WO2015115056A1 - Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer - Google Patents

Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer Download PDF

Info

Publication number
WO2015115056A1
WO2015115056A1 PCT/JP2015/000225 JP2015000225W WO2015115056A1 WO 2015115056 A1 WO2015115056 A1 WO 2015115056A1 JP 2015000225 W JP2015000225 W JP 2015000225W WO 2015115056 A1 WO2015115056 A1 WO 2015115056A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromotive
layer
thermoelectric conversion
conversion element
electromotive layer
Prior art date
Application number
PCT/JP2015/000225
Other languages
French (fr)
Japanese (ja)
Inventor
悠真 岩崎
滋 河本
石田 真彦
明宏 桐原
和紀 井原
広瀬 賢二
染谷 浩子
明日華 福江
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015559807A priority Critical patent/JP6565689B2/en
Publication of WO2015115056A1 publication Critical patent/WO2015115056A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a thermoelectric conversion element, a thermoelectric conversion element module, and a method of manufacturing a thermoelectric conversion element, and more particularly, to a thermoelectric conversion element, a thermoelectric conversion element module, and a method of manufacturing a thermoelectric conversion element using a spin Seebeck effect and an inverse spin Hall effect. .
  • thermoelectric conversion elements are increasing. The reason is that heat is the most common energy source that can be obtained from any medium such as body temperature, sunlight, engine, industrial waste heat. In the future, thermoelectric conversion elements are expected to become increasingly important for the purpose of improving the efficiency of energy use in a low-carbon society and for applications such as power supply to ubiquitous terminals and sensors.
  • the spin Seebeck effect is a phenomenon in which, when a temperature gradient is applied to a magnetic material, a flow (spin flow) of spin angular momentum of electrons occurs in a direction parallel to the temperature gradient (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 describes a spin Seebeck effect in a NiFe film that is a ferromagnetic material
  • Patent Document 2 describes a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 : YIG), a metal film, and the like. The spin Seebeck effect at the interface is described.
  • the spin current generated by the above-described temperature gradient can be converted into a current by an inverse spin Hall effect (Inverse Spin-Hall effect) (see Patent Documents 1 and 2).
  • the reverse spin Hall effect is a phenomenon in which a spin current is converted into a current by spin orbit coupling of matter.
  • the reverse spin Hall effect is remarkably exhibited in a substance having a large spin orbit interaction, such as platinum (Pt) or gold (Au).
  • Spin thermoelectric conversion which is a technology that uses the spin Seebeck effect and the inverse spin Hall effect to convert a temperature gradient into an electric current through spin, has attracted attention.
  • An example of a new thermoelectric conversion element using such a spin thermoelectric conversion technique is described in Patent Document 1.
  • FIG. 14 shows a configuration of a related thermal spin current conversion element 10 described in Patent Document 1.
  • the related thermal spin current conversion element 10 has a configuration in which a thermal spin current conversion unit 12 and a Pt electrode 16 are provided on the surface of a sapphire substrate 11.
  • the thermal spin current converter 12 is formed by sequentially depositing a Ta film 13, a PdPtMn film 14, and a NiFe film 15. Then, by providing terminals 17-1 and 17-2 at both ends of the Pt electrode 16, a thermocouple using a spin current, that is, a thermo spin couple is formed.
  • the heat spin current generated at this time is injected into the Pt electrode 16, a potential difference is generated between both ends of the Pt electrode 16 due to the reverse spin Hall effect. By detecting this potential difference via the terminals 17-1 and 17-2, it is possible to estimate the temperature of the heat source to be measured.
  • Patent Document 2 describes a thermoelectric conversion element that achieves higher thermoelectromotive force output.
  • FIG. 15 the structure of the related thermoelectric conversion element 20 described in patent document 2 is shown.
  • the related thermoelectric conversion element 20 includes a magnetic body 21, an electromotive body 22, a conductor 23, and output terminals 24 and 25.
  • the magnetic body 21 is a material having at least one magnetization direction.
  • a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 : YIG) is preferably used.
  • a metal material such as gold (Au), platinum (Pt), and palladium (Pd) having a relatively large spin orbit interaction, or an alloy material thereof is used.
  • a plurality of electromotive bodies 22 are provided on a surface substantially parallel to the magnetization direction of the magnetic body 21, and have a longitudinal direction substantially perpendicular to the magnetization direction of the magnetic body 21.
  • a plurality of electromotive bodies 22 are arranged substantially parallel to each other.
  • the conductor 23 connects one end portion in the extending direction of the electromotive body 22 and the other end portion of the adjacent electromotive body 22. That is, the electromotive bodies 22 and the conductors 23 are alternately and continuously connected to each other to form a folded shape (zigzag meander shape) as shown in FIG. Note that the electromotive force generation efficiency of the electromotive body 22 is larger than the electromotive force generation efficiency of the conductor 23.
  • thermoelectric conversion element 20 when a temperature gradient is applied in the vertical direction with respect to the magnetization direction acting in the plane direction of the magnetic body 21, the spin in the temperature gradient direction is caused by the spin Seebeck effect of the magnetic body 21. Current (spin current) is induced. The spin current generated in the magnetic body 21 is converted into a current flowing in the extending direction of the electromotive body 22 and the conductor 23 that are perpendicular to the magnetization direction by the spin Hall effect of the electromotive bodies 22 connected in series with each other. Is done.
  • the electromotive body 22 since the electromotive body 22 has higher electromotive force generation efficiency than the conductor 23, a current flows in one direction from the output terminal 24 toward the output terminal 25.
  • thermoelectric conversion element 20 since the electromotive force can be effectively added from the output terminal 24 toward the output terminal 25, space-saving and high output can be achieved without increasing the size of the thermoelectric conversion element 20. It can be removed.
  • JP 2009-130070 ([0045] to [0047], FIG. 10) JP 2012-109367 A ([0014] to [0040], FIG. 2)
  • the electromotive body 22 and the conductor 23 are connected in series. However, since the directions of the electromotive forces are opposite, the equivalent circuit of the related thermoelectric conversion element 20 is used. Is as shown in FIG. As can be seen from this equivalent circuit, the electromotive force generated in the conductor 23 cancels the electromotive force generated in the electromotive body 22, and thus the electromotive force cannot be increased efficiently.
  • thermoelectric conversion element has a problem that it is difficult to efficiently increase the electromotive force.
  • An object of the present invention is a thermoelectric conversion element, a thermoelectric conversion element module, and a thermoelectric conversion element that solve the problem that it is difficult to efficiently increase electromotive force in the thermoelectric conversion element, which is the above-described problem. It is to provide a manufacturing method.
  • the thermoelectric conversion element of the present invention includes a magnetic layer that exhibits a spin Seebeck effect, and a first electromotive layer in which the direction of an electromotive force determined by the direction of a magnetic field and the direction of a temperature gradient in the magnetic layer is a first direction.
  • the first electromotive force direction so that the first electromotive force direction is opposite to the first direction, the second electromotive layer being the second direction, and the first direction end point and the second direction end point being continuous.
  • the electromotive layer and the second electromotive layer are electrically connected to each other, and the first electromotive layer and the second electromotive layer are connected to the magnetic layer, respectively. And a direction substantially perpendicular to the second direction and the second direction.
  • the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer is the first direction on one surface of the magnetic layer that exhibits the spin Seebeck effect.
  • a first electromotive layer is laminated, and a second electromotive layer having a second direction in which the direction of electromotive force is opposite to the first direction is laminated on the other surface of the magnetic layer.
  • the first electromotive layer and the second electromotive layer are electrically connected so that the starting point in the direction of and the end point in the second direction are continuous.
  • thermoelectric conversion element thermoelectric conversion element module, and thermoelectric conversion element manufacturing method of the present invention
  • the electromotive force can be increased efficiently.
  • thermoelectric conversion element which concerns on the 1st Embodiment of this invention. It is the schematic which shows another structure of the thermoelectric conversion element which concerns on the 1st Embodiment of this invention. It is the schematic which shows another structure of the thermoelectric conversion element which concerns on the 1st Embodiment of this invention. It is sectional drawing which shows the structure of the outline of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention. It is a top view which shows the schematic structure of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention. It is an equivalent circuit schematic of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention.
  • thermoelectric conversion unit element which concerns on the 3rd Embodiment of this invention. It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 3rd Embodiment of this invention. It is an equivalent circuit schematic of the thermoelectric conversion element module which concerns on the 3rd Embodiment of this invention. It is the schematic which shows the structure of the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention. It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 4th Embodiment of this invention.
  • thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention
  • Comprising It is sectional drawing of a sample.
  • thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a top view. It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a x direction side view. It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a y direction side view. It is a perspective view which shows the structure of a related thermal spin current conversion element. It is a perspective view which shows the structure of the related thermoelectric conversion element. It is an equivalent circuit diagram of a related thermoelectric conversion element.
  • FIG. 1 is a schematic diagram showing a configuration of a thermoelectric conversion element 100 according to the first embodiment of the present invention.
  • the thermoelectric conversion element 100 includes a magnetic layer 110, a first electromotive layer 120, a second electromotive layer 130, and a connection part 140.
  • the magnetic layer 110 is made of a magnetic material that exhibits a spin Seebeck effect.
  • This magnetic material may be a ferromagnetic metal or a magnetic insulator.
  • the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer 110 is the first direction (arrow A in the figure).
  • the second electromotive layer 130 has a second direction in which the direction of the electromotive force is opposite to the first direction (arrow B in the figure).
  • the connecting portion 140 electrically connects the first electromotive layer 120 and the second electromotive layer 130 so that the start point in the first direction and the end point in the second direction are continuous. Connecting.
  • the first electromotive layer 120 and the second electromotive layer 130 are connected to the magnetic layer 110, respectively, and are spaced apart in a direction substantially perpendicular to the first direction and the second direction.
  • thermoelectric conversion element 100 of the present embodiment With such a configuration, according to the thermoelectric conversion element 100 of the present embodiment, the electromotive forces generated in the first electromotive layer 120 and the second electromotive layer 130 are added. Therefore, the electromotive force in the thermoelectric conversion element 100 can be increased efficiently.
  • the first electromotive layer 120 includes a first metal material
  • the second electromotive layer 130 includes a second metal material
  • the first metal material and the second metal material are spin-orbit mutually. It can be set as the structure from which the sign of an effect
  • the first metal material is iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), silver ( Any of Ag), iridium (Ir), platinum (Pt), gold (Au), and bismuth (Bi) can be used.
  • the second metal material is any of titanium (Ti), chromium (Cr), molybdenum (Mo), tungsten (W), and tantalum (Ta). Can be used.
  • FIG. 1 shows a configuration in which the thermoelectric conversion element 100 includes the first electromotive layer 120 and the second electromotive layer 130, each including two layers in total, the number of electromotive layers is limited to two. First, it is possible to further increase the generated electromotive force by connecting a plurality of electromotive layers.
  • the structure of the thermoelectric conversion element 101 provided with three electromotive layers is shown in FIG.
  • the second electromotive layer included in the thermoelectric conversion element 101 includes an upper second electromotive layer 131 and a lower second electromotive layer 132 that are disposed with the first electromotive layer 120 interposed therebetween. It can be set as the structure containing.
  • the connection unit includes a first connection unit 141 and a second connection unit 142.
  • first connecting portion 141 is connected to the first electromotive layer 120 and the upper second layer so that the start point in the first direction (arrow A) and the end point in the second direction (arrow B) are continuous.
  • the electromotive layer 131 is connected.
  • the second connecting portion 142 is connected to the first electromotive layer 120 and the lower second so that the end point in the first direction (arrow A) and the start point in the second direction (arrow B) are continuous.
  • the electromotive layer 132 is connected.
  • the first electromotive layer 120 may also include an upper first electromotive layer 121 and a lower first electromotive layer 122 that are connected to each other.
  • the first connection portion 141 connects the upper first electromotive layer 121 and the upper second electromotive layer 131 so that the start point in the first direction and the end point in the second direction are continuous.
  • the second connecting portion 142 connects the lower first electromotive layer 122 and the lower second electromotive layer 132 so that the end point in the first direction and the start point in the second direction are continuous. To do.
  • thermoelectric conversion element module including a plurality of thermoelectric conversion elements 100 including the magnetic layer 110, the first electromotive layer 120, the second electromotive layer 130, and the connection portion 140 can be configured.
  • at least two of the plurality of first electromotive layers 120 included in each of the plurality of thermoelectric conversion elements 100 are connected to each other, and similarly, at least two layers of the plurality of second electromotive layers 130 are connected to each other.
  • a connected configuration can be adopted.
  • the electromotive force generated in each electromotive layer is added, so that the electromotive force in the thermoelectric conversion element 101 can be further increased efficiently.
  • the first electromotive layer 120 and the second electromotive layer 130 may be stacked with the magnetic layer 110 interposed therebetween.
  • the thermoelectric conversion element 100 may include a substrate on which the magnetic layer 110 is stacked. That is, the magnetic layer 110 can include a first magnetic layer stacked on one surface of the substrate and a second magnetic layer stacked on the other surface of the substrate. .
  • the first electromotive layer 120 can be connected to the first magnetic layer
  • the second electromotive layer 130 can be connected to the second magnetic layer.
  • the configuration in which the electromotive layer and the magnetic layer are stacked with the substrate interposed therebetween facilitates the manufacture of the thermoelectric conversion element, and can increase the mechanical strength of the thermoelectric conversion element.
  • thermoelectric conversion element Next, the manufacturing method of the thermoelectric conversion element according to the present embodiment will be described.
  • thermoelectric conversion element of the present embodiment first, the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer is first on one surface of the magnetic layer that exhibits the spin Seebeck effect. A first electromotive layer having a direction is laminated. A second electromotive layer having a second direction in which the direction of the electromotive force is opposite to the first direction is laminated on the other surface of the magnetic layer. Then, the first electromotive layer and the second electromotive layer are electrically connected so that the start point in the first direction and the end point in the second direction are continuous. Thus, the thermoelectric conversion element is completed.
  • thermoelectric conversion element 100 can have a configuration in which the first electromotive layer 120 and the second electromotive layer 130 are stacked with the magnetic layer 110 interposed therebetween.
  • the present invention is not limited to this, and similarly to the related thermoelectric conversion element 20 (FIG. 15) described in Patent Document 2, the first electromotive layer 120 and the second electromotive layer 130 are each formed of the magnetic layer 110. It is good also as a structure arrange
  • FIG. 4A and 4B are schematic views showing the configuration of the thermoelectric conversion element 200 according to the second embodiment of the present invention, where FIG. 4A is a cross-sectional view and FIG. 4B is a top view.
  • the thermoelectric conversion element 200 includes a magnetic layer 210, two types of electromotive layers 221 and 222 having different signs of spin-orbit interaction, and a connection part 230 that connects the two types of electromotive layers 221 and 222. It is the structure laminated
  • the materials constituting the electromotive layers 221 and 222 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f
  • a metal material having an orbit or an alloy material containing them can be used.
  • a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
  • thermoelectric conversion element 200 is characterized in that the sign of the spin orbit interaction between the electromotive layer 221 and the electromotive layer 222 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 221, a material having a sign of spin orbit interaction different from that of platinum (Pt), such as tungsten (W), is used for the electromotive layer 222.
  • Pt platinum
  • W tungsten
  • the thickness of the electromotive layer 221 and the electromotive layer 222 is set to be at least the spin diffusion length of the metal material.
  • the thickness is desirable to set the thickness to about 10 nanometers (nm) or more.
  • the magnetic layer 210 is made of a material that exhibits a spin Seebeck effect.
  • the material constituting the magnetic layer 210 may be a ferromagnetic metal or a magnetic insulator.
  • As the ferromagnetic metal NiFe, CoFe, CoFeB, or the like can be used.
  • magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons.
  • the thickness of the magnetic layer 210 can be set according to the use of thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers ( ⁇ m).
  • the connecting portion 230 can be made of any material as long as it can electrically connect the electromotive layer 221 and the electromotive layer 222.
  • a metal material used for the electromotive layer 221 or the electromotive layer 222 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used.
  • the connection part 230 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connecting portion 230, the higher the electromotive force and output generated by the thermoelectric conversion element 200 of the present embodiment.
  • silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
  • the electromotive layer 221 and the electromotive layer 222 are connected by the connecting portion 230, the electromotive layers are electrically joined in series. That is, the electromotive force generated in the electromotive layer 221 and the electromotive layer 222 is connected so as to be added.
  • FIG. 5 shows an equivalent circuit of the thermoelectric conversion element 200.
  • the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above.
  • the thermoelectric conversion element 200 according to the present embodiment is connected so that the electromotive forces generated in the electromotive layer 221 and the electromotive layer 222 are added, as shown in FIG. Therefore, a larger electromotive force (V) can be extracted from the terminals 241 and 242 connected to the electromotive layer.
  • thermoelectric conversion element 200 of the present embodiment a larger output power (W) than that of the related thermoelectric conversion element 20 can be obtained. This point will be described below.
  • thermoelectric conversion element 20 In the related thermoelectric conversion element 20 shown in FIG. 16, resistance exists in each of the electromotive body 22 and the conductor 23, and this becomes an internal resistance when power is extracted from the related thermoelectric conversion element 20.
  • V the open-circuit voltage of the thermoelectric conversion element 20
  • r the internal resistance
  • the related thermoelectric conversion element 20 has a folded shape (zigzag meander shape), so that the unit area per unit area is larger than that in the case where the electromotive member is laminated on the entire surface of the magnetic material.
  • the electromotive force (V) can be improved.
  • the related thermoelectric conversion element 20 cannot improve the output power (W) per unit area.
  • thermoelectric conversion element 200 of the present embodiment has a configuration in which the magnetic layer 210 and the two types of electromotive layers 221 and 222 are stacked on each other, the internal resistance r can be reduced. As a result, the output power (W) per unit area can be increased as compared with the related thermoelectric conversion element 20.
  • thermoelectric conversion element 200 of the present embodiment is configured to be connected so that the electromotive forces generated in the electromotive layer 221 and the electromotive layer 222 are added, so that the electromotive force (V ) Can be increased. Furthermore, according to the thermoelectric conversion element 200 of the present embodiment, the cross-sectional area A of the electromotive layers 221 and 222 can be increased to reduce the internal resistance r. Therefore, the output power (W) per unit area can be increased.
  • FIG. 6 is a schematic diagram showing a configuration of a thermoelectric conversion unit element 300 according to the third embodiment of the present invention.
  • a plurality of thermoelectric conversion unit elements 300 are stacked to form a thermoelectric conversion element module 1000 as shown in FIG.
  • thermoelectric conversion unit element 300 has a configuration in which an electromotive layer 321 is formed on one surface of a magnetic layer 310, an electromotive layer 322 is formed on the other surface, and a connection portion 330 is provided on one side surface.
  • the materials constituting the electromotive layers 321 and 322 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f
  • a metal material having an orbit or an alloy material containing them can be used.
  • a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
  • thermoelectric conversion unit element 300 is characterized in that the sign of the spin orbit interaction between the electromotive layer 321 and the electromotive layer 322 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 321, a material having a different sign of spin orbit interaction from platinum (Pt), such as tungsten (W), is used for the electromotive layer 322.
  • Pt platinum
  • W tungsten
  • the thickness of the electromotive layer 321 and the electromotive layer 322 is set to at least the spin diffusion length of the metal material.
  • the thickness is desirable to set the thickness to about 10 nanometers (nm) or more.
  • the magnetic layer 310 is made of a material that exhibits a spin Seebeck effect.
  • the material constituting the magnetic layer 310 may be a ferromagnetic metal or a magnetic insulator.
  • As the ferromagnetic metal NiFe, CoFe, CoFeB, or the like can be used.
  • magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons.
  • the thickness of the magnetic layer 310 can be set according to the application of the thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers ( ⁇ m).
  • the connecting portion 330 can be made of any material as long as it can electrically connect the electromotive layer 321 and the electromotive layer 322.
  • a metal material used for the electromotive layer 321 or the electromotive layer 322 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used.
  • the connection part 330 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connecting portion 330, the higher the electromotive force and output generated by the thermoelectric conversion unit element 300 of the present embodiment.
  • silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
  • thermoelectric conversion unit elements 300 are stacked as shown in FIG. 7, and the electromotive layers 321 and the electromotive layers 322 of the thermoelectric conversion unit elements 300 are physically brought into electrical contact with each other.
  • the electromotive layers are electrically joined in series. That is, it connects so that the electromotive force produced
  • FIG. 8 shows an equivalent circuit of the thermoelectric conversion element module 1000.
  • the electromotive layers 321 and the electromotive layers 322 are in physical contact with each other and connected in parallel, and the two electromotive layers connected in parallel are connected in series via the connection portion 330.
  • the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above.
  • the thermoelectric conversion element module 1000 according to the present embodiment is connected such that the electromotive forces generated in the electromotive layers 321 and the electromotive layers 322 are added, as shown in FIG. Therefore, a larger electromotive force (V) and output power (W) can be extracted from the terminals 1010 and 1020 connected to the electromotive layer.
  • thermoelectric conversion element module 1000 is configured to be connected so that the electromotive forces generated in the electromotive layers 321 and the electromotive layers 322 are added.
  • the increase in power (V) can be achieved.
  • thermoelectric conversion element module 1000 of the present embodiment it is possible to increase the cross-sectional area A of the electromotive layers 321 and 322 and reduce the internal resistance r. Therefore, the output power (W) per unit area can be improved.
  • thermoelectric conversion unit element 300 and the thermoelectric conversion element module 1000 Next, a method for manufacturing the thermoelectric conversion unit element 300 and the thermoelectric conversion element module 1000 according to the present embodiment will be described with reference to FIGS.
  • thermoelectric conversion unit element 300 In the method of manufacturing the thermoelectric conversion unit element 300 according to the present embodiment, first, the electromotive layer 321 and the electromotive layer 322 are formed on both surfaces of the magnetic layer 310. Next, in order to establish conduction between the electromotive layer 321 and the electromotive layer 322, a connection portion 330 is formed on one side of the electromotive layers 321 and 322. Thus, the thermoelectric conversion unit element 300 is completed.
  • thermoelectric conversion unit modules 300 are stacked so that the electromotive layers 321 and the electromotive layers 322 are in physical contact with each other to be conductive, thereby forming the thermoelectric conversion element module 1000 shown in FIG.
  • each electromotive layer 321 and 322 is connected in series, an electromotive force can be taken out from the terminal 1010 and the terminal 1020.
  • the magnetic body film which comprises the magnetic body layer 310 of the thermoelectric conversion unit element 300 needs to be magnetized, the magnetization process for it may be implemented in any process.
  • FIG. 9 is a schematic diagram showing a configuration of a thermoelectric conversion unit element 400 according to the fourth embodiment of the present invention.
  • a plurality of thermoelectric conversion unit elements 400 are stacked to form a thermoelectric conversion element module 2000 as shown in FIG.
  • the thermoelectric conversion unit element 400 has a substrate 440 on which a magnetic material is grown, and magnetic layers 410 are formed on both sides of the substrate 440. Then, the electromotive layer 421 is formed on the magnetic layer 410 formed on one surface of the substrate 440, and the electromotive layer 422 is formed on the magnetic layer 410 formed on the other surface of the substrate 440. It is the structure which provided the connection part 430 in the part.
  • the materials constituting the electromotive layers 421 and 422 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f
  • a metal material having an orbit or an alloy material containing them can be used.
  • a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
  • thermoelectric conversion unit element 400 is characterized in that the sign of the spin orbit interaction between the electromotive layer 421 and the electromotive layer 422 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 421, a material having a sign of spin orbit interaction different from that of platinum (Pt), such as tungsten (W), is used for the electromotive layer 422.
  • Pt platinum
  • W tungsten
  • the thickness of the electromotive layer 421 and the electromotive layer 422 is preferably set to at least the spin diffusion length of the metal material.
  • platinum Pt
  • a magnetic layer 410 is formed on both sides of the substrate 440. Therefore, the material constituting the substrate 440 is desirably a material whose material characteristics such as crystal structure and lattice constant are similar to those of the magnetic layer 410.
  • the magnetic layer 410 is made of a material that exhibits a spin Seebeck effect.
  • the material constituting the magnetic layer 410 may be a ferromagnetic metal or a magnetic insulator.
  • As the ferromagnetic metal NiFe, CoFe, CoFeB, or the like can be used.
  • magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons.
  • the thickness of the magnetic layer 410 can be set according to the use of thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers ( ⁇ m).
  • any material can be used for the connecting portion 430 as long as it can electrically connect the electromotive layer 421 and the electromotive layer 422.
  • a metal material used for the electromotive layer 421 or the electromotive layer 422 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used.
  • the connection part 430 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connection portion 430, the higher the electromotive force and output generated by the thermoelectric conversion unit element 400 of the present embodiment.
  • silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
  • thermoelectric conversion unit elements 400 are stacked as shown in FIG. 10 so that the electromotive layers 421 and the electromotive layers 422 of the thermoelectric conversion unit elements 400 are in physical contact with each other and are electrically connected.
  • the electromotive layers are electrically joined in series. That is, the electromotive force generated in the electromotive layer 421 and the electromotive layer 422 is connected so as to be added.
  • thermoelectric conversion element module 2000 The equivalent circuit of the thermoelectric conversion element module 2000 is the same as that shown in FIG.
  • the electromotive layers 421 and the electromotive layers 422 are in physical contact with each other and connected in parallel, and the two electromotive layers connected in parallel are connected in series via the connection portion 430.
  • the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above.
  • the thermoelectric conversion element module 2000 according to the present embodiment is connected so that the electromotive forces generated in the electromotive layers 421 and the electromotive layers 422 are added. Therefore, a larger electromotive force (V) and output power (W) can be extracted from the terminals 2010 and 2020 connected to the electromotive layer.
  • thermoelectric conversion element module 2000 is configured to be connected so that the electromotive forces generated in the electromotive layers 421 and the electromotive layers 422 are added.
  • the increase in power (V) can be achieved.
  • the cross-sectional area A of the electromotive layers 421 and 422 can be increased to reduce the internal resistance r. Therefore, the output power (W) per unit area can be improved.
  • the thermoelectric conversion unit element 400 of the present embodiment has a configuration in which the magnetic layer 410 and the electromotive layers 421 and 422 are stacked with the substrate 440 interposed therebetween, the manufacture of the thermoelectric conversion unit element 400 becomes easy. The mechanical strength of the thermoelectric conversion unit element 400 can be increased.
  • thermoelectric conversion element module 2000 of the present embodiment will be described in more detail using a specific configuration.
  • thermoelectric conversion unit element 400 of the present embodiment having different signs of the spin orbit interaction
  • FIGS. 11A, 11B, 12A, and 12B are cross-sectional views of samples in which a magnetic film is formed on a substrate and a metal film is further formed thereon.
  • the magnetic film is a YIG (Bi: YIG) film doped with bismuth (Bi), and the magnetic film (Bi: YIG) is grown.
  • the substrate was an SGGG (Substituted Gadolinium Gallium Garnet) substrate.
  • the horizontal axis is the magnitude H of the magnetic field in the x direction
  • the vertical axis is the magnitude V ISHE of the generated electromotive force.
  • thermoelectric conversion unit element capable of obtaining a large electromotive force can be created by creating the following laminated structure using the above-described characteristic that the sign of the generated electromotive force is inverted.
  • Bi: YIG magnetic films are formed on both sides of the SGGG substrate by a metal-organic compound decomposition method (Metal-Organic Decomposition: MOD). Specifically, for example, it can be created by the following procedure. First, a Bi: YIG MOD material solution is applied onto an SGGG substrate by a spin coater, and then dried to remove the organic solvent. Next, temporary baking is performed to decompose and volatilize the organic matter. Finally, firing is performed to oxidize and crystallize. The above process is performed on both sides of the SGGG substrate.
  • Metal-Organic Decomposition: MOD Metal-Organic Decomposition
  • a Pt metal film is formed on one surface of the Bi: YIG magnetic film formed on the SGGG substrate, and a W metal film is formed on the other surface by a sputtering method.
  • thermoelectric conversion unit element shown in FIG. 9 is applied by applying a silver (Ag) paste on one side surface in the y direction in FIGS. 11A and 12A. 400 configurations are completed.
  • thermoelectric conversion unit elements 400 and the W electromotive layers are in contact with each other, and the electromotive force generated in the Pt electromotive layer and the electromotive force generated in the W electromotive layer. Laminate so that and are added. Thereby, the structure of the thermoelectric conversion element module 2000 shown in FIG. 10 is completed. At this time, the Pt metal films and the W metal films of each thermoelectric conversion unit element 400 are in physical contact with each other and are electrically connected. As a result, the Pt metal film and the W metal film that generate an electromotive force are connected in series, so that a large electromotive force added from the terminals 2010 and 2020 can be taken out.
  • FIGS. 13A, 13B, and 13C are schematic views illustrating a configuration of a thermoelectric conversion element module 3000 according to the fifth embodiment of the present invention, in which FIG. 13A is a top view, FIG. 13B is an x-direction side view, and FIG. It is a direction side view.
  • the thermoelectric conversion element module 3000 has a configuration in which the thermoelectric conversion unit elements 500 are stacked inclined from the horizontal direction. That is, in the thermoelectric conversion element module 3000, the angle formed by the plurality of thermoelectric conversion unit elements 500 between the normal direction of the magnetic layer constituting the thermoelectric conversion unit element 500 and the direction of the temperature gradient (z direction) is greater than zero degrees. It is inclined and laminated so that it is less than the degree.
  • the thermoelectric conversion unit element 500 the thermoelectric conversion unit element 300 or the thermoelectric conversion unit element 400 according to the above-described embodiment can be used.
  • the thermoelectric conversion element module 3000 has a thickness a and a width b.
  • the number of thermoelectric conversion unit elements 500 b (width) / a (thickness) times as many as the case where the thermoelectric conversion unit elements 500 are stacked horizontally. Can be filled. Therefore, the total length in the y direction of each thermoelectric conversion unit element 500 filled in the thermoelectric conversion element module 3000 can also be b / a times.
  • thermoelectric conversion element module 3000 Since the electromotive force (V) generated in each thermoelectric conversion unit element 500 is proportional to the length in the y direction, the electromotive force (V) generated in the thermoelectric conversion element module 3000 is b / a times. On the other hand, the total area of the thermoelectric conversion unit element 500 does not change. Since the maximum output (P) that can be taken out from the thermoelectric conversion unit element 500 is proportional to the area (x ⁇ y) from the above formulas (1) and (2), the output (P) of the thermoelectric conversion element module 3000 is ) Can be kept constant.
  • the electromotive force (V) is a range of b (width) / a (thickness) times or less. Can be varied.
  • thermoelectric conversion unit element 500 is in the form of a sheet.
  • the thickness a of the thermoelectric conversion element module 3000 is sufficiently smaller than the width b (a ⁇ b).
  • thermoelectric conversion unit element 500 The height (z direction) of the thermoelectric conversion unit element 500 is c, and the number of thermoelectric conversion unit elements 500 when the thermoelectric conversion unit elements 500 are stacked without being inclined is N1.
  • N1 a / c (3) Holds.
  • thermoelectric conversion unit elements 500 when the thermoelectric conversion unit elements 500 are inclined and stacked, the average width of the thermoelectric conversion unit elements 500 is b / m (see FIG. 13C), and the number of thermoelectric conversion unit elements 500 filled in the thermoelectric conversion element module 3000 is Let N2.
  • thermoelectric conversion unit elements 500 that can be filled in the thermoelectric conversion element module 3000 is increased by m times by tilting and laminating the thermoelectric conversion unit elements 500. Thereby, since the total of the length of the y direction of each thermoelectric conversion unit element 500 also becomes m times, the electromotive force (V) which generate
  • thermoelectric conversion element module By using the above-described configuration, the electromotive force generated in the thermoelectric conversion element module can be further increased.

