WO2015115243A1 - Non-aqueous electrolyte secondary cell - Google Patents

Non-aqueous electrolyte secondary cell Download PDF

Info

Publication number
WO2015115243A1
WO2015115243A1 PCT/JP2015/051324 JP2015051324W WO2015115243A1 WO 2015115243 A1 WO2015115243 A1 WO 2015115243A1 JP 2015051324 W JP2015051324 W JP 2015051324W WO 2015115243 A1 WO2015115243 A1 WO 2015115243A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
negative electrode
secondary battery
electrolyte secondary
positive electrode
Prior art date
Application number
PCT/JP2015/051324
Other languages
French (fr)
Japanese (ja)
Inventor
弘義 武
岸井 豊
咲良 村越
植谷 慶裕
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015115243A1 publication Critical patent/WO2015115243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery that effectively suppresses deterioration of battery performance and has excellent cycle characteristics.
  • a secondary battery that uses a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate as an electrode active material and a carbonaceous material that can insert and desorb lithium ions as a negative electrode.
  • a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate
  • a carbonaceous material that can insert and desorb lithium ions as a negative electrode.
  • This rocking chair type secondary battery can reduce the amount of electrolyte compared to the so-called reserve type secondary battery, and can be downsized, and has a high energy density while being small. Therefore, it is widely used as an electricity storage device for the above-described electronic equipment.
  • the lithium ion secondary battery is a secondary battery that obtains electric energy by an electrochemical reaction, and has a drawback that the input / output density is low because the speed of the electrochemical reaction is low. Furthermore, since the internal resistance of the secondary battery is high, rapid discharge is difficult and rapid charge is also difficult. Moreover, since an electrode and electrolyte solution deteriorate by the electrochemical reaction accompanying charging / discharging, generally a lifetime, ie, a cycling characteristic, is not good.
  • a non-aqueous electrolyte secondary battery using a conductive polymer such as polyaniline having a dopant as a positive electrode active material is also known (Patent Document 1).
  • a secondary battery having a conductive polymer as a positive electrode active material is an anion transfer type in which an anion is doped into a positive electrode polymer during charging and the anion is dedoped from the positive electrode polymer during discharge.
  • Such a rocking chair type secondary battery cannot be constructed. Therefore, a non-aqueous electrolyte secondary battery using a conductive polymer as a positive electrode active material basically requires a large amount of electrolyte, resulting in a problem that it cannot contribute to battery size reduction.
  • a conductive polymer having a polymer anion such as polyvinyl sulfonic acid as a dopant is used for the positive electrode to be a cation transfer type so that the ion concentration in the electrolytic solution does not substantially change.
  • a secondary battery is also proposed (see Patent Document 2).
  • JP-A-3-129679 Japanese Patent Laid-Open No. 1-132052
  • Patent Document 2 still does not satisfy the cycle characteristics. Therefore, the present inventors have conducted various researches and experiments on non-aqueous electrolyte secondary batteries using a carbonaceous material capable of inserting and desorbing lithium ions from the negative electrode from the viewpoint of cycle characteristics. Therefore, efforts have been made to improve battery performance, which is a problem in the non-aqueous electrolyte secondary battery having the above structure.
  • the present invention has been made in view of such circumstances, and is a nonaqueous electrolyte secondary battery using a conductive polymer for a positive electrode, which effectively suppresses deterioration of battery performance and has excellent cycle characteristics.
  • a water electrolyte secondary battery is provided.
  • the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer, a positive electrode and a negative electrode provided opposite to each other, the positive electrode comprising a conductive polymer (a), a polycarboxylic acid And a non-aqueous electrolyte secondary battery including at least one of the metal salts (b) and the negative electrode containing lithium titanate.
  • the inventors of the present invention have made extensive studies in order to obtain an electricity storage device having no deterioration in battery performance and excellent cycle characteristics.
  • a general carbonaceous material for example, graphite
  • the present inventors have conducted intensive research in order to solve battery performance degradation in a non-aqueous electrolyte secondary battery having a positive electrode configuration containing a conductive polymer, and formed a coating film on the negative electrode to As a result of preventing side reactions, focusing on the combination of the positive electrode material and the negative electrode material, and conducting extensive research, the negative electrode containing lithium titanate is stabilized in combination with the positive electrode containing a conductive polymer. I found.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer and a positive electrode and a negative electrode provided to face each other, and the positive electrode is electrically conductive.
  • the conductive polymer (a) and at least one of the polycarboxylic acid and its metal salt (b) are included, and the negative electrode includes lithium titanate. Therefore, the deterioration of the battery performance is effectively suppressed and the cycle characteristics are excellent.
  • the conductive polymer (a) is at least one of polyaniline and a polyaniline derivative, battery performance such as weight energy density can be further improved.
  • polycarboxylic acid of (b) is polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, polyaspartic acid, alginic acid, carboxymethylcellulose,
  • polyacrylic acid polymethacrylic acid
  • polyvinylbenzoic acid polyallylbenzoic acid
  • polymethallylbenzoic acid polymaleic acid
  • polyfumaric acid polyglutamic acid
  • polyaspartic acid alginic acid, carboxymethylcellulose
  • each nonaqueous electrolyte secondary battery of Example 1 and Comparative Example 1 it is a graph which shows the cycle characteristic of the discharge capacity maintenance factor in 60 degreeC.
  • the vertical axis represents the discharge capacity retention rate (%) and the horizontal axis represents the number of cycles.
  • the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer, and a positive electrode and a negative electrode provided to face each other, and the positive electrode is made of a conductive polymer (a ) And at least one of a polycarboxylic acid and a metal salt thereof (b), and the negative electrode contains lithium titanate.
  • the positive electrode of the nonaqueous electrolyte secondary battery of the present invention contains the conductive polymer (a).
  • the conductive polymer (a) means that an ionic species is inserted into or desorbed from the polymer in order to compensate for a change in charge generated or lost by an oxidation reaction or reduction reaction of the polymer main chain.
  • a state with high conductivity is referred to as a doped state
  • a state with low conductivity is referred to as a dedope state.
  • one of the preferred conductive polymers (a) of the present invention is at least one selected from the group consisting of an inorganic acid anion, a fatty acid sulfonate anion, an aromatic sulfonate anion, a polymer sulfonate anion and a polyvinyl sulfate anion.
  • another conductive polymer preferable in the present invention is a polymer in a dedope state obtained by dedoping the conductive polymer.
  • the conductive polymer (a) include, for example, polyacetylene, polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, poly (3,4-ethylenediethylene). Oxythiophene) and the like and various derivatives thereof. Of these, polyaniline and polyaniline derivatives having a large electrochemical capacity are preferably used.
  • the polyaniline means a polymer obtained by electrolytic polymerization or chemical oxidative polymerization of aniline
  • the polyaniline derivative is obtained by electrolytic polymerization or chemical oxidative polymerization of an aniline derivative, for example. Refers to the polymer produced.
  • a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, or an alkoxyalkyl group is provided at a position other than the 4-position of aniline. What has at least one can be illustrated.
  • Preferred examples include, for example, o-substituted anilines such as o-methylaniline, o-ethylaniline, o-phenylaniline, o-methoxyaniline, o-ethoxyaniline, m-methylaniline, m-ethylaniline, m And m-substituted anilines such as -methoxyaniline, m-ethoxyaniline, m-phenylaniline and the like. These may be used alone or in combination of two or more.
  • p-phenylaminoaniline having a substituent at the 4-position can be suitably used as an aniline derivative because polyaniline is obtained by oxidative polymerization.
  • aniline or a derivative thereof may be simply referred to as “aniline”, and “at least one of polyaniline and polyaniline derivatives” may be simply referred to as “polyaniline”. Therefore, even when the polymer constituting the conductive polymer is obtained from an aniline derivative, it may be referred to as “conductive polyaniline”.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention preferably further contains nitrogen in addition to the conductive polymer (a).
  • “having nitrogen” means not only when the molecular structure of the conductive polymer has an N atom, but also when adding a nitrogen source separately to the material. As described above, by containing nitrogen in the positive electrode material, the positive electrode material can more effectively adsorb acid generated in the electrolytic solution.
  • the positive electrode further has at least one (b) of polycarboxylic acid and polycarboxylic acid metal salt.
  • the component (b) will be described.
  • the polycarboxylic acid refers to a polymer having a carboxyl group in the molecule.
  • the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, and polymers thereof.
  • a copolymer containing at least one of these repeating units is preferably used, and polyacrylic acid and polymethacrylic acid are more preferably used. These may be used alone or in combination of two or more.
  • the polycarboxylic acid metal salt is, for example, an alkali metal salt or an alkaline earth metal salt, and these may be used alone or in combination of two or more.
  • the alkali metal salt is preferably a lithium salt or a sodium salt
  • the alkaline earth metal salt is preferably a magnesium salt or a calcium salt.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention is composed of a composite comprising at least the conductive polymer (a) and the component (b), and is preferably formed on a porous sheet.
  • the thickness of the positive electrode is preferably 1 to 500 ⁇ m, more preferably 10 to 300 ⁇ m.
  • the thickness of the positive electrode is obtained by measuring the positive electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.) whose tip shape is a flat plate having a diameter of 5 mm, and obtaining the average of 10 measured values with respect to the surface of the electrode. .
  • a dial gauge manufactured by Ozaki Mfg. Co., Ltd.
  • the thickness of the composite is measured in the same manner as described above, the average of the measured values is obtained, and the thickness of the current collector is subtracted.
  • the thickness of the positive electrode can be obtained.
  • the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention is produced, for example, as follows.
  • the component (b) is dissolved or dispersed in water, and a conductive polymer (a) powder and, if necessary, a conductive assistant such as conductive carbon black are added thereto. Disperse to prepare a paste having a solution viscosity of about 0.1 to 50 Pa ⁇ s.
  • a sheet electrode can be obtained as a porous composite having an active material-containing layer.
  • the conductive auxiliary agent is excellent in conductivity, is effective for reducing electrical resistance between battery active materials, and is a conductive material whose properties do not change depending on the potential applied during battery discharge. desirable.
  • conductive carbon black for example, acetylene black, ketjen black and the like, and fibrous carbon materials such as carbon fiber and carbon nanotube are used.
  • the component (b) is usually 1 to 100 parts by weight, preferably 2 parts per 100 parts by weight of the conductive polymer (a). It is used in the range of -70 parts by weight, most preferably in the range of 5-40 parts by weight. That is, if the amount of the component (b) relative to the conductive polymer (a) is too small, a non-aqueous electrolyte secondary battery excellent in energy density tends not to be obtained.
  • the component (b) If the amount of the material is too large, the weight of the positive electrode due to an increase in the weight of the member other than the positive electrode active material increases, so that when considering the weight of the entire battery, a high-energy density non-aqueous electrolyte secondary battery cannot be obtained. This is because there is a tendency.
  • the negative electrode according to the nonaqueous electrolyte secondary battery of the present invention is composed of a material containing lithium titanate.
  • the lithium titanate is a compound represented by the general formula Li X Ti Y O 4 , where X and Y are positive numbers.
  • Examples of such lithium titanate include Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4, and the like.
  • This lithium titanate is generally in the form of particles, and in order to obtain this, a method of heating and baking a mixture of titanium oxide and a lithium compound at a temperature of 700 to 1600 ° C., producing lithium titanate hydrate in a liquid medium Thereafter, a method of firing at 200 to 1300 ° C., a method of spray-drying a slurry containing a titanate compound and a lithium compound, and a method of heating and firing are exemplified.
  • lithium titanate various commercially available products can be used in addition to those obtained by the above-mentioned production method.
  • Enamite (registered trademark) LT series manufactured by Ishihara Sangyo Co., Ltd.
  • Ishihara Sangyo Co., Ltd. can be used.
  • the particle shape is not particularly limited, such as an isotropic shape such as a spherical shape or a polyhedron shape, an anisotropic shape such as a rod shape or a plate shape, or an indefinite shape. It is preferable to aggregate the primary particles to form secondary particles because powder characteristics such as fluidity, adhesion, and filling properties are improved, and battery characteristics such as cycle characteristics are also improved.
  • the secondary particles in the present invention are in a state in which the primary particles are firmly bonded to each other, and are not easily disintegrated by industrial operations such as normal mixing, pulverization, filtration, washing, transport, weighing, bagging, and deposition. Most of them remain as secondary particles.
  • the specific surface area of the secondary particles (BET method by N 2 adsorption) is preferably in the range of 0.1 to 100 m 2 / g, and more preferably in the range of 1 to 20 m 2 / g.
  • the tap density of the secondary particles is preferably in the range of 0.5 to 2.5 g / cm 3 from the viewpoint of battery capacity, and the bulk density is in the range of 0.4 to 2.0 g / cm 3 . Preferably there is.
  • the surface of primary or secondary particles of lithium titanate is at least one coating selected from inorganic compounds such as copper, tin, carbon, silica and alumina, and organic compounds such as surfactants and coupling agents. You may have. Alternatively, different elements other than titanium and lithium can be contained in the crystal lattice by doping, etc., as long as the crystal form is not inhibited.
  • the lithium titanate is used as a negative electrode active material, and the content of lithium titanate preferably occupies 1 to 100% by weight of the negative electrode active material, more preferably 50 to 100% by weight, particularly 80 to 100% by weight. It is preferable from the viewpoint of improving the stability of the negative electrode.
  • Examples of the negative electrode active material other than the lithium titanate include materials used as the negative electrode active material of the lithium ion secondary battery, such as artificial graphite and natural graphite. These may be used alone or in combination of two or more.
  • a binder such as styrene butadiene copolymer (SBR) or polyvinylidene fluoride (PVDF), a conductive auxiliary agent such as acetylene black, carboxymethyl cellulose (CMC) Etc.
  • SBR styrene butadiene copolymer
  • PVDF polyvinylidene fluoride
  • a conductive auxiliary agent such as acetylene black, carboxymethyl cellulose (CMC) Etc.
  • the content ratio of the negative electrode active material is preferably 40 to 95% by weight of the whole negative electrode from the viewpoint of improving the stability of the negative electrode, and more preferably 50 to 90% by weight.
  • the negative electrode is prepared by adding lithium titanate particles and, if necessary, a conductive additive, a binder, etc., and dispersing in a solvent such as N-methylpyrrolidone (NMP) to collect the resulting slurry. It is obtained by applying to the body, drying, and passing through a pressing process as necessary.
  • NMP N-methylpyrrolidone
  • ⁇ Current collector> examples of the material for the current collector include metal foils such as nickel, aluminum, stainless steel, and copper, and meshes. Note that the positive electrode current collector and the negative electrode current collector may be formed of the same material or different materials.
  • the electrolytic solution is composed of an electrolyte (supporting salt) and a solvent. And in the said electrolyte solution, the negative electrode film formation agent may be contained.
  • the negative electrode film forming agent is not necessary when the negative electrode active material is composed of lithium titanate alone. What is necessary is just to consider the mixing
  • the negative electrode film-forming agent refers to a substance that acts to form a film on the surface of the negative electrode at the time of initial charging, and in particular, reacts at the time of initial charging prior to a commonly used electrolyte solvent, Those having excellent properties of the film to be formed are preferably used.
  • vinylene carbonate and fluoroethylene carbonate are preferable because they have a higher film-forming property on the negative electrode, and thus can further suppress deterioration of battery performance.
  • Examples of the electrolyte constituting the electrolytic solution include metal ions such as lithium ions and appropriate counter ions corresponding thereto, such as sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions. , Hexafluoroarsenic ions, bis (trifluoromethanesulfonyl) imide ions, bis (pentafluoroethanesulfonyl) imide ions, halogen ions, and the like are preferably used.
  • an electrolyte examples include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCl. These may be used alone or in combination of two or more.
  • the electrolytic solution contains lithium hexafluorophosphate (LiPF 6 ) as a supporting salt because deterioration of battery performance can be further suppressed.
  • the solvent constituting the electrolytic solution for example, at least one non-aqueous solvent such as carbonates, nitriles, amides, ethers, that is, an organic solvent is used.
  • organic solvents include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, propionitrile, N, N'-dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethoxyethane, diethoxyethane, and ⁇ -butyrolactone. These may be used alone or in combination of two or more.
  • the electrolyte content in the electrolyte solution a normal amount is used as the electrolyte content of the non-aqueous electrolyte secondary battery. That is, the electrolyte content in the electrolytic solution is usually used in the concentration range of 0.1 to 2.5 mol / L, preferably 0.5 to 2.0 mol / L in the electrolytic solution. . If the amount of the electrolyte is too small, there is a tendency that a non-aqueous electrolyte secondary battery having excellent weight energy density cannot be obtained. On the other hand, if the amount of the electrolyte is too large, the viscosity of the electrolyte increases and the ionic conductivity decreases. As a result, the input / output characteristics tend to be degraded.
  • the separator can prevent an electrical short circuit between the positive electrode and the negative electrode arranged to face each other, Any insulating porous sheet that is electrochemically stable, has a large ion permeability, and has a certain degree of mechanical strength may be used. Accordingly, for example, a porous film made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used, and these may be used alone or in combination of two or more.
  • the method for producing a non-aqueous electrolyte secondary battery of the present invention using the above material is characterized by comprising the following steps (I) to (III).
  • steps (I) to (III) this manufacturing method will be described in detail.
  • (I) A step of preparing a positive electrode and a negative electrode, arranging a separator between the two, and producing a laminate composed of the positive electrode, the separator, and the negative electrode.
  • (II) A step of accommodating at least one of the laminates in a battery container.
  • III A step of injecting an electrolytic solution into the battery container.
  • lamination is performed so that a separator is disposed between the positive electrode and the negative electrode described above, thereby producing a laminate.
  • this laminate is placed in a battery container such as an aluminum laminate package and then vacuum dried.
  • an electrolytic solution is poured into the vacuum-dried battery container.
  • the package as the battery container is sealed to complete the non-aqueous electrolyte secondary battery (laminate cell) of the present invention.
  • the non-aqueous electrolyte secondary battery of the present invention is formed into various shapes such as a film type, a sheet type, a square type, a cylindrical type, and a button type in addition to the laminate cell.
  • the reaction mixture containing the produced reaction product was further stirred for 100 minutes while cooling. Then, using a Buchner funnel and a suction bottle, the obtained solid was No. Suction filtration was performed with two filter papers (manufactured by ADVANTEC) to obtain a powder. The powder was stirred and washed in an aqueous solution of about 2 mol / L tetrafluoroboric acid using a magnetic stirrer. Then, the mixture was washed with stirring several times with acetone and filtered under reduced pressure.
  • the obtained powder was vacuum-dried at room temperature (25 ° C.) for 10 hours to obtain 12.5 g of conductive polyaniline (conductive polymer (a)) having tetrafluoroboric acid as a dopant.
  • the conductive polyaniline was a bright green powder.
  • this dedope polyaniline powder was put into a methanol solution of phenylhydrazine and subjected to reduction treatment for 30 minutes with stirring. The color of the polyaniline powder changed from brown to gray by reduction. After the reaction, it was washed with methanol, washed with acetone, filtered, and vacuum dried at room temperature to obtain polyaniline in a reduced and dedoped state.
  • aqueous solution 192.63 g 7.37 g of lithium hydroxide powder in an amount capable of lithium chlorinating the total amount of carboxyl groups of polyacrylic acid was added, and an aqueous lithium salt solution of polyacrylic acid ( 200 g of a concentration of 12% by weight was prepared and prepared.
  • the solution coating thickness was adjusted to 360 ⁇ m, and the defoaming paste was applied at a coating speed of 10 mm / second. It apply
  • this positive electrode sheet is cut into a size of 35 mm ⁇ 27 mm, a part of the active material layer is removed so that the active material layer of the positive electrode sheet has an area of 27 mm ⁇ 27 mm, and a part of the active material layer
  • the portion from which this was removed was used as a tab electrode mounting location for current extraction, and an aluminum tab was mounted by spot welding to produce a sheet-shaped flag-type positive electrode.
  • separator a nonwoven fabric (manufactured by Nippon Kogyo Paper Industries, TF40-50, thickness 50 ⁇ m, porosity 70%) was used.
  • Lithium titanate manufactured by Ishihara Sangyo Co., Ltd., Enamite (registered trademark) LT series, LT-106) 15 g, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka black granular) 3.21 g, 11.1 28.96 g of N-methyl-2-pyrrolidone solution containing 18% by weight of polyvinylidene fluoride (Kureha, KF polymer # 1100) and 18 g of N-methyl-2-pyrrolidone were weighed and stirred using a stir bar. .
  • ultrasonic treatment was performed for 4 minutes with an ultrasonic homogenizer. Thereafter, the mixture was stirred for 30 seconds at a peripheral speed of 20 m / sec using a thin film swirl type high speed mixer (manufactured by Plymix Co., Ltd., Fillmix 40-40 type) to obtain a paste having fluidity. This paste was further subjected to stirring and defoaming operation for 3 minutes using a rotation and revolution vacuum mixer (manufactured by Shinky, Awatori Nertaro ARV-310).
  • this paste was applied on an etching aluminum foil having a thickness of 30 ⁇ m to a thickness of 250 ⁇ m using an automatic coating apparatus (PI-1210 manufactured by Tester Sangyo Co., Ltd.) and a film applicator with a micrometer (manufactured by Tester Sangyo Co., Ltd.). Worked. After drying at room temperature until fluidity disappeared, a heat drying treatment was performed at 120 ° C. for 30 minutes. Next, the sheet electrode thus obtained was further vacuum-dried at 80 ° C. for 3 hours. The weight of lithium titanate per unit area on the aluminum foil was 7.1 mg / cm 2 , and the thickness of the active material layer was 100 ⁇ m.
  • the negative electrode sheet is cut into a size of 35 mm ⁇ 29 mm, and a part of the active material layer is removed so that the active material layer of the negative electrode sheet has an area of 29 mm ⁇ 29 mm.
  • the portion from which the material layer was removed was used as a tab electrode attachment location for current extraction, and an aluminum tab was attached by spot welding to produce a sheet-like flag-type negative electrode 1.
  • negative electrode 2 As the negative electrode 2 for the comparative example, a negative electrode sheet (manufactured by Piotrec Co., 0.8 mAh / cm 2 ) containing natural spherical graphite (graphite) as a negative electrode active material was used. Next, a flag-type negative electrode 2 was produced in the same manner as the flag-type negative electrode 1 except that a nickel tab was used as the current extraction tab electrode.
  • electrolyte solution i lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 2 mol / L in a solvent (EC2DMC) containing ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2. I prepared what I was allowed to do.
  • EC2DMC ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • EC2DMC ethylene carbonate
  • DMC dimethyl carbonate
  • VC vinylene carbonate
  • Example 1 ⁇ Production of laminate cell> A laminate was assembled using the flag-type positive electrode, the flag-type negative electrode 1 and the separator. Specifically, the flag-type positive electrode and the separator were first vacuum-dried at 150 ° C. for 2 hours in a vacuum dryer. Next, the flag-type negative electrode 1 was vacuum-dried at 80 ° C. for 2 hours in a vacuum dryer. Next, the dried flag-type positive electrode, separator, and flag-type negative electrode 1 were placed in a glove box controlled at a dew point of ⁇ 70 ° C. or lower. Next, it laminated
  • Example 1 After putting the laminate in an aluminum laminate package, an electrolyte solution i was injected. Finally, the current extraction tab was exposed to the outside, the package was sealed, and the nonaqueous electrolyte secondary battery (laminate cell) of Example 1 was obtained.
  • Example 1 the nonaqueous electrolyte secondary battery of Comparative Example 1 was completely the same except that the upper limit voltage for charging was 3.8 V and the lower limit voltage for discharging was 2.0 V in the measurement of the initial discharge capacity at 25 ° C. described above. Similarly, the initial discharge capacity was measured. The obtained results are shown in Table 2.
  • the voltage at the upper and lower limits of charge / discharge is different from the operating potential of the negative electrode, in which lithium titanate is about 1.5 V on the lithium potential basis, whereas graphite This is because it was changed in consideration of the fact that it is around 0 V on the basis of the lithium potential.
  • 0.05 C indicates a 20 hour rate
  • the 20 hour rate means a current value that requires 20 hours to charge or discharge a battery.
  • the battery is charged to 2.3V with a current value equivalent to 1C, and after reaching 2.3V, the battery is charged with a constant voltage of 2.3V until the current value is attenuated to 20% equivalent to 1C.
  • the current value corresponding to 1 C is discharged to 55% of the initial discharge capacity at 25 ° C. to adjust the state of charge of the battery.
  • the charge value corresponding to 10% of the initial discharge capacity at 25 ° C. is the current value corresponding to 10 C.
  • Discharge capacity measurement at a current value equivalent to 0.2 C (the same method as the initial capacity measurement at the start of a 60 ° C. cycle test), and repeat the procedures (1) to (4) above.
  • the discharge capacity at a current value corresponding to 0.2 C was measured every 1000 cycles. Then, when the initial discharge capacity at the start of the 60 ° C. cycle test is 100%, the remaining ratio of these discharge capacities is defined as the discharge capacity retention rate (%), and the result is shown in FIG.
  • Example 1 using lithium titanate as the negative electrode showed the same excellent discharge capacity density, although it was slightly inferior to that of Comparative Example 1 of the graphite negative electrode. .
  • the capacity density significantly decreases with an increase in the number of cycles, and the discharge capacity retention rate decreases to about 20% after 6000 cycles.
  • the non-aqueous electrolyte secondary battery of Example 1 can suppress the decrease in capacity density even when the number of cycles increases, and the discharge capacity maintenance rate is about 80%, and has excellent cycle characteristics.
  • the use of the negative electrode film forming agent shows a large improvement tendency in the stabilization of the negative electrode in the case of the graphite negative electrode as in Comparative Example 1, but in the case of the lithium titanate negative electrode in Example 1, the negative electrode It has been found that a nonaqueous electrolyte secondary battery that effectively suppresses deterioration of battery performance and has excellent cycle characteristics can be obtained without using a film forming agent.
  • the nonaqueous electrolyte secondary battery of the present invention can be suitably used as a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the non-aqueous electrolyte secondary battery of the present invention can be used for the same applications as conventional secondary batteries.
  • portable electronic devices such as portable PCs, cellular phones, and personal digital assistants (PDAs), Widely used in driving power sources for hybrid electric vehicles, electric vehicles, fuel cell vehicles and the like.

