WO2015115214A1 - レーザ光源モジュールおよび走査型画像表示装置 - Google Patents

レーザ光源モジュールおよび走査型画像表示装置 Download PDF

Info

Publication number
WO2015115214A1
WO2015115214A1 PCT/JP2015/051132 JP2015051132W WO2015115214A1 WO 2015115214 A1 WO2015115214 A1 WO 2015115214A1 JP 2015051132 W JP2015051132 W JP 2015051132W WO 2015115214 A1 WO2015115214 A1 WO 2015115214A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
outer cover
cover
inner cover
laser light
Prior art date
Application number
PCT/JP2015/051132
Other languages
English (en)
French (fr)
Inventor
加藤 盛一
綾乃 大坪
山崎 達也
小笠原 浩
賢司 渡部
Original Assignee
株式会社日立エルジーデータストレージ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立エルジーデータストレージ filed Critical 株式会社日立エルジーデータストレージ
Priority to US15/106,897 priority Critical patent/US10209610B2/en
Priority to EP15743893.8A priority patent/EP3101338A4/en
Publication of WO2015115214A1 publication Critical patent/WO2015115214A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • H04N9/3135Driving therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present invention relates to a laser light source module suitable for image display and a scanning image display device using the laser light source module.
  • a desired image is obtained by aligning laser beams emitted from a plurality of laser light sources on one optical axis and repeatedly scanning the aligned laser beams in the horizontal and vertical directions. Is projected onto the screen.
  • Such a projector is also called a scanning image display device, and since it is easy to increase the brightness of an image, it is mounted on an automobile or the like, and its application as a head-up display for projecting navigation information or the like onto a windshield has been studied. ing.
  • the scanning image display device projects the scanning image display device (projector) to have a performance that can withstand severe environmental temperatures.
  • Patent Document 1 discloses an example of a temperature compensation technique with respect to an environmental temperature applied to an optical module for optical wavelength division multiplexing.
  • the waveguide chip which is the main component, is maintained at a predetermined temperature by a Peltier element or the like, and the waveguide chip and the Peltier element are covered with a heat insulating material and accommodated in a package. ing.
  • the waveguide chip is less susceptible to external temperature changes, and the power supplied to the Peltier element or the like for temperature control can be reduced.
  • Patent Document 2 discloses an example of a laser diode cooling technique considering heat shielding in a laser module including a laser diode used for a signal light source for optical communication.
  • a laser diode serving as a heat source is attached to a base whose temperature is controlled by a thermo module (Peltier element) or the like, and is surrounded by a heat shielding material that does not contact the outer package. Therefore, in this example, since the inflow of heat from the environment is reduced by the heat shielding material, the power supplied to the thermo module for cooling the laser diode can be reduced.
  • the space between the part to be heat shielded and the package is filled with a foam-type heat insulating material.
  • insulation is a very soft material, whether it is a foam material or a fiber material, so it is not suitable for precise molding into a specific shape, and it must be placed precisely at a specific location. It is also difficult. Therefore, even if the heat insulating material is arranged so as to slightly press the part to be heat shielded or not pressed, the heat insulating material contacts other parts in the product assembly process. easy. As a result, the component is damaged, and in the case of an electronic component, it leads to short circuit, electric leakage, electrostatic breakdown, and the like.
  • the heat insulating material which is a soft and difficult-to-mold material, has a problem that it is difficult to handle, in other words, workability at the time of assembling the product is not good particularly as a member for thermally shielding electronic parts.
  • Patent Document 2 shows an example in which a laser module is surrounded by a metal heat shielding material having a high thermal conductivity, and the heat shielding material is cooled by a thermo module.
  • a heat insulating material that is soft and difficult to mold is not used. Therefore, since the heat insulation material facilitates securing of molding and arrangement accuracy, the problem of poor workability at the time of product assembly of the heat insulating material is solved.
  • the heat insulating performance is degraded due to air convection. As a result, the electric power supplied to the thermo module for cooling increases.
  • the present invention is a laser light source that can ensure good workability during product assembly, has excellent heat insulation performance, and can reduce power for cooling.
  • An object is to provide a module and a scanning image display device.
  • a laser light source module is disposed on the base so as to cover a light source part that emits a laser beam, a base on which the light source part is mounted, and a light source part that is mounted on the base.
  • An outer cover, and an inner cover disposed in a space between the light source unit and the outer cover to cover the light source unit, the inner cover extending from the inner cover and It has a partition member that contacts an inner wall and divides a space between the inner cover and the outer cover into a plurality of spaces.
  • a laser light source module and a scanning image display device that can ensure good workability during product assembly, have excellent heat insulation performance, and can reduce power for cooling.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of a scanning image display apparatus according to a first embodiment of the present invention.
  • FIG. 10A is an external perspective view of an inner cover used in a fifth embodiment of the present invention
  • FIG. 5B is a diagram showing an example of a cross-sectional structure of a BB portion.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of a scanning image display apparatus 100 according to the first embodiment of the present invention.
  • a scanning image display apparatus 100 includes a laser light source module 110 that emits a laser beam for displaying an image on a screen 107, and a laser light source module according to an image input signal input from the outside. 110, and a control module 120 that controls the light source unit 101 included in 110.
  • the laser light source module 110 includes a light source unit 101, and the light source unit 101 includes three lasers corresponding to three colors of red / green / blue (hereinafter referred to as R / G / B). It includes light sources 1a, 1b, 1c, three collimator lenses 2a, 2b, 2c, two beam coupling units 3a, 3b, a scanning mirror 108, and a front monitor 109.
  • the collimator lenses 2a, 2b, and 2c make the laser beams emitted from the corresponding laser light sources 1a, 1b, and 1c substantially parallel light.
  • the beam combining unit 3a aligns and combines the laser beam that has passed through the collimator lens 2b and the laser beam that has passed through the collimator lens 2c into a laser beam that travels along one optical axis.
  • the beam combiner 3b aligns and combines the laser beam aligned and combined by the beam combiner 3a and the laser beam that has passed through the collimator lens 2a into a laser beam that travels along one optical axis. To do. Therefore, the laser beams emitted from the three laser light sources 1a, 1b, and 1c are aligned and combined with the laser beams traveling along one optical axis.
  • the scanning mirror 108 projects the laser beam aligned and combined by the beam combining units 3a and 3b onto the screen 107 while deflecting the laser beam to a predetermined angle.
  • the deflection of the laser beam is performed such that the tip of the beam repeatedly scans a predetermined region of the screen 107 in, for example, the horizontal direction and the vertical direction. Accordingly, an image corresponding to the intensity of the R / G / B laser beam emitted from the laser light sources 1a, 1b, and 1c is displayed on the screen 107.
  • the front monitor 109 is a sensor for detecting the laser beam aligned and combined by the beam combining units 3a and 3b, and the role thereof will be described later.
  • control module 120 includes a control circuit 102, a video signal processing circuit 103, a laser light source driving circuit 104, a scanning mirror driving circuit 105, a front monitor signal detecting circuit 106, and the like.
  • the control circuit 102 takes in an image input signal input from the outside and outputs it to the video signal processing circuit 103.
  • the video signal processing circuit 103 performs predetermined processing on the image input signal input via the control circuit 102, separates it into R / G / B color signals, and outputs them to the laser light source driving circuit 104. Further, the video signal processing circuit 103 extracts a horizontal synchronization signal and a vertical synchronization signal from the input image input signal and outputs them to the scanning mirror drive circuit 105.
  • the laser light source drive circuit 104 supplies a light emission drive current to the corresponding laser light sources 1a, 1b, and 1c in accordance with the R / G / B color signal input from the video signal processing circuit 103.
  • the laser light sources 1a, 1b, and 1c emit laser beams having an intensity corresponding to the light emission drive current.
  • laser diodes semiconductor lasers
  • the scanning mirror driving circuit 105 supplies a driving signal for tilting the mirror surface two-dimensionally and repeatedly to the scanning mirror 108 in synchronization with the horizontal synchronizing signal and the vertical synchronizing signal input from the video signal processing circuit 103. .
  • the scanning mirror 108 periodically tilts the mirror surface by a predetermined angle, reflects the laser beams aligned and combined by the beam combining units 3 a and 3 b, and projects them onto the screen 107.
  • the tip of the laser beam repeatedly scans the screen 107 in the horizontal direction and the vertical direction, and an image corresponding to the image input signal is displayed on the screen 107.
  • the front monitor signal detection circuit 106 receives the signal detected by the front monitor 109 and detects the output level of the laser beam emitted from each of the laser light sources 1a, 1b, and 1c.
  • the output level is input to the video signal processing circuit 103, and further, the drive current to the laser light sources 1a, 1b, and 1c is adjusted by the laser light source drive circuit 104.
  • the output level of the laser beam emitted from each of the laser light sources 1a, 1b, and 1c is adjusted to have a predetermined appropriate output.
  • the scanning mirror 108 it is preferable to use a biaxial drive mirror manufactured by MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS Micro Electro Mechanical Systems
  • a driving method of the scanning mirror 108 there are driving methods such as piezoelectric, electrostatic and electromagnetic, and any of these methods may be used.
  • two uniaxially driven mirrors may be prepared and arranged so that the laser beams reflected by the two mirrors can be scanned in directions orthogonal to each other.
  • FIG. 2 is a diagram showing an example of an external perspective view of the scanning image display apparatus 100 according to the first embodiment of the present invention.
  • the scanning image display apparatus 100 includes a laser light source module 110 that is a portion covered with an outer cover 111 and a control module 120 that is a portion covered with a protective cover 114. .
  • the light source unit 101 shown in FIG. 1 is mounted on the base 112 of the portion covered with the outer cover 111.
  • one or a plurality of circuit boards are mounted on the base 112 of the portion covered with the protective cover 114, and the control circuit 102 and the video signal processing circuit 103 shown in FIG.
  • a laser light source driving circuit 104, a front monitor signal detecting circuit 106, a scanning mirror driving circuit 105, and the like are mounted.
  • the base 112 has a U-shaped groove shape, and the laser light source module 110 and the control module 120 are accommodated in the U-shaped groove.
