。本発明で用いられる有機粒子としてはアクリル樹脂、ウレタン樹脂、フッ素樹脂、シリコーン、メラミン樹脂、スチレン樹脂などが挙げられ、無機粒子としては炭酸カルシウム、シリカ、アルミナ、酸化チタン、水酸化マグネシウム、酸化亜鉛、ケイ酸カルシウム、水酸化アルミニウムなどが挙げられ、それらを単独あるいは併用して用いる事ができるが、好ましくはアルミナが用いられる。また上記の有機粒子及び無機粒子の平均粒径は10μm以下のものが好ましい。上記有機粒子及び無機粒子は粒子単体で添加してもよく、あるいは適切な分散媒にあらかじめ分散してから添加してもよい。
(Filler)
The active energy ray-curable composition for flooring of the present invention can be made more excellent in scratch resistance by adding organic particles or inorganic particles. Examples of the organic particles used in the present invention include acrylic resin, urethane resin, fluororesin, silicone, melamine resin, styrene resin, and inorganic particles include calcium carbonate, silica, alumina, titanium oxide, magnesium hydroxide, zinc oxide. , Calcium silicate, aluminum hydroxide, and the like. These can be used alone or in combination, but alumina is preferably used. The average particle size of the organic particles and inorganic particles is preferably 10 μm or less. The organic particles and inorganic particles may be added as a single particle, or may be added after being dispersed in a suitable dispersion medium in advance.
 上記有機粒子及び無機粒子の添加量は活性エネルギー線重合性化合物100重量部に対して、10重量部以下が好ましく、より好ましくは1~5重量部である。 The addition amount of the organic particles and the inorganic particles is preferably 10 parts by weight or less, more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray polymerizable compound.
(着色剤)
 床材用活性エネルギー線硬化性組成物には着色し意匠性を付与する事ができる。着色のためには公知慣用の着色剤として無機顔料及び有機顔料を用いる事ができる。本発明で使用する顔料としては、無機顔料あるいは有機顔料を使用することができる。
無機顔料としては、アルカリ土類金属の硫酸塩、炭酸塩、微粉ケイ酸、合成珪酸塩、等のシリカ類、ケイ酸カルシウム、アルミナ、アルミナ水和物、酸化チタン、酸化亜鉛、タルク、クレイ等の白色顔料として使用される無機顔料、酸化鉄、あるいはコンタクト法、ファーネス法、サーマル法などの公知の方法によって製造されたカーボンブラックを使用することができる。
(Coloring agent)
The active energy ray-curable composition for flooring can be colored to impart design properties. For coloring, inorganic pigments and organic pigments can be used as known and commonly used colorants. As the pigment used in the present invention, an inorganic pigment or an organic pigment can be used.
Inorganic pigments include silicas such as alkaline earth metal sulfates, carbonates, finely divided silicic acid, synthetic silicates, calcium silicates, alumina, hydrated alumina, titanium oxide, zinc oxide, talc, clay, etc. An inorganic pigment, iron oxide, or carbon black produced by a known method such as a contact method, a furnace method, or a thermal method can be used.
 また、有機顔料としては、アゾ顔料(アゾレーキ、不溶性アゾ顔料、縮合アゾ顔料、キレートアゾ顔料などを含む)、多環式顔料(例えば、フタロシアニン顔料、ペリレン顔料、ペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサジン顔料、チオインジゴ顔料、イソインドリノン顔料、キノフラロン顔料など)、染料キレート(例えば、塩基性染料型キレート、酸性染料型キレートなど)、ニトロ顔料、ニトロソ顔料、アニリンブラックなどを使用することができる。   Organic pigments include azo pigments (including azo lakes, insoluble azo pigments, condensed azo pigments, chelate azo pigments), polycyclic pigments (for example, phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, dioxazines). Pigments, thioindigo pigments, isoindolinone pigments, quinofullerone pigments, etc.), dye chelates (for example, basic dye chelates, acidic dye chelates, etc.), nitro pigments, nitroso pigments, aniline black, and the like.
 顔料の具体例としては、カーボンブラックとして、三菱化学社製のNo.2300、No.900、No.960、MCF88、No.33、No.40、No.45、No.52、MA7、MA8、MA100、No.2200B等が、コロンビア社製のRaven5750、同5250、同5000、同3500、同1255、同700等が、キャボット社製のRegal400R、同330R、同660R、Mogul L、同700、Monarch800、同880、同900、同1000、同1100、同1300、同1400等が、デグッサ社製のColor Black FW1、同FW2、同FW2V、同FW18、同FW200、ColorBlack S150、同S160、同S170、Printex 35、同U、同V、同140U、Special Black 6、同5、同4A、同4等が挙げられる。   Specific examples of pigments include carbon black, No. manufactured by Mitsubishi Chemical Corporation. 2300, no. 900, no. 960, MCF88, No. 33, no. 40, no. 45, no. 52, MA7, MA8, MA100, no. 2200B, etc. are Raven 5750, 5250, 5000, 3500, 1255, 700, etc. manufactured by Columbia, and Regal 400R, 330R, 660R, Mogulu L, 700, Monarch 800, 880, manufactured by Cabot, The same 900, 1000, 1100, 1300, 1300, 1400, etc. are Degussa's Color Black FW1, FW2, FW2V, FW18, FW200, ColorBlack S150, S160, S170, Printex 35, U, the same V, the same 140 U, the Special Black 同, the same 5, the same 4A, the same 4, and the like.