Abstract

In related thermoelectric transducers, it is difficult to efficiently increase electromotive force. This thermoelectric transducer comprises: a magnetic layer (110) which produces a spin Seebeck effect; a first electromotive layer (120) the direction of electromotive force of which is a first direction (A), the electromotive force being determined by the direction of a magnetic field and the direction of a temperature gradient in the magnetic layer; a second electromotive layer (130) the direction of electromotive force of which is a second direction (B) that is opposite to the first direction; and a connecting part (140) which electrically connects the first electromotive layer and the second electromotive layer such that the starting point of the first direction and the ending point of the second direction are continuous, and the first electromotive layer and the second electromotive layer are connected to the magnetic layer, and disposed apart from each other in a direction approximately perpendicular to the first direction and the second direction.

Description

熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
 本発明は、熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法に関し、特に、スピンゼーベック効果および逆スピンホール効果を用いた熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法に関する。 The present invention relates to a thermoelectric conversion element, a thermoelectric conversion element module, and a method of manufacturing a thermoelectric conversion element, and more particularly, to a thermoelectric conversion element, a thermoelectric conversion element module, and a method of manufacturing a thermoelectric conversion element using a spin Seebeck effect and an inverse spin Hall effect. .
 近年、持続可能な社会に向けた環境・エネルギー問題への取り組みが活発化している。このような背景の中で、熱電変換素子への期待が高まっている。その理由は、熱は体温、太陽光、エンジン、工業排熱などあらゆる媒体から得ることができる最も一般的なエネルギー源だからである。今後、低炭素社会におけるエネルギー利用の高効率化のため、またユビキタス端末やセンサ等への給電といった用途において、熱電変換素子はますます重要となることが予想される。 In recent years, efforts for environmental and energy issues toward a sustainable society have become active. Against this background, expectations for thermoelectric conversion elements are increasing. The reason is that heat is the most common energy source that can be obtained from any medium such as body temperature, sunlight, engine, industrial waste heat. In the future, thermoelectric conversion elements are expected to become increasingly important for the purpose of improving the efficiency of energy use in a low-carbon society and for applications such as power supply to ubiquitous terminals and sensors.
 また、最近の研究により、磁性体における「スピンゼーベック効果(Spin-Seebeck Effect)」の存在が明らかになっている。スピンゼーベック効果とは、磁性体に温度勾配が印加されると、温度勾配と平行方向に電子のスピン角運動量の流れ(スピン流)が発生する現象である(例えば、特許文献1、2参照)。特許文献1には、強磁性体であるNiFe膜におけるスピンゼーベック効果が記載されており、特許文献2には、イットリウム鉄ガーネット(YFe12:YIG)といった磁性絶縁体と金属膜との界面におけるスピンゼーベック効果が記載されている。 Also, recent studies have revealed the existence of the “Spin-Seebeck Effect” in magnetic materials. The spin Seebeck effect is a phenomenon in which, when a temperature gradient is applied to a magnetic material, a flow (spin flow) of spin angular momentum of electrons occurs in a direction parallel to the temperature gradient (see, for example, Patent Documents 1 and 2). . Patent Document 1 describes a spin Seebeck effect in a NiFe film that is a ferromagnetic material, and Patent Document 2 describes a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 : YIG), a metal film, and the like. The spin Seebeck effect at the interface is described.
 上述した温度勾配によって発生したスピン流は、逆スピンホール効果(Inverse Spin-Hall effect)により、電流に変換できることが知られている(特許文献1、2参照)。ここで、逆スピンホール効果とは、物質のスピン軌道相互作用(spin orbit coupling)によってスピン流が電流に変換される現象である。逆スピンホール効果は、スピン軌道相互作用の大きな物質、例えば白金(Pt)、金(Au)などにおいて顕著に発現する。 It is known that the spin current generated by the above-described temperature gradient can be converted into a current by an inverse spin Hall effect (Inverse Spin-Hall effect) (see Patent Documents 1 and 2). Here, the reverse spin Hall effect is a phenomenon in which a spin current is converted into a current by spin orbit coupling of matter. The reverse spin Hall effect is remarkably exhibited in a substance having a large spin orbit interaction, such as platinum (Pt) or gold (Au).
 スピンゼーベック効果と逆スピンホール効果を利用し、スピンを介して温度勾配を電流に変換する技術である「スピン熱電変換」が注目されている。このようなスピン熱電変換技術を用いた新しい熱電変換素子の一例が特許文献1に記載されている。 “Spin thermoelectric conversion”, which is a technology that uses the spin Seebeck effect and the inverse spin Hall effect to convert a temperature gradient into an electric current through spin, has attracted attention. An example of a new thermoelectric conversion element using such a spin thermoelectric conversion technique is described in Patent Document 1.
 図14に、特許文献1に記載された関連する熱スピン流変換素子10の構成を示す。関連する熱スピン流変換素子10は、サファイア基板11の表面に、熱スピン流変換部12およびPt電極16を設けた構成としている。熱スピン流変換部12は、Ta膜13、PdPtMn膜14、およびNiFe膜15を順次堆積することにより形成される。そして、Pt電極16の両端に端子17-1、17-2を設けることによってスピン流を利用した熱電対、すなわちサーモスピンカップルを形成することとしている。 FIG. 14 shows a configuration of a related thermal spin current conversion element 10 described in Patent Document 1. The related thermal spin current conversion element 10 has a configuration in which a thermal spin current conversion unit 12 and a Pt electrode 16 are provided on the surface of a sapphire substrate 11. The thermal spin current converter 12 is formed by sequentially depositing a Ta film 13, a PdPtMn film 14, and a NiFe film 15. Then, by providing terminals 17-1 and 17-2 at both ends of the Pt electrode 16, a thermocouple using a spin current, that is, a thermo spin couple is formed.
 このように構成された関連する熱スピン流変換素子10において、Pt電極16を設けていない側を測定対象熱源に当接あるいは近接させることによって、Pt電極16を設けた側との間に熱勾配が形成されて熱スピン流が発生する。このとき発生した熱スピン流がPt電極16に注入されると逆スピンホール効果によってPt電極16の両端に電位差が発生する。この電位差を端子17-1、17-2 を介して検出することによって、測定対象熱源の温度を推定することが可能になる、としている。 In the related thermal spin current conversion element 10 configured in this way, the thermal gradient between the side where the Pt electrode 16 is provided by bringing the side where the Pt electrode 16 is not provided into contact with or close to the heat source to be measured. Is formed and a thermal spin current is generated. When the heat spin current generated at this time is injected into the Pt electrode 16, a potential difference is generated between both ends of the Pt electrode 16 due to the reverse spin Hall effect. By detecting this potential difference via the terminals 17-1 and 17-2, it is possible to estimate the temperature of the heat source to be measured.
 また、特許文献2には、熱起電力の高出力化を図った熱電変換素子が記載されている。図15に、特許文献2に記載された関連する熱電変換素子20の構成を示す。 Further, Patent Document 2 describes a thermoelectric conversion element that achieves higher thermoelectromotive force output. In FIG. 15, the structure of the related thermoelectric conversion element 20 described in patent document 2 is shown.
 関連する熱電変換素子20は、磁性体21、起電体22、導電体23、および出力端子24、25を備える。 The related thermoelectric conversion element 20 includes a magnetic body 21, an electromotive body 22, a conductor 23, and output terminals 24 and 25.
 磁性体21は、少なくとも1つの磁化方向を有する材料であり、例えばイットリウム鉄ガーネット(YFe12:YIG)などの磁性絶縁体が好適に用いられる。起電体22には、スピン軌道相互作用の比較的大きな例えば金(Au)、白金(Pt)、およびパラジウム(Pd)などの金属材料、またはそれらの合金材料が用いられる。 The magnetic body 21 is a material having at least one magnetization direction. For example, a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 : YIG) is preferably used. For the electromotive body 22, a metal material such as gold (Au), platinum (Pt), and palladium (Pd) having a relatively large spin orbit interaction, or an alloy material thereof is used.
 起電体22は、磁性体21の磁化方向に対して略平行な面に複数設けられており、磁性体21の磁化方向に対して略垂直方向に長手方向を有する形状である。複数の起電体22が、互いに略平行に並んで配設されている。そして導電体23は、起電体22の延伸方向における一方の端部と、隣り合う起電体22の他方の端部とを接続している。つまり、起電体22と導電体23とが互いに交互に連続して接続しており、図15に示すような折り返し形状(ジグザグ型のミアンダ形状)を形成している。なお、起電体22の起電力生成効率は、導電体23の起電力生成効率よりも大きい。 A plurality of electromotive bodies 22 are provided on a surface substantially parallel to the magnetization direction of the magnetic body 21, and have a longitudinal direction substantially perpendicular to the magnetization direction of the magnetic body 21. A plurality of electromotive bodies 22 are arranged substantially parallel to each other. The conductor 23 connects one end portion in the extending direction of the electromotive body 22 and the other end portion of the adjacent electromotive body 22. That is, the electromotive bodies 22 and the conductors 23 are alternately and continuously connected to each other to form a folded shape (zigzag meander shape) as shown in FIG. Note that the electromotive force generation efficiency of the electromotive body 22 is larger than the electromotive force generation efficiency of the conductor 23.
 関連する熱電変換素子20において、磁性体21の平面方向に作用している磁化方向に対して、鉛直方向に温度勾配が印加されると、磁性体21のスピンゼーベック効果により、温度勾配方向にスピンの流れ(スピン流)が誘起される。この磁性体21において生成されたスピン流は、互いに直列接続された起電体22のスピンホール効果によって、磁化方向と垂直方向である起電体22および導電体23の延伸方向に流れる電流に変換される。ここで起電体22は導電体23と比べて起電力生成効率が大きいため、出力端子24から出力端子25に向かう一方向に電流が流れる。 In the related thermoelectric conversion element 20, when a temperature gradient is applied in the vertical direction with respect to the magnetization direction acting in the plane direction of the magnetic body 21, the spin in the temperature gradient direction is caused by the spin Seebeck effect of the magnetic body 21. Current (spin current) is induced. The spin current generated in the magnetic body 21 is converted into a current flowing in the extending direction of the electromotive body 22 and the conductor 23 that are perpendicular to the magnetization direction by the spin Hall effect of the electromotive bodies 22 connected in series with each other. Is done. Here, since the electromotive body 22 has higher electromotive force generation efficiency than the conductor 23, a current flows in one direction from the output terminal 24 toward the output terminal 25.
 関連する熱電変換素子20によれば、出力端子24から出力端子25に向かって起電力を有効に加算することができるので、熱電変換素子20のサイズを大きくすることなく、省スペースで高い出力の取り出しが可能となる、としている。 According to the related thermoelectric conversion element 20, since the electromotive force can be effectively added from the output terminal 24 toward the output terminal 25, space-saving and high output can be achieved without increasing the size of the thermoelectric conversion element 20. It can be removed.
特開2009-130070号公報([0045]~[0047]、図10)JP 2009-130070 ([0045] to [0047], FIG. 10) 特開2012-109367号公報([0014]~[0040]、図2)JP 2012-109367 A ([0014] to [0040], FIG. 2)
 上述した関連する熱電変換素子20においては、起電体22と導電体23は直列に接続されているが、それぞれの起電力の向きは逆向きであるので、関連する熱電変換素子20の等価回路は図16に示すようになる。この等価回路からわかるように、導電体23で発生する起電力が、起電体22で発生する起電力をキャンセルしてしまうことになるので、効率的に起電力を高めることができない。 In the related thermoelectric conversion element 20 described above, the electromotive body 22 and the conductor 23 are connected in series. However, since the directions of the electromotive forces are opposite, the equivalent circuit of the related thermoelectric conversion element 20 is used. Is as shown in FIG. As can be seen from this equivalent circuit, the electromotive force generated in the conductor 23 cancels the electromotive force generated in the electromotive body 22, and thus the electromotive force cannot be increased efficiently.
 このように、関連する熱電変換素子においては、効率よく起電力の増大を図ることが困難である、という問題があった。 Thus, the related thermoelectric conversion element has a problem that it is difficult to efficiently increase the electromotive force.
 本発明の目的は、上述した課題である、熱電変換素子においては、効率よく起電力の増大を図ることが困難である、という課題を解決する熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法を提供することにある。 An object of the present invention is a thermoelectric conversion element, a thermoelectric conversion element module, and a thermoelectric conversion element that solve the problem that it is difficult to efficiently increase electromotive force in the thermoelectric conversion element, which is the above-described problem. It is to provide a manufacturing method.
 本発明の熱電変換素子は、スピンゼーベック効果を発現する磁性体層と、磁性体層における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向である第1の起電層と、起電力の向きが第1の方向と反対である第2の方向である第2の起電層と、第1の方向の始点と第2の方向の終点が連続するように、第1の起電層と第2の起電層を電気的に接続する接続部、とを有し、第1の起電層と第2の起電層は、それぞれ磁性体層と接続し、第1の方向および第2の方向と略垂直な方向に離間して配置している。 The thermoelectric conversion element of the present invention includes a magnetic layer that exhibits a spin Seebeck effect, and a first electromotive layer in which the direction of an electromotive force determined by the direction of a magnetic field and the direction of a temperature gradient in the magnetic layer is a first direction. The first electromotive force direction so that the first electromotive force direction is opposite to the first direction, the second electromotive layer being the second direction, and the first direction end point and the second direction end point being continuous. The electromotive layer and the second electromotive layer are electrically connected to each other, and the first electromotive layer and the second electromotive layer are connected to the magnetic layer, respectively. And a direction substantially perpendicular to the second direction and the second direction.
 本発明の熱電変換素子の製造方法は、スピンゼーベック効果を発現する磁性体層の一の面に、磁性体層における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向である第1の起電層を積層し、磁性体層の他の面に起電力の向きが第1の方向と反対である第2の方向である第2の起電層を積層し、第1の方向の始点と第2の方向の終点が連続するように、第1の起電層と第2の起電層を電気的に接続する。 In the method for manufacturing a thermoelectric conversion element of the present invention, the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer is the first direction on one surface of the magnetic layer that exhibits the spin Seebeck effect. A first electromotive layer is laminated, and a second electromotive layer having a second direction in which the direction of electromotive force is opposite to the first direction is laminated on the other surface of the magnetic layer. The first electromotive layer and the second electromotive layer are electrically connected so that the starting point in the direction of and the end point in the second direction are continuous.
 本発明の熱電変換素子、熱電変換素子モジュールおよび熱電変換素子の製造方法によれば、効率よく起電力の増大を図ることができる。 According to the thermoelectric conversion element, thermoelectric conversion element module, and thermoelectric conversion element manufacturing method of the present invention, the electromotive force can be increased efficiently.