  • Heat sinks 115 for heat dissipation are attached to both sides of the base 112 having a U-shaped groove shape.
  • the side surface of the outer cover 111 of the laser light source module 110 and the side surface of the protective cover 114 of the control module 120 are disposed so as to be in close contact with the inner wall of the U-shaped groove of the base 112.
  • the outer cover 111 is disposed so as to be in close contact with the base 112, and the inside thereof is hermetically sealed.
  • the light source unit 101 is mounted on the base 112 inside the outer cover 111 which is hermetically sealed.
  • a laser emission window 113 is provided on one side surface of the outer cover 111 to allow the R / G / B laser beam emitted from the light source unit 101 to pass therethrough.
  • a transparent sealing glass for maintaining airtightness is fitted.
  • the outer cover 111 is made of aluminum (Al) having a high thermal conductivity.
  • the forming material is not limited to aluminum (Al), and may be another material such as copper (Cu) as long as it has high thermal conductivity.
  • aluminum (Al) is suitable as a material for forming the outer cover 111.
  • the protective cover 114 is formed of a galvanized steel plate or a cold-rolled steel plate (SPCC). Note that the protective cover 114 may be made of aluminum (Al) having a high thermal conductivity and also have high heat dissipation.
  • the heat sink 115 is attached to the base 112, and heat generated from the substrate on which the light source unit 101, the control circuit 102, and the like, which are heating elements (heat sources) are mounted, is radiated to the outside.
  • the heat sink 115 is formed of a material having high thermal conductivity such as aluminum (Al), and has a shape including a plurality of fins in order to increase the surface area.
  • the base 112 may be formed of aluminum (Al) having a high thermal conductivity similarly to the outer cover 111 and the heat sink 115, and may have a heat dissipation function.
  • the R / G / B ratio is changed by the variation of the laser wavelength based on the temperature dependence. A difference appears in the visibility of each color. As a result, a color shift of the image such as the whole screen becomes reddish occurs. Furthermore, it also causes a decrease in the laser output of the laser light sources 1a, 1b, and 1c and a shortened life.
  • the environmental temperature is from minus tens of degrees Celsius if it is left in a cold region and left on a midsummer day. It fluctuates to near plus 100 degrees. That is, the environmental temperature fluctuates much more than the operation guaranteed temperature range of the laser light sources 1a, 1b, and 1c. Therefore, in the light source unit 101 and the scanning image display apparatus 100 including the light source unit 101, the laser light sources 1a, 1b, In order to keep 1c within the guaranteed operating temperature range, a heating / cooling mechanism for adjusting the temperature is required.
  • FIG. 3 is an exploded perspective view showing an example of the laser light source module 110 according to the first embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing an example of the cross-sectional structure of the AA portion of the laser light source module 110 shown in FIG.
  • the light source unit 101 is attached to the upper surface portion of the base 112 via the temperature adjustment element 5, and its periphery is double-covered with the inner cover 12 and the outer cover 111.
  • the temperature adjustment element 5 is composed of a Peltier element or the like, and maintains the temperature of the laser light sources 1a, 1b, and 1c within the guaranteed operating temperature range together with the structure in which the inner cover 12 and the outer cover 111 are provided. To play a role.
  • the laser light sources 1a, 1b, and 1c are disposed on the side surface portion of the holding housing 4 attached to the upper portion of the temperature adjusting element 5, and emit laser beams toward the inside thereof. Accordingly, the collimator lenses 2a, 2b, 2c, the beam coupling portions 3a, 3b, the scanning mirror 108, and the front monitor 109 shown in FIG. 1 are accommodated in the holding housing 4 and are shown in FIG. Not. Note that an opening 4 a for allowing a laser beam emitted from the light source unit 101 to pass through is provided on one side surface of the holding housing 4.
  • the inner cover 12 is disposed inside the outer cover 111 at the upper part of the base 112 so as to cover the light source unit 101 and the temperature adjustment element 5 mounted on the base 112. At this time, the inner cover 12 is disposed so as not to be in direct contact with the light source unit 101 and the temperature adjusting element 5 so that a heat conduction path is not formed.
  • the inner cover 12 includes a top plate 13, a partition grid plate 14, and side plates 15.
  • the top plate 13 is provided so that the peripheral edge is in contact with the side inner wall of the outer cover 111 and the inside of the outer cover 111 is divided vertically. Therefore, the upper part of the light source unit 101 is covered with the top plate 13.
  • the side plate 15 is configured by a plate material that hangs down from the top plate 13, and the plate material is provided so as to be in contact with the base 112 and to surround and cover the side portions of the light source unit 101 and the temperature adjustment element 5.
  • the partition grid plate 14 extends from the top plate 13 substantially vertically upward, and is constituted by a plurality of plate materials that are in contact with the upper inner wall of the outer cover 111, and a plurality of spaces between the top plate 13 and the outer cover 111 are formed in the plurality of plates. Dividing into spaces (four spaces in the example of FIG. 3).
  • the side plate 15 at a position facing the side surface where the opening 4a of the holding housing 4 is provided is an opening for allowing the laser beam emitted from the light source unit 101 and the power supply or control wiring to pass therethrough. 15a is provided. Also, the broken-line rectangle shown in FIG. 4 represents the position of the laser emission window 113 provided on the outer cover 111.
  • the inner cover 12 including the top plate 13, the partition grid plate 14 and the side plate 15 is formed by molding a thermosetting resin having a low thermal conductivity. Furthermore, the edge part of the periphery of the top plate 13 and the partition grid plate 14 shall be shape
  • the inner cover 12 configured as described above has an effect of reducing heat transfer and radiation due to air convection between the light source unit 101 and the outer cover 111. Further, since the space above the top plate 13 inside the outer cover 111 is divided into a plurality of small spaces by the partition grid plate 14, the air flow in the mutual space is blocked. The heat transfer by convection can be further reduced.
  • the inner cover 12 has a shape capable of easily molding a thermosetting resin or the like with two molding dies. Therefore, the inner cover 12 can be manufactured at low cost. Further, the inner cover 12 formed in this way has sufficient hardness to be carried by a handler or the like. For this reason, when assembling the laser light source module 110, there is no problem in workability such that accurate positioning cannot be performed.
  • FIG. 5 is a diagram schematically showing an example of a cross-sectional structure of a laser light source module 110a as a comparative example in the first embodiment of the present invention.
  • the heat insulating material 11 is provided in the outer cover 111 as an equivalent to the inner cover 12. Therefore, here, the heat insulating material 11 is provided so as to be in contact with the inner wall side of the outer cover 111 in a shape that does not contact the holding housing 4 of the light source unit 101 and the laser light sources 1a, 1b, and 1c.
  • the heat insulating material 11 is formed on the inner wall side of the outer cover 111 and then assembled to cover the periphery of the light source unit 101, Since the outer cover 111 is easy to carry, the workability at the time of assembly is improved. However, since the heat insulating material 11 is a soft material as described above, sufficient molding accuracy cannot be obtained. Therefore, in order to ensure that the heat insulating material 11 does not contact the light source unit 101, it is necessary to increase the space between the heat insulating material 11 and the light source unit 101.
  • the thickness of the heat insulating material 11 formed inside the outer cover 111 must be reduced, and the space where the heat insulating material 11 is not formed must be enlarged. Then, the heat insulation effect by the heat insulating material 11 becomes small, and the heat transfer effect by the air convection in the space where the heat insulating material 11 is not formed becomes large.
  • the laser light source module 110 Compared with the comparative example described above, the laser light source module 110 according to the first embodiment shown in FIGS. 3 and 4 employs a heat insulating structure using the inner cover 12 formed of a thermosetting resin or the like. Therefore, good workability at the time of manufacture, such as easy carrying of the inner cover 12 and accurate arrangement, is ensured. Further, in the laser light source module 110, since a heat insulating material that generates dust is not used, dust does not drift in the optical path of the laser beam, so that a clearer image is displayed on the screen 107.
  • the heat insulation structure according to the present embodiment is the heat insulation of the heat insulation structure using the heat insulating material 11 shown in FIG. It was found that there was a thermal insulation effect equal to or greater than the effect.
  • FIG. 1 to FIG. 4 can be applied almost as it is to the embodiments described below. Therefore, in the following description of the embodiments, differences will be mainly described.
  • FIGS. 6 to 12 the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 6 is a view showing an example of an external perspective view of the inner cover 12b used in the second embodiment of the present invention.
  • the structure of the inner cover 12b is different from the inner cover 12 (see FIG. 3) of the first embodiment in the shape of the opening 15a formed in the side plate 15.
  • the opening 15a has a quadrangular shape that is cut from the lower portion of the side plate 15 and the lower portion is open, but in the present embodiment, the opening 15a has a lower portion. Also has a closed quadrangular shape.
  • the inner cover 12 according to the first embodiment can be easily formed by upper and lower punching using two molding dies including the opening 15a.
  • the inner cover 12b in the second embodiment needs to be formed by hollowing the opening 15a in one of the side plates 15 after being formed by vertical punching using two molding dies. Therefore, the manufacturing cost of the inner cover 12b increases.
  • the size of the opening 15a is smaller in the present embodiment than in the first embodiment, the amount of the air inside the inner cover 12b entering and leaving the space outside the side plate 15 is reduced. Therefore, since heat transfer by convection is reduced, the heat insulation effect is improved, and the power supplied to the temperature adjustment element 5 can be reduced correspondingly.
  • FIG. 7 is a view showing an example of an external perspective view of the inner cover 12c used in the third embodiment of the present invention.
  • the structure of the inner cover 12c is different from the inner cover 12 of the first embodiment in the number of partition grid plates 14 provided between the top plate 13 and the outer cover 111. That is, in the first embodiment, the space between the top plate 13 and the outer cover 111 is divided into four spaces by the two partition grid plates 14, but in this embodiment, four partition grid plates are used. 14 is divided into nine spaces.
  • the space between the outer cover 111 and the top plate 13 is divided into a larger number of smaller spaces as compared with the first embodiment, so that air convection is further weakened. Therefore, in this embodiment, since the heat transfer effect by convection becomes smaller, the heat insulation effect is further improved, and the power supplied to the temperature adjustment element 5 can be further reduced.
