WO2015115027A1 - Radiation detection apparatus, radiation detection system, and fluorescent material - Google Patents

Radiation detection apparatus, radiation detection system, and fluorescent material Download PDF

Info

Publication number
WO2015115027A1
WO2015115027A1 PCT/JP2015/000105 JP2015000105W WO2015115027A1 WO 2015115027 A1 WO2015115027 A1 WO 2015115027A1 JP 2015000105 W JP2015000105 W JP 2015000105W WO 2015115027 A1 WO2015115027 A1 WO 2015115027A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
radiation detection
low friction
phosphor
detection apparatus
Prior art date
Application number
PCT/JP2015/000105
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 石田
岡田 聡
尚志郎 猿田
中山 明哉
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2015115027A1 publication Critical patent/WO2015115027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers

Definitions

  • the present invention relates to a radiation detection apparatus, a radiation detection system, and a phosphor.
  • Patent Document 1 discloses an example in which a protective layer is formed at the tip of a stimulable phosphor layer having a columnar structure.
  • Patent Document 2 discloses an example in which a filler is contained between columnar crystals and is covered with a protective structure.
  • An object of the present invention is to provide a more reliable radiation detection technique with respect to the mechanical protection function of the phosphor layer while ensuring the radiation detection performance.
  • a radiation detection apparatus includes a sensor panel having a plurality of photoelectric conversion elements, a phosphor layer disposed on the sensor panel, and a relative movement with respect to the phosphor layer.
  • a reflection layer disposed on the phosphor layer so as to obtain friction between the reflection layer and the phosphor layer between the reflection layer and the phosphor layer. It has a low friction layer made of a solid material or a liquid material for reduction.
  • the present invention it is possible to provide a more reliable radiation detection technique regarding the mechanical protection function of the phosphor layer while ensuring the radiation detection performance.
  • FIG. 1 is a simplified plan view showing a configuration of a radiation detection apparatus according to an embodiment.
  • 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment.
  • 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment.
  • FIG. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment.
  • 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment.
  • 1 is a schematic diagram of a radiation detection system according to an embodiment. The figure which illustrates the observation result by a scanning electron microscope.
  • the radiation detection apparatus is an apparatus including a photoelectric conversion element array configured by photoelectric conversion elements and switching elements arranged in a matrix, and a scintillator that converts radiation into visible light.
  • a photoelectric conversion element array configured by photoelectric conversion elements and switching elements arranged in a matrix
  • a scintillator that converts radiation into visible light.
  • electromagnetic waves such as ⁇ rays, ⁇ rays, and ⁇ rays are included in the radiation.
  • FIG. 1A is a simplified plan view showing the configuration of the radiation detection apparatus of the present embodiment.
  • 1B is a schematic cross-sectional view taken along the broken line AA ′ of the radiation detection apparatus shown in FIG. 1A.
  • the sensor panel 118 is disposed in the housing 105, and an external circuit, a mounting component 104, and an electric circuit 106 that functions as a signal processing unit are disposed around the sensor panel 118.
  • the sensor panel 118 is formed with a plurality of photoelectric conversion elements 116 for detecting light obtained by converting radiation such as X-rays into visible light by a phosphor layer 114 (scintillator).
  • Each photoelectric conversion element 116 is connected to a TFT (Thin Film Transistor) element and a wiring (not shown).
  • the photoelectric conversion element 116 transfers electric charges (electrical information) converted from visible light to an external signal processing unit through the signal input / output unit 120, the external wiring 121, an amplifier, an A / D converter, and the like.
  • Image information is generated by image processing.
  • the sensor panel 118 is formed with a sensor array and wiring (not shown) in which a plurality of photoelectric conversion elements 116 are two-dimensionally arranged on an insulating substrate 111 made of glass, heat-resistant plastic, or the like.
  • the photoelectric conversion element 116 converts light converted from radiation by the phosphor layer 114 (scintillator layer) into electric charge, and for example, a material such as amorphous silicon can be used.
  • a material such as amorphous silicon can be used.
  • the configuration of the photoelectric conversion element is not particularly limited, and an MIS type sensor, a PIN type sensor, a TFT type sensor, or the like can be used as appropriate.
  • a protective layer (sensor protective layer 117) is disposed on the sensor panel 118 for the purpose of protecting the photoelectric conversion element 116.
  • As a material used for the sensor protective layer 117 since light converted by the phosphor layer 114 (scintillator layer) passes at the time of radiation irradiation, it shows high transmittance with respect to the wavelength of light emitted from the phosphor layer 114. Things are desirable.
  • the inorganic materials can be used SiNx or SiO 2, TiO 2, LiF, Al 2 O 3, MgO or the like.
  • polyphenylene sulfide resin for example, polyphenylene sulfide resin, fluorine resin, polyether ether ketone resin, liquid crystal polymer, polyether nitrile resin, polysulfone resin, polyether sulfone resin, polyarylate resin, polyamide imide resin, polyether imide resin
  • polyimide resin epoxy resin, silicone resin, etc.
  • a phosphor layer 114 (scintillator layer) is disposed on the sensor protection layer 117 of the sensor panel 118.
  • the phosphor layer 114 (scintillator layer) converts radiation into light that can be sensed by the photoelectric conversion element 116, and has, for example, a structure having a plurality of columnar crystals 208 as shown in FIG.
  • the phosphor layer 114 (scintillator layer) having the columnar crystal 208 light generated in the phosphor layer 114 propagates through the columnar crystal 208, so that light scattering is small and resolution can be improved.
  • a columnar crystal represented by cesium iodide (CsI: Tl) to which a small amount of thallium (Tl) is added can be used. is there.
  • a reflective layer 112 is formed on the phosphor layer 114 (scintillator layer) via a low friction layer 113 described later.
  • the reflective layer 112 is disposed on the phosphor layer so as to be able to move relative to the phosphor layer.
  • Examples of the material used for the reflective layer 112 include highly reflective materials such as silver (Ag) and aluminum (Al), white pigment particles such as titanium oxide (TiO 2 ), zinc oxide (ZnO), and barium sulfate (BaSO). 4 ) It is possible to use a material such as a white reflective sheet made of, etc.
  • the low friction layer 113 covers the tip of the columnar crystal and is not fixed to the reflective layer 112.
  • a phosphor protective layer 115 is disposed on the phosphor layer 114 (scintillator layer) via a low friction layer 113 and a reflective layer 112.
  • the phosphor protective layer 115 is disposed for the purpose of protecting the phosphor layer 114 from humidity deterioration or the like.
  • the phosphor protective layer 115 is provided in order to suppress deterioration of the characteristics of the phosphor layer 114 due to humidity deterioration. Is effective.
  • a material used for the phosphor protective layer 115 for example, a metal foil such as an aluminum (Al) foil can be used.
  • an organic resin may be used for the purpose of bonding and fixing the metal foil, the reflective layer 112, and the sensor panel 118.
  • a general organic sealing material such as a silicone resin, an acrylic resin, and an epoxy resin
  • a hot-melt resin such as polyester, polyolefin, and polyamide
  • a resin with low moisture permeability for example, an organic film of polyparaxylylene formed by CVD deposition or a hot melt resin typified by a polyolefin resin can be used.
  • FIG. 2 is a schematic cross-sectional view of the radiation detection apparatus according to the embodiment, and the low friction layer 113 is disposed between the phosphor layer 114 (scintillator layer) and the reflection layer 112.
  • the phosphor layer 114 sintillator layer
  • the tip of the columnar crystal 208 constituting the phosphor layer 114 is pointed and thin, and therefore the mechanical portion of the tip is mechanical.
  • the strength is lower than the mechanical strength at the lower end of the columnar crystal 208.
  • the low friction layer 113 of this embodiment functions as a protective member that protects the columnar crystal 208 (FIG. 2) that constitutes the phosphor layer 114. Since the phosphor layer 114, the low friction layer 113, and the reflective layer 112 are not fixed to each other, each layer does not receive a force from other layers even if a positional variation occurs in each layer (between members) in the horizontal direction. . Since the friction between the reflective layer 112 and the low friction layer 113 is reduced due to the arrangement of the low friction layer 113, even when the reflective layer 112 and the phosphor layer 114 are relatively displaced, the phosphor layer caused by friction It becomes possible to prevent damage to the tip of 114.
  • the low friction layer 113 is formed so as to cover the tip of the columnar crystal 208 forming the phosphor layer 114 and the gap around the tip. And are arranged so as to cover.
  • the distance t (interval) between the tip of the columnar crystal 208 of the phosphor layer 114 and the reflective layer 112 shown in FIG. 2 can be set as appropriate, but when the distance t exceeds 200 ⁇ m, the phosphor layer 114 and the reflective layer 112
  • the distance (interval) between the radiation detector and the resolution characteristic of the radiation detection apparatus may be deteriorated. For this reason, for example, the distance t between the phosphor layer 114 and the reflective layer 112 can be set in the range of 0 ⁇ m or more and 200 ⁇ m or less.
  • an organic resin containing a fluororesin as a main component can be used as the solid material used for the low friction layer 113.
  • fluororesins include, for example, polytetrafluoroethylene (PEFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene / tetrafluoroethylene copolymer ( ETFE), perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and the like.
  • PEFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • ETFE ethylene / tetrafluoroethylene copolymer
  • the solid material used for the low friction layer 113 in this embodiment is not limited to the above, and the function of the low friction layer 113 is satisfactory as a protective member for protecting the columnar crystal 208 (FIG. 2) constituting the phosphor layer 114.
  • Any resin that can be used is not limited to the resins mentioned above.
  • the low friction layer 113 it is preferable to select a material having a static friction coefficient of less than 0.3.
  • the measurement of the coefficient of static friction was performed according to “JIS K7125 plastic-film and sheet friction coefficient test method”.
  • the coefficient of static friction exceeds the above value, the frictional force between the reflective layer 112 and the low friction layer 113 increases, causing local breakage due to the frictional force, the warping of the sheets constituting the reflective layer 112, and the like. there's a possibility that.