本発明の第1の実施形態に係る熱電変換素子の構成を示す概略図である。It is the schematic which shows the structure of the thermoelectric conversion element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱電変換素子の別の構成を示す概略図である。It is the schematic which shows another structure of the thermoelectric conversion element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱電変換素子のさらに別の構成を示す概略図である。It is the schematic which shows another structure of the thermoelectric conversion element which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る熱電変換素子の概略の構成を示す断面図である。It is sectional drawing which shows the structure of the outline of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る熱電変換素子の概略の構成を示す上面図である。It is a top view which shows the schematic structure of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る熱電変換素子の等価回路図である。It is an equivalent circuit schematic of the thermoelectric conversion element which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱電変換単位素子の構成を示す概略図である。It is the schematic which shows the structure of the thermoelectric conversion unit element which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る熱電変換素子モジュールの構成を示す概略図である。It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る熱電変換素子モジュールの等価回路図である。It is an equivalent circuit schematic of the thermoelectric conversion element module which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る熱電変換単位素子の構成を示す概略図である。It is the schematic which shows the structure of the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る熱電変換素子モジュールの構成を示す概略図である。It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る熱電変換単位素子を構成する起電層の特性を説明するための図であって、試料の断面図である。It is a figure for demonstrating the characteristic of the electromotive layer which comprises the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention, Comprising: It is sectional drawing of a sample. 本発明の第4の実施形態に係る熱電変換単位素子を構成する起電層の特性を説明するための図であって、測定結果を示す図である。It is a figure for demonstrating the characteristic of the electromotive layer which comprises the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention, Comprising: It is a figure which shows a measurement result. 本発明の第4の実施形態に係る熱電変換単位素子を構成する別の起電層の特性を説明するための図であって、試料の断面図である。It is a figure for demonstrating the characteristic of another electromotive layer which comprises the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention, Comprising: It is sectional drawing of a sample. 本発明の第4の実施形態に係る熱電変換単位素子を構成する別の起電層の特性を説明するための図であって、測定結果を示す図である。It is a figure for demonstrating the characteristic of another electromotive layer which comprises the thermoelectric conversion unit element which concerns on the 4th Embodiment of this invention, Comprising: It is a figure which shows a measurement result. 本発明の第5の実施形態に係る熱電変換素子モジュールの構成を示す概略図であって、上面図である。It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a top view. 本発明の第5の実施形態に係る熱電変換素子モジュールの構成を示す概略図であって、x方向側面図である。It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a x direction side view. 本発明の第5の実施形態に係る熱電変換素子モジュールの構成を示す概略図であって、y方向側面図である。It is the schematic which shows the structure of the thermoelectric conversion element module which concerns on the 5th Embodiment of this invention, Comprising: It is a y direction side view. 関連する熱スピン流変換素子の構成を示す斜視図である。It is a perspective view which shows the structure of a related thermal spin current conversion element. 関連する熱電変換素子の構成を示す斜視図である。It is a perspective view which shows the structure of the related thermoelectric conversion element. 関連する熱電変換素子の等価回路図である。It is an equivalent circuit diagram of a related thermoelectric conversion element.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る熱電変換素子100の構成を示す概略図である。熱電変換素子100は、磁性体層110、第1の起電層120、第2の起電層130、および接続部140、とを有する。
[First Embodiment]
FIG. 1 is a schematic diagram showing a configuration of a thermoelectric conversion element 100 according to the first embodiment of the present invention. The thermoelectric conversion element 100 includes a magnetic layer 110, a first electromotive layer 120, a second electromotive layer 130, and a connection part 140.
 磁性体層110はスピンゼーベック効果を発現する磁性体材料から構成される。この磁性体材料は、強磁性金属であってもよいし磁性絶縁体であってもよい。 The magnetic layer 110 is made of a magnetic material that exhibits a spin Seebeck effect. This magnetic material may be a ferromagnetic metal or a magnetic insulator.
 第1の起電層120は、磁性体層110における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向(図中の矢印A)である。一方、第2の起電層130は、この起電力の向きが第1の方向と反対である第2の方向である(図中の矢印B)。 In the first electromotive layer 120, the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer 110 is the first direction (arrow A in the figure). On the other hand, the second electromotive layer 130 has a second direction in which the direction of the electromotive force is opposite to the first direction (arrow B in the figure).
 接続部140は、図1に示すように、第1の方向の始点と第2の方向の終点が連続するように、第1の起電層120と第2の起電層130を電気的に接続する。 As shown in FIG. 1, the connecting portion 140 electrically connects the first electromotive layer 120 and the second electromotive layer 130 so that the start point in the first direction and the end point in the second direction are continuous. Connecting.
 第1の起電層120と第2の起電層130は、それぞれ磁性体層110と接続し、第1の方向および第2の方向と略垂直な方向に離間して配置している。 The first electromotive layer 120 and the second electromotive layer 130 are connected to the magnetic layer 110, respectively, and are spaced apart in a direction substantially perpendicular to the first direction and the second direction.
 このような構成とすることにより、本実施形態の熱電変換素子100によれば、第1の起電層120および第2の起電層130でそれぞれ発生する起電力が加算される。そのため、熱電変換素子100における起電力を効率よく増大させることができる。 With such a configuration, according to the thermoelectric conversion element 100 of the present embodiment, the electromotive forces generated in the first electromotive layer 120 and the second electromotive layer 130 are added. Therefore, the electromotive force in the thermoelectric conversion element 100 can be increased efficiently.
 ここで、第1の起電層120は第1の金属材料を含み、第2の起電層130は第2の金属材料を含み、第1の金属材料と第2の金属材料はスピン軌道相互作用の正負の符号が互いに異なる構成とすることができる。これは、スピン軌道相互作用の符号が異なると、逆スピンホール効果によってスピン流が電流に変換される際に、起電層で発生する起電力の向き(電流の向き)も異なることになるからである。 Here, the first electromotive layer 120 includes a first metal material, the second electromotive layer 130 includes a second metal material, and the first metal material and the second metal material are spin-orbit mutually. It can be set as the structure from which the sign of an effect | action differs mutually. This is because the direction of the electromotive force (current direction) generated in the electromotive layer differs when the spin current is converted into current by the reverse spin Hall effect if the sign of the spin orbit interaction is different. It is.
 具体的な金属材料としては、第1の金属材料はスピン軌道相互作用の符号が正であるとした場合、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、銀(Ag)、イリジウム(Ir)、白金(Pt)、金(Au)、およびビスマス(Bi)のいずれかを用いることができる。また、第2の金属材料はスピン軌道相互作用の符号が負であるとした場合、チタン(Ti)、クロム(Cr)、モリブテン(Mo)、タングステン(W)、およびタンタル(Ta)のいずれかを用いることができる。 As a specific metal material, when the sign of the spin orbit interaction is positive, the first metal material is iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), silver ( Any of Ag), iridium (Ir), platinum (Pt), gold (Au), and bismuth (Bi) can be used. When the sign of the spin orbit interaction is negative, the second metal material is any of titanium (Ti), chromium (Cr), molybdenum (Mo), tungsten (W), and tantalum (Ta). Can be used.
 図1では、熱電変換素子100が第1の起電層120と第2の起電層130をそれぞれ1層ずつ合計2層だけ備える構成を示したが、起電層の個数は2個に限らず、複数個の起電層を接続することにより、発生する起電力をさらに増大させることが可能である。起電層を3個備えた熱電変換素子101の構成を図2に示す。 Although FIG. 1 shows a configuration in which the thermoelectric conversion element 100 includes the first electromotive layer 120 and the second electromotive layer 130, each including two layers in total, the number of electromotive layers is limited to two. First, it is possible to further increase the generated electromotive force by connecting a plurality of electromotive layers. The structure of the thermoelectric conversion element 101 provided with three electromotive layers is shown in FIG.
 熱電変換素子101が備える第2の起電層は、第1の起電層120を挟んで離間して配置している上側第2の起電層131と下側第2の起電層132を含む構成とすることができる。そして、接続部は、第1の接続部141と第2の接続部142から構成される。 The second electromotive layer included in the thermoelectric conversion element 101 includes an upper second electromotive layer 131 and a lower second electromotive layer 132 that are disposed with the first electromotive layer 120 interposed therebetween. It can be set as the structure containing. The connection unit includes a first connection unit 141 and a second connection unit 142.
 ここで、第1の接続部141は、第1の方向(矢印A)の始点と第2の方向(矢印B)の終点が連続するように、第1の起電層120と上側第2の起電層131を接続する。また、第2の接続部142は、第1の方向(矢印A)の終点と第2の方向(矢印B)の始点が連続するように、第1の起電層120と下側第2の起電層132を接続する。 Here, the first connecting portion 141 is connected to the first electromotive layer 120 and the upper second layer so that the start point in the first direction (arrow A) and the end point in the second direction (arrow B) are continuous. The electromotive layer 131 is connected. In addition, the second connecting portion 142 is connected to the first electromotive layer 120 and the lower second so that the end point in the first direction (arrow A) and the start point in the second direction (arrow B) are continuous. The electromotive layer 132 is connected.
 このとき、図3に示すように、第1の起電層120も、互いに接続している上側第1の起電層121と下側第1の起電層122を含む構成とすることができる。この場合、第1の接続部141は、第1の方向の始点と第2の方向の終点が連続するように、上側第1の起電層121と上側第2の起電層131を接続する。また、第2の接続部142は、第1の方向の終点と第2の方向の始点が連続するように、下側第1の起電層122と下側第2の起電層132を接続する。 At this time, as shown in FIG. 3, the first electromotive layer 120 may also include an upper first electromotive layer 121 and a lower first electromotive layer 122 that are connected to each other. . In this case, the first connection portion 141 connects the upper first electromotive layer 121 and the upper second electromotive layer 131 so that the start point in the first direction and the end point in the second direction are continuous. . The second connecting portion 142 connects the lower first electromotive layer 122 and the lower second electromotive layer 132 so that the end point in the first direction and the start point in the second direction are continuous. To do.
 このように、磁性体層110と第1の起電層120と第2の起電層130と接続部140を備えた熱電変換素子100を複数個備えた熱電変換素子モジュールを構成することができる。このとき、複数の熱電変換素子100がそれぞれ備える複数の第1の起電層120のうち少なくとも2層が互いに接続し、同様に、複数の第2の起電層130のうち少なくとも2層が互いに接続した構成とすることができる。 As described above, a thermoelectric conversion element module including a plurality of thermoelectric conversion elements 100 including the magnetic layer 110, the first electromotive layer 120, the second electromotive layer 130, and the connection portion 140 can be configured. . At this time, at least two of the plurality of first electromotive layers 120 included in each of the plurality of thermoelectric conversion elements 100 are connected to each other, and similarly, at least two layers of the plurality of second electromotive layers 130 are connected to each other. A connected configuration can be adopted.
 上述した構成とすることにより、各起電層でそれぞれ発生する起電力が加算されるので、熱電変換素子101における起電力を効率よくさらに増大させることができる。 With the above-described configuration, the electromotive force generated in each electromotive layer is added, so that the electromotive force in the thermoelectric conversion element 101 can be further increased efficiently.
 ここで第1の起電層120および第2の起電層130は、磁性体層110を挟んで積層された構成とすることができる。このとき、熱電変換素子100は、磁性体層110が積層している基板を有することとしてもよい。すなわち、磁性体層110は、基板の一の面に積層している第1の磁性体層と、基板の他の面に積層している第2の磁性体層を含む構成とすることができる。この場合、第1の起電層120は第1の磁性体層と接続し、第2の起電層130は第2の磁性体層と接続した構成とすることができる。このように、基板を挟んで起電層と磁性体層を積層した構成とすることにより、熱電変換素子の製造が容易になり、熱電変換素子の機械強度を増強することができる。 Here, the first electromotive layer 120 and the second electromotive layer 130 may be stacked with the magnetic layer 110 interposed therebetween. At this time, the thermoelectric conversion element 100 may include a substrate on which the magnetic layer 110 is stacked. That is, the magnetic layer 110 can include a first magnetic layer stacked on one surface of the substrate and a second magnetic layer stacked on the other surface of the substrate. . In this case, the first electromotive layer 120 can be connected to the first magnetic layer, and the second electromotive layer 130 can be connected to the second magnetic layer. As described above, the configuration in which the electromotive layer and the magnetic layer are stacked with the substrate interposed therebetween facilitates the manufacture of the thermoelectric conversion element, and can increase the mechanical strength of the thermoelectric conversion element.
 次に、本実施形態による熱電変換素子の製造方法について説明する。 Next, the manufacturing method of the thermoelectric conversion element according to the present embodiment will be described.
 本実施形態の熱電変換素子の製造方法ではまず、スピンゼーベック効果を発現する磁性体層の一の面に、磁性体層における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向である第1の起電層を積層する。また、磁性体層の他の面に起電力の向きが第1の方向と反対である第2の方向である第2の起電層を積層する。そして、第1の方向の始点と第2の方向の終点が連続するように、第1の起電層と第2の起電層を電気的に接続する。以上により、熱電変換素子が完成する。 In the manufacturing method of the thermoelectric conversion element of the present embodiment, first, the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer is first on one surface of the magnetic layer that exhibits the spin Seebeck effect. A first electromotive layer having a direction is laminated. A second electromotive layer having a second direction in which the direction of the electromotive force is opposite to the first direction is laminated on the other surface of the magnetic layer. Then, the first electromotive layer and the second electromotive layer are electrically connected so that the start point in the first direction and the end point in the second direction are continuous. Thus, the thermoelectric conversion element is completed.
 上述したように、熱電変換素子100は、第1の起電層120および第2の起電層130が磁性体層110を挟んで積層された構成とすることができる。しかし、これに限らず、特許文献2に記載された関連する熱電変換素子20(図15)と同様に、第1の起電層120および第2の起電層130がそれぞれ磁性体層110の一の表面上に配置した構成としてもよい。 As described above, the thermoelectric conversion element 100 can have a configuration in which the first electromotive layer 120 and the second electromotive layer 130 are stacked with the magnetic layer 110 interposed therebetween. However, the present invention is not limited to this, and similarly to the related thermoelectric conversion element 20 (FIG. 15) described in Patent Document 2, the first electromotive layer 120 and the second electromotive layer 130 are each formed of the magnetic layer 110. It is good also as a structure arrange | positioned on one surface.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図4A、4Bは、本発明の第2の実施形態に係る熱電変換素子200の構成を示す概略図であり、図4Aは断面図、図4Bは上面図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. 4A and 4B are schematic views showing the configuration of the thermoelectric conversion element 200 according to the second embodiment of the present invention, where FIG. 4A is a cross-sectional view and FIG. 4B is a top view.