  • FIG. 8 is a view showing an example of an external perspective view of the inner cover 12d used in the fourth embodiment of the present invention.
  • the structure of the inner cover 12d is the same as that of the first embodiment in that a second top plate 13d and a second partition grid plate 14d are further provided above the top plate 13 and the partition grid plate 14. This is different from the structure of the inner cover 12. That is, in this embodiment, the top plate 13 and the partition grid plate 14 have a two-story structure.
  • the space between the outer cover 111 and the top plate 13 is further divided in the vertical direction by the second top plate 13d. Air convection is even weaker. Therefore, in this embodiment, since the heat transfer effect by convection becomes smaller, the heat insulation effect is improved correspondingly, and the power supplied to the temperature adjustment element 5 can be further reduced.
  • FIG. 9A is an external perspective view of the inner cover 12e used in the fifth embodiment of the present invention
  • FIG. 9B is a diagram showing an example of a cross-sectional structure of the BB portion.
  • the inner cover 12e according to the present embodiment is similar to the inner cover 12d according to the fourth embodiment described above, and the second top plate 13e and the second partition grid plate are provided above the top plate 13 and the partition grid plate 14, respectively. It has a two-story structure with 14e.
  • the first floor portion and the second floor portion are divided into four sections by the partition grid plate 14 and the second partition grid plate 14d, respectively, but in the present embodiment, the first floor portion.
  • the second floor portion is divided into nine sections by a partition grid plate 14 and a second partition grid plate 14e.
  • the 2nd top plate 13e is not formed in the part corresponded to the floor of the center division 30 among nine divisions of the 2nd floor part, and the division of the 1st floor and the 2nd floor is 1 It is one space, a so-called atrium space.
  • the inner cover 12e can be molded as one component by not forming the second top plate 13e in the central section 30.
  • the inner cover 12e shown in FIG. 9 can be molded as a single component by combining left and right dies with two upper and lower dies.
  • the space between the top plate 13 and the outer cover 111 is the second top plate 13e and the second top plate 13e. Therefore, the convection of air is further weakened. Therefore, in the present embodiment, the heat transfer effect due to convection is further reduced, so that the heat insulation effect is improved and the power supplied to the temperature adjustment element 5 can be further reduced.
  • the inner cover 12e may have a structure in which a top plate 13e is also provided in a portion corresponding to the second floor of the central section 30.
  • a top plate 13e is also provided in a portion corresponding to the second floor of the central section 30.
  • FIG. 10 is a view showing an example of an external perspective view of the inner cover 12f used in the sixth embodiment of the present invention.
  • the top plate 13, the partition grid plate 14 and the side plate 15 are in contact with the outer cover 111 or the base 112 between them.
  • the shape of the parts is different.
  • the peripheral portions of the top plate 13, the partition grid plate 14, and the side plate 15 are all in contact with the outer cover 111 or the base 112.
  • convex contact portions 13 c are provided at both ends of each side where the top plate 13 contacts the side inner wall of the outer cover 111.
  • Convex contact portions 15 c are provided at both ends of each side where the side plate 15 contacts the upper surface of the base 112.
  • convex contact portions 14 c are provided at both ends of each side where the plate material constituting the partition grid plate 14 contacts the upper inner wall of the outer cover 111.
  • the area of the portion where the inner cover 12, 12f contacts the outer cover 111 and the base 112, respectively, is smaller in the inner cover 12f according to the present embodiment.
  • the part in which the convex contact parts 13c, 14c, and 15c of the top plate 13, the partition grid plate 14, and the side plate 15 are not provided is connected to the outer cover 111 or the base 112 via the air layer. Will be in touch.
  • the thermal conductivity is larger than the thermal conductivity of air. Therefore, in this embodiment, the heat transfer effect by heat conduction between the inner cover 12f and the outer cover 111 can be reduced. Therefore, in this embodiment, a larger heat insulation effect can be expected than in the case of the first embodiment, and the power supplied to the temperature adjustment element 5 can be further reduced.
  • the convex contact portions 13c, 14c, 15c are provided at both ends of the peripheral edges of the top plate 13, the partition grid plate 14, and the side plate 15, but the laser light sources 1a, 1b, 1c are provided. Any position is possible as long as it is as far as possible. This is because heat can be dispersed in a portion far from the laser light sources 1a, 1b, and 1c by relatively increasing the thermal resistance in the portions close to the laser light sources 1a, 1b, and 1c. This is based on the idea that the influence of the can be reduced.
  • FIG. 11 is a diagram showing an example of an experimental result in which the relationship between the ratio of the length of the contact portion in the inner cover 12f used in the sixth embodiment of the present invention and the temperature of the laser light source is evaluated.
  • the horizontal axis of the graph represents the ratio of the length of the contact portion
  • the vertical axis represents the temperature of the laser light source.
  • the temperature of the laser light source depends on the ratio of the length of the contact portion, and there is an optimum value of the ratio of the length of the contact portion that minimizes the temperature of the laser light source.
  • the ratio of the length of the contact portion is, for example, in the case of the partition grid plate 14 (see FIG. 10), a portion where the partition grid plate 14 is in contact with the inner wall of the outer cover 111 (in this case, through the gap of the air layer). 2), the length of the two contact portions 14c provided on the partition grid plate 14 is 2 ⁇ L2, and the value of 2 ⁇ L2 / L1 is obtained. Such a ratio of the lengths of the contact portions is similarly obtained for the top plate 13 and the side plate 15.
  • the ratio of the length of the contact portion in FIG. 11 includes a portion where the top plate 13, the partition grid plate 14 and the side plate 15 are in contact with the outer cover 111 or the base 112 (a portion which is in contact through a gap in the air layer). ) Is the ratio of the total length of the contact portions 13c, 14c, 15c provided on the top plate 13, the partition grid plate 14 and the side plate 15, respectively.
  • the temperature of the laser light source is a temperature measured in the vicinity of the laser light sources 1a, 1b, and 1c when the power supplied to the temperature adjusting element 5 is constant under a high temperature environment. Therefore, when the heat insulating effect of the inner cover 12f is large, the temperature of the laser light source is low, and when the heat insulating effect of the inner cover 12f is small, the temperature of the laser light source is high. Accordingly, in the graph of FIG. 11, in the range where the ratio of the length of the contact portion is about 0 to 1/3, the heat insulation effect increases as the ratio increases, and the ratio of the length of the contact portion becomes about 1/3. A range of 1 indicates that the heat insulation effect decreases as the ratio increases.
  • the ratio of the length of the contact portion is about 1/3 or less, the area of the gap portion between the inner cover 12f and the outer cover 111 is increased, so that the amount of heat transfer due to air convection increases. As a result, the heat insulation effect decreases as the length ratio of the contact portion decreases.
  • the ratio of the length of the contact portion is about 1/3 or more, the contact portion between the inner cover 12f and the outer cover 111 becomes large, and thus the heat transfer amount due to heat conduction at the contact portion is large. Become. As a result, the heat insulation effect decreases as the length ratio of the contact portion increases.
  • the maximum heat insulating effect can be obtained when the ratio of the length of the contact portion is about 1/3. Therefore, if the top plate 13, the partition grid plate 14 and the side plate 15 are provided with two contact portions 13c, 14c, 15c on each side of the peripheral edge where they contact the outer cover 111 or the base 112, each contact portion 13c, It can be said that the lengths of 14c and 15c are preferably about 1/6 of the length of each side of the peripheral edge in order to maximize the heat insulating effect.
  • the lengths of the contact portions 13c, 14c, and 15c provided on the partition grid plate 14, the top plate 13, and the side plate 15 may all be equal.
  • the length L2 (see FIG. 10) of the contact portion 14c provided on the upper part of the partition grid plate 14 that contacts the inner wall of the upper portion of the outer cover 111 is set on the upper surface of the base 112. It is preferable that the length is longer than the length L3 (see FIG. 10) of the contact portion 15c provided at the lower portion of the side plate 15 in contact, that is, L2> L3.
  • the convex contact portions 13c, 14c, and 15c provided on the inner cover 12f are in the shape of a rectangular parallelepiped, but may have a triangular or spherical shape. There may be.
  • the contact area per contact portion 13c, 14c, 15c can be reduced, so that both heat conduction by contact and convection through the air layer can be suppressed, and effective heat insulation is achieved. It becomes possible.
  • the convex contact portions 13c, 14c, and 15c provided on the inner cover 12f may be formed of a material and a shape that can be press-fitted into the inner wall of the outer cover 111. In that case, in the assembly process of the scanning image display apparatus 100, the inner cover 12f can be positioned and fixed by press-fitting the inner cover 12f into the outer cover 111. As a result, an attachment member such as an adhesive becomes unnecessary, and the production efficiency is improved.
  • FIG. 12 is an exploded perspective view showing an example of a laser light source module 110g according to the seventh embodiment of the present invention.
  • the shapes of the outer cover 111g and the base 112g are different.
  • the outer cover 111g is composed only of a top plate and does not have a side plate that covers the side surface of the inner cover 12b.
  • the inner cover 12b is housed in a rectangular tube portion extending upward from the base portion of the base 112g, and is mounted on the base via the temperature adjusting element 5 (not shown in FIG. 12). It covers the light source unit 101 attached to the 112 g base.
  • the outer cover 111g can be formed into a simple flat plate shape. Therefore, in the assembly process of the laser light source module 110g, the light source unit 101 is included in the cylindrical portion of the base 112g. The inner cover 12 may be attached, and a flat outer cover 111g may be attached from the top. Therefore, the assembly process is simplified. Needless to say, the present embodiment can provide the same effects as those of the first embodiment.
  • the present invention is not limited to the embodiment described above, and includes various modifications.
  • the space between the side plate 15 on the side surface portion of the inner cover 12 and the outer cover 111 is Although it is not divided into a plurality of spaces, it may be divided into a plurality of spaces by using a material similar to the partition grid plate 14.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ光源モジュール(110)は、温度調整素子(5)を介して基台(112)上部に配設された光源部(101)が内カバー(12)で覆われ、さらに外カバー(111)で密封封止されて構成される。このとき、内カバー(12)の天板(13)は、外カバー(111)の内部を上下に分割し、光源部(101)の上方部を覆うように設けられ、側板(15)は、光源部(101)の側方部を覆うように設けられる。また、仕切格子板(14)は、天板(13)と外カバー(111)との間の空間に設けられ、その空間を複数の空間に分割する。