  • the coefficient of static friction satisfies the range of less than 0.3.
  • FIG. 3A to FIG. 3D are diagrams showing an example of a cross-sectional configuration of the radiation detection apparatus according to the first embodiment.
  • the low friction layer 113 is formed only on the surface of the tip portion of the columnar crystal 208 constituting the phosphor layer 114.
  • the low friction layer 113 is formed so as to cover the tip of the columnar crystal 208 constituting the phosphor layer 114 and the gap around the tip.
  • the surface of the low friction layer 113 with respect to the reflective layer 112 is configured with a surface having a curvature radius that is convex above the columnar crystal 208.
  • the curvature radius R of the upper surface of the columnar crystal 208 is preferably larger than 1.0 ⁇ m (R> 1.0 ⁇ m).
  • the surface of the low friction layer 113 with respect to the reflective layer 112 is flat, and the low friction layer 113 is filled in the gap between the tip portion and the tip portion. If the low friction layer 113 is formed in the form shown in FIGS. 3B, 3C, and 3D using the resin exemplified above, the static friction coefficient satisfies the above range ( ⁇ 0.3).
  • FIG. 4 is a schematic cross-sectional view of the radiation detection apparatus according to the second embodiment.
  • a flat layer 401 shown in FIG. 4 is formed of the same material as the columnar crystal 208 and is disposed on the columnar crystal 208.
  • a low friction layer 113 is disposed on the flat layer 401 (between the flat layer 401 and the reflective layer 112).
  • the flat layer 401 can be formed by changing the formation conditions at the end of the formation of the columnar crystal 208. By providing the flat layer 401, the effect of the present invention can be further enhanced.
  • FIG. 5 is a schematic cross-sectional view of the radiation detection apparatus according to the third embodiment, and the lubricating layer 501 shown in FIG. 5 further enhances the function of the low friction layer 113 described in the first and second embodiments and reflects it. It has a function of further reducing friction between the layer 112 and the phosphor layer 114.
  • a lubricating layer 501 formed by applying a liquid material is disposed between the low friction layer 113 and the reflective layer 112.
  • the lubricating layer 501 can be used regardless of whether it is organic, inorganic, liquid, or solid.
  • the lubricating layer 501 is preferably made of a material having a high light transmittance and more preferably transparent in order to transmit the light emitted from the phosphor layer 114 to the reflective layer 112.
  • the material used for the lubricating layer 501 may be a material that does not affect the phosphor layer 114, the low friction layer 113, and the reflective layer 112 and that has a high light transmittance.
  • transparent oil such as index matching oil, low-volatile organic solvent, oil and fat, etc.
  • solid materials if it is possible to suppress a decrease in transmittance by means such as thinning, molybdenum disulfide (MoS 2 ), graphite, diamond-like carbon (DLC), fullerene, boron nitride (BN), melamine cyanurate
  • MoS 2 molybdenum disulfide
  • DLC diamond-like carbon
  • BN boron nitride
  • BN boron nitride
  • MCA calcium fluoride
  • Example 1 Next, an embodiment of the radiation detection apparatus will be described.
  • the radiation detection apparatus according to the first embodiment shown in FIGS. 1A and 1B was produced as follows. First, the sensor panel 118 is prepared. In the sensor panel 118, the photoelectric conversion element 116 and the TFT are formed using amorphous silicon (a-Si), and then the sensor protective layer 117 is formed using polyimide having a thickness of 5 ⁇ m.
  • a-Si amorphous silicon
  • a phosphor layer 114 (scintillator layer) is formed on the sensor protection layer 117.
  • the phosphor cesium iodide (CsI) added with thallium (Tl) as an activator (CsI: Tl) can be used.
  • the formation method uses a vacuum evaporation method.
  • the sensor panel can be installed in a vacuum deposition apparatus to form CsI: Tl.
  • a phosphor layer 114 (scintillator layer) in which a plurality of columnar crystals 208 are grown substantially perpendicular to the surface of the sensor panel 118 can be formed.
  • the low friction layer 113 is formed on the columnar crystal 208.
  • the low friction layer 113 for example, an organic resin layer mainly composed of a fluororesin is formed.
  • the low friction layer 113 is applied onto the phosphor layer 114 using a spray coating method, and a Teflon sheet (“Teflon” is a registered trademark) is placed thereon to flatten the surface. By performing heat treatment in this state, the low friction layer 113 is formed.
  • FIG. 7 is a diagram illustrating an observation result by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a phosphor produced by the same method as the above production method is observed with a scanning electron microscope (SEM)
  • SEM scanning electron microscope
  • a structure in which a plurality of columnar crystals are grown can be confirmed.
  • the aforementioned fluororesin layer is formed at the tip portion.
  • the radius of curvature of the resin formed at the tip of the columnar crystal is 1.5 ⁇ m.
  • the reflective layer 112 is formed.
  • a white insulating sheet having a high reflectance of 50 ⁇ m is used as the reflective layer. This white insulating sheet is disposed on the phosphor layer 114 on which the low friction layer 113 is formed. By the above manufacturing method, the low friction layer 113 is formed between the phosphor layer 114 and the reflective layer 112.
  • a phosphor protective layer 115 is disposed so as to cover the reflective layer 112, the low friction layer 113, and the phosphor layer 114.
  • the end portion of the phosphor protective layer 115 and the sensor panel 118 are connected by a hot melt resin, and then the end of the phosphor protective layer 115 is interposed via the hot melt resin.
  • a pressure bonding process is performed between the sensor and the sensor panel 118.
  • the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected to each other and connected to a board on which a signal processing circuit such as a drive circuit / readout circuit is arranged. Thereafter, the above-described member is covered with an external housing or the like to complete the production of the radiation detection apparatus.
  • a thermal shock test was performed on the above radiation detection apparatus. As test conditions, a cycle of holding at ⁇ 30 ° C. for 1 h ⁇ heating to 60 ° C. (1 ° C./min) ⁇ holding at 60 ° C. for 1 h ⁇ falling to ⁇ 30 ° C. (1 ° C./min) was repeated 10 times. When the presence or absence of a change in image quality was confirmed after this test, it was confirmed that there was no change before and after the test.
  • the MTF (Modulation-Transfer-Function) characteristics of the radiation detector were measured before and after the test. Before the test: 0.329 (2 lp / mm) and after the test: 0.328 (2 lp / mm). It was confirmed that there was no significant change in
  • Example 2 In this example, in addition to the configuration of Example 1, the tip of the columnar crystal 208 is covered with a flat layer 401 made of the same material as the columnar crystal, and the low friction layer 113 is disposed on the flat layer 401. An example of manufacturing a radiation detection apparatus will be described.
  • the phosphor layer 114 is formed on the sensor panel 118 by the same method as in Example 1.
  • the flat layer 401 can be formed by forming columnar crystals by a vapor deposition method and then changing the vapor deposition conditions (pressure and temperature) when the columnar crystals are formed by the vapor deposition method.
  • the low friction layer 113 is formed by the same method as in Example 1. Since the surface of the low friction layer 113 formed at this time becomes flat as shown in FIG. 4, the curvature radius R becomes infinite. At this time, the coefficient of static friction of the low friction layer 113 was 0.08.
  • Example 1 Thereafter, the reflective layer 112 and the phosphor protective layer 115 are arranged in the same manner as in Example 1, the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected, and the production of the radiation detection apparatus is completed.
  • a heat cycle test and a drop test described in Example 1 were performed on the radiation detection apparatus manufactured by the method of Example 2, and it was confirmed that there was no change in image quality and characteristics before and after the test.
  • Example 3 In the present embodiment, an example will be described in which a radiation detection apparatus is manufactured when a liquid low friction layer is applied as the low friction layer 113 in place of the solid low friction layer in the configuration of the first embodiment.
  • the phosphor layer 114 is formed on the sensor panel 118 by the same method as in the first and second embodiments.
  • a fluorine-based water repellent liquid for example, Novec 7600 (manufactured by Sumitomo 3M)
  • the phosphor layer 114 is formed in the same manner as in Example 1, and the liquid material is low so that the reflective layer 112 does not touch the tip of the columnar crystal 208.
  • the reflective layer 112 is disposed by adjusting the amount of the friction layer. When the liquid low friction layer 113 is formed in this manner, the coefficient of static friction is 0.2.
  • the static friction coefficient is measured by the method described in the first embodiment. Thereafter, the reflective layer 112 and the phosphor protective layer 115 are disposed by the same method as in Example 1, the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected, and the production of the radiation detection apparatus is completed.
  • the heat detection test described in Example 1 and a drop test were performed on the radiation detection apparatus manufactured by the method of Example 3, and it was confirmed that there was no change in image quality and characteristics before and after the test.
  • Example 4 This embodiment shows an application example of a radiation detection apparatus to a radiation detection system.
  • the radiation generating unit 6050 irradiates the test object with radiation.
  • the radiation 6060 generated by the radiation generation unit 6050 passes through the chest 6062 (test object) of the patient or subject 6061 and enters the radiation detection apparatus (image sensor) as shown in FIGS. 1A to 5.
  • This incident radiation includes information inside the body of the subject 6061.
  • the phosphor (scintillator) emits light in response to the incidence of radiation, and the photoelectric conversion element of the sensor panel performs photoelectric conversion to obtain electric charges (electrical information) converted from visible light.
  • the acquired electrical information is subjected to image processing by an image processor 6070 functioning as a signal processing unit through the signal input / output unit 120, the external wiring 121, an amplifier, an A / D converter, and the like, and image information is generated.
  • Image information generated by the image processor 6070 can be transferred to a remote place by a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet.
  • a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet.
  • image information can be displayed on a display 6081 which is a display unit such as a doctor room in another place, or image information can be stored in a recording unit such as an optical disk. It is also possible for a remote doctor to make a diagnosis based on the image information.
  • image information can be recorded on the film 6110 by a film processor 6100 serving as a recording unit.
  • the radiation detection apparatus of the present invention can be applied to a medical radiation detection apparatus or a non-medical analysis / inspection apparatus using radiation, such as a nondestructive inspection apparatus.