 熱電変換素子200は、磁性体層210、スピン軌道相互作用の符号が異なる2種類の起電層221、222、および2種類の起電層221、222を接続する接続部230を備え、それぞれが相互に積層した構成である。 The thermoelectric conversion element 200 includes a magnetic layer 210, two types of electromotive layers 221 and 222 having different signs of spin-orbit interaction, and a connection part 230 that connects the two types of electromotive layers 221 and 222. It is the structure laminated | stacked mutually.
 起電層221、222を構成する材料には、スピン軌道相互作用の大きな金属、例えば白金(Pt)、金(Au)、タングステン(W)、パラジウム(Pd)、イリジウム(Ir)、その他のf軌道を有する金属材料、またはそれらを含有する合金材料を用いることができる。また、銅(Cu)などの一般的な金属膜材料に白金(Pt)、金(Au)、パラジウム(Pd)、イリジウム(Ir)、ビスマス(Bi)などの材料を約0.5%から10%程度だけ添加(ドープ)した材料であってもよい。 The materials constituting the electromotive layers 221 and 222 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f A metal material having an orbit or an alloy material containing them can be used. Further, a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
 本実施形態による熱電変換素子200は、起電層221と起電層222のスピン軌動相互作用の符号が異なることを特徴とする。したがって、例えば起電層221に白金(Pt)を用いた場合には、起電層222には白金(Pt)とはスピン軌道相互作用の符号が異なる材料、例えばタングステン(W)などを用いる。 The thermoelectric conversion element 200 according to the present embodiment is characterized in that the sign of the spin orbit interaction between the electromotive layer 221 and the electromotive layer 222 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 221, a material having a sign of spin orbit interaction different from that of platinum (Pt), such as tungsten (W), is used for the electromotive layer 222.
 また、起電層221および起電層222の厚さは、少なくとも金属材料のスピン拡散長以上に設定するのが好ましい。例えば、白金(Pt)を用いる場合には、その厚さを約10ナノメートル(nm)以上に設定することが望ましい。 In addition, it is preferable that the thickness of the electromotive layer 221 and the electromotive layer 222 is set to be at least the spin diffusion length of the metal material. For example, when platinum (Pt) is used, it is desirable to set the thickness to about 10 nanometers (nm) or more.
 磁性体層210は、スピンゼーベック効果を発現する材料で構成される。磁性体層210を構成する材料は、強磁性金属であってもよいし、磁性絶縁体であってもよい。強磁性金属としては、NiFe、CoFe、CoFeBなどを用いることができる。磁性絶縁体としては、イットリウム鉄ガーネット(YFe12;YIG)や、ビスマス(Bi)をドープしたYIG(Bi:YIG)、ランタン(La)をドープしたYIG(La:YIG)などを用いることができる。なお、伝導電子による熱伝導を抑制する観点から、磁性絶縁体を用いることが望ましい。また、磁性体層210の厚さは、熱電発電の用途や温度領域に応じて設定することが可能である。典型的には、約100ナノメートル(nm)から500マイクロメートル(μm)程度とすることができる。 The magnetic layer 210 is made of a material that exhibits a spin Seebeck effect. The material constituting the magnetic layer 210 may be a ferromagnetic metal or a magnetic insulator. As the ferromagnetic metal, NiFe, CoFe, CoFeB, or the like can be used. Examples of magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons. In addition, the thickness of the magnetic layer 210 can be set according to the use of thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers (μm).
 接続部230は、起電層221と起電層222とを電気的に接続できる材料であれば任意の材料を用いることができる。例えば、起電層221または起電層222に用いた金属材料を用いてもよいし、電気伝導率の高い銀(Ag)や銅(Cu)などの金属を用いることとしてもよい。ただし、接続部230は熱電発電には寄与しないため、電気抵抗として作用する。そのため、起電層で生成した電力を消費してしまう。したがって、接続部230の電気抵抗が低いほど、本実施形態の熱電変換素子200が生成する起電力や出力は高くなる。以上より、接続部230の材料としては、電気伝導率の高い銀(Ag)や銅(Cu)などが特に好ましい。 The connecting portion 230 can be made of any material as long as it can electrically connect the electromotive layer 221 and the electromotive layer 222. For example, a metal material used for the electromotive layer 221 or the electromotive layer 222 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used. However, since the connection part 230 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connecting portion 230, the higher the electromotive force and output generated by the thermoelectric conversion element 200 of the present embodiment. As described above, as the material of the connection portion 230, silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
 熱電変換素子200の面内の一方向(x方向)に磁場を、積層方向(z方向)に温度勾配ΔTを印加すると、スピンゼーベック効果によって積層方向(z方向)にスピン流が発生する。このスピン流が起電層221および起電層222に流入すると、逆スピンホール効果によってスピン流から起電力が発生する。このとき、起電層221と起電層222のスピン軌道相互作用の符号が異なるため、起電層221で発生する起電力の向きと、起電層222で発生する起電力の向きは逆向きになる。 When a magnetic field is applied in one direction (x direction) in the plane of the thermoelectric conversion element 200 and a temperature gradient ΔT is applied in the stacking direction (z direction), a spin current is generated in the stacking direction (z direction) by the spin Seebeck effect. When this spin current flows into the electromotive layer 221 and the electromotive layer 222, an electromotive force is generated from the spin current due to the reverse spin Hall effect. At this time, since the sign of the spin orbit interaction between the electromotive layer 221 and the electromotive layer 222 is different, the direction of the electromotive force generated in the electromotive layer 221 is opposite to the direction of the electromotive force generated in the electromotive layer 222. become.
 ここで、起電層221と起電層222を接続部230によって接続することにより、起電層同士が電気的に直列に接合されることになる。すなわち、起電層221および起電層222において生成された起電力が加算されるように接続される。 Here, when the electromotive layer 221 and the electromotive layer 222 are connected by the connecting portion 230, the electromotive layers are electrically joined in series. That is, the electromotive force generated in the electromotive layer 221 and the electromotive layer 222 is connected so as to be added.
 図5に、熱電変換素子200の等価回路を示す。図16に示した関連する熱電変換素子20の等価回路では上述したように、導電体23で発生する起電力が起電体22で発生する起電力を打ち消すように接続されている。それに対して、本実施形態による熱電変換素子200は、図5に示すように、起電層221および起電層222において生成された起電力が加算されるように接続されている。そのため、起電層に接続した端子241および端子242から、より大きな起電力(V)を取り出すことができる。 FIG. 5 shows an equivalent circuit of the thermoelectric conversion element 200. In the equivalent circuit of the related thermoelectric conversion element 20 shown in FIG. 16, the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above. On the other hand, the thermoelectric conversion element 200 according to the present embodiment is connected so that the electromotive forces generated in the electromotive layer 221 and the electromotive layer 222 are added, as shown in FIG. Therefore, a larger electromotive force (V) can be extracted from the terminals 241 and 242 connected to the electromotive layer.
 さらに、本実施形態の熱電変換素子200によれば、関連する熱電変換素子20に比べより大きな出力電力(W)を得ることができる。この点について、以下に説明する。 Furthermore, according to the thermoelectric conversion element 200 of the present embodiment, a larger output power (W) than that of the related thermoelectric conversion element 20 can be obtained. This point will be described below.
  図16に示した関連する熱電変換素子20において、起電体22および導電体23にはそれぞれ抵抗が存在するが、これは関連する熱電変換素子20から電力を取り出す際の内部抵抗となる。このとき、熱電変換素子20の開放電圧をV、内部抵抗をrとすると、関連する熱電変換素子20から取り出すことができる最大の出力Pは次式(1)により表すことができる。
P=V/4r          (1)
 また、起電体22および導電体23の伝導方向の長さをL、その断面積をA、電気抵抗率をρとすると、内部抵抗rは次式(2)によって表すことができる。
r=ρL/A           (2)
 関連する熱電変換素子20では図16に示すように、折り返し形状(ジグザグ型のミアンダ形状)とすることにより、磁性体の表面上に全面に起電体を積層した場合に比べて、単位面積当たりの起電力(V)を向上することができる。しかし、起電体22および導電体23の長さLが増加し、その断面積Aが減少するため、内部抵抗rは増大してしまう。そのため、関連する熱電変換素子20では、単位面積当たりの出力電力(W)を向上させることはできない。
In the related thermoelectric conversion element 20 shown in FIG. 16, resistance exists in each of the electromotive body 22 and the conductor 23, and this becomes an internal resistance when power is extracted from the related thermoelectric conversion element 20. At this time, when the open-circuit voltage of the thermoelectric conversion element 20 is V and the internal resistance is r, the maximum output P that can be extracted from the related thermoelectric conversion element 20 can be expressed by the following equation (1).
P = V 2 / 4r (1)
Further, when the length of the electromotive body 22 and the conductor 23 in the conduction direction is L, the cross-sectional area is A, and the electrical resistivity is ρ, the internal resistance r can be expressed by the following equation (2).
r = ρL / A (2)
As shown in FIG. 16, the related thermoelectric conversion element 20 has a folded shape (zigzag meander shape), so that the unit area per unit area is larger than that in the case where the electromotive member is laminated on the entire surface of the magnetic material. The electromotive force (V) can be improved. However, since the length L of the electromotive body 22 and the conductor 23 increases and the cross-sectional area A decreases, the internal resistance r increases. Therefore, the related thermoelectric conversion element 20 cannot improve the output power (W) per unit area.
 それに対して本実施形態の熱電変換素子200は、磁性体層210および2種類の起電層221、222が相互に積層した構成としているので、内部抵抗rを減少させることができる。その結果、関連する熱電変換素子20と比べ、単位面積当たりの出力電力(W)を増大させることが可能である。 On the other hand, since the thermoelectric conversion element 200 of the present embodiment has a configuration in which the magnetic layer 210 and the two types of electromotive layers 221 and 222 are stacked on each other, the internal resistance r can be reduced. As a result, the output power (W) per unit area can be increased as compared with the related thermoelectric conversion element 20.
 上述したように、本実施形態の熱電変換素子200は、起電層221および起電層222で生成された起電力が加算されるように接続された構成としているので、効率よく起電力(V)の増大を図ることができる。さらに、本実施形態の熱電変換素子200によれば、起電層221、222の断面積Aを増大させ内部抵抗rを低減した構成とすることができる。そのため、単位面積当たりの出力電力(W)を増大させることができる。 As described above, the thermoelectric conversion element 200 of the present embodiment is configured to be connected so that the electromotive forces generated in the electromotive layer 221 and the electromotive layer 222 are added, so that the electromotive force (V ) Can be increased. Furthermore, according to the thermoelectric conversion element 200 of the present embodiment, the cross-sectional area A of the electromotive layers 221 and 222 can be increased to reduce the internal resistance r. Therefore, the output power (W) per unit area can be increased.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図6は、本発明の第3の実施形態に係る熱電変換単位素子300の構成を示す概略図である。この熱電変換単位素子300を複数個積層することにより、図7に示すような熱電変換素子モジュール1000が構成される。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 6 is a schematic diagram showing a configuration of a thermoelectric conversion unit element 300 according to the third embodiment of the present invention. A plurality of thermoelectric conversion unit elements 300 are stacked to form a thermoelectric conversion element module 1000 as shown in FIG.
 熱電変換単位素子300は、磁性体層310の一方の面に起電層321が、他片の面に起電層322が形成され、片側の側面部に接続部330を備えた構成である。 The thermoelectric conversion unit element 300 has a configuration in which an electromotive layer 321 is formed on one surface of a magnetic layer 310, an electromotive layer 322 is formed on the other surface, and a connection portion 330 is provided on one side surface.
 起電層321、322を構成する材料には、スピン軌道相互作用の大きな金属、例えば白金(Pt)、金(Au)、タングステン(W)、パラジウム(Pd)、イリジウム(Ir)、その他のf軌道を有する金属材料、またはそれらを含有する合金材料を用いることができる。また、銅(Cu)などの一般的な金属膜材料に白金(Pt)、金(Au)、パラジウム(Pd)、イリジウム(Ir)、ビスマス(Bi)などの材料を約0.5%から10%程度だけ添加(ドープ)した材料であってもよい。 The materials constituting the electromotive layers 321 and 322 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f A metal material having an orbit or an alloy material containing them can be used. Further, a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
 本実施形態による熱電変換単位素子300は、起電層321と起電層322のスピン軌動相互作用の符号が異なることを特徴とする。したがって、例えば起電層321に白金(Pt)を用いた場合には、起電層322には白金(Pt)とはスピン軌道相互作用の符号が異なる材料、例えばタングステン(W)などを用いる。 The thermoelectric conversion unit element 300 according to the present embodiment is characterized in that the sign of the spin orbit interaction between the electromotive layer 321 and the electromotive layer 322 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 321, a material having a different sign of spin orbit interaction from platinum (Pt), such as tungsten (W), is used for the electromotive layer 322.
 また、起電層321および起電層322の厚さは、少なくとも金属材料のスピン拡散長以上に設定するのが好ましい。例えば、白金(Pt)を用いる場合には、その厚さを約10ナノメートル(nm)以上に設定することが望ましい。 In addition, it is preferable that the thickness of the electromotive layer 321 and the electromotive layer 322 is set to at least the spin diffusion length of the metal material. For example, when platinum (Pt) is used, it is desirable to set the thickness to about 10 nanometers (nm) or more.
 磁性体層310は、スピンゼーベック効果を発現する材料で構成される。磁性体層310を構成する材料は、強磁性金属であってもよいし、磁性絶縁体であってもよい。強磁性金属としては、NiFe、CoFe、CoFeBなどを用いることができる。磁性絶縁体としては、イットリウム鉄ガーネット(YFe12;YIG)や、ビスマス(Bi)をドープしたYIG(Bi:YIG)、ランタン(La)をドープしたYIG(La:YIG)などを用いることができる。なお、伝導電子による熱伝導を抑制する観点から、磁性絶縁体を用いることが望ましい。また、磁性体層310の厚さは、熱電発電の用途や温度領域に応じて設定することが可能である。典型的には、約100ナノメートル(nm)から500マイクロメートル(μm)程度とすることができる。 The magnetic layer 310 is made of a material that exhibits a spin Seebeck effect. The material constituting the magnetic layer 310 may be a ferromagnetic metal or a magnetic insulator. As the ferromagnetic metal, NiFe, CoFe, CoFeB, or the like can be used. Examples of magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons. In addition, the thickness of the magnetic layer 310 can be set according to the application of the thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers (μm).
 接続部330は、起電層321と起電層322とを電気的に接続できる材料であれば任意の材料を用いることができる。例えば、起電層321または起電層322に用いた金属材料を用いてもよいし、電気伝導率の高い銀(Ag)や銅(Cu)などの金属を用いることとしてもよい。ただし、接続部330は熱電発電には寄与しないため、電気抵抗として作用する。そのため、起電層で生成した電力を消費してしまう。したがって、接続部330の電気抵抗が低いほど、本実施形態の熱電変換単位素子300が生成する起電力や出力は高くなる。以上より、接続部330の材料としては、電気伝導率の高い銀(Ag)や銅(Cu)などが特に好ましい。 The connecting portion 330 can be made of any material as long as it can electrically connect the electromotive layer 321 and the electromotive layer 322. For example, a metal material used for the electromotive layer 321 or the electromotive layer 322 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used. However, since the connection part 330 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connecting portion 330, the higher the electromotive force and output generated by the thermoelectric conversion unit element 300 of the present embodiment. As described above, as the material of the connection portion 330, silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
 この熱電変換単位素子300を図7に示すように積層し、各熱電変換単位素子300の起電層321同士、および起電層322同士を物理的に接触させ電気的に導通させる。 The thermoelectric conversion unit elements 300 are stacked as shown in FIG. 7, and the electromotive layers 321 and the electromotive layers 322 of the thermoelectric conversion unit elements 300 are physically brought into electrical contact with each other.