Description

レーザ光源モジュールおよび走査型画像表示装置
 本発明は、画像表示に好適なレーザ光源モジュールおよびそのレーザ光源モジュールを用いた走査型画像表示装置に関する。
 近年、手軽に持ち歩きすることができ、大きなスクリーンに画像を投射することが可能な小型プロジェクタが盛んに開発されている。例えば、ノートパソコンに接続可能な小型プロジェクタや、プロジェクタを内蔵したビデオカメラなどは、すでに市販されている状況にある。この種のプロジェクタでは、例えば、複数のレーザ光源から出射されたレーザビームを1つの光軸上に整列させ、その整列させたレーザビームを水平方向および垂直方向に繰り返し走査させることによって、所望の画像をスクリーンに投射することが行われている。
 このようなプロジェクタは、走査型画像表示装置とも呼ばれ、画像の高輝度化が容易であることから自動車などに搭載され、ナビゲーション情報などをフロントガラスに投射するヘッドアップディスプレイとしての応用が検討されている。自動車などに搭載される場合には、その走査型画像表示装置(プロジェクタ)には、厳しい環境温度に耐え得る性能が求められる。
 例えば、特許文献1には、光波長多重通信用光モジュールに適用された環境温度に対する温度補償技術の例が開示されている。その光モジュールでは、その主要構成要素である導波路チップは、ペルチェ素子などによって所定の温度に保たれるとともに、該導波路チップおよびペルチェ素子は、断熱材で覆われた上でパッケージに収容されている。そのため、導波路チップは、外界の温度変化の影響を受けにくくなり、温度制御のためにペルチェ素子などに供給する電力を低減させることができる。
 また、特許文献2には、光通信の信号用光源などに用いられるレーザダイオードを備えたレーザモジュールにおいて、熱遮蔽を考慮したレーザダイオードの冷却技術の例が開示されている。そのレーザモジュールでは、熱源となるレーザダイオードは、サーモモジュール(ペルチェ素子)などで温度制御されるベースに取り付けられ、外側のパッケージに接触しないような熱遮蔽材によって囲まれている。従って、この例では、環境からの熱の流入が熱遮蔽材によって低減されるので、レーザダイオード冷却のためにサーモモジュールに供給する電力を低減することができる。
特開2000-147277号公報 特開2003-142767号公報
 特許文献1の例では、熱遮蔽対象の部品とパッケージとの間の空間には、発泡系の断熱材が充填されている。一般に、断熱材は、発泡系材料にせよ繊維系材料にせよ非常に柔らかい素材であるので、特定の形状に正確に成形するには適しておらず、また、特定の位置に精度よく配置することも難しい。そのため、断熱材は、熱遮蔽対象の部品をやや圧迫するように配置されるか、あるいは、圧迫しないように配置されたとしても、製品の組み立て工程では、その断熱材が他の部品に接触し易い。その結果として、部品の破損や、電子部品である場合には、短絡、漏電、静電破壊などにつながる。
 すなわち、柔らかくて成形しにくい素材である断熱材は、とくに電子部品を熱遮蔽する部材としては、取り扱いにくい、言い換えれば、製品組み立て時の作業性がよくないという問題点を有している。
 特許文献2には、レーザモジュールが熱伝導率の大きい金属の熱遮蔽材で囲まれ、その熱遮蔽材がサーモモジュールで冷却される例が示されている。この例では、柔らかくて成形しにくい素材である断熱材は用いられていない。従って、その熱遮熱材では、成形や配置精度の確保が容易になるので、断熱材が有する製品組み立て時の作業性の悪さの問題点は解決される。しかしながら、この場合には、パッケージと熱遮蔽材との間に大きな空気層が生じるため、空気の対流のために断熱性能が低下する。その結果、冷却のためにサーモモジュールに供給する電力が増加することとなる。
 本発明は、以上のような従来技術の問題点に鑑み、製品組み立て時の良好な作業性を確保することができ、断熱性能に優れ、冷却のための電力を低減することが可能なレーザ光源モジュールおよび走査型画像表示装置を提供することを目的とする。
 本発明に係るレーザ光源モジュールは、レーザビームを出射する光源部と、前記光源部を搭載する基台と、前記基台に搭載された光源部を覆うように前記基台上に配設される外カバーと、前記光源部と前記外カバーとの間の空間に配設されて前記光源部を覆う内カバーと、を備え、前記内カバーは、当該内カバーから延設されて前記外カバーの内壁に接し、当該内カバーと前記外カバーとの間の空間を複数の空間に分割する仕切部材を有してなることを特徴とする。
 本発明によれば、製品組み立て時の良好な作業性を確保することができ、断熱性能に優れ、冷却のための電力を低減することが可能なレーザ光源モジュールおよび走査型画像表示装置が提供される。
本発明の第1の実施形態に係る走査型画像表示装置の機能構成の例を示した図。 本発明の第1の実施形態に係る走査型画像表示装置の外観斜視図の例を示した図。 本発明の第1の実施形態に係るレーザ光源モジュールの分解斜視図の例を示した図。 図3に示されたレーザ光源モジュールのA-A部分の断面構造の例を模式的に示した図。 本発明の第1の実施形態において比較例となるレーザ光源モジュールの断面構造の例を模式的に示した図。 本発明の第2の実施形態で用いられる内カバーの外観斜視図の例を示した図。 本発明の第3の実施形態で用いられる内カバーの外観斜視図の例を示した図。 本発明の第4の実施形態で用いられる内カバーの外観斜視図の例を示した図。 本発明の第5の実施形態で用いられる内カバーの(a)外観斜視図、および、(b)B-B部分の断面構造の例を示した図。 本発明の第6の実施形態で用いられる内カバーの外観斜視図の例を示した図。 本発明の第6の実施形態で用いられる内カバーにおける接触部の長さの比率とレーザ光源の温度との関係を評価した実験結果の例を示した図。 本発明の第7の実施形態に係るレーザ光源モジュールの分解斜視図の例を示した図。
 以下、本発明を実施するための形態(以下「実施形態」という)について、図面を参照して詳細に説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る走査型画像表示装置100の機能構成の例を示した図である。図1に示すように、走査型画像表示装置100は、スクリーン107に画像を表示するためのレーザビームを出射するレーザ光源モジュール110と、外部から入力される画像入力信号に応じて、レーザ光源モジュール110に含まれる光源部101を制御する制御モジュール120と、によって構成される。
 ここで、レーザ光源モジュール110は、光源部101を含んで構成され、また、光源部101は、赤/緑/青(以下、R/G/Bと記載)の3色に対応する3つのレーザ光源1a,1b,1cと、3つのコリメータレンズ2a,2b,2cと、2つのビーム結合部3a,3bと、走査ミラー108と、フロントモニタ109と、を含んで構成される。
 光源部101において、コリメータレンズ2a,2b,2cは、それぞれに対応するレーザ光源1a,1b,1cから発せられたレーザビームを略平行光にする。また、ビーム結合部3aは、コリメータレンズ2bを通過したレーザビームと、コリメータレンズ2cを通過したレーザビームと、を1つの光軸に沿って進むレーザビームに整列させ、結合する。同様に、ビーム結合部3bは、ビーム結合部3aによって整列、結合させられたレーザビームと、コリメータレンズ2aを通過したレーザビームと、を1つの光軸に沿って進むレーザビームに整列させ、結合する。よって、3つのレーザ光源1a,1b,1cから発せられたレーザビームは、1つの光軸に沿って進むレーザビームに整列、結合させられる。
 走査ミラー108は、ビーム結合部3a,3bによって整列、結合させられたレーザビームを所定の角度に偏向させながらスクリーン107へ投射する。このレーザビームの偏向は、そのビームの先端がスクリーン107の所定の領域を、例えば、水平方向および垂直方向に繰り返し走査するように行われる。従って、スクリーン107上には、レーザ光源1a,1b,1cから発せられたR/G/Bのレーザビームの強度に応じた画像が表示される。
 フロントモニタ109は、ビーム結合部3a,3bによって整列、結合させられたレーザビームを検出するセンサであり、その役割については後記する。
 さらに、図1に示すように、制御モジュール120は、制御回路102、ビデオ信号処理回路103、レーザ光源駆動回路104、走査ミラー駆動回路105、フロントモニタ信号検出回路106などを含んで構成される。
 制御回路102は、外部から入力される画像入力信号を取り込んで、ビデオ信号処理回路103に出力する。ビデオ信号処理回路103は、制御回路102を介して入力される画像入力信号に対して所定の処理を施した後にR/G/Bの色信号に分離してレーザ光源駆動回路104に出力する。さらに、ビデオ信号処理回路103は、入力された画像入力信号の中から水平同期信号および垂直同期信号を抽出して、走査ミラー駆動回路105へ出力する。
 レーザ光源駆動回路104は、ビデオ信号処理回路103から入力されるR/G/Bの色信号に応じて、それぞれ対応するレーザ光源1a,1b,1cに対し、発光駆動電流を供給する。その結果、レーザ光源1a,1b,1cは、その発光駆動電流に応じた強度のレーザビームを出射する。なお、レーザ光源1a,1b,1cとしては、例えば、レーザダイオード(半導体レーザ)などを用いることができる。