Abstract

This radiation detection apparatus has: a sensor panel having a plurality of photoelectric conversion elements; a fluorescent material layer that is disposed on the sensor panel; and a reflection layer that is disposed on the fluorescent material layer such that the reflection layer can relatively move with respect to the fluorescent material layer. The radiation detection apparatus has a low-friction layer between the reflection layer and the fluorescent material layer, said low-friction layer being formed of a solid material or a liquid material for the purpose of reducing friction between the reflection layer and the fluorescent material layer.

Description

放射線検出装置、放射線検出システム、及び、蛍光体Radiation detection apparatus, radiation detection system, and phosphor
 本発明は、放射線検出装置、放射線検出システム、及び、蛍光体に関するものである。 The present invention relates to a radiation detection apparatus, a radiation detection system, and a phosphor.
 蛍光体の潮解による特性劣化を抑制するため、種々の蛍光体保護構造が提案されている。この蛍光体保護構造は蛍光体の機械的保護機能、防湿保護機能を備えるものである。例えば、特許文献1においては、柱状構造を有する輝尽性蛍光体層の先端部に保護層を形成した例が開示されている。また、特許文献2においては、柱状結晶間に充填材を含有し、保護構造で覆われている例が開示されている。 Various phosphor protective structures have been proposed in order to suppress deterioration of characteristics due to deliquescence of the phosphor. This phosphor protection structure has a mechanical protection function and a moisture-proof protection function of the phosphor. For example, Patent Document 1 discloses an example in which a protective layer is formed at the tip of a stimulable phosphor layer having a columnar structure. Patent Document 2 discloses an example in which a filler is contained between columnar crystals and is covered with a protective structure.
特許第3819347号明細書Japanese Patent No. 3819347 特開2009-300213号公報JP 2009-300213 A
 しかし特許文献1、2の方法においては、機械的な摩擦による蛍光体層(シンチレータ層)への影響についての開示はなく、蛍光体層の機械的な保護機能に関して、より信頼性の高い放射線検出技術が望まれている。 However, in the methods of Patent Documents 1 and 2, there is no disclosure about the influence on the phosphor layer (scintillator layer) due to mechanical friction, and more reliable radiation detection with respect to the mechanical protection function of the phosphor layer. Technology is desired.
 本発明の目的は、放射線検出性能を確保しつつ、蛍光体層の機械的な保護機能に関して、より信頼性の高い放射線検出技術を提供することにある。 An object of the present invention is to provide a more reliable radiation detection technique with respect to the mechanical protection function of the phosphor layer while ensuring the radiation detection performance.
 本発明の一つの側面に係る放射線検出装置は、複数の光電変換素子を有するセンサーパネルと、前記センサーパネルの上に配置された蛍光体層と、前記蛍光体層に対して相対的に移動し得るように前記蛍光体層の上に配置された反射層と、を有する放射線検出装置であって、前記反射層と前記蛍光体層との間に、前記反射層と前記蛍光体層の摩擦を低減するための固体材料又は液体材料からなる低摩擦層を有することを特徴とする。 A radiation detection apparatus according to one aspect of the present invention includes a sensor panel having a plurality of photoelectric conversion elements, a phosphor layer disposed on the sensor panel, and a relative movement with respect to the phosphor layer. A reflection layer disposed on the phosphor layer so as to obtain friction between the reflection layer and the phosphor layer between the reflection layer and the phosphor layer. It has a low friction layer made of a solid material or a liquid material for reduction.
 本発明によれば、放射線検出性能を確保しつつ、蛍光体層の機械的な保護機能に関して、より信頼性の高い放射線検出技術を提供することができる。 According to the present invention, it is possible to provide a more reliable radiation detection technique regarding the mechanical protection function of the phosphor layer while ensuring the radiation detection performance.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態に係る放射線検出装置の構成を示す平面簡略図。 実施形態に係る放射線検出装置の断面概略図。 実施形態に係る放射線検出装置の断面概略図。 実施形態に係る放射線検出装置の断面構成例を示す図。 実施形態に係る放射線検出装置の断面構成例を示す図。 実施形態に係る放射線検出装置の断面構成例を示す図。 実施形態に係る放射線検出装置の断面構成例を示す図。 実施形態に係る放射線検出装置の断面概略図。 実施形態に係る放射線検出装置の断面概略図。 実施形態に係る放射線検出システムの概略図。 走査型電子顕微鏡による観察結果を例示する図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified plan view showing a configuration of a radiation detection apparatus according to an embodiment. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment. The figure which shows the cross-sectional structural example of the radiation detection apparatus which concerns on embodiment. The figure which shows the cross-sectional structural example of the radiation detection apparatus which concerns on embodiment. The figure which shows the cross-sectional structural example of the radiation detection apparatus which concerns on embodiment. The figure which shows the cross-sectional structural example of the radiation detection apparatus which concerns on embodiment. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment. 1 is a schematic cross-sectional view of a radiation detection apparatus according to an embodiment. 1 is a schematic diagram of a radiation detection system according to an embodiment. The figure which illustrates the observation result by a scanning electron microscope.
 以下、図面を参照して、本発明の実施形態を例示的に詳しく説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the components described in this embodiment are merely examples, and the technical scope of the present invention is determined by the scope of the claims, and is not limited by the following individual embodiments. Absent.
 実施形態に係る放射線検出装置は、マトリクス状に配置された光電変換素子とスイッチング素子により構成された光電変換素子アレイと、放射線を可視光に変換するシンチレータとを有する装置である。尚、本明細書では、X線の他、α線、β線、γ線等の電磁波も、放射線に含まれるものとする。 The radiation detection apparatus according to the embodiment is an apparatus including a photoelectric conversion element array configured by photoelectric conversion elements and switching elements arranged in a matrix, and a scintillator that converts radiation into visible light. In this specification, in addition to X-rays, electromagnetic waves such as α rays, β rays, and γ rays are included in the radiation.
 <第1実施形態>
 図1Aは、本実施形態の放射線検出装置の構成を示す平面簡略図である。また、図1Bは図1Aに示した放射線検出装置のA-A‘破線に沿った断面概略図である。
<First Embodiment>
FIG. 1A is a simplified plan view showing the configuration of the radiation detection apparatus of the present embodiment. 1B is a schematic cross-sectional view taken along the broken line AA ′ of the radiation detection apparatus shown in FIG. 1A.
 図1Aに示すように、センサーパネル118は筐体105内に配置されており、センサーパネル118の周囲には外部配線および実装部品104および信号処理部として機能する電気回路106が配置されている。 As shown in FIG. 1A, the sensor panel 118 is disposed in the housing 105, and an external circuit, a mounting component 104, and an electric circuit 106 that functions as a signal processing unit are disposed around the sensor panel 118.
 図1Bに示すようにセンサーパネル118には、X線等の放射線を、蛍光体層114(scintillator)で可視光に変換した光を検知するための複数の光電変換素子116が形成されている。各々の光電変換素子116にはTFT(Thin Film Transistor)素子、不図示の配線が接続されている。光電変換素子116は可視光から変換された電荷(電気的情報)を、信号入出力部120、外部配線121、アンプ、A/Dコンバータ等を通じて外部の信号処理部へ転送し、信号処理部による画像処理により画像情報が生成される。 As shown in FIG. 1B, the sensor panel 118 is formed with a plurality of photoelectric conversion elements 116 for detecting light obtained by converting radiation such as X-rays into visible light by a phosphor layer 114 (scintillator). Each photoelectric conversion element 116 is connected to a TFT (Thin Film Transistor) element and a wiring (not shown). The photoelectric conversion element 116 transfers electric charges (electrical information) converted from visible light to an external signal processing unit through the signal input / output unit 120, the external wiring 121, an amplifier, an A / D converter, and the like. Image information is generated by image processing.
 センサーパネル118は、ガラス、耐熱性プラスチック等からなる絶縁性の基板111の上に複数の光電変換素子116が2次元に配置されたセンサーアレイおよび配線(不図示)が形成されている。 The sensor panel 118 is formed with a sensor array and wiring (not shown) in which a plurality of photoelectric conversion elements 116 are two-dimensionally arranged on an insulating substrate 111 made of glass, heat-resistant plastic, or the like.
 光電変換素子116は、蛍光体層114(シンチレータ層)によって放射線から変換された光を電荷に変換するものであり、例えば、アモルファスシリコンなどの材料を用いることが可能である。光電変換素子の構成は特に限定されず、MIS型センサー、PIN型センサー、TFT型センサー等適宜用いることができる。 The photoelectric conversion element 116 converts light converted from radiation by the phosphor layer 114 (scintillator layer) into electric charge, and for example, a material such as amorphous silicon can be used. The configuration of the photoelectric conversion element is not particularly limited, and an MIS type sensor, a PIN type sensor, a TFT type sensor, or the like can be used as appropriate.
 光電変換素子116を保護する目的で、センサーパネル118上に保護層(センサー保護層117)が配置されている。センサー保護層117に用いる材料としては、放射線照射時に蛍光体層114(シンチレータ層)によって変換された光が通過することから、蛍光体層114が放出する光の波長に対して高い透過率を示すものが望ましい。例えば、無機材料として、SiNxやSiO2、TiO2、LiF、Al23、MgO等を用いることができる。また、有機材料として、例えば、ポリフェニレンサルファイド樹脂、フッ素樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー、ポリエーテルニトリル樹脂、ポリスルホン樹脂、ポリエーテルサルホン樹脂、ポリアリレート樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂等を用いることができる。 A protective layer (sensor protective layer 117) is disposed on the sensor panel 118 for the purpose of protecting the photoelectric conversion element 116. As a material used for the sensor protective layer 117, since light converted by the phosphor layer 114 (scintillator layer) passes at the time of radiation irradiation, it shows high transmittance with respect to the wavelength of light emitted from the phosphor layer 114. Things are desirable. For example, the inorganic materials can be used SiNx or SiO 2, TiO 2, LiF, Al 2 O 3, MgO or the like. Moreover, as an organic material, for example, polyphenylene sulfide resin, fluorine resin, polyether ether ketone resin, liquid crystal polymer, polyether nitrile resin, polysulfone resin, polyether sulfone resin, polyarylate resin, polyamide imide resin, polyether imide resin Polyimide resin, epoxy resin, silicone resin, etc. can be used.