 イエロー色に使用される顔料としては、C.I.ピグメントイエロー1、2、3、12、13、14、16、17、73、74、75、83、93、95、97、98、109、110、114、120、128、129、138、150、151、154、155、180、185、213等が挙げられる。   The pigment used for the yellow color is C.I. I. Pigment Yellow 1, 2, 3, 12, 13, 14, 16, 17, 73, 74, 75, 83, 93, 95, 97, 98, 109, 110, 114, 120, 128, 129, 138, 150, 151, 154, 155, 180, 185, 213 and the like.
 また、マゼンタ色に使用される顔料としては、C.I.ピグメントレッド5、7、12、48(Ca)、48(Mn)、57(Ca)、57:1、112、122、123、168、184、202、209、C.I.ピグメントヴァイオレット 19等が挙げられる。   Also, as pigments used for magenta color, C.I. I. Pigment Red 5, 7, 12, 48 (Ca), 48 (Mn), 57 (Ca), 57: 1, 112, 122, 123, 168, 184, 202, 209, C.I. I. And CI Pigment Violet 19.
 また、シアン色に使用される顔料としては、C.I.ピグメントブルー1、2、3、15:3、15:4、60、16、22が挙げられる。   Also, as pigments used for cyan, C.I. I. And CI Pigment Blue 1, 2, 3, 15: 3, 15: 4, 60, 16, and 22.
 また、ホワイト色に使用される顔料としては、C.I.ピグメントホワイト6、18、21などが目的に応じて使用できるが、隠ぺい力が高い酸化チタンが好適で具体的には、テイカ社製「チタニックスJR-301、403、405、600A、605、600E、603、805、806、701、800、808」「チタニックスJA-1、C、3、4、5」、石原産業社製「タイペークCR-50、50-2、57、80、90、93、95、953、97、60、60-2、63、67、58、58-2、85」「タイペークR-820、830、930、550、630、680、670、580、780、780-2、850、855」「タイペークA-100、220」「タイペークW10」「タイペ-クPF-740、744」「TTO-55(A)、55(B)、55(C)、55(D)、55(S)、55(N)、51(A)、51(C)」「TTO-S-1、2」「TTO-M-1、2」、デュポン社製「タイピュアR-900、902、960、706、931」等が挙げられる。 Also, as a pigment used for white color, C.I. I. Pigment White 6, 18, 21 and the like can be used depending on the purpose, but titanium oxide having a high hiding power is preferable. Specifically, “Titanics JR-301, 403, 405, 600A, 605, 600E” manufactured by Teica , 603, 805, 806, 701, 800, 808 ”,“ Titanics JA-1, C, 3, 4, 5 ”,“ Taipaque CR-50, 50-2, 57, 80, 90, 93 ”manufactured by Ishihara Sangyo Co., Ltd. , 95, 953, 97, 60, 60-2, 63, 67, 58, 58-2, 85 ”“ Typek R-820, 830, 930, 550, 630, 680, 670, 580, 780, 780-2 ” , 850, 855 "," Taipeke A-100, 220 "," Taipeke W10 "," Taipeke PF-740, 744 "," TTO-55 (A), 55 (B), 55 (C) 55 (D), 55 (S), 55 (N), 51 (A), 51 (C), “TTO-S-1, 2”, “TTO-M-1, 2”, “Typure R” manufactured by DuPont -900, 902, 960, 706, 931 "and the like.
(添加剤)
 床材用活性エネルギー線硬化性組成物にはその他添加剤として、光増感剤、消泡剤、レベリング剤、紫外線吸収剤、光安定剤、滑剤、艶消し材など従来公知のものを添加することができる。また、機能性を付与する目的で抗菌剤、帯電防止剤などを必要に応じて適宜添加することができる。
(Additive)
Other known additives such as photosensitizers, antifoaming agents, leveling agents, ultraviolet absorbers, light stabilizers, lubricants, and matting materials are added to the active energy ray-curable composition for flooring. be able to. Moreover, an antibacterial agent, an antistatic agent, etc. can be suitably added as needed for the purpose of providing functionality.