 熱電変換単位素子300の面内の一方向(x方向)に磁場を、積層方向(z方向)に温度勾配ΔTを印加すると、スピンゼーベック効果によって積層方向(z方向)にスピン流が発生する。このスピン流が起電層321および起電層322に流入すると、逆スピンホール効果によってスピン流から起電力が発生する。このとき、起電層321と起電層322のスピン軌道相互作用の符号が異なるため、起電層321で発生する起電力の向きと、起電層322で発生する起電力の向きは逆向きになる。 When a magnetic field is applied in one direction (x direction) in the plane of the thermoelectric conversion unit element 300 and a temperature gradient ΔT is applied in the stacking direction (z direction), a spin current is generated in the stacking direction (z direction) by the spin Seebeck effect. When this spin current flows into the electromotive layer 321 and the electromotive layer 322, an electromotive force is generated from the spin current due to the reverse spin Hall effect. At this time, since the sign of the spin orbit interaction between the electromotive layer 321 and the electromotive layer 322 is different, the direction of the electromotive force generated in the electromotive layer 321 is opposite to the direction of the electromotive force generated in the electromotive layer 322. become.
 ここで、起電層321と起電層322を接続部330によって接続することにより、起電層同士が電気的に直列に接合されることになる。すなわち、起電層321および起電層322において生成された起電力が加算されるように接続される。 Here, by connecting the electromotive layer 321 and the electromotive layer 322 by the connecting portion 330, the electromotive layers are electrically joined in series. That is, it connects so that the electromotive force produced | generated in the electromotive layer 321 and the electromotive layer 322 may be added.
 図8に、熱電変換素子モジュール1000の等価回路を示す。起電層321同士および起電層322同士が物理的に接触して並列接続され、並列接続された2層の起電層が接続部330を介してそれぞれ直列に接続された構成となる。図16に示した関連する熱電変換素子20の等価回路では上述したように、導電体23で発生する起電力が起電体22で発生する起電力を打ち消すように接続されている。それに対して、本実施形態による熱電変換素子モジュール1000は、図8に示すように、各起電層321および各起電層322において生成された起電力が加算されるように接続されている。そのため、起電層に接続した端子1010および端子1020から、より大きな起電力(V)および出力電力(W)を取り出すことができる。 FIG. 8 shows an equivalent circuit of the thermoelectric conversion element module 1000. The electromotive layers 321 and the electromotive layers 322 are in physical contact with each other and connected in parallel, and the two electromotive layers connected in parallel are connected in series via the connection portion 330. In the equivalent circuit of the related thermoelectric conversion element 20 shown in FIG. 16, the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above. On the other hand, the thermoelectric conversion element module 1000 according to the present embodiment is connected such that the electromotive forces generated in the electromotive layers 321 and the electromotive layers 322 are added, as shown in FIG. Therefore, a larger electromotive force (V) and output power (W) can be extracted from the terminals 1010 and 1020 connected to the electromotive layer.
 上述したように、本実施形態の熱電変換素子モジュール1000は、各起電層321および各起電層322で生成された起電力が加算されるように接続された構成としているので、効率よく起電力(V)の増大を図ることができる。さらに、本実施形態の熱電変換素子モジュール1000によれば、起電層321、322の断面積Aを増大させ内部抵抗rを低減した構成とすることができる。そのため、単位面積当たりの出力電力(W)を向上させることができる。 As described above, the thermoelectric conversion element module 1000 according to the present embodiment is configured to be connected so that the electromotive forces generated in the electromotive layers 321 and the electromotive layers 322 are added. The increase in power (V) can be achieved. Furthermore, according to the thermoelectric conversion element module 1000 of the present embodiment, it is possible to increase the cross-sectional area A of the electromotive layers 321 and 322 and reduce the internal resistance r. Therefore, the output power (W) per unit area can be improved.
 次に、本実施形態による熱電変換単位素子300および熱電変換素子モジュール1000の製造方法について、図6、図7を参照して説明する。 Next, a method for manufacturing the thermoelectric conversion unit element 300 and the thermoelectric conversion element module 1000 according to the present embodiment will be described with reference to FIGS.
 本実施形態による熱電変換単位素子300の製造方法においては、まず、磁性体層310の両面に起電層321および起電層322を形成する。次に、この起電層321と起電層322の導通をとるために、起電層321、322の一方の側に接続部330を形成する。以上により、熱電変換単位素子300が完成する。 In the method of manufacturing the thermoelectric conversion unit element 300 according to the present embodiment, first, the electromotive layer 321 and the electromotive layer 322 are formed on both surfaces of the magnetic layer 310. Next, in order to establish conduction between the electromotive layer 321 and the electromotive layer 322, a connection portion 330 is formed on one side of the electromotive layers 321 and 322. Thus, the thermoelectric conversion unit element 300 is completed.
 続いて、各熱電変換単位素子300の起電層321同士、および起電層322同士が互いに物理的に接触し導通するように積層し、図7に示した熱電変換素子モジュール1000を形成する。これにより、それぞれの起電層321、322が直列に接続されるので、端子1010および端子1020から起電力を取り出すことができる。なお、熱電変換単位素子300の磁性体層310を構成する磁性体膜は磁化している必要があるが、そのための磁化処理は、いずれの工程で実施することとしてもよい。 Subsequently, the thermoelectric conversion unit modules 300 are stacked so that the electromotive layers 321 and the electromotive layers 322 are in physical contact with each other to be conductive, thereby forming the thermoelectric conversion element module 1000 shown in FIG. Thereby, since each electromotive layer 321 and 322 is connected in series, an electromotive force can be taken out from the terminal 1010 and the terminal 1020. In addition, although the magnetic body film which comprises the magnetic body layer 310 of the thermoelectric conversion unit element 300 needs to be magnetized, the magnetization process for it may be implemented in any process.
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図9は、本発明の第4の実施形態に係る熱電変換単位素子400の構成を示す概略図である。この熱電変換単位素子400を複数個積層することにより、図10に示すような熱電変換素子モジュール2000が構成される。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 9 is a schematic diagram showing a configuration of a thermoelectric conversion unit element 400 according to the fourth embodiment of the present invention. A plurality of thermoelectric conversion unit elements 400 are stacked to form a thermoelectric conversion element module 2000 as shown in FIG.
 熱電変換単位素子400は、磁性体を成長させる基板440を有し、基板440の両側に磁性体層410が形成されている。そして、基板440の一方の面に形成された磁性体層410に起電層421が、基板440の他片の面に形成された磁性体層410に起電層422が形成され、片側の側面部に接続部430を備えた構成である。 The thermoelectric conversion unit element 400 has a substrate 440 on which a magnetic material is grown, and magnetic layers 410 are formed on both sides of the substrate 440. Then, the electromotive layer 421 is formed on the magnetic layer 410 formed on one surface of the substrate 440, and the electromotive layer 422 is formed on the magnetic layer 410 formed on the other surface of the substrate 440. It is the structure which provided the connection part 430 in the part.
 起電層421、422を構成する材料には、スピン軌道相互作用の大きな金属、例えば白金(Pt)、金(Au)、タングステン(W)、パラジウム(Pd)、イリジウム(Ir)、その他のf軌道を有する金属材料、またはそれらを含有する合金材料を用いることができる。また、銅(Cu)などの一般的な金属膜材料に白金(Pt)、金(Au)、パラジウム(Pd)、イリジウム(Ir)、ビスマス(Bi)などの材料を約0.5%から10%程度だけ添加(ドープ)した材料であってもよい。 The materials constituting the electromotive layers 421 and 422 include metals having a large spin orbit interaction, such as platinum (Pt), gold (Au), tungsten (W), palladium (Pd), iridium (Ir), and other f A metal material having an orbit or an alloy material containing them can be used. Further, a material such as platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), and bismuth (Bi) is added to a general metal film material such as copper (Cu) from about 0.5% to 10%. The material may be added (doped) by about%.
 本実施形態による熱電変換単位素子400は、起電層421と起電層422のスピン軌動相互作用の符号が異なることを特徴とする。したがって、例えば起電層421に白金(Pt)を用いた場合には、起電層422には白金(Pt)とはスピン軌道相互作用の符号が異なる材料、例えばタングステン(W)などを用いる。 The thermoelectric conversion unit element 400 according to the present embodiment is characterized in that the sign of the spin orbit interaction between the electromotive layer 421 and the electromotive layer 422 is different. Therefore, for example, when platinum (Pt) is used for the electromotive layer 421, a material having a sign of spin orbit interaction different from that of platinum (Pt), such as tungsten (W), is used for the electromotive layer 422.
 また、起電層421および起電層422の厚さは、少なくとも金属材料のスピン拡散長以上に設定するのが好ましい。例えば、白金(Pt)を用いる場合には、その厚さを約10ナノメートル(nm)以上に設定することが望ましい。 In addition, the thickness of the electromotive layer 421 and the electromotive layer 422 is preferably set to at least the spin diffusion length of the metal material. For example, when platinum (Pt) is used, it is desirable to set the thickness to about 10 nanometers (nm) or more.
 基板440の両側に磁性体層410が形成される。そのため、基板440を構成する材料は、結晶構造および格子定数などの材料特性が磁性体層410と近似した材料であることが望ましい。 A magnetic layer 410 is formed on both sides of the substrate 440. Therefore, the material constituting the substrate 440 is desirably a material whose material characteristics such as crystal structure and lattice constant are similar to those of the magnetic layer 410.
 磁性体層410は、スピンゼーベック効果を発現する材料で構成される。磁性体層410を構成する材料は、強磁性金属であってもよいし、磁性絶縁体であってもよい。強磁性金属としては、NiFe、CoFe、CoFeBなどを用いることができる。磁性絶縁体としては、イットリウム鉄ガーネット(YFe12;YIG)や、ビスマス(Bi)をドープしたYIG(Bi:YIG)、ランタン(La)をドープしたYIG(La:YIG)などを用いることができる。なお、伝導電子による熱伝導を抑制する観点から、磁性絶縁体を用いることが望ましい。また、磁性体層410の厚さは、熱電発電の用途や温度領域に応じて設定することが可能である。典型的には、約100ナノメートル(nm)から500マイクロメートル(μm)程度とすることができる。 The magnetic layer 410 is made of a material that exhibits a spin Seebeck effect. The material constituting the magnetic layer 410 may be a ferromagnetic metal or a magnetic insulator. As the ferromagnetic metal, NiFe, CoFe, CoFeB, or the like can be used. Examples of magnetic insulators include yttrium iron garnet (Y 3 Fe 5 O 12 ; YIG), YIG doped with bismuth (Bi) (Bi: YIG), and YIG doped with lanthanum (La) (La: YIG). Can be used. Note that it is desirable to use a magnetic insulator from the viewpoint of suppressing heat conduction by conduction electrons. In addition, the thickness of the magnetic layer 410 can be set according to the use of thermoelectric power generation and the temperature range. Typically, it can be about 100 nanometers (nm) to about 500 micrometers (μm).
 接続部430は、起電層421と起電層422とを電気的に接続できる材料であれば任意の材料を用いることができる。例えば、起電層421または起電層422に用いた金属材料を用いてもよいし、電気伝導率の高い銀(Ag)や銅(Cu)などの金属を用いることとしてもよい。ただし、接続部430は熱電発電には寄与しないため、電気抵抗として作用する。そのため、起電層で生成した電力を消費してしまう。したがって、接続部430の電気抵抗が低いほど、本実施形態の熱電変換単位素子400が生成する起電力や出力は高くなる。以上より、接続部430の材料としては、電気伝導率の高い銀(Ag)や銅(Cu)などが特に好ましい。 Any material can be used for the connecting portion 430 as long as it can electrically connect the electromotive layer 421 and the electromotive layer 422. For example, a metal material used for the electromotive layer 421 or the electromotive layer 422 may be used, or a metal such as silver (Ag) or copper (Cu) having high electrical conductivity may be used. However, since the connection part 430 does not contribute to thermoelectric power generation, it acts as an electrical resistance. Therefore, power generated in the electromotive layer is consumed. Therefore, the lower the electrical resistance of the connection portion 430, the higher the electromotive force and output generated by the thermoelectric conversion unit element 400 of the present embodiment. As described above, as the material of the connection portion 430, silver (Ag), copper (Cu), or the like having high electrical conductivity is particularly preferable.
 この熱電変換単位素子400を図10に示すように積層することによって、各熱電変換単位素子400の起電層421同士、および起電層422同士が物理的に接触し電気的に導通する。 The thermoelectric conversion unit elements 400 are stacked as shown in FIG. 10 so that the electromotive layers 421 and the electromotive layers 422 of the thermoelectric conversion unit elements 400 are in physical contact with each other and are electrically connected.
 熱電変換単位素子400の面内の一方向(x方向)に磁場を、積層方向(z方向)に温度勾配ΔTを印加すると、スピンゼーベック効果によって積層方向(z方向)にスピン流が発生する。このスピン流が起電層421および起電層422に流入すると、逆スピンホール効果によってスピン流から起電力が発生する。このとき、起電層421と起電層422のスピン軌道相互作用の符号が異なるため、起電層421で発生する起電力の向きと、起電層422で発生する起電力の向きは逆向きになる。 When a magnetic field is applied in one direction (x direction) in the plane of the thermoelectric conversion unit element 400 and a temperature gradient ΔT is applied in the stacking direction (z direction), a spin current is generated in the stacking direction (z direction) by the spin Seebeck effect. When this spin current flows into the electromotive layer 421 and the electromotive layer 422, an electromotive force is generated from the spin current due to the reverse spin Hall effect. At this time, since the sign of the spin orbit interaction between the electromotive layer 421 and the electromotive layer 422 is different, the direction of the electromotive force generated in the electromotive layer 421 is opposite to the direction of the electromotive force generated in the electromotive layer 422. become.
 ここで、起電層421と起電層422を接続部430によって接続することにより、起電層同士が電気的に直列に接合されることになる。すなわち、起電層421および起電層422において生成された起電力が加算されるように接続される。 Here, by connecting the electromotive layer 421 and the electromotive layer 422 by the connecting portion 430, the electromotive layers are electrically joined in series. That is, the electromotive force generated in the electromotive layer 421 and the electromotive layer 422 is connected so as to be added.
 熱電変換素子モジュール2000の等価回路は図8と同様である。起電層421同士および起電層422同士が物理的に接触して並列接続され、並列接続された2層の起電層が接続部430を介してそれぞれ直列に接続された構成となる。図16に示した関連する熱電変換素子20の等価回路では上述したように、導電体23で発生する起電力が起電体22で発生する起電力を打ち消すように接続されている。それに対して、本実施形態による熱電変換素子モジュール2000は、図8に示すように、各起電層421および各起電層422において生成された起電力が加算されるように接続されている。そのため、起電層に接続した端子2010および端子2020から、より大きな起電力(V)および出力電力(W)を取り出すことができる。 The equivalent circuit of the thermoelectric conversion element module 2000 is the same as that shown in FIG. The electromotive layers 421 and the electromotive layers 422 are in physical contact with each other and connected in parallel, and the two electromotive layers connected in parallel are connected in series via the connection portion 430. In the equivalent circuit of the related thermoelectric conversion element 20 shown in FIG. 16, the electromotive force generated in the conductor 23 is connected so as to cancel the electromotive force generated in the electromotive body 22 as described above. On the other hand, as shown in FIG. 8, the thermoelectric conversion element module 2000 according to the present embodiment is connected so that the electromotive forces generated in the electromotive layers 421 and the electromotive layers 422 are added. Therefore, a larger electromotive force (V) and output power (W) can be extracted from the terminals 2010 and 2020 connected to the electromotive layer.