 センサーパネル118のセンサー保護層117上には蛍光体層114(シンチレータ層)が配置されている。蛍光体層114(シンチレータ層)は、放射線を光電変換素子116が感知可能な光に変換するものであり、例えば、図2に示すように柱状結晶208を複数有する構造である。柱状結晶208を有する蛍光体層114(シンチレータ層)は、蛍光体層114で発生した光が柱状結晶208内を伝搬するので光散乱が少なく、解像度を向上させることができる。柱状結晶208を形成する蛍光体層114(シンチレータ層)の材料としては、例えば、タリウム(Tl)が微量添加されたヨウ化セシウム(CsI:Tl)に代表される柱状結晶を用いることが可能である。 A phosphor layer 114 (scintillator layer) is disposed on the sensor protection layer 117 of the sensor panel 118. The phosphor layer 114 (scintillator layer) converts radiation into light that can be sensed by the photoelectric conversion element 116, and has, for example, a structure having a plurality of columnar crystals 208 as shown in FIG. In the phosphor layer 114 (scintillator layer) having the columnar crystal 208, light generated in the phosphor layer 114 propagates through the columnar crystal 208, so that light scattering is small and resolution can be improved. As a material of the phosphor layer 114 (scintillator layer) forming the columnar crystal 208, for example, a columnar crystal represented by cesium iodide (CsI: Tl) to which a small amount of thallium (Tl) is added can be used. is there.
 蛍光体層114(シンチレータ層)上には、後述する低摩擦層113を介して反射層112が形成されている。反射層112は、蛍光体層に対して相対的に移動し得るように蛍光体層の上に配置されている。反射層112に用いる材料としては、例えば、銀(Ag)やアルミニウム(Al)等の高反射材料や、白色顔料粒子、例えば、酸化チタン(TiO2)、酸化亜鉛(ZnO)、硫酸バリウム(BaSO4)等からなる白色反射シート等の材料を用いることが可能である。低摩擦層113は、柱状結晶の先端部を被覆しており、反射層112に固定されていない。 A reflective layer 112 is formed on the phosphor layer 114 (scintillator layer) via a low friction layer 113 described later. The reflective layer 112 is disposed on the phosphor layer so as to be able to move relative to the phosphor layer. Examples of the material used for the reflective layer 112 include highly reflective materials such as silver (Ag) and aluminum (Al), white pigment particles such as titanium oxide (TiO 2 ), zinc oxide (ZnO), and barium sulfate (BaSO). 4 ) It is possible to use a material such as a white reflective sheet made of, etc. The low friction layer 113 covers the tip of the columnar crystal and is not fixed to the reflective layer 112.
 また、蛍光体層114(シンチレータ層)上には、低摩擦層113、反射層112を介して蛍光体保護層115が配置されている。蛍光体保護層115は、蛍光体層114を湿度劣化等から保護する目的で配置されている。特に、ヨウ化セシウム(CsI:Tl)等の柱状結晶の、蛍光体層114を用いる場合には湿度劣化による蛍光体層114の特性の低下を抑制するため、蛍光体保護層115を設置することが効果的である。蛍光体保護層115に用いる材料としては、例えば、アルミニウム(Al)箔等の金属箔を用いることが可能である。 Further, a phosphor protective layer 115 is disposed on the phosphor layer 114 (scintillator layer) via a low friction layer 113 and a reflective layer 112. The phosphor protective layer 115 is disposed for the purpose of protecting the phosphor layer 114 from humidity deterioration or the like. In particular, when the phosphor layer 114 of columnar crystals such as cesium iodide (CsI: Tl) is used, the phosphor protective layer 115 is provided in order to suppress deterioration of the characteristics of the phosphor layer 114 due to humidity deterioration. Is effective. As a material used for the phosphor protective layer 115, for example, a metal foil such as an aluminum (Al) foil can be used.
 また、金属箔と反射層112、センサーパネル118とを接着固定・封止する目的で有機樹脂を用いてもよい。有機樹脂としては、例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂などの一般的な有機封止材料や、ポリエステル系、ポリオレフィン系、ポリアミド系等のホットメルト樹脂などを用いることができる。水分透過率の低い樹脂を用いるこことも可能である。例えば、CVD蒸着で形成するポリパラキシリレンの有機膜や、ポリオレフィン系樹脂に代表されるホットメルト樹脂を用いることができる。 Further, an organic resin may be used for the purpose of bonding and fixing the metal foil, the reflective layer 112, and the sensor panel 118. As the organic resin, for example, a general organic sealing material such as a silicone resin, an acrylic resin, and an epoxy resin, a hot-melt resin such as polyester, polyolefin, and polyamide can be used. This is also possible using a resin with low moisture permeability. For example, an organic film of polyparaxylylene formed by CVD deposition or a hot melt resin typified by a polyolefin resin can be used.
 次に低摩擦層113について説明する。図2は、実施形態に係る放射線検出装置の断面概略図であり、低摩擦層113は、蛍光体層114(シンチレータ層)と反射層112との間に配置されている。特に、ヨウ化セシウム(CsI:Tl)等の柱状結晶の蛍光体層114を用いる場合には、蛍光体層114を構成する柱状結晶208の先端部は尖っており細いため、先端部の機械的強度は柱状結晶208の下端部の機械的強度に比べて低い。低摩擦層113が配置されていない場合(例えば、図3A)、反射層112と蛍光体層114とが直接接触し、かつ、反射層112と蛍光体層114とが相対的に移動した場合、反射層112と蛍光体層114の摩擦により蛍光体層114の柱状結晶208(図2)の先端部に破損が生じ得る。 Next, the low friction layer 113 will be described. FIG. 2 is a schematic cross-sectional view of the radiation detection apparatus according to the embodiment, and the low friction layer 113 is disposed between the phosphor layer 114 (scintillator layer) and the reflection layer 112. In particular, in the case of using a columnar crystal phosphor layer 114 such as cesium iodide (CsI: Tl), the tip of the columnar crystal 208 constituting the phosphor layer 114 is pointed and thin, and therefore the mechanical portion of the tip is mechanical. The strength is lower than the mechanical strength at the lower end of the columnar crystal 208. When the low friction layer 113 is not disposed (for example, FIG. 3A), when the reflective layer 112 and the phosphor layer 114 are in direct contact and the reflective layer 112 and the phosphor layer 114 are relatively moved, The friction between the reflective layer 112 and the phosphor layer 114 may cause damage to the tip of the columnar crystal 208 (FIG. 2) of the phosphor layer 114.
 本実施形態の低摩擦層113は、蛍光体層114を構成する柱状結晶208(図2)を保護する保護部材として機能するものである。蛍光体層114、低摩擦層113、反射層112は互いに固定されていないため、各層間(部材間)で水平方向に位置変動が生じたとしても、各層は他の層からの力を受けない。低摩擦層113の配置により、反射層112と低摩擦層113との間で摩擦が低減するため、反射層112と蛍光体層114とが相対的にずれ動いた際にも摩擦による蛍光体層114の先端部の破損を防止することが可能になる。そのため、部材の位置変動により、蛍光体層114を構成する柱状結晶208の先端部に応力集中が発生せず、柱状結晶208の先端部の破損を防止することができる。これにより、信頼性のより一層高い放射線検出装置を得ることができる。 The low friction layer 113 of this embodiment functions as a protective member that protects the columnar crystal 208 (FIG. 2) that constitutes the phosphor layer 114. Since the phosphor layer 114, the low friction layer 113, and the reflective layer 112 are not fixed to each other, each layer does not receive a force from other layers even if a positional variation occurs in each layer (between members) in the horizontal direction. . Since the friction between the reflective layer 112 and the low friction layer 113 is reduced due to the arrangement of the low friction layer 113, even when the reflective layer 112 and the phosphor layer 114 are relatively displaced, the phosphor layer caused by friction It becomes possible to prevent damage to the tip of 114. Therefore, stress concentration does not occur at the tip of the columnar crystal 208 constituting the phosphor layer 114 due to the position change of the member, and damage to the tip of the columnar crystal 208 can be prevented. Thereby, a radiation detection apparatus with higher reliability can be obtained.
 図2に示すように低摩擦層113は、蛍光体層114を形成する柱状結晶208の先端部および先端部の周辺の隙間を被覆するように形成されている。およびを被覆するように配置されている。図2に示す蛍光体層114の柱状結晶208の先端部と反射層112との距離t(間隔)は適宜設定可能であるが、距離t=200umを超える場合、蛍光体層114と反射層112との距離(間隔)が大きくなり、放射線検出装置の解像度特性が低下し得る。このため、例えば、蛍光体層114と反射層112との距離tを0um以上200um以下の範囲で設定することができる。 As shown in FIG. 2, the low friction layer 113 is formed so as to cover the tip of the columnar crystal 208 forming the phosphor layer 114 and the gap around the tip. And are arranged so as to cover. The distance t (interval) between the tip of the columnar crystal 208 of the phosphor layer 114 and the reflective layer 112 shown in FIG. 2 can be set as appropriate, but when the distance t exceeds 200 μm, the phosphor layer 114 and the reflective layer 112 The distance (interval) between the radiation detector and the resolution characteristic of the radiation detection apparatus may be deteriorated. For this reason, for example, the distance t between the phosphor layer 114 and the reflective layer 112 can be set in the range of 0 μm or more and 200 μm or less.
 低摩擦層113に用いられる固体材料としては、例えば、フッ素樹脂を主成分として含有する有機樹脂を用いることができる。フッ素系樹脂の一例として、例えば、ポリテトラフルオロエチレン(PEFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、エチレン・四フッ化エチレン共重合体(ETFE)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP) 、エチレン・クロロトリフルオロエチレン共重合体(ECTFE) 等があげられる。本実施形態における低摩擦層113に用いる固体材料は上記のものに限定されず、蛍光体層114を構成する柱状結晶208(図2)を保護する保護部材として、低摩擦層113の機能が満足できる樹脂であれば、上記に上げた樹脂に限らず使用可能である。 As the solid material used for the low friction layer 113, for example, an organic resin containing a fluororesin as a main component can be used. Examples of fluororesins include, for example, polytetrafluoroethylene (PEFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), ethylene / tetrafluoroethylene copolymer ( ETFE), perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and the like. The solid material used for the low friction layer 113 in this embodiment is not limited to the above, and the function of the low friction layer 113 is satisfactory as a protective member for protecting the columnar crystal 208 (FIG. 2) constituting the phosphor layer 114. Any resin that can be used is not limited to the resins mentioned above.
 低摩擦層113は、静止摩擦係数が0.3未満の材料を選定することが好ましい。静止摩擦係数の測定は、「JIS K7125 プラスチック-フィルムおよびシート摩擦係数試験方法」に沿って行い、得られたものである。静止摩擦係数が上記の値以上になると、反射層112と低摩擦層113との間の摩擦力が大きくなり、摩擦力による局所的な破壊や、反射層112を構成するシートのよれ等が発生する可能性がある。上記で例示した樹脂であれば、静止摩擦係数が0.3未満の範囲を満足する。 For the low friction layer 113, it is preferable to select a material having a static friction coefficient of less than 0.3. The measurement of the coefficient of static friction was performed according to “JIS K7125 plastic-film and sheet friction coefficient test method”. When the coefficient of static friction exceeds the above value, the frictional force between the reflective layer 112 and the low friction layer 113 increases, causing local breakage due to the frictional force, the warping of the sheets constituting the reflective layer 112, and the like. there's a possibility that. With the resin exemplified above, the coefficient of static friction satisfies the range of less than 0.3.