 本発明の床材用活性エネルギー線硬化性組成物には、保存安定性を高めるため、ハイドロキノン、メトキノン、ヒンダードアミン系光安定剤、ヒンダードフェノール系光安定剤、ジ-t-ブチルハイドロキノン、P-メトキシフェノール、ブチルヒドロキシトルエン、ニトロソアミン塩等の重合禁止剤を床材用活性エネルギー線硬化性組成物中に0.01~2質量%の範囲で添加しても良い。 The active energy ray-curable composition for flooring of the present invention includes hydroquinone, methoquinone, hindered amine light stabilizer, hindered phenol light stabilizer, di-t-butyl hydroquinone, P— A polymerization inhibitor such as methoxyphenol, butylhydroxytoluene or nitrosamine salt may be added to the active energy ray-curable composition for flooring in the range of 0.01 to 2% by mass.
 また、フィラーや着色剤の分散安定性を高める目的で分散剤を使用してもよい。分散剤としては、味の素ファインテクノ社製のアジスパーPB821、PB822、PB881、PB817、ルーブリゾール社製のソルスパーズ24000GR、32000、33000、36000、39000、41000、71000、BASF社製のEFKA-7701、楠本化成社製のディスパロンDA―703―50、DA-705、DA-725等が挙げられるが、これらに限定されるものではない。また分散剤の使用量は、フィラーに対して10~80重量%の範囲が好ましく、特に20~60重量%の範囲が好ましい。使用量が10重量%未満の場合には分散安定性が不十分となる傾向にあり、80質量%を超える場合には床材用活性エネルギー線硬化性組成物の粘度が高くなる傾向にあり、床材用活性エネルギー線硬化性組成物のレベリング性が低下する。
 その他、被印刷基材に対する接着性の付与等を目的に、アクリル樹脂、エポキシ樹脂、テルペンフェノール樹脂、ロジンエステル等の非反応性樹脂等を配合することができる。
Moreover, you may use a dispersing agent in order to improve the dispersion stability of a filler or a coloring agent. Dispersants include Ajimoto PB821, PB822, PB881, PB817 manufactured by Ajinomoto Fine-Techno Co., Ltd., Solspers 24000GR manufactured by Lubrizol Co., Ltd., 32000, 33000, 36000, 39000, 41000, 71000, EFKA-7701 manufactured by BASF Corporation Examples include, but are not limited to, Disparon DA-703-50, DA-705, DA-725, etc. The amount of the dispersant used is preferably in the range of 10 to 80% by weight, particularly preferably in the range of 20 to 60% by weight with respect to the filler. When the amount used is less than 10% by weight, the dispersion stability tends to be insufficient, and when it exceeds 80% by weight, the viscosity of the active energy ray-curable composition for flooring tends to be high, The leveling property of the active energy ray-curable composition for flooring is lowered.
In addition, non-reactive resins such as acrylic resin, epoxy resin, terpene phenol resin, rosin ester, and the like can be blended for the purpose of imparting adhesiveness to the substrate to be printed.
(床材用活性エネルギー線硬化性組成物の製造方法)
 必要な活性エネルギー線重合性化合物を配合し、光重合開始剤と光重合禁止剤を攪拌混合しながら加熱することで、活性エネルギー線硬化型組成物を得ることができる。本発明の床材用活性エネルギー線硬化性組成物とするには、さらに、床材用活性エネルギー線硬化性組成物として必要な、表面張力調整剤や滑剤等の添加剤を加えて攪拌することで、活性エネルギー線硬化性組成物を得ることができる。
(Method for producing active energy ray-curable composition for flooring)
An active energy ray-curable composition can be obtained by blending the necessary active energy ray-polymerizable compound and heating while stirring and mixing the photopolymerization initiator and the photopolymerization inhibitor. In order to obtain the active energy ray-curable composition for flooring of the present invention, an additive such as a surface tension adjusting agent or a lubricant necessary for the active energy ray-curable composition for flooring is further added and stirred. Thus, an active energy ray-curable composition can be obtained.
(床材用活性エネルギー線硬化性組成物の粘度)
 本発明における床材用活性エネルギー線硬化性組成物の粘度は、あまり高粘度では硬化後の仕上がりにスジ状感が発生するおそれがあるため、粘度としては50~1000mPa・secが好ましく、100~400mPa・secが最も好ましい。
(Viscosity of active energy ray-curable composition for flooring)
The viscosity of the active energy ray-curable composition for flooring in the present invention is preferably 50 to 1000 mPa · sec, and is preferably 100 to 1000 mPa · sec, because if the viscosity is too high, streaks may occur in the finished product after curing. 400 mPa · sec is most preferable.
(塗布方法)
 床材用活性エネルギー線硬化性組成物の塗布方法はローラーや刷毛等を用いて塗布される。また前記床材用活性エネルギー線硬化性組成物は、各種インキやコーティング用途としても使用することができる。コーティング方法としては、たとえばロールコーター、グラビアコーター、フレキソコーター、エアドクターコーター、ブレードコーター、エアナイフコーター、スクイズコーター、含浸コーター、トランスファロールコーター、キスコーター、カーテンコーター、キャストコーター、スプレイコーター、ダイコーター、オフセット印刷機、スクリーン印刷機等の公知手段を適宜採用することができる。
(Application method)
The application method of the active energy ray-curable composition for flooring is applied using a roller, a brush or the like. Moreover, the active energy ray-curable composition for flooring can be used for various inks and coating applications. Coating methods include, for example, roll coaters, gravure coaters, flexo coaters, air doctor coaters, blade coaters, air knife coaters, squeeze coaters, impregnation coaters, transfer roll coaters, kiss coaters, curtain coaters, cast coaters, spray coaters, die coaters, and offsets. Known means such as a printing machine or a screen printing machine can be appropriately employed.
