WO2015114912A1 - Phosphorus collection apparatus and phosphorus collection method - Google Patents

Phosphorus collection apparatus and phosphorus collection method Download PDF

Info

Publication number
WO2015114912A1
WO2015114912A1 PCT/JP2014/080312 JP2014080312W WO2015114912A1 WO 2015114912 A1 WO2015114912 A1 WO 2015114912A1 JP 2014080312 W JP2014080312 W JP 2014080312W WO 2015114912 A1 WO2015114912 A1 WO 2015114912A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
tank
phosphorus
ozone
added
Prior art date
Application number
PCT/JP2014/080312
Other languages
French (fr)
Japanese (ja)
Inventor
黒木 洋志
安永 望
古川 誠司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015559740A priority Critical patent/JP6091661B2/en
Publication of WO2015114912A1 publication Critical patent/WO2015114912A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances

Definitions

  • the present invention relates to a phosphorus recovery device and a phosphorus recovery method, and more particularly to a phosphorus recovery device and a phosphorus recovery method using sludge as a recovery target.
  • Organic wastewater contains phosphorus. If this organic wastewater is treated with sewage, sludge containing phosphorus is produced.
  • a phosphorus recovery apparatus using sewage sludge first, sewage sludge is dissolved by a physical or chemical method, and phosphorus contained in the sewage sludge is eluted into the solution. Next, the solution and the solid are separated. The phosphorus eluted in the solution is agglomerated and the phosphorus is recovered from the precipitate. The solution or solid after the phosphorus is recovered is returned to the sludge treatment system.
  • Wastewater contains suspended solids.
  • sewage sludge such as surplus sludge and concentrated sludge, has a suspended solids concentration (SS concentration) of about 3 wt% or less and a moisture content of about 97 wt% or more.
  • SS concentration suspended solids concentration
  • Chemical methods use chemicals such as acids, alkalis and enzymes.
  • Patent Documents 1 and 2 and Non-Patent Documents 1 and 2 A method using ozone and an alkaline solution for dissolving sewage sludge has been proposed (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).
  • ozone gas is aerated in the sludge solution, an alkali solution is added, a phosphorus flocculant is added to the solution obtained by solid-liquid separation, and the precipitated phosphorus compound is recovered.
  • the surface-degradable organic substance is altered, so that the decomposition efficiency of organic substances by the subsequent alkali treatment is improved.
  • Phosphorus incorporated into the sludge by organic matter decomposition using ozone and an alkaline solution is eluted into the solution.
  • the equipment that recovers phosphorus from sludge using ozone and alkaline solution targets sewage sludge with suspended solids concentration (SS concentration) of about 3 wt% or less and moisture content of about 97 wt% or more.
  • SS concentration suspended solids concentration
  • the dewatered sludge having a moisture content of 70-90% due to the dehydration operation is dumped into the diameter of several millimeters to several centimeters and discharged from the dehydrator.
  • SS concentration suspended solids concentration
  • the dewatered sludge having a moisture content of 70-90% due to the dehydration operation is dumped into the diameter of several millimeters to several centimeters and discharged from the dehydrator.
  • the reaction between ozone and sludge occurs only on the surface of the dumpling sludge, and therefore a portion that does not react with ozone is generated inside the sludge. If ozone and unreacted sludge remain, the dissolution efficiency
  • the present invention has been made to solve the above-described problems, and aims to increase the reaction efficiency of ozone and sludge and reduce the processing time, thereby realizing downsizing of the apparatus.
  • ozone gas is injected into the drying apparatus for heating the sludge containing moisture, the pulverizing apparatus for pulverizing the sludge heated by the drying apparatus, and the sludge pulverized by the pulverizing apparatus.
  • An ozone treatment tank, a sludge dissolution tank in which acid or alkali is added to sludge into which ozone gas has been injected in an ozone treatment tank, and a sludge to which acid or alkali has been added in a sludge dissolution tank are separated into sludge and separation liquid.
  • the area of sludge that reacts with ozone can be expanded, and oxidation of the sludge surface with ozone can be performed in a short time.
  • powdery sludge has a weak binding force between sludge particles, stirring becomes easy, and unreacted powder sludge can be brought into contact with ozone in a short time.
  • FIG. 1 is a configuration diagram of a phosphorus recovery apparatus 100 from sludge according to Embodiment 1 of the present invention. Further, FIG. 9 shows a device layout of the phosphorus recovery device 100 according to the present embodiment. In the following embodiment, the phosphorus recovery apparatus 100 is shown in a simplified manner in accordance with the format of FIG.
  • the drying device 2 is charged with dehydrated sludge 1 having a moisture content of 70 to 90%.
  • the drying device 2 is connected to the pulverizing device 3 and the sludge transporter 11.
  • the pulverizer 3 is connected to the ozone treatment tank 6 and the sludge transporter 11.
  • the ozone treatment tank 6 is connected by a sludge dissolution tank 7 and a sludge transporter 11.
  • the ozone generator 4 is connected to an ozone treatment tank 6 and an ozone gas pipe 5.
  • the sludge dissolution tank 7 is connected to a chemical injector 8 for injecting acid or alkali and a chemical pipe 9.
  • the sludge dissolution tank 7 is connected by a dehydrator 10 and a sludge transporter 11.
  • the dehydrator 10 is connected to a sedimentation tank 14 by a separation liquid pipe 13.
  • the phosphorus removal sludge storage tank 12 is connected by a dehydrator 10 and a sludge transporter 11.
  • a flocculant injector 15 is connected to the settling tank 14 via a flocculant pipe 16.
  • the phosphorus aggregate recovery tank 18 is connected to the sedimentation tank 14 via a phosphorus aggregate extraction pipe 17.
  • the supernatant liquid pipe 19 is provided in the precipitation tank 14.
  • the sludge transporter 11 can be used in combination with piping connecting the devices and pumps, conveyors, pneumatic transport devices, etc. that move sludge according to the moisture content of the sludge to be transported, or can be used alone. .
  • the dehydrated sludge 1 having a moisture content of 70 to 90 wt% is dried by the drying device 2, and the moisture content of the dehydrated sludge 1 is further reduced.
  • the moisture content of the dewatered sludge 1 is adjusted to 20 wt% or less, optimally 15 wt% or less by the drying device 2.
  • the drying device 2 uses a heat dryer that uses combustion heat such as natural gas, digestion gas, sludge fuel, and kerosene, a dehydration drying device that evaporates moisture in a vacuum atmosphere, sun-drying and wind. Natural drying equipment can also be used.
  • the dewatered sludge 1 When the dewatered sludge 1 whose water content is adjusted to 20 wt% or less, and optimally 15 wt% or less is treated with the pulverizer 3, the dewatered sludge has weakened the binding force between the sludges with water. Can be powdered. However, if the dewatered sludge 1 is excessively dried, the fuel cost increases and pulverization becomes difficult. Therefore, the water content is preferably 5 wt% or more.
  • the pulverizer 3 is a pulverizer using a shearing force generated by a rotating tooth or a pulverizer using an impact force.
  • the dewatered sludge 1 can be made into a powder having a particle size of several microns to several hundred microns.
  • the powdered dewatered sludge is put into the ozone treatment tank 6 and ozone gas is injected while stirring.
  • the ozone treatment tank 6 is connected to the ozone generator 4 and the ozone gas pipe 5.
  • the fine particles of the powdered sludge have a weak bonding force, so they are separated by stirring, and ozone gas is sufficiently distributed on the surface of the powdered sludge.
  • FIG. 2 shows the ozone treatment process of the powder sludge 20 in the ozone treatment tank 6.
  • a stirrer 21 is attached to the ozone treatment tank 6.
  • a stirring blade 23 is attached to the tip of the stirring rod 22 inserted into the ozone treatment tank 6.
  • the weight of ozone gas injected into the ozone treatment tank 6 is 0.01 gO3 to 10 gO3 per 1 g of dry weight of the powder sludge 20.
  • the powder sludge 20 conveyed to the ozone treatment tank 6 by the sludge conveyer 11 is stirred inside the ozone treatment tank 6 by the rotation of the stirring rod 22 and the stirring blade 23.
  • Ozone gas is blown into the ozone treatment tank 6 from the ozone gas pipe 5 connected to the bottom of the ozone treatment tank 6.
  • Ozone treatment breaks the bond between organic substances, causing peeling of organic substances from the sludge surface and formation of fine holes on the sludge surface.
  • the powder sludge 20 in the ozone treatment tank 6 is easily stirred.
  • the powder sludge 20 is stirred by the stirring blade 23, a gap is generated between the fine particles of the powder sludge 20, and the ozone gas blown from the bottom of the ozone treatment tank 6 enters between the fine particles.
  • the fine particles constituting the powder sludge 20 come into contact with ozone gas one by one, and the surface is oxidized.
  • the dewatered sludge 1 is pulverized into the powder sludge 20 in this manner, the ozone gas and the powder sludge 20 can be brought into contact with each other in a short time. Since the oxidation proceeds throughout the powder sludge 20, the oxidation time is shortened and the utilization efficiency of ozone gas is improved.
  • the powder sludge 20 oxidized by the ozone gas is discharged from the ozone treatment tank 6 by the sludge transporter 11 and transported to the sludge dissolution tank 7.
  • the ozone gas blown into the ozone treatment tank 6 and brought into contact with the powder sludge 20 is decomposed into oxygen by the ozone decomposition device 34 through the exhaust ozone pipe 24.
  • the powdered sludge 20 oxidized by ozone gas is added with acid or alkali in the sludge dissolution tank 7.
  • sulfuric acid, hydrochloric acid, nitric acid or the like is used as the acid
  • sodium hydroxide solution, potassium hydroxide solution or the like is used as the alkali.
  • the amount of acid or alkali added is in the range of 1 to 100 mmol per gram of dry weight of the powder sludge.
  • the powder sludge 20 is dissolved from the surface by the organic substance decomposition action by acid or alkali, and a sludge solution is obtained.
  • the process in which the powder sludge 20 refined by the pulverizer 3 is dissolved by acid or alkali is shown in FIG.
  • the inside of the dewatered sludge 1 contains a microorganism 31 that has taken in phosphorus 30 and a flocculant 32 used for dewatering. If the sludge breaks down during dehydration, the solid content is mixed into the water. In order to prevent this, the flocculant 32 is added to bind the solids so that the solids do not flow out with water during dehydration.