 図3A-図3Dは、第1実施形態に係る放射線検出装置の断面構成例を示す図である。図3Bでは、低摩擦層113は、蛍光体層114を構成する柱状結晶208の先端部の表面のみに形成されている。図3C、図3Dでは、低摩擦層113は、蛍光体層114を構成する柱状結晶208の先端部および先端部の周辺の隙間を被覆するように形成されている。 FIG. 3A to FIG. 3D are diagrams showing an example of a cross-sectional configuration of the radiation detection apparatus according to the first embodiment. In FIG. 3B, the low friction layer 113 is formed only on the surface of the tip portion of the columnar crystal 208 constituting the phosphor layer 114. 3C and 3D, the low friction layer 113 is formed so as to cover the tip of the columnar crystal 208 constituting the phosphor layer 114 and the gap around the tip.
 図3Cでは、反射層112に対する低摩擦層113の表面には、柱状結晶208の上方に凸となるような曲率半径を有る面が構成されている。柱状結晶208の上方の表面の曲率半径Rは、1.0umより大きい(R>1.0um)ことが好ましい。柱状結晶208の先端部の表面に低摩擦層113を形成した場合、柱状結晶表面を被覆するように形成される。この時、曲率半径Rが1.0um以下となった場合、形状の効果により低摩擦層113と反射層112との間の静止摩擦係数が増大し得る。 3C, the surface of the low friction layer 113 with respect to the reflective layer 112 is configured with a surface having a curvature radius that is convex above the columnar crystal 208. The curvature radius R of the upper surface of the columnar crystal 208 is preferably larger than 1.0 μm (R> 1.0 μm). When the low friction layer 113 is formed on the surface of the tip of the columnar crystal 208, the columnar crystal 208 is formed so as to cover the surface of the columnar crystal. At this time, when the radius of curvature R is 1.0 μm or less, the static friction coefficient between the low friction layer 113 and the reflective layer 112 may increase due to the shape effect.
 図3Dでは、反射層112に対する低摩擦層113の表面は平坦となり、先端部および先端部の周辺の隙間に低摩擦層113が充填されるように構成されている。上述に例示した樹脂を用いて、図3B、図3C、図3Dに示す形態に低摩擦層113を形成すれば、静止摩擦係数は上述の範囲(<0.3)を満足する。 In FIG. 3D, the surface of the low friction layer 113 with respect to the reflective layer 112 is flat, and the low friction layer 113 is filled in the gap between the tip portion and the tip portion. If the low friction layer 113 is formed in the form shown in FIGS. 3B, 3C, and 3D using the resin exemplified above, the static friction coefficient satisfies the above range (<0.3).
 <第2実施形態>
 本実施形態は、柱状結晶208の先端部を柱状結晶と同じ材料で被覆し、その後、低摩擦層を配置する構成を説明する。図4は、第2実施形態に係る放射線検出装置の断面概略図である。図4に示す平坦層401を柱状結晶208と同じ材料で形成し、柱状結晶208の上に配置する。また、平坦層401の上(平坦層401と反射層112との間)には、低摩擦層113が配置されている。平坦層401が設置されることにより、低摩擦層113の形状をより平坦にでき、第1実施形態の図3Cで説明した曲率半径Rを図3Dに示すように、より大きくすることができる。
Second Embodiment
In the present embodiment, a configuration in which the tip of the columnar crystal 208 is covered with the same material as that of the columnar crystal and then a low friction layer is disposed will be described. FIG. 4 is a schematic cross-sectional view of the radiation detection apparatus according to the second embodiment. A flat layer 401 shown in FIG. 4 is formed of the same material as the columnar crystal 208 and is disposed on the columnar crystal 208. A low friction layer 113 is disposed on the flat layer 401 (between the flat layer 401 and the reflective layer 112). By providing the flat layer 401, the shape of the low friction layer 113 can be made flat, and the radius of curvature R described in FIG. 3C of the first embodiment can be made larger as shown in FIG. 3D.
 平坦層401は柱状結晶208の形成終了時に、形成条件を変更することで形成することが可能となる。平坦層401の設置により、本発明の効果をより高めることが可能となる。 The flat layer 401 can be formed by changing the formation conditions at the end of the formation of the columnar crystal 208. By providing the flat layer 401, the effect of the present invention can be further enhanced.
 <第3実施形態>
 本実施形態は、低摩擦層113と反射層112との間に潤滑層501を設置する構成を説明する。図5は第3実施形態に係る放射線検出装置の断面概略図であり、図5に示す潤滑層501は、第1、第2実施形態で説明した低摩擦層113の機能を更に強化し、反射層112と蛍光体層114との間の摩擦を更に低減する機能を有する。
<Third Embodiment>
In the present embodiment, a configuration in which a lubricating layer 501 is provided between the low friction layer 113 and the reflective layer 112 will be described. FIG. 5 is a schematic cross-sectional view of the radiation detection apparatus according to the third embodiment, and the lubricating layer 501 shown in FIG. 5 further enhances the function of the low friction layer 113 described in the first and second embodiments and reflects it. It has a function of further reducing friction between the layer 112 and the phosphor layer 114.
 低摩擦層113と反射層112との間に、液体材料の塗布により形成された潤滑層501が配置される。潤滑層501は、有機物、無機物、また液体・固体を問わずに利用可能である。潤滑層501は、蛍光体層114で発光した光を反射層112に伝達するため、光透過率の高い材料を用いることが好ましく、透明であることがより好ましい。潤滑層501に用いられる材料としては、蛍光体層114、低摩擦層113、反射層112に対して、溶解する等の影響を及ぼさない材料で、高光透過率の材料であればよい。 Between the low friction layer 113 and the reflective layer 112, a lubricating layer 501 formed by applying a liquid material is disposed. The lubricating layer 501 can be used regardless of whether it is organic, inorganic, liquid, or solid. The lubricating layer 501 is preferably made of a material having a high light transmittance and more preferably transparent in order to transmit the light emitted from the phosphor layer 114 to the reflective layer 112. The material used for the lubricating layer 501 may be a material that does not affect the phosphor layer 114, the low friction layer 113, and the reflective layer 112 and that has a high light transmittance.
 例えば、液体材料であればインデックスマッチングオイル等の透明オイル、低揮発性の有機溶剤、油脂等を用いることができる。また固体材料に関して、薄層化等の手段により透過率低下が抑制可能であれば、二硫化モリブデン(MoS2)、グラファイト、ダイヤモンドライクカーボン(DLC)、フラーレン、窒化ホウ素(BN)、メラミンシアヌレート(MCA)、フッ化カルシウム、等の固体潤滑材を用いることができる。 For example, in the case of a liquid material, transparent oil such as index matching oil, low-volatile organic solvent, oil and fat, etc. can be used. As for solid materials, if it is possible to suppress a decrease in transmittance by means such as thinning, molybdenum disulfide (MoS 2 ), graphite, diamond-like carbon (DLC), fullerene, boron nitride (BN), melamine cyanurate Solid lubricants such as (MCA) and calcium fluoride can be used.
 (実施例1)
 次に、放射線検出装置の実施例を説明する。図1A及び図1Bに記載の第1実施形態の放射線検出装置を、以下のように作製した。まずセンサーパネル118を準備する。センサーパネル118はアモルファスシリコン(a-Si)を用いて光電変換素子116、TFTを形成し、その後、厚さ5umのポリイミドを用いてセンサー保護層117を形成する。
Example 1
Next, an embodiment of the radiation detection apparatus will be described. The radiation detection apparatus according to the first embodiment shown in FIGS. 1A and 1B was produced as follows. First, the sensor panel 118 is prepared. In the sensor panel 118, the photoelectric conversion element 116 and the TFT are formed using amorphous silicon (a-Si), and then the sensor protective layer 117 is formed using polyimide having a thickness of 5 μm.
 次に、センサー保護層117上に蛍光体層114(シンチレータ層)を形成する。蛍光体はヨウ化セシウム(CsI)に賦活剤としてタリウム(Tl)を添加したもの(CsI:Tl)を用いることが可能である。形成方法は真空蒸着法を用いる。真空蒸着装置内に前記センサーパネルを設置し、CsI:Tl形成することが可能である。この方法により複数の柱状結晶208がセンサーパネル118の表面に対して略垂直に成長した蛍光体層114(シンチレータ層)を形成することができる。 Next, a phosphor layer 114 (scintillator layer) is formed on the sensor protection layer 117. As the phosphor, cesium iodide (CsI) added with thallium (Tl) as an activator (CsI: Tl) can be used. The formation method uses a vacuum evaporation method. The sensor panel can be installed in a vacuum deposition apparatus to form CsI: Tl. By this method, a phosphor layer 114 (scintillator layer) in which a plurality of columnar crystals 208 are grown substantially perpendicular to the surface of the sensor panel 118 can be formed.
 次に、柱状結晶208上に低摩擦層113を形成する。低摩擦層113としては、例えば、フッ素樹脂を主成分とする有機樹脂層を形成する。低摩擦層113は、スプレーコート法を用いて蛍光体層114上に塗布し、テフロンシート(「テフロン」は登録商標)をその上に設置し、表面を平坦化する。その状態で熱処理を行うことにより、低摩擦層113を形成する。 Next, the low friction layer 113 is formed on the columnar crystal 208. As the low friction layer 113, for example, an organic resin layer mainly composed of a fluororesin is formed. The low friction layer 113 is applied onto the phosphor layer 114 using a spray coating method, and a Teflon sheet (“Teflon” is a registered trademark) is placed thereon to flatten the surface. By performing heat treatment in this state, the low friction layer 113 is formed.
 図7は、走査型電子顕微鏡(SEM)による観察結果を例示する図である。上記の製造方法と同様の方法で作製した蛍光体を走査型電子顕微鏡(SEM)により観察を行うと、複数の柱状結晶が林立する構造が確認できる。またその先端部分には前述のフッ素樹脂層が形成されていることが確認できる。柱状結晶先端部分に形成された樹脂の曲率半径は、1.5umである。 FIG. 7 is a diagram illustrating an observation result by a scanning electron microscope (SEM). When a phosphor produced by the same method as the above production method is observed with a scanning electron microscope (SEM), a structure in which a plurality of columnar crystals are grown can be confirmed. In addition, it can be confirmed that the aforementioned fluororesin layer is formed at the tip portion. The radius of curvature of the resin formed at the tip of the columnar crystal is 1.5 μm.
 また、別途基板に塗布したフッ素樹脂の静止摩擦係数を測定すると、0.12であることが確認できた。静止摩擦係数の測定は、「JIS K7125 プラスチック-フィルムおよびシート摩擦係数試験方法」に沿って行った。 Further, when the coefficient of static friction of the fluororesin separately applied to the substrate was measured, it was confirmed to be 0.12. The static coefficient of friction was measured according to “JIS K7125 plastic-film and sheet friction coefficient test method”.
 次に、反射層112を形成する。反射層としては厚さ50umの高反射率の白色絶縁シートを用いる。この白色絶縁シートを、低摩擦層113が形成された蛍光体層114上に配置する。上記の製造方法により、蛍光体層114と反射層112との間に低摩擦層113が形成される。 Next, the reflective layer 112 is formed. As the reflective layer, a white insulating sheet having a high reflectance of 50 μm is used. This white insulating sheet is disposed on the phosphor layer 114 on which the low friction layer 113 is formed. By the above manufacturing method, the low friction layer 113 is formed between the phosphor layer 114 and the reflective layer 112.