(硬化)
 前記床材用活性エネルギー線硬化性組成物は、活性エネルギー線、好ましくは紫外線等の光照射をすることにより硬化反応を行う。紫外線等の光源としては、通常UV硬化性コーティング剤に使用する光源、例えばメタルハライドランプ、キセノンランプ、カーボンアーク灯、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ等であれば問題なく硬化させることができる。例えばFusion System社製のHランプ、Dランプ、Vランプ等の市販されているものを用いて行うことができる。  
(Curing)
The active energy ray-curable composition for flooring is subjected to a curing reaction by irradiation with active energy rays, preferably light such as ultraviolet rays. As a light source such as an ultraviolet ray, a light source usually used for a UV curable coating agent, for example, a metal halide lamp, a xenon lamp, a carbon arc lamp, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp can be cured without any problem. . For example, a commercially available product such as an H lamp, D lamp, or V lamp manufactured by Fusion System can be used.
 床材用活性エネルギー線硬化性組成物の硬化には、近年UV-LEDや、紫外線発光半導体レーザ等の活性エネルギー線照射源により硬化または半硬化させたいという要求があり、例えば、前記床材用活性エネルギー線硬化性組成物として使用する場合は、床に塗工する工程と、発光ダイオード(LED)を用いて波長ピークが365~420nmの範囲にある活性エネルギー線を照射することにより前記活性エネルギー線硬化性組成物を硬化させることで、床材を形成させることが可能である In recent years, there has been a demand for curing an active energy ray-curable composition for flooring by using an active energy ray irradiation source such as a UV-LED or an ultraviolet light emitting semiconductor laser. When used as an active energy ray-curable composition, the active energy ray is irradiated with an active energy ray having a wavelength peak in the range of 365 to 420 nm using a light emitting diode (LED). It is possible to form a flooring by curing the linear curable composition.
(可動式活性エネルギー線照射装置)
 本発明に用いる可動式活性エネルギー線照射装置としては、上記活性エネルギー線、好ましくは紫外線等を照射する光源が、2本以上の骨組みで支えられる本体と少なくとも床材に接触する車輪が接続されているフレームに固定されているものである。活性エネルギー線を照射する範囲より内側を床材に接触する車輪が通る構造となっており、活性エネルギー線により硬化した活性エネルギー線硬化型組成物の上を通るため車輪痕などの欠陥は生じない。
(Movable active energy ray irradiation device)
As the movable active energy ray irradiation apparatus used in the present invention, a light source that emits the active energy ray, preferably ultraviolet rays, is connected to a main body supported by two or more frames and at least a wheel that contacts a flooring. It is fixed to the frame. The wheel that contacts the floor material passes through the area where the active energy ray is irradiated and passes over the active energy ray-curable composition cured by the active energy ray, so there is no defect such as a wheel mark. .
 本発明で用いる可動式活性エネルギー線照射装置の光源はUV-LEDを用いる。UV-LEDは高出力のものほど発熱しやすいため水冷式である事が望ましいが、可動式活性エネルギー線照射装置が小型である場合は空冷式のものである事が好ましい。 The light source of the movable active energy ray irradiation apparatus used in the present invention uses a UV-LED. UV-LEDs are preferably water-cooled because UV-LEDs generate heat more easily, but are preferably air-cooled when the movable active energy ray irradiation device is small.
 可動式活性エネルギー線照射装置は、活性エネルギー線照射の際、硬化条件を満たすようにするための機構を備えている事が好ましい。そのためには移動速度を自動で制御できる機構、または移動速度が速すぎる場合、それを知らせるための機構を備えている事がより好ましい。 The movable active energy ray irradiation apparatus preferably includes a mechanism for satisfying the curing condition when the active energy ray is irradiated. For that purpose, it is more preferable to provide a mechanism capable of automatically controlling the moving speed, or a mechanism for notifying when the moving speed is too fast.
 以下、実施例により、本発明をさらに詳しく説明するが、本発明は、下記実施例に何ら制限されるものではない。なお、以下実施例中にある部とは、質量部を表す。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples. In addition, the part in an Example below represents a mass part.