Abstract

 In order to provide a non-aqueous electrolyte secondary cell in which any deterioration in cell performance is effectively suppressed and excellent cycle characteristics are demonstrated, this invention is a non-aqueous electrolyte secondary cell having an electrolyte layer and a positive electrode and a negative electrode provided so as to face each other with the electrolyte layer interposed therebetween, wherein the positive electrode contains (a) an electroconductive polymer and (b) a polycarboxylic acid and/or a metal salt thereof, and the negative electrode contains lithium titanate.

Description

非水電解液二次電池Non-aqueous electrolyte secondary battery
 本発明は、電池性能の劣化を効果的に抑制し、サイクル特性に優れる非水電解液二次電池に関するものである。 The present invention relates to a non-aqueous electrolyte secondary battery that effectively suppresses deterioration of battery performance and has excellent cycle characteristics.
 近年、携帯型PC、携帯電話、携帯情報端末(PDA)等における電子技術の進歩、発展に伴い、これら電子機器の蓄電デバイスとして、繰り返し充放電することができる二次電池等が広く用いられている。 In recent years, with the advancement and development of electronic technology in portable PCs, mobile phones, personal digital assistants (PDAs), secondary batteries that can be repeatedly charged and discharged are widely used as power storage devices for these electronic devices. Yes.
 二次電池のなかでも、電極活物質として正極にマンガン酸リチウムやコバルト酸リチウムのようなリチウム含有遷移金属酸化物を用い、負極にリチウムイオンを挿入・脱離し得る炭素質材料を用いる二次電池は、その充放電時に電解液中のリチウムイオン濃度が実質的に変化しない所謂ロッキングチェア型のリチウムイオン二次電池として、広く用いられている。このロッキングチェア型の二次電池は、所謂リザーブ型の二次電池に比べて、電解液量を低減することができることから小型化が可能になり、また小型でありながらも高エネルギー密度を有することから、上述した電子機器の蓄電デバイスとして広く用いられている。 Among secondary batteries, a secondary battery that uses a lithium-containing transition metal oxide such as lithium manganate or lithium cobaltate as an electrode active material and a carbonaceous material that can insert and desorb lithium ions as a negative electrode. Is widely used as a so-called rocking chair type lithium ion secondary battery in which the lithium ion concentration in the electrolyte does not substantially change during charging and discharging. This rocking chair type secondary battery can reduce the amount of electrolyte compared to the so-called reserve type secondary battery, and can be downsized, and has a high energy density while being small. Therefore, it is widely used as an electricity storage device for the above-described electronic equipment.
 しかし、上記リチウムイオン二次電池は、電気化学反応によって電気エネルギーを得る二次電池であって、上記電気化学反応の速度が小さいために、出入力密度が低いという欠点がある。さらに、二次電池の内部抵抗が高いため、急速な放電は困難であるとともに、急速な充電も困難となっている。また、充放電に伴う電気化学反応によって電極や電解液が劣化するため、一般に寿命、すなわち、サイクル特性もよくない。 However, the lithium ion secondary battery is a secondary battery that obtains electric energy by an electrochemical reaction, and has a drawback that the input / output density is low because the speed of the electrochemical reaction is low. Furthermore, since the internal resistance of the secondary battery is high, rapid discharge is difficult and rapid charge is also difficult. Moreover, since an electrode and electrolyte solution deteriorate by the electrochemical reaction accompanying charging / discharging, generally a lifetime, ie, a cycling characteristic, is not good.
 そこで、上記の問題を改善するため、ドーパントを有するポリアニリンのような導電性ポリマーを正極活物質に用いる非水電解液二次電池も知られている(特許文献1)。しかしながら、一般に、導電性ポリマーを正極活物質として有する二次電池は、充電時には正極のポリマーにアニオンがドープされ、放電時にはそのアニオンが正極のポリマーから脱ドープされるアニオン移動型であるため、前述したようなロッキングチェア型の二次電池を構成することができない。したがって、導電性ポリマーを正極活物質に用いた非水電解液二次電池は、基本的に多量の電解液を必要とし、結果、電池の小型化に寄与することができないという問題がある。 Therefore, in order to improve the above problem, a non-aqueous electrolyte secondary battery using a conductive polymer such as polyaniline having a dopant as a positive electrode active material is also known (Patent Document 1). However, in general, a secondary battery having a conductive polymer as a positive electrode active material is an anion transfer type in which an anion is doped into a positive electrode polymer during charging and the anion is dedoped from the positive electrode polymer during discharge. Such a rocking chair type secondary battery cannot be constructed. Therefore, a non-aqueous electrolyte secondary battery using a conductive polymer as a positive electrode active material basically requires a large amount of electrolyte, resulting in a problem that it cannot contribute to battery size reduction.
 このような問題を解決するために、正極に、ポリビニルスルホン酸のようなポリマーアニオンをドーパントとして有する導電性ポリマーを用いて、カチオン移動型とし、電解液中のイオン濃度が実質的に変化しないようにした二次電池も提案されている(特許文献2参照)。 In order to solve such a problem, a conductive polymer having a polymer anion such as polyvinyl sulfonic acid as a dopant is used for the positive electrode to be a cation transfer type so that the ion concentration in the electrolytic solution does not substantially change. A secondary battery is also proposed (see Patent Document 2).
特開平3-129679号公報JP-A-3-129679 特開平1-132052号公報Japanese Patent Laid-Open No. 1-132052
 しかしながら、上記特許文献2の二次電池は、まだまだサイクル特性を満足するものではない。そこで、本発明者らは、サイクル特性の観点から、負極にリチウムイオンを挿入・脱離し得る炭素質材料を用いた非水電解液二次電池に関する各種研究・実験を予てから行っており、その過程において、上記構造の非水電解液二次電池において問題となっている電池性能の改善に努めてきた。 However, the secondary battery disclosed in Patent Document 2 still does not satisfy the cycle characteristics. Therefore, the present inventors have conducted various researches and experiments on non-aqueous electrolyte secondary batteries using a carbonaceous material capable of inserting and desorbing lithium ions from the negative electrode from the viewpoint of cycle characteristics. Therefore, efforts have been made to improve battery performance, which is a problem in the non-aqueous electrolyte secondary battery having the above structure.
 本発明は、このような事情に鑑みなされたもので、正極に導電性ポリマーを用いた非水電解液二次電池であって、電池性能の劣化を効果的に抑制し、サイクル特性に優れる非水電解液二次電池を提供する。 The present invention has been made in view of such circumstances, and is a nonaqueous electrolyte secondary battery using a conductive polymer for a positive electrode, which effectively suppresses deterioration of battery performance and has excellent cycle characteristics. A water electrolyte secondary battery is provided.
 すなわち、本発明は、電解質層と、これを挟んで対向して設けられた正極と負極を有する非水電解液二次電池であって、正極が、導電性ポリマー(a)と、ポリカルボン酸およびその金属塩の少なくとも一方(b)とを含み、負極がチタン酸リチウムを含む非水電解液二次電池を要旨とする。 That is, the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer, a positive electrode and a negative electrode provided opposite to each other, the positive electrode comprising a conductive polymer (a), a polycarboxylic acid And a non-aqueous electrolyte secondary battery including at least one of the metal salts (b) and the negative electrode containing lithium titanate.
 本発明者らは、電池性能の劣化がなく、サイクル特性に優れる蓄電デバイスを得るため、鋭意検討を重ねた。正極に導電性ポリマーを用いた非水電解液二次電池において、安全性やサイクル特性の観点から使用が望まれている一般的な炭素質材料(例えば、黒鉛)は、電解液などとの反応により炭素質材料表面で副反応が生じ、負極が不安定となる結果、高温におけるサイクル特性の劣化が生じるという知見を得た。そこで、本発明者らは、導電性ポリマーを含む正極の構成を有する非水電解液二次電池において、電池性能の劣化を解決するため鋭意研究し、負極に被膜を形成して電解液との副反応を防止したり、正極材料と負極材料との組合せに着目したり多岐にわたる研究を重ねた結果、上記チタン酸リチウムを含む負極が、導電性ポリマーを含む正極との組合せで安定化することを見出した。 The inventors of the present invention have made extensive studies in order to obtain an electricity storage device having no deterioration in battery performance and excellent cycle characteristics. In a non-aqueous electrolyte secondary battery using a conductive polymer for the positive electrode, a general carbonaceous material (for example, graphite) that is desired to be used from the viewpoint of safety and cycle characteristics is a reaction with an electrolyte. As a result, a side reaction occurred on the surface of the carbonaceous material and the negative electrode became unstable, resulting in the deterioration of cycle characteristics at high temperatures. In view of this, the present inventors have conducted intensive research in order to solve battery performance degradation in a non-aqueous electrolyte secondary battery having a positive electrode configuration containing a conductive polymer, and formed a coating film on the negative electrode to As a result of preventing side reactions, focusing on the combination of the positive electrode material and the negative electrode material, and conducting extensive research, the negative electrode containing lithium titanate is stabilized in combination with the positive electrode containing a conductive polymer. I found.
 このように、本発明の非水電解液二次電池は、電解質層と、これを挟んで対向して設けられた正極と負極を有する非水電解液二次電池であって、正極が、導電性ポリマー(a)と、ポリカルボン酸およびその金属塩の少なくとも一方(b)とを含み、負極がチタン酸リチウムを含む。したがって、電池性能の劣化を効果的に抑制するとともにサイクル特性に優れるようになる。 As described above, the non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer and a positive electrode and a negative electrode provided to face each other, and the positive electrode is electrically conductive. The conductive polymer (a) and at least one of the polycarboxylic acid and its metal salt (b) are included, and the negative electrode includes lithium titanate. Therefore, the deterioration of the battery performance is effectively suppressed and the cycle characteristics are excellent.
 また、上記導電性ポリマー(a)が、ポリアニリンおよびポリアニリン誘導体の少なくとも一方であると、重量エネルギー密度等の電池性能の一層の向上が得られるようになる。 Further, when the conductive polymer (a) is at least one of polyaniline and a polyaniline derivative, battery performance such as weight energy density can be further improved.
 そして、上記(b)のポリカルボン酸が、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、カルボキシルメチルセルロース、およびこれらポリマーの繰り返し単位の少なくとも1種を含む共重合体から選ばれる少なくとも1種であると、さらなる重量エネルギー密度等の電池性能の向上が得られるようになる。 And the polycarboxylic acid of (b) is polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, In addition, when it is at least one selected from a copolymer containing at least one repeating unit of these polymers, further improvements in battery performance such as weight energy density can be obtained.
実施例1および比較例1の各非水電解液二次電池において、60℃における放電容量維持率のサイクル特性を示すグラフ図である。縦軸を放電容量維持率(%)および横軸をサイクル数とする。In each nonaqueous electrolyte secondary battery of Example 1 and Comparative Example 1, it is a graph which shows the cycle characteristic of the discharge capacity maintenance factor in 60 degreeC. The vertical axis represents the discharge capacity retention rate (%) and the horizontal axis represents the number of cycles.
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する説明は、本発明の実施態様の一例であり、本発明は、以下の内容に限定されない。 Hereinafter, embodiments of the present invention will be described in detail. However, the description described below is an example of embodiments of the present invention, and the present invention is not limited to the following contents.
 本発明の非水電解液二次電池は、電解質層と、これを挟んで対向して設けられた正極と負極を有する非水電解液二次電池であって、正極が、導電性ポリマー(a)と、ポリカルボン酸およびその金属塩の少なくとも一方(b)とを含み、負極がチタン酸リチウムを含むことを特徴とする。 The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery having an electrolyte layer, and a positive electrode and a negative electrode provided to face each other, and the positive electrode is made of a conductive polymer (a ) And at least one of a polycarboxylic acid and a metal salt thereof (b), and the negative electrode contains lithium titanate.
 以下、上記各部材および使用材料等について順を追って説明する。 Hereinafter, the above-described members and materials used will be described in order.
<正極について>
〔導電性ポリマー(a)〕
 上記のように、本発明の非水電解液二次電池の正極は、導電性ポリマー(a)を含有する。本発明における導電性ポリマー(a)とは、ポリマー主鎖の酸化反応または還元反応によって生成し、または消失する電荷の変化を補償するために、イオン種がポリマーに挿入し、またはポリマーから脱離することによって、ポリマー自身の導電性が変化する一群のポリマーをいう。
<About positive electrode>
[Conductive polymer (a)]
As described above, the positive electrode of the nonaqueous electrolyte secondary battery of the present invention contains the conductive polymer (a). In the present invention, the conductive polymer (a) means that an ionic species is inserted into or desorbed from the polymer in order to compensate for a change in charge generated or lost by an oxidation reaction or reduction reaction of the polymer main chain. A group of polymers in which the conductivity of the polymer itself changes.
 このようなポリマーにおいて、導電性が高い状態をドープ状態といい、低い状態を脱ドープ状態という。導電性を有するポリマーが酸化反応または還元反応によって導電性を失い、絶縁性(すなわち、脱ドープ状態)となっても、そのようなポリマーは、酸化還元反応によって再度、可逆的に導電性を有することができるので、このように脱ドープ状態にある絶縁性のポリマーも、本発明においては、導電性ポリマー(a)の範疇に入れることとする。 In such a polymer, a state with high conductivity is referred to as a doped state, and a state with low conductivity is referred to as a dedope state. Even if a polymer having conductivity loses conductivity by an oxidation reaction or a reduction reaction and becomes insulative (that is, in a dedoped state), such a polymer is reversibly conductive again by the oxidation-reduction reaction. Therefore, the insulating polymer in such a dedope state is also included in the category of the conductive polymer (a) in the present invention.