 次に、反射層112、低摩擦層113、蛍光体層114を覆うように蛍光体保護層115を配置する。端部からの水分侵入を防止するため、蛍光体保護層115の端部とセンサーパネル118との間をホットメルト樹脂で接続し、その後、ホットメルト樹脂を介して、蛍光体保護層115の端部とセンサーパネル118との間で圧着処理を行う。 Next, a phosphor protective layer 115 is disposed so as to cover the reflective layer 112, the low friction layer 113, and the phosphor layer 114. In order to prevent moisture from entering from the end portion, the end portion of the phosphor protective layer 115 and the sensor panel 118 are connected by a hot melt resin, and then the end of the phosphor protective layer 115 is interposed via the hot melt resin. A pressure bonding process is performed between the sensor and the sensor panel 118.
 次に、センサーパネル118の信号入出力部120と外部配線121とを接続し、駆動回路/読出回路等の信号処理回路が配置されたボードとの接続を行う。その後、外部匡体等で上記の部材を覆い、放射線検出装置の作製を完了する。 Next, the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected to each other and connected to a board on which a signal processing circuit such as a drive circuit / readout circuit is arranged. Thereafter, the above-described member is covered with an external housing or the like to complete the production of the radiation detection apparatus.
 上記の放射線検出装置に対して、熱衝撃試験を行った。試験条件は、-30℃1h保持→60℃まで昇温(1℃/min)→60℃1h保持→-30℃まで降温(1℃/min)のサイクルを10回繰り返した。この試験を経た後に画質変化の有無を確認すると、試験前後での変化が無いことが確認された。また、放射線検出装置のMTF(Modulation Transfer Function)特性を試験前後で測定したところ、試験前:0.329(2lp/mm)、試験後:0.328(2lp/mm)となり、こちらも試験前後での大きな変化が無いことが確認された。 A thermal shock test was performed on the above radiation detection apparatus. As test conditions, a cycle of holding at −30 ° C. for 1 h → heating to 60 ° C. (1 ° C./min)→holding at 60 ° C. for 1 h → falling to −30 ° C. (1 ° C./min) was repeated 10 times. When the presence or absence of a change in image quality was confirmed after this test, it was confirmed that there was no change before and after the test. The MTF (Modulation-Transfer-Function) characteristics of the radiation detector were measured before and after the test. Before the test: 0.329 (2 lp / mm) and after the test: 0.328 (2 lp / mm). It was confirmed that there was no significant change in
 また、落下試験でも試験前後でも画質変化、MTF特性に大きな変化がないことが確認された。 It was also confirmed that there was no significant change in image quality and MTF characteristics both before and after the drop test.
 (実施例2)
 本実施例では、実施例1の構成に加え、柱状結晶208の先端部が、柱状結晶と同じ材料から構成される平坦層401で被覆されており、平坦層401上に低摩擦層113が配置される放射線検出装置を作製する例を説明する。
(Example 2)
In this example, in addition to the configuration of Example 1, the tip of the columnar crystal 208 is covered with a flat layer 401 made of the same material as the columnar crystal, and the low friction layer 113 is disposed on the flat layer 401. An example of manufacturing a radiation detection apparatus will be described.
 実施例1と同様の方法でセンサーパネル118上に蛍光体層114を形成する。蛍光体層114の先端部に蛍光体層と同じヨウ化セシウム(CsI)から成る平坦層401を形成する。平坦層401は、蒸着法により柱状結晶を形成した後、同じく蒸着法により、柱状結晶を形成した際の蒸着条件(圧力・温度)を変化させることで形成できる。 The phosphor layer 114 is formed on the sensor panel 118 by the same method as in Example 1. A flat layer 401 made of cesium iodide (CsI), which is the same as the phosphor layer, is formed at the tip of the phosphor layer 114. The flat layer 401 can be formed by forming columnar crystals by a vapor deposition method and then changing the vapor deposition conditions (pressure and temperature) when the columnar crystals are formed by the vapor deposition method.
 その後、実施例1と同様の方法で低摩擦層113を形成する。この時形成される低摩擦層113の表面は図4に示すように平坦になるため、曲率半径Rは無限大となる。また、この時の低摩擦層113の静止摩擦係数は0.08であった。 Thereafter, the low friction layer 113 is formed by the same method as in Example 1. Since the surface of the low friction layer 113 formed at this time becomes flat as shown in FIG. 4, the curvature radius R becomes infinite. At this time, the coefficient of static friction of the low friction layer 113 was 0.08.
 その後、実施例1と同様の方法により反射層112、蛍光体保護層115を配置し、センサーパネル118の信号入出力部120と外部配線121とを接続し、放射線検出装置の作製を完了する。実施例2の方法で作製した放射線検出装置に対して、実施例1に記載のヒートサイクル試験、落下試験等を行い、試験前後での画質・特性の変化が無いことが確認された。 Thereafter, the reflective layer 112 and the phosphor protective layer 115 are arranged in the same manner as in Example 1, the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected, and the production of the radiation detection apparatus is completed. A heat cycle test and a drop test described in Example 1 were performed on the radiation detection apparatus manufactured by the method of Example 2, and it was confirmed that there was no change in image quality and characteristics before and after the test.
 (実施例3)
 本実施例では、実施例1の構成において、低摩擦層113として固体の低摩擦層に代わり、液体の低摩擦層を適用した場合の放射線検出装置を作製する例を説明する。
Example 3
In the present embodiment, an example will be described in which a radiation detection apparatus is manufactured when a liquid low friction layer is applied as the low friction layer 113 in place of the solid low friction layer in the configuration of the first embodiment.
 実施例1、2と同様の方法でセンサーパネル118上に蛍光体層114を形成する。蛍光体層114上に液体状態の低摩擦層113として、フッ素系撥水性液体(例えば、ノベック7600(住友スリーエム社製 ))を用いる。液体材料の低摩擦層を蛍光体層114に含浸後、実施例1と同様の方法で、蛍光体層114を形成し、柱状結晶208の先端部に反射層112が触れないよう液体材料の低摩擦層の量を調整して反射層112を配置する。この様にして液体の低摩擦層113を形成した場合、その静止摩擦係数は0.2となる。静止摩擦係数の測定は実施例1で説明した方法により測定している。その後、実施例1と同様の方法により反射層112、蛍光体保護層115を配置し、センサーパネル118の信号入出力部120と外部配線121とを接続し、放射線検出装置の作製を完了する。実施例3の方法で作製した放射線検出装置に対して、実施例1に記載のヒートサイクル試験、落下試験等を行い、試験前後での画質・特性の変化が無いことが確認された。 The phosphor layer 114 is formed on the sensor panel 118 by the same method as in the first and second embodiments. A fluorine-based water repellent liquid (for example, Novec 7600 (manufactured by Sumitomo 3M)) is used as the low friction layer 113 in a liquid state on the phosphor layer 114. After impregnating the phosphor layer 114 with the low friction layer of the liquid material, the phosphor layer 114 is formed in the same manner as in Example 1, and the liquid material is low so that the reflective layer 112 does not touch the tip of the columnar crystal 208. The reflective layer 112 is disposed by adjusting the amount of the friction layer. When the liquid low friction layer 113 is formed in this manner, the coefficient of static friction is 0.2. The static friction coefficient is measured by the method described in the first embodiment. Thereafter, the reflective layer 112 and the phosphor protective layer 115 are disposed by the same method as in Example 1, the signal input / output unit 120 of the sensor panel 118 and the external wiring 121 are connected, and the production of the radiation detection apparatus is completed. The heat detection test described in Example 1 and a drop test were performed on the radiation detection apparatus manufactured by the method of Example 3, and it was confirmed that there was no change in image quality and characteristics before and after the test.
 (実施例4)
 本実施例は、放射線検出装置の放射線検出システムへの応用例を示したものである。図6に示すように、放射線発生部6050は被検物に放射線を照射する。放射線発生部6050で発生した放射線6060は患者あるいは被験者6061の胸部6062(被検物)を透過し、図1A~図5に示したような放射線検出装置(イメージセンサ)に入射する。この入射した放射線には被験者6061の体内部の情報が含まれている。放射線の入射に対応して蛍光体(シンチレーター)は発光し、これをセンサーパネルの光電変換素子が光電変換して、可視光から変換された電荷(電気的情報)を得る。取得した電気的情報は信号入出力部120、外部配線121、アンプ、A/Dコンバータ等を通じて、信号処理部として機能するイメージプロセッサ6070により画像処理され、画像情報が生成される。
Example 4
This embodiment shows an application example of a radiation detection apparatus to a radiation detection system. As shown in FIG. 6, the radiation generating unit 6050 irradiates the test object with radiation. The radiation 6060 generated by the radiation generation unit 6050 passes through the chest 6062 (test object) of the patient or subject 6061 and enters the radiation detection apparatus (image sensor) as shown in FIGS. 1A to 5. This incident radiation includes information inside the body of the subject 6061. The phosphor (scintillator) emits light in response to the incidence of radiation, and the photoelectric conversion element of the sensor panel performs photoelectric conversion to obtain electric charges (electrical information) converted from visible light. The acquired electrical information is subjected to image processing by an image processor 6070 functioning as a signal processing unit through the signal input / output unit 120, the external wiring 121, an amplifier, an A / D converter, and the like, and image information is generated.
 イメージプロセッサ6070で生成された画像情報は電話、LAN、インターネットなどのネットワーク6090等の伝送処理部により遠隔地へ転送可能である。例えば、別の場所のドクタールームなどの表示部であるディスプレイ6081に画像情報を表示したり、光ディスク等の記録部に画像情報を保存することができる。また、遠隔地の医師が画像情報に基づいて診断することも可能である。また、記録部となるフィルムプロセッサ6100により画像情報をフィルム6110に記録することもできる。 Image information generated by the image processor 6070 can be transferred to a remote place by a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet. For example, image information can be displayed on a display 6081 which is a display unit such as a doctor room in another place, or image information can be stored in a recording unit such as an optical disk. It is also possible for a remote doctor to make a diagnosis based on the image information. Further, image information can be recorded on the film 6110 by a film processor 6100 serving as a recording unit.
 本発明の放射線検出装置は、医療用の放射線検出装置や、非破壊検査装置等の放射線を利用した医療用以外の分析・検査用途の装置への応用が可能である。 The radiation detection apparatus of the present invention can be applied to a medical radiation detection apparatus or a non-medical analysis / inspection apparatus using radiation, such as a nondestructive inspection apparatus.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2014年1月30日提出の日本国特許出願特願2014-016198を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2014-016198 filed on January 30, 2014, the entire contents of which are incorporated herein by reference.