(実施例1:床材用活性エネルギー線硬化性組成物(1)の調整)
 ASHLAND社製N-ビニルカプロラクタム「V-CAP/RC」6.4部、MIWON社製 1,6-ヘキサンジオールジアクリレート「MIRAMER M202」20.0部、SARTOMER社製ハイパーブランチポリエステルアクリレート「CN2303」22.7部、MIWON社製 エチレンオキサイド3モル付加トリメチロールプロパントリアクリレート「MIRAMER M3130」15.5部、東亜合成社製ω-カルボキシ-ポリカプロラクトンモノアクリレート「アロニックス M-5300」11.1部、SARTOMER社製ウレタンオリゴマー「CN9026」24.3部、BASF社製ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド「Irgacure819」1.0部、BASF社製ジフェニル-2,4,6-トリメチルベンゾイルフォスフィンオキサイド「Lucirin TPO(Irgacure TPO)」8.0部、精工化学(株)社製p-メトキシフェノール「メトキノン」0.1部を添加し、60℃で30分加熱攪拌した後、Lubrizol社製ポリエチレン分散体「CC7610」1.0部、BYK-CHMIE社製レベリング剤「BYK-350」1.5部を添加し、充分に混合した。次いで100μmのフィルターを用いてろ過することにより床材用活性エネルギー線硬化性組成物(1)を得た。
(Example 1: Preparation of active energy ray-curable composition (1) for flooring)
6.4 parts of N-vinylcaprolactam “V-CAP / RC” manufactured by ASHLAND, 20.0 parts of 1,6-hexanediol diacrylate “MIRAMER M202” manufactured by MIWON, hyperbranched polyester acrylate “CN2303” 22 manufactured by SARTOMER 7 parts, 15.5 parts of trioxide roll propane triacrylate “MIRAMER M3130” made by MIWON, 11.1 parts of ω-carboxy-polycaprolactone monoacrylate “Aronix M-5300” made by Toa Gosei Co., Ltd., SARTOMER Urethane oligomer “CN9026” 24.3 parts, BASF bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide “Irgacure 819” 1.0 part, BASF 8.0 parts of diphenyl-2,4,6-trimethylbenzoylphosphine oxide “Lucirin TPO (Irgacure TPO)” manufactured by Seiko Chemical Co., Ltd. and 0.1 part of p-methoxyphenol “Metquinone” manufactured by Seiko Chemical Co., Ltd. were added. After heating and stirring at 30 ° C. for 30 minutes, 1.0 part of a polyethylene dispersion “CC7610” manufactured by Lubrizol and 1.5 part of a leveling agent “BYK-350” manufactured by BYK-CHMIE were added and mixed thoroughly. Subsequently, the active energy ray-curable composition (1) for flooring was obtained by filtering using a 100-micrometer filter.
 上記配合の床材用活性エネルギー線硬化性組成物(1)を東リ株式会社製コンポジションビニル床タイル「マチコV」の表面(歩行面)に40μmの厚さに塗布後、高圧水銀ランプをU-VIX社製UV-LEDであるFirePowerに置き換えたHIDUltraviolet,LLC社製可動式活性エネルギー線照射装置TIGERにて活性エネルギー線を照射(照射量500mJ/cm2)し、床材用活性エネルギー線硬化性組成物を硬化させて床材を得た。 After applying the active energy ray-curable composition for flooring (1) of the above composition to the surface (walking surface) of the composition vinyl floor tile “Machico V” manufactured by Tori Co., Ltd. to a thickness of 40 μm, a high-pressure mercury lamp is applied to the U -Active energy ray curing for flooring by irradiating active energy rays (irradiation amount: 500 mJ / cm 2 ) with a movable active energy ray irradiation device TIGER made by HIDUltraviolet, LLC, replaced with FirePower, a UV-LED made by VIX The flooring composition was obtained by curing the composition.