 上述したように、本実施形態の熱電変換素子モジュール2000は、各起電層421および各起電層422で生成された起電力が加算されるように接続された構成としているので、効率よく起電力(V)の増大を図ることができる。また、本実施形態の熱電変換素子モジュール2000によれば、起電層421、422の断面積Aを増大させ内部抵抗rを低減した構成とすることができる。そのため、単位面積当たりの出力電力(W)を向上させることができる。さらに、本実施形態の熱電変換単位素子400は、基板440を挟んで磁性体層410と起電層421、422とを積層した構成としているので、熱電変換単位素子400の製造が容易になり、熱電変換単位素子400の機械強度を増強することができる。 As described above, the thermoelectric conversion element module 2000 according to the present embodiment is configured to be connected so that the electromotive forces generated in the electromotive layers 421 and the electromotive layers 422 are added. The increase in power (V) can be achieved. Moreover, according to the thermoelectric conversion element module 2000 of the present embodiment, the cross-sectional area A of the electromotive layers 421 and 422 can be increased to reduce the internal resistance r. Therefore, the output power (W) per unit area can be improved. Furthermore, since the thermoelectric conversion unit element 400 of the present embodiment has a configuration in which the magnetic layer 410 and the electromotive layers 421 and 422 are stacked with the substrate 440 interposed therebetween, the manufacture of the thermoelectric conversion unit element 400 becomes easy. The mechanical strength of the thermoelectric conversion unit element 400 can be increased.
 次に、本実施形態の熱電変換素子モジュール2000について、具体的な構成を用いてさらに詳細に説明する。 Next, the thermoelectric conversion element module 2000 of the present embodiment will be described in more detail using a specific configuration.
 まず、本実施形態の熱電変換単位素子400を構成する起電層421と起電層422において、スピン軌動相互作用の符号が異なる特徴について図11A、11B、図12A、12Bを用いて説明する。図11A、図12Aはそれぞれ、基板上に磁性体膜を形成し、さらにその上に金属膜を形成した試料の断面図を示す。また図11B、図12Bはそれぞれ、図11A、図12Aに示した試料に対してx方向に磁場を、z方向に温度差ΔT=8Kを印加したときにy方向に生じる電圧を測定した結果を示す。 First, the features of the electromotive layer 421 and the electromotive layer 422 constituting the thermoelectric conversion unit element 400 of the present embodiment having different signs of the spin orbit interaction will be described with reference to FIGS. 11A, 11B, 12A, and 12B. . 11A and 12A are cross-sectional views of samples in which a magnetic film is formed on a substrate and a metal film is further formed thereon. 11B and 12B show the results of measuring the voltage generated in the y direction when a magnetic field is applied in the x direction and a temperature difference ΔT = 8K in the z direction is applied to the sample shown in FIGS. 11A and 12A, respectively. Show.
 図11Aに示した試料Aでは、起電層として白金(Pt)金属膜を、図12Aに示した試料Bでは、起電層としてタングステン(W)金属膜を用いた。また、試料A(図11A)、試料B(図12A)のいずれも、磁性体膜はビスマス(Bi)をドープしたYIG(Bi:YIG)膜であり、磁性膜(Bi:YIG)を成長させる基板はSGGG(Substituted Gadolinium Gallium Garnet)基板とした。 In the sample A shown in FIG. 11A, a platinum (Pt) metal film was used as the electromotive layer, and in the sample B shown in FIG. 12A, a tungsten (W) metal film was used as the electromotive layer. In both sample A (FIG. 11A) and sample B (FIG. 12A), the magnetic film is a YIG (Bi: YIG) film doped with bismuth (Bi), and the magnetic film (Bi: YIG) is grown. The substrate was an SGGG (Substituted Gadolinium Gallium Garnet) substrate.
 図11B、図12Bに示したグラフにおいて、横軸はx方向の磁場の大きさHであり、縦軸は発生した起電力の大きさVISHEである。印加している磁場の方向および温度勾配の方向が同じであるにもかかわらず、試料A(図11A)と試料B(図12A)では発生する起電力の符号が反転している。これは、白金(Pt)とタングステン(W)のスピン軌動相互作用の符号が異なるからである。 In the graphs shown in FIG. 11B and FIG. 12B, the horizontal axis is the magnitude H of the magnetic field in the x direction, and the vertical axis is the magnitude V ISHE of the generated electromotive force. Despite the fact that the direction of the applied magnetic field and the direction of the temperature gradient are the same, the sign of the electromotive force generated in the sample A (FIG. 11A) and the sample B (FIG. 12A) is reversed. This is because the sign of the spin orbit interaction between platinum (Pt) and tungsten (W) is different.
 上述した発生する起電力の符号が反転する特性を利用して、以下のような積層構造を作成することにより、大きな起電力が得られる熱電変換単位素子を作成することができる。 A thermoelectric conversion unit element capable of obtaining a large electromotive force can be created by creating the following laminated structure using the above-described characteristic that the sign of the generated electromotive force is inverted.
 最初に、SGGG基板の両面に金属有機化合物分解法(Metal-Organic Decomposition:MOD)により、Bi:YIG磁性膜を形成する。具体的には例えば以下の手順により作成することができる。まず、SGGG基板上にBi:YIGのMOD材料溶液をスピンコーターにより塗布し、その後、有機溶剤を除去するために乾燥する。次に仮焼成を行うことによって、有機物を分解、揮発させる。最後に焼成を行うことにより、酸化物化、結晶化を行う。以上の工程をSGGG基板の両面に対して行う。 First, Bi: YIG magnetic films are formed on both sides of the SGGG substrate by a metal-organic compound decomposition method (Metal-Organic Decomposition: MOD). Specifically, for example, it can be created by the following procedure. First, a Bi: YIG MOD material solution is applied onto an SGGG substrate by a spin coater, and then dried to remove the organic solvent. Next, temporary baking is performed to decompose and volatilize the organic matter. Finally, firing is performed to oxidize and crystallize. The above process is performed on both sides of the SGGG substrate.
 次に、SGGG基板上に作成したBi:YIG磁性膜の一方の面にPt金属膜を、他方の面にW金属膜をスパッタリング法により形成する。 Next, a Pt metal film is formed on one surface of the Bi: YIG magnetic film formed on the SGGG substrate, and a W metal film is formed on the other surface by a sputtering method.
 最後に、Pt金属膜とW金属膜の導通をとるために、図11A、図12A中のy方向の一側面に銀(Ag)ペーストを塗布することにより、図9に示した熱電変換単位素子400の構成が完成する。 Finally, in order to establish conduction between the Pt metal film and the W metal film, the thermoelectric conversion unit element shown in FIG. 9 is applied by applying a silver (Ag) paste on one side surface in the y direction in FIGS. 11A and 12A. 400 configurations are completed.
 複数の熱電変換単位素子400をそれぞれ構成するPt起電層同士、およびW起電層同士が接触し、かつ、Pt起電層で生成された起電力とW起電層で生成された起電力とが加算されるように積層する。これにより、図10に示した熱電変換素子モジュール2000の構成が完成する。このとき、それぞれの熱電変換単位素子400のPt金属膜同士、およびW金属膜同士が物理的に接触し導通する。その結果、起電力を生じるPt金属膜とW金属膜が直列に接続されるので、端子2010および端子2020から加算された大きな起電力を取り出すことができる。 The Pt electromotive layers constituting the thermoelectric conversion unit elements 400 and the W electromotive layers are in contact with each other, and the electromotive force generated in the Pt electromotive layer and the electromotive force generated in the W electromotive layer. Laminate so that and are added. Thereby, the structure of the thermoelectric conversion element module 2000 shown in FIG. 10 is completed. At this time, the Pt metal films and the W metal films of each thermoelectric conversion unit element 400 are in physical contact with each other and are electrically connected. As a result, the Pt metal film and the W metal film that generate an electromotive force are connected in series, so that a large electromotive force added from the terminals 2010 and 2020 can be taken out.
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。図13A、13B、13Cは、本発明の第5の実施形態に係る熱電変換素子モジュール3000の構成を示す概略図であり、図13Aは上面図、図13Bはx方向側面図、図13Cはy方向側面図である。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. 13A, 13B, and 13C are schematic views illustrating a configuration of a thermoelectric conversion element module 3000 according to the fifth embodiment of the present invention, in which FIG. 13A is a top view, FIG. 13B is an x-direction side view, and FIG. It is a direction side view.
 本実施形態による熱電変換素子モジュール3000は、図13Cに示すように、熱電変換単位素子500が水平方向から傾いて積層した構成である。すなわち、熱電変換素子モジュール3000は、複数の熱電変換単位素子500が、熱電変換単位素子500を構成する磁性体層の法線方向と温度勾配の方向(z方向)がなす角度が零度より大きく90度以下であるように傾いて積層している。熱電変換単位素子500には、上述した実施形態による熱電変換単位素子300または熱電変換単位素子400を用いることができる。 As shown in FIG. 13C, the thermoelectric conversion element module 3000 according to the present embodiment has a configuration in which the thermoelectric conversion unit elements 500 are stacked inclined from the horizontal direction. That is, in the thermoelectric conversion element module 3000, the angle formed by the plurality of thermoelectric conversion unit elements 500 between the normal direction of the magnetic layer constituting the thermoelectric conversion unit element 500 and the direction of the temperature gradient (z direction) is greater than zero degrees. It is inclined and laminated so that it is less than the degree. As the thermoelectric conversion unit element 500, the thermoelectric conversion unit element 300 or the thermoelectric conversion unit element 400 according to the above-described embodiment can be used.
 次に、熱電変換単位素子500を傾けて積層したことによる効果について説明する。図13Cに示すように、熱電変換素子モジュール3000の厚さをa、幅をbとする。例えば、熱電変換単位素子500を垂直に傾けて積層した場合、熱電変換単位素子500を水平に積層した場合に比べて、b(幅)/a(厚さ)倍の個数の熱電変換単位素子500を充填することができる。したがって、熱電変換素子モジュール3000に充填された各熱電変換単位素子500のy方向の長さの総計もb/a倍にすることができる。 Next, the effect of laminating the thermoelectric conversion unit elements 500 will be described. As shown in FIG. 13C, the thermoelectric conversion element module 3000 has a thickness a and a width b. For example, when the thermoelectric conversion unit elements 500 are stacked while being inclined vertically, the number of thermoelectric conversion unit elements 500 b (width) / a (thickness) times as many as the case where the thermoelectric conversion unit elements 500 are stacked horizontally. Can be filled. Therefore, the total length in the y direction of each thermoelectric conversion unit element 500 filled in the thermoelectric conversion element module 3000 can also be b / a times.
 ここで、各熱電変換単位素子500で発生する起電力(V)はy方向の長さに比例するので、熱電変換素子モジュール3000で発生する起電力(V)はb/a倍になる。一方、熱電変換単位素子500の全面積は変わらない。上述した式(1)と式(2)より、熱電変換単位素子500から取り出すことができる最大の出力(P)は面積(x×y)に比例するので、熱電変換素子モジュール3000の出力(P)は一定に保つことができる。以上より、熱電変換単位素子500を水平方向から傾けて積層することにより、出力(P)を一定に保ったままで、起電力(V)をb(幅)/a(厚さ)倍以下の範囲で可変することが可能である。 Here, since the electromotive force (V) generated in each thermoelectric conversion unit element 500 is proportional to the length in the y direction, the electromotive force (V) generated in the thermoelectric conversion element module 3000 is b / a times. On the other hand, the total area of the thermoelectric conversion unit element 500 does not change. Since the maximum output (P) that can be taken out from the thermoelectric conversion unit element 500 is proportional to the area (x × y) from the above formulas (1) and (2), the output (P) of the thermoelectric conversion element module 3000 is ) Can be kept constant. From the above, by laminating the thermoelectric conversion unit elements 500 from the horizontal direction and keeping the output (P) constant, the electromotive force (V) is a range of b (width) / a (thickness) times or less. Can be varied.
 熱電変換単位素子500をシート状とした場合について、さらに詳細に説明する。この場合、熱電変換素子モジュール3000の厚さaは幅bに比べて十分に小さい(a<<b)と仮定することができる。 The case where the thermoelectric conversion unit element 500 is in the form of a sheet will be described in more detail. In this case, it can be assumed that the thickness a of the thermoelectric conversion element module 3000 is sufficiently smaller than the width b (a << b).
 熱電変換単位素子500の高さ(z方向)をc、熱電変換単位素子500を傾けないで積層した時の熱電変換単位素子500の個数をN1とする。このとき、図13Cに示した側面の面積(a×b)は、
a×b=c×N1×b
となる。この式から
N1=a/c         (3)
が成り立つ。
The height (z direction) of the thermoelectric conversion unit element 500 is c, and the number of thermoelectric conversion unit elements 500 when the thermoelectric conversion unit elements 500 are stacked without being inclined is N1. At this time, the area (a × b) of the side surface shown in FIG.
a × b = c × N1 × b
It becomes. From this equation, N1 = a / c (3)
Holds.
 一方、熱電変換単位素子500を傾けて積層した場合、熱電変換単位素子500の平均の幅をb/m(図13C参照)、熱電変換素子モジュール3000に充填される熱電変換単位素子500の個数をN2とする。このとき、図13Cに示した側面の面積(a×b)は、
a×b=c×b/m×N2
と表わすことができる。この式から
N2=ma/c        (4)
が成り立つ。
On the other hand, when the thermoelectric conversion unit elements 500 are inclined and stacked, the average width of the thermoelectric conversion unit elements 500 is b / m (see FIG. 13C), and the number of thermoelectric conversion unit elements 500 filled in the thermoelectric conversion element module 3000 is Let N2. At this time, the area (a × b) of the side surface shown in FIG.
a × b = c × b / m × N2
Can be expressed as From this equation, N2 = ma / c (4)
Holds.
 式(3)と(4)から、熱電変換単位素子500を傾けて積層することにより、熱電変換素子モジュール3000に充填することができる熱電変換単位素子500の個数はm倍になることがわかる。これにより、各熱電変換単位素子500のy方向の長さの総計もm倍になるので、熱電変換素子モジュール3000で発生する起電力(V)をm倍にすることができる。 From formulas (3) and (4), it can be seen that the number of thermoelectric conversion unit elements 500 that can be filled in the thermoelectric conversion element module 3000 is increased by m times by tilting and laminating the thermoelectric conversion unit elements 500. Thereby, since the total of the length of the y direction of each thermoelectric conversion unit element 500 also becomes m times, the electromotive force (V) which generate | occur | produces in the thermoelectric conversion element module 3000 can be m times.
 上述した構成とすることにより、熱電変換素子モジュールで発生する起電力をさらに増大させることができる。 By using the above-described configuration, the electromotive force generated in the thermoelectric conversion element module can be further increased.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2014年1月29日に出願された日本出願特願2014-013911を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-013911 filed on January 29, 2014, the entire disclosure of which is incorporated herein.
 100、101、200  熱電変換素子
 110、210、310、410  磁性体層
 120  第1の起電層
 121  上側第1の起電層
 122  下側第1の起電層
 130  第2の起電層
 131  上側第2の起電層
 132  下側第2の起電層
 140、230、330、430  接続部
 141  第1の接続部
 142  第2の接続部
 221、222、321、322、421、422  起電層
 241、242、1010、1020、2010、2020  端子
 300、400  熱電変換単位素子
 440  基板
 1000、2000、3000  熱電変換素子モジュール
 10  関連する熱スピン流変換素子
 11  サファイア基板
 12  熱スピン流変換部
 13  Ta膜
 14  PdPtMn膜
 15  NiFe膜
 16  Pt電極
 17-1、17-2  端子
 20  関連する熱電変換素子
 21  磁性体
 22  起電体
 23  導電体
 24、25  出力端子
100, 101, 200 Thermoelectric conversion elements 110, 210, 310, 410 Magnetic layer 120 First electromotive layer 121 Upper first electromotive layer 122 Lower first electromotive layer 130 Second electromotive layer 131 Upper second electromotive layer 132 Lower second electromotive layer 140, 230, 330, 430 Connection part 141 First connection part 142 Second connection part 221, 222, 321, 322, 421, 422 Electromotive force Layers 241, 242, 1010, 1020, 2010, 2020 Terminals 300, 400 Thermoelectric conversion unit element 440 Substrate 1000, 2000, 3000 Thermoelectric conversion element module 10 Related thermal spin current conversion element 11 Sapphire substrate 12 Thermal spin current conversion unit 13 Ta Film 14 PdPtMn film 15 NiFe film 16 Pt electrode 17-1, 17-2 Terminal 20 Thermoelectric conversion elements 21 magnetic body 22 electromotive element 23 conductors 24, 25 an output terminal which communicates