Claims (15)

  1.  複数の光電変換素子を有するセンサーパネルと、前記センサーパネルの上に配置された蛍光体層と、前記蛍光体層に対して相対的に移動し得るように前記蛍光体層の上に配置された反射層と、を有する放射線検出装置であって、
     前記反射層と前記蛍光体層との間に、前記反射層と前記蛍光体層の摩擦を低減するための固体材料又は液体材料からなる低摩擦層を有する
     ことを特徴とする放射線検出装置。
    A sensor panel having a plurality of photoelectric conversion elements, a phosphor layer disposed on the sensor panel, and disposed on the phosphor layer so as to be able to move relative to the phosphor layer. A radiation detection device having a reflective layer,
    A radiation detection apparatus comprising a low friction layer made of a solid material or a liquid material for reducing friction between the reflection layer and the phosphor layer between the reflection layer and the phosphor layer.
  2.  前記蛍光体層は、複数の柱状結晶を有し、
     前記反射層は、前記蛍光体層に固定されておらず、
     前記低摩擦層は、前記柱状結晶の先端部を被覆しており、前記反射層に固定されていないことを特徴とする請求項1に記載の放射線検出装置。
    The phosphor layer has a plurality of columnar crystals,
    The reflective layer is not fixed to the phosphor layer,
    The radiation detection apparatus according to claim 1, wherein the low friction layer covers a tip portion of the columnar crystal and is not fixed to the reflection layer.
  3.  前記低摩擦層の静止摩擦係数は0.3より小さいことを特徴とする請求項1または2に記載の放射線検出装置。 3. The radiation detection apparatus according to claim 1, wherein the static friction coefficient of the low friction layer is smaller than 0.3.
  4.  前記低摩擦層は、前記固体材料としてフッ素系樹脂を含有した樹脂で形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の放射線検出装置。 The radiation detection apparatus according to any one of claims 1 to 3, wherein the low friction layer is formed of a resin containing a fluorine-based resin as the solid material.
  5.  前記蛍光体層は、複数の柱状結晶を有し、
     前記柱状結晶の先端部を被覆している前記低摩擦層には、前記柱状結晶の上方に凸となるような曲率半径を有する面が形成されており、
     前記曲率半径は、1.0umより大きい
     ことを特徴とする請求項1乃至4のいずれか1項に記載の放射線検出装置。
    The phosphor layer has a plurality of columnar crystals,
    In the low friction layer covering the tip of the columnar crystal, a surface having a radius of curvature is formed so as to be convex above the columnar crystal.
    The radiation detection apparatus according to claim 1, wherein the radius of curvature is greater than 1.0 μm.
  6.  前記蛍光体層は、複数の柱状結晶を有し、
     前記蛍光体層の複数の柱状結晶の先端部は、前記柱状結晶と同じ材料により構成された平坦層で被覆されており、
     前記平坦層の上に前記低摩擦層が配置されている
     ことを特徴とする請求項1に記載の放射線検出装置。
    The phosphor layer has a plurality of columnar crystals,
    The tips of the plurality of columnar crystals of the phosphor layer are covered with a flat layer made of the same material as the columnar crystals,
    The radiation detection apparatus according to claim 1, wherein the low friction layer is disposed on the flat layer.
  7.  前記低摩擦層と前記反射層との間に、前記液体材料の塗布により形成された潤滑層が配置されることを特徴とする請求項1乃至6のいずれか1項に記載の放射線検出装置。 The radiation detection apparatus according to any one of claims 1 to 6, wherein a lubricating layer formed by applying the liquid material is disposed between the low friction layer and the reflective layer.
  8.  前記平坦層の上に配置された前記低摩擦層は平坦な形状を有することを特徴とする請求項6に記載の放射線検出装置。 The radiation detecting apparatus according to claim 6, wherein the low friction layer disposed on the flat layer has a flat shape.
  9.  前記曲率半径を有する面と前記反射層とが接触するように前記低摩擦層が配置されることを特徴とする請求項5に記載の放射線検出装置。 6. The radiation detection apparatus according to claim 5, wherein the low friction layer is disposed so that the surface having the radius of curvature and the reflective layer are in contact with each other.
  10.  前記蛍光体層は、複数の柱状結晶を有し、
     前記蛍光体層の前記柱状結晶の先端部と前記反射層との間隔は、0um以上200um以下の範囲となるように、前記蛍光体層および前記反射層は配置されており、
     前記低摩擦層は、前記柱状結晶の先端部および、前記柱状結晶の先端部と前記反射層との間に形成された隙間を被覆するように配置されている
     ことを特徴とする請求項1乃至9のいずれか1項に記載の放射線検出装置。
    The phosphor layer has a plurality of columnar crystals,
    The phosphor layer and the reflective layer are arranged so that the distance between the tip of the columnar crystal of the phosphor layer and the reflective layer is in the range of 0 μm to 200 μm,
    The low friction layer is arranged so as to cover a tip portion of the columnar crystal and a gap formed between the tip portion of the columnar crystal and the reflective layer. The radiation detection apparatus according to any one of 9.
  11.  前記液体材料として、透明オイルまたは低揮発性の有機溶剤が用いられることを特徴とする請求項7に記載の放射線検出装置。 The radiation detection apparatus according to claim 7, wherein transparent oil or a low-volatile organic solvent is used as the liquid material.
  12.  被検物に放射線を照射する放射線発生部と、
     前記被検物を透過した放射線を検出する請求項1乃至11のいずれか1項に記載の放射線検出装置と、
     前記放射線検出装置によって検出された信号を画像処理する信号処理手段と、
     を有することを特徴とする放射線検出システム。
    A radiation generator for irradiating the object with radiation;
    The radiation detection apparatus according to any one of claims 1 to 11, which detects radiation that has passed through the test object.
    Signal processing means for image-processing signals detected by the radiation detection device;
    A radiation detection system comprising:
  13.  基板の上に配置された複数の柱状結晶を有し、放射線を可視光に変換する蛍光体層と、
     前記柱状結晶の先端部を被覆するように配置された固体材料、又は液体材料からなる低摩擦層と、
     を含むことを特徴とする蛍光体。
    A phosphor layer having a plurality of columnar crystals disposed on a substrate and converting radiation into visible light;
    A low friction layer made of a solid material or a liquid material arranged so as to cover the tip of the columnar crystal;
    A phosphor comprising:
  14.  前記低摩擦層の静止摩擦係数は0.3より小さいことを特徴とする請求項13に記載の蛍光体。 The phosphor according to claim 13, wherein the low friction layer has a static friction coefficient smaller than 0.3.
  15.  前記低摩擦層は、前記固体材料としてフッ素系樹脂を含有した樹脂で形成されていることを特徴とする請求項14に記載の蛍光体。 The phosphor according to claim 14, wherein the low friction layer is formed of a resin containing a fluorine-based resin as the solid material.
PCT/JP2015/000105 2014-01-30 2015-01-13 Radiation detection apparatus, radiation detection system, and fluorescent material WO2015115027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014016198A JP6502614B2 (en) 2014-01-30 2014-01-30 Radiation detection device, radiation detection system
JP2014-016198 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015115027A1 true WO2015115027A1 (en) 2015-08-06