 その他、表1に示す実施例2~7、表2に示す実施例8~11及び比較例1~3に関しても、実施例1と同様にして床材を得た。 In addition, for Examples 2 to 7 shown in Table 1, Examples 8 to 11 and Comparative Examples 1 to 3 shown in Table 2, flooring materials were obtained in the same manner as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
MIRAMER M-202…MIWON社製EO付加1,6-ヘキサンジオールジアクリレート
V-Cap…ASHLAND社製N-ビニルカプロラクタム
CN2303…SARTOMER社製ハイパーブランチポリエステルアクリレート
MIRAMER M-3130…MIWON社製エチレンオキサイド3モル付加トリメチロールプロパントリアクリレート
アロニックス M-5300…東亜合成社製ω-カルボキシ-ポリカプロラクトンモノアクリレート
CN9026…SARTOMER社製ウレタンオリゴマー
Irgacure819…BASF社製アシルフォスフィン系光重合禁止剤ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド
LucirinTPO…BASF社製アシルフォスフィン系光重合禁止剤2、4、6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド
Irgacure184…BASF社製光重合禁止剤1-ヒドロキシ-シクロヘキシル-フェニル-ケトン
DAROCUR MBF…BASF社製光重合禁止剤メチルベンゾイルホルマート
DAROCUR 1173…BASF社製光重合禁止剤2-ヒドロキシ-2-メチルプロピオフェノン
KIP100F…Lamberti社製オリゴ(2-ヒドロキシ-2-メチル-1-(4-(メチルビニル)フェニル)プロパンオン)
Chemcure-JETX…CHEMBRIDGE INTERNATIONAL CORP.社製光重合開始剤2,4-ジエチルチオキサントン
SB-PI704…Shuang-Bang Industrial Corp.社製光重合開始剤4-ジメチルアミノ安息香酸エチル
メトキノン…精工化学(株)社製重合禁止剤p-メトキシフェノール
BYK-350…BYK-CHMIE社製アクリル系レベリング剤
CC7610…Lubrizol社製ポリエチレン分散体
MIRAMER M-202 ... EO addition 1,6-hexanediol diacrylate V-Cap made by MIWON ... N-vinylcaprolactam CN2303 made by ASHLAND ... Hyperbranched polyester acrylate made by SARTOMER MIRAMER M-3130 ... 3 mol of ethylene oxide made by MIWON Addition trimethylolpropane triacrylate Aronix M-5300 ... ω-carboxy-polycaprolactone monoacrylate CN9026 manufactured by Toa Gosei Co., Ltd. Urethane oligomer Irgacure 819 manufactured by SARTOMER Co., Ltd. Acylphosphine photopolymerization inhibitor bis (2, 4, BASF) 6-trimethylbenzoyl) -phenylphosphine oxide Lucirin TPO: Acylphosphine photopolymerization inhibitor manufactured by BASF 4,6-trimethylbenzoyl-diphenylphosphine oxide Irgacure 184 ... Photopolymerization inhibitor 1-hydroxy-cyclohexyl-phenyl-ketone DAROCUR MBF manufactured by BASF Photopolymerization inhibitor methylbenzoylformate DAROCUR 1173 manufactured by BASF Photopolymerization inhibitor 2-hydroxy-2-methylpropiophenone KIP100F ... Oligo (2-hydroxy-2-methyl-1- (4- (methylvinyl) phenyl) propanone manufactured by Lamberti)
Chemcure-JETX ... CHEMBRIDGE INTERNATIONAL CORP. Photopolymerization initiator 2,4-diethylthioxanthone SB-PI704 ... Shuang-Bang Industrial Corp. Photopolymerization initiator 4-Methylquinone, dimethylaminobenzoate manufactured by Seiko Chemical Co., Ltd. Polymerization inhibitor p-methoxyphenol BYK-350, acrylic leveling agent CC7610 manufactured by BYK-CHMIE, polyethylene dispersion manufactured by Lubrizol body
(評価方法)
 前記床材用活性エネルギー線硬化性組成物の実施例1~11比較例1~3の評価方法を示す。
(Evaluation methods)
Examples 1 to 11 of the active energy ray-curable composition for a flooring are evaluated in Comparative Examples 1 to 3.
[可動式UV-LED硬化性]
活性エネルギー線光源をU-VIX社製UV-LEDであるFirePowerに置き換えた可動式活性エネルギー線照射装置TIGERを用いて硬化させた場合の硬化性を可動式UV-LED硬化性とし以下の評価基準で硬化性を評価した。
  ○…塗膜表面にタック性なし
  △…塗膜表面に若干のタック性あり
  ×…未硬化
[Moveable UV-LED curing]
The following evaluation criteria are used when the active energy ray light source is cured using a movable active energy ray irradiation device TIGER, which is replaced by FirePower, a UV-LED manufactured by U-VIX, and the curing property is set as a movable UV-LED curability. Then, the curability was evaluated.
○… No tackiness on coating surface △… Some tackiness on coating surface ×… Uncured
 [活性エネルギー線(UV-LED)硬化性]
 実施例または比較例の床材用活性エネルギー線硬化性組成物を、硬質塩ビ板(三菱樹脂(株)製:ヒシプレート303GE)に対し、前述の印刷方法にて6μmの膜厚で塗布し、次いでステージ移動装置を備えた浜松ホトニクス(株)社製のLED照射装置(発光波長:385nm、ピーク強度:500mW/cm2)にて、1回の照射エネルギー量が50mJ/cmとなるように照射し、タックフリーになるまでの照射エネルギー量の積算値を測定した。
 尚、床材用活性エネルギー線硬化性組成物の感度は、実用的な硬化条件に対応する為に、500mJ/cm迄の積算光量で硬化する感度が好ましい。
[Curability of active energy rays (UV-LED)]
The active energy ray-curable composition for flooring of Example or Comparative Example was applied to a hard PVC board (Mitsubishi Resin Co., Ltd .: Hishi Plate 303GE) with a film thickness of 6 μm by the aforementioned printing method, Next, irradiation is performed with an LED irradiation device (emission wavelength: 385 nm, peak intensity: 500 mW / cm 2) manufactured by Hamamatsu Photonics Co., Ltd. equipped with a stage moving device so that the amount of irradiation energy per irradiation is 50 mJ / cm 2. And the integrated value of the irradiation energy amount until it became tack-free was measured.