 走査ミラー駆動回路105は、ビデオ信号処理回路103から入力される水平同期信号および垂直同期信号に同期して走査ミラー108に対し、ミラー面を2次元的に反復して傾斜させる駆動信号を供給する。その結果、走査ミラー108は、ミラー面を所定の角度だけ周期的に反復傾斜させて、ビーム結合部3a,3bによって整列、結合されたレーザビームを反射させ、スクリーン107上に投射する。このとき、レーザビームの先端は、スクリーン107上を水平方向および垂直方向に繰り返して走査することとなり、スクリーン107上には、画像入力信号に応じた画像が表示される。
 フロントモニタ信号検出回路106は、フロントモニタ109によって検出された信号を入力し、レーザ光源1a,1b,1cのそれぞれから出射されたレーザビームの出力レベルを検出する。そして、その出力レベルは、ビデオ信号処理回路103に入力され、さらに、レーザ光源駆動回路104によってレーザ光源1a,1b,1cへの駆動電流が調整される。その結果、レーザ光源1a,1b,1cのそれぞれから出射されるレーザビームの出力レベルは、所定の適正な出力になるように調整される。
 ここで、走査ミラー108としてはMEMS(Micro Electro Mechanical Systems)技術によって製作された2軸駆動ミラーを用いるのが好ましい。なお、走査ミラー108の駆動方式としては、圧電、静電、電磁などの駆動方式があるが、そのいずれの方式を用いてもよい。
 また、走査ミラー108としては、1軸駆動のミラーを2つ用意し、その2つのミラーによって反射されるレーザビームが互いに直交する方向に走査可能なように配置されたものを用いてもよい。
 図2は、本発明の第1の実施形態に係る走査型画像表示装置100の外観斜視図の例を示した図である。図2に示すように、走査型画像表示装置100は、外カバー111で覆われた部分であるレーザ光源モジュール110と、保護カバー114で覆われた部分である制御モジュール120と、によって構成される。そして、外カバー111で覆われた部分の基台112上には、図1に示された光源部101が搭載されている。また、保護カバー114で覆われた部分の基台112上には、1枚または複数の回路基板が搭載され、その回路基板には、図1に示された制御回路102、ビデオ信号処理回路103、レーザ光源駆動回路104、フロントモニタ信号検出回路106、走査ミラー駆動回路105などが実装されている。
 ここで、基台112は、U字溝の形状をしており、レーザ光源モジュール110および制御モジュール120は、そのU字溝の中に収容される。そして、U字溝形状をした基台112の両側には、放熱のためのヒートシンク115が取り付けられている。また、レーザ光源モジュール110の外カバー111の側面および制御モジュール120の保護カバー114の側面は、基台112のU字溝の内壁に密着するように配設される。
 このとき、外カバー111は、基台112上に密着するように配設され、その内部は気密封止される。そして、気密封止された外カバー111の内部の基台112上には、光源部101が搭載される。そのため、外カバー111の一側面には、光源部101から出射されるR/G/Bのレーザビームを通過させるためのレーザ出射窓113が設けられているが、そのレーザ出射窓113には、気密維持のための透明の封止ガラスが嵌め込まれている。
 また、外カバー111は、熱伝導率の高いアルミニウム(Al)で形成されているものとする。ただし、その形成材料はアルミニウム(Al)に限定されず、高熱伝導率を有するものであれば、例えば、銅(Cu)など、他の材料であってもよい。ただし、外カバー111を所望の形状に加工するための加工性を考慮すると、外カバー111の形成材料としてはアルミニウム(Al)が好適である。
 また、保護カバー114は、亜鉛鋼板または冷間圧延鋼板 (SPCC)で形成されているものとする。なお、保護カバー114を、熱伝導率の高いアルミニウム(Al)で形成し、高い放熱性を併せ持つものとしてもよい。
 前記したように、基台112には、ヒートシンク115が取り付けられており、発熱体(熱源)である光源部101や制御回路102などが実装された基板から発せられる熱を外部に放熱する。なお、ヒートシンク115は、アルミニウム(Al)などの高熱伝導率の材料で形成され、その表面積を大とするため複数のフィンを備えた形状となっている。また、基台112も外カバー111やヒートシンク115と同様に熱伝導率の高いアルミニウム(Al)で形成し、放熱機能を併せ持つものとしてもよい。
 ところで、走査型画像表示装置100の使用時の温度上昇によって、レーザ光源1a,1b,1cの温度がその動作保証温度範囲を外れると、温度依存に基づくレーザ波長の変動によってR/G/Bの各色の視感度に差が現れる。その結果、画面全体が赤っぽくなったりするなどの画像の色ずれが生じる。さらには、レーザ光源1a,1b,1cのレーザ出力の低下や寿命の短命化の要因ともなる。
 また、走査型画像表示装置100を、自動車などに搭載するヘッドアップディスプレイとして使用する場合には、寒冷地での放置および真夏日での放置を考慮すれば、環境温度は摂氏マイナス数10度からプラス100度近くまで変動する。すなわち、環境温度は、レーザ光源1a,1b,1cの動作保証温度範囲よりもはるかに大きく変動するため、光源部101およびそれを備えた走査型画像表示装置100においては、レーザ光源1a,1b,1cをその動作保証温度範囲内に収めるために、温度を調節するための加熱・冷却機構が必要となる。
 図3は、本発明の第1の実施形態に係るレーザ光源モジュール110の分解斜視図の例を示した図である。また、図4は、図3に示されたレーザ光源モジュール110のA-A部分の断面構造の例を模式的に示した図である。図3および図4に示すように、光源部101は、温度調整素子5を介して基台112の上面部に取り付けられ、その周囲は、内カバー12および外カバー111で二重に覆われる。このとき、温度調整素子5は、ペルチェ素子などによって構成され、前記の内カバー12および外カバー111を設けた構造とともに、レーザ光源1a,1b,1cの温度を、その動作保証温度範囲内に維持する役割を果たす。
 レーザ光源1a,1b,1cは、温度調整素子5の上部に取り付けられた保持筐体4の側面部に配設され、その内部に向けてレーザビームを出射する。従って、図1に示されたコリメータレンズ2a,2b,2c、ビーム結合部3a,3b、走査ミラー108およびフロントモニタ109は、保持筐体4の内部に収容されており、図3には示されていない。なお、保持筐体4の一側面部には、光源部101から出射されるレーザビームを通過させるための開口部4aが設けられている。
 内カバー12は、基台112に搭載された光源部101および温度調整素子5を覆うように、基台112の上部で外カバー111の内部に配設される。このとき、内カバー12は、光源部101および温度調整素子5に直接には接しないように配設され、熱伝導経路が形成されないようにする。
 さらに、図3および図4に示されているように、内カバー12は、天板13、仕切格子板14および側板15によって構成される。天板13は、周縁部が外カバー111の側部内壁に接し、外カバー111の内部を上下に分割するように設けられる。従って、光源部101の上方部は、天板13によって覆われた状態となる。また、側板15は、天板13から下垂する板材によって構成され、その板材は、基台112に接するとともに、光源部101および温度調整素子5の側方部を取り巻いて覆うように設けられる。また、仕切格子板14は、天板13から上方略垂直に延設され、外カバー111の上部内壁に接する複数の板材によって構成され、天板13と外カバー111との間の空間を複数の空間(図3の例では4つの空間)に分割する。
 なお、保持筐体4の開口部4aが設けられた側面に対面する位置の側板15には、光源部101から出射されるレーザビームや、電源用または制御用の配線を通過させるための開口部15aが設けられている。また、図4に示された破線の長方形は、外カバー111に設けられたレーザ出射窓113の位置を表している。
 また、本実施形態では、天板13、仕切格子板14および側板15からなる内カバー12は、熱伝導率の小さい熱硬化性樹脂などを成形したもので構成されるものとする。さらに、その天板13および仕切格子板14の周縁の端部は、外カバー111の内壁または基台112の上面に接触する形状に成形されるものとする。
 以上のように構成された内カバー12は、光源部101と外カバー111との間の空気の対流による熱伝達および放射を低減させる効果を奏する。また、外カバー111の内部の天板13よりも上部の空間が仕切格子板14によって複数の小さな空間に分割されているので、その相互の空間での空気の流れが遮断されることになるので、対流による熱伝達をさらに低減することができる。
 また、本実施形態では、内カバー12は、熱硬化性樹脂などを2つの成形金型によって容易に成形することが可能な形状となっている。従って、内カバー12を低コストで製造することができる。また、こうして成形された内カバー12は、ハンドラなどで持ち運んだりするのに十分な硬さを有している。そのため、レーザ光源モジュール110を組み立てるとき、精度のよい位置合わせができなくなるなど作業性上の問題は生じない。