Family

ID=53756615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000105 WO2015115027A1 (en) 2014-01-30 2015-01-13 Radiation detection apparatus, radiation detection system, and fluorescent material

Country Status (2)

Country Link
JP (1) JP6502614B2 (en)
WO (1) WO2015115027A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096792A (en) * 2016-12-12 2018-06-21 キヤノン株式会社 Scintillator plate, radiation detector, and radiation detection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230198A (en) * 1993-01-29 1994-08-19 Konica Corp Radiation image conversion panel
JP2000131444A (en) * 1998-10-28 2000-05-12 Canon Inc Device and system for detecting radiation and manufacture of device therefor
JP2006098241A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2012037454A (en) * 2010-08-10 2012-02-23 Toshiba Corp Radiation detector and manufacturing method thereof
JP2012052847A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Radiation detector, radiographic image pickup device, and manufacturing method of radiation detector
JP2012176122A (en) * 2011-02-25 2012-09-13 Canon Inc Radiation imaging apparatus and radiation detection system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456013B2 (en) * 2010-12-17 2014-03-26 富士フイルム株式会社 Radiation imaging device
JP5707269B2 (en) * 2011-07-29 2015-04-22 富士フイルム株式会社 Radiation image detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230198A (en) * 1993-01-29 1994-08-19 Konica Corp Radiation image conversion panel
JP2000131444A (en) * 1998-10-28 2000-05-12 Canon Inc Device and system for detecting radiation and manufacture of device therefor
JP2006098241A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2012037454A (en) * 2010-08-10 2012-02-23 Toshiba Corp Radiation detector and manufacturing method thereof
JP2012052847A (en) * 2010-08-31 2012-03-15 Fujifilm Corp Radiation detector, radiographic image pickup device, and manufacturing method of radiation detector
JP2012176122A (en) * 2011-02-25 2012-09-13 Canon Inc Radiation imaging apparatus and radiation detection system

Also Published As

Publication number Publication date
JP6502614B2 (en) 2019-04-17
JP2015141190A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP6092568B2 (en) Radiation detection apparatus and radiation detection system
JP4921180B2 (en) Radiation detection apparatus and radiation imaging system
US20130308755A1 (en) Radiation detection apparatus and radiation detection system
JP5456013B2 (en) Radiation imaging device
US20120049075A1 (en) Radiation detector, radiographic imaging device, and method of fabricating radiation detector
US20140091225A1 (en) Radiation imaging apparatus, radiation imaging system, and radiation imaging apparatus manufacturing method
JP2013152160A (en) Radiation imaging device and radiation imaging system
US9702986B2 (en) Moisture protection structure for a device and a fabrication method thereof
CN102466807A (en) Radiation detector
JP2013002887A (en) Radiation detection panel and radiographic device
JP2015121425A (en) Apparatus and system for radiation detection, and manufacturing method for radiation detection apparatus
JP2004061115A (en) Scintillator panel, radiation detection device, and radiation imaging system
US20190033470A1 (en) Radiation detection apparatus, radiation imaging system, and method of manufacturing radiation detection apparatus
JP2010101640A (en) Radiation detector
WO2015115027A1 (en) Radiation detection apparatus, radiation detection system, and fluorescent material
JP2007057428A (en) Radiation detecting device and radiation imaging system
JP2004325442A (en) Radiation detector and its manufacturing method
US11269087B2 (en) Radiation imaging apparatus and radiation imaging system
JP6555955B2 (en) Radiation detection apparatus and radiation imaging system
JP2008089459A (en) X-ray detector, scintillator panel, method for manufacturing x-ray detector, and method for manufacturing scintillator panel
JP2017203695A (en) Radiographic imaging apparatus and radiographic imaging system
TW201830053A (en) Radiography detector and radiography imaging device
JP2006343277A (en) Radiation detection device and radiation imaging system
JP2015155799A (en) Scintillator, radiation detection device, method of manufacturing radiation detection device, and radiation detection system
JP2019049437A (en) Radiation detection device, and radiation detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743424

Country of ref document: EP

Kind code of ref document: A1