In addition, the sensitivity of the active energy ray-curable composition for flooring is preferably a sensitivity that cures with an integrated light amount of up to 500 mJ / cm 2 in order to correspond to practical curing conditions.
 [光重合開始剤溶解性]
作成した床材用活性エネルギー線硬化性組成物をエスペック社製環境試験機SH-221内(5℃)にて1週間保管し、その後組成物約1グラムを金属グラインドゲージ(溝深さ0~25ミクロン)上に載せ、金属スクレーパーでゲージ上の組成物をかき取り、組成物中の光重合開始剤の溶解性低下に伴う析出の状態を目視で確認し、次の3段階で評価した。光重合開始剤が析出し結晶化した場合、グラインドゲージ上に開始剤結晶由来のスジが新たに発生する。本評価項目において析出が顕著に発生する組成では、冬場等、低温環境下においては十分な製品性能を発揮することが出来ない。
  ○:析出は見られない。
  △:ごく僅かに析出が確認できる。
  ×:析出が確認できる。
[Photopolymerization initiator solubility]
The prepared active energy ray-curable composition for flooring is stored for 1 week in an environmental test machine SH-221 (5 ° C.) manufactured by Espec, and about 1 gram of the composition is then added to a metal grind gauge (groove depth 0 to 0). The composition on the gauge was scraped off with a metal scraper, the state of precipitation accompanying the decrease in solubility of the photopolymerization initiator in the composition was visually confirmed, and evaluated in the following three stages. When the photopolymerization initiator is precipitated and crystallized, streaks derived from the initiator crystal are newly generated on the grind gauge. In a composition in which precipitation occurs remarkably in this evaluation item, sufficient product performance cannot be exhibited in a low temperature environment such as winter.
○: No precipitation is observed.
Δ: Slight precipitation can be confirmed.
X: Precipitation can be confirmed.
評価結果を表3、表4に示す。 The evaluation results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この結果、実施例で得た前記床材活性エネルギー線硬化性組成物は、UV-LED光源を有する可動式の硬化装置が用いても充分な硬化性が得られる床材用活性エネルギー線硬化性組成物とその組成物を硬化させる施工方法を得る事ができた。 As a result, the active energy ray curable composition for flooring obtained in the examples can be sufficiently cured even when a movable curing device having a UV-LED light source is used. The construction method which hardens the composition and the composition was able to be obtained.

Claims (9)

  1. エチレン性二重結合を有する活性エネルギー線重合性化合物(A)とアシルホスフィンオキサイド系光重合開始剤(B)を含有することを特徴とする床材用活性エネルギー線硬化性組成物。
    An active energy ray-curable composition for flooring, comprising an active energy ray-polymerizable compound (A) having an ethylenic double bond and an acylphosphine oxide photopolymerization initiator (B).
  2. 更にチオキサントン系化合物(C)を含有する請求項1記載の床材用活性エネルギー線硬化性組成物。
    The active energy ray-curable composition for flooring according to claim 1, further comprising a thioxanthone compound (C).
  3. 更に脂肪族アミン誘導体及び/又は安息香酸アミン誘導体から選ばれる3級アミン化合物(D)を含有する請求項1又は2に記載の床材用活性エネルギー線硬化性組成物。
    The active energy ray-curable composition for flooring according to claim 1 or 2, further comprising a tertiary amine compound (D) selected from aliphatic amine derivatives and / or benzoic acid amine derivatives.
  4. 前記アシルホスフィンオキサイド系光重合開始剤(B)、前記チオキサントン系化合物(C)、及び前記3級アミン化合物(D)の合計が、前記エチレン性二重結合を有する活性エネルギー線重合性化合物(A)全量に対し5~15重量%である請求項1~3何れか1つに記載の床剤用活性エネルギー線硬化性組成物。
    The total of the said acylphosphine oxide type photoinitiator (B), the said thioxanthone type compound (C), and the said tertiary amine compound (D) is the active energy ray polymeric compound (A The active energy ray-curable composition for flooring according to any one of claims 1 to 3, which is 5 to 15% by weight based on the total amount.
  5. 前記アシルホスフィンオキサイド系光重合開始剤(B)と、前記チオキサントン系化合物(C)及び3級アミン化合物(D)の含有量総計の重量比が1:1~15:1である請求項1~4何れか1つに記載の床材用活性エネルギー線硬化性組成物。
    The weight ratio of the total content of the acylphosphine oxide photopolymerization initiator (B), the thioxanthone compound (C) and the tertiary amine compound (D) is 1: 1 to 15: 1. 4. The active energy ray-curable composition for flooring according to any one of 4 above.
  6. 前記アシルフォスフィンオキサイド系光重合開始剤(B)が、2、4、6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド及び/又はビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドである請求項1~5何れか1つに記載の床剤用活性エネルギー線硬化性組成物。
    The acylphosphine oxide photopolymerization initiator (B) is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and / or bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Item 6. The active energy ray-curable composition for flooring according to any one of Items 1 to 5.