Claims (10)

  1. スピンゼーベック効果を発現する磁性体層と、
     前記磁性体層における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向である第1の起電層と、
     前記起電力の向きが前記第1の方向と反対である第2の方向である第2の起電層と、
     前記第1の方向の始点と前記第2の方向の終点が連続するように、前記第1の起電層と前記第2の起電層を電気的に接続する接続手段、とを有し、
     前記第1の起電層と前記第2の起電層は、それぞれ前記磁性体層と接続し、前記第1の方向および前記第2の方向と略垂直な方向に離間して配置している
     熱電変換素子。
    A magnetic layer that exhibits a spin Seebeck effect;
    A first electromotive layer in which the direction of the electromotive force determined by the direction of the magnetic field and the direction of the temperature gradient in the magnetic layer is the first direction;
    A second electromotive layer having a second direction in which the direction of the electromotive force is opposite to the first direction;
    Connection means for electrically connecting the first electromotive layer and the second electromotive layer so that a start point in the first direction and an end point in the second direction are continuous;
    The first electromotive layer and the second electromotive layer are connected to the magnetic layer, respectively, and are spaced apart in the first direction and a direction substantially perpendicular to the second direction. Thermoelectric conversion element.
  2. 請求項1に記載した熱電変換素子において、
     前記第1の起電層は、第1の金属材料を含み、
     前記第2の起電層は、第2の金属材料を含み、
     前記第1の金属材料と前記第2の金属材料は、スピン軌道相互作用の正負の符号が互いに異なる
     熱電変換素子。
    In the thermoelectric conversion element according to claim 1,
    The first electromotive layer includes a first metal material;
    The second electromotive layer includes a second metal material;
    The first metal material and the second metal material are thermoelectric conversion elements having different signs of spin orbit interaction.
  3. 請求項1または2に記載した熱電変換素子において、
     前記第2の起電層は、前記第1の起電層を挟んで離間して配置している上側第2の起電層と下側第2の起電層を含み、
     前記接続手段は、第1の接続手段と、第2の接続手段を含み、
     前記第1の接続手段は、前記第1の方向の始点と前記第2の方向の終点が連続するように、前記第1の起電層と前記上側第2の起電層を接続し、
     前記第2の接続手段は、前記第1の方向の終点と前記第2の方向の始点が連続するように、前記第1の起電層と前記下側第2の起電層を接続する
     熱電変換素子。
    In the thermoelectric conversion element according to claim 1 or 2,
    The second electromotive layer includes an upper second electromotive layer and a lower second electromotive layer that are spaced apart from each other with the first electromotive layer interposed therebetween,
    The connection means includes a first connection means and a second connection means,
    The first connection means connects the first electromotive layer and the upper second electromotive layer so that a start point in the first direction and an end point in the second direction are continuous,
    The second connecting means connects the first electromotive layer and the lower second electromotive layer so that the end point in the first direction and the start point in the second direction are continuous. Conversion element.
  4. 請求項3に記載した熱電変換素子において、
     前記第1の起電層は、互いに接続している上側第1の起電層と下側第1の起電層を含み、
     前記第1の接続手段は、前記第1の方向の始点と前記第2の方向の終点が連続するように、前記上側第1の起電層と前記上側第2の起電層を接続し、
     前記第2の接続手段は、前記第1の方向の終点と前記第2の方向の始点が連続するように、前記下側第1の起電層と前記下側第2の起電層を接続する
     熱電変換素子。
    In the thermoelectric conversion element according to claim 3,
    The first electromotive layer includes an upper first electromotive layer and a lower first electromotive layer connected to each other;
    The first connecting means connects the upper first electromotive layer and the upper second electromotive layer so that a start point in the first direction and an end point in the second direction are continuous,
    The second connection means connects the lower first electromotive layer and the lower second electromotive layer so that an end point in the first direction and a start point in the second direction are continuous. A thermoelectric conversion element.
  5. 請求項1から4のいずれか一項に記載した熱電変換素子において、
     前記第1の起電層および前記第2の起電層は、前記磁性体層を挟んで積層されている
     熱電変換素子。
    In the thermoelectric conversion element as described in any one of Claim 1 to 4,
    The first electromotive layer and the second electromotive layer are laminated with the magnetic layer interposed therebetween.
  6. 請求項5に記載した熱電変換素子において、
     前記磁性体層が積層している基板を有し、
     前記磁性体層は、前記基板の一の面に積層している第1の磁性体層と、前記基板の他の面に積層している第2の磁性体層を含み、
     前記第1の起電層は前記第1の磁性体層と接続し、
     前記第2の起電層は前記第2の磁性体層と接続している
     熱電変換素子。
    In the thermoelectric conversion element according to claim 5,
    A substrate on which the magnetic layer is laminated;
    The magnetic layer includes a first magnetic layer laminated on one surface of the substrate and a second magnetic layer laminated on the other surface of the substrate,
    The first electromotive layer is connected to the first magnetic layer;
    The thermoelectric conversion element in which the second electromotive layer is connected to the second magnetic layer.
  7. 請求項1から4のいずれか一項に記載した熱電変換素子において、
     前記第1の起電層および前記第2の起電層は、前記磁性体層上に配置している
     熱電変換素子。
    In the thermoelectric conversion element as described in any one of Claim 1 to 4,
    The first electromotive layer and the second electromotive layer are thermoelectric conversion elements disposed on the magnetic layer.
  8. 請求項5または6に記載した熱電変換素子を複数個備え、
     複数の前記熱電変換素子がそれぞれ備える複数の前記第1の起電層のうち少なくとも2層が互いに接続し、
     複数の前記熱電変換素子がそれぞれ備える複数の前記第2の起電層のうち少なくとも2層が互いに接続している
     熱電変換素子モジュール。
    A plurality of thermoelectric conversion elements according to claim 5 or 6,
    At least two layers of the plurality of first electromotive layers included in each of the plurality of thermoelectric conversion elements are connected to each other,
    A thermoelectric conversion element module in which at least two of the plurality of second electromotive layers provided in each of the plurality of thermoelectric conversion elements are connected to each other.
  9. 請求項8に記載した熱電変換素子モジュールにおいて、
     前記複数の熱電変換素子は、前記磁性体層の法線方向と前記温度勾配の方向がなす角度が零度より大きく90度以下であるように傾いて積層している
     熱電変換素子モジュール。
    In the thermoelectric conversion element module according to claim 8,
    The thermoelectric conversion element module, wherein the plurality of thermoelectric conversion elements are inclined and stacked such that an angle formed between a normal direction of the magnetic layer and the direction of the temperature gradient is greater than zero and 90 degrees or less.
  10. スピンゼーベック効果を発現する磁性体層の一の面に、前記磁性体層における磁場の方向および温度勾配の方向によって定まる起電力の向きが第1の方向である第1の起電層を積層し、
     前記磁性体層の他の面に前記起電力の向きが前記第1の方向と反対である第2の方向である第2の起電層を積層し、
     前記第1の方向の始点と前記第2の方向の終点が連続するように、前記第1の起電層と前記第2の起電層を電気的に接続する
     熱電変換素子の製造方法。
    A first electromotive layer in which the direction of the electromotive force determined by the direction of the magnetic field and the temperature gradient in the magnetic layer is a first direction is laminated on one surface of the magnetic layer that exhibits the spin Seebeck effect. ,
    A second electromotive layer having a second direction in which the direction of the electromotive force is opposite to the first direction is stacked on the other surface of the magnetic layer;
    The manufacturing method of the thermoelectric conversion element which electrically connects the said 1st electromotive layer and the said 2nd electromotive layer so that the start point of the said 1st direction and the end point of the said 2nd direction may continue.
PCT/JP2015/000225 2014-01-29 2015-01-20 Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer WO2015115056A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559807A JP6565689B2 (en) 2014-01-29 2015-01-20 Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013911 2014-01-29
JP2014013911 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115056A1 true WO2015115056A1 (en) 2015-08-06