  • the ozone treatment or the dissolution treatment with acid and alkali is performed without pulverizing the dewatered sludge 1, oxidation and dissolution gradually occur from the surface of the dewatered sludge.
  • the volume of the dewatered sludge 1 is reducing.
  • the contact area of the dewatered sludge 1 is increased, and the microorganisms and the flocculant that have taken in phosphorus are dispersed inside the dewatered sludge 1. Since dried cells have lost elasticity, it is thought that the cell membrane is broken by mechanical force.
  • the distance from the surface of the powder sludge 20 to the location where phosphorus is present is shortened, and phosphorus is eluted from the powder sludge 20 into the acid solution or alkaline solution by short-time sludge dissolution.
  • the powder sludge 20 dissolved in the sludge dissolution tank 7 is divided into a sludge (phosphorus removal sludge) 36 and a separation liquid 37 by the dehydrator 10.
  • the moisture content of the sludge 36 is 80 to 90%.
  • the sludge discharged from the dehydrator 10 by the sludge transporter 11 is stored in the phosphorus removal sludge storage tank 12.
  • the separation liquid 37 contains phosphorus eluted from the powder sludge 20.
  • a flocculant for example, calcium chloride
  • phosphorus contained in the separation liquid to generate an agglomerate
  • the flocculant injector 15 As the flocculant and phosphorus react, a phosphorus aggregate 38 is generated and precipitated at the bottom of the settling tank 14.
  • phosphorus aggregate 38 precipitated in the precipitation tank 14 By extracting the phosphorus aggregate 38 precipitated in the precipitation tank 14 through the phosphorus aggregate extraction pipe 17 and storing it in the phosphorus aggregate recovery tank 18, phosphorus in the dewatered sludge 1 can be recovered.
  • FIG. 4 shows the amount of phosphorus recovered from the powder sludge 20 and the dewatered sludge 1.
  • the powder sludge 20 is obtained by drying and pulverizing the dewatered sludge 1.
  • the powder sludge 20 and the dewatered sludge 1 were treated with ozone and alkali, and the separation liquid 37 was prepared by the dehydrator 10.
  • the vertical axis represents the recovery rate obtained from the amount of phosphorus contained in the powder sludge 20 or the dehydrated sludge 1 and the amount of phosphorus contained in the separation liquid 37.
  • the water content of the dewatered sludge 1 was 80%.
  • the moisture content of the powder sludge 20 was 10%.
  • the phosphorus recovery rate from the dewatered sludge 1 is 14%, while the phosphorus recovery rate from the powder sludge 20 is as high as 70%.
  • FIG. FIG. 5 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 2 of the present invention.
  • a moisture content adjustment tank 25 for adding water to the powder sludge 20 is provided between the pulverizer 3 and the ozone treatment tank 6.
  • the water content of the powder sludge 20 can be arbitrarily adjusted by adding water from the water reservoir 35 to the powder sludge 20 pulverized by the pulverizer 3.
  • the reaction between the powdered sludge 20 and the ozone gas in the ozone treatment tank 6 is more efficient when the powdered sludge particles do not bond with each other.
  • the amount of the dewatered sludge 1 to be processed by the pulverizer 3 is increased, the oxidation heat generated when the ozone treatment tank 6 is oxidized by ozone gas increases. When this heat of oxidation becomes high, the organic matter contained in the powder sludge 20 is altered, and there is a possibility that it is transformed into a hardly decomposable substance.
  • the ozone treatment tank 6 can prevent organic substances from being deteriorated by ozone gas. From the moisture content of dried sludge, the amount of alkali added, and the amount of sludge transferred, the relationship between the amount of water added (mL / g-SS) and the moisture content of sludge (%) is required. Therefore, the amount of sludge transferred, the amount of alkali added, and the amount of water added are measured.
  • the amount of water added to the powder sludge 20 in the water content adjustment tank 25 is preferably such that the water content of the powder sludge 20 is 70 to 90%.
  • the moisture content of the powder sludge 20 is adjusted to 70 to 90%, the volume becomes the same as the volume of the dewatered sludge 1 before being treated by the drying device 2, and the ozone treatment by adding water to the powder sludge 20.
  • the enlargement of the tank 6 can be prevented.
  • water is added after becoming the powder sludge 20 in the pulverizer 3, since the bonding between the fine particles of the powder sludge 20 is weakened, the added water and the powder sludge 20 are easily separated.
  • stirring of the powder sludge 20 in the ozone treatment tank 6 is easy, and ozone gas and the powder sludge 20 can be made to react uniformly in a short time compared with the dehydrated sludge 1 which is not pulverized.
  • a method of supplying water for example, a method of spraying water using a spray during sludge conveyance is conceivable. At that time, the required water injection amount is calculated from the amount of sludge to be conveyed.
  • FIG. FIG. 6 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 3 of the present invention.
  • the sludge dissolution tank 7 and the dehydrator 10 are directly connected, and the powder sludge 20 dissolved by adding acid or alkali is separated into sludge (phosphorus-removed sludge) and separated liquid by the dehydrator 10. It was.
  • a moisture content adjusting tank 25 may be provided between the sludge dissolving tank 7 and the dehydrator 10.
  • water can be added to the powder sludge 20 dissolved with acid or alkali, and the water content of the powder sludge 20 can be arbitrarily adjusted.
  • the water content of the phosphorus-removed sludge dehydrated by the dehydrator 10 is 80 to 90%, and the acid or alkali added to the powder sludge 20 exceeding this water content becomes the separation liquid.
  • FIG. 7 shows the phosphorus recovery rate when water is added to the powder sludge 20 after the alkali treatment. Phosphorus recovery increases as the amount of water added increases, and when 1.2 mL / g-SS of water, which is three times the amount of alkali solution added (0.4 mL / g-SS), is added, the phosphorus recovery rate is 90%. I found out that
  • FIG. FIG. 8 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 4 of the present invention.
  • a supernatant liquid return pipe 27 for returning the supernatant liquid 26 from the supernatant liquid pipe 19 to the moisture content adjusting tank 25 is shown.
  • the supernatant liquid 26 obtained in the precipitation tank 14 is used as the water to be injected into the water content adjustment tank 25.
  • the supernatant liquid 26 is discharged from the sedimentation tank 14 through the supernatant liquid pipe 19.
  • the supernatant liquid 26 released from the sedimentation tank 14 can be returned to the water content adjustment tank 25 using the supernatant liquid return pipe 27.
  • the supernatant liquid 26 discharged from the sedimentation tank 14 contains the acid or alkali used in the sludge dissolution tank 7. For this reason, it becomes possible to reuse an acid or an alkali for sludge dissolution, and the usage-amount of an acid or an alkali can be reduced.
  • FIG. FIG. 10 is a configuration diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 5 of the present invention.
  • the supernatant liquid return pipe 27 connected to the settling tank 14 is connected to the mixing tank 40.
  • the mixing tank 40 is connected to the moisture content adjusting tank 25 by a mixed sludge return pipe 41.
  • a sludge extraction pipe 39 is connected between the mixing tank 40 and the dehydrator 10.
  • the sludge extraction pipe 39 extracts a part of the sludge 36 from the dehydrator 10.
  • the mixing tank 40 mixes the extracted sludge 36 and the supernatant liquid 26.
  • the mixed sludge return pipe 41 returns the mixture of the sludge 36 and the supernatant liquid 26 to the moisture content adjustment tank 25.
  • the sludge 36 obtained from the dehydrator 10 can be mixed with the supernatant liquid 26 and returned to the water content adjustment tank 25 and dehydrated by the dehydrator 10 again.
  • water containing phosphorus that cannot be separated by the dehydrator 10 remains. Since the supernatant liquid 26 and the sludge 36 are mixed and again dehydrated by the dehydrator 10, the phosphorus remaining in the sludge 36 is mixed into the separation liquid 37 and recovered, so that the phosphorus contained in the powder sludge 20 is recovered. Efficiency can be further increased.
  • FIG. 6 An apparatus for recovering phosphorus from sludge according to Embodiment 6 of the present invention will be described with reference to FIG.
  • a heating device 42 is installed around (especially on the side surface), and dehydrated sludge containing moisture is directly charged.
  • the ozone generator 4 is connected to the bottom of the ozone treatment tank 6 by an ozone gas pipe 5, and ozone gas is supplied to the ozone treatment tank 6.
  • the dehydrated sludge 1 is put into the ozone treatment tank 6 and the dehydrated sludge 1 is heated by the heating device 42 while stirring with the stirring blade 23.
  • the functions of the drying device 2, the pulverizing device 3, and the ozone treatment tank 6 in the phosphorus recovery device are combined into one device.
  • FIG. 12 shows the ozone treatment process of the dewatered sludge 1 in the ozone treatment tank 6.
  • the dehydrated sludge 1 is put into the ozone treatment tank 6 and the dehydrated sludge 1 is heated by the heating device 42 while stirring with the stirring blade 23.
  • the water contained in the dewatered sludge 1 evaporates and the dehydrated sludge 1 is dried.
  • the dehydrated sludge 1 can be pulverized by increasing the rotational speed of the agitator 21 after the water content of the dehydrated sludge 1 has decreased to 20% or less, and optimally to 15% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The purpose of the present invention is to increase the reaction efficiency of ozone with sludge while also shortening treatment time and to decrease equipment size. A phosphorus collection apparatus provided with: a drying device for heating sludge that contains water; a pulverizing device for powderizing the sludge, which has been heated by the drying device; an ozone treatment tank in which ozone gas is injected into the sludge that has been powderized by the pulverizing device; a sludge solubilization tank in which acid or alkali is added to the sludge into which ozone gas has been injected in the ozone treatment tank; a dehydrator for separating the sludge to which acid or alkali has been added in the sludge solubilization tank into a sludge product and a separated liquid; a precipitation tank in which a flocculant is added to the separated liquid that has been separated by the dehydrator to generate a supernatant liquid and an aggregate; and an aggregate collection tank for storing the aggregate generated in the precipitation tank.