 図5は、本発明の第1の実施形態において比較例となるレーザ光源モジュール110aの断面構造の例を模式的に示した図である。図5に示す比較例では、外カバー111の中には、内カバー12に相当するものとして断熱材11が設けられている。そのため、ここでは、断熱材11は、光源部101の保持筐体4およびレーザ光源1a,1b,1cに接触しない形状で、外カバー111の内壁側に接するように設けられるとしている。
 このような構造を有するレーザ光源モジュール110aでは、その組立手順にもよるが、断熱材11を外カバー111の内壁側に形成した上で、光源部101の周囲を覆うように組み立てるとすれば、外カバー111は持ち運びし易くなるので、その組立時の作業性は向上する。しかしながら、前記したように断熱材11は柔らかい素材であるため、十分な成形精度を得ることができない。そのため、断熱材11を光源部101に確実に接触しないようにするためには、断熱材11と光源部101との間の空間を大きくしておく必要がある。
 その場合には、外カバー111の内部に形成される断熱材11の厚みを減らし、断熱材11が形成されていない空間を大きくせざるを得ない。とすると、断熱材11による断熱効果は小さくなるとともに、断熱材11が形成されていない空間での空気の対流による熱伝達効果が大きくなる。
 また、この比較例では、断熱材11として発泡系などの材料が用いられるため、その成形時の端面の削りかすなどから塵埃が生じ、その塵埃がレーザビームの光路に漂うと、スクリーン107上に暗部となって表示される。とくに、断熱材11が光源部101など他の部材に接触するようなことがある場合には、振動などによって摩耗粉が生じる。そのため、この比較例では塵埃を防ぐ必要があった。
 以上の比較例に比べると、図3および図4に示された第1の実施形態に係るレーザ光源モジュール110では、熱硬化性樹脂などで成形された内カバー12を用いた断熱構造が採用されているため、内カバー12の持ち運び易さや精度のよい配置など、製造時の良好な作業性が確保される。また、そのレーザ光源モジュール110では、塵埃を生じる断熱材が使用されていないことから、レーザビームの光路に塵埃が漂うことがないので、スクリーン107上には、より明瞭な画像が表示される。
 さらに、本実施形態では、外カバー111と天板13との間の空間が仕切格子板14によって複数の小空間に分割されるので、その小空間内での空気の対流が弱くなる。従って、本実施形態では、とくに対流による熱伝達効果が小さくなるので、その分、断熱効果が向上する。なお、本発明の発明者らの評価実験によれば、本実施形態に係る断熱構造、すなわち、内カバー12を用いた断熱構造は、図5に示した断熱材11を用いた断熱構造の断熱効果と比較して、同等以上の断熱効果があることが分かった。
 このようにして、断熱効果が改善されると、環境の温度が大きく変動した場合でも、レーザ光源1a,1b,1cの温度変動を抑制することが容易になる。すなわち、レーザ光源1a,1b,1cの温度をその動作範囲の温度に保つために温度調整素子5に供給する電力を低減させることができる。
 続いて、図6~図12を参照しつつ、本発明の他の実施形態について説明する。なお、図1~図4の説明は、以下に説明する実施形態にも、ほぼそのまま適用することができるので、以下の実施形態の説明では、主として相違点について説明する。なお、以下の図6~図12の説明では、第1の実施形態と同じ構成要素には同じ符号を付し、その説明を省略する。
(第2の実施形態)
 図6は、本発明の第2の実施形態で用いられる内カバー12bの外観斜視図の例を示した図である。この内カバー12bの構造は、第1の実施形態の内カバー12(図3参照)とは、側板15に形成された開口部15aの形状が相違している。第1の実施形態では、開口部15aは、側板15の下方部から切り込まれ、その下方部が開放された四角形状をしているが、本実施形態では、開口部15aは、その下方部も閉鎖された四角形状をしている。
 従って、第1の実施形態における内カバー12は、開口部15aも含め、2つの成形金型を用いた上下抜きによって容易に成形することができる。一方、第2の実施形態における内カバー12bは、2つの成形金型を用いた上下抜きによって成形した後、側板15の1つに開口部15aをくりぬいて成形する必要がある。従って、内カバー12bの製造コストは増加することになる。
 一方において、本実施形態では、第1の実施形態に比べ、開口部15aの大きさが小さくなることから、内カバー12bの内部の空気が側板15の外側の空間に出入りする量が減少する。そのため、対流による熱伝達が低減されるので、断熱効果が向上し、その分、温度調整素子5に供給する電力を低減させることができる。
(第3の実施形態)
 図7は、本発明の第3の実施形態で用いられる内カバー12cの外観斜視図の例を示した図である。この内カバー12cの構造は、第1の実施形態の内カバー12とは、天板13と外カバー111との間に設けられている仕切格子板14の数が相違している。すなわち、第1の実施形態では、天板13と外カバー111との間の空間は、2つの仕切格子板14によって4つの空間に分割されているが、本実施形態では、4つの仕切格子板14によって9つの空間に分割されている。
 従って、本実施形態では、第1の実施形態と比較して、外カバー111と天板13との間の空間がより多数のより小さな空間に分割されるので、空気の対流がさらに弱くなる。従って、本実施形態では、対流による熱伝達効果がより小さくなるので、その分、断熱効果がさらに向上し、温度調整素子5に供給する電力をさらに低減させることができる。
(第4の実施形態)
 図8は、本発明の第4の実施形態で用いられる内カバー12dの外観斜視図の例を示した図である。この内カバー12dの構造は、天板13および仕切格子板14の上部に、さらに、第2の天板13dおよび第2の仕切格子板14dが設けられている点で、第1の実施形態に係る内カバー12の構造と相違している。すなわち、本実施形態では、天板13および仕切格子板14は、2階建て構造となっている。
 従って、本実施形態では、第1の実施形態と比較すると、外カバー111と天板13との間の空間がさらに第2の天板13dによって縦方向にも分割されたものとなっているので、空気の対流はさらに弱くなる。従って、本実施形態では、対流による熱伝達効果がより小さくなるので、その分、断熱効果が向上し、温度調整素子5に供給する電力をさらに低減させることができる。
(第5の実施形態)
 図9は、本発明の第5の実施形態で用いられる内カバー12eの(a)外観斜視図、および、(b)B-B部分の断面構造の例を示した図である。本実施形態に係る内カバー12eは、前記した第4の実施形態に係る内カバー12dと同様に、天板13および仕切格子板14の上部に第2の天板13eおよび第2の仕切格子板14eが設けられた2階建て構造をしている。
 第4の実施形態では、1階部分および2階部分は、仕切格子板14および第2の仕切格子板14dによってそれぞれ4つずつの区画に分割されているが、本実施形態では、1階部分および2階部分は、仕切格子板14および第2の仕切格子板14eによってそれぞれ9つの区画に分割されている。そして、本実施形態では、2階部分の9つの区画のうち中央区画30の床に相当する部分には、第2の天板13eが形成されておらず、1階と2階の区画が1つの空間、いわば、吹き抜けの空間となっている。
 ここで、中央区画30の2階の床に相当する部分にも天板13eを設けた構造の場合、その内カバー12eを成形するためには、内カバー12eを2つの部品に分割する必要がある。その場合、製品組立工程が1手間増加することになるので、製品の製造コストが上昇する。そこで、本実施形態では、中央区画30に第2の天板13eを形成しないようにすることによって、内カバー12eを1つの部品として成形することを可能にしたものである。ちなみに、図9に示した内カバー12eは、上下抜きの2つの金型に左右抜きの金型を組み合わせれば、1つの部品としての成形が可能である。
 以上のような本実施形態に係る内カバー12eを第3の実施形態に係る内カバー12cと比較すると、天板13と外カバー111との間の空間は、第2の天板13eおよび第2の仕切格子板14eによってさらに細分化されたものとなっているので、空気の対流はさらに弱くなる。従って、本実施形態では、対流による熱伝達効果がさらに小さくなるので、その分、断熱効果が向上し、温度調整素子5に供給する電力をさらに低減させることができる。
 なお、以上の効果と同様の効果を得るには、内カバー12eは、中央区画30の2階の床に相当する部分にも天板13eを設けた構造であってもよい。ただし、その場合には、前記したとおり、2つの部品に分けて成形しなければならないので、製造コストが上昇することになる。
(第6の実施形態)
 図10は、本発明の第6の実施形態で用いられる内カバー12fの外観斜視図の例を示した図である。この内カバー12fの構造を第1の実施形態に係る内カバー12の構造と比較すると、両者間で、天板13、仕切格子板14および側板15のそれぞれが外カバー111または基台112に接する部分の形状が相違している。
 すなわち、第1の実施形態に係る内カバー12では、天板13、仕切格子板14および側板15の周縁部は、その全部が外カバー111または基台112に接触する。一方、本実施形態では、天板13が外カバー111の側部内壁に接する各辺の両端部には、凸状の接触部13cが設けられている。また、側板15が基台112の上面に接する各辺の両端部には、凸状の接触部15cが設けられている。また、仕切格子板14を構成する板材が外カバー111の上部内壁に接する各辺の両端部には、凸状の接触部14cが設けられている。