Family

ID=53756643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000225 WO2015115056A1 (en) 2014-01-29 2015-01-20 Thermoelectric transducer, thermoelectric transducer module, and manufacturing method for thermoelectric transducer

Country Status (2)

Country Link
JP (1) JP6565689B2 (en)
WO (1) WO2015115056A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089836A1 (en) * 2015-11-27 2017-06-01 Loughborough University A thermoelectric conversion device and method of power harvesting
JP2017106295A (en) * 2015-12-04 2017-06-15 マックス建材株式会社 Tiled roof and metal roof tile
JP2018113413A (en) * 2017-01-13 2018-07-19 日本電気株式会社 Variable adiabatic element, and driving and forming methods therefor
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038929A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Thermoelectric transducer, magnetic head using the same, and magnetic recording and reproducing device
WO2014010286A1 (en) * 2012-07-09 2014-01-16 日本電気株式会社 Thermoelectric conversion element, and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038929A (en) * 2010-08-06 2012-02-23 Hitachi Ltd Thermoelectric transducer, magnetic head using the same, and magnetic recording and reproducing device
WO2014010286A1 (en) * 2012-07-09 2014-01-16 日本電気株式会社 Thermoelectric conversion element, and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089836A1 (en) * 2015-11-27 2017-06-01 Loughborough University A thermoelectric conversion device and method of power harvesting
JP2017106295A (en) * 2015-12-04 2017-06-15 マックス建材株式会社 Tiled roof and metal roof tile
JP2018113413A (en) * 2017-01-13 2018-07-19 日本電気株式会社 Variable adiabatic element, and driving and forming methods therefor
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
JP7342623B2 (en) 2019-10-31 2023-09-12 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same

Also Published As

Publication number Publication date
JPWO2015115056A1 (en) 2017-03-23
JP6565689B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
Uchida et al. Longitudinal spin Seebeck effect: from fundamentals to applications
JP4078392B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
US10461238B2 (en) Thermoelectric conversion structure and method for making the same
EP2876687B1 (en) Thermoelectric conversion element and manufacturing method for same
JP6079995B2 (en) Thermoelectric power generation device
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JP5987835B2 (en) Thermoelectric conversion element
JPWO2012169509A1 (en) Thermoelectric conversion element
WO2013047256A1 (en) Thermoelectric conversion element and method for producing same, and radiating fins
JP5630230B2 (en) Thermoelectric conversion element
US20080230107A1 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
JP6066091B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5775163B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
JP7371980B2 (en) Vertical thermoelectric conversion element, and thermoelectric power generation application equipment or heat flow sensor using the same
WO2014010286A1 (en) Thermoelectric conversion element, and method for producing same
WO2017082266A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
JP2015065254A (en) Thermoelectric conversion element and method for manufacturing the same
JP6299237B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2015185778A (en) Thermoelectric conversion element and method for manufacturing the same
WO2023054583A1 (en) Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor
WO2022264940A1 (en) Thermoelectric power generation device
US11417818B2 (en) Thermoelectric conversion element
JP4130845B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP2015179745A (en) Thermoelectric conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743016

Country of ref document: EP

Kind code of ref document: A1