Description

リン回収装置およびリン回収方法Phosphorus recovery apparatus and phosphorus recovery method
 この発明は、リン回収装置およびリン回収方法に関し、特に、汚泥を回収対象物とするリン回収装置およびリン回収方法に関するものである。 The present invention relates to a phosphorus recovery device and a phosphorus recovery method, and more particularly to a phosphorus recovery device and a phosphorus recovery method using sludge as a recovery target.
 有機性廃水はリン(燐)を含有している。この有機性廃水を下水処理すればリンを含む汚泥が生じる。下水汚泥を用いるリン回収装置では、まず下水汚泥を物理的または化学的な方法によって溶解し、下水汚泥に含まれていたリンを溶液中に溶出させる。次に、溶液と固形物を分離する。溶液中に溶出したリンは凝集沈殿させて、沈殿物からリンを回収する。リンを回収した後の溶液や固形物は汚泥処理系に返送される。 Organic wastewater contains phosphorus. If this organic wastewater is treated with sewage, sludge containing phosphorus is produced. In a phosphorus recovery apparatus using sewage sludge, first, sewage sludge is dissolved by a physical or chemical method, and phosphorus contained in the sewage sludge is eluted into the solution. Next, the solution and the solid are separated. The phosphorus eluted in the solution is agglomerated and the phosphorus is recovered from the precipitate. The solution or solid after the phosphorus is recovered is returned to the sludge treatment system.
 廃水は浮遊物質を含んでいる。リンの回収には、余剰汚泥や濃縮汚泥など、浮遊物質濃度(SS濃度)が約3wt%以下、含水率では約97wt%以上の下水汚泥が使用されている。下水汚泥を溶解させる物理的方法としては、加熱、超音波破砕、オゾン曝気、機械的破砕などが考えられる。化学的方法では、酸、アルカリ、酵素などの薬品を使用する。 Wastewater contains suspended solids. For the recovery of phosphorus, sewage sludge, such as surplus sludge and concentrated sludge, has a suspended solids concentration (SS concentration) of about 3 wt% or less and a moisture content of about 97 wt% or more. As a physical method for dissolving sewage sludge, heating, ultrasonic crushing, ozone aeration, mechanical crushing and the like can be considered. Chemical methods use chemicals such as acids, alkalis and enzymes.
 下水汚泥の溶解にオゾンとアルカリ溶液を用いる方法が提案されている(例えば特許文献1,2および非特許文献1,2)。この方法では、汚泥溶液にオゾンガスを曝気した後にアルカリ溶液を添加し、固液分離によって得られた溶液にリンの凝集剤を加え、沈殿したリン化合物を回収する。はじめに汚泥表面をオゾンで酸化すると、表面の難分解性有機物質が変質するため、引き続き行うアルカリ処理による有機物の分解効率が向上する。このオゾンとアルカリ溶液を併用した有機物分解により汚泥内部に取り込まれたリンが溶液に溶出する。 A method using ozone and an alkaline solution for dissolving sewage sludge has been proposed (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2). In this method, ozone gas is aerated in the sludge solution, an alkali solution is added, a phosphorus flocculant is added to the solution obtained by solid-liquid separation, and the precipitated phosphorus compound is recovered. First, when the sludge surface is oxidized with ozone, the surface-degradable organic substance is altered, so that the decomposition efficiency of organic substances by the subsequent alkali treatment is improved. Phosphorus incorporated into the sludge by organic matter decomposition using ozone and an alkaline solution is eluted into the solution.
特開2004-58047号公報JP 2004-58047 A 特開2005-219043号公報JP 2005-219043 A
 オゾンとアルカリ溶液を用いて汚泥からリンを回収する装置では、浮遊物質濃度(SS濃度)が約3wt%以下、含水率では約97wt%以上の下水汚泥を対象としている。脱水操作によって含水率が70~90%となった脱水汚泥は、直径が数ミリから数センチの団子状になって脱水機から排出される。このような脱水汚泥をオゾンとアルカリ溶液で処理する場合、オゾンと汚泥の反応は団子状汚泥の表面のみで起こるため、汚泥の内部にはオゾンと反応しなかった部分が生じる。オゾンと未反応の汚泥が残ると、アルカリ溶液による有機物の溶解効率は低下し、汚泥に含まれているリンの溶出率が減少する。 The equipment that recovers phosphorus from sludge using ozone and alkaline solution targets sewage sludge with suspended solids concentration (SS concentration) of about 3 wt% or less and moisture content of about 97 wt% or more. The dewatered sludge having a moisture content of 70-90% due to the dehydration operation is dumped into the diameter of several millimeters to several centimeters and discharged from the dehydrator. When such dewatered sludge is treated with ozone and an alkaline solution, the reaction between ozone and sludge occurs only on the surface of the dumpling sludge, and therefore a portion that does not react with ozone is generated inside the sludge. If ozone and unreacted sludge remain, the dissolution efficiency of organic substances by the alkaline solution decreases, and the elution rate of phosphorus contained in the sludge decreases.
 オゾンと汚泥を接触させる際に汚泥を攪拌すれば、未反応の汚泥が露出してオゾン処理は活性化する。しかし、汚泥処理量が多くなると汚泥とオゾンとの反応を十分行うためには攪拌時間が長くなる。攪拌時間が長くなると汚泥と反応せずに排出されるオゾンの量が増加し、オゾン処理コストが増加する。また、オゾンを曝気する際に、汚泥に水を添加しても、汚泥の流動性が高まり、オゾンと汚泥との反応が活性化する。しかし、汚泥に水を添加すると処理する汚泥溶液の体積が増大し、オゾン処理に長時間が必要になるとともに、装置が大型化する。 ◎ If sludge is stirred when ozone and sludge are brought into contact, unreacted sludge is exposed and ozone treatment is activated. However, when the amount of sludge treatment increases, the stirring time becomes longer in order to sufficiently react the sludge with ozone. If the stirring time becomes longer, the amount of ozone discharged without reacting with sludge increases, and the ozone treatment cost increases. In addition, when ozone is aerated, even if water is added to the sludge, the fluidity of the sludge increases and the reaction between ozone and sludge is activated. However, when water is added to the sludge, the volume of the sludge solution to be treated increases, so that a long time is required for the ozone treatment, and the apparatus becomes large.
 この発明は、上記のような課題を解決するためになされたものであり、オゾンと汚泥の反応効率を高めるとともに処理時間を短縮して、装置の小型化を実現することを目的としている。 The present invention has been made to solve the above-described problems, and aims to increase the reaction efficiency of ozone and sludge and reduce the processing time, thereby realizing downsizing of the apparatus.
 この発明に係るリン回収装置は、水分を含有する汚泥を加熱する乾燥装置と、乾燥装置によって加熱された汚泥を粉末化する粉砕装置と、粉砕装置によって粉末化された汚泥にオゾンガスが注入されるオゾン処理槽と、オゾン処理槽でオゾンガスが注入された汚泥に酸またはアルカリが添加される汚泥溶解槽と、汚泥溶解槽で酸またはアルカリが添加された汚泥を汚泥物と分離液とに分離する脱水機と、脱水機によって分離された分離液に凝集剤が添加され上澄み液と凝集物とが生じる沈殿槽と、沈殿槽で生じた凝集物を貯蔵する凝集物回収槽と、を備えている。 In the phosphorus recovery apparatus according to the present invention, ozone gas is injected into the drying apparatus for heating the sludge containing moisture, the pulverizing apparatus for pulverizing the sludge heated by the drying apparatus, and the sludge pulverized by the pulverizing apparatus. An ozone treatment tank, a sludge dissolution tank in which acid or alkali is added to sludge into which ozone gas has been injected in an ozone treatment tank, and a sludge to which acid or alkali has been added in a sludge dissolution tank are separated into sludge and separation liquid. A dehydrator, a settling tank in which a coagulant is added to the separated liquid separated by the dehydrator to produce a supernatant liquid and an aggregate, and an aggregate collection tank for storing the aggregate generated in the settling tank. .
 この発明によれば、脱水汚泥を粉末化する装置を設けたことで、オゾンと反応する汚泥の面積が拡大し、オゾンによる汚泥表面の酸化を短時間で実施することができる。また、粉末状の汚泥は汚泥粒子同士の結合力が弱いために攪拌が容易になり、未反応の粉末汚泥を短時間でオゾンと接触させることができる。これにより、汚泥処理時間を短縮するとともに、装置の小型化を実現することができる。 According to this invention, by providing a device for pulverizing dehydrated sludge, the area of sludge that reacts with ozone can be expanded, and oxidation of the sludge surface with ozone can be performed in a short time. Moreover, since powdery sludge has a weak binding force between sludge particles, stirring becomes easy, and unreacted powder sludge can be brought into contact with ozone in a short time. Thereby, while reducing sludge processing time, size reduction of an apparatus is realizable.
本発明の実施の形態1によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 1 of this invention. オゾン処理槽における粉末汚泥のオゾン処理過程を示す図である。It is a figure which shows the ozone treatment process of the powder sludge in an ozone treatment tank. 粉末汚泥が酸またはアルカリによって溶解する過程を示す図である。It is a figure which shows the process in which powder sludge melt | dissolves with an acid or an alkali. 粉末汚泥と脱水汚泥からのリン回収実験結果を示す図である。It is a figure which shows the phosphorus collection | recovery experiment result from powder sludge and dewatered sludge. 本発明の実施の形態2によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 2 of this invention. 本発明の実施の形態3によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 3 of this invention. アルカリ処理後に水を加えた粉末汚泥からのリン回収率を示す図である。It is a figure which shows the phosphorus collection | recovery rate from the powder sludge which added water after the alkali treatment. 本発明の実施の形態4によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 4 of this invention. 本発明の実施の形態1によるリン回収装置に係わる装置配置図である。It is an apparatus arrangement | positioning plan regarding the phosphorus collection | recovery apparatus by Embodiment 1 of this invention. 本発明の実施の形態5によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 5 of this invention. 本発明の実施の形態6によるリン回収装置の構成図である。It is a block diagram of the phosphorus collection | recovery apparatus by Embodiment 6 of this invention. 本発明の実施の形態6によるオゾン処理槽における粉末汚泥のオゾン処理過程を示す図である。It is a figure which shows the ozone treatment process of the powder sludge in the ozone treatment tank by Embodiment 6 of this invention.
 以下に本発明にかかるリン回収装置およびリン回収方法の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の既述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。図において、同一符号が付与されている構成要素は、同一の、または、相当する構成要素を表している。 Hereinafter, embodiments of a phosphorus recovery apparatus and a phosphorus recovery method according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following description, In the range which does not deviate from the summary of this invention, it can change suitably. In the figure, the components given the same reference numerals represent the same or corresponding components.
実施の形態1.