  7. 可動式活性エネルギー線照射装置を用いて請求項1~6の何れかに記載の床材活性エネルギー線硬化性組成物を硬化させる施工方法。
    A construction method for curing a flooring active energy ray-curable composition according to any one of claims 1 to 6, using a movable active energy ray irradiation device.
  8. 請求項7記載の施工方法で得られた床材。
    A flooring material obtained by the construction method according to claim 7.
  9. 請求項8記載の床材を用いた床。 A floor using the flooring material according to claim 8.
PCT/JP2015/051641 2014-01-29 2015-01-22 Actinic-ray-curable composition for floor material WO2015115293A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014014319 2014-01-29
JP2014-014319 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115293A1 true WO2015115293A1 (en) 2015-08-06

Family

ID=53756869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051641 WO2015115293A1 (en) 2014-01-29 2015-01-22 Actinic-ray-curable composition for floor material

Country Status (1)

Country Link
WO (1) WO2015115293A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113668A (en) * 2001-07-24 2003-04-18 Waado:Kk Decoration method of floor surface and floor surface decorative material
JP2008265236A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Functional material
JP2010150464A (en) * 2008-12-26 2010-07-08 Toyo Ink Mfg Co Ltd Active energy ray-curable screen ink for uv-light emitting diode, and printed matter
JP2011256331A (en) * 2010-06-11 2011-12-22 Dic Corp Active energy ray-curable resin composition, manufacturing method of its cured product, and molding
JP2012241116A (en) * 2011-05-20 2012-12-10 Dnp Fine Chemicals Co Ltd Active energy ray-curable composition, method for forming coating film, and coating film
JP2013057185A (en) * 2011-09-07 2013-03-28 Sanyu Rec Co Ltd Nonslip member forming sheet, manufacturing method of nonslip member forming sheet, and forming method of nonslip member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113668A (en) * 2001-07-24 2003-04-18 Waado:Kk Decoration method of floor surface and floor surface decorative material
JP2008265236A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Functional material
JP2010150464A (en) * 2008-12-26 2010-07-08 Toyo Ink Mfg Co Ltd Active energy ray-curable screen ink for uv-light emitting diode, and printed matter
JP2011256331A (en) * 2010-06-11 2011-12-22 Dic Corp Active energy ray-curable resin composition, manufacturing method of its cured product, and molding
JP2012241116A (en) * 2011-05-20 2012-12-10 Dnp Fine Chemicals Co Ltd Active energy ray-curable composition, method for forming coating film, and coating film
JP2013057185A (en) * 2011-09-07 2013-03-28 Sanyu Rec Co Ltd Nonslip member forming sheet, manufacturing method of nonslip member forming sheet, and forming method of nonslip member

Similar Documents

Publication Publication Date Title
JP5846336B2 (en) Active energy ray curable composition for flooring
JP5800212B1 (en) Active energy ray-curable composition for flooring and its construction method
JP5910799B2 (en) Curing method for active energy ray-curable composition for flooring, and curing device using the curing method
JP7101938B2 (en) Active energy ray-curable ink for inkjet, ink container, two-dimensional or three-dimensional image forming device, method for producing cured product, and cured product
TW201739850A (en) Photocurable inkjet printing ink composition and inkjet printing method
WO2012172973A1 (en) Active energy ray-curable ink composition for inkjet recording and image forming method
KR20130108634A (en) Active energy beam-curable ink composition for ink jet recording, and image formation method
JP5815913B1 (en) Active energy ray-curable offset ink composition
JP2016079190A (en) Curing device
EP3450515A1 (en) Actinic-ray-curable ink set for ink-jet recording
WO2015163184A1 (en) Method for curing active-energy-ray-curable offset ink
EP3303488B1 (en) A printing ink
TW201903079A (en) Amino (meth) acrylate
JP2017105877A (en) Active energy ray-curable composition for floor material
JP5809780B2 (en) UV curable coating varnish
JP2014181281A (en) Active energy ray-curable inkjet recording ink composition and method for manufacturing the same
JP2014189753A (en) Method for manufacturing active energy ray-curable inkjet recording ink composition
WO2015115293A1 (en) Actinic-ray-curable composition for floor material
JP6657973B2 (en) Active energy ray-curable composition for white receiving layer of inkjet ink for building materials
JP6861282B2 (en) Active energy ray-curable ink, manufacturing method of cured ink, and printed matter
JP2023163470A (en) Radiation curable inkjet composition
JP5769019B2 (en) Trimellitic acid triallyl polymer, photocurable resin composition containing the polymer, and use thereof
JP2023097117A (en) Active energy ray-curable ink composition and method for producing printed matter
JP2023131699A (en) Composition and printing method
JP2023146160A (en) Active energy ray-curable offset printing ink, printed matter using the same, and production method of printed matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15743051

Country of ref document: EP

Kind code of ref document: A1