 また、好ましい本発明の導電性ポリマー(a)の1つとしては、無機酸アニオン、脂肪酸スルホン酸アニオン、芳香族スルホン酸アニオン、ポリマースルホン酸アニオンおよびポリビニル硫酸アニオンからなる群から選ばれた少なくとも1つのプロトン酸アニオンをドーパントとして有するポリマーである。また、本発明において好ましい別の導電性ポリマーとしては、上記導電性ポリマーを脱ドープした脱ドープ状態のポリマーである。 Further, one of the preferred conductive polymers (a) of the present invention is at least one selected from the group consisting of an inorganic acid anion, a fatty acid sulfonate anion, an aromatic sulfonate anion, a polymer sulfonate anion and a polyvinyl sulfate anion. A polymer having two protonic acid anions as dopants. Further, another conductive polymer preferable in the present invention is a polymer in a dedope state obtained by dedoping the conductive polymer.
 上記導電性ポリマー(a)の具体例としては、例えば、ポリアセチレン、ポリピロール、ポリアニリン、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリアズレン、ポリ(3,4-エチレンジオキシチオフェン)等や、これらの種々の誘導体があげられる。なかでも、電気化学的容量の大きなポリアニリンおよびポリアニリン誘導体が好ましく用いられる。 Specific examples of the conductive polymer (a) include, for example, polyacetylene, polypyrrole, polyaniline, polythiophene, polyfuran, polyselenophene, polyisothianaphthene, polyphenylene sulfide, polyphenylene oxide, polyazulene, poly (3,4-ethylenediethylene). Oxythiophene) and the like and various derivatives thereof. Of these, polyaniline and polyaniline derivatives having a large electrochemical capacity are preferably used.
 本発明において、上記ポリアニリンとは、アニリンを電解重合させ、または化学酸化重合させて得られるポリマーをいい、ポリアニリンの誘導体とは、例えば、アニリンの誘導体を電解重合させ、または化学酸化重合させて得られるポリマーをいう。 In the present invention, the polyaniline means a polymer obtained by electrolytic polymerization or chemical oxidative polymerization of aniline, and the polyaniline derivative is obtained by electrolytic polymerization or chemical oxidative polymerization of an aniline derivative, for example. Refers to the polymer produced.
 ここでアニリンの誘導体としてより詳しくは、アニリンの4位以外の位置にアルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、アルキルアリール基、アリールアルキル基、アルコキシアルキル基等の置換基を少なくとも1つ有するものを例示することができる。好ましい具体例としては、例えば、o-メチルアニリン、o-エチルアニリン、o-フェニルアニリン、o-メトキシアニリン、o-エトキシアニリン等のo-置換アニリン、m-メチルアニリン、m-エチルアニリン、m-メトキシアニリン、m-エトキシアニリン、m-フェニルアニリン等のm-置換アニリンがあげられる。これらは単独でもしくは2種以上併せて用いられる。また本発明においては、4位に置換基を有するものでも、p-フェニルアミノアニリンは、酸化重合によってポリアニリンが得られるので、アニリン誘導体として好適に用いることができる。 More specifically, as a derivative of aniline, a substituent such as an alkyl group, an alkenyl group, an alkoxy group, an aryl group, an aryloxy group, an alkylaryl group, an arylalkyl group, or an alkoxyalkyl group is provided at a position other than the 4-position of aniline. What has at least one can be illustrated. Preferred examples include, for example, o-substituted anilines such as o-methylaniline, o-ethylaniline, o-phenylaniline, o-methoxyaniline, o-ethoxyaniline, m-methylaniline, m-ethylaniline, m And m-substituted anilines such as -methoxyaniline, m-ethoxyaniline, m-phenylaniline and the like. These may be used alone or in combination of two or more. In the present invention, p-phenylaminoaniline having a substituent at the 4-position can be suitably used as an aniline derivative because polyaniline is obtained by oxidative polymerization.
 以下、本発明において、「アニリンまたはその誘導体」を単に「アニリン」ということがあり、また、「ポリアニリンおよびポリアニリン誘導体の少なくとも一方」を単に「ポリアニリン」ということがある。したがって、導電性ポリマーを構成するポリマーがアニリン誘導体から得られる場合であっても、「導電性ポリアニリン」ということがある。 Hereinafter, in the present invention, “aniline or a derivative thereof” may be simply referred to as “aniline”, and “at least one of polyaniline and polyaniline derivatives” may be simply referred to as “polyaniline”. Therefore, even when the polymer constituting the conductive polymer is obtained from an aniline derivative, it may be referred to as “conductive polyaniline”.
 また、本発明の非水電解液二次電池に係る正極では、上記導電性ポリマー(a)に加え、さらに窒素を有することが好ましい。ここで、「窒素を有する」とは、導電性ポリマーの分子構造中にN原子を備えている場合だけでなく、別途、窒素源となるものを材料中に加える場合も含む意味である。上記のように、正極材料に窒素を含有することにより、電解液中に生成する酸などを正極材料がより効果的に吸着するようになる。 In addition, the positive electrode according to the nonaqueous electrolyte secondary battery of the present invention preferably further contains nitrogen in addition to the conductive polymer (a). Here, “having nitrogen” means not only when the molecular structure of the conductive polymer has an N atom, but also when adding a nitrogen source separately to the material. As described above, by containing nitrogen in the positive electrode material, the positive electrode material can more effectively adsorb acid generated in the electrolytic solution.
 また一方、正極では、さらにポリカルボン酸およびポリカルボン酸金属塩の少なくとも一方(b)を有する。以下、(b)成分について説明する。 On the other hand, the positive electrode further has at least one (b) of polycarboxylic acid and polycarboxylic acid metal salt. Hereinafter, the component (b) will be described.
〔ポリカルボン酸およびポリカルボン酸金属塩の少なくとも一方(b)について〕
 本発明において、上記ポリカルボン酸とは、分子中にカルボキシル基を有するポリマーをいう。上記ポリカルボン酸としては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、カルボキシルメチルセルロース、およびこれらポリマーの繰り返し単位の少なくとも1種を含む共重合体等が好ましく用いられ、なかでもポリアクリル酸およびポリメタクリル酸がより好ましく用いられる。これらは単独でもしくは2種以上併せて用いられる。
[About at least one of polycarboxylic acid and metal salt of polycarboxylic acid (b)]
In the present invention, the polycarboxylic acid refers to a polymer having a carboxyl group in the molecule. Examples of the polycarboxylic acid include polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, and polymers thereof. A copolymer containing at least one of these repeating units is preferably used, and polyacrylic acid and polymethacrylic acid are more preferably used. These may be used alone or in combination of two or more.
 また、上記ポリカルボン酸金属塩は、例えば、アルカリ金属塩、アルカリ土類金属塩をいい、これらは単独でもしくは2種以上併せて用いられる。アルカリ金属塩は、好ましくは、リチウム塩やナトリウム塩であり、上記アルカリ土類金属塩は、好ましくは、マグネシウム塩やカルシウム塩である。 The polycarboxylic acid metal salt is, for example, an alkali metal salt or an alkaline earth metal salt, and these may be used alone or in combination of two or more. The alkali metal salt is preferably a lithium salt or a sodium salt, and the alkaline earth metal salt is preferably a magnesium salt or a calcium salt.
〔正極の外形について〕
 本発明の非水電解液二次電池に係る正極は、少なくとも上記導電性ポリマー(a)と、上記(b)成分とからなる複合体からなり、好ましくは多孔質シートに形成される。通常正極の厚みは、1~500μmであることが好ましく、10~300μmであることがさらに好ましい。
[About the external shape of the positive electrode]
The positive electrode according to the nonaqueous electrolyte secondary battery of the present invention is composed of a composite comprising at least the conductive polymer (a) and the component (b), and is preferably formed on a porous sheet. Usually, the thickness of the positive electrode is preferably 1 to 500 μm, more preferably 10 to 300 μm.
 上記正極の厚みは、正極を先端形状が直径5mmの平板であるダイヤルゲージ(尾崎製作所社製)を用いて測定し、電極の面に対して10点の測定値の平均をもとめることにより得られる。集電体上に正極(多孔質層)が設けられ複合化している場合には、その複合化物の厚みを、上記と同様に測定し、測定値の平均をもとめ、集電体の厚みを差し引いて計算することにより正極の厚みが得られる。 The thickness of the positive electrode is obtained by measuring the positive electrode using a dial gauge (manufactured by Ozaki Mfg. Co., Ltd.) whose tip shape is a flat plate having a diameter of 5 mm, and obtaining the average of 10 measured values with respect to the surface of the electrode. . When a positive electrode (porous layer) is provided on the current collector and is composited, the thickness of the composite is measured in the same manner as described above, the average of the measured values is obtained, and the thickness of the current collector is subtracted. Thus, the thickness of the positive electrode can be obtained.
〔正極の作製について〕
 本発明の非水電解液二次電池に係る正極は、例えば、次のようにして作製される。例えば、前記(b)成分を水に溶解させ、または分散させ、これに導電性ポリマー(a)粉末と、必要に応じて、導電性カーボンブラックのような導電助剤を加え、これを充分に分散させて、溶液粘度が0.1~50Pa・s程度であるペーストを調製する。これを集電体上に塗布した後、水を蒸発させることによって、集電体上に上記導電性ポリマー(a)と、前記(b)成分と、必要に応じて導電助剤を含有する正極活物質含有層を有する多孔質複合体としてシート電極を得ることができる。
[Production of positive electrode]
The positive electrode according to the nonaqueous electrolyte secondary battery of the present invention is produced, for example, as follows. For example, the component (b) is dissolved or dispersed in water, and a conductive polymer (a) powder and, if necessary, a conductive assistant such as conductive carbon black are added thereto. Disperse to prepare a paste having a solution viscosity of about 0.1 to 50 Pa · s. The positive electrode containing the conductive polymer (a), the component (b), and, if necessary, a conductive auxiliary agent on the current collector by evaporating water after coating this on the current collector A sheet electrode can be obtained as a porous composite having an active material-containing layer.
 上記導電助剤は、導電性に優れるとともに、電池の活物質間の電気抵抗を低減するために有効であり、さらに、電池の放電時に印加する電位によって性状の変化しない導電性材料であることが望ましい。通常、導電性カーボンブラック、例えば、アセチレンブラック、ケッチェンブラック等や、炭素繊維、カーボンナノチューブ等の繊維状炭素材料が用いられる。 The conductive auxiliary agent is excellent in conductivity, is effective for reducing electrical resistance between battery active materials, and is a conductive material whose properties do not change depending on the potential applied during battery discharge. desirable. Usually, conductive carbon black, for example, acetylene black, ketjen black and the like, and fibrous carbon materials such as carbon fiber and carbon nanotube are used.
 本発明の非水電解液二次電池に係る正極の形成材料において、前記(b)成分は、導電性ポリマー(a)100重量部に対して、通常、1~100重量部、好ましくは、2~70重量部、最も好ましくは、5~40重量部の範囲で用いられる。すなわち、上記導電性ポリマー(a)に対する前記(b)成分の量が少な過ぎると、エネルギー密度に優れる非水電解液二次電池を得ることができない傾向にあり、逆に、前記(b)成分の量が多過ぎると、正極活物質以外の部材重量が増大することによる正極重量の増大によって、電池全体の重量を考慮した時、高エネルギー密度の非水電解液二次電池を得ることができない傾向にあるからである。 In the positive electrode forming material according to the nonaqueous electrolyte secondary battery of the present invention, the component (b) is usually 1 to 100 parts by weight, preferably 2 parts per 100 parts by weight of the conductive polymer (a). It is used in the range of -70 parts by weight, most preferably in the range of 5-40 parts by weight. That is, if the amount of the component (b) relative to the conductive polymer (a) is too small, a non-aqueous electrolyte secondary battery excellent in energy density tends not to be obtained. Conversely, the component (b) If the amount of the material is too large, the weight of the positive electrode due to an increase in the weight of the member other than the positive electrode active material increases, so that when considering the weight of the entire battery, a high-energy density non-aqueous electrolyte secondary battery cannot be obtained. This is because there is a tendency.
<負極について>
 本発明の非水電解液二次電池に係る負極としては、チタン酸リチウムを含む材料から構成される。
<About negative electrode>
The negative electrode according to the nonaqueous electrolyte secondary battery of the present invention is composed of a material containing lithium titanate.
 上記チタン酸リチウムは、一般式LiXTiY4で表される化合物であり、ここでX,Yは正数を示す。このようなチタン酸リチウムとしては、例えば、Li2.67Ti1.334、LiTi24、Li1.33Ti1.674、Li1.14Ti1.714等があげられる。このチタン酸リチウムは一般に粒子状であり、これを得るには、酸化チタンとリチウム化合物との混合物を700~1600℃の温度で加熱焼成する方法、媒液中でチタン酸リチウム水和物を生成した後、200~1300℃で焼成する方法、チタン酸化合物とリチウム化合物とを含むスラリーを噴霧乾燥した後、加熱焼成する方法等があげられる。 The lithium titanate is a compound represented by the general formula Li X Ti Y O 4 , where X and Y are positive numbers. Examples of such lithium titanate include Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 , Li 1.14 Ti 1.71 O 4, and the like. This lithium titanate is generally in the form of particles, and in order to obtain this, a method of heating and baking a mixture of titanium oxide and a lithium compound at a temperature of 700 to 1600 ° C., producing lithium titanate hydrate in a liquid medium Thereafter, a method of firing at 200 to 1300 ° C., a method of spray-drying a slurry containing a titanate compound and a lithium compound, and a method of heating and firing are exemplified.
 また、このようなチタン酸リチウムとしては、上記製法により得られたものの他、各種市販品を用いることができる。例えば、エナマイト(登録商標)LTシリーズ(石原産業社製)等があげられる。 Moreover, as such lithium titanate, various commercially available products can be used in addition to those obtained by the above-mentioned production method. For example, Enamite (registered trademark) LT series (manufactured by Ishihara Sangyo Co., Ltd.) can be used.
 粒子形状は、球状、多面体状等の等方性形状、棒状、板状等の異方性形状、不定形状等、特に制限は無い。このものの一次粒子を集合させて二次粒子とすると、流動性、付着性、充填性等の粉体特性が向上し、サイクル特性等の電池特性も改良されるので好ましい。本発明における二次粒子とは、一次粒子同士が強固に結合した状態にあり、通常の混合、粉砕、濾過、水洗、搬送、秤量、袋詰め、堆積等の工業的操作では容易に崩壊せず、ほとんどが二次粒子として残るものである。 The particle shape is not particularly limited, such as an isotropic shape such as a spherical shape or a polyhedron shape, an anisotropic shape such as a rod shape or a plate shape, or an indefinite shape. It is preferable to aggregate the primary particles to form secondary particles because powder characteristics such as fluidity, adhesion, and filling properties are improved, and battery characteristics such as cycle characteristics are also improved. The secondary particles in the present invention are in a state in which the primary particles are firmly bonded to each other, and are not easily disintegrated by industrial operations such as normal mixing, pulverization, filtration, washing, transport, weighing, bagging, and deposition. Most of them remain as secondary particles.
 二次粒子の比表面積(N2吸着によるBET法)は、0.1~100m2/gの範囲が好ましく、1~20m2/gの範囲が更に好ましい。また、二次粒子のタップ密度は、電池容量の点から、0.5~2.5g/cm3の範囲が好ましく、さらに、嵩密度は、0.4~2.0g/cm3の範囲であることが好ましい。 The specific surface area of the secondary particles (BET method by N 2 adsorption) is preferably in the range of 0.1 to 100 m 2 / g, and more preferably in the range of 1 to 20 m 2 / g. The tap density of the secondary particles is preferably in the range of 0.5 to 2.5 g / cm 3 from the viewpoint of battery capacity, and the bulk density is in the range of 0.4 to 2.0 g / cm 3 . Preferably there is.
 チタン酸リチウムの一次粒子あるいは二次粒子の粒子表面には、銅やスズ、炭素や、シリカ、アルミナ等の無機化合物、界面活性剤、カップリング剤等の有機化合物から選ばれる少なくとも1種の被覆を有していても良い。あるいは、チタン、リチウム以外の異種元素を、前記の結晶形を阻害しない範囲で、その結晶格子中にドープさせるなどして含有させることもできる。 The surface of primary or secondary particles of lithium titanate is at least one coating selected from inorganic compounds such as copper, tin, carbon, silica and alumina, and organic compounds such as surfactants and coupling agents. You may have. Alternatively, different elements other than titanium and lithium can be contained in the crystal lattice by doping, etc., as long as the crystal form is not inhibited.
 上記チタン酸リチウムは負極活物質として用いられ、チタン酸リチウムの含有割合は負極活物質の1~100重量%を占めることが好ましく、さらに好ましくは50~100重量%、特に80~100重量%であることが負極の安定性を向上する点から好ましい。 The lithium titanate is used as a negative electrode active material, and the content of lithium titanate preferably occupies 1 to 100% by weight of the negative electrode active material, more preferably 50 to 100% by weight, particularly 80 to 100% by weight. It is preferable from the viewpoint of improving the stability of the negative electrode.
 上記チタン酸リチウム以外の負極活物質としては、リチウムイオン二次電池の負極活物質として用いられている材料、例えば、人造黒鉛、天然黒鉛等があげられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the negative electrode active material other than the lithium titanate include materials used as the negative electrode active material of the lithium ion secondary battery, such as artificial graphite and natural graphite. These may be used alone or in combination of two or more.
 また、負極には、上記負極活物質に加え、必要に応じて、スチレンブタジエン共重合体(SBR),ポリフッ化ビニリデン(PVDF)等のバインダー、アセチレンブラック等の導電助剤、カルボキシルメチルセルロース(CMC)等の配合剤等を適宜加えることができる。 For the negative electrode, in addition to the negative electrode active material, if necessary, a binder such as styrene butadiene copolymer (SBR) or polyvinylidene fluoride (PVDF), a conductive auxiliary agent such as acetylene black, carboxymethyl cellulose (CMC) Etc. can be added as appropriate.
 上記負極活物質の含有割合は負極全体の40~95重量%であることが負極安定性向上の観点から好ましく、さらに50~90重量%であることが好ましい。 The content ratio of the negative electrode active material is preferably 40 to 95% by weight of the whole negative electrode from the viewpoint of improving the stability of the negative electrode, and more preferably 50 to 90% by weight.
 上記負極は、チタン酸リチウム粒子と、必要に応じて導電助剤、バインダー等を加えて、N-メチルピロリドン(NMP)等の溶媒に分散してスラリーを調製し、得られたスラリーを集電体に塗布し、乾燥し、必要に応じてプレス工程を経ることにより得られる。 The negative electrode is prepared by adding lithium titanate particles and, if necessary, a conductive additive, a binder, etc., and dispersing in a solvent such as N-methylpyrrolidone (NMP) to collect the resulting slurry. It is obtained by applying to the body, drying, and passing through a pressing process as necessary.
<集電体>
 上記集電体の材料としては、例えば、ニッケル、アルミ、ステンレス、銅等の金属箔や、メッシュ等があげられる。なお、正極集電体と負極集電体とは、同じ材料で構成されていても、異なる材料で構成されていても差し支えない。
<Current collector>
Examples of the material for the current collector include metal foils such as nickel, aluminum, stainless steel, and copper, and meshes. Note that the positive electrode current collector and the negative electrode current collector may be formed of the same material or different materials.
<電解液について>
 上記電解液は、電解質(支持塩)と溶媒とを含有するものから構成される。そして、上記電解液中には、負極被膜形成剤を含有していてもよい。しかし、負極活物質のチタン酸リチウムには負極上での副反応が起こりにくい傾向にあるため、チタン酸リチウム単独で負極活物質を構成する場合には、負極被膜形成剤は不要である。チタン酸リチウム以外の負極活物質を併用する場合に、負極被膜形成剤の配合を検討すればよい。
<About electrolyte>
The electrolytic solution is composed of an electrolyte (supporting salt) and a solvent. And in the said electrolyte solution, the negative electrode film formation agent may be contained. However, since a side reaction on the negative electrode tends to hardly occur in the lithium titanate of the negative electrode active material, the negative electrode film forming agent is not necessary when the negative electrode active material is composed of lithium titanate alone. What is necessary is just to consider the mixing | blending of a negative electrode film formation agent, when using together negative electrode active materials other than lithium titanate.
 上記負極被膜形成剤とは、初期充電時に負極の表面に被膜を形成するように作用する物質のことをいい、なかでも、一般的に用いられる電解液溶媒よりも先に初期充電時に反応し、形成する被膜の特性が優れたものが好ましく用いられる。具体的には、ビニレンカーボネート、フルオロエチレンカーボネート、1,3-プロパンサルトン、プロピレンサルファイト、エチレンサルファイト、ビニルアセテート、ビニルエチレンカーボネート、ジメチルサルファイト、フェニルエチレンカーボネート、フェニルビニレンカーボネート、フルオロ-γ-ブチロラクトン等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、ビニレンカーボネート、フルオロエチレンカーボネートは、負極に対する被膜形成性がより高いことから、より電池性能の劣化を抑制できるようになり、好ましい。 The negative electrode film-forming agent refers to a substance that acts to form a film on the surface of the negative electrode at the time of initial charging, and in particular, reacts at the time of initial charging prior to a commonly used electrolyte solvent, Those having excellent properties of the film to be formed are preferably used. Specifically, vinylene carbonate, fluoroethylene carbonate, 1,3-propane sultone, propylene sulfite, ethylene sulfite, vinyl acetate, vinyl ethylene carbonate, dimethyl sulfite, phenyl ethylene carbonate, phenyl vinylene carbonate, fluoro-γ -Butyrolactone and the like. These may be used alone or in combination of two or more. Among these, vinylene carbonate and fluoroethylene carbonate are preferable because they have a higher film-forming property on the negative electrode, and thus can further suppress deterioration of battery performance.
 そして、上記のように、チタン酸リチウム以外の負極活物質を併用する場合、負極被膜形成剤の配合を検討すればよく、その場合の電解液中の負極被膜形成剤の含有割合は、電解液100重量部に対し0.1~30重量部の範囲であることが好ましく、より好ましくは、0.1~20重量部の範囲である。すなわち、負極被膜形成剤の含有割合が上記範囲未満であると、有効な被膜形成がなされない傾向にあり、逆に、上記範囲を超えると、電池内での負極の被膜を形成するのに必要な量よりも過剰に存在することになり、電極上で副反応を起こして、容量低下やガス発生の原因となりうるためである。 And when using together negative electrode active materials other than lithium titanate as mentioned above, what is necessary is just to consider the mixing | blending of a negative electrode film formation agent, and the content rate of the negative electrode film formation agent in the electrolyte solution in that case is electrolyte solution. It is preferably in the range of 0.1 to 30 parts by weight, more preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight. That is, when the content ratio of the negative electrode film forming agent is less than the above range, effective film formation tends to be not achieved. Conversely, when the content exceeds the above range, it is necessary to form a negative electrode film in the battery. This is because an excessive amount is present and a side reaction occurs on the electrode, which may cause a decrease in capacity and gas generation.
 また、上記電解液を構成する電解質としては、例えば、リチウムイオンなどの金属イオンとこれに対する適宜のカウンターイオン、例えば、スルホン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロヒ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(ペンタフルオロエタンスルホニル)イミドイオン、ハロゲンイオン等を組み合わせてなるものが好ましく用いられる。従って、このような電解質の具体例としては、LiCF3SO3、LiClO4、LiBF4、LiPF6、LiAsF6、LiN(SO2CF32、LiN(SO2252、LiCl等をあげることができ、これらは単独でもしくは2種以上併せて用いられる。特に、上記電解液が、支持塩として六フッ化リン酸リチウム(LiPF6)を含有すると、電池性能の劣化を一層抑制できるようになるため好ましい。 Examples of the electrolyte constituting the electrolytic solution include metal ions such as lithium ions and appropriate counter ions corresponding thereto, such as sulfonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphate ions. , Hexafluoroarsenic ions, bis (trifluoromethanesulfonyl) imide ions, bis (pentafluoroethanesulfonyl) imide ions, halogen ions, and the like are preferably used. Accordingly, specific examples of such an electrolyte include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCl. These may be used alone or in combination of two or more. In particular, it is preferable that the electrolytic solution contains lithium hexafluorophosphate (LiPF 6 ) as a supporting salt because deterioration of battery performance can be further suppressed.
 ここで、六フッ化リン酸リチウムは、電解液中において分解し、フッ酸などの酸を生成することが知られている。本発明者らが確認したところ、電解液中に僅かに存在する上記フッ酸が、負極被膜形成剤による被膜とは異なる被膜を形成したと考えられたことから、上記電解液に六フッ化リン酸リチウムを含有したことにより、負極である炭素質材料の電気化学的安定性と効率がより改善されたと考えられる。 Here, it is known that lithium hexafluorophosphate is decomposed in an electrolytic solution to generate an acid such as hydrofluoric acid. As a result of confirmation by the present inventors, it was considered that the hydrofluoric acid slightly present in the electrolytic solution formed a film different from the film formed by the negative electrode film forming agent. It is considered that the electrochemical stability and efficiency of the carbonaceous material as the negative electrode were further improved by containing lithium acid acid.
 電解液を構成する溶媒としては、例えば、カーボネート類、ニトリル類、アミド類、エーテル類等の少なくとも1種の非水溶媒、すなわち、有機溶媒が用いられる。このような有機溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、アセトニトリル、プロピオニトリル、N,N'-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメトキシエタン、ジエトキシエタン、γ-ブチロラクトン等をあげることができる。これらは単独でもしくは2種以上併せて用いられる。 As the solvent constituting the electrolytic solution, for example, at least one non-aqueous solvent such as carbonates, nitriles, amides, ethers, that is, an organic solvent is used. Specific examples of such organic solvents include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, acetonitrile, propionitrile, N, N'-dimethylacetamide, N-methyl-2- Examples include pyrrolidone, dimethoxyethane, diethoxyethane, and γ-butyrolactone. These may be used alone or in combination of two or more.
 上記電解液中の電解質の含有量としては、非水電解液二次電池の電解質含有量として通常の量が用いられる。すなわち、上記電解液中の電解質の含有量は、通常、上記電解液中に0.1~2.5mol/Lの濃度範囲で用いられ、好ましくは0.5~2.0mol/Lで用いられる。上記電解質が少なすぎると、重量エネルギー密度に優れる非水電解液二次電池を得られない傾向にあり、他方、電解質が多すぎると、電解液の粘度が上昇してイオン伝導度が低下することにより出入力特性の低下を招く傾向にある。 As the electrolyte content in the electrolyte solution, a normal amount is used as the electrolyte content of the non-aqueous electrolyte secondary battery. That is, the electrolyte content in the electrolytic solution is usually used in the concentration range of 0.1 to 2.5 mol / L, preferably 0.5 to 2.0 mol / L in the electrolytic solution. . If the amount of the electrolyte is too small, there is a tendency that a non-aqueous electrolyte secondary battery having excellent weight energy density cannot be obtained. On the other hand, if the amount of the electrolyte is too large, the viscosity of the electrolyte increases and the ionic conductivity decreases. As a result, the input / output characteristics tend to be degraded.
 また、本発明の非水電解液二次電池においてセパレータを用いる場合、セパレータは、これを挟んで対向して配設される正極と負極の間の電気的な短絡を防ぐことができ、さらに、電気化学的に安定であり、イオン透過性が大きく、ある程度の機械強度を有する絶縁性の多孔質シートであればよい。したがって、例えば、紙、不織布や、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂からなる多孔性のフィルムが好ましく用いられ、これらは単独でもしくは2種以上併せて用いられる。 Further, when a separator is used in the non-aqueous electrolyte secondary battery of the present invention, the separator can prevent an electrical short circuit between the positive electrode and the negative electrode arranged to face each other, Any insulating porous sheet that is electrochemically stable, has a large ion permeability, and has a certain degree of mechanical strength may be used. Accordingly, for example, a porous film made of a resin such as paper, nonwoven fabric, polypropylene, polyethylene, or polyimide is preferably used, and these may be used alone or in combination of two or more.
<非水電解液二次電池の製造方法について>
 上記材料を用いた本発明の非水電解液二次電池の製造方法としては、下記(I)~(III)の工程を備えることを特徴とする。以下、この製造方法について詳述する。
(I)正極と負極とを準備し、両者の間に、セパレータを配置して、正極、セパレータおよび負極からなる積層体を作製する工程。
(II)電池容器内に上記積層体を少なくとも一つ収容する工程。
(III)上記電池容器内に、電解液を注入する工程。
<About the manufacturing method of a nonaqueous electrolyte secondary battery>
The method for producing a non-aqueous electrolyte secondary battery of the present invention using the above material is characterized by comprising the following steps (I) to (III). Hereinafter, this manufacturing method will be described in detail.
(I) A step of preparing a positive electrode and a negative electrode, arranging a separator between the two, and producing a laminate composed of the positive electrode, the separator, and the negative electrode.
(II) A step of accommodating at least one of the laminates in a battery container.
(III) A step of injecting an electrolytic solution into the battery container.
 具体的には、上述した正極と負極との間にセパレータが配置されるように積層し、積層体を作製する。次に、この積層体をアルミニウムラミネートパッケージ等の電池容器内に入れた後、真空乾燥する。ついで、真空乾燥した電池容器内に電解液を注入する。最後に、電池容器であるパッケージを封口して、本発明の非水電解液二次電池(ラミネートセル)が完成する。 Specifically, lamination is performed so that a separator is disposed between the positive electrode and the negative electrode described above, thereby producing a laminate. Next, this laminate is placed in a battery container such as an aluminum laminate package and then vacuum dried. Next, an electrolytic solution is poured into the vacuum-dried battery container. Finally, the package as the battery container is sealed to complete the non-aqueous electrolyte secondary battery (laminate cell) of the present invention.
<非水電解液二次電池について>
 本発明の非水電解液二次電池は、上記ラミネートセル以外に、フィルム型、シート型、角型、円筒型、ボタン型等種々の形状に形成される。
<About non-aqueous electrolyte secondary batteries>
The non-aqueous electrolyte secondary battery of the present invention is formed into various shapes such as a film type, a sheet type, a square type, a cylindrical type, and a button type in addition to the laminate cell.
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、その要旨を超えない限り、これら実施例に限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
 まず、実施例,比較例となる非水電解液二次電池の作製に先立ち、以下に示す材料および構成部材の、調製・作製・準備を行った。 First, prior to the production of non-aqueous electrolyte secondary batteries as examples and comparative examples, the following materials and components were prepared, produced, and prepared.
[導電性ポリマー(a)の調製]
 導電性ポリマー(a)として、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン粉末を下記のように調製した。
[Preparation of Conductive Polymer (a)]
As the conductive polymer (a), a conductive polyaniline powder using tetrafluoroboric acid as a dopant was prepared as follows.
 すなわち、まず、イオン交換水138gを入れた300mL容量のガラス製ビーカーに、42重量%濃度のテトラフルオロホウ酸水溶液(和光純薬工業社製、試薬特級)84.0g(0.402mol)を加え、磁気スターラーにて撹拌しながら、これにアニリン10.0g(0.107mol)を加えた。テトラフルオロホウ酸水溶液にアニリンを加えた当初は、アニリンは、テトラフルオロホウ酸水溶液に油状の液滴として分散していたが、その後、数分以内に水に溶解し、均一で透明なアニリン水溶液になった。このようにして得られたアニリン水溶液を、低温恒温槽を用いて-4℃以下に冷却した。 That is, first, 84.0 g (0.402 mol) of 42 wt% aqueous tetrafluoroboric acid solution (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) was added to a glass beaker having a capacity of 138 g of ion-exchanged water. While stirring with a magnetic stirrer, 10.0 g (0.107 mol) of aniline was added thereto. When aniline was added to the tetrafluoroboric acid aqueous solution, the aniline was dispersed as oily droplets in the tetrafluoroboric acid aqueous solution, but then dissolved in water within a few minutes, and the uniform and transparent aniline aqueous solution. Became. The aniline aqueous solution thus obtained was cooled to −4 ° C. or lower using a low temperature thermostat.
 つぎに、酸化剤として二酸化マンガン粉末(和光純薬工業社製、試薬1級)11.63g(0.134mol)を、上記アニリン水溶液中に少量ずつ加えて、ビーカー内の混合物の温度が-1℃を超えないようにした。このようにして、アニリン水溶液に酸化剤を加えることによって、アニリン水溶液は直ちに黒緑色に変化した。その後、しばらく撹拌を続けたとき、黒緑色の固体が生成し始めた。 Next, 11.63 g (0.134 mol) of manganese dioxide powder (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) as an oxidizing agent is added little by little to the above aniline aqueous solution, and the temperature of the mixture in the beaker is −1. The temperature was not exceeded. Thus, by adding an oxidizing agent to the aniline aqueous solution, the aniline aqueous solution immediately turned black-green. Thereafter, when stirring was continued for a while, a black-green solid started to be formed.
 このようにして、80分間かけて酸化剤を加えた後、生成した反応生成物を含む反応混合物を冷却しながら、さらに、100分間、撹拌した。その後、ブフナー漏斗と吸引瓶を用いて、得られた固体をNo.2濾紙(ADVANTEC社製)にて吸引濾過して、粉末を得た。この粉末を約2mol/Lのテトラフルオロホウ酸水溶液中にて磁気スターラーを用いて撹拌洗浄した。ついで、アセトンにて数回、撹拌洗浄し、これを減圧濾過した。得られた粉末を室温(25℃)で10時間真空乾燥することにより、テトラフルオロホウ酸をドーパントとする導電性ポリアニリン(導電性ポリマー(a))12.5gを得た。この導電性ポリアニリンは鮮やかな緑色粉末であった。 Thus, after adding the oxidizing agent over 80 minutes, the reaction mixture containing the produced reaction product was further stirred for 100 minutes while cooling. Then, using a Buchner funnel and a suction bottle, the obtained solid was No. Suction filtration was performed with two filter papers (manufactured by ADVANTEC) to obtain a powder. The powder was stirred and washed in an aqueous solution of about 2 mol / L tetrafluoroboric acid using a magnetic stirrer. Then, the mixture was washed with stirring several times with acetone and filtered under reduced pressure. The obtained powder was vacuum-dried at room temperature (25 ° C.) for 10 hours to obtain 12.5 g of conductive polyaniline (conductive polymer (a)) having tetrafluoroboric acid as a dopant. The conductive polyaniline was a bright green powder.
(導電性ポリマー(a)の電導度)
 上記導電性ポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、直径13mm、厚み720μmの導電性ポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、19.5S/cmであった。
(Conductivity of conductive polymer (a))
After pulverizing 130 mg of the above conductive polyaniline powder in a smoked mortar, vacuum-pressure molding was performed for 10 minutes under a pressure of 75 MPa using a KBr tablet molding machine for infrared spectrum measurement. Got the disc. The conductivity of the disk measured by the 4-terminal method conductivity measurement by the Van der Pau method was 19.5 S / cm.
(脱ドープ状態の導電性ポリマー(a)の調製)
 上記により得られたドープ状態である導電性ポリアニリン粉末を、2mol/L水酸化ナトリウム水溶液中に入れ、3Lセパラブルフラスコ中にて30分間撹拌し、中和反応によりドーパントのテトラフルオロホウ酸を脱ドープした。濾液が中性になるまで脱ドープしたポリアニリンを水洗した後、アセトン中で撹拌洗浄し、ブフナー漏斗と吸引瓶を用いて減圧濾過し、No.2濾紙上に、脱ドープしたポリアニリン粉末を得た。これを室温下、10時間真空乾燥して、茶色の脱ドープ状態のポリアニリン粉末を得た。
(Preparation of conductive polymer (a) in dedope state)
The conductive polyaniline powder in the doped state obtained above is placed in a 2 mol / L aqueous sodium hydroxide solution and stirred in a 3 L separable flask for 30 minutes, and the tetrafluoroboric acid as a dopant is removed by a neutralization reaction. Doped. The dedoped polyaniline was washed with water until the filtrate became neutral, then stirred and washed in acetone, and filtered under reduced pressure using a Buchner funnel and a suction bottle to obtain a dedoped polyaniline powder on No. 2 filter paper. . This was vacuum-dried at room temperature for 10 hours to obtain a brown undoped polyaniline powder.
(還元脱ドープ状態の導電性ポリマー(a)の調製)
 つぎに、フェニルヒドラジンのメタノール水溶液中に、この脱ドープ状態のポリアニリン粉末を入れ、撹拌下30分間還元処理を行った。ポリアニリン粉末の色は、還元により、茶色から灰色に変化した。反応後、メタノール洗浄、アセトン洗浄し、濾別後、室温下真空乾燥し、還元脱ドープ状態のポリアニリンを得た。
(Preparation of conductive polymer (a) in reduced dedoped state)
Next, this dedope polyaniline powder was put into a methanol solution of phenylhydrazine and subjected to reduction treatment for 30 minutes with stirring. The color of the polyaniline powder changed from brown to gray by reduction. After the reaction, it was washed with methanol, washed with acetone, filtered, and vacuum dried at room temperature to obtain polyaniline in a reduced and dedoped state.
(還元脱ドープ状態の導電性ポリマー(a)の電導度)
 上記還元脱ドープ状態のポリアニリン粉末130mgを瑪瑙製乳鉢で粉砕した後、赤外スペクトル測定用KBr錠剤成形器を用い、75MPaの圧力下に10分間真空加圧成形して、厚み720μmの還元脱ドープ状態のポリアニリンのディスクを得た。ファン・デル・ポー法による4端子法電導度測定にて測定した上記ディスクの電導度は、5.8×10-3S/cmであった。これより、ポリアニリン化合物は、イオンの挿入・脱離により導電性の変化する活物質化合物であるといえる。
(Conductivity of conductive polymer (a) in reduced and undoped state)
After pulverizing 130 mg of the above polyaniline powder in the reduced dedope state in a smoked mortar, vacuum reduced pressure molding was performed for 10 minutes under a pressure of 75 MPa using a KBr tablet molding machine for infrared spectrum measurement, and a reduced dedope having a thickness of 720 μm. A polyaniline disk in state was obtained. The electric conductivity of the disk measured by the 4-terminal conductivity measurement by the Van der Pau method was 5.8 × 10 −3 S / cm. Thus, it can be said that the polyaniline compound is an active material compound whose conductivity is changed by ion insertion / extraction.
[ポリカルボン酸およびポリカルボン酸金属塩の少なくとも一方(b)の準備]
 ポリアクリル酸(日本触媒社製、重量平均分子量80万)22.17gをイオン交換水170.46gに加え、一夜静置して膨潤させた。この後、超音波式ホモジナイザーを用いて1分間処理して溶解させ、11.5重量%濃度の粘稠なポリアクリル酸水溶液192.63gを得た。ついで、得られたポリアクリル酸水溶液192.63gに、ポリアクリル酸の有するカルボキシル基の量の全量をリチウム塩化する量の水酸化リチウム粉末7.37gを加えて、ポリアクリル酸のリチウム塩水溶液(濃度12重量%)を200g調製し、準備した。
[Preparation of at least one of polycarboxylic acid and polycarboxylic acid metal salt (b)]
22.17 g of polyacrylic acid (manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight 800,000) was added to 170.46 g of ion-exchanged water, and allowed to stand overnight to swell. Then, it processed for 1 minute and melt | dissolved using the ultrasonic homogenizer, and 192.63 g of 11.5 weight% concentration viscous polyacrylic acid aqueous solution was obtained. Next, to the obtained polyacrylic acid aqueous solution 192.63 g, 7.37 g of lithium hydroxide powder in an amount capable of lithium chlorinating the total amount of carboxyl groups of polyacrylic acid was added, and an aqueous lithium salt solution of polyacrylic acid ( 200 g of a concentration of 12% by weight was prepared and prepared.
 [正極の作製]
 上記還元脱ドープ状態の導電性ポリマー(a)粉末3.7gと導電性カーボンブラック(電気化学工業社製、デンカブラック)粉末0.459gとを混合した後、これを上記12重量%濃度のポリアクリル酸リチウム塩水溶液7.4gに加え、スパチュラでよく練った。次にポリプロピレングリコール(ADEKA社製、P-400)を0.05g加えた。ついで、さらにイオン交換水18.39gを加えた。これを、超音波式ホモジナイザーにて1分間超音波処理を施した後、薄膜旋回型高速ミキサー(プライミックス社製、フィルミックス40-40型)を用いて高剪断力を加えてマイルド分散させ、流動性を有するペーストを得た。このペーストをさらに真空吸引鐘とロータリーポンプを用いて脱泡した。
[Production of positive electrode]
After 3.7 g of the conductive polymer (a) powder in the reduced and dedoped state and 0.459 g of conductive carbon black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) powder were mixed, In addition to 7.4 g of the lithium acrylate aqueous solution, the mixture was well kneaded with a spatula. Next, 0.05 g of polypropylene glycol (manufactured by ADEKA, P-400) was added. Then, 18.39 g of ion-exchanged water was further added. This was subjected to ultrasonic treatment with an ultrasonic homogenizer for 1 minute, and then mildly dispersed by applying a high shear force using a thin film swirl type high speed mixer (manufactured by Primix, Filmix 40-40). A paste having fluidity was obtained. This paste was further defoamed using a vacuum suction bell and a rotary pump.
 卓上型自動塗工装置(テスター産業社製)を用い、マイクロメーター付きドクターブレ-ド式アプリケータによって、溶液塗工厚みを360μmに調整し、塗布速度10mm/秒にて、上記脱泡ペーストを電気二重層キャパシタ用エッチングアルミニウム箔(宝泉社製、30CB)上に塗布した。ついで、室温(25℃)で45分間放置した後、温度100℃のホットプレート上で乾燥して、多孔質のポリアニリンシート電極(正極)を作製した。活物質層の厚みは100μmであった。 Using a tabletop automatic coating apparatus (manufactured by Tester Sangyo Co., Ltd.), using a doctor blade type applicator with a micrometer, the solution coating thickness was adjusted to 360 μm, and the defoaming paste was applied at a coating speed of 10 mm / second. It apply | coated on the etching aluminum foil (The Hosen company make, 30CB) for electric double layer capacitors. Subsequently, after leaving at room temperature (25 degreeC) for 45 minutes, it dried on the hotplate of temperature 100 degreeC, and produced the porous polyaniline sheet electrode (positive electrode). The thickness of the active material layer was 100 μm.
 次に、この正極シートを35mm×27mmの寸法に裁断し、正極シートの活物質層が27mm×27mmの面積になるように活物質層の一部を除去して、その一部の活物質層を除去した部分を、電流取出し用のタブ電極取付場所として、アルミニウムタブをスポット溶接で取り付けてシート状の旗型正極を作製した。 Next, this positive electrode sheet is cut into a size of 35 mm × 27 mm, a part of the active material layer is removed so that the active material layer of the positive electrode sheet has an area of 27 mm × 27 mm, and a part of the active material layer The portion from which this was removed was used as a tab electrode mounting location for current extraction, and an aluminum tab was mounted by spot welding to produce a sheet-shaped flag-type positive electrode.
[セパレータの準備]
 セパレータとしては、不織布(ニッポン高度紙工業社製、TF40-50、厚み50μm、空隙率70%)を用いた。
[Preparation of separator]
As the separator, a nonwoven fabric (manufactured by Nippon Kogyo Paper Industries, TF40-50, thickness 50 μm, porosity 70%) was used.
[負極1の準備]
 チタン酸リチウム(石原産業社製、エナマイト(登録商標)(ENERMIGHT(登録商標))LTシリーズ、LT-106)15g、アセチレンブラック(電気化学工業社製、デンカブラック粒状)3.21g、11.1重量%ポリビニリデンフルオライド(クレハ社製、KFポリマー#1100)を含有するN-メチル-2-ピロリドン溶液28.96gおよびN-メチル-2-ピロリドン18gを秤量後、撹拌棒を用いて撹拌した。
[Preparation of negative electrode 1]
Lithium titanate (manufactured by Ishihara Sangyo Co., Ltd., Enamite (registered trademark) LT series, LT-106) 15 g, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., Denka black granular) 3.21 g, 11.1 28.96 g of N-methyl-2-pyrrolidone solution containing 18% by weight of polyvinylidene fluoride (Kureha, KF polymer # 1100) and 18 g of N-methyl-2-pyrrolidone were weighed and stirred using a stir bar. .
 次に、超音波式ホモジナイザーにて4分間超音波処理を施した。その後、薄膜旋回型高速ミキサー(プライミックス社製、フィルミックス40-40型)を用いて、周速20m/secにて30sec撹拌し、流動性を有するペーストを得た。このペーストを自転公転真空ミキサー(シンキー社製、あわとり練太郎ARV-310)を用いて、更に3分間撹拌脱泡操作を行った。 Next, ultrasonic treatment was performed for 4 minutes with an ultrasonic homogenizer. Thereafter, the mixture was stirred for 30 seconds at a peripheral speed of 20 m / sec using a thin film swirl type high speed mixer (manufactured by Plymix Co., Ltd., Fillmix 40-40 type) to obtain a paste having fluidity. This paste was further subjected to stirring and defoaming operation for 3 minutes using a rotation and revolution vacuum mixer (manufactured by Shinky, Awatori Nertaro ARV-310).
 その後、このペーストを厚み30μmのエッチングアルミ箔上に、自動塗工装置(テスター産業社製、PI-1210)とマイクロメーター付フィルムアプリケーター(テスター産業社製)を用いて、250μmの厚みにて塗工した。流動性が無くなるまで室温にて乾燥後、120℃にて30分加熱乾燥処理を行った。次に、このようにして得られたシート電極を、更に80℃にて3時間真空乾燥処理を行なった。
 アルミ箔上の単位面積あたりのチタン酸リチウム重量は、7.1mg/cm2、活物質層の厚みは100μmであった。
Thereafter, this paste was applied on an etching aluminum foil having a thickness of 30 μm to a thickness of 250 μm using an automatic coating apparatus (PI-1210 manufactured by Tester Sangyo Co., Ltd.) and a film applicator with a micrometer (manufactured by Tester Sangyo Co., Ltd.). Worked. After drying at room temperature until fluidity disappeared, a heat drying treatment was performed at 120 ° C. for 30 minutes. Next, the sheet electrode thus obtained was further vacuum-dried at 80 ° C. for 3 hours.
The weight of lithium titanate per unit area on the aluminum foil was 7.1 mg / cm 2 , and the thickness of the active material layer was 100 μm.
 次に、この負極用シートを35mm×29mmの寸法に裁断し、負極用シートの活物質層が29mm×29mmの面積になるように活物質層の一部を除去して、その一部の活物質層を除去した部分を、電流取出し用のタブ電極取付場所として、アルミニウムタブをスポット溶接で取り付けてシート状の旗型負極1を作製した。 Next, the negative electrode sheet is cut into a size of 35 mm × 29 mm, and a part of the active material layer is removed so that the active material layer of the negative electrode sheet has an area of 29 mm × 29 mm. The portion from which the material layer was removed was used as a tab electrode attachment location for current extraction, and an aluminum tab was attached by spot welding to produce a sheet-like flag-type negative electrode 1.
[負極2の準備]
 比較例用の負極2として、負極活物質として天然球状グラファイト(黒鉛)を含む負極シート(パイオトレック社製、0.8mAh/cm2)を用いた。次に、電流取出し用のタブ電極にニッケルタブを用いた以外は旗型負極1と全く同様にして、旗型負極2を作製した。
[Preparation of negative electrode 2]
As the negative electrode 2 for the comparative example, a negative electrode sheet (manufactured by Piotrec Co., 0.8 mAh / cm 2 ) containing natural spherical graphite (graphite) as a negative electrode active material was used. Next, a flag-type negative electrode 2 was produced in the same manner as the flag-type negative electrode 1 except that a nickel tab was used as the current extraction tab electrode.
[電解液iの準備]
 電解液iとして、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:2の体積比で含む溶媒(EC2DMC)に、六フッ化リン酸リチウム(LiPF6)を2mol/Lの濃度で溶解させたものを準備した。
[Preparation of electrolyte solution i]
As electrolyte solution i, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 2 mol / L in a solvent (EC2DMC) containing ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2. I prepared what I was allowed to do.
[電解液iiの準備]
 電解液iiとして、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:2の体積比で含む溶媒(EC2DMC)に、六フッ化リン酸リチウム(LiPF6)を2mol/Lの濃度で溶解させ、これにさらに、負極被膜形成剤として、ビニレンカーボネート(VC)を10重量%となるように配合した。
[Preparation of electrolyte ii]
As an electrolytic solution ii, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 2 mol / L in a solvent (EC2DMC) containing ethylene carbonate (EC) and dimethyl carbonate (DMC) in a volume ratio of 1: 2. Furthermore, vinylene carbonate (VC) was further blended at 10% by weight as a negative electrode film forming agent.
〔実施例1〕
<ラミネートセルの作製>
 上記旗型正極、旗型負極1およびセパレータを用いて積層体を組み立てた。具体的には、まず旗型正極およびセパレータを真空乾燥機にて150℃で2時間、真空乾燥した。次に旗型負極1を真空乾燥機にて80℃で2時間、真空乾燥した。次に乾燥した旗型正極、セパレータおよび旗型負極1を露点-70℃以下に管理したグローブボックス内に入れた。次に、旗型正極と旗型負極1の間にセパレータ3枚が配置されるように積層し、積層体を得た。積層体をアルミニウムラミネートパッケージに入れた後、電解液iを注入した。最後に、電流取出し用のタブは外部に出るようにして、パッケージを封口して、実施例1の非水電解液二次電池(ラミネートセル)を得た。
[Example 1]
<Production of laminate cell>
A laminate was assembled using the flag-type positive electrode, the flag-type negative electrode 1 and the separator. Specifically, the flag-type positive electrode and the separator were first vacuum-dried at 150 ° C. for 2 hours in a vacuum dryer. Next, the flag-type negative electrode 1 was vacuum-dried at 80 ° C. for 2 hours in a vacuum dryer. Next, the dried flag-type positive electrode, separator, and flag-type negative electrode 1 were placed in a glove box controlled at a dew point of −70 ° C. or lower. Next, it laminated | stacked so that three separators might be arrange | positioned between flag-type positive electrode and flag-type negative electrode 1, and the laminated body was obtained. After putting the laminate in an aluminum laminate package, an electrolyte solution i was injected. Finally, the current extraction tab was exposed to the outside, the package was sealed, and the nonaqueous electrolyte secondary battery (laminate cell) of Example 1 was obtained.
〔比較例1〕
 正極,負極および電解液を、下記の表1に示すものに代えた。それ以外は、実施例1と同様にして、非水電解液二次電池(ラミネートセル)を作製した。
[Comparative Example 1]
The positive electrode, the negative electrode, and the electrolytic solution were replaced with those shown in Table 1 below. Other than that was carried out similarly to Example 1, and produced the nonaqueous electrolyte secondary battery (laminate cell).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このようにして得られた実施例および比較例の非水電解液二次電池に関し、下記の基準に従い、25℃における初期放電容量の測定と、60℃におけるサイクル特性の測定を行った。その結果をそれぞれ表2および図1に示す。 For the nonaqueous electrolyte secondary batteries of Examples and Comparative Examples thus obtained, the initial discharge capacity at 25 ° C. and the cycle characteristics at 60 ° C. were measured according to the following criteria. The results are shown in Table 2 and FIG.
≪25℃における初期放電容量の測定≫
 実施例1の非水電解液二次電池を25℃の恒温槽内に静置し、電池充放電装置(東洋システム社製、TOSCAT-3000)を用いて、定電流-定電圧充電/定電流放電モードにて測定を行う。充電は、2.3Vに到達するまでは、0.05Cに相当する定電流で充電し、2.3Vに到達した後は、2.3V定電圧で電流値が0.05C相当の20%に減衰するまで充電を行って、これを、上限電圧を2.3Vとした満充電とし、ついで0.05Cに相当する電流値で電圧が下限電圧0.5Vに到達するまで放電を行って、これらを1充放電サイクルとした。上記非水電解液二次電池について、25℃における5サイクル目で得られた放電容量を初期放電容量(mAh)とするとともに、活物質量当たりの放電容量密度(mAh/g)を算出した。その結果を下記表2に示す。
≪Measurement of initial discharge capacity at 25 ℃ ≫
The non-aqueous electrolyte secondary battery of Example 1 was placed in a constant temperature bath at 25 ° C., and constant current-constant voltage charging / constant current using a battery charging / discharging device (TOSCAT-3000, manufactured by Toyo System Co., Ltd.) Measure in discharge mode. Charging is performed at a constant current corresponding to 0.05C until 2.3V is reached, and after reaching 2.3V, the current value is increased to 20% corresponding to 0.05C at 2.3V constant voltage. The battery is charged until it decays. This is a full charge with an upper limit voltage of 2.3 V, and then a discharge is performed at a current value corresponding to 0.05 C until the voltage reaches the lower limit voltage of 0.5 V. Was defined as one charge / discharge cycle. For the nonaqueous electrolyte secondary battery, the discharge capacity obtained in the fifth cycle at 25 ° C. was defined as the initial discharge capacity (mAh), and the discharge capacity density per active material amount (mAh / g) was calculated. The results are shown in Table 2 below.
 次に、比較例1の非水電解液二次電池を、上述した25℃における初期放電容量の測定において、充電の上限電圧を3.8V、放電の下限電圧を2.0Vにした以外は全く同様にして、その初期放電容量を測定した。得られた結果を表2に示す。
 なお、実施例1と比較例1において、充放電上下限の電圧が異なるのは、負極の動作電位が、チタン酸リチウムは、リチウム電位基準で約1.5V程度であるのに対して、黒鉛のそれは、リチウム電位基準で約0V付近であることを考慮して変更したためである。
Next, the nonaqueous electrolyte secondary battery of Comparative Example 1 was completely the same except that the upper limit voltage for charging was 3.8 V and the lower limit voltage for discharging was 2.0 V in the measurement of the initial discharge capacity at 25 ° C. described above. Similarly, the initial discharge capacity was measured. The obtained results are shown in Table 2.
In Example 1 and Comparative Example 1, the voltage at the upper and lower limits of charge / discharge is different from the operating potential of the negative electrode, in which lithium titanate is about 1.5 V on the lithium potential basis, whereas graphite This is because it was changed in consideration of the fact that it is around 0 V on the basis of the lithium potential.
 ここで0.05Cとは、20時間率を示しており、20時間率とは、電池を充電あるいは放電するのに20時間を要する電流値という意味である。 Here, 0.05 C indicates a 20 hour rate, and the 20 hour rate means a current value that requires 20 hours to charge or discharge a battery.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪60℃におけるサイクル特性の測定≫
 まず、上記25℃における初期放電容量を測定した実施例1の非水電解液二次電池を、60℃の恒温槽に設置する。
 2.3Vに到達するまでは、0.2C相当の定電流で充電し、2.3V到達後は2.3V定電圧で電流値が0.2C相当の20%に減衰するまで充電を行ってこれを満充電とし、ついで0.2Cに相当する電流値で電圧が0.5Vに到達するまで放電を行い、この時の放電容量を60℃サイクル試験開始時の初期放電容量とした。
 次に、(1)1C相当の電流値で2.3Vまで充電し、2.3V到達後は2.3V定電圧で電流値が1C相当の20%に減衰するまで充電を行い、(2)1C相当の電流値で25℃の初期放電容量の55%相当を放電して電池の充電状態を調整し、(3)25℃の初期放電容量の10%相当の充放電を10C相当の電流値で1000サイクル行い、(4)0.2C相当の電流値での放電容量測定(60℃サイクル試験開始時の初期容量測定と同様の方法)、という上記(1)~(4)の手順を繰り返し、1000サイクルごとに0.2C相当の電流値での放電容量を測定した。
 そして、60℃サイクル試験開始時の初期放電容量を100%とした場合の、これらの放電容量の残比率を、放電容量維持率(%)とし、その結果を図1に示す。
≪Measurement of cycle characteristics at 60 ℃ ≫
First, the nonaqueous electrolyte secondary battery of Example 1 in which the initial discharge capacity at 25 ° C. was measured was placed in a 60 ° C. thermostat.
Until 2.3V is reached, charge with a constant current equivalent to 0.2C. After reaching 2.3V, charge with 2.3V constant voltage until the current value is attenuated to 20% equivalent to 0.2C. This was fully charged, and then discharging was performed at a current value corresponding to 0.2 C until the voltage reached 0.5 V. The discharge capacity at this time was defined as the initial discharge capacity at the start of the 60 ° C. cycle test.
Next, (1) the battery is charged to 2.3V with a current value equivalent to 1C, and after reaching 2.3V, the battery is charged with a constant voltage of 2.3V until the current value is attenuated to 20% equivalent to 1C. (2) The current value corresponding to 1 C is discharged to 55% of the initial discharge capacity at 25 ° C. to adjust the state of charge of the battery. (3) The charge value corresponding to 10% of the initial discharge capacity at 25 ° C. is the current value corresponding to 10 C. (4) Discharge capacity measurement at a current value equivalent to 0.2 C (the same method as the initial capacity measurement at the start of a 60 ° C. cycle test), and repeat the procedures (1) to (4) above. The discharge capacity at a current value corresponding to 0.2 C was measured every 1000 cycles.
Then, when the initial discharge capacity at the start of the 60 ° C. cycle test is 100%, the remaining ratio of these discharge capacities is defined as the discharge capacity retention rate (%), and the result is shown in FIG.
 次に、比較例1の非水電解液二次電池においては、充電上限電圧を3.8Vとし、放電下限電圧を2.0Vとした以外は全く同じにして、60℃におけるサイクル試験の測定を行った。得られた結果を図1に示す。 Next, in the nonaqueous electrolyte secondary battery of Comparative Example 1, the cycle test at 60 ° C. was measured in exactly the same manner except that the upper limit voltage for charging was 3.8 V and the lower limit voltage for discharging was 2.0 V. went. The obtained results are shown in FIG.
 上記表2の結果より、チタン酸リチウムを負極に用いた実施例1は、黒鉛負極の比較例1とより若干放電容量密度に劣るものの、同程度の優れた放電容量密度を示すことが分かった。
 そして、図1に示された結果より、比較例1の非水電解液二次電池はサイクル数の増加に伴い容量密度の低下が著しく、6000サイクルで放電容量維持率が約20%に低下しているのに対し、実施例1の非水電解液二次電池はサイクル数が増加しても容量密度の低下が抑えられ、その放電容量維持率は約80%も有り、優れたサイクル特性を示すことが分かった。
 また、負極被膜形成剤の使用は、比較例1のような黒鉛負極の場合、負極の安定化に大きな改善傾向を示すものであるが、実施例1のチタン酸リチウム負極の場合には、負極被膜形成剤を使用しなくても電池性能の劣化を効果的に抑制し、サイクル特性に優れる非水電解液二次電池が得られることが分かった。
From the results of Table 2 above, it was found that Example 1 using lithium titanate as the negative electrode showed the same excellent discharge capacity density, although it was slightly inferior to that of Comparative Example 1 of the graphite negative electrode. .
From the results shown in FIG. 1, in the nonaqueous electrolyte secondary battery of Comparative Example 1, the capacity density significantly decreases with an increase in the number of cycles, and the discharge capacity retention rate decreases to about 20% after 6000 cycles. On the other hand, the non-aqueous electrolyte secondary battery of Example 1 can suppress the decrease in capacity density even when the number of cycles increases, and the discharge capacity maintenance rate is about 80%, and has excellent cycle characteristics. I found out that
Further, the use of the negative electrode film forming agent shows a large improvement tendency in the stabilization of the negative electrode in the case of the graphite negative electrode as in Comparative Example 1, but in the case of the lithium titanate negative electrode in Example 1, the negative electrode It has been found that a nonaqueous electrolyte secondary battery that effectively suppresses deterioration of battery performance and has excellent cycle characteristics can be obtained without using a film forming agent.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の非水電解液二次電池は、リチウムイオン二次電池等の非水電解液二次電池として好適に使用できる。また、本発明の非水電解液二次電池は、従来の二次電池と同様の用途に使用でき、例えば、携帯型PC、携帯電話、携帯情報端末(PDA)等の携帯用電子機器や、ハイブリッド電気自動車、電気自動車、燃料電池自動車等の駆動用電源に広く用いられる。  The nonaqueous electrolyte secondary battery of the present invention can be suitably used as a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. The non-aqueous electrolyte secondary battery of the present invention can be used for the same applications as conventional secondary batteries. For example, portable electronic devices such as portable PCs, cellular phones, and personal digital assistants (PDAs), Widely used in driving power sources for hybrid electric vehicles, electric vehicles, fuel cell vehicles and the like.

Claims (4)

  1.  電解質層と、これを挟んで対向して設けられた正極と負極を有する非水電解液二次電池であって、正極が、導電性ポリマー(a)と、ポリカルボン酸およびその金属塩の少なくとも一方(b)とを含み、負極がチタン酸リチウムを含むことを特徴とする非水電解液二次電池。 A non-aqueous electrolyte secondary battery having an electrolyte layer and a positive electrode and a negative electrode provided to face each other across the electrolyte layer, wherein the positive electrode comprises at least a conductive polymer (a), a polycarboxylic acid and a metal salt thereof. On the other hand, a nonaqueous electrolyte secondary battery comprising (b), wherein the negative electrode contains lithium titanate.
  2.  上記導電性ポリマー(a)が、ポリアニリンおよびポリアニリン誘導体の少なくとも一方である請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the conductive polymer (a) is at least one of polyaniline and a polyaniline derivative.
  3.  上記(b)のポリカルボン酸が、ポリアクリル酸、ポリメタクリル酸、ポリビニル安息香酸、ポリアリル安息香酸、ポリメタリル安息香酸、ポリマレイン酸、ポリフマル酸、ポリグルタミン酸、ポリアスパラギン酸、アルギン酸、カルボキシルメチルセルロース、およびこれらポリマーの繰り返し単位の少なくとも1種を含む共重合体から選ばれる少なくとも1種である請求項1または2に記載の非水電解液二次電池。 The polycarboxylic acid of (b) is polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutamic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, and these The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is at least one selected from copolymers containing at least one polymer repeating unit.
  4.  上記(b)のポリカルボン酸金属塩が、ポリカルボン酸アルカリ金属塩およびポリカルボン酸アルカリ土類金属塩の少なくとも一方である請求項1~3のいずれか一項に記載の非水電解液二次電池。 The non-aqueous electrolyte solution 2 according to any one of claims 1 to 3, wherein the polycarboxylic acid metal salt (b) is at least one of a polycarboxylic acid alkali metal salt and a polycarboxylic acid alkaline earth metal salt. Next battery.
PCT/JP2015/051324 2014-01-31 2015-01-20 Non-aqueous electrolyte secondary cell WO2015115243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014017180A JP2015144073A (en) 2014-01-31 2014-01-31 Nonaqueous electrolyte secondary battery
JP2014-017180 2014-01-31

Publications (1)

Publication Number Publication Date
WO2015115243A1 true WO2015115243A1 (en) 2015-08-06

Family

ID=53756820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051324 WO2015115243A1 (en) 2014-01-31 2015-01-20 Non-aqueous electrolyte secondary cell

Country Status (2)

Country Link
JP (1) JP2015144073A (en)
WO (1) WO2015115243A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770555B (en) * 2016-12-29 2018-12-28 信阳师范学院 A kind of electrochemical sensor of quick measurement sunset yellow, preparation method and the application in measurement sunset yellow
JP2020004551A (en) * 2018-06-26 2020-01-09 日東電工株式会社 Active material for positive electrode, positive electrode, power storage device, and manufacturing method of active material for positive electrode
KR20220048069A (en) * 2020-10-12 2022-04-19 주식회사 엘지에너지솔루션 Positive electrode slurry composition for lithium secondary battery, positive electrode and lithium secondary battery comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030692A (en) * 1998-07-08 2000-01-28 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2007064043A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery and process for producing the same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
WO2013002415A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Nonaqueous-electrolyte secondary battery and positive-electrode sheet therefor
JP2013239305A (en) * 2012-05-14 2013-11-28 Nitto Denko Corp Electricity storage device, positive electrode used for the same, porous sheet, and method for improving doping ratio

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030692A (en) * 1998-07-08 2000-01-28 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2007064043A1 (en) * 2005-12-02 2007-06-07 Gs Yuasa Corporation Nonaqueous electrolyte battery and process for producing the same
JP2012033783A (en) * 2010-07-30 2012-02-16 Nitto Denko Corp Electric double layer capacitor
WO2013002415A1 (en) * 2011-06-29 2013-01-03 日東電工株式会社 Nonaqueous-electrolyte secondary battery and positive-electrode sheet therefor
JP2013239305A (en) * 2012-05-14 2013-11-28 Nitto Denko Corp Electricity storage device, positive electrode used for the same, porous sheet, and method for improving doping ratio

Also Published As

Publication number Publication date
JP2015144073A (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2913879B1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2014035836A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US20150340698A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using positive electrode, and method for manufacturing nonaqueous electrolyte secondary battery
KR102157913B1 (en) Active material particles, positive electrode for capacitor device, and manufacturing method for capacitor device and active material particles
KR20140086875A (en) Positive electrode for electrical storage device, and electrical storage device
WO2015115242A1 (en) Non-aqueous electrolyte secondary cell
WO2015115243A1 (en) Non-aqueous electrolyte secondary cell
JP2014123449A (en) Electrode for power storage device, process of manufacturing the same, and power storage device
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
WO2014104005A1 (en) Nonaqueous electrolyte secondary battery
WO2014024940A1 (en) Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode
JP2015225753A (en) Power storage device
WO2014024941A1 (en) Positive electrode for electricity-storage device, manufacturing method therefor, positive-electrode active material for electricity-storage device, manufacturing method therefor, and electricity-storage device
JP2014120453A (en) Nonaqueous electrolyte secondary battery
US10230097B2 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2014072129A (en) Electrode for power storage device and power storage device using the same
JP2013239305A (en) Electricity storage device, positive electrode used for the same, porous sheet, and method for improving doping ratio
WO2014103779A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode used therein
JP2014072128A (en) Active material particle for power storage device positive electrode, positive electrode for power storage device using the same, power storage device, and method for manufacturing active material particle for power storage device positive electrode
WO2014103780A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode sheet used therein
WO2013172221A1 (en) Method for manufacturing electricity storage device and electricity storage device obtained using said method
WO2014065198A1 (en) Cation movement-type electricity storage device, electrode and porous sheet used in same, and dope rate improvement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742898

Country of ref document: EP

Kind code of ref document: A1