 図1は本発明の実施の形態1による汚泥からのリン回収装置100の構成図である。また、本実施の形態によるリン回収装置100の装置配置図を図9に示す。なお、この後の実施の形態では、リン回収装置100は図1の様式に従って簡略化して示すことにする。乾燥装置2には、含水率70~90%の脱水汚泥1が投入される。乾燥装置2は、粉砕装置3と汚泥搬送機11によってつながっている。粉砕装置3は、オゾン処理槽6と汚泥搬送機11によってつながっている。オゾン処理槽6は汚泥溶解槽7と汚泥搬送機11によってつながっている。オゾン発生器4はオゾン処理槽6とオゾンガス配管5で接続されている。汚泥溶解槽7は、酸またはアルカリを注入する薬品注入器8と薬品配管9で接続されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a phosphorus recovery apparatus 100 from sludge according to Embodiment 1 of the present invention. Further, FIG. 9 shows a device layout of the phosphorus recovery device 100 according to the present embodiment. In the following embodiment, the phosphorus recovery apparatus 100 is shown in a simplified manner in accordance with the format of FIG. The drying device 2 is charged with dehydrated sludge 1 having a moisture content of 70 to 90%. The drying device 2 is connected to the pulverizing device 3 and the sludge transporter 11. The pulverizer 3 is connected to the ozone treatment tank 6 and the sludge transporter 11. The ozone treatment tank 6 is connected by a sludge dissolution tank 7 and a sludge transporter 11. The ozone generator 4 is connected to an ozone treatment tank 6 and an ozone gas pipe 5. The sludge dissolution tank 7 is connected to a chemical injector 8 for injecting acid or alkali and a chemical pipe 9.
 汚泥溶解槽7は、脱水機10と汚泥搬送機11によってつながっている。脱水機10は、分離液配管13によって沈殿槽14とつながっている。リン除去汚泥物貯蔵槽12は脱水機10と汚泥搬送機11によってつながっている。沈殿槽14には、凝集剤注入器15が凝集剤配管16を介して接続されている。リン凝集物回収槽18は、沈殿槽14にリン凝集物引き抜き配管17を介して接続されている。上澄み液配管19は沈殿槽14に設けられている。汚泥搬送機11には、装置間を接続する配管と、搬送する汚泥の含水率に応じて汚泥を移動させるポンプ、コンベア、空気輸送装置などを組み合わせて用いるか、または単独で使用することができる。 The sludge dissolution tank 7 is connected by a dehydrator 10 and a sludge transporter 11. The dehydrator 10 is connected to a sedimentation tank 14 by a separation liquid pipe 13. The phosphorus removal sludge storage tank 12 is connected by a dehydrator 10 and a sludge transporter 11. A flocculant injector 15 is connected to the settling tank 14 via a flocculant pipe 16. The phosphorus aggregate recovery tank 18 is connected to the sedimentation tank 14 via a phosphorus aggregate extraction pipe 17. The supernatant liquid pipe 19 is provided in the precipitation tank 14. The sludge transporter 11 can be used in combination with piping connecting the devices and pumps, conveyors, pneumatic transport devices, etc. that move sludge according to the moisture content of the sludge to be transported, or can be used alone. .
 このような構成によれば、含水率70~90wt%の脱水汚泥1は乾燥装置2によって乾燥され、脱水汚泥1の含水率はさらに低下する。乾燥装置2によって脱水汚泥1の含水率を20wt%以下、最適には15wt%以下に調整する。乾燥装置2には、電気ヒータの他に、天然ガス、消化ガス、汚泥燃料、灯油などの燃焼熱を使用する熱乾燥機、真空雰囲気で水分を蒸発させる脱水乾燥装置、天日干しや風を用いる自然乾燥装置も使用することができる。含水率が20wt%以下、最適には15wt%以下に調整された脱水汚泥1を粉砕装置3で処理すると、脱水汚泥は水による汚泥同士の結合力が弱められているため、脱水汚泥1を微粉末にすることができる。ただし、脱水汚泥1を過度に乾燥させると燃料費が嵩む上に、粉砕が困難になるため、含水率は5wt%以上にしておくことが好ましい。 According to such a configuration, the dehydrated sludge 1 having a moisture content of 70 to 90 wt% is dried by the drying device 2, and the moisture content of the dehydrated sludge 1 is further reduced. The moisture content of the dewatered sludge 1 is adjusted to 20 wt% or less, optimally 15 wt% or less by the drying device 2. In addition to the electric heater, the drying device 2 uses a heat dryer that uses combustion heat such as natural gas, digestion gas, sludge fuel, and kerosene, a dehydration drying device that evaporates moisture in a vacuum atmosphere, sun-drying and wind. Natural drying equipment can also be used. When the dewatered sludge 1 whose water content is adjusted to 20 wt% or less, and optimally 15 wt% or less is treated with the pulverizer 3, the dewatered sludge has weakened the binding force between the sludges with water. Can be powdered. However, if the dewatered sludge 1 is excessively dried, the fuel cost increases and pulverization becomes difficult. Therefore, the water content is preferably 5 wt% or more.
 粉砕装置3には、回転歯によるせん断力を用いた粉砕装置や、衝撃力を用いた粉砕装置を使用する。粉砕装置3を用いると、脱水汚泥1を粒径が数ミクロンから数百ミクロンの粉末にすることができる。粉末化された脱水汚泥はオゾン処理槽6に投入し、攪拌しながらオゾンガスを注入する。オゾン処理槽6はオゾン発生器4とオゾンガス配管5で接続されている。粉末状の汚泥の微粒子同士は結合力が弱いため攪拌によってバラバラになり、粉末汚泥の表面にはオゾンガスが充分に行き渡る。 The pulverizer 3 is a pulverizer using a shearing force generated by a rotating tooth or a pulverizer using an impact force. When the pulverizer 3 is used, the dewatered sludge 1 can be made into a powder having a particle size of several microns to several hundred microns. The powdered dewatered sludge is put into the ozone treatment tank 6 and ozone gas is injected while stirring. The ozone treatment tank 6 is connected to the ozone generator 4 and the ozone gas pipe 5. The fine particles of the powdered sludge have a weak bonding force, so they are separated by stirring, and ozone gas is sufficiently distributed on the surface of the powdered sludge.
 オゾン処理槽6における粉末汚泥20のオゾン処理過程を図2に示す。オゾン処理槽6には攪拌機21が取り付けられている。オゾン処理槽6の内部に挿入される攪拌棒22には先端に攪拌羽根23が取り付けられている。オゾン処理槽6に注入されるオゾンガスの重量は、粉末汚泥20の乾燥重量1gあたり、0.01gO3~10gO3である。汚泥搬送機11によってオゾン処理槽6に搬送された粉末汚泥20は、攪拌棒22と攪拌羽根23の回転によってオゾン処理槽6の内部で攪拌される。オゾン処理槽6の底部に接続されたオゾンガス配管5からは、オゾンガスがオゾン処理槽6の内部に吹き込まれる。オゾン処理(酸化)によって、有機物の結合が切断され、汚泥表面からの有機物の剥離や汚泥表面への微細な穴の形成が起こる。 FIG. 2 shows the ozone treatment process of the powder sludge 20 in the ozone treatment tank 6. A stirrer 21 is attached to the ozone treatment tank 6. A stirring blade 23 is attached to the tip of the stirring rod 22 inserted into the ozone treatment tank 6. The weight of ozone gas injected into the ozone treatment tank 6 is 0.01 gO3 to 10 gO3 per 1 g of dry weight of the powder sludge 20. The powder sludge 20 conveyed to the ozone treatment tank 6 by the sludge conveyer 11 is stirred inside the ozone treatment tank 6 by the rotation of the stirring rod 22 and the stirring blade 23. Ozone gas is blown into the ozone treatment tank 6 from the ozone gas pipe 5 connected to the bottom of the ozone treatment tank 6. Ozone treatment (oxidation) breaks the bond between organic substances, causing peeling of organic substances from the sludge surface and formation of fine holes on the sludge surface.
 粉末汚泥20は微粒子同士の結合が弱くなっているため、オゾン処理槽6における粉末汚泥20の攪拌は容易に行われる。粉末汚泥20が攪拌羽根23によって攪拌されると、粉末汚泥20の微粒子同士の間に隙間が生じ、オゾン処理槽6の底部から吹き込まれたオゾンガスが微粒子同士の間に侵入する。粉末汚泥20を構成する微粒子は1個ずつオゾンガスと接触し、表面が酸化される。このようにして、脱水汚泥1を粉砕して粉末汚泥20にすると、短時間でオゾンガスと粉末汚泥20を接触させることができる。粉末汚泥20の全体で酸化が進行するため、酸化時間は短縮されるとともに、オゾンガスの利用効率が向上する。 Since the powder sludge 20 is weakly bonded to each other, the powder sludge 20 in the ozone treatment tank 6 is easily stirred. When the powder sludge 20 is stirred by the stirring blade 23, a gap is generated between the fine particles of the powder sludge 20, and the ozone gas blown from the bottom of the ozone treatment tank 6 enters between the fine particles. The fine particles constituting the powder sludge 20 come into contact with ozone gas one by one, and the surface is oxidized. When the dewatered sludge 1 is pulverized into the powder sludge 20 in this manner, the ozone gas and the powder sludge 20 can be brought into contact with each other in a short time. Since the oxidation proceeds throughout the powder sludge 20, the oxidation time is shortened and the utilization efficiency of ozone gas is improved.
 オゾン添加の評価を行うために、汚泥の表面色の変化(白色化)と、汚泥の重量の変化を記録する。汚泥を水に溶かした後で遠心分離を行い、沈殿物の重量が元の重量よりも軽くなっていれば、剥離した汚泥が水に溶け出したことがわかる。オゾンガスによって酸化された粉末汚泥20は、汚泥搬送機11によってオゾン処理槽6から排出されて汚泥溶解槽7へ搬送される。オゾン処理槽6へ吹き込まれ粉末汚泥20と接触したオゾンガスは、排オゾン配管24を通ってオゾン分解装置34で酸素に分解される。 Record the change in the sludge surface color (whitening) and the change in sludge weight to evaluate the addition of ozone. Centrifugation is performed after the sludge is dissolved in water, and if the weight of the precipitate is lighter than the original weight, it can be seen that the peeled sludge has dissolved in the water. The powder sludge 20 oxidized by the ozone gas is discharged from the ozone treatment tank 6 by the sludge transporter 11 and transported to the sludge dissolution tank 7. The ozone gas blown into the ozone treatment tank 6 and brought into contact with the powder sludge 20 is decomposed into oxygen by the ozone decomposition device 34 through the exhaust ozone pipe 24.
 オゾンガスによって酸化された粉末汚泥20は、汚泥溶解槽7で酸またはアルカリが添加される。ここでは、酸として硫酸、塩酸、硝酸などを、アルカリとして水酸化ナトリウム溶液、水酸化カリウム溶液などを使用する。酸またはアルカリの添加量は、粉末汚泥の乾燥重量1gあたり、1mmol~100mmolの範囲である。酸またはアルカリによる有機物分解作用により、粉末汚泥20は表面から溶解し、汚泥の溶解液が得られる。 The powdered sludge 20 oxidized by ozone gas is added with acid or alkali in the sludge dissolution tank 7. Here, sulfuric acid, hydrochloric acid, nitric acid or the like is used as the acid, and sodium hydroxide solution, potassium hydroxide solution or the like is used as the alkali. The amount of acid or alkali added is in the range of 1 to 100 mmol per gram of dry weight of the powder sludge. The powder sludge 20 is dissolved from the surface by the organic substance decomposition action by acid or alkali, and a sludge solution is obtained.
 粉砕装置3によって微細化された粉末汚泥20が酸またはアルカリによって溶解する過程を図3に示す。脱水汚泥1の内部には、リン30を取り込んだ微生物31や脱水に使用された凝集剤32が含まれている。脱水の際、汚泥がばらばらになると、固形分が水に混入する。これを防止するため凝集剤32を添加して固形物を結合させ、脱水時に固形物が水とともに流れ出ないようにしている。脱水汚泥1を粉末化せずにオゾン処理や酸およびアルカリによる溶解処理を行うと、脱水汚泥の表面から徐々に酸化や溶解が生じる。その際、脱水汚泥1に含まれる水分によって脱水汚泥1の体積が大きくなっているため、リンを取り込んだ微生物31の細胞膜33や凝集剤32に含まれるリン30が溶解するには長時間を必要とする。 The process in which the powder sludge 20 refined by the pulverizer 3 is dissolved by acid or alkali is shown in FIG. The inside of the dewatered sludge 1 contains a microorganism 31 that has taken in phosphorus 30 and a flocculant 32 used for dewatering. If the sludge breaks down during dehydration, the solid content is mixed into the water. In order to prevent this, the flocculant 32 is added to bind the solids so that the solids do not flow out with water during dehydration. When the ozone treatment or the dissolution treatment with acid and alkali is performed without pulverizing the dewatered sludge 1, oxidation and dissolution gradually occur from the surface of the dewatered sludge. At that time, since the volume of the dehydrated sludge 1 is increased by the moisture contained in the dehydrated sludge 1, it takes a long time to dissolve the phosphorus 30 contained in the cell membrane 33 of the microorganism 31 and the flocculant 32 that have taken in phosphorus. And