 従って、内カバー12,12fがそれぞれ外カバー111および基台112と接触する部分の面積は、本実施形態に係る内カバー12fのほうが小さい。そして、本実施形態では、天板13、仕切格子板14および側板15の凸状の接触部13c,14c,15cが設けられていない部分は、空気層を介して外カバー111または基台112と接することになる。
 従って、内カバー12,12fを、熱伝導率の小さい熱硬化性樹脂などで成形したとしても、その熱伝導率は空気の熱伝導率よりも大きい。そのため、本実施形態では、内カバー12fと外カバー111との間の熱伝導による熱伝達効果を低減させることができる。よって、本実施形態では、第1の実施形態の場合よりも大きな断熱効果を期待することができ、温度調整素子5に供給する電力をさらに低減させることができる。
 なお、以上の説明では、凸状の接触部13c,14c,15cは、天板13、仕切格子板14および側板15のそれぞれの周縁の両端部に設けるとしているが、レーザ光源1a,1b,1cからできるだけ遠い位置であれば、どこの位置でもよい。これは、レーザ光源1a,1b,1cから近い部分の熱抵抗を相対的に大きくすれば、熱を遠い部分に分散させることができるので、レーザ光源1a,1b,1cが内カバー12fから受ける熱の影響を低減させることができる、という考えに基づくものである。
 ところで、ここまでの説明においては、天板13、仕切格子板14および側板15の接触部13c,14c,15cが設けられていない部分と外カバー111または基台112との間隙の空気層で生じる対流(この場合、放射も含み、以下同様)の効果については考慮されていない。以下、図11を参照して、その対流による熱伝達の効果について説明する。
 図11は、本発明の第6の実施形態で用いられる内カバー12fにおける接触部の長さの比率とレーザ光源の温度との関係を評価した実験結果の例を示した図である。図11において、グラフの横軸は、接触部の長さの比率、縦軸は、レーザ光源の温度を表す。このグラフから容易に分かるように、レーザ光源の温度は、接触部の長さの比率に依存し、レーザ光源の温度を最小にするような接触部の長さの比率の最適値が存在する。
 ここで、接触部の長さの比率は、例えば、仕切格子板14の場合(図10を参照)、仕切格子板14が外カバー111の内壁と接する部分(この場合、空気層の間隙を介して接する部分を含む)の長さをL1とし、仕切格子板14に設けられた2つの接触部14cの長さを2×L2としたとき、2×L2/L1の値として求められる。このような接触部の長さの比率は、天板13および側板15についても同様に求められる。
 そこで、図11でいう接触部の長さの比率とは、天板13、仕切格子板14および側板15が外カバー111または基台112と接する部分(空気層の間隙を介して接する部分を含む)の長さの合計に対する、天板13、仕切格子板14および側板15のそれぞれに設けられた接触部13c,14c,15cの長さの合計の比のことをいう。
 また、レーザ光源の温度は、環境が高温の条件下で、温度調整素子5に供給する電力を一定としたときに、レーザ光源1a,1b,1c近傍の温度を測定したものである。そのため、内カバー12fの断熱効果が大きい場合には、レーザ光源の温度は低くなり、内カバー12fの断熱効果が小さい場合には、レーザ光源の温度は高くなる。従って、図11のグラフは、接触部の長さの比率が0~1/3程度の範囲では、その比率が大きくなるほど断熱効果が大きくなり、接触部の長さの比率が1/3程度~1の範囲では、その比率が大きくなるほど断熱効果が低下することを表している。
 すなわち、接触部の長さの比率が1/3程度以下である場合には、内カバー12fと外カバー111との間隙部分の面積が広くなるため、空気の対流による熱伝達量が大きくなる。その結果、接触部の長さの比率が小さくなるほど断熱効果が低下する。一方、接触部の長さの比率が1/3程度以上である場合には、内カバー12fと外カバー111との間の接触部分が大きくなるため、接触部分における熱伝導による熱伝達量が大きくなる。その結果、接触部の長さの比率が大きくなるほど断熱効果が低下する。
 以上のように、本実施形態では、接触部の長さの比率を1/3程度にした場合、最大の断熱効果が得られることがわかる。従って、天板13、仕切格子板14および側板15が外カバー111または基台112と接する周縁の各辺に2つずつの接触部13c,14c,15cを設けるとすれば、各接触部13c,14c,15cの長さは、前記周縁の各辺の長さの1/6程度にするのが、断熱効果を最大にする上で好適であるといえる。
 なお、仕切格子板14、天板13および側板15のそれぞれに設けられた接触部13c,14c,15cのそれぞれの長さは、すべて等しいものとしてもよい。しかしながら、接触部13c,14c,15cのうち、外カバー111の上部の内壁に接する仕切格子板14の上部に設けられる接触部14cの長さL2(図10参照)を、基台112の上面に接する側板15の下部に設けられた接触部15cの長さL3(図10参照)よりも長くする、すなわち、L2>L3とするのが好ましい。これは、外カバー111および内カバー12fの内部では、空気の対流によって上部ほど圧力が高くなり、下部ほど圧力が低くなることから、上部ほど対流による熱の伝達効果が助長され、下部ほど対流による熱の伝達効果がそがれる、という考えに基づく断熱効果向上対策である。
 すなわち、仕切格子板14の上部に設けられる接触部14cの長さL2を大きくし、側板15の下部に設けられた接触部15cの長さL3を小さくすることは、対流による熱伝達効果が大きい部位での空気層を介した接触面積を減少させ、対流による熱伝達効果が小さい部位での空気層を介した接触面積を増加させることを意味する。よって、差し引きすれば、対流による熱伝達量を減少させることができ、断熱性能が向上する。
 なお、以上の第6の実施形態の説明においては、内カバー12fに設けられる凸状の接触部13c,14c,15cは、直方体の形状であるとしているが、三角突起形状や球突起形状などであってもよい。三角突起形状の場合、1つの接触部13c,14c,15c当たりの接触面積を小さくすることができるので、接触による熱伝導と空気層を介しての対流の双方を抑制でき、効果的な断熱が可能となる。
 また、内カバー12fに設けられる凸状の接触部13c,14c,15cを、外カバー111の内壁に圧入可能な材料および形状で成形してもよい。その場合、走査型画像表示装置100の組立工程では、内カバー12fを外カバー111に圧入することによって、位置決めし、固定することができる。その結果、接着剤などの取付け部材が不必要になるので、その生産効率が向上する。
(第7の実施形態)
 図12は、本発明の第7の実施形態に係るレーザ光源モジュール110gの分解斜視図の例を示した図である。本実施形態に係るレーザ光源モジュール110gの構造を第1の実施形態に係るレーザ光源モジュール110(図3参照)の構造と比較すると、外カバー111gおよび基台112gの形状が相違している。すなわち、本実施形態では、外カバー111gは、天板だけで構成され、内カバー12bの側面を覆う側板を有していない。代わりに、内カバー12bは、基台112gの基部から上部に延設された四角形状の筒部の中に収容され、温度調整素子5(図12には図示されていない)を介して基台112gの基部に取り付けられた光源部101を覆うものとなっている。
 以上のような構造を有するレーザ光源モジュール110gでは、外カバー111gを単純な平板状にすることができる、従って、レーザ光源モジュール110gの組立工程では、基台112gの筒部の中に光源部101および内カバー12を取り付け、さらに、その上部から平板状の外カバー111gを取り付ければよい。よって、組立工程が簡単化される。なお、本実施形態でも、第1の実施形態と同様の効果が得られることは、いうまでもない。
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、第1~第7の実施形態においては、内カバー12の側面部の側板15と外カバー111(ただし、第7の実施形態では、基台112gの筒部)との間の空間は、複数の空間にとくに分割はされていないが、仕切格子板14に類似するものを用いて複数の空間に分割してもよい。
 また、以上に説明した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を加えることも可能である。
 1a,1b,1c レーザ光源
 2a,2b,2c コリメータレンズ
 3a,3b    ビーム結合部
 4   保持筐体
 4a  開口部
 5   温度調整素子
 11  断熱材
 12,12b,12c,12d,12e,12f  内カバー
 13,13d,13e  天板
 14,14d,14e  仕切格子板(仕切板)
 15  側板
 13c,14c,15c 接触部
 15a 開口部
 100 走査型画像表示装置
 110,110a,110g レーザ光源モジュール
 120 制御モジュール
 101 光源部
 102 制御回路
 103 ビデオ信号処理回路
 104 レーザ光源駆動回路
 105 走査ミラー駆動回路
 106 フロントモニタ信号検出回路
 107 スクリーン
 109 フロントモニタ
 111,111g 外カバー
 112,112g 基台
 113 レーザ出射窓
 114 保護カバー
 115 ヒートシンク
 120 制御モジュール