 これに対し、乾燥装置2で汚泥の水分を蒸発させると、脱水汚泥1の体積が減少している。粉砕装置3で脱水汚泥1を粉砕して粉末汚泥20にすると、脱水汚泥1の接触面積が増えるとともに、脱水汚泥1の内部においてリンを取り込んだ微生物や凝集剤が分散する。乾燥した細胞は弾力性がなくなっているので、機械的な力で細胞膜まで壊れていると考えられる。これにより、粉末汚泥20の表面からリンが存在する箇所までの距離が短くなり、短時間の汚泥溶解によって粉末汚泥20から酸溶液中またはアルカリ溶液中にリンが
溶出する。
On the other hand, when the water | moisture content of sludge is evaporated with the drying apparatus 2, the volume of the dewatered sludge 1 is reducing. When the dewatered sludge 1 is pulverized into the powder sludge 20 by the pulverizer 3, the contact area of the dewatered sludge 1 is increased, and the microorganisms and the flocculant that have taken in phosphorus are dispersed inside the dewatered sludge 1. Since dried cells have lost elasticity, it is thought that the cell membrane is broken by mechanical force. As a result, the distance from the surface of the powder sludge 20 to the location where phosphorus is present is shortened, and phosphorus is eluted from the powder sludge 20 into the acid solution or alkaline solution by short-time sludge dissolution.
 汚泥溶解槽7で溶解された粉末汚泥20は、脱水機10によって汚泥物(リン除去汚泥物)36と分離液37に分けられる。汚泥物36の含水率は80~90%である。汚泥搬送機11によって脱水機10から排出された汚泥物は、リン除去汚泥物貯蔵槽12に貯蔵される。分離液37には粉末汚泥20から溶出したリンが含まれている。粉砕装置3で粉末汚泥20となった後に酸やアルカリが添加されると、粉末汚泥20は微粒子同士の結合が弱くなっているため、添加した酸やアルカリと粉末汚泥20は容易に分離する。分離液は分離液配管13を通して沈殿槽14に投入される。 The powder sludge 20 dissolved in the sludge dissolution tank 7 is divided into a sludge (phosphorus removal sludge) 36 and a separation liquid 37 by the dehydrator 10. The moisture content of the sludge 36 is 80 to 90%. The sludge discharged from the dehydrator 10 by the sludge transporter 11 is stored in the phosphorus removal sludge storage tank 12. The separation liquid 37 contains phosphorus eluted from the powder sludge 20. When acid or alkali is added after becoming the powder sludge 20 in the pulverizer 3, since the fine particles are weakly bonded to each other, the added acid or alkali and the powder sludge 20 are easily separated. The separation liquid is introduced into the precipitation tank 14 through the separation liquid pipe 13.
 沈殿槽14では、分離液に含まれるリンと反応して凝集物を生成する凝集剤(例えば塩化カルシウム)が凝集剤注入器15によって注入される。凝集剤とリンが反応することでリン凝集物38が生成し、沈殿槽14の底部に沈殿する。沈殿槽14に沈殿したリン凝集物38をリン凝集物引き抜き配管17を通して引き抜き、リン凝集物回収槽18に貯蔵することで脱水汚泥1のリンを回収することができる。粉末汚泥20にオゾン処理と酸またはアルカリによる薬品溶解処理を行っているため、沈殿槽14に投入される分離液には、脱水汚泥1に含有されていたリンが効率よく溶出している。これにより、沈殿槽14では高効率で脱水汚泥1のリンを回収することができる。沈殿槽14からは上澄み液26が得られる。 In the sedimentation tank 14, a flocculant (for example, calcium chloride) that reacts with phosphorus contained in the separation liquid to generate an agglomerate is injected by the flocculant injector 15. As the flocculant and phosphorus react, a phosphorus aggregate 38 is generated and precipitated at the bottom of the settling tank 14. By extracting the phosphorus aggregate 38 precipitated in the precipitation tank 14 through the phosphorus aggregate extraction pipe 17 and storing it in the phosphorus aggregate recovery tank 18, phosphorus in the dewatered sludge 1 can be recovered. Since the powder sludge 20 is subjected to ozone treatment and chemical dissolution treatment with acid or alkali, phosphorus contained in the dewatered sludge 1 is efficiently eluted in the separation liquid introduced into the settling tank 14. Thereby, in the sedimentation tank 14, phosphorus of the dewatered sludge 1 can be recovered with high efficiency. A supernatant liquid 26 is obtained from the precipitation tank 14.
 図4に粉末汚泥20と脱水汚泥1から回収したリン量を示す。粉末汚泥20は脱水汚泥1を乾燥、粉砕したものである。粉末汚泥20と脱水汚泥1は、オゾンとアルカリで処理し、脱水機10で分離液37を作成した。縦軸は、粉末汚泥20または脱水汚泥1に含まれていたリン量と、分離液37に含まれていたリン量から求めた回収率を表している。脱水汚泥1の含水率は80%であった。粉末汚泥20の含水率は10%であった。脱水汚泥1からのリン回収率は14%であるのに対し、粉末汚泥20からのリン回収率は70%と非常に高い値を示している。 FIG. 4 shows the amount of phosphorus recovered from the powder sludge 20 and the dewatered sludge 1. The powder sludge 20 is obtained by drying and pulverizing the dewatered sludge 1. The powder sludge 20 and the dewatered sludge 1 were treated with ozone and alkali, and the separation liquid 37 was prepared by the dehydrator 10. The vertical axis represents the recovery rate obtained from the amount of phosphorus contained in the powder sludge 20 or the dehydrated sludge 1 and the amount of phosphorus contained in the separation liquid 37. The water content of the dewatered sludge 1 was 80%. The moisture content of the powder sludge 20 was 10%. The phosphorus recovery rate from the dewatered sludge 1 is 14%, while the phosphorus recovery rate from the powder sludge 20 is as high as 70%.
 汚泥溶解に添加したアルカリ溶液は汚泥に吸収される。脱水汚泥1からリンを回収した場合、脱水機10で回収された分離液の量は添加したアルカリ溶液の50%であった。オゾンとアルカリによって溶出したリンは脱水汚泥1の含水に溶出し、大部分は脱水機10で回収できなかったため、リンの回収率が14%になったと考えられる。一方、粉末汚泥20からリンを回収した場合、粉末汚泥20の含水率が10%と低く、添加したアルカリと粉末汚泥20が容易に分離できた。脱水機10によって、添加したアルカリの90%を分離液として回収できるため、リンの回収率が70%と高くなったと考えられる。 ア ル カ リ Alkaline solution added to sludge dissolution is absorbed by sludge. When phosphorus was recovered from the dewatered sludge 1, the amount of the separated liquid recovered by the dehydrator 10 was 50% of the added alkaline solution. Phosphorus eluted by ozone and alkali was eluted in the water content of the dewatered sludge 1 and most of the phosphorus could not be recovered by the dehydrator 10, so the phosphorus recovery rate was considered to be 14%. On the other hand, when phosphorus was recovered from the powder sludge 20, the moisture content of the powder sludge 20 was as low as 10%, and the added alkali and the powder sludge 20 could be easily separated. Since 90% of the added alkali can be recovered as a separation liquid by the dehydrator 10, it is considered that the recovery rate of phosphorus was as high as 70%.
 各工程の所要時間は汚泥の処理量によって、装置サイズが変わるため一概には言えない。ただ、実証試験などの値から、オゾン処理は約30分程度、アルカリ処理は約15分程度になると考えられる。汚泥の乾燥については、天日干しであれば2時間程度、熱乾燥であれば30分程度、粉末化処理は5分程度で済ませることが出来ると考えている。 所 要 The time required for each process cannot be generally stated because the size of the equipment changes depending on the amount of sludge treated. However, based on values from demonstration tests, ozone treatment is expected to take about 30 minutes and alkali treatment takes about 15 minutes. Regarding drying of sludge, we think that it can be completed in about 2 hours for sun drying, about 30 minutes for heat drying, and about 5 minutes for powdering treatment.
実施の形態2.
 図5は本発明の実施の形態2による汚泥からのリン回収装置の構成図である。脱水汚泥1を粉砕してオゾン処理する構成図に示すように、粉砕装置3とオゾン処理槽6の間に、粉末汚泥20に水を添加する含水率調整槽25を設けている。実施の形態2による構成によると、粉砕装置3で粉末化した粉末汚泥20に貯水器35から水を加えることで、粉末汚泥20の含水率を任意に調整することができる。オゾン処理槽6における粉末汚泥20とオゾンガスとの反応は、粉末化した汚泥粒子同士が結合しないほうが効率的である。しかし、粉砕装置3で処理する脱水汚泥1の量が多くなると、オゾン処理槽6でオゾンガスによる酸化が生じた際、発生する酸化熱が多くなる。この酸化熱が高くなると粉末汚泥20に含まれる有機物を変質させ、難分解性物質に変質する可能性が生じる。
Embodiment 2. FIG.
FIG. 5 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 2 of the present invention. As shown in the block diagram of pulverizing the dehydrated sludge 1 and performing ozone treatment, a moisture content adjustment tank 25 for adding water to the powder sludge 20 is provided between the pulverizer 3 and the ozone treatment tank 6. According to the configuration of the second embodiment, the water content of the powder sludge 20 can be arbitrarily adjusted by adding water from the water reservoir 35 to the powder sludge 20 pulverized by the pulverizer 3. The reaction between the powdered sludge 20 and the ozone gas in the ozone treatment tank 6 is more efficient when the powdered sludge particles do not bond with each other. However, when the amount of the dewatered sludge 1 to be processed by the pulverizer 3 is increased, the oxidation heat generated when the ozone treatment tank 6 is oxidized by ozone gas increases. When this heat of oxidation becomes high, the organic matter contained in the powder sludge 20 is altered, and there is a possibility that it is transformed into a hardly decomposable substance.
 含水率調整槽25で粉末汚泥20の含水率を調整すると、オゾン処理槽6においてオゾンガスによる有機物の変質を防止することができる。乾燥した汚泥の含水率、アルカリ添加量、および汚泥の移送量から、水添加量(mL/g-SS)と汚泥の含水率(%)との関係が求められる。そのために、汚泥の移送量、アルカリの添加量および水の添加量を計測している。含水率調整槽25において粉末汚泥20に添加される水量は、粉末汚泥20の含水率が70~90%となることが望ましい。 When the moisture content of the powder sludge 20 is adjusted in the moisture content adjusting tank 25, the ozone treatment tank 6 can prevent organic substances from being deteriorated by ozone gas. From the moisture content of dried sludge, the amount of alkali added, and the amount of sludge transferred, the relationship between the amount of water added (mL / g-SS) and the moisture content of sludge (%) is required. Therefore, the amount of sludge transferred, the amount of alkali added, and the amount of water added are measured. The amount of water added to the powder sludge 20 in the water content adjustment tank 25 is preferably such that the water content of the powder sludge 20 is 70 to 90%.
 粉末汚泥20の含水率が70~90%に調整されていると、乾燥装置2で処理される前の脱水汚泥1の体積と同程度になり、粉末汚泥20に水を加えたことによるオゾン処理槽6の大型化を防ぐことができる。また、粉砕装置3で粉末汚泥20となった後で水を添加すると、粉末汚泥20の微粒子同士の結合が弱くなっているため、添加した水と粉末汚泥20が容易に分離する。これにより、オゾン処理槽6における粉末汚泥20の攪拌も容易であり、粉末化していない脱水汚泥1に比べてオゾンガスと粉末汚泥20を短時間で均一に反応させることができる。水の供給方法として、例えば、汚泥搬送の途中でスプレーを使って水を噴射する方法が考えられる。その際、搬送する汚泥量から必要な水噴射量を計算する。 When the moisture content of the powder sludge 20 is adjusted to 70 to 90%, the volume becomes the same as the volume of the dewatered sludge 1 before being treated by the drying device 2, and the ozone treatment by adding water to the powder sludge 20. The enlargement of the tank 6 can be prevented. Moreover, when water is added after becoming the powder sludge 20 in the pulverizer 3, since the bonding between the fine particles of the powder sludge 20 is weakened, the added water and the powder sludge 20 are easily separated. Thereby, stirring of the powder sludge 20 in the ozone treatment tank 6 is easy, and ozone gas and the powder sludge 20 can be made to react uniformly in a short time compared with the dehydrated sludge 1 which is not pulverized. As a method of supplying water, for example, a method of spraying water using a spray during sludge conveyance is conceivable. At that time, the required water injection amount is calculated from the amount of sludge to be conveyed.
実施の形態3.
 図6は本発明の実施の形態3による汚泥からのリン回収装置の構成図である。実施の形態1においては、汚泥溶解槽7と脱水機10を直接つなぎ、酸またはアルカリを加えて溶解させた粉末汚泥20を脱水機10で汚泥物(リン除去汚泥物)と分離液とに分けていた。汚泥溶解槽7と脱水機10の間には含水率調整槽25を設けることもできる。実施の形態3による構成によれば、酸またはアルカリで溶解させた粉末汚泥20に水を添加し、粉末汚泥20の含水率を任意に調整することができる。脱水機10によって脱水されたリン除去汚泥物の含水率は80~90%であり、この含水率を超えて粉末汚泥20に加えられた酸またはアルカリが分離液となる。
Embodiment 3 FIG.
FIG. 6 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 3 of the present invention. In the first embodiment, the sludge dissolution tank 7 and the dehydrator 10 are directly connected, and the powder sludge 20 dissolved by adding acid or alkali is separated into sludge (phosphorus-removed sludge) and separated liquid by the dehydrator 10. It was. A moisture content adjusting tank 25 may be provided between the sludge dissolving tank 7 and the dehydrator 10. According to the configuration of the third embodiment, water can be added to the powder sludge 20 dissolved with acid or alkali, and the water content of the powder sludge 20 can be arbitrarily adjusted. The water content of the phosphorus-removed sludge dehydrated by the dehydrator 10 is 80 to 90%, and the acid or alkali added to the powder sludge 20 exceeding this water content becomes the separation liquid.
 分離液のリン溶出率を高めるためには、分離液の液量を増加させる必要がある。酸またはアルカリの添加量を増やすと薬品使用コストが高くなる。これに対し、汚泥溶解槽7と脱水機10の間で水を加えると、薬品使用量を増やすことなくリンの溶出効率を高めることができる。図7にアルカリ処理後の粉末汚泥20に水を加えた場合におけるリン回収率を示す。水の添加量が増加するとリン回収率が増加し、アルカリ溶液の添加量(0.4mL/g-SS)の3倍である1.2mL/g-SSの水を添加すると、リン回収率は90%以上になることがわかった。 In order to increase the phosphorus elution rate of the separation liquid, it is necessary to increase the volume of the separation liquid. Increasing the amount of acid or alkali added increases the cost of using the chemical. On the other hand, when water is added between the sludge dissolution tank 7 and the dehydrator 10, the elution efficiency of phosphorus can be increased without increasing the amount of chemical used. FIG. 7 shows the phosphorus recovery rate when water is added to the powder sludge 20 after the alkali treatment. Phosphorus recovery increases as the amount of water added increases, and when 1.2 mL / g-SS of water, which is three times the amount of alkali solution added (0.4 mL / g-SS), is added, the phosphorus recovery rate is 90%. I found out that
実施の形態4.
 図8は本発明の実施の形態4による汚泥からのリン回収装置の構成図である。同図には、上澄み液配管19から含水率調整槽25に上澄み液26を返送する上澄み液返送配管27が示されている。本実施の形態によれば、含水率調整槽25に注入する水として、沈殿槽14で得られる上澄み液26を用いる。上澄み液26は上澄み液配管19によって沈殿槽14から排出される。
Embodiment 4 FIG.
FIG. 8 is a block diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 4 of the present invention. In the figure, a supernatant liquid return pipe 27 for returning the supernatant liquid 26 from the supernatant liquid pipe 19 to the moisture content adjusting tank 25 is shown. According to the present embodiment, the supernatant liquid 26 obtained in the precipitation tank 14 is used as the water to be injected into the water content adjustment tank 25. The supernatant liquid 26 is discharged from the sedimentation tank 14 through the supernatant liquid pipe 19.
 本構成によると、沈殿槽14から放出された上澄み液26の一部を、上澄み液返送配管27を用いて含水率調整槽25に返送することができる。沈殿槽14から排出される上澄み液26には、汚泥溶解槽7で使用した酸またはアルカリが含まれている。このため、酸またはアルカリを汚泥溶解に再利用することが可能となり、酸またはアルカリの使用量を削減することができる。 According to this configuration, a part of the supernatant liquid 26 released from the sedimentation tank 14 can be returned to the water content adjustment tank 25 using the supernatant liquid return pipe 27. The supernatant liquid 26 discharged from the sedimentation tank 14 contains the acid or alkali used in the sludge dissolution tank 7. For this reason, it becomes possible to reuse an acid or an alkali for sludge dissolution, and the usage-amount of an acid or an alkali can be reduced.
実施の形態5.
 図10は本発明の実施の形態5による汚泥からのリン回収装置の構成図である。沈殿槽14に接続された上澄み液返送配管27は、混合槽40に接続されている。混合槽40は混合汚泥返送配管41によって含水率調整槽25に接続されている。混合槽40と脱水機10の間には汚泥引抜配管39が接続されている。汚泥引抜配管39は汚泥物36の一部を脱水機10から引抜く。混合槽40は、引抜いた汚泥物36と上澄み液26を混合する。混合汚泥返送配管41は汚泥物36と上澄み液26の混合物を含水率調整槽25に返送する。
Embodiment 5 FIG.
FIG. 10 is a configuration diagram of an apparatus for recovering phosphorus from sludge according to Embodiment 5 of the present invention. The supernatant liquid return pipe 27 connected to the settling tank 14 is connected to the mixing tank 40. The mixing tank 40 is connected to the moisture content adjusting tank 25 by a mixed sludge return pipe 41. A sludge extraction pipe 39 is connected between the mixing tank 40 and the dehydrator 10. The sludge extraction pipe 39 extracts a part of the sludge 36 from the dehydrator 10. The mixing tank 40 mixes the extracted sludge 36 and the supernatant liquid 26. The mixed sludge return pipe 41 returns the mixture of the sludge 36 and the supernatant liquid 26 to the moisture content adjustment tank 25.
 本構成によると、脱水機10から得られた汚泥物36を上澄み液26と混合して含水率調整槽25へ戻し、再度、脱水機10によって脱水することができる。汚泥物36には、脱水機10で分離できなかったリンを含有する水が残っている。上澄み液26と汚泥物36を混合して再度、脱水機10によって脱水することで汚泥物36に残っていたリンを分離液37に混入させて回収するため、粉末汚泥20に含まれるリンの回収効率をさらに高めることができる。 According to this configuration, the sludge 36 obtained from the dehydrator 10 can be mixed with the supernatant liquid 26 and returned to the water content adjustment tank 25 and dehydrated by the dehydrator 10 again. In the sludge 36, water containing phosphorus that cannot be separated by the dehydrator 10 remains. Since the supernatant liquid 26 and the sludge 36 are mixed and again dehydrated by the dehydrator 10, the phosphorus remaining in the sludge 36 is mixed into the separation liquid 37 and recovered, so that the phosphorus contained in the powder sludge 20 is recovered. Efficiency can be further increased.
実施の形態6.
 本発明の実施の形態6による汚泥からのリン回収装置を図11に従って説明する。本実施の形態によるオゾン処理槽6は、周囲に(特に側面に)加熱装置42が設置されていて、水分を含有する脱水汚泥が直接投入される。オゾン発生器4はオゾンガス配管5によって、オゾン処理槽6の底部と接続されており、オゾンガスがオゾン処理槽6に供給される。オゾン処理槽6に脱水汚泥1を投入して攪拌羽根23で攪拌しながら加熱装置42で脱水汚泥1を加熱する。本実施の形態は、リン回収装置における乾燥装置2と粉砕装置3とオゾン処理槽6の機能を、1台の装置にまとめた構成である。
Embodiment 6 FIG.
An apparatus for recovering phosphorus from sludge according to Embodiment 6 of the present invention will be described with reference to FIG. In the ozone treatment tank 6 according to the present embodiment, a heating device 42 is installed around (especially on the side surface), and dehydrated sludge containing moisture is directly charged. The ozone generator 4 is connected to the bottom of the ozone treatment tank 6 by an ozone gas pipe 5, and ozone gas is supplied to the ozone treatment tank 6. The dehydrated sludge 1 is put into the ozone treatment tank 6 and the dehydrated sludge 1 is heated by the heating device 42 while stirring with the stirring blade 23. In the present embodiment, the functions of the drying device 2, the pulverizing device 3, and the ozone treatment tank 6 in the phosphorus recovery device are combined into one device.
 オゾン処理槽6における脱水汚泥1のオゾン処理過程を図12に示す。オゾン処理槽6に脱水汚泥1を投入して攪拌羽根23で攪拌しながら加熱装置42で脱水汚泥1を加熱する。脱水汚泥1に含まれている水は蒸発し、脱水汚泥1が乾燥する。脱水汚泥1の含水率が20%以下、最適には15%以下に低下した後に攪拌機21の回転数を上げることで脱水汚泥1を粉砕することができる。脱水汚泥1が粉砕され粉末化した後にオゾンガス配管5を通してオゾンガスを供給すると、粉末化した脱水汚泥1がオゾンと反応する。オゾンと反応した脱水汚泥1は汚泥搬送機11によってオゾン処理槽6から排出される。本実施の形態により構成とすることにより、乾燥、粉砕、オゾン処理を1台の装置で行うことが可能となり、装置の小型化が実現できる。 FIG. 12 shows the ozone treatment process of the dewatered sludge 1 in the ozone treatment tank 6. The dehydrated sludge 1 is put into the ozone treatment tank 6 and the dehydrated sludge 1 is heated by the heating device 42 while stirring with the stirring blade 23. The water contained in the dewatered sludge 1 evaporates and the dehydrated sludge 1 is dried. The dehydrated sludge 1 can be pulverized by increasing the rotational speed of the agitator 21 after the water content of the dehydrated sludge 1 has decreased to 20% or less, and optimally to 15% or less. When ozone gas is supplied through the ozone gas pipe 5 after the dewatered sludge 1 is pulverized and powdered, the powdered dewatered sludge 1 reacts with ozone. The dewatered sludge 1 that has reacted with ozone is discharged from the ozone treatment tank 6 by the sludge transporter 11. With the configuration according to this embodiment, drying, pulverization, and ozone treatment can be performed with one apparatus, and the apparatus can be downsized.
 なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, it is possible to freely combine the embodiments within the scope of the invention, and to appropriately modify and omit each embodiment.
1 脱水汚泥、2 乾燥装置、3 粉砕装置、4 オゾン発生器、5 オゾンガス配管、6 オゾン処理槽、7 汚泥溶解槽、8 薬品注入器、9 薬品配管、10 脱水機、11 汚泥搬送機、12 リン除去汚泥物貯蔵槽、13 分離液配管、14 沈殿槽、15 凝集剤注入器、16 凝集剤配管、17 リン凝集物引き抜き配管、18 リン凝集物回収槽、19 上澄み液配管、20 粉末汚泥、21 攪拌機、22 攪拌棒、23 攪拌羽根、24 排オゾン配管、25 含水率調整槽、26 上澄み液、27 上澄み液返送配管、30 リン、31 微生物、32 凝集剤、33 細胞膜、34 オゾン分解装置、35 貯水器、36 汚泥物、37 分離液、38 リン凝集物、39 汚泥引抜配管、40 混合槽、41 混合汚泥返送配管、42 加熱装置、100 リン回収装置。 1 Dewatered sludge, 2 Drying device, 3 Grinding device, 4 Ozone generator, 5 Ozone gas piping, 6 Ozone treatment tank, 7 Sludge dissolution tank, 8 Chemical injector, 9 Chemical piping, 10 Dehydrator, 11 Sludge transporter, 12 Phosphorus removal sludge storage tank, 13 separation liquid piping, 14 sedimentation tank, 15 flocculant injector, 16 flocculant piping, 17 phosphorus agglomerate extraction pipe, 18 phosphorus agglomerate recovery tank, 19 supernatant liquid piping, 20 powder sludge, 21 stirrer, 22 stir bar, 23 stirrer blade, 24 exhaust ozone piping, 25 moisture content adjustment tank, 26 supernatant liquid, 27 supernatant return pipe, 30 phosphorus, 31 microorganisms, 32 flocculant, 33 cell membrane, 34 ozonolysis device, 35 water reservoir, 36 sludge, 37 separation liquid, 38 phosphorus aggregate, 39 sludge extraction piping, 40 mixing tank, 41 mixing Sludge return pipe, 42 heating device, 100 phosphorus recovery device.

Claims (8)

  1.  水分を含有する汚泥を加熱する乾燥装置と、
    前記乾燥装置によって加熱された汚泥を粉末化する粉砕装置と、
    前記粉砕装置によって粉末化された汚泥にオゾンガスが注入されるオゾン処理槽と、
    前記オゾン処理槽でオゾンガスが注入された汚泥に酸またはアルカリが添加される汚泥溶解槽と、
    前記汚泥溶解槽で酸またはアルカリが添加された汚泥を汚泥物と分離液とに分離する脱水機と、
    前記脱水機によって分離された分離液に凝集剤が添加され上澄み液と凝集物とが生じる沈殿槽と、
    前記沈殿槽で生じた凝集物を貯蔵する凝集物回収槽と、を備えているリン回収装置。
    A drying device for heating the sludge containing moisture;
    A pulverizer for pulverizing sludge heated by the drying device;
    An ozone treatment tank in which ozone gas is injected into the sludge pulverized by the pulverizer;
    A sludge dissolution tank in which acid or alkali is added to sludge into which ozone gas has been injected in the ozone treatment tank;
    A dehydrator for separating the sludge to which acid or alkali is added in the sludge dissolution tank into sludge and a separated liquid;
    A settling tank in which a flocculant is added to the separated liquid separated by the dehydrator to produce a supernatant and agglomerates
    The phosphorus collection | recovery apparatus provided with the aggregate collection tank which stores the aggregate produced in the said precipitation tank.
  2.  攪拌機を有し、水分を含有する汚泥が投入されるオゾン処理槽と、
    前記オゾン処理槽にオゾンガスを供給するオゾン発生器と、
    前記オゾン処理槽の周囲に設置された加熱装置と、
    前記オゾン処理槽で前記オゾンガスが注入された汚泥に酸またはアルカリが添加される汚泥溶解槽と、
    前記汚泥溶解槽で酸またはアルカリが添加された汚泥を汚泥物と分離液とに分離する脱水機と、
    前記脱水機によって分離された分離液に凝集剤が添加され上澄み液と凝集物とが生じる沈殿槽と、
    前記沈殿槽で生じた凝集物を貯蔵する凝集物回収槽と、を備えているリン回収装置。
    An ozone treatment tank having a stirrer and into which sludge containing moisture is introduced;
    An ozone generator for supplying ozone gas to the ozone treatment tank;
    A heating device installed around the ozone treatment tank;
    A sludge dissolution tank in which acid or alkali is added to the sludge into which the ozone gas is injected in the ozone treatment tank;
    A dehydrator for separating the sludge to which acid or alkali is added in the sludge dissolution tank into sludge and a separated liquid;
    A settling tank in which a flocculant is added to the separated liquid separated by the dehydrator to produce a supernatant and agglomerates;
    The phosphorus collection | recovery apparatus provided with the aggregate collection tank which stores the aggregate produced in the said precipitation tank.
  3.  前記粉砕装置と前記オゾン処理槽の間に設置された含水率調整槽を備えていることを特徴とする請求項1に記載のリン回収装置。 The phosphorus recovery apparatus according to claim 1, further comprising a water content adjustment tank installed between the pulverizer and the ozone treatment tank.
  4.  前記汚泥溶解槽と前記脱水機の間に設置された含水率調整槽を備えていることを特徴とする請求項1または2に記載のリン回収装置。 The phosphorus recovery apparatus according to claim 1 or 2, further comprising a water content adjustment tank installed between the sludge dissolution tank and the dehydrator.
  5.  前記上澄み液を前記含水率調整槽に返送する上澄み液返送配管を備えていることを特徴とする請求項4に記載のリン回収装置。 The phosphorus recovery apparatus according to claim 4, further comprising a supernatant liquid return pipe for returning the supernatant liquid to the moisture content adjusting tank.
  6.  前記沈殿槽で生じた上澄み液と前記脱水機によって分離された汚泥物を混合する混合槽と、
    前記混合槽で生じた汚泥物を前記含水率調整槽に搬送する混合汚泥返送配管と、を備えていることを特徴とする請求項4に記載のリン回収装置。
    A mixing tank for mixing the supernatant produced in the settling tank and the sludge separated by the dehydrator;
    The phosphorus collection | recovery apparatus of Claim 4 provided with the mixed sludge return piping which conveys the sludge produced in the said mixing tank to the said moisture content adjustment tank.
  7.  水分を含有する汚泥を加熱する第1工程と、
    前記第1工程で加熱された汚泥を粉末化する第2工程と、
    前記第2工程で粉末化された汚泥にオゾンガスを注入する第3工程と、
    前記第3工程でオゾンガスが注入された汚泥に酸またはアルカリを添加する第4工程と、
    前記第4工程で酸またはアルカリを添加された汚泥を汚泥物と分離液とに分離する第5工程と、
    前記第5工程で分離された分離液に凝集剤を添加して上澄み液と凝集物とが生じる第6工程と、
    前記第6工程で生じた凝集物を貯蔵する第7工程と、を備えているリン回収方法。
    A first step of heating the sludge containing moisture;
    A second step of pulverizing the sludge heated in the first step;
    A third step of injecting ozone gas into the sludge powdered in the second step;
    A fourth step of adding acid or alkali to the sludge into which ozone gas has been injected in the third step;
    A fifth step of separating the sludge to which acid or alkali is added in the fourth step into sludge and a separated liquid;
    A sixth step in which a flocculant is added to the separation liquid separated in the fifth step to produce a supernatant and an aggregate;
    A phosphorus recovery method comprising: a seventh step of storing the aggregate produced in the sixth step.
  8.  前記第1工程で加熱された汚泥は、含水率が20wt%以下、5wt%以上の範囲に調整されていることを特徴とする請求項7に記載のリン回収方法。 The method for recovering phosphorus according to claim 7, wherein the sludge heated in the first step has a moisture content adjusted to a range of 20 wt% or less and 5 wt% or more.
PCT/JP2014/080312 2014-01-29 2014-11-17 Phosphorus collection apparatus and phosphorus collection method WO2015114912A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559740A JP6091661B2 (en) 2014-01-29 2014-11-17 Phosphorus recovery apparatus and phosphorus recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013985 2014-01-29
JP2014-013985 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015114912A1 true WO2015114912A1 (en) 2015-08-06

Family

ID=53756508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080312 WO2015114912A1 (en) 2014-01-29 2014-11-17 Phosphorus collection apparatus and phosphorus collection method

Country Status (2)

Country Link
JP (1) JP6091661B2 (en)
WO (1) WO2015114912A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000775A (en) * 2015-06-19 2015-10-28 广州中科建禹环保有限公司 Deep dewatering system and method for sludge
CN110203888A (en) * 2019-06-05 2019-09-06 雷波凯瑞磷化工有限责任公司 A kind of method and system for producing ozone using mud phosphorus
CN110590101A (en) * 2019-09-12 2019-12-20 昆山科技大学 Energy-saving and time-saving sludge reduction method by using homogenizer with ozone
CN114524602A (en) * 2022-02-23 2022-05-24 生态环境部华南环境科学研究所 Reduction device and method for reduction treatment of electroplating sewage sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192898A (en) * 1997-01-14 1998-07-28 Meidensha Corp Sludge treatment method
JP2005007339A (en) * 2003-06-20 2005-01-13 Mitsubishi Electric Corp Treatment method and treatment device for organic waste liquid
JP2005219043A (en) * 2004-01-07 2005-08-18 Mitsubishi Electric Corp Sludge treatment method and sludge treatment apparatus
JP2006305474A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Organic waste treatment method and its treatment apparatus
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192898A (en) * 1997-01-14 1998-07-28 Meidensha Corp Sludge treatment method
JP2005007339A (en) * 2003-06-20 2005-01-13 Mitsubishi Electric Corp Treatment method and treatment device for organic waste liquid
JP2005219043A (en) * 2004-01-07 2005-08-18 Mitsubishi Electric Corp Sludge treatment method and sludge treatment apparatus
JP2006305474A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Organic waste treatment method and its treatment apparatus
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000775A (en) * 2015-06-19 2015-10-28 广州中科建禹环保有限公司 Deep dewatering system and method for sludge
CN110203888A (en) * 2019-06-05 2019-09-06 雷波凯瑞磷化工有限责任公司 A kind of method and system for producing ozone using mud phosphorus
CN110590101A (en) * 2019-09-12 2019-12-20 昆山科技大学 Energy-saving and time-saving sludge reduction method by using homogenizer with ozone
CN114524602A (en) * 2022-02-23 2022-05-24 生态环境部华南环境科学研究所 Reduction device and method for reduction treatment of electroplating sewage sludge
CN114524602B (en) * 2022-02-23 2022-10-25 生态环境部华南环境科学研究所 Reduction device and method for reduction treatment of electroplating sewage sludge

Also Published As

Publication number Publication date
JP6091661B2 (en) 2017-03-08
JPWO2015114912A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6091661B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JP6412586B2 (en) Comprehensive conversion method of lignite and leonardite to humus fertilizer, preparation to briquette fuel, and mechanochemical reactor for high viscosity medium conversion
RU2618884C2 (en) Method and device for extracting valuable materials from bauxite processing waste
RU2350587C1 (en) Organomineral fertiliser manufacture technique
CN104556597B (en) A kind of processing method of sludge
JP2009136770A (en) Apparatus for treating concrete sludge
JP2005205252A (en) High-concentration slurry containing biomass, method for preparing high-concentration slurry and method for manufacturing biomass fuel
TW202214877A (en) Fly ash treatment method, methods for obtaining metal hydroxides and methods for the preparation of industrial salts
CN105399963B (en) A kind of mechanical activation method for preparing solid phase of lignocellulosic ester group oxidation catalyst
RU2623475C1 (en) Method of obtaining humin-containing powdered lignite based product and the product obtained in this manner
CN109810150B (en) Method for extracting fulvic acid from lignite through ultrasonic synergistic catalytic oxidation
KR101332359B1 (en) Non-effluent as treatment method the bulk-agent in the presence of airwind/rapid air flow due to the organic wastewater of high concentrations
JP5457620B2 (en) Sludge volume reduction carbonization device and method and organic waste water treatment system
JP2010240519A (en) Method of treating water to be treated containing inorganic sludge
CN101575183A (en) Processing method of incinerated flying ash
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
HU230662B1 (en) Installation for recovering of dissolvable humate from mineral carbonate
TW201212974A (en) Method for quickly removing hazardous matters from MSWI fly ash
TWI532705B (en) Series treatment method favoring the reuse of mswi fly ash
TR2021019004A2 (en) A LITHIUM EXTRACTION PROCESS AND APPARATUS
JP5875259B2 (en) Method and apparatus for treating organic wastewater and sludge
JP2002326078A (en) Treatment process of dredged shellfish and equipment for the same process
JP2004025044A (en) Method of making feed, fertilizer and soil conditioner from organismic waste by using cellular wall crushing pr0cess
JP2005272644A (en) Method for gasifying water-containing biomass
CN108315072A (en) The method for preparing biomass fuel using the molten waste water of folid acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880543

Country of ref document: EP

Kind code of ref document: A1