Claims (9)

  1.  レーザビームを出射する光源部と、前記光源部を搭載する基台と、前記基台に搭載された光源部を覆うように前記基台上に配設される外カバーと、前記光源部と前記外カバーとの間の空間に配設されて前記光源部を覆う内カバーと、を備え、
     前記内カバーは、当該内カバーから延設されて前記外カバーの内壁に接し、当該内カバーと前記外カバーとの間の空間を複数の空間に分割する仕切部材を有してなること
     を特徴とするレーザ光源モジュール。
  2.  前記内カバーは、
     周縁部が前記外カバーの側部内壁に接して前記外カバーの内部を上下に分割するように設けられ、前記光源部の上方部を覆う天板と、
     前記天板から下垂して前記基台に接するように設けられ、前記光源部の側方部を覆う側板と、
     前記天板から上方に延出して前記外カバーの上部内壁に接するように設けられ、前記天板と前記外カバーとの間の空間を複数の空間に分割する格子状の仕切板と、
     を含んでなること
     を特徴とする請求項1に記載のレーザ光源モジュール。
  3.  前記内カバーは、
     前記格子状の仕切板によって分割された前記天板と前記外カバーとの間の複数の空間のうち、その全部または一部の空間をさらに上下に分割する第2の天板を含んでなること
     を特徴とする請求項2に記載のレーザ光源モジュール。
  4.  前記内カバーは、
     当該内カバーが前記外カバーの内壁または前記基台と接する部分の複数の箇所に凸状の接触部を有してなること
     を特徴とする請求項1に記載のレーザ光源モジュール。
  5.  前記内カバーには、
     当該内カバーが前記外カバーの内壁または前記基台に接する部分の総延長の略1/3に相当する部分に、前記凸状の接触部が複数個、分散して設けられていること
     を特徴とする請求項4に記載のレーザ光源モジュール。
  6.  前記外カバーの上部内壁に接する前記内カバー部分に設けられた前記凸状の接触部の1つあたりの大きさは、前記基台上面に接する前記内カバー部分に設けられた前記凸状の接触部の1つあたりの大きさよりも大きいこと
     を特徴とする請求項4に記載のレーザ光源モジュール。
  7.  レーザビームを出射する光源部が収容されたレーザ光源モジュールと、
     外部から入力される画像信号を処理するビデオ信号処理回路およびレーザビーム偏向用の走査ミラーを駆動する走査ミラー駆動回路を含む回路基板が収容された制御モジュールと、を含んで構成され、
     前記レーザ光源モジュールは、
     前記光源部を搭載した基台と、前記基台に搭載された光源部を覆うように前記基台上に配設される外カバーと、前記光源部と前記外カバーとの間の空間に配設されて前記光源部を覆う内カバーと、を備え、
     前記内カバーは、当該内カバーから延設され、前記外カバーの内壁に接して当該内カバーと前記外カバーとの間の空間を複数の空間に分割する仕切部材を有してなること
     を特徴とする走査型画像表示装置。
  8.  前記内カバーは、
     周縁部が前記外カバーの側部内壁に接して前記外カバーの内部を上下に分割するように設けられ、前記光源部の上方部を覆う天板と、
     前記天板から下垂して前記基台に接するように設けられ、前記光源部の側方部を覆う側板と、
     前記天板から上方に延出して前記外カバーの上部内壁に接するように設けられ、前記天板と前記外カバーとの間の空間を複数の空間に分割する格子状の仕切板と、
     を含んでなること
     を特徴とする請求項7に記載の走査型画像表示装置。
  9.  前記内カバーは、
     前記格子状の仕切板によって分割された前記天板と前記外カバーとの間の複数の空間のうち、その全部または一部の空間をさらに上下に分割する第2の天板を含んでなること
     を特徴とする請求項8に記載の走査型画像表示装置。
PCT/JP2015/051132 2014-01-28 2015-01-16 レーザ光源モジュールおよび走査型画像表示装置 WO2015115214A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/106,897 US10209610B2 (en) 2014-01-28 2015-01-16 Laser light source module and scanning image display apparatus
EP15743893.8A EP3101338A4 (en) 2014-01-28 2015-01-16 Laser light source module and scanning image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013487 2014-01-28
JP2014013487A JP6238768B2 (ja) 2014-01-28 2014-01-28 レーザ光源モジュールおよび走査型画像表示装置

Publications (1)

Publication Number Publication Date
WO2015115214A1 true WO2015115214A1 (ja) 2015-08-06

Family

ID=53756791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051132 WO2015115214A1 (ja) 2014-01-28 2015-01-16 レーザ光源モジュールおよび走査型画像表示装置

Country Status (4)

Country Link
US (1) US10209610B2 (ja)
EP (1) EP3101338A4 (ja)
JP (1) JP6238768B2 (ja)
WO (1) WO2015115214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478007A (zh) * 2016-07-07 2019-03-15 索尼公司 投影仪装置和控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2205418T5 (pl) 2008-04-14 2021-05-31 Keter Plastic Ltd. Sztuczny panel, sposób jego wytwarzania oraz wyroby meblowe z niego wykonane
EP3125223B1 (en) * 2014-03-28 2019-08-14 JVC Kenwood Corporation Image display device and image display adjustment method
JP6602543B2 (ja) * 2015-02-25 2019-11-06 株式会社日立エルジーデータストレージ 光モジュール、及び走査型画像表示装置
JP6295981B2 (ja) * 2015-02-25 2018-03-20 株式会社Jvcケンウッド 画像描画装置、ヘッドアップディスプレイ及び画像輝度調整方法
WO2018173583A1 (ja) * 2017-03-24 2018-09-27 ソニー株式会社 照明光学系および画像投影装置
JP7208463B2 (ja) * 2018-05-15 2023-01-19 ミツミ電機株式会社 制御装置、光走査装置、表示装置及び制御方法
JP7124465B2 (ja) * 2018-06-04 2022-08-24 住友電気工業株式会社 ミラー駆動機構および光モジュール
US10855981B2 (en) * 2018-09-07 2020-12-01 Trw Automotive U.S. Llc Testing module for fixed focus camera module evaluation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975210A (ja) * 1995-09-13 1997-03-25 Matsushita Electric Ind Co Ltd 調理鍋およびこの調理鍋を使用する加熱調理器
JP2000147277A (ja) 1998-11-06 2000-05-26 Furukawa Electric Co Ltd:The 光モジュール
JP2003142767A (ja) 2001-10-31 2003-05-16 Furukawa Electric Co Ltd:The レーザモジュール
JP2013190594A (ja) * 2012-03-14 2013-09-26 Hitachi Media Electoronics Co Ltd 光モジュールおよび走査型画像表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981573A (en) * 1975-07-29 1976-09-21 Motiva, Ltd. Audio-visual slide projection system
US6856475B2 (en) 2001-10-31 2005-02-15 The Furukawa Electric Co., Ltd Optical module having temperature adjustment features
JP4088188B2 (ja) * 2003-04-07 2008-05-21 セイコーエプソン株式会社 プロジェクタ
JP2011013400A (ja) * 2009-07-01 2011-01-20 Funai Electric Co Ltd プロジェクタ
JP5633724B2 (ja) 2009-12-25 2014-12-03 日本精機株式会社 照明装置
JP2012108397A (ja) 2010-11-19 2012-06-07 Nippon Seiki Co Ltd 表示装置
WO2013046914A1 (ja) * 2011-09-27 2013-04-04 日本電気株式会社 マルチプロジェクションシステム
JP6004706B2 (ja) 2012-04-04 2016-10-12 三菱電機株式会社 表示装置及びこれを備えたヘッドアップディスプレイシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975210A (ja) * 1995-09-13 1997-03-25 Matsushita Electric Ind Co Ltd 調理鍋およびこの調理鍋を使用する加熱調理器
JP2000147277A (ja) 1998-11-06 2000-05-26 Furukawa Electric Co Ltd:The 光モジュール
JP2003142767A (ja) 2001-10-31 2003-05-16 Furukawa Electric Co Ltd:The レーザモジュール
JP2013190594A (ja) * 2012-03-14 2013-09-26 Hitachi Media Electoronics Co Ltd 光モジュールおよび走査型画像表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101338A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478007A (zh) * 2016-07-07 2019-03-15 索尼公司 投影仪装置和控制方法
US11487193B2 (en) 2016-07-07 2022-11-01 Sony Corporation Projector device and control method

Also Published As

Publication number Publication date
US10209610B2 (en) 2019-02-19
JP2015141286A (ja) 2015-08-03
EP3101338A1 (en) 2016-12-07
US20160342076A1 (en) 2016-11-24
JP6238768B2 (ja) 2017-11-29
EP3101338A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6238768B2 (ja) レーザ光源モジュールおよび走査型画像表示装置
US10148920B2 (en) Optical module and scanning-type image display device
CN106896495B (zh) 扫描式图像显示装置
US20140293430A1 (en) Projector and head-up display device
US9210388B2 (en) Laser source module and scanning image display device equipped with such module
US20140293239A1 (en) Projector and head-up display device
JP2013190594A (ja) 光モジュールおよび走査型画像表示装置
JP7136097B2 (ja) 光モジュール
JP7173017B2 (ja) 光モジュール
JP2015138114A (ja) 走査型表示装置、投影装置
JP2014194501A (ja) プロジェクタ及びヘッドアップディスプレイ装置
JP5914254B2 (ja) 光モジュールおよび走査型画像表示装置
WO2016121407A1 (ja) 光モジュール、及び走査型画像表示装置
EP3299886B1 (en) Projection display device
JP2015052675A (ja) 光モジュールおよび走査型画像表示装置
JP2009217216A (ja) 実装ケース入り電気光学装置、及びそれを備える電子機器
JP6394113B2 (ja) プロジェクタおよびヘッドアップディスプレイ装置
JP6350005B2 (ja) プロジェクタおよびヘッドアップディスプレイ装置
JP2014170148A (ja) 光モジュールおよび走査型画像表示装置
JP2014115443A (ja) 光源装置
JP2014194505A (ja) プロジェクタ、及び、ヘッドアップディスプレイ装置
JP2014182316A (ja) 光モジュールおよび走査型画像表示装置
JP2008129234A (ja) 実装ケース、電気光学装置並びに電子機器
JP2017142882A (ja) 光源装置および画像表示装置
JP2017041563A (ja) 光学装置および投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15106897

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015743893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743893

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE