WO2015111848A1 - Organic compound, composition, organic optoelectronic device, and display device - Google Patents

Organic compound, composition, organic optoelectronic device, and display device Download PDF

Info

Publication number
WO2015111848A1
WO2015111848A1 PCT/KR2014/012749 KR2014012749W WO2015111848A1 WO 2015111848 A1 WO2015111848 A1 WO 2015111848A1 KR 2014012749 W KR2014012749 W KR 2014012749W WO 2015111848 A1 WO2015111848 A1 WO 2015111848A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
formula
Prior art date
Application number
PCT/KR2014/012749
Other languages
French (fr)
Korean (ko)
Inventor
한수진
이한일
민수현
유은선
정호국
조평석
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140184653A external-priority patent/KR101829745B1/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to US15/037,419 priority Critical patent/US11177441B2/en
Priority to CN201480073378.2A priority patent/CN105916847B/en
Publication of WO2015111848A1 publication Critical patent/WO2015111848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • An organic compound a composition, an organic optoelectronic device, and a display device.
  • An organic optoelectric diode is a device capable of converting electrical energy and light energy.
  • Organic optoelectronic devices can be divided into two types according to the principle of operation.
  • One is an optoelectronic device in which excitons formed by light energy are separated into electrons and holes, and the electrons and holes are transferred to other electrodes, respectively, to generate electric energy.
  • It is a light emitting device that generates light energy from energy.
  • Examples of the organic optoelectronic device may be an organic photoelectric device, an organic light emitting device, an organic solar cell and an organic photo conductor drum.
  • the organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material.
  • the organic light emitting device has a structure in which an organic layer is inserted between an anode and a cathode.
  • the organic layer may include a light emitting layer and an auxiliary layer, and the auxiliary layer may include, for example, a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, and an electron transport auxiliary layer to increase efficiency and stability of the organic light emitting device. And at least one layer selected from an electron injection layer and a hole blocking layer.
  • the performance of the organic light emitting device is greatly influenced by the characteristics of the organic layer, and the increase is also affected by the organic materials included in the organic layer.
  • One embodiment provides an organic compound capable of implementing high efficiency and long life organic optoelectronic devices.
  • Another embodiment provides a composition for an organic optoelectronic device including the organic compound.
  • Yet another embodiment provides an organic optoelectronic device including the organic compound.
  • Another embodiment provides a display device including the organic optoelectronic device.
  • an organic compound represented by the following Chemical Formula 1 and having a molecular weight of 538 or more and less than 750 is provided:
  • Z are each independently N, C or CR a ,
  • At least one of Z is N,
  • R 'to R 1 1 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C 12 heterotero An aryl group or a combination thereof,
  • R 1 and R 2 are independently present or linked together to form a ring
  • R 5 and R 6 are independently present or linked together to form a ring
  • R 7 and R 8 are independently present or connected to each other to form a ring
  • R 9 and R ′ 0 are independently present or linked together to form a ring, nl is an integer from 1 to 5,
  • n2 is an integer of 0 to 2
  • n3 and n4 are 0 or 1 each independently.
  • a composition for an organic optoelectronic device including at least one second organic compound having a first organic compound and a carbazole moiety, which is the aforementioned organic compound, is provided.
  • a display device including the organic optoelectronic device is provided.
  • FIG. 1 and 2 are cross-sectional views illustrating organic light emitting diodes according to example embodiments. [Best form for implementation of the invention]
  • substituted means that at least one hydrogen in a substituent or compound is deuterium, a halogen group, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or unsubstituted C1 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C3 to C30 heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heteroaryl group, C1 to C20 alkoxy group It means substituted with a C1 to C10 trifluoroalkyl group or a cyano group, such as a, fluoro group, trifluoromethyl group.
  • Two adjacent substituents of C1 to CI 0 trifluoroalkyl or cyano groups such as heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heteroaryl group, C1 to C20 alkoxy group, fluoro group, and trifuluromethyl group May be fused to form a ring.
  • the substituted C6 to C30 aryl group can be fused to another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
  • hetero means one to three heteroatoms selected from the group consisting of ⁇ , ⁇ , S, ⁇ and Si in one functional group, and the remainder is carbon unless otherwise defined. do.
  • an "alkyl group” is aliphatic
  • the alkyl group may be a "saturated alkyl group" that does not contain any double bonds or triple bonds.
  • the alkyl group may be an alkyl group of C 1 to C30. More specifically, the alkyl group may be a C1 to C20 alkyl group or a C1 to C10 alkyl group.
  • a C1 to C4 alkyl group means that the alkyl chain contains 1 to 4 carbon atoms, methyl, ethyl, propyl, iso-propyl, ⁇ -butyl, iso-butyl, sec-butyl and ' t-butyl It is selected from the group consisting of.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a practical skill.
  • an "aryl group” refers to a substituent in which all elements of a cyclic substituent have a p-orbital, and these P-orbitals form a conjugate, and are monocyclic and polycyclic. Or fused ring polycyclic (ie, rings that divide adjacent carbon atoms with adjacent pairs) functional groups.
  • heteroaryl group means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, P, and Si in the aryl group, and the rest are carbon.
  • heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthra Senyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted A substituted m-terphenyl group, a substituted or unsubstituted chrysenyl group, a substituted or unsubstituted triphenylenyl group, Substituted or unsubstitute
  • the hole characteristic refers to a characteristic capable of forming holes by donating electrons when an electric field is applied, and injecting holes formed at the anode into the light emitting layer having conductive properties along the HOMO level, and emitting layer. It refers to a property that facilitates the movement of the hole formed in the anode and movement in the light emitting layer.
  • the electron characteristic refers to a characteristic in which electrons can be received when an electric field is applied.
  • the electron characteristic has conductivity characteristics along the LUMO level, and the electrons formed in the cathode are injected into the light emitting layer, the electrons formed in the light emitting layer move to the cathode, and in the light emitting layer It means a property that facilitates movement.
  • Z is independently N, C or CR a ,
  • At least one of Z increase is N
  • R 1 to R 1 1 and R a are each independently hydrogen, hydrogen, substituted or unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 to C 12 heteroaryl Groups or a combination thereof,
  • R 5 and R 6 are independently present or linked together to form a ring
  • R 7 and R 8 are independently present or linked together to form a ring
  • R 9 and R 10 are independently present or linked together to form a ring, nl is an integer from 1 to 5,
  • n2 is an integer of 0 to 2
  • n3 and n4 are 0 or 1 each independently.
  • the organic compound represented by Chemical Formula 1 includes two or more substituted or unsubstituted aryl groups and at least one heteroaryl group having at least one nitrogen centered on two phenylene groups bonded to a me ta position.
  • the organic compound may include a ring containing at least one nitrogen, and thus may have a structure in which electrons are easily received when an electric field is applied, thereby lowering a driving voltage of the organic optoelectronic device to which the organic compound is applied.
  • the organic compound may include a plurality of substituted or unsubstituted aryl group moieties that are susceptible to holes and a nitrogen-containing ring moiety that is susceptible to electrons to form a bipolar structure to properly balance the flow of holes and electrons. Therefore, the efficiency of the organic optoelectronic device to which the organic compound is applied can be improved. have.
  • the meta position by including two phenylene groups bonded to the meta position, it is appropriate to localize a plurality of substituted or unsubstituted aryl group moieties that are susceptible to holes and nitrogen-containing ring moieties that are susceptible to electrons in the aforementioned bipolar structured compound.
  • By controlling the flow of the conjugated system can exhibit excellent bipolar characteristics.
  • one or two of the two phenylene groups may be an unsubstituted phenylene group. Accordingly, the lifespan of the organic optoelectronic device to which the organic compound is applied can be improved.
  • the organic compound since the organic compound has a substantially linear structure, the organic compound may be self-arranged during deposition to increase process stability and to increase thin film uniformity.
  • the organic compound may have a molecular weight of about 538 or more and less than 750.
  • a molecular weight in the above range it is possible to reduce the thermal decomposition of the compound by a high degree of silver during the deposition process and to improve the heat resistance. It may be about 538 to 749 within the range, may be about 550 to 730 within the range, may be about 600 to 700 within the range.
  • the organic compound may be represented by, for example, the following Chemical Formula 1-A.
  • Formula 1 -A may be an unsubstituted phenylene group of both phenylene groups bonded to the meta position.
  • the organic compound may be represented by any one of the following Chemical Formulas 2 to 4, for example. [Formula 2] [Formula 3
  • ⁇ ⁇ may be an integer of 1 to 3, and the sum of nl and n2 may satisfy ⁇ + !.
  • nl may be, for example, an integer of 1 to 4, and the sum of nl and n2 may satisfy 1 ⁇ 11 + 0 2 ⁇ 4.
  • the organic compound may be represented by, for example, the following Chemical Formula 5 or 6.
  • R 'to R 11 , ⁇ and n 4 are the same as described above, R 3a and 1 315 are the same as R 3 , and R a and R 4b are the same as R 4 .
  • the compound represented by Chemical Formula 5 may be represented by any one of the following Chemical Formulas 5a to 5g. [Formula 5a]
  • At least one of R ⁇ R ⁇ R ⁇ R ⁇ R ⁇ R ⁇ R 413 and R 11 in Chemical Formulas 5a to 5g may be a substituted or unsubstituted C6 to C12 aryl group.
  • at least one of R ⁇ R ⁇ R ⁇ R 48 , R 3b , R 4b, and R ′′ of Formulas 5a to 5 g may be a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
  • the compound represented by Chemical Formula 6 may be, for example represented by Chemical Formula 6a. 6a]
  • At least one of R 1 to R 6 and R 1 1 of Formula 6a is substituted or unsubstituted
  • R ′ to R 6 and R 1 1 in Formula 6a may be a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
  • R 7 to R 10 may be each independently hydrogen or a substituted or unsubstituted C6 to C12 aryl group, for example, R 7 to R 10 are each independently hydrogen, substituted or unsubstituted It may be a substituted phenyl group, a substituted or unsubstituted naphthyl group or a substituted or unsubstituted biphenyl group.
  • R 7 to R 10 of Chemical Formulas 1 to 6 when at least one of R 7 to R 10 of Chemical Formulas 1 to 6 is a substituted or unsubstituted C6 to C12 aryl group, the substituted or unsubstituted C6 to C12 aryl group may not be bonded at an ortho position. Can be.
  • R 7 to R 10 in Chemical Formulas 1 to 6 when at least one of R 7 to R 10 in Chemical Formulas 1 to 6 is a substituted or unsubstituted phenyl group, the phenyl group may not be bonded to an olso and para position.
  • the organic compound may be represented by, for example, the following Chemical Formula 7.
  • R 'to R 6 , R a and nl to n 4 may be as described above,
  • R 7 to R 10 may be each independently hydrogen or a substituted or unsubstituted C6 to C12 aryl group.
  • the organic compound may be, for example, a compound listed in Group 1, but is not limited thereto.
  • the aforementioned organic compound can be applied to organic optoelectronic devices.
  • the aforementioned organic compounds may be applied to the organic optoelectronic device alone or in combination with other organic compounds.
  • the above-mentioned organic compound is used together with other organic compounds, it can be applied in the form of a composition.
  • composition for organic optoelectronic devices including the organic compound described above will be described.
  • the composition may include at least one organic compound having the above-described organic compound and a carbazole moiety.
  • organic compound is referred to as a 'first organic compound' and at least one organic compound having a carbazole moiety is referred to as a 'second organic compound'.
  • the second organic compound may be, for example, a compound represented by the following Formula 8.
  • Y ' is a single bond.
  • Ar 1 is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C30 heteroaryl group in C2, or a combination thereof,
  • R 15 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof ,
  • At least one of 1 2 to R 15 and Ar 1 includes a substituted or unsubstituted triphenylene group or a substituted or unsubstituted carbazole group.
  • the second organic compound represented by Chemical Formula 8 may be, for example represented by at least one of Chemical Formulas 8-1 to 8-III:
  • X ', X 4 and X 5 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, substituted Or an unsubstituted C2 to C30 heteroarylene group or a combination thereof,
  • Ar 'and Ar 4 are each independently a substituted or unsubstituted C6 to C30 aryl group, substituted Or an unsubstituted C2 to C30 heteroaryl group or a combination thereof,
  • R 12 to R IS and R 20 to R 31 are each independently hydrogen, deuterium, a substituted or unsubstituted C 1 to C 20 alkyl group, a substituted or unsubstituted C 6 to C 50 aryl group, a substituted or unsubstituted C 2 to C 50 Heteroaryl group or a combination thereof.
  • the second organic compound represented by Chemical Formula 8 may be, for example, a compound listed in Group 2, but is not limited thereto.
  • the second organic compound may be, for example, a compound consisting of a combination of a moiety represented by Formula 9 and a moiety represented by Formula 10 below.
  • Y 2 and Y 3 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group or a combination thereof,
  • Ar 2 and Ar 3 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group or a combination thereof,
  • R 16 to R 19 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof ,
  • Adjacent two * of Formula 9 combines with two * of Formula 10 to form a fused ring, and * which does not form a fused ring in Formula 9 is each independently CR b ,
  • R b is hydrogen, hydrogen, substituted or unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 to C12 heteroaryl group, or a combination thereof.
  • the organic compound consisting of a combination of the moiety represented by Formula 9 and the moiety represented by Formula 10 may be a compound listed in Group 3 below, but is not limited thereto.
  • the second organic compound may include at least one of a compound represented by Formula 8 and a combination of a moiety represented by Formula 9 and a moiety represented by Formula 10 below.
  • the composition may include the first organic compound and the second organic compound in a weight ratio of about 1:10 to 10: 1.
  • the composition may be applied to an organic layer of an organic optoelectronic device.
  • the first organic compound and the second organic compound may serve as a host of a light emitting insect.
  • the first organic compound may be a compound having a bipolar characteristic having a relatively strong electronic property
  • the second organic compound is a compound having a bipolar characteristic having a relatively strong hole characteristic, and may be used together with the first organic compound. It is possible to further improve the luminous efficiency and lifetime characteristics by increasing the mobility and stability of the charge.
  • composition may further include one or more organic compounds in addition to the first organic compound and the second organic compound described above.
  • the composition may further comprise a dopant.
  • the dopant may be a red, green or blue dopant, for example a phosphorescent dopant.
  • the dopant is a substance mixed with the first host compound and the second host compound in a small amount to emit light, and is generally a metal complex that emits light by multiple excitation which excites above a triplet state.
  • Materials such as may be used.
  • the dopant may be, for example, an inorganic, organic, or inorganic compound, and may be included in one kind or two or more kinds.
  • Examples of the phosphorescent dopant include an organometallic compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof.
  • the phosphorescent dopant may be a compound represented by the following Chemical Formula Z, but is not limited thereto.
  • M is a metal
  • L and X are the same or different from each other and a ligand to form a complex with M.
  • M may be, for example, Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof, wherein L and X are, for example, bidentate It may be a ligand.
  • the composition may be applied to an organic layer of an organic optoelectronic device.
  • the first organic compound and the second organic compound may be applied to an electron transport auxiliary layer positioned between the light emitting layer and the electron transport layer.
  • the first compound and the second compound are combined in various ratios
  • the electron transport auxiliary layer converts the excitons generated from the holes and / or the light emitting layer from the anode to the light emitting layer into excitons of lower energy than the energy of the axtone of the light emitting layer so that the holes and / or excitons pass through the light emitting layer to the electron transport layer. You can effectively block the movement. Accordingly, the efficiency and lifespan of the organic optoelectronic device can be improved.
  • the first compound and the second compound may be included, for example, in a weight ratio of about 1:99 to 99: 1.
  • the composition may be formed by a dry film formation method or a solution process such as chemical vapor deposition.
  • the organic optoelectronic device is not particularly limited as long as it is a device capable of converting electrical energy and light energy, and examples thereof include organic photoelectric devices, organic light emitting devices, organic solar cells, and organic photosensitive drums.
  • the organic optoelectronic device may include an anode and a cathode facing each other, at least one layer of organic worms positioned between the anode and the cathode, and the organic worm may include the aforementioned organic compound or the above-described composition. .
  • an organic optoelectronic device 100 includes an anode 120 and a cathode 110 facing each other, and an organic layer 105 positioned between the anode 120 and the cathode 110. Include.
  • the anode 120 may be made of a high work function conductor, for example, to facilitate hole injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • the anode 120 may be, for example, a metal such as nickel, platinum, barn, crucible, copper, zinc, gold or an alloy thereof; Zinc oxide, indium oxide, indium tin oxide ( ⁇ ),
  • Metal oxides such as indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO and A1 or Sn0 2 and Sb; Conductive polymers such as poly (3-methylthiophene), poly (3,4- (ethylene-1,2-dioxy) thiophene) (polyehtylenedioxythiophene: PEDOT), polypyrrole and polyaniline, and the like. It is not.
  • the cathode 1 10 may be made of a low work function conductor, for example, to facilitate electron injection, and may be made of metal, metal oxide and / or conductive polymer, for example.
  • the negative electrode 1 10 is, for example, a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or an alloy thereof; Multilayer structure materials such as LiF / Al, Li0 2 / Al, LiF / Ca, LiF / AI, and BaF 2 / Ca, but are not limited thereto.
  • Organic layer 105 comprises an organic compound as described above or a composition as described above
  • the light emitting layer 130 may include, for example, the above-described organic compound alone, may include at least two kinds of the above-described organic compound, or may include the above-described composition.
  • the organic light emitting diode 200 further includes a hole auxiliary layer 140 in addition to the light emitting layer 130.
  • the hole auxiliary layer 140 is a hole injection between the anode 120 and the light emitting layer 130 And / or further increase hole mobility and block electrons.
  • the hole auxiliary layer 140 may be, for example, a hole transport layer, a hole injection layer, and / or an electron blocking layer, and may include at least one layer.
  • an organic light emitting device further comprising an electron transport layer, an electron transport auxiliary layer, an electron injection layer, etc. as the organic thin film layer 105 in FIG.
  • the organic light emitting diodes 100 and 200 may form an anode or a cathode on a substrate, and then form an organic layer by dry deposition such as evaporation, sputtering, plasma plating, or ion plating.
  • the above compounds can be formed simultaneously, or a compound having the same deposition temperature can be mixed and formed together. Then it can be prepared by forming a cathode or an anode thereon.
  • the organic light emitting diode described above may be applied to an organic light emitting diode display.
  • the representative synthesis method is as shown in the following representative Banungsik.
  • the compound 1-6 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-2-iodobenzene (22 g, 78 mmol) and tetrakis (triphenylphosphine) palladium (0.8 g, 0.71 mmol) was added and stirred.
  • 1 « ⁇ 53 0 ⁇ : ⁇ 13011 6 (25 177 010101) saturated in water was added thereto, and the mixture was heated and refluxed at 80 I: for 12 hours.
  • water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-7 (19 g, 87%).
  • the compound 1-8 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by l-bromo-3-iodobenzene (22 g, 78 mn l) and tetrakis (triphenylphosphine) palladium (0.8 g, 0.71 mmol) and stirred.
  • (5013551) 10 ⁇ & 011 6 (25 177 1 ⁇ 01) saturated in water was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound I-9 (20 g, 91%).
  • the compound 1-12 (50 g, 129 mmol) was dissolved in 1 L of Dioxane in a nitrogen environment, and then (3-chlotOphenyl) boronic acid (24 g, 155 mmol) was added thereto.
  • the compound 1-14 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-3-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98 mmol) was added and stirred. Potassuim carbonate (34 g, 245 mmol) ol saturated in water was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound II 5 (50 g, 95%).
  • DCM dichloromethane
  • the compound 1-17 (50 g, 129 mmol) was dissolved in 1 L of THF, followed by (3-chlorophenyl) boronic acid (24 g, 155 mmol) and tetrakis (triphenylphosphine) palladium (1.5 g, 1.3 mmol) was added and stirred. Potassium carbonate saturated in water (45 g, 322 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-18 (50 g, 92%).
  • DCM dichloromethane
  • the compound 1-19 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-3-iodobenzene (33 g, 117 mmol) and tetrakis (triphenylphosphine) pal ladium (1 g, 0.98 mmol) was added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-20 (50 g, 95%).
  • DCM dichloromethane
  • the compound 1-24 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by -bromo-3-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98). mmol) was added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-25 (50 g, 96%).
  • DCM dichloromethane
  • the compound 1-29 (50 g, 140 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-4-iodobenzene (47 g, 168 mmol) and tetrakis (triphenylphosphine) palladium (1.6 g, 1.4 mmol) was added and stirred. Potassium carbonate saturated in water (48 g, 350 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-30 (44 g, 89%).
  • DCM dichloromethane
  • Dissolve compound 1-35 (30 g, 95 tnmol) THF 1 1 ⁇ 1 in a nitrogen environment, and add phenylboronic acid (14 g, 1 14 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.95 mmol). Put and stirred. Potassium carbonate saturated in water (33 g, 237 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-36 (32 g, 75%).
  • DCM dichloromethane
  • the compound 1-38 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by -bromo-3-iodobenzene (24 g, 85 mnrol) and tetrakis (triphenylphosphine) palladium (0.8 mg, 0.7 tnmol) was added and stirred.
  • -bromo-3-iodobenzene 24 g, 85 mnrol
  • tetrakis (triphenylphosphine) palladium 0.8 mg, 0.7 tnmol
  • the compound 1-45 (22.43, 83.83 mmol) was dissolved in 500 mL of THF, followed by 3-biphenyl boronic acid (23.3 g, 1 17.36 mmol) and tetrakis (triphenylphosphine) palladium (2.9 g, 2.5 mmol). Put and stirred. Potassuim carbonate saturated in water (46 g,
  • Tetrakis (triphenylphosphine) palladium (0.45 g, 0.39mmol) was added thereto and stirred.
  • Potassium carbonate saturated in water (9.7 g, 99 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C for 20 hours.
  • water was added to the reaction solution and extracted with dichloromethane (DCM), followed by removing water with anhydrous MgS04, followed by concentration under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 19 (20 g, 83%).
  • the molecular weight of compound 19 is 613.2518.
  • Tetmkis (triphenylphosphine) palladium (0.45 g, 0.39 mmol) was added and stirred. Potassium carbonate saturated in water (13.5 g, 97 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), and water was removed using anhydrous MgS04. , Filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST 1 (16 g, 78%). The molecular weight of HOST 1 is 537.2205.
  • the compound 1-1 (20 g, 51 mmol) was dissolved in 0.2 L of tetrahydroftiran (THF), followed by 1-31 (26.5 g, 61.2 mmol) and tetrakis (tripheny lphosph ine) pal lad ium (0.6 g, 0.51 mmol) and stirred. Potassium carbonate saturated in water (l 7.5 g, 127 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST 4 (23 g, 75%). The molecular weight of HOST 4 is 613.2518.
  • DCM dichloromethane
  • An organic light emitting device was manufactured using Compound 1 obtained in Synthesis Example 54 as a host and Ir (PPy) 3 as a dopant.
  • ITO was used as the anode at a thickness of 1000 A
  • aluminum (A1) was used as the cathode at a thickness of 1000 A.
  • the manufacturing method of the organic light emitting device the anode is cut into ⁇ glass substrate having a sheet resistance value of 15 ⁇ / ⁇ to the size of 50mm ⁇ 50 mm ⁇ 0.7 mm in each of acetone, isopropyl alcohol and pure water For 15 minutes. After ultrasonic cleaning, UV ozone cleaning was used for 30 minutes.
  • N4, N4 , -di (naphthalen-l -yl) -N4, N4'-diphenylbiphenyl-4,4'-diamine (with a vacuum degree of 650x KT 7 Pa, deposition rate of 1 to 0.3 nm / s on the substrate) NPB) (80 nm) was deposited to form a 800 A hole transport layer.
  • NPB N4'-diphenylbiphenyl-4,4'-diamine
  • Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) alurninium (BAlq) was deposited on the light emitting layer using the same vacuum deposition conditions to form a hole blocking layer having a thickness of 50 A.
  • Alq 3 was deposited under deposition conditions to form an electron transport layer having a thickness of 200 A.
  • An organic photoelectric device was manufactured by sequentially depositing LiF and A1 as a cathode on the electron transport layer.
  • the structure of the organic photoelectric device is ITO / NPB (80 nm) / EML ( Compound 1 (93 parts by weight 0/0) + Ir (PPy ) 3 (7 parts by weight 0 /.), 30 nm) / Balq (5 nm) / It was produced in the structure of Alq3 (20 nm) / LiF (1 nm) / Al (100 nm).
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 2 of Synthesis Example 55 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 3 of Synthesis Example 56 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 56 of Synthesis Example 62 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 57 of Synthesis Example 63 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 74 of Synthesis Example 64 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that Compound 68 of Synthesis Example 65 was used instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting device was manufactured in the same manner as in Example I, except that Compound 105 of Synthesis Example 66 was used instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 135 of Synthesis Example 67 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using CBP of the following structure instead of compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST1 of Comparative Synthesis Example 69 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST2 of Comparative Synthesis 70 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST4 of Comparative Synthesis Example 72 instead of Compound 1 of Synthesis Example 54.
  • An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST5 of Comparative Synthesis Example 73 instead of Compound 1 of Synthesis Example 54.
  • NPB, BAlq, CBP and Ir (PPy) 3 used in the organic light emitting device is as follows.
  • the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the luminance was measured by using a luminance meter (Minolta Cs-1000 A) while increasing the voltage from 0V to 10V to obtain a result.
  • Example 1 Compound 1 4.6 Green 81.7 2,460 Example 2 Compound 2 4.8 Green 95.1 1,300 Example 3 Compound 3 4.7 Green 88.9 1,930 Example 4 Compound 10 4.3 Green 78.0 2,770 Example 5 Compound 13 4.2 Green 73.3 900 Example 6 Compound 19 4.5 Green 72.6 930 Example 7 Compound 28 4.5 Green 80.9 2,320 Example 8 Compound 37 4.3 Green 88.2 2,120 Example 9 Compound 56 4.4 Green 91.1 2,000 Example 10 Compound 57 4.2 Green 94.4 1,990 Example U Compound 74 4.3 Green 75.7 950 Example 12 Compound 68 4.5 Green 77.3 1,000
  • the temperature was measured when the host of the light emitting layer was deposited during fabrication of the organic light emitting diode of Example 1, which means a silver having a thickness of 1 A per second (A / sec) (2) Glass Transitional Silver (Tg)
  • the energy input difference was measured as a function of temperature while changing the temperature of the sample and reference using a DSC1 instrument from Metter Teledo.
  • Samples of the compound were taken lg, layered with nitrogen in a glass vessel and sealed. After the glass container was stored in an oven for 200 hours for 200 hours, the purity was measured in the same manner as the method for measuring the room temperature purity.
  • the organic light emitting device according to Examples 1 to 14 is the same or better than the organic light emitting device in Comparative Example 1 and Reference Examples 1 to 5 It can be seen that the life characteristics are significantly improved while having the driving voltage and efficiency. Specifically, the device results of Examples 1, 4, and 7 using compounds containing linear meta bonds continuously have the best lifetime. This is because the terminal phenyl group, which plays a role of hole characteristics, and the triazine structure, which plays an electronic characteristic role, are satisfactory.
  • the terminal phenyl group acts as a weak hole property and shows an interference effect with a moiety having electronic properties. For this reason, it is estimated that element life is reduced.
  • the compound used in the organic light emitting device according to Reference Example 1 has a low glass transition temperature (Tg) as shown in Table 2, not only the film formation is poor in the device deposition process, but also a subsequent process such as an encapsulation process. It can be expected that the service life is greatly reduced due to the influence of temperature.
  • the terminal phenyl group is substituted with the naphthyl group compared with HOST1.
  • the naphthyl group is a strong electron withdrawing group, so the weak hole properties can be concentrated well with the naphthyl group, which effectively leads to localization, which can significantly improve lifespan than HOST1.
  • the glass transition temperature (Tg) of the naphthyl group due to the improvement effect of the glass transition temperature (Tg) is higher than 40 volts compared to HOST1, it can be seen that it is stable in the encapsulation process, which is a subsequent process.
  • phenylcarbazolyl bromide (9.97 g, 30.95 mmol) was dissolved in 0.2 L of toluene, followed by phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) and tetrakis (triphenylp osphine) palladium (1.07 g, 0.93 mmmol) -i: Put and stirred. Potassium carbonate saturated in water (12.83 g, 92.86 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours.
  • Tris (dibenzylideneacetone) dipalladium (0) (0.439g, 0.48mmol) and Tr-tert-buty Ip ho sphine (0.388g : 1.92mmol) were added and refluxed at 120 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The residue thus obtained is flash column
  • Step 5 Synthesis of Compound B-1 16 18 g (84) of Compound B-116 was obtained in the same manner as in Synthesis Example 3 of the second host compound using 13 g (33.1 mmol) of Compound B and 16.2 g (36.4 mmol) of Compound D. %) was obtained.
  • Step 1 Synthesis of Compound E 33 g (77%) of Compound E was prepared in the same manner as in Synthesis Example 3 of Compound 2 using 43.2 g (108.4 mmol) of Compound C and 14.5 g (l 19 mmol) of Phenylboronic acid. Got it.
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol and the like
  • Compound A was vacuum deposited on the ⁇ ⁇ substrate using the prepared ⁇ transparent electrode as an anode to form a hole injection layer having a thickness of 700 A, and then Compound B was deposited to a thickness of 50 A on the injection layer, and then Compound C was 1020 A.
  • the organic light emitting device has a structure having five organic thin film layers, specifically as follows.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound 1 and Compound B-10 as 1: 1.
  • An organic light emitting device was manufactured in the same manner as in Example 15, except that Compound 1 and Compound B-10 were used as 1: 4.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-31 obtained in Synthesis Example 3 of the second host compound instead of the compound B-10.
  • Example 19
  • An organic light emitting diode was manufactured according to the same method as Example 18 except for using Compound 1 and Compound B-31 as 1: 1.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-1 obtained in Synthesis Example 1 of the second host compound instead of the compound B-10.
  • Example 21
  • An organic light emitting diode was manufactured according to the same method as Example 20 except for using Compound 1 and Compound B-1 as 1: 1.
  • Example 22 An organic light emitting diode was manufactured according to the same method as Example 20 except for using Compound 1 and Compound B-1 in 1: 4.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-34 obtained in Synthesis Example 4 of the second host compound instead of the compound B-10.
  • Example 24
  • An organic light emitting diode was manufactured according to the same method as Example 23 except for using Compound 1 and Compound B-34 at 1: 1.
  • Example 26 An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-43 obtained in Synthesis Example 5 of the compound 1 and the second host compound in a 1: 1 manner.
  • Example 26 An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-43 obtained in Synthesis Example 5 of the compound 1 and the second host compound in a 1: 1 manner.
  • the compound was obtained in the same manner as in Example 15, except that Compound 135, which was obtained in Synthesis Example 63 instead of Compound 1, and Compound B-114 obtained in Synthesis Example 6 of the second host compound instead of Compound B-10 were used as 7: 3. A light emitting device was manufactured.
  • An organic light emitting diode was manufactured according to the same method as Example 26 except for using Compound 135 and Compound B-114 at 1: 1.
  • An organic light emitting diode was manufactured according to the same method as Example 26 except for using Compound 135 and Compound B-114 at 3: 7.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound 1 as a single host instead of two hosts of Compound 1 and Compound B-10. Comparative Example 2
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using a CBP-only host instead of two hosts of Compound 1 and Compound B-10.
  • An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound B-10 as a host instead of two hosts of Compound 1 and Compound B-10. Comparative Example 4
  • An organic light emitting diode was manufactured according to the same method as Example 20 except for using the compound B-1 single host instead of the two hosts of the compound 1 and the compound B-1.
  • An organic light emitting diode was manufactured according to the same method as Example 23 except for using Compound B-34 alone as a host instead of two hosts of Compound 1 and Compound B-34. Comparative Example 7
  • An organic light emitting diode was manufactured according to the same method as Example 25 except for using Compound B-43 alone as a host instead of two hosts of Compound 1 and Compound B-43. Rating 1
  • the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the luminance was measured by using a luminance meter (Minolta Cs-I OOOA) while increasing the voltage from 0V to 10V to obtain a result.
  • a luminance meter Minolta Cs-I OOOA
  • the current efficiency (cd / A) of the same current density (10 mA / cm 2) was calculated using the luminance, current density and voltage measured from (0 and (2) above.
  • ITO Indium tin oxide
  • a solvent such as isopropyl alcohol, acetone, methanol, and the like
  • Compound P was vacuum-deposited on the ⁇ substrate using the prepared ⁇ transparent electrode as an anode to form a hole injection layer having a thickness of 700 A, and then deposited Compound Q on the injection layer to a thickness of 50 A, and then Compound R 1020A.
  • a hole transport layer was formed by evaporation at a thickness of ⁇ .
  • a blue fluorescent light emitting host and a dopant were doped with BH113 and BD370 (purchased by SFC Co., Ltd.) at a concentration of 5wt 0 /. It was. Thereafter, Compound 28 and Compound B-116 were vacuum-deposited at 50:50 (wt / wt) on the emission layer to form an electron transport auxiliary layer having a thickness of 50A.
  • Compound S and Liq were vacuum-deposited at 50:50 (wt / wt) on the emission layer to form an electron transport auxiliary layer having a thickness of 50A.
  • a light emitting device was manufactured.
  • the organic light emitting device has a structure having five organic thin film layers, specifically, ⁇ /
  • An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 28 and Compound B-118 at 30:70.
  • Example 31
  • An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 1 12 and Compound B-1 18 at 50:50.
  • An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 135 and Compound B-U4 at 50:50.
  • Comparative Example 8 An organic light emitting diode was manufactured according to the same method as Example 29 except for not using an electron transport aid.
  • the organic light emitting diodes according to Examples 29 to 32 have significantly improved luminous efficiency and lifespan characteristics compared to the organic light emitting diode according to Comparative Example 8.
  • the present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person skilled in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Abstract

The present invention relates to an organic compound represented by chemical formula 1 and having a molecular weight of 538 or more but less than 750, to a composition for an organic optoelectronic device containing the organic compound, to an organic optoelectronic device using the organic compound or the composition, and to a display device comprising the organic optoelectronic device.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치  Organic Compounds, Compositions, Organic Optoelectronic Devices and Display Devices
【기술분야】  Technical Field
유기 화합물, 조성물, 유기 광전자 소자 및 표시 장치에 관한 것이다.  An organic compound, a composition, an organic optoelectronic device, and a display device.
【배경기술】  Background Art
유기 광전자 소자 (organic optoelectric diode)는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이다.  An organic optoelectric diode is a device capable of converting electrical energy and light energy.
유기 광전자 소자는 동작 원리에 따라 크게 두 가지로 나눌 수 있다. 하나는 광 에너지에 의해 형성된 엑시톤 (exciton)이 전자와 정공으로 분리되고 상기 전자와 정공이 각각 다른 전극으로 전달되면서 전기 에너지를 발생하는 광전 소자이고, 다른 하나는 전극에 전압 또는 전류를 공급하여 전기 에너지로부터 광 에너지를 발생하는 발광 소자이다.  Organic optoelectronic devices can be divided into two types according to the principle of operation. One is an optoelectronic device in which excitons formed by light energy are separated into electrons and holes, and the electrons and holes are transferred to other electrodes, respectively, to generate electric energy. It is a light emitting device that generates light energy from energy.
유기 광전자 소자의 예로는 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 (organic photo conductor drum) 등을 들 수 있다.  Examples of the organic optoelectronic device may be an organic photoelectric device, an organic light emitting device, an organic solar cell and an organic photo conductor drum.
이 중, 유기 발광 소자 (organic light emitting diode, OLED)는 근래 평판 표시 장치 (flat panel display device)의 수요 증가에 따라 크게 주목받고 있다. 상기 유기 발광 소자는 유기 발광 재료에 전류를 가하여 전기 에너지를 빛으로 전환시키는 소자로서, 통상 양극 (anode)과 음극 (cathode) 사이에 유기 층이 삽입된 구조로 이루어져 있다. 여기서 유기 층은 발광층과 선택적으로 보조층을 포함할 수 있으며 상기 보조충은 예컨대 유기발광소자의 효율과 안정성을 높이기 위한 정공 주입 층, 정공 수송 층, 전자 차단 층, 전자 수송 층, 전자 수송 보조층, 전자 주입 층 및 정공 차단 층에서 선택된 적어도 1층을 포함할 수 있다.  Among these, organic light emitting diodes (OLEDs) have attracted much attention recently as demand for flat panel displays increases. The organic light emitting device converts electrical energy into light by applying an electric current to the organic light emitting material. The organic light emitting device has a structure in which an organic layer is inserted between an anode and a cathode. The organic layer may include a light emitting layer and an auxiliary layer, and the auxiliary layer may include, for example, a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, and an electron transport auxiliary layer to increase efficiency and stability of the organic light emitting device. And at least one layer selected from an electron injection layer and a hole blocking layer.
유기 발광 소자의 성능은 상기 유기 층의 특성에 의해 영향을 많이 받으며, 그 증에서도 상기 유기 층에 포함된 유기 재료에 의해 영향을 많이 받는다.  The performance of the organic light emitting device is greatly influenced by the characteristics of the organic layer, and the increase is also affected by the organic materials included in the organic layer.
특히 상기 유기 발광 소자가 대형 평판 표시 장치에 적용되기 위해서는 정공 및 전자의 이동성을 높이는 동시에 전기화학적 안정성을 높일 수 있는 유기 재료의 개발이 필요하다.  In particular, in order for the organic light emitting diode to be applied to a large flat panel display, it is necessary to develop an organic material capable of increasing the mobility of holes and electrons and increasing electrochemical stability.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】 일 구현예는 고효율 및 장수명 유기 광전자 소자를 구현할 수 있는 유기 화합물을 제공한다. [Technical problem] One embodiment provides an organic compound capable of implementing high efficiency and long life organic optoelectronic devices.
다른 구현예는 상기 유기 화합물을 포함하는 유기 광전자 소자용 조성물을 제공한다.  Another embodiment provides a composition for an organic optoelectronic device including the organic compound.
또 다른 구현예는 상기 유기 화합물을 포함하는 유기 광전자 소자를 제공한다.  Yet another embodiment provides an organic optoelectronic device including the organic compound.
또 다른 구현예는 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다. 【기술적 해결방법】  Another embodiment provides a display device including the organic optoelectronic device. Technical Solution
일 구현예에 따르면, 하기 화학식 1로 표현되고 분자량이 538 이상 750 미만인 유기 화합물을 제공한다:  According to one embodiment, an organic compound represented by the following Chemical Formula 1 and having a molecular weight of 538 or more and less than 750 is provided:
[화학식 1]  [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z are each independently N, C or CR a ,
Z 중 적어도 하나는 N 이고,  At least one of Z is N,
R' 내지 R1 1 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C 12 해테로아릴기 또는 이들의 조합이고, R 'to R 1 1 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C 12 heterotero An aryl group or a combination thereof,
R1 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 1 and R 2 are independently present or linked together to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 are independently present or linked together to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 are independently present or connected to each other to form a ring,
R9 및 R'0은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, nl은 1 내지 5의 정수이고, R 9 and R ′ 0 are independently present or linked together to form a ring, nl is an integer from 1 to 5,
n2는 0 내지 2의 정수이고,  n2 is an integer of 0 to 2,
n3 및 n4는 각각 독립적으로 0 또는 1이다. 다른 구현예에 따르면, 상술한 유기 화합물인 제 1 유기 화합물 및 카바졸 모이어티를 가지는 적어도 하나의 제 2 유기 화합물을 포함하는 유기광전자소자용 조성물올 제공한다. n3 and n4 are 0 or 1 each independently. According to another embodiment, a composition for an organic optoelectronic device including at least one second organic compound having a first organic compound and a carbazole moiety, which is the aforementioned organic compound, is provided.
또 다른 구현예에 따르면, 서로 마주하는 양극과 음극, 및 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기층을 포함하고, 상기 유기층은 상기 유기 화합물 또는 상기 유기광전자소자용 조성물을 포함하는 유기 광전자 소자를 제공한다.  According to another embodiment, an anode and a cathode facing each other, and at least one organic layer positioned between the anode and the cathode, the organic layer is an organic containing the organic compound or the composition for an organic optoelectronic device Provided is an optoelectronic device.
또 다른 구현예에 따르면 상기 유기 광전자 소자를 포함하는 표시 장치를 제공한다.  According to another embodiment, a display device including the organic optoelectronic device is provided.
【유리한 효과】  Advantageous Effects
고효율 장수명 유기 광전자 소자를 구현할 수 있다.  High efficiency long life organic optoelectronic devices can be implemented.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1 및 도 2는 각각 일 구현예에 따른 유기 발광 소자를 도시한 단면도이다. 【발명의 실시를 위한 최선의 형태】  1 and 2 are cross-sectional views illustrating organic light emitting diodes according to example embodiments. [Best form for implementation of the invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 "치환 "이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C1 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.  As used herein, unless otherwise defined, "substituted" means that at least one hydrogen in a substituent or compound is deuterium, a halogen group, a hydroxy group, an amino group, a substituted or unsubstituted C1 to C30 amine group, a nitro group, a substituted or unsubstituted C1 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, C3 to C30 cycloalkyl group, C3 to C30 heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heteroaryl group, C1 to C20 alkoxy group It means substituted with a C1 to C10 trifluoroalkyl group or a cyano group, such as a, fluoro group, trifluoromethyl group.
또한 상기 치환된 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C 1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C3 내지 C30 .  In addition, the substituted halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C 1 to C10 alkylsilyl group, C3 To C30 cycloalkyl group, C3 to C30.
헤테로시클로알킬기, C6 내지 C30 아릴기, C6 내지 C30 헤테로아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리풀루오로메틸기 등의 C1 내지 CI 0 트리플루오로알킬기 또는 시아노기 증 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다. 예를 들어, 상기 치환된 C6 내지 C30 아릴기는 인접한 또다른 치환된 C6 내지 C30 아릴기와 융합되어 치환 또는 비치환된 플루오렌 고리를 형성할 수 있다. Two adjacent substituents of C1 to CI 0 trifluoroalkyl or cyano groups such as heterocycloalkyl group, C6 to C30 aryl group, C6 to C30 heteroaryl group, C1 to C20 alkoxy group, fluoro group, and trifuluromethyl group May be fused to form a ring. For example, the substituted C6 to C30 aryl group can be fused to another adjacent substituted C6 to C30 aryl group to form a substituted or unsubstituted fluorene ring.
본 명세서에서 "해테로"란 별도의 정의가 없는 한, 하나의 작용기 내에 Ν, Ο, S, Ρ 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다.  As used herein, "hetero" means one to three heteroatoms selected from the group consisting of Ν, Ο, S, Ρ and Si in one functional group, and the remainder is carbon unless otherwise defined. do.
본 명세서에서 "알킬 (alkyl)기"이란 별도의 정의가 없는 한, 지방족  As used herein, unless otherwise defined, an "alkyl group" is aliphatic
탄화수소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼증결합을 포함하고 있지 않은 "포화 알킬 (saturated alkyl)기 "일 수 있다. It means a hydrocarbon group. The alkyl group may be a "saturated alkyl group" that does not contain any double bonds or triple bonds.
상기 알킬기는 C 1 내지 C30인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C20 알킬기 또는 C1 내지 C10 알킬기일 수도 있다. 예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자가 포함되는 것을 의미하며, 메틸, 에틸, 프로필, 이소-프로필 , η-부틸, 이소-부틸, sec-부틸 및' t-부틸로 이루어진 군에서 선택됨을 나타낸다. The alkyl group may be an alkyl group of C 1 to C30. More specifically, the alkyl group may be a C1 to C20 alkyl group or a C1 to C10 alkyl group. For example, a C1 to C4 alkyl group means that the alkyl chain contains 1 to 4 carbon atoms, methyl, ethyl, propyl, iso-propyl, η-butyl, iso-butyl, sec-butyl and ' t-butyl It is selected from the group consisting of.
상기 알킬기는 구체적인 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 핵실기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로핵실기 등을 의미한다.  Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a practical skill.
본 명세서에서 "아릴 (aryl)기''는 환형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 P-오비탈이 공액 (conjugation)을 형성하고 있는 치환기를 의미하고, 모노사클릭, 폴리시클릭 또는 융합 고리 폴리시클릭 (즉, 탄소원자들와 인접한 쌍들을 나눠 가지는 고리) 작용기를 포함한다.  As used herein, an "aryl group" refers to a substituent in which all elements of a cyclic substituent have a p-orbital, and these P-orbitals form a conjugate, and are monocyclic and polycyclic. Or fused ring polycyclic (ie, rings that divide adjacent carbon atoms with adjacent pairs) functional groups.
본 명세서에서 "헤테로아릴 (heteroaryl)기"는 아릴기 내에 N, 0, S, P 및 Si로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. 상기 해테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.  As used herein, "heteroaryl group" means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, P, and Si in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
보다 구체적으로, 치환 또는 비치환된 C6 내지 C30 아릴기 및 /또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐기, 치환또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐기 , 치환 또는 비치환된 P-터페닐기 , 치환 또는 비치환된 m- 터페닐기, 치환또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피를릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미디닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 More specifically, a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthra Senyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenyl group, substituted or unsubstituted P-terphenyl group, substituted or unsubstituted A substituted m-terphenyl group, a substituted or unsubstituted chrysenyl group, a substituted or unsubstituted triphenylenyl group, Substituted or unsubstituted perenyl group, substituted or unsubstituted indenyl group, substituted or unsubstituted furanyl group, substituted or unsubstituted thiophenyl group, substituted or unsubstituted pyrylyl group, substituted or unsubstituted pyrazolyl group , Substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted thiazolyl group, substituted or unsubstituted oxadiazolyl group, substituted or unsubstituted Substituted thiadiazolyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted benzofuranyl group , Substituted or unsubstituted benzothiophenyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted indolyl group, substituted or unsubstituted quinolinyl group, substituted or unsubstituted isoquinoli Group, a substituted or unsubstituted quinazolinyl group, a substituted or unsubstituted ring
퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 Quinoxalinyl group, substituted or unsubstituted naphthyridinyl group, substituted or unsubstituted
벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 Benzoxazineyl group, substituted or unsubstituted benzthiazinyl group, substituted or unsubstituted
아크리디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치환 또는 비치환된 페녹사진일기, 치환 또는 비치환된 플루오레닐기, 치환 또는 비치환된 디벤조퓨란일기, 치환 또는 비치환된 디벤조티오페닐기, 치환 또는 비치환된 카바졸기, 이들의 조합 또는 이들의 조합이 융합된 형태일 수 있으나, 이에 제한되지는 않는다. Acridinyl group, substituted or unsubstituted phenazineyl group, substituted or unsubstituted phenthiazineyl group, substituted or unsubstituted phenoxazineyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted dibenzofuranyl group , Substituted or unsubstituted dibenzothiophenyl group, substituted or unsubstituted carbazole group, a combination thereof or a combination thereof may be in a fused form, but is not limited thereto.
본 명세서에서, 정공 특성이란, 전기장 (electric field)을 가했을 때 전자를 공여하여 정공을 형성할 수 있는 특성을 말하는 것으로 , HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입, 발광층에서 형성된 정공의 양극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.  In the present specification, the hole characteristic refers to a characteristic capable of forming holes by donating electrons when an electric field is applied, and injecting holes formed at the anode into the light emitting layer having conductive properties along the HOMO level, and emitting layer. It refers to a property that facilitates the movement of the hole formed in the anode and movement in the light emitting layer.
또한 전자 특성이란, 전기장을 가했을 때 전자를 받을 수 있는 특성을 말하는 것으로, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입, 발광층에서 형성된 전자의 음극으로의 이동 및 발광층에서의 이동을 용이하게 하는 특성을 의미한다.  In addition, the electron characteristic refers to a characteristic in which electrons can be received when an electric field is applied. The electron characteristic has conductivity characteristics along the LUMO level, and the electrons formed in the cathode are injected into the light emitting layer, the electrons formed in the light emitting layer move to the cathode, and in the light emitting layer It means a property that facilitates movement.
이하 일 구현예에 따른 유기 화합물을 설명한다.  Hereinafter, an organic compound according to one embodiment is described.
일 구현예에 따른 유기 화합물은 하기 화학식 1로 표현된다. [화학식 1] An organic compound according to one embodiment is represented by Formula 1 below. [Formula 1]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 1에서,  In Chemical Formula 1,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is independently N, C or CR a ,
Z 증 적어도 하나는 N 이고,  At least one of Z increase is N,
R1 내지 R1 1 및 Ra는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C 12 헤테로아릴기 또는 이들의 조합이고,R 1 to R 1 1 and R a are each independently hydrogen, hydrogen, substituted or unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 to C 12 heteroaryl Groups or a combination thereof,
1 및 R 는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고,  1 and R are independently present or linked together to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고,R 5 and R 6 are independently present or linked together to form a ring,
7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, 7 and R 8 are independently present or linked together to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, nl은 1 내지 5의 정수이고, R 9 and R 10 are independently present or linked together to form a ring, nl is an integer from 1 to 5,
n2는 0 내지 2의 정수이고,  n2 is an integer of 0 to 2,
n3 및 n4는 각각 독립적으로 0 또는 1이다.  n3 and n4 are 0 or 1 each independently.
상기 화학식 1로 표현되는 유기 화합물은 메타 (meta) 위치로 결합된 두 개의 페닐렌기를 중심으로 2개 이상의 치환 또는 비치환된 아릴기들과 적어도 하나의 질소를 가지는 헤테로아릴기를 각각 포함한다. The organic compound represented by Chemical Formula 1 includes two or more substituted or unsubstituted aryl groups and at least one heteroaryl group having at least one nitrogen centered on two phenylene groups bonded to a me ta position.
상기 유기 화합물은 적어도 하나의 질소를 함유하는 고리를 포함함으로써 전기장 인가시 전자를 받기 쉬운 구조가 될 수 있고, 이에 따라 상기 유기 화합물을 적용한 유거 광전자 소자의 구동 전압을 낮출 수 있다.  The organic compound may include a ring containing at least one nitrogen, and thus may have a structure in which electrons are easily received when an electric field is applied, thereby lowering a driving voltage of the organic optoelectronic device to which the organic compound is applied.
또한 상기 유기 화합물은 정공을 받기 쉬운 복수의 치환 또는 비치환된 아릴기 부분과 전자를 받기 쉬운 질소 함유 고리 부분을 함께 포함함으로써 바이폴라 (bipolar) 구조를 형성하여 정공 및 전자의 흐름을 적절히 균형 맞출 수 있고, 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 효율을 개선할 수 있다. In addition, the organic compound may include a plurality of substituted or unsubstituted aryl group moieties that are susceptible to holes and a nitrogen-containing ring moiety that is susceptible to electrons to form a bipolar structure to properly balance the flow of holes and electrons. Therefore, the efficiency of the organic optoelectronic device to which the organic compound is applied can be improved. have.
또한 메타 위치로 결합된 두 개의 페닐렌기를 포함함으로써 전술한 바이폴라 구조의 화합물 내에서 정공을 받기 쉬운 복수의 치환 또는 비치환된 아릴기 부분과 전자를 받기 쉬운 질소 함유 고리 부분을 적절히 구역화 (localization)하고 공액계의 흐름을 제어함으로써 우수한 바이폴라 (bipolar) 특성을 나타낼 수 있다. 이때 상기 두 개의 페닐렌기 중 하나 또는 두개는 비치환된 페닐렌기일 수 있다. 이에 따라 상기 유기 화합물을 적용한 유기 광전자 소자의 수명을 개선할 수 있다.  In addition, by including two phenylene groups bonded to the meta position, it is appropriate to localize a plurality of substituted or unsubstituted aryl group moieties that are susceptible to holes and nitrogen-containing ring moieties that are susceptible to electrons in the aforementioned bipolar structured compound. By controlling the flow of the conjugated system can exhibit excellent bipolar characteristics. In this case, one or two of the two phenylene groups may be an unsubstituted phenylene group. Accordingly, the lifespan of the organic optoelectronic device to which the organic compound is applied can be improved.
또한 상기 유기 화합물은 실질적인 선형 구조를 가짐으로써 증착시 자기배열 (self arrangement)되어 공정 안정성을 높일 수 있고 박막 균일성을 높일 수 있다.  In addition, since the organic compound has a substantially linear structure, the organic compound may be self-arranged during deposition to increase process stability and to increase thin film uniformity.
상기 유기 화합물은 분자량이 약 538 이상 750 미만일 수 있다. 상기 범위의 분자량을 가짐으로써 증착 공정시 높은 은도에 의해 화합물이 열분해되는 것을 감소시키고 내열성을 개선할 수 있다. 상기 범위 내에서 약 538 내지 749 일 수 있고, 상기 범위 내에서 약 550 내지 730 일 수 있고, 상기 범위 내에서 약 600 내지 700 일 수 있다.  The organic compound may have a molecular weight of about 538 or more and less than 750. By having a molecular weight in the above range it is possible to reduce the thermal decomposition of the compound by a high degree of silver during the deposition process and to improve the heat resistance. It may be about 538 to 749 within the range, may be about 550 to 730 within the range, may be about 600 to 700 within the range.
상기 유기 화합물은 예컨대 하기 화학식 1-A로 표현될 수 있다. The organic compound may be represented by, for example, the following Chemical Formula 1-A.
화학식 1-A]  Formula 1-A]
Figure imgf000009_0001
Figure imgf000009_0001
상기 화학식 1 -A에서 , Ζ, Ι 1 내지 R'0, Ra, nl 내지 n4는 전술한 바와 같다. 상기 화학식 1 -A는 메타 위치로 결합된 두 개의 페닐렌기가 모두 비치환된 페닐렌기일 수 있다. In Formula 1-A, Ζ, Ι 1 to R ' 0 , R a , nl to n4 are as described above. Formula 1 -A may be an unsubstituted phenylene group of both phenylene groups bonded to the meta position.
상기 유기 화합물은 예컨대 하기 화학식 2 내지 4 중 어느 하나로 표현될 수 있다. [화학식 2] [화학식 3 The organic compound may be represented by any one of the following Chemical Formulas 2 to 4, for example. [Formula 2] [Formula 3
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식 2 내지 4에서 ,Ζ 및 R1 내지 R"은 전술한 바와 같다. In Chemical Formulas 2 to 4, X and R 1 to R ″ are as described above.
상기 화학식 2에서 ,ηΐ은 예컨대 1 내지 3의 정수일 수 있고, nl과 n2의 합은 ^^+! 을 만족할 수 있다. In Formula 2, η ΐ may be an integer of 1 to 3, and the sum of nl and n2 may satisfy ^^ + !.
상기 화학식 3 및 화학식 4에서, nl은 예컨대 1 내지 4의 정수일 수 있고, nl과 n2의 합은 1≤11+02≤4를 만족할 수 있다. In Formulas 3 and 4, nl may be, for example, an integer of 1 to 4, and the sum of nl and n2 may satisfy 1 ≦ 11 + 0 2 ≦ 4.
상기 유기 화합물은 예컨대 하기 화학식 5 또는 6으로 표현될 수 있다. The organic compound may be represented by, for example, the following Chemical Formula 5 or 6.
[화학식 5] [화학식 6] [Formula 5] [Formula 6]
Figure imgf000010_0002
Figure imgf000010_0002
상기 화학식 5 또는 6에서 ,Z,R' 내지 R11,^ 및 n4는 전술한 바와 같고, R3a 및 1315는 R3와 같고, Ra및 R4b는 R4와 같다. In Formula 5 or 6, Z, R 'to R 11 , ^ and n 4 are the same as described above, R 3a and 1 315 are the same as R 3 , and R a and R 4b are the same as R 4 .
상기 화학식 5로 표현되는 화합물은 예컨대 하기 화학식 5a 내지 5g중 어느 하나로 표현될 수 있다. [화학식 5a]
Figure imgf000011_0001
The compound represented by Chemical Formula 5 may be represented by any one of the following Chemical Formulas 5a to 5g. [Formula 5a]
Figure imgf000011_0001
[화학식 5b]
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0004
화학식 5e]
[Formula 5b]
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0004
Formula 5e]
Figure imgf000012_0001
Figure imgf000012_0001
상기 화학식 5a 내지 5§에서, 2,11,12,133,143,13|3,1413,117 내지 R11,^ 및 n4는 전술한 바와 같다. In Formulas 5a to , 2,1 1 , 1 2 , 1 33 , 1 43 , 1 3 | 3 , 1 413 , 11 7 to R 11 , ^ and n4 are the same as described above.
상기 화학식 5a 내지 5g의 R^R^R^R^R^R413및 R11증 적어도 하나는 치환 또는 비치환된 C6 내지 C12 아릴기일 수 있다. 일 예로 상기 화학식 5a 내지 5g의 R^R^R^R48, R3b,R4b및 R"증 적어도 하나는 치환 또는 비치환된 페닐기 또는 치환 또는 비치환된 나프틸기일 수 있다. At least one of R ^ R ^ R ^ R ^ R ^ R 413 and R 11 in Chemical Formulas 5a to 5g may be a substituted or unsubstituted C6 to C12 aryl group. For example, at least one of R ^ R ^ R ^ R 48 , R 3b , R 4b, and R ″ of Formulas 5a to 5 g may be a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
상기 화학식 6으로 표현되는 화합물은 예컨대 하기 화학식 6a로 표현될 수 6a] The compound represented by Chemical Formula 6 may be, for example represented by Chemical Formula 6a. 6a]
Figure imgf000013_0001
Figure imgf000013_0001
상기 화학식 6a에서 , Z, R' 내지 R" , n3 및 n4는 전술한 바와 같다.  In Chemical Formula 6a, Z, R ′ to R ″, n3, and n4 are as described above.
상기 화학식 6a의 R1 내지 R6및 R1 1 중 적어도 하나는 치환 또는 비치환된At least one of R 1 to R 6 and R 1 1 of Formula 6a is substituted or unsubstituted
C6 내지 C12 아릴기일 수 있다. 일 예로 상기 화학식 6a의 R' 내지 R6및 R1 1 증 적어도 하나는 치환 또는 비치환된 페닐기 또는 치환 또는 비치환된 나프틸기일 수 있다. It may be a C6 to C12 aryl group. For example, at least one of R ′ to R 6 and R 1 1 in Formula 6a may be a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
일 예로, 상기 화학식 1 내지 6에서, R7 내지 R10은 각각 독립적으로 수소 또는 치환 또는 비치환된 C6 내지 C12 아릴기일 수 있으며, 일 예로 R7 내지 R10은 각각 독립적으로 수소, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기 또는 치환 또는 비치환된 바이페닐기일 수 있다. For example, in Formulas 1 to 6, R 7 to R 10 may be each independently hydrogen or a substituted or unsubstituted C6 to C12 aryl group, for example, R 7 to R 10 are each independently hydrogen, substituted or unsubstituted It may be a substituted phenyl group, a substituted or unsubstituted naphthyl group or a substituted or unsubstituted biphenyl group.
일 예로, 상기 화학식 1 내지 6의 R7 내지 R10중 적어도 하나가 치환 또는 비치환된 C6 내지 C12 아릴기인 경우, 상기 치환 또는 비치환된 C6 내지 C12 아릴기는 올쓰 (ortho) 위치에 결합되지 않을 수 있다. For example, when at least one of R 7 to R 10 of Chemical Formulas 1 to 6 is a substituted or unsubstituted C6 to C12 aryl group, the substituted or unsubstituted C6 to C12 aryl group may not be bonded at an ortho position. Can be.
일 예로, 상기 화학식 1 내지 6의 R7 내지 R10 증 적어도 하나가 치환 또는 비치환된 페닐기인 경우, 상기 페닐기는 올쏘 및 파라 (para) 위치에 결합되지 않을 수 있다. For example, when at least one of R 7 to R 10 in Chemical Formulas 1 to 6 is a substituted or unsubstituted phenyl group, the phenyl group may not be bonded to an olso and para position.
상기 유기 화합물은 예컨대 하기 화학식 7로 표현될 수 있다.  The organic compound may be represented by, for example, the following Chemical Formula 7.
[  [
Figure imgf000013_0002
상기 화학식 7에서,
Figure imgf000013_0002
In Chemical Formula 7,
Z, R' 내지 R6, Ra 및 nl 내지 n4는 전술한 바와 같을 수 있고, Z, R 'to R 6 , R a and nl to n 4 may be as described above,
R7 내지 R10은 각각 독립적으로 수소 또는 치환 또는 비치환된 C6 내지 C12 아릴기일 수 있다. R 7 to R 10 may be each independently hydrogen or a substituted or unsubstituted C6 to C12 aryl group.
상기 유기 화합물은 예컨대 하기 그룹 1에 나열된 화합물일 수 있으나, 이에 한정되는 것은 아니다.  The organic compound may be, for example, a compound listed in Group 1, but is not limited thereto.
[그룹 1]  [Group 1]
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000015_0001
VLZlO/PlOZSyi/lJd
Figure imgf000015_0001
VLZlO / PlOZSyi / lJd
Figure imgf000016_0001
Figure imgf000016_0001
8f8llt/Sl0l OfA ^.ΖΐΟ/ΜΟΙΗ¾13Λ 8f8llt / Sl0l OfA ^ .ΖΐΟ / ΜΟΙΗ¾13Λ
Figure imgf000017_0001
Figure imgf000017_0001
9L 9L
8l78lll/SlOZ OAV 8l78lll / SlOZ OAV
Figure imgf000018_0001
Figure imgf000018_0001
9L 9L
8l78lll/SlOZ OAV
Figure imgf000019_0001
8l78lll / SlOZ OAV
Figure imgf000019_0001
LiLi
t7.ZT0/M0ZaM/X3d 8l78lll/SlOZ OAV t7.ZT0 / M0ZaM / X3d 8l78lll / SlOZ OAV
Figure imgf000020_0001
Figure imgf000020_0001
상술한 유기 화합물은 유기 광전자 소자에 적용될 수 있다.  The aforementioned organic compound can be applied to organic optoelectronic devices.
상술한 유기 화합물은 단독으로 또는 다른 유기 화합물과 함께 유기 광전자 소자에 적용될 수 있다. 상술한 유기 화합물이 다른 유기 화합물과 함께 사용되는 경우, 조성물의 형태로 적용될 수 있다.  The aforementioned organic compounds may be applied to the organic optoelectronic device alone or in combination with other organic compounds. When the above-mentioned organic compound is used together with other organic compounds, it can be applied in the form of a composition.
이하, 상술한 유기 화합물을 포함하는 유기 광전자 소자용 조성물의 일 예를 설명한다.  Hereinafter, an example of the composition for organic optoelectronic devices including the organic compound described above will be described.
상기 유기 광전자 소자용 조성물의 일 예로, 상술한 유기 화합물과 카바졸 모이어티를 가지는 적어도 하나의 유기 화합물을 포함하는 조성물일 수 있다.  As an example of the composition for an organic optoelectronic device, the composition may include at least one organic compound having the above-described organic compound and a carbazole moiety.
이하에서 상술한 유기 화합물은 '제 1 유기 화합물 '하고 카바졸 모이어티를 가지는 적어도 하나의 유기 화합물은 '제 2유기 화합물' 이라 한다. Hereinafter, the above-described organic compound is referred to as a 'first organic compound' and at least one organic compound having a carbazole moiety is referred to as a 'second organic compound'.
상기 제 2 유기 화합물은 예컨대 하기 화학식 8로 표현되는 화합물일 수 있다. The second organic compound may be, for example, a compound represented by the following Formula 8.
[화학식 8]
Figure imgf000020_0002
상기 화학식 8에서,
[Formula 8]
Figure imgf000020_0002
In Chemical Formula 8,
Y'은 단일 결합,.치환 또는 비치환된 C 1 내지 C20 알킬렌기, 치환또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, Y 'is a single bond. A substituted or unsubstituted C 1 to C 20 alkylene group, substituted or Unsubstituted C2 to C20 alkenylene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof,
Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내 C30 헤테로아릴기 또는 이들의 조합이고,Ar 1 is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C30 heteroaryl group in C2, or a combination thereof,
12 내지 R15는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이고,1 2 to R 15 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof ,
12 내지 R15 및 Ar1 중 적어도 하나는 치환 또는 비치환된 트리페닐렌기 또는 치환 또는 비치환된 카바졸기를 포함한다. At least one of 1 2 to R 15 and Ar 1 includes a substituted or unsubstituted triphenylene group or a substituted or unsubstituted carbazole group.
상기 화학식 8로 표현되는 제 2 유기 화합물은 예컨대 하기 화학식 8-1 내지 8-III 중 적어도 하나로 표현될 수 있다:  The second organic compound represented by Chemical Formula 8 may be, for example represented by at least one of Chemical Formulas 8-1 to 8-III:
[ -1] [화학식 8-Π]  [-1] [Formula 8-Π]
Figure imgf000021_0001
Figure imgf000021_0001
[화학식 8-III  [Formula 8-III]
Figure imgf000021_0002
Figure imgf000021_0002
상기 화학식 8-1 내지 8-III에서,  In Chemical Formulas 8-1 to 8-III,
Υ', Υ4 및 Υ5는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 해테로아릴렌기 또는 이들의 조합이고, X ', X 4 and X 5 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, substituted Or an unsubstituted C2 to C30 heteroarylene group or a combination thereof,
Ar' 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기 또는 이들의 조합이고, Ar 'and Ar 4 are each independently a substituted or unsubstituted C6 to C30 aryl group, substituted Or an unsubstituted C2 to C30 heteroaryl group or a combination thereof,
R12 내지 RI S및 는 R20 내지 R31은각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C 1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이다. R 12 to R IS and R 20 to R 31 are each independently hydrogen, deuterium, a substituted or unsubstituted C 1 to C 20 alkyl group, a substituted or unsubstituted C 6 to C 50 aryl group, a substituted or unsubstituted C 2 to C 50 Heteroaryl group or a combination thereof.
상기 화학식 8로 표현되는 제 2 유기 화합물은 예컨대 그룹 2에 나열된 화합물일 수 있으나, 이에 한정되는 것은 아니다. The second organic compound represented by Chemical Formula 8 may be, for example, a compound listed in Group 2, but is not limited thereto.
그룹 2]  Group 2]
Figure imgf000022_0001
Figure imgf000022_0001
B— !? B-18 B—!? B-18
Figure imgf000022_0002
Figure imgf000022_0002
19 S-20 21
Figure imgf000023_0001
19 S-20 21
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
zz zz
8l78lll/SlOZ OAV 8l78lll / SlOZ OAV
Figure imgf000025_0001
Figure imgf000025_0001
8l78lll/SlOZ OAV 8l78lll / SlOZ OAV
Figure imgf000026_0001
t7.ZT0/M0ZaM/X3d 8l78lll/SlOZ OAV on -a
Figure imgf000026_0001
t 7 .ZT0 / M0ZaM / X3d 8l 7 8lll / SlOZ OAV on -a
Figure imgf000027_0001
Figure imgf000027_0001
9Z  9Z
8l78lll/SlOZ OAV  8l78lll / SlOZ OAV 
Figure imgf000028_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000029_0001
D-12 D-13 D-14 D-12 D-13 D-14
Figure imgf000030_0001
Figure imgf000030_0001
D-27 D-28 D-29 상기 제 2 유기 화합물은 예컨대 하기 화학식 9로 표현되는 모이어티와 하기 화학식 10으로 표현되는 모이어티의 조합으로 이루어진 화합물일 수 있다.  D-27 D-28 D-29 The second organic compound may be, for example, a compound consisting of a combination of a moiety represented by Formula 9 and a moiety represented by Formula 10 below.
[화학식 9] [화학식 10]  [Formula 9] [Formula 10]
Figure imgf000030_0002
상기 화학식 9 및 10에서,
Figure imgf000030_0002
In Chemical Formulas 9 and 10,
Y2 및 Y3는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, Y 2 and Y 3 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group or a combination thereof,
Ar2 및 Ar3는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기 또는 이들의 조합이고, Ar 2 and Ar 3 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group or a combination thereof,
R16 내지 R19는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이고, R 16 to R 19 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof ,
상기 화학식 9의 인접한 두 개의 *는 상기 화학식 10의 두 개의 *와 결합하여 융합고리를 형성하고 상기 화학식 9에서 융합고리를 형성하지 않은 *는 각각 독립적으로 CRb이고, Adjacent two * of Formula 9 combines with two * of Formula 10 to form a fused ring, and * which does not form a fused ring in Formula 9 is each independently CR b ,
Rb는 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로아릴기 또는 이들의 조합이다. R b is hydrogen, hydrogen, substituted or unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 to C12 heteroaryl group, or a combination thereof.
상기 화학식 9로 표현되는 모이어티와 상기 화학식 10으로 표현되는 모이어티의 조합으로 이루어진 유기 화합물은 하기 그룹 3에 나열된 화합물일 수 있으나, 이에 한정되는 것은 아니다.  The organic compound consisting of a combination of the moiety represented by Formula 9 and the moiety represented by Formula 10 may be a compound listed in Group 3 below, but is not limited thereto.
[그룹 3]  [Group 3]
Figure imgf000031_0001
Figure imgf000031_0001
Figure imgf000032_0001
οε
Figure imgf000032_0001
οε
8l78lll/SlOZ OAV 8l78lll / SlOZ OAV
Figure imgf000033_0001
Figure imgf000033_0001
상기 제 2 유기 화합물은 상기 화학식 8로 표현되는 화합물 및 하기 화학식 9로 표현되는 모이어티와 하기 화학식 10으로 표현되는 모이어티의 조합으로 이루어진 화합물 중 적어도 하나를 포함할 수 있다.  The second organic compound may include at least one of a compound represented by Formula 8 and a combination of a moiety represented by Formula 9 and a moiety represented by Formula 10 below.
상기 조성물은 상기 제 1 유기 화합물과 상기 제 2 유기 화합물을 약 1 :10 내지 10:1의 중량비로 포함할 수 있다.  The composition may include the first organic compound and the second organic compound in a weight ratio of about 1:10 to 10: 1.
상기 조성물은 유기 광전자 소자의 유기층에 적용될 수 있으며, 일 예로 상기 제 1 유기 화합물과상기 제 2 유기 화합물은 발광충의 호스트 (host)로서 역할을 할 수 있다. 이 때 상기 제 1 유기 화합물은 전자 특성이 상대적으로 강한 바이폴라 특성올 가지는 화합물일 수 있고 상기 제 2유기 화합물은 정공 특성이 상대적으로 강한 바이폴라 특성을 가지는 화합물로, 상기 제 I 유기 화합물과 함께 사용되어 전하의 이동성 및 안정성을 높임으로써 발광 효율 및 수명 특성을 더욱 개선시킬 수 있다.  The composition may be applied to an organic layer of an organic optoelectronic device. For example, the first organic compound and the second organic compound may serve as a host of a light emitting insect. In this case, the first organic compound may be a compound having a bipolar characteristic having a relatively strong electronic property, and the second organic compound is a compound having a bipolar characteristic having a relatively strong hole characteristic, and may be used together with the first organic compound. It is possible to further improve the luminous efficiency and lifetime characteristics by increasing the mobility and stability of the charge.
상기 조성물은 전술한 제 1 유기 화합물과 제 2 유기 화합물 외에 1종 이상의 유기 화합물을 더 포함할 수 있다.  The composition may further include one or more organic compounds in addition to the first organic compound and the second organic compound described above.
상기 조성물은 도편트를 더 포함할 수 있다ᅳ 상기 도펀트는 적색, 녹색 또는 청색의 도편트일 수 있으며, 예컨대 인광 도편트일 수 있다.  The composition may further comprise a dopant. The dopant may be a red, green or blue dopant, for example a phosphorescent dopant.
상기 도펀트는 상기 제 1 호스트 화합물과 상기 제 2 호스트 화합물에 미량 혼합되어 발광을 일으키는 물질로, 일반적으로 삼중항 상태 이상으로 여기시키는 다중항 여기 (multiple excitation)에 의해 발광하는 금속 착체 (metal complex)와 같은 물질이 사용될 수 있다. 상기 도편트는 예컨대 무기, 유기, 유무기 화합물일 수 있으며, 1종 또는 2종 이상 포함될 수 있다. 상기 인광 도펀트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합을 포함하는 유기 금속화합물을 들 수 있다. 상기 인광 도편트는 예컨대 하기 화학식 Z로 표현되는 화합물을사용할 수 있으나, 이에 한정되는 것은 아니다. The dopant is a substance mixed with the first host compound and the second host compound in a small amount to emit light, and is generally a metal complex that emits light by multiple excitation which excites above a triplet state. Materials such as may be used. The dopant may be, for example, an inorganic, organic, or inorganic compound, and may be included in one kind or two or more kinds. Examples of the phosphorescent dopant include an organometallic compound including Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof. For example, the phosphorescent dopant may be a compound represented by the following Chemical Formula Z, but is not limited thereto.
[화학식 Z]  [Formula Z]
L2MX L 2 MX
상기 화학식 Z에서, M은 금속이고, L 및 X는 서로 같거나 다르며 M과 착화합물을 형성하는 리간드이다.  In the above formula Z, M is a metal, L and X are the same or different from each other and a ligand to form a complex with M.
상기 M은 예컨대 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd 또는 이들의 조합일 수 있고, 상기 L 및 X는 예컨대 바이덴테이트 리간드일 수 있다. 상기 조성물은 유기 광전자 소자의 유기층에 적용될 수 있으며, 일 예로 상기 제 1 유기 화합물과 상기 제 2 유기 화합물은 발광층과 전자수송층사이에 위치하는 전자수송보조층에 적용될 수 있다.  M may be, for example, Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof, wherein L and X are, for example, bidentate It may be a ligand. The composition may be applied to an organic layer of an organic optoelectronic device. For example, the first organic compound and the second organic compound may be applied to an electron transport auxiliary layer positioned between the light emitting layer and the electron transport layer.
상기 제 1 화합물과 상기 제 2 화합물은 다양한 비율로 조합되어  The first compound and the second compound are combined in various ratios
전자수송보조층에 적용됨으로써 전자수송층으로부터 발광층으로 이동하는 It is applied to the electron transport auxiliary layer to move from the electron transport layer to the light emitting layer
전자수송능력을 조절할 수 있고 이를 발광층의 전자수송능력과 균형을 맞춤으로써 발광층의 계면에 전자가 축적되는 것을 방지할 수 있다. 또한 전자수송보조층은 애노드로부터 발광층으로 이동된 정공 및 /또는 발광층에서 생성된 엑시톤이 발광층의 액시톤의 에너지보다 더 낮은 에너지의 엑시톤으로 변환시킴으로써 정공 및 /또는 엑시톤이 발광층을 통과하여 전자수송층으로 이동하는 것을 효과적으로 차단할 수 있다. 이에 따라 유기 광전자 소자의 효율 및 수명을 개선할 수 있다. 상기 제 1 화합물과 상기 제 2 화합물은 예컨대 약 1 :99 내지 99:1의 중량비로 포함될 수 있다. It is possible to adjust the electron transport capacity and to balance this with the electron transport capacity of the light emitting layer to prevent the accumulation of electrons at the interface of the light emitting layer. In addition, the electron transport auxiliary layer converts the excitons generated from the holes and / or the light emitting layer from the anode to the light emitting layer into excitons of lower energy than the energy of the axtone of the light emitting layer so that the holes and / or excitons pass through the light emitting layer to the electron transport layer. You can effectively block the movement. Accordingly, the efficiency and lifespan of the organic optoelectronic device can be improved. The first compound and the second compound may be included, for example, in a weight ratio of about 1:99 to 99: 1.
상기 조성물은 화학기상증착과 같은 건식 성막법 또는 용액 공정으로 형성될 수 있다.  The composition may be formed by a dry film formation method or a solution process such as chemical vapor deposition.
이하 상술한 유기 화합물 또는 상술한 조성물을 적용한 유기 광전자 소자를 설명한다.  Hereinafter, an organic optoelectronic device to which the above-described organic compound or the above-described composition is applied will be described.
상기 유기 광전자 소자는 전기 에너지와 광 에너지를 상호 전환할 수 있는 소자이면 특별히 한정되지 않으며, 예컨대 유기 광전 소자, 유기 발광 소자, 유기 태양 전지 및 유기 감광체 드럼 등을 들 수 있다. 상기 유기 광전자 소자는 서로 마주하는 양극과 음극, 상기 양극과 상기 음극 사이에 위치하는 적어도 1층의 유기충을 포함할 수 있고, 상기 유기충은 전술한 유기 화합물 또는 전술한 조성물을 포함할 수 있다. The organic optoelectronic device is not particularly limited as long as it is a device capable of converting electrical energy and light energy, and examples thereof include organic photoelectric devices, organic light emitting devices, organic solar cells, and organic photosensitive drums. The organic optoelectronic device may include an anode and a cathode facing each other, at least one layer of organic worms positioned between the anode and the cathode, and the organic worm may include the aforementioned organic compound or the above-described composition. .
여기서는 유기 광전자 소자의 일 예인 유기 발광 소자를 도면을 참고하여 설명한다.  Herein, an organic light emitting diode as an example of an organic optoelectronic device will be described with reference to the drawings.
도 1 및 도 2는 일 구현예에 따른 유기 발광 소자를 보여주는 단면도이다. 도 1을 참고하면, 일 구현예에 따른 유기 광전자 소자 (100)는 서로 마주하는 양극 (120)과 음극 (110), 그리고 양극 (120)과 음극 (110)사이에 위치하는 유기층 (105)을 포함한다.  1 and 2 are cross-sectional views illustrating an organic light emitting diode according to an embodiment. Referring to FIG. 1, an organic optoelectronic device 100 according to an embodiment includes an anode 120 and a cathode 110 facing each other, and an organic layer 105 positioned between the anode 120 and the cathode 110. Include.
양극 (120)은 예컨대 정공 주입이 원활하도록 일 함수가 높은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 양극 (120)은 예컨대 니켈, 백금, 바나듬, 크름, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석산화물 (ΠΌ),  The anode 120 may be made of a high work function conductor, for example, to facilitate hole injection, and may be made of metal, metal oxide and / or conductive polymer, for example. The anode 120 may be, for example, a metal such as nickel, platinum, barn, crucible, copper, zinc, gold or an alloy thereof; Zinc oxide, indium oxide, indium tin oxide (ΠΌ),
인듐아연산화물 (IZO)과 같은 금속 산화물; ZnO와 A1 또는 Sn02와 Sb와 같은 금속과 산화물의 조합; 폴리 (3-메틸티오펜), 폴리 (3,4- (에틸렌 -1,2- 디옥시)티오펜) (polyehtylenedioxythiophene: PEDOT), 폴리피롤 및 폴리아닐린과 같은 도전성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. Metal oxides such as indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO and A1 or Sn0 2 and Sb; Conductive polymers such as poly (3-methylthiophene), poly (3,4- (ethylene-1,2-dioxy) thiophene) (polyehtylenedioxythiophene: PEDOT), polypyrrole and polyaniline, and the like. It is not.
음극 (1 10)은 예컨대 전자 주입이 원활하도록 일 함수가 낮은 도전체로 만들어질 수 있으며, 예컨대 금속, 금속 산화물 및 /또는 도전성 고분자로 만들어질 수 있다. 음극 (1 10)은 예컨대 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금; LiF/Al, Li02/Al, LiF/Ca, LiF/AI 및 BaF2/Ca과 같은 다층 구조 물질을 들 수 있으나, 이에 한정되는 것은 아니다. The cathode 1 10 may be made of a low work function conductor, for example, to facilitate electron injection, and may be made of metal, metal oxide and / or conductive polymer, for example. The negative electrode 1 10 is, for example, a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or an alloy thereof; Multilayer structure materials such as LiF / Al, Li0 2 / Al, LiF / Ca, LiF / AI, and BaF 2 / Ca, but are not limited thereto.
유기층 (105)은 전술한 유기 화합물 또는 전술한 조성물을 포함하는  Organic layer 105 comprises an organic compound as described above or a composition as described above
발광층 (130)을 포함한다. And a light emitting layer 130.
발광층 (130)은 예컨대 전술한 유기 화합물을 단독으로 포함할 수도 있고 전술한 유기 화합물 증 적어도 두 종류를 흔합하여 포함할 수도 있고 전술한 조성물을 포함할 수도 있다.  The light emitting layer 130 may include, for example, the above-described organic compound alone, may include at least two kinds of the above-described organic compound, or may include the above-described composition.
도 2를 참고하면, 유기 발광 소자 (200)는 발광층 (130) 외에 정공 보조층 (140)을 더 포함한다. 정공 보조층 (140)은 양극 (120)과 발광층 (130)사이의 정공 주입 및 /또는 정공 이동성을 더욱 높이고 전자를 차단할 수 있다. 정공 보조층 (140)은 예컨대 정공 수송층, 정공 주입층 및 /또는 전자 차단층일 수 있으며, 적어도 1층을 포함할 수 있다. Referring to FIG. 2, the organic light emitting diode 200 further includes a hole auxiliary layer 140 in addition to the light emitting layer 130. The hole auxiliary layer 140 is a hole injection between the anode 120 and the light emitting layer 130 And / or further increase hole mobility and block electrons. The hole auxiliary layer 140 may be, for example, a hole transport layer, a hole injection layer, and / or an electron blocking layer, and may include at least one layer.
또한, 본 발명의 일 구현예에서는 도 1 또는 도 2에서 유기박막층 (105)으로서 추가로 전자 수송층, 전자 수송 보조층, 전자주입층 등을 더 포함한 유기발광 소자일 수도 있다.  In addition, in one embodiment of the present invention may be an organic light emitting device further comprising an electron transport layer, an electron transport auxiliary layer, an electron injection layer, etc. as the organic thin film layer 105 in FIG.
유기 발광 소자 (100, 200)는 기판 위에 양극 또는 음극을 형성한 후, 진공증착법 (evaporation), 스퍼터링 (sputtering), 플라즈마도금 및 이온도금과 같은 건식성막법 등으로 유기층을 형성할수 있으며, 두 개 이상의 화합물을 동시에 성막하거나 증착 온도가 같은 화합물을 흔합하여 같이 성막할 수 있다. 그런 다음 그 위에 음극 또는 양극을 형성하여 제조할 수 있다.  The organic light emitting diodes 100 and 200 may form an anode or a cathode on a substrate, and then form an organic layer by dry deposition such as evaporation, sputtering, plasma plating, or ion plating. The above compounds can be formed simultaneously, or a compound having the same deposition temperature can be mixed and formed together. Then it can be prepared by forming a cathode or an anode thereon.
상술한 유기 발광 소자는 유기 발광 표시 장치에 적용될 수 있다.  The organic light emitting diode described above may be applied to an organic light emitting diode display.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 볼과하며, 이로서 본 발명이 제한되어서는 아니된다.  The following presents specific embodiments of the present invention. However, the embodiments described below are contemplated to illustrate or explain the present invention in detail, and thus the present invention is not limited thereto.
유기 화합물의 합성  Synthesis of Organic Compound
대표 합성법  Representative Synthesis
대표 합성법은 하기 대표 반웅식과 같다.  The representative synthesis method is as shown in the following representative Banungsik.
Figure imgf000036_0001
중간체의 합성
Figure imgf000036_0001
Synthesis of Intermediates
합성예 1: 증간체 1-1의 합성 반웅식 1] Synthesis Example 1 Synthesis of Intermediate 1-1 Banungsik 1]
Figure imgf000037_0001
Figure imgf000037_0001
질소 환경에서 상기 화합물 !이 -^ ^^-^^^ ^ ?^!!^ 을 The above compound in a nitrogen environment!-^ ^^-^^^ ^? ^ !! ^
THF(tetrahydrofuran) 1 L에 녹인 후, 여기에 (3-bromophenyl)boronic acid (45 g, 224.12 mmol)와 tetrakis(triphenylphosphine)palladium (2.1 g, 1.87 mmol)-i- 넣고 교반시켰다. 물에 포화된 potassuim carbonate(64 g, 467 mmol)을 넣고 80 °(:에서 12시간 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피 (flash column chromatography)로 분리 정제하여 상기 화합물 1-1(69 g, 95 %)를 얻었다. After dissolving in 1 L of THF (tetrahydrofuran), (3-bromophenyl) boronic acid (45 g, 224.12 mmol) and tetrakis (triphenylphosphine) palladium (2.1 g, 1.87 mmol) -i- were added thereto and stirred. Potassium carbonate saturated in water (64 g, 467 mmol) was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. The resulting residue was separated and purified through flash column chromatography, obtaining a compound 1-1 (69 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C21H14BrN3: 387.0371, found: 387.  HRMS (70 eV, EI < + >): m / z calcd for C 21 H 14 BrN 3: 387.0371, found: 387.
Elemental Analysis: C, 65%; H, 4% 합성예 2: 중간체 1-2의 합성  Elemental Analysis: C, 65%; H, 4% Synthesis Example 2 Synthesis of Intermediate 1-2
Figure imgf000037_0002
Figure imgf000037_0002
질소 환경에서 상기 화합물 1-1 (50 g, 128 mmol)을 THF 1 L에 녹인 후, 여기에 (3-chlorophenyl)boronic acid (24 g, 155 mmol)와 tetrakis(triphenylphosphine)palladium (1.5 g, 1.3 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(44 g, 320 mmol)을 넣고 8(TC에서 12시간 동안 가열하여 환류시켰다. 반응 완료후 반응액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-2(51 g, 95 %)를 얻었다.  After dissolving the compound 1-1 (50 g, 128 mmol) in 1 L of THF in a nitrogen environment, (3-chlorophenyl) boronic acid (24 g, 155 mmol) and tetrakis (triphenylphosphine) palladium (1.5 g, 1.3 mmol) was added and stirred. Potassium carbonate saturated in water (44 g, 320 mmol) was added thereto, and the mixture was heated and refluxed at 8 (TC for 12 hours. After completion of the reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), and water was removed with anhydrous MgS04. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-2 (51 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C27H18C1N3: 419.1 189, found: 419. Elemental Analysis: C, 77%; H, 4% 합성예 3: 중간체 1-3의 합성 HRMS (70 eV, EI < + >): m / z calcd for C 27 H 18 C 1 N 3: 419.1 189, found: 419. Elemental Analysis: C, 77%; H, 4% Synthesis Example 3 Synthesis of Intermediate 1-3
Figure imgf000038_0001
Figure imgf000038_0001
질소 환경에서 1-2 (100 g, 238 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 1^( 1^01^0)^130«)0 (72.5 §, 285 « 101)와 (1 , 1'- bis(diphenylphosphine)ferrocene)dichloropalIadium(II) (2 g, 2.38 mmol), 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-3(107 g, 88 %)을 얻었다. In a nitrogen environment, 1-2 (100 g, 238 mmol) is dissolved in 1 L of dimethylforamide (DMF), followed by 1 ^ (1 ^ 01 ^ 0) ^ 130 «) 0 (72.5 §, 285« 101) and (1 , 1'-bis (diphenylphosphine) ferrocene) dichloropalIadium (II) (2 g, 2.38 mmol) and potassium acetate (58 g, 595 mmol) were added and refluxed by heating at 150 ° C. for 48 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-3 (107 g, 88%).
HRMS (70 eV, EI+): m/z calcd for C33H30BN3O2: 51 1.2431, found: 51 1  HRMS (70 eV, EI < + >): m / z calcd for C33H30BN3O2: 51 1.2431, found: 51 1
Elemental Analysis: C, 77 %; H, 6 % 합성예 4: 중간체 1-4의 합성  Elemental Analysis: C, 77%; H, 6% Synthesis Example 4 Synthesis of Intermediate 1-4
Figure imgf000038_0002
질소 환경에서 상기 화합물 1-3 (50 g, 98 mmol)을 THF 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene (33 g, 1 17 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34 g, 245 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-4(50 g, 95 %)를 얻었다.
Figure imgf000038_0002
In a nitrogen environment, the above compound 1-3 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by l-bromo-3-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98 mmol) was added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue is separated by flash column chromatography. Purification gave the compound 1-4 (50 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C30H27BO2: 539.0997, found: 539.  HRMS (70 eV, EI < + >): m / z calcd for C 30 H 27 BO 2: 539.0997, found: 539.
Elemental Analysis: C, 73.34; H, 4.10 합성예 5: 중간체 1-5의 합성  Elemental Analysis: C, 73.34; H, 4.10 Synthesis Example 5 Synthesis of Intermediate 1-5
5]  5]
Figure imgf000039_0001
Figure imgf000039_0001
질소 환경에서 1-4 (100 g, 185 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (56 g, 222 mmol)와 (Ι, Ι '- bis(diphenylphosp ine)ferrocene)dichloropalladium(II) (1.5 g, 1.85 mmol), 그리고 potassium acetate(45 g, 595 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 혼합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-5(95 g, 88 %)을 얻었다. In a nitrogen environment, 1-4 (100 g, 185 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (56 g, 222 mmol) and (Ι, Ι'- bis (diphenylphosp ine) ferrocene ) Dichloropalladium (II) (1.5 g, 1.85 mmol), and potassium acetate (45 g, 595 mmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-5 (95 g, 88%).
HRMS (70 eV, EI+): m/z calcd for C39H34BN302: 587.2744, found: 587  HRMS (70 eV, EI +): m / z calcd for C39H34BN302: 587.2744, found: 587
Elemental Analysis: C, 80 %; H, 6% 합성예 6: 중간체 1-6의 합성  Elemental Analysis: C, 80%; H, 6% Synthesis Example 6 Synthesis of Intermediate 1-6
Figure imgf000039_0002
Figure imgf000039_0002
질소 환경에서 ^^。!^- ,-!^ ^ ^ ^ ^ !ᄁ^을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (26 g, 103 mmol)와 (Ι , - bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.7 g, 0.85 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-6(19 g: 83 %)을 얻었다. In a nitrogen environment, ^^。! ^-,-! ^ ^ ^ ^ ^! ᄁ ^ is dissolved in 1L of dimethylforamide (DMF), and then bis (pinacolato) diboron (26 g, 103 mmol) and (Ι,-bis (diphenylphosphine) ferrocene) dichloropalladium (II) (0.7 g, 0.85 mmol) and potassium acetate (58 g, 595 mmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. like this The obtained residue was separated and purified through flash column chromatography to obtain Compound 1-6 (19 g : 83%).
HRMS (70 eV, EI+): m/z calcd for C18H21 B02: 280.1635, found: 280  HRMS (70 eV, EI +): m / z calcd for C18H21 B02: 280.1635, found: 280
Elemental Analysis: C, 77 %; H, 7% 합성예 7: 중간체 1-7의 합성  Elemental Analysis: C, 77%; H, 7% Synthesis Example 7 Synthesis of Intermediate 1-7
Figure imgf000040_0001
Figure imgf000040_0001
질소 환경에서 상기 화합물 1-6 (20 g, 71 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-2-iodobenzene (22 g, 78 mmol)와 tetrakis(triphenylphosphine)palladium (0.8 g, 0.71 mmol)을 넣고 교반시켰다. 물에 포화된 1«^53 0^:^13011 6(25 177 010101)을 넣고 80 I:에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-7 (19 g, 87 %)를 얻었다.  In nitrogen, the compound 1-6 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-2-iodobenzene (22 g, 78 mmol) and tetrakis (triphenylphosphine) palladium (0.8 g, 0.71 mmol) was added and stirred. 1 «^ 53 0 ^: ^ 13011 6 (25 177 010101) saturated in water was added thereto, and the mixture was heated and refluxed at 80 I: for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-7 (19 g, 87%).
H MS (70 eV, EI+): m/z calcd for C18H13Br: 308.0201 , found: 308 Elemental Analysis: C, 70 %; H, 4 % 합성예 8: 중간체 1-8의 합성  H MS (70 eV, EI +): m / z calcd for C 18 H 13 Br: 308.0201, found: 308 Elemental Analysis: C, 70%; H, 4% Synthesis Example 8 Synthesis of Intermediate 1-8
Figure imgf000040_0002
Figure imgf000040_0002
질소 환경에서 3-1)1"0010-1 , 1'- 1311∞ 1 (20 §, 85.8 0 101)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)cHboron (26 g, 103 mmol)와 (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (0.7 g, 0.85 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-8 (20 g, 85 %)을 얻었다. In a nitrogen environment, 3-1) 1 "0010-1, 1'- 1311∞ 1 (20 §, 85.8 0 101) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) cHboron (26 g, 103 mmol). ) And (Ι, Ι'- bis (diphenylphosphine) ferrocene) dichloropalladium (II) (0.7 g, 0.85 mmol) and potassium Acetate (58 g, 595 mmol) was added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-8 (20 g, 85%).
HRMS (70 eV, EI+): m/z calcd for C18H21B02: 280.1635, found: 280.  HRMS (70 eV, EI < + >): m / z calcd for C 18 H 21 B 02: 280.1635, found: 280.
Elemental Analysis: C, 77 %; H, 7 % 합성예 9: 중간체 1-9의 합성  Elemental Analysis: C, 77%; H, 7% Synthesis Example 9 Synthesis of Intermediate 1-9
Figure imgf000041_0001
질소 환경에서 상기 화합물 1-8 (20 g, 71 mmol)을 THF 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene (22 g, 78 mn l)와 tetrakis(triphenylphosphine)palladium (0.8 g, 0.71 mmol)을 넣고 교반시켰다. 물에 포화된 {5013551)10^& 011 6(25 177 1^^01)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 I-9 (20 g, 91 %)를 얻었다.
Figure imgf000041_0001
In nitrogen, the compound 1-8 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by l-bromo-3-iodobenzene (22 g, 78 mn l) and tetrakis (triphenylphosphine) palladium (0.8 g, 0.71 mmol) and stirred. (5013551) 10 ^ & 011 6 (25 177 1 ^^ 01) saturated in water was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound I-9 (20 g, 91%).
HRMS (70 eV, EI+): m/z calcd for C18H13Br: 308.0201, found: 308 Elemental Analysis: C, 70 %; H, 4 % 합성예 10: 중간체 1-10의 합성  HRMS (70 eV, EI < + >): m / z calcd for C 18 H 13 Br: 308.0201, found: 308 Elemental Analysis: C, 70%; H, 4% Synthesis Example 10 Synthesis of Intermediate 1-10
10]  10]
Figure imgf000041_0002
Figure imgf000041_0002
질소 환경에서 상기 화합물 1-3 (50 g, 98 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-4-iodobenzene (33 g, 1 17 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34 g, 245 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-10(50 g, 95 %)를 얻었다. After dissolving the compound 1-3 (50 g, 98 mmol) in 1 L of THF in a nitrogen environment, 1 -bromo-4-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98 mmol) were added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-10 (50 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C30H27BO2: 539.0997, found: 539 540.  HRMS (70 eV, EI < + >): m / z calcd for C 30 H 27 BO 2: 539.0997, found: 539 540.
Elemental Analysis: C, 73.34; H, 4.10 합성예 11: 중간체 1-11의 합성  Elemental Analysis: C, 73.34; H, 4.10. Synthesis Example 11: Synthesis of Intermediate 1-11
Figure imgf000042_0001
Figure imgf000042_0001
질소 환경에서 1-10 (100 g, 185 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (56 g, 222 mmol)와 (1,1'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (1.5 g, 1.85 mmol) 그리고 potassium acetate(45 g, 595 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-1 1 (95 g, 88 %)을 얻었다. In a nitrogen environment, 1-10 (100 g, 185 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (56 g, 2 2 2 mmol) and (1,1'-bis (diphenylphosphine) ferrocene) dichloropalladium (II) (1.5 g, 1.85 mmol) and potassium acetate (45 g, 595 mmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-1 1 (95 g, 88%).
HRMS (70 eV, E1+): m/z calcd for C39H34BN302: 587.2744, found: 587  HRMS (70 eV, E1 +): m / z calcd for C39H34BN302: 587.2744, found: 587
Elemental Analysis: C, 80 %; H, 6% 합성예 12: 중간체 1-12의 합성  Elemental Analysis: C, 80%; H, 6% Synthesis Example 12 Synthesis of Intermediate 1-12
[반웅식 12]
Figure imgf000042_0002
질소 환경에서 상기 화합물 4-^101"0-2,6< 11 ^ 1 ^ (50 §,188 1^1^01)을 THF 1 L에 녹인 후, 여기에 (3-bromophenyl)boronic acid (45 g, 225 mmol)와
[Banungsik 12]
Figure imgf000042_0002
Dissolve the compound 4- ^ 101 "0-2,6 <11 ^ 1 ^ (50 § , 188 1 ^ 1 ^ 01) in THF 1 L in a nitrogen environment, and add (3-bromophenyl) boronic acid (45 g, 225 mmol) and
tetrakis(triphenylphosphine)palladium (2.2 g, 1.88 mrnol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(65 g, 470 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 ¾럼 크로마토그래피로 분리 정제하여 상기 화합물 1-12 (69 g, 95 %)를 얻었다. tetrakis (triphenylphosphine) palladium (2.2 g, 1.88 mrnol) was added thereto and stirred. Potassium carbonate saturated in water (65 g, 470 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous M g S04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash chromatography, obtaining a compound 1-12 (69 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C23H16BrN: 385.0466, found: 385.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 23 H 16 BrN: 385.0466, found: 385.
Elemental Analysis: C, 72 %; H, 4 % 합성예 13: 증간체 1-13의 합성  Elemental Analysis: C, 72%; H, 4% Synthesis Example 13 Synthesis of Intermediate 1-13
Figure imgf000043_0001
Figure imgf000043_0001
질소 환경에서 상기 화합물 1-12 (50 g, 129 mmol)을 Dioxane 1 L에 녹인 후, 여기에 (3-chlotOphenyl)boronic acid (24 g, 155 mmol)와  The compound 1-12 (50 g, 129 mmol) was dissolved in 1 L of Dioxane in a nitrogen environment, and then (3-chlotOphenyl) boronic acid (24 g, 155 mmol) was added thereto.
tetrakis(triphenylphosphine)palladium (1.5 g, 1.3 mmol)-i- 넣고 교반시켰다. 물에 포화된 potassuitn carbonate(45 g, 322 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-13 (50 g, 92 %)를 얻었다. tetrakis (triphenylphosphine) palladium (1.5 g, 1.3 mmol) -i- was added and stirred. Potassium carbonate saturated in water (45 g, 322 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-13 (50 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C29H20C1N: 417.1284, found: 417.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C29H20C1N: 417.1284, found: 417.
Elemental Analysis: C, 83 %; H, 5 % 합성예 14: 증간체 1-14의 합성 반 14] Elemental Analysis: C, 83%; H, 5% Synthesis Example 14 Synthesis of Intermediate 1-14 Class 14]
Figure imgf000044_0001
Figure imgf000044_0001
질소 환경에서 1- 13 (100 g, 239 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (72.5 g, 287 mrnol)와 (Ι , Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2 g, 2.38 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 혼합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-14(107 g, 88 %)을 얻었다. In a nitrogen environment, 1-13 (100 g, 239 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (72.5 g, 287 mrnol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) dichloropalladium (II) (2 g, 2.38 mmol) and potassium acetate (58 g, 595 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C. for 48 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-14 (107 g, 88%).
HRMS (70 eV, EI+): m/z calcd for C35H32BN02: 509.2526, found: 509  HRMS (70 eV, EI +): m / z calcd for C35H32BN02: 509.2526, found: 509
Elemental Analysis: C, 83 %; H, 6 % 합성예 15: 중간체 1-15의 합성  Elemental Analysis: C, 83%; H, 6% Synthesis Example 15 Synthesis of Intermediate 1-15
Figure imgf000044_0002
질소 환경에서 상기 화합물 1-14 (50 g, 98 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-3-iodobenzene (33 g, 1 17 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34 g, 245 mmol)올 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 I-I 5 (50 g, 95 %)를 얻었다.
Figure imgf000044_0002
In a nitrogen environment, the compound 1-14 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-3-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98 mmol) was added and stirred. Potassuim carbonate (34 g, 245 mmol) ol saturated in water was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound II 5 (50 g, 95%).
HRMS (70 eV, EI+): m/z calcd for C35H24BrN: 537.1092, found: 537.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 35 H 24 BrN: 537.1092, found: 537.
Elemental Analysis: C, 78 %; H, 4 % 합성예 16: 중간체 1-16의 합성 Elemental Analysis: C, 78%; H, 4% Synthesis Example 16: Synthesis of Intermediate 1-16
Figure imgf000045_0001
Figure imgf000045_0001
질소 환경에서 1-15 (100 g, 186 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (56 g, 223 mmol)와 (Ι , Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(l .5 g, 1.86 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-16 (61 g: 89 %)을 얻었다. In a nitrogen environment, 1-15 (100 g, 186 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (56 g, 223 mmol) and (Ι, Ι'- bis (diphenylphosphine) ferrocene). Dichloropalladium (II) (l .5 g, 1.86 mmol) and potassium acetate (58 g, 595 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C for 5 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-16 (61 g : 89%).
HRMS (70 eV, EI+): m/z calcd for C41H36BN02: 585.2839, found: 585  HRMS (70 eV, EI +): m / z calcd for C41H36BN02: 585.2839, found: 585
Elemental Analysis: C, 84 %; H, 6 % 합성예 17: 중간체 1-17의 합성  Elemental Analysis: C, 84%; H, 6% Synthesis Example 17 Synthesis of Intermediate 1-17
Figure imgf000045_0002
Figure imgf000045_0002
i-ir  i-ir
질소 환경에서 상기 화합물 2-^10 0-4,6- ^ 1 1 (50 ^ 187 101)을 THF 1 L에 녹인 후, 여기에 (3-1 00101)116 1)1301"01^ & 01 (37 155 010101)와 The compound 2-10 ^ 0-4, 6 ^ 11 (50 ^ 187 101) was dissolved in 1 L THF, (3-1 00101), here 116 1) 1301, "01 ^ and 01 in a nitrogen environment ( 37 155 010101)
tetrakis(triphenylphosphine)palladium (2.1g, 1.8mmol)^r 넣고 교반시켰다. 물에 포화된 potassuim carbonate(64 g, 467 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 tetrakis (triphenylphosphine) palladium (2.1g, 1.8mmol) ^ r was added and stirred. Potassium carbonate saturated in water (64 g, 467 mmol) was added thereto and heated at 80 ° C for 12 hours.
환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-17 (66 g, 92 %)를 얻었다. It was refluxed. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-17 (66 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C22H15BrN2: 386.0419, found: 386. Elemental Analysis: C, 68 %; H, 4 % 합성예 18: 중간체 1-18의 합성 HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C22H15 BrN2: 386.0419, found: 386. Elemental Analysis: C, 68%; H, 4% Synthesis Example 18 Synthesis of Intermediate 1-18
18]  18]
Figure imgf000046_0001
Figure imgf000046_0001
1-17 1-ί&  1-17 1-ί &
질소 환경에서 상기 화합물 1-17 (50 g, 129 mmol)을 THF 1 L에 녹인 후, 여기에 (3-chlorophenyl)boronic acid (24 g, 155 mmol)와 tetrakis(triphenylphosphine)palladium (1.5 g, 1.3 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(45 g, 322 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-18 (50 g, 92 %)를 얻었다. In nitrogen, the compound 1-17 (50 g, 129 mmol) was dissolved in 1 L of THF, followed by (3-chlorophenyl) boronic acid (24 g, 155 mmol) and tetrakis (triphenylphosphine) palladium (1.5 g, 1.3 mmol) was added and stirred. Potassium carbonate saturated in water (45 g, 322 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-18 (50 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C28H19C1N2: 418.1237, found: 418.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 28 H 19 C 1 N 2: 418.1237, found: 418.
Elemental Analysis: C, 80 %; H, 4% 합성예 19: 증간체 1-19의 합성  Elemental Analysis: C, 80%; H, 4% Synthesis Example 19 Synthesis of Intermediate 1-19
Figure imgf000046_0002
질소 환경에서 1-18 (100 g, 239 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (72.5 g, 287 mmol)와 (Ι, Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II) (2 g, 2.38 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 혼합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-19 (105 g, 86 %)을 얻었다.
Figure imgf000046_0002
In a nitrogen environment, 1-18 (100 g, 239 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (72.5 g, 287 mmol) and (Ι, Ι'-bis (diphenylphosphine) ferrocene). Dichloropalladium (II) (2 g, 2.38 mmol) and potassium acetate (58 g, 595 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C. for 48 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-19 (105). g, 86%).
HRMS (70 eV, EI+): m/z calcd for C34H31BN202: 510.2479, found: 510  HRMS (70 eV, EI +): m / z calcd for C34H31BN202: 510.2479, found: 510
Elemental Analysis: C, 80 %; H, 6 % 합성예 20: 중간체 1-20의 합성  Elemental Analysis: C, 80%; H, 6% Synthesis Example 20 Synthesis of Intermediate 1-20
20]  20]
Figure imgf000047_0001
질소 환경에서 상기 화합물 1-19 (50 g, 98 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-3-iodobenzene (33 g, 117 mmol)와 tetrakis(triphenylphosphine)pal ladium ( 1 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34 g, 245 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-20 (50 g, 95 %)를 얻었다.
Figure imgf000047_0001
In nitrogen, the compound 1-19 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-3-iodobenzene (33 g, 117 mmol) and tetrakis (triphenylphosphine) pal ladium (1 g, 0.98 mmol) was added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-20 (50 g, 95%).
H MS (70 eV, EI+): m/z calcd for C34H23BrN2: 538.1045, found 538  H MS (70 eV, EI +): m / z calcd for C 34 H 23 BrN 2: 538.1045, found 538
Elemental Analysis: C, 76 %; H, 4 % 합성예 21: 중간체 1-21의 합성  Elemental Analysis: C, 76%; H, 4% Synthesis Example 21 Synthesis of Intermediate 1-21
Figure imgf000047_0002
Figure imgf000047_0002
질소 환경에서 1-20 (100 g, 185 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (56 g, 222 mmol)와 (1,1'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(l .5 g, 1.86 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 12시간동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-21 (61 g, 89 %)을 얻었다. In nitrogen, 1-20 (100 g, 185 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (56 g, 222 mmol) and (1,1'-bis (diphenylphosphine) ferrocene). Dichloropalladium (II) (l .5 g, 1.86 mmol) and potassium acetate (58 g, 595 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C for 12 hours. After completion of reaction, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. like this The obtained residue was separated and purified through flash column chromatography to obtain Compound 1-21 (61 g, 89%).
H MS (70 eV, EI+): m/z calcd for C40H35BN2O2: 586.2792, found: 586  H MS (70 eV, EI +): m / z calcd for C40H35BN2O2: 586.2792, found: 586
Elemental Analysis: C, 82 %; H, 6 % 합성예 22: 중간체 1-22의 합성  Elemental Analysis: C, 82%; H, 6% Synthesis Example 22: Synthesis of Intermediate 1-22
Figure imgf000048_0001
Figure imgf000048_0001
질소 환경에서 상기 화합물 4,4'-(5-chloro-l,3-phenylene)dipyridine (50 g, 187 mmol)을 THF 1 L에 녹인 후, 여기에 (3-bromophenyl)boronic acid (37 g, 155 mmol)와 tetrakis(triphenylphosphine)palladium (2.1 g, 1.8 mmol)을 넣고 교반시켰다. 물에 포화된 }3(^5^0^^ 00 64 467 010101)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 풀래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-22 (66 g, 92 %)를 얻었다. Dissolve the compound 4,4 '-(5-chloro-l, 3-phenylene) dipyridine (50 g, 187 mmol) in 1 L of THF in a nitrogen environment, and add (3-bromophenyl) boronic acid (37 g, 155 mmol) and tetrakis (triphenylphosphine) palladium (2.1 g, 1.8 mmol) were added and stirred. } 3 (^ 5 ^ 0 ^^ 00 64 467 010101) saturated in water was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through pulllash column chromatography, obtaining Compound 1-22 (66 g, 92%).
H MS (70 eV, EI+): m/z calcd for C22H15BrN2: 386.0419, found: 386.  H MS (70 eV, EI +): m / z calcd for C 22 H 15 BrN 2: 386.0419, found: 386.
Elemental Analysis: C, 68 %; H, 4 % 합성예 23: 중간체 1-23의 합성  Elemental Analysis: C, 68%; H, 4% Synthesis Example 23 Synthesis of Intermediate 1-23
23]  23]
Figure imgf000048_0002
질소 환경에서 상기 화합물 1-22 (50 g, 129 mmol)을 dioxane 1 L에 녹인 후, 여기어 1 (3-chlorophenyl)boronic acid (24 g, 155 mmol)와
Figure imgf000048_0002
Compound 1-22 (50 g, 129 mmol) was dissolved in 1 L of dioxane in a nitrogen environment, followed by 1 (3-chlorophenyl) boronic acid (24 g, 155 mmol).
tetrakis(triphenylphosphine)palladium (1.5 g, 1.3 mmol)-!: 넣고 교반시켰다. 물에 포화된 potassuim carbonate(45 g, 322 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-23 (50 g, 92 %)를 얻었다. tetrakis (triphenylphosphine) palladium (1.5 g, 1.3 mmol)-!: were added and stirred. Saturated in water Potassuim carbonate (45 g, 322 mmol) was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, followed by extraction with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-23 (50 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C28H19C1N2: 418.1237, found: 418.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 28 H 19 C 1 N 2: 418.1237, found: 418.
Elemental Analysis: C, 80 %; H, 4% 합성예 24: 중간체 1-24의 합성 Elemental Analysis: C, 80%; H, 4% Synthesis Example 24 Synthesis of Intermediate 1-24
반웅식 24]  Banungsik 24]
Figure imgf000049_0001
Figure imgf000049_0001
질소 환경에서 1-23 (100 g, 239 mmol)을 ditnethylforamide(DMF) 1 L에 녹인 후, 여기어1 8( 113(;01 0) 1)0「011 (72.5 287 01 101)와 (1 , 1'- bis(diphenyiphosphine)ferrocene)dichloropalladium(II) (2 g, 2.38 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 48시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-24 (105 g, 86 %)을 얻었다. In a nitrogen environment, 1-23 (100 g, 239 mmol) was dissolved in 1 L of ditnethylforamide (DMF), followed by 1 8 (113 (; 0 1 0) 1) 0 '011 (72.5 287 01 101) and (1, 1 Dichloropalladium (II) (2 g, 2.38 mmol) and potassium acetate (58 g, 595 mmol) were added and heated to reflux for 48 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, the mixture was filtered, and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-24 (105 g, 86%).
HRMS (70 eV, EI+): m/z calcd for C34H31BN202: 510.2479, found: 510  HRMS (70 eV, EI +): m / z calcd for C34H31BN202: 510.2479, found: 510
Elemental Analysis: C, 80 %; H, 6 % 합성예 25: 증간체 1-25의 합성  Elemental Analysis: C, 80%; H, 6% Synthesis Example 25: Synthesis of Intermediate 1-25
Figure imgf000049_0002
질소 환경에서 상기 화합물 1-24 (50 g, 98 mmol)을 THF 1 L에 녹인 후, 여기에 -bromo-3-iodobenzene (33 g, 1 17 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.98 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34 g, 245 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-25 (50 g, 96 %)를 얻었다.
Figure imgf000049_0002
In a nitrogen environment, the compound 1-24 (50 g, 98 mmol) was dissolved in 1 L of THF, followed by -bromo-3-iodobenzene (33 g, 1 17 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.98). mmol) was added and stirred. Potassium carbonate saturated in water (34 g, 245 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-25 (50 g, 96%).
HRMS (70 eV, EI+): m/z calcd for C34H23BrN2: 538.1045, found 538  HRMS (70 eV, EI +): m / z calcd for C 34 H 23 BrN 2: 538.1045, found 538
Elemental Analysis: C, 76 %; H, 4 % 합성예 26: 중간체 1-26의 합성  Elemental Analysis: C, 76%; H, 4% Synthesis Example 26 Synthesis of Intermediate 1-26
26]  26]
Figure imgf000050_0001
Figure imgf000050_0001
질소 환경에서 1-25 (100 g, 185 mmol)을 dimethylforatnide(DMF) 1L에 녹인 후, 여기에 1^(1 3(:01^0) 1 011011 (56 & 2'22 011"01)와 (Ι, Γ- bis(diphenylphosphine)ferrocene)dichloropaIladium(II)(l .5 g, 1.86 mmol) 그리고 potassium acetate(58 g, 595 mmol)을 넣고 150 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 혼합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-26(92 g, 85 %)을 얻었다. Was dissolved 1-25 (100 g, 185 mmol) in a nitrogen environment to dimethylforatnide (DMF) 1L, 1 ^ (1 3 ( here: 01 ^ 0) 1 01 1011 (56 & 2 '22 011 "01) And (Ι, Γ- bis (diphenylphosphine) ferrocene) dichloropaIladium (II) (l .5 g, 1.86 mmol) and potassium acetate (58 g, 595 mmol) were added and heated to reflux at 150 ° C for 12 hours. After completion, water was added to the reaction solution, the mixture was filtered, and dried in a vacuum oven.The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-26 (92 g, 85%).
HRMS (70 eV, EI+): m/z calcd for C40H35BN2O2: 586.2792, found: 586  HRMS (70 eV, EI +): m / z calcd for C40H35BN2O2: 586.2792, found: 586
Elemental Analysis: C, 82 %; H, 6 % 합성예 27: 중간체 1-27의 합성  Elemental Analysis: C, 82%; H, 6% Synthesis Example 27 Synthesis of Intermediate 1-27
Figure imgf000050_0002
질소 환경에서 상기 화합물 1-5 (50 g, 85 mmol)을 THF 1 L에 녹인 후, 여기에 l -bromo-3-iodobenzene (29 g, 102 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.85 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(30 g, 212 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-27 (50 g, 95 %)를 얻었다.
Figure imgf000050_0002
After dissolving the compound 1-5 (50 g, 85 mmol) in 1 L of THF in a nitrogen environment, l-bromo-3-iodobenzene (29 g, 102 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.85 mmol) were added and stirred. Potassium carbonate saturated in water (30 g, 212 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-27 (50 g, 95%).
HRMS (70 eV, EH): mlz calcd for C39H26BrN3 : 615.1310, found 616  HRMS (70 eV, EH): mlz calcd for C39 H26 BrN3: 615.1310, found 616
Elemental Analysis: C, 76 %; H, 4 % 합성예 28: 증간체 1-28의 합성  Elemental Analysis: C, 76%; H, 4% Synthesis Example 28 Synthesis of Intermediate 1-28
Figure imgf000051_0001
Figure imgf000051_0001
질소 환경에서 1-27 (100 g, 162 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacoIato)diboron (49 g, 194 mmol)와 (Ι , Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(Il)(1.3 g, 1.62 mmol) 그리고 potassium acetate(40 g, 405 mmol)을 넣고 150 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-28 (86 g, 80 %)을 얻었다.  In a nitrogen environment, 1-27 (100 g, 162 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacoIato) diboron (49 g, 194 mmol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) dichloropalladium (Il) (1.3 g, 1.62 mmol) and potassium acetate (40 g, 405 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-28 (86 g, 80%).
H MS (70 eV, EI+): m/z calcd for C45H38BN302: 663.3057, found: 663  H MS (70 eV, EI +): m / z calcd for C 45 H 38 BN 302: 663.3057, found: 663
Elemental Analysis: C, 81 %; H, 6 % 합성예 29: 증간체 1-29의 합성  Elemental Analysis: C, 81%; H, 6% Synthesis Example 29 Synthesis of Intermediate 1-29
[반웅식 29]  [Banungsik 29]
Figure imgf000051_0002
질소 환경에서 4-bromo-U':4',r-teiphenyl (50 g, 162 mmol)을
Figure imgf000051_0002
4-bromo-U ': 4', r-teiphenyl (50 g, 162 mmol) in nitrogen
dimethylforamide(DMF) 1 L에 녹인 후, 여기에 bis(pinacolato)diboron (49 g, 194 tnmol)와 (l , r-bis(diphenylphosphine)ferrocene)dichloropalladium(II)(1.3 g, 1.62 mmol) 그리고 potassium acetate(40 g, 405 mmol)을 넣고 150 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-29 (47 g, 82 %)을 얻었다. After dissolving in 1 L of dimethylforamide (DMF), bis (pinacolato) diboron (49 g, 194 tnmol) and (l, r-bis (diphenylphosphine) ferrocene) dichloropalladium (II) (1.3 g, 1.62 mmol) and potassium acetate (40 g, 405 mmol) was added thereto and heated to reflux for 12 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-29 (47 g, 82%).
HRMS (70 eV, EI+): m/z calcd for C24H25B02: 356.1948, found: 356  HRMS (70 eV, EI +): m / z calcd for C24H25B02: 356.1948, found: 356
Elemental Analysis: C, 81 %; H, 7 % 합성예 30: 중간체 1-30의 합성  Elemental Analysis: C, 81%; H, 7% Synthesis Example 30 Synthesis of Intermediate 1-30
Figure imgf000052_0001
Figure imgf000052_0001
질소 환경에서 상기 화합물 1-29 (50 g, 140 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-4-iodobenzene (47 g, 168 mmol)와 tetrakis(triphenylphosphine)palladium (1.6 g, 1.4 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(48 g, 350 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-30 (44 g, 89 %)를 얻었다. In a nitrogen environment, the compound 1-29 (50 g, 140 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-4-iodobenzene (47 g, 168 mmol) and tetrakis (triphenylphosphine) palladium (1.6 g, 1.4 mmol) was added and stirred. Potassium carbonate saturated in water (48 g, 350 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-30 (44 g, 89%).
HRMS (70 eV, EI+): m/z calcd for C24H17Br: 384.0514, found 384 Elemental Analysis: C, 75 %; H, 4 % 합성예 31: 증간체 1-31의 합성 31] HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 24 H 17 Br: 384.0514, found 384 Elemental Analysis: C, 75%; H, 4% Synthesis Example 31 Synthesis of Intermediate 1-31 31]
Figure imgf000053_0001
Figure imgf000053_0001
질소 환경에서 1-30 (20 g, 52 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (16 g, 62.5 mmol)와 (Ι,Ι'- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.4 g, 0.52 mmol) 그리고 potassium ^ ^13 13011111101)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 혼합물올 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-31 (19g, 85%)을 얻었다. In nitrogen, 1-30 (20 g, 52 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (16 g, 62.5 mmol) and (Ι, Ι'- bis (diphenylphosphine) ferrocene). Dichloropalladium (II) (0.4 g, 0.52 mmol) and potassium ^ ^ 13 13011111101) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining Compound 1-31 (19 g, 85%).
H MS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261, found: 432  H MS (70 eV, EI +): m / z calcd for C 30 H 29 BO 2: 432.2261, found: 432
Elemental Analysis: C, 83 %; H, 7 % 합성예 32: 중간체 1-32의 합성  Elemental Analysis: C, 83%; H, 7% Synthesis Example 32: Synthesis of Intermediate 1-32
32]  32]
Figure imgf000053_0002
질소 환경에서 상기 화합물 ^^외 - ! -^^^/^ ?^!^^을
Figure imgf000053_0002
^^ other than the compound ^^ in nitrogen environment-! ^^^ / ^? ^! ^^
THF 1ᄂ에 녹인 후, 여기에 (4-brotnophenyl)boronic acid (45 g, 224.12 mmol)와 1^3^ ^1 11> 1105{^^) 31^ 1101(2.1 ^ 1.87010101)올 넣고 교반시켰다. 물에 포화된 potassuim carbonate(64 g, 467 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-32 (70 g, 960/。)를 얻었다. After dissolving in THF 1b, (4-brotnophenyl) boronic acid (45 g, 224.12 mmol) and 1 ^ 3 ^^ 1 11> 1105 (^^) 31 ^ 1101 (2.1 ^ 1.87010101) were added and stirred. Potassium carbonate saturated in water (64 g, 467 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-32 (70 g, 96 0 /.).
HRMS (70 eV, EI+): m/z calcd for C21H14BrN3: 387.0371, found: 387.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 21 H 14 BrN 3: 387.0371, found: 387.
Elemental Analysis: C, 65%; H, 4% 합성예 33: 중간체 1-33의 합성 Elemental Analysis: C, 65%; H, 4% Synthesis Example 33 Synthesis of Intermediate 1-33
Figure imgf000054_0001
Figure imgf000054_0001
질소 환경에서 상기 화합물 1-29 (50 g, 140 mmol)을 THF 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene (47 g, 168 mmol)와 tetrakis(triphenylphosphine)palladium (1.6 g, 1.4 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(48 g, 350 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 33 (46 g, 90 %)를 얻었다. In a nitrogen environment, the above compound 1-29 (50 g, 140 mmol) was dissolved in 1 L of THF, followed by l-bromo-3-iodobenzene (47 g, 168 mmol) and tetrakis (triphenylphosphine) palladium (1.6 g, 1.4 mmol) was added and stirred. Potassium carbonate saturated in water (48 g, 350 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, followed by extraction with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 33 (46 g, 90%).
HRMS (70 eV, ΕΓ+): m/z calcd for C24H17Br: 384.0514, found 384  HRMS (70 eV, ΓΓ): m / z calcd for C24H17Br: 384.0514, found 384
Elemental Analysis: C, 75 %; H, 4 % 합성예 34: 중간체 1-34의 합성 Elemental Analysis: C, 75%; H, 4% Synthesis Example 34 Synthesis of Intermediate 1-34
반웅식 34]  Banungsik 34]
Figure imgf000054_0002
Figure imgf000054_0002
질소 환경에서 1-33 (20 g, 52 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (16 g, 62.5 mmol)와  In a nitrogen environment, 1-33 (20 g, 52 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (16 g, 62.5 mmol).
bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.4 g, 0.52 mmol) 그리고 potassium ^ ^^ ^! !^^^ 올 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합을: 1-34 (21 & 83 %)을 얻었다. bis (diphenylphosphine) ferrocene) dichloropalladium (II) (0.4 g, 0.52 mmol) and potassium ^ ^^ ^!! ^^^ were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining the compound: 1-34 (21 & 83%).
HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261 , found: 432  HRMS (70 eV, EI +): m / z calcd for C30H29BO2: 432.2261, found: 432
Elemental Analysis: C, 83 %; H, 7 % 합성예 35: 중간체 1-35의 합성 Elemental Analysis: C, 83%; H, 7% Synthesis Example 35 Synthesis of Intermediate 1-35
Figure imgf000055_0001
Figure imgf000055_0001
질소 환경에서 상기 화합물 -dibromo-5-chlorobenzene (50 g, 185 mmol)을 THF THF the compound -dibromo-5-chlorobenzene (50 g, 185 mmol) in a nitrogen environment
1 L에 녹인 후, 여기에 naphthalen-l-ylboronic acid (32 g, 185 tnmol)와 After dissolving in 1 L, here is naphthalen-l-ylboronic acid (32 g, 185 tnmol)
tetrakis(triphenylphosphine)palladium (2 g, 1.8 mmol)¾: 넣고 교반시켰다. 물에 포화된 potassuim carbonate(64 g, 462 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-35 (32 g, 56 %)를 얻었다. tetrakis (triphenylphosphine) palladium (2 g, 1.8 mmol) ¾: added and stirred. Potassium carbonate saturated in water (64 g, 462 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-35 (32 g, 56%).
HRMS (70 eV, EI+): m/z calcd for CI6HIOB1CI: 315.9654 , found 316  HRMS (70 eV, EI +): m / z calcd for CI 6 HIOB 1 CI: 315.9654, found 316
Elemental Analysis: C, 61 %; H, 3 % 합성예 36: 중간체 1-36의 합성  Elemental Analysis: C, 61%; H, 3% Synthesis Example 36 Synthesis of Intermediate 1-36
36]  36]
Figure imgf000055_0002
Figure imgf000055_0002
질소 환경에서 상기 화합물 1-35 (30 g, 95 tnmol)을 THF 1 1^1 녹인 후, 여기에 phenylboronic acid (14 g, 1 14 mmol)와 tetrakis(triphenylphosphine)palladium (1 g, 0.95 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(33 g, 237 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-36 (32 g, 75 %)를 얻었다. Dissolve compound 1-35 (30 g, 95 tnmol) THF 1 1 ^ 1 in a nitrogen environment, and add phenylboronic acid (14 g, 1 14 mmol) and tetrakis (triphenylphosphine) palladium (1 g, 0.95 mmol). Put and stirred. Potassium carbonate saturated in water (33 g, 237 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-36 (32 g, 75%).
HRMS (70 eV, EI+): m/z calcd for C22H15C1: 314.0862, found 314 Elemental Analysis: C, 84 %; H, 5 % 합성예 37: 중간체 1-37의 합성 HRMS (70 eV, EI +): m / z calcd for C22H15C1: 314.0862, found 314 Elemental Analysis: C, 84%; H, 5% Synthesis Example 37 Synthesis of Intermediate 1-37
[반응식 37] Scheme 37
Figure imgf000056_0001
질소 환경에서 4-bromo-l ,l'-biphenyl (20 g, 86 mmol)을 dimethylforamide(DMF) 1 L에 녹인 후, 여기에 bis(pinacolato)diboron (26 g, 103 mmol)와 (1,1 '- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.7 g, 0.86 mmol) 그리고 potassium acetate(21 g, 215 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 풀래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-37 (20 & 85 %)을 얻었다.
Figure imgf000056_0001
In a nitrogen environment, 4-bromo-l, l'-biphenyl (20 g, 86 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (26 g, 103 mmol) and (1,1 '-bis (diphenylphosphine) ferrocene) dichloropalladium (II) (0.7 g, 0.86 mmol) and potassium acetate (21 g, 215 mmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through pulllash column chromatography, obtaining Compound 1-37 (20 & 85%).
HRMS (70 eV, EI+): m/z calcd for C18H21 B02: 280.1635, found: 280 Elemental Analysis: C, 77 %; H, 8 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 21 B 02: 280.1635, found: 280 Elemental Analysis: C, 77%; H, 8%
합성예 38: 중간체 1-38의 합성 Synthesis Example 38 Synthesis of Intermediate 1-38
[반응식 38] Scheme 38
Figure imgf000056_0002
질소 환경에서 상기 화합물 1-38 (20 g, 71 mmol)을 THF 1 L에 녹인 후, 여기에 -bromo-3-iodobenzene (24 g, 85 mnrol)와 tetrakis(triphenylphosphine)palladium (0.8 mg, 0.7 tnmol)을 넣고 교반시켰다. 물에 포화된 01&5511 0!11"13011 24.5 177 ^10101)을 넣고
Figure imgf000056_0002
In nitrogen, the compound 1-38 (20 g, 71 mmol) was dissolved in 1 L of THF, followed by -bromo-3-iodobenzene (24 g, 85 mnrol) and tetrakis (triphenylphosphine) palladium (0.8 mg, 0.7 tnmol) was added and stirred. Add 01 & 5511 0! 11 "13011 24.5 177 ^ 10101) saturated in water
80 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-38 (30 g, 90 %)를 얻었다. It was heated to reflux at 80 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-38 (30 g, 90%).
HRMS (70 eV, EI+): m/z calcd for C18H13Br: 309.1998, found 309 Elemental Analysis: C, 70 %; H, 4 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 13 Br: 309.1998, found 309 Elemental Analysis: C, 70%; H, 4%
합성예 39: 중간체 1-39의 합성 Synthesis Example 39 Synthesis of Intermediate 1-39
[반웅식 39] [Banungsik 39]
Figure imgf000057_0001
질소 환경에서 1-38 (25 g, 81 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (25 g, 97 mmol)와 (Ι, Ι '- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.7 g, 0.81 mmol) 그리고 potassium acetate(20 g, 203 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-39 (27 g, 93 %)올 얻었다.
Figure imgf000057_0001
In a nitrogen environment, 1-38 (25 g, 81 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (25 g, 97 mmol) and (Ι, Ι'-bis (diphenylphosphine) ferrocene). Dichloropalladium (II) (0.7 g, 0.81 mmol) and potassium acetate (20 g, 203 mmol) were added thereto, and the resulting mixture was heated and refluxed at 150 ° C for 5 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-39 (27 g, 93%).
HRMS (70 eV, EI+): m/z calcd for C24H25B02: 356.1948, found: 356 HRMS (70 eV, EI +): m / z calcd for C24H25B02: 356.1948, found: 356
Elemental Analysis: C, 81 %; H, 7 % Elemental Analysis: C, 81%; H, 7%
합성예 40: 증간체 1-40의 합성 Synthesis Example 40 Synthesis of Intermediate 1-40
[반응식 40]
Figure imgf000058_0001
질소 환경에서 상기 화합물 1-39 (50 g, 140 mmol)을 THF 1 L에 녹인 후, 여기에 1 -bromo-3-iodobenzene (47 g, 168 tnmol)와 tetrakis(triphenylphosphine)palladium (1.6 g, 1.4 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(48 g, 350 mmol)을 넣고
Scheme 40
Figure imgf000058_0001
In nitrogen, the compound 1-39 (50 g, 140 mmol) was dissolved in 1 L of THF, followed by 1 -bromo-3-iodobenzene (47 g, 168 tnmol) and tetrakis (triphenylphosphine) palladium (1.6 g, 1.4 mmol) was added and stirred. Put saturated potassuim carbonate (48 g, 350 mmol) in water
80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-40 (44 g, 89 %)를 얻었다. It was heated to reflux at 80 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-40 (44 g, 89%).
H MS (70 eV, EI+): m/z calcd for C24H17Br: 384.0514, found 384 Elemental Analysis: C, 75 %; H, 4 % H MS (70 eV, EI +): m / z calcd for C 24 H 17 Br: 384.0514, found 384 Elemental Analysis: C, 75%; H, 4%
합성예 41: 중간체 1-41의 합성 Synthesis Example 41 Synthesis of Intermediate 1-41
[반웅식 41] [Banungsik 41]
Figure imgf000058_0002
Figure imgf000058_0002
질소 환경에서 1-40 (20 g, 52 mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (16 g, 62.5 mmol)와 (Ι , Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(ll)(0.4 g, 0.52 mmol) '그리고 potassium ! ^!!^^을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-41 (19 & 85 %)을 얻었다. Dissolve 1-40 (20 g, 52 mmol) in 1 L of dimethylforamide (DMF) in a nitrogen environment, followed by bis (pinacolato) diboron (16 g, 62.5 mmol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) Dichloropalladium (ll) (0.4 g, 0.52 mmol) ' and potassium! ^ !! ^^ was added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-41 (19 & 85%).
HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261 , found: 432 Elemental Analysis: C, 83 %; H, 7 % HRMS (70 eV, EI +): m / z calcd for C30H29BO2: 432.2261, found: 432 Elemental Analysis: C, 83%; H, 7%
합성예 42: 중간체 1-42의 합성 Synthesis Example 42 Synthesis of Intermediate 1-42
[반웅식 42] [Banungsik 42]
Figure imgf000059_0001
질소 환경에서 5'-bromo-l , l ':3',r-terphenyl(32.5 g, 105.10 mmol)을
Figure imgf000059_0001
5'-bromo-l, l ': 3', r-terphenyl (32.5 g, 105.10 mmol) in nitrogen
dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (32 g, 126.13 mmol)와 (l, -bis(diphenylphosphine)ferrocene)dichloropalladium(II)(0.86 g, 1.05 mmol) 그리고 potassium acetate(25 g, 262.75 mmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오븐에서 건조하였다. 이렇게' 얻어진 잠사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-42 (33 g, 88 %)을 얻었다. After dissolving in 1L of dimethylforamide (DMF), bis (pinacolato) diboron (32 g, 126.13 mmol) and (l, -bis (diphenylphosphine) ferrocene) dichloropalladium (II) (0.86 g, 1.05 mmol) and potassium acetate (25) g, 262.75 mmol) and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. Thus obtained ' sasa was purified by flash column chromatography to obtain the compound 1-42 (33 g, 88%).
HRMS (70 eV, EI+): m/z calcd for C24H25B02: 356.1948, found: 356 HRMS (70 eV, EI +): m / z calcd for C24H25B02: 356.1948, found: 356
Elemental Analysis: C, 81 %; H, 7 % Elemental Analysis: C, 81%; H, 7%
합성예 43: 중간체 1-43의 합성 Synthesis Example 43 Synthesis of Intermediate 1-43
[반웅식 43] [Banungsik 43]
Figure imgf000059_0002
질소 환경에서 Cyanuric chloride (50 g, 271.13 mmol)을 THF 1 L에 녹인 후 1L에 녹인 후, -10°C까지 낮춘다. 여기에 Phenyl Magnesium bromide 3.0 M (90 ml, 271.13 mmol)을 천천히 적가 한 뒤 천천히 상온으로 온도를 올려준 다. 30분 동안 교반 시켰다ᅳ 반응 종료 후 HC1용액으로 반응액을 씻어준 후, 유기층의 용매를 제거한다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 I- 43 (33 g, 85 %)을 얻었다.
Figure imgf000059_0002
In nitrogen, Cyanuric chloride (50 g, 271.13 mmol) was dissolved in 1 L of THF and then 1 L. After melting, lower to -10 ° C. Phenyl Magnesium bromide 3.0 M (90 ml, 271.13 mmol) is slowly added dropwise and the temperature is slowly raised to room temperature. The mixture was stirred for 30 minutes. After completion of the reaction, the reaction solution was washed with HC1 solution and the solvent of the organic layer was removed. The obtained residue was separated and purified through flash column chromatography, obtaining a compound I-43 (33 g, 85%).
HRMS (70 eV, EI+): m/z calcd for C9H5C12N3: 224.9861 , found: 225 Elemental Analysis: C, 48 %; H, 2 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C9H5C12N3: 224.9861, found: 225 Elemental Analysis: C, 48%; H, 2%
합성예 44: 중간체 1-44의 합성 Synthesis Example 44 Synthesis of Intermediate 1-44
[반웅식 44] [44]
질소 환경에서 상기 화합물 I-39 (50 g, 140 mmol)올 THF 1 L에 녹인 후, 여기에 1-43 (31 g, 140 mmol)와 tetrakis(triphenylphosphine)palladium (1.6 g, 1.4 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(48 g, 350 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 After dissolving the compound I-39 (50 g, 140 mmol) in 1 L of THF in a nitrogen environment, 1-43 (31 g, 140 mmol) and tetrakis (triphenylphosphine) palladium (1.6 g, 1.4 mmol) were added thereto. Stirred. Potassium carbonate saturated in water (48 g, 350 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction, add water to the reaction liquid
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-44 (32 g, 70 %) 얻었다. . HRMS (70 eV, EI+): m/z calcd for C27H18C1N3: 419.1 189, found 419 ElementalExtracted with dichloromethane (DCM) and then water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-44 (32 g, 70%). . HRMS (70 eV, EI +): m / z calcd for C27H18C1N3: 419.1 189, found 419 Elemental
Analysis: C, 77 %; H, 4 % 합성예 45: 중간체 1-45의 합성 Analysis: C, 77%; H, 4% Synthesis Example 45 Synthesis of Intermediate 1-45
[반웅식 45] [Banungsik 45]
Figure imgf000061_0001
Figure imgf000061_0001
질소 환경에서 상기 화합물 l ,3-dibromo-5-chlorobenzene (100g, 370 mmol)을 THF 2L에 녹인 후, 여기에 phenylboronic acid (47.3g, 388 mmol)와  Dissolve the compound l, 3-dibromo-5-chlorobenzene (100 g, 370 mmol) in THF 2L in a nitrogen environment, and add phenylboronic acid (47.3 g, 388 mmol).
tetrakis(triphenylphosphine)palladium (L5g, 1.36 rnmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(127g, 925 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 M:gS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-45 (49g, 50 %)를 얻었다. tetrakis (triphenylphosphine) palladium (L5g, 1.36 rnmol) was added and stirred. Into the potassuim carbonate (127g, 925 mmol) saturated with water it was heated to reflux at 80 ° C for 12 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous M: gS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-45 (49 g, 50%).
HRMS (70 eV, EI+): m/z calcd for C12H8BrCl: 265.9498, found 266 Elemental Analysis: C, 54 %; H, 3 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 12 H 8 BrCl: 265.9498, found 266 Elemental Analysis: C, 54%; H, 3%
합성예 46: 중간체 1-46의 합성 [반웅식 46] Synthesis Example 46 Synthesis of Intermediate 1-46
Figure imgf000061_0002
Figure imgf000061_0002
질소 환경에서 상기 화합물 1-45 (20g, 75 mmol)을 THF 1L에 녹인 후, 여기에 [l , l'-biphenyl]-4-ylboronic acid (17.7g, 90mmol)와 tetrakis(triphenylphosphine)palladium (863mg, 0.74mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(26g,  Compound 1-45 (20 g, 75 mmol) was dissolved in THF 1 L in a nitrogen environment, and then [l, l'-biphenyl] -4-ylboronic acid (17.7 g, 90 mmol) and tetrakis (triphenylphosphine) palladium (863 mg , 0.74mmol) was added and stirred. Potassuim carbonate saturated in water (26 g,
186.87mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 186.87mmol) and heated to reflux at 80 ° C. for 12 hours. After completion of reaction, add water to the reaction solution, extract with dichloromethane (DCM), and remove the moisture with anhydrous MgS04. After removal, it was filtered and concentrated under reduced pressure. The residue thus obtained is flash column
크로마토그래피로 분리 정제하여 상기 화합물 1-46 (21 g, 81%)를 얻었다. Chromatographic separation and purification afforded Compound 1-46 (21 g, 81%).
HRMS (70eV, EI+): m/z calcd for C24H17C1: 340.1019, found 340 Elemental Analysis: C, 85 %; H, 5 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 24 H 17 C 1: 340.1019, found 340 Elemental Analysis: C, 85%; H, 5%
합성예 47: 증간체 1-47의 합성 Synthesis Example 47 Synthesis of Intermediate 1-47
[반웅식 47] [Banungsik 47]
Figure imgf000062_0001
Figure imgf000062_0001
질소 환경에서 1-46 (17.5g, 51 mmol)을 dimethylforamide(DMF) 1 L에 녹인 후, 여기에 bis(pinacolato)diboron (15.6g, 61.6mmol)와 (Ι , Γ- bis(diphenylphosphine)ferrocene)dichloropalIadium(II)(2.5g, 3.06mmol) 그리고 potassium acetate( 15g, 153tnmol)을 넣고 150 °C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-47 (20g, 90%)을 얻었다.  In a nitrogen environment, 1-46 (17.5 g, 51 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (15.6 g, 61.6 mmol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) DichloropalIadium (II) (2.5g, 3.06mmol) and potassium acetate (15g, 153tnmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-47 (20 g, 90%).
HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261 , found: 432 Elemental Analysis: C, 83 %; H, 7 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 30 H 29 BO 2: 432.2261, found: 432 Elemental Analysis: C, 83%; H, 7%
합성예 48: 중간체 1-48의 합성 [반웅식 48] Synthesis Example 48 Synthesis of Intermediate 1-48 [Banungsik 48]
Figure imgf000063_0001
질소 환경에서 상기 화합물 I-47 (31g, 71mmol)을 THF 1L에 녹인 후, 여기에 1- bromo-3-iodobenzene (24g, 85mmol)와 tetrakis(triphenylphosphine)palladium (0.8mg, O mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(24.5g, 177mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-48 (29g, 90%)를 얻었다.
Figure imgf000063_0001
After dissolving the compound I-47 (31 g, 71 mmol) in 1 L of THF in a nitrogen environment, 1-bromo-3-iodobenzene (24 g, 85 mmol) and tetrakis (triphenylphosphine) palladium (0.8 mg, O mmol) were added thereto and stirred. I was. Put potassuim carbonate (24.5g, 177mmol) saturated in water was heated to reflux at 80 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, and extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-48 (29 g, 90%).
HRMS (70eV, EI+): m/z calcd for C30H21Br: 460.0827, found 460 Elemental Analysis: C, 78 %; H, 5 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 30 H 21 Br: 460.0827, found 460 Elemental Analysis: C, 78%; H, 5%
합성예 49: 중간체 1-49의 합성 Synthesis Example 49 Synthesis of Intermediate 1-49
[반웅식 49] [Banungsik 49]
Figure imgf000063_0002
Figure imgf000063_0002
질소 환경에서 1-48 (23.5g, 51 tnmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (15.6g, 61.6mmol)와 (Ι, Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(2.5g, 3.06mmol) 그리고 potassium acetate(15g, 153mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-49 (23g, 90%)을 얻었다. In a nitrogen environment, 1-48 (23.5 g, 51 tnmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (15.6 g, 61.6 mmol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) dichloropalladium (II) (2.5g, 3.06mmol) and potassium acetate (15g, 153mmol) were added and heated to reflux for 5 hours at 150 ° C. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-49 (23 g, 90%).
HRMS (70 eV, EI+): m/z calcd for C36H33B02: 508.2574, found: 508 HRMS (70 eV, EI +): m / z calcd for C36H33B02: 508.2574, found: 508
Elemental Analysis: C, 85 %; H, 7 % Elemental Analysis: C, 85%; H, 7%
합성예 50: 증간체 1-50의 합성 Synthesis Example 50 Synthesis of Intermediate 1-50
[반웅식 50] [Banungsik 50]
Figure imgf000064_0001
질소 환경에서 상기 화합물 1-45 (22.43, 83.83 mmol)을 THF 500mL에 녹인 후, 여기에 3-biphenyl boronic acid (23.3g, 1 17.36mmol)와 tetrakis(triphenylphosphine)palladium (2.9g, 2.5mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(46g,
Figure imgf000064_0001
In nitrogen, the compound 1-45 (22.43, 83.83 mmol) was dissolved in 500 mL of THF, followed by 3-biphenyl boronic acid (23.3 g, 1 17.36 mmol) and tetrakis (triphenylphosphine) palladium (2.9 g, 2.5 mmol). Put and stirred. Potassuim carbonate saturated in water (46 g,
335.31 mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다ᅳ 이렇게 얻어진 잔사를 플래시 컬럼 Put 335.31 mmol) was heated to reflux at 80 ° C for 12 hours. After completion of the reaction, water was added to the reaction solution and extracted with dichloromethane (DCM), followed by removal of water with anhydrous M g S04, followed by filtration and concentration under reduced pressure.
크로마토그래피로 분리 정제하여 상기 화합물 I-50 (23g, 81%)를 얻었다. HUMS (70eV, EI+): m/z calcd for C24H17C1: 340.1019, found 340 Elemental Analysis:Chromatographic separation and purification afforded the compound I-50 (23 g, 81%). HUMS (70eV, EI +): m / z calcd for C24H17C1: 340.1019, found 340 Elemental Analysis:
C, 85 %; H, 5 % C, 85%; H, 5%
합성예 51: 증간체 1-51의 합성 Synthesis Example 51 Synthesis of Intermediate 1-51
[반응식 51] Scheme 51
Figure imgf000064_0002
질소 환경에서 I-50 (17.7g, 52mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (19.8g, 78國 ol)와 (Ι , Γ- bis(diphenylphosphine)ferrocene)dichloropalladium(II)(2.55g, 3.12mmol) 그리고 potassium acetate(15 g, 156mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-51 (17g, 76%)을 얻었다.
Figure imgf000064_0002
In a nitrogen environment, I-50 (17.7g, 52mmol) was dissolved in 1L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (19.8g, 78 國 ol) and (Ι, Γ- bis (diphenylphosphine) ferrocene) dichloropalladium (II) (2.55g, 3.12mmol) and into a potassium acetate (15 g, 156mmol) was heated to reflux at 150 ° C for 5 hours. After the reaction was completed, water was added to the reaction solution, and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-51 (17 g, 76%).
HRMS (70 eV, EI+): m/z calcd for C30H29BO2: 432.2261 , found: 432 Elemental Analysis: C, 83 %; H, 7 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 30 H 29 BO 2: 432.2261, found: 432 Elemental Analysis: C, 83%; H, 7%
합성예 52: 증간체 1-52의 합성 Synthesis Example 52 Synthesis of Intermediate 1-52
[반웅식 52] [Banungsik 52]
Figure imgf000065_0001
질소 환경에서 상기 화합물 1-51 (26.8g, 62mmol)을 THF 1 L에 녹인 후, 여기에 l-bromo-3-iodobenzene (24.5g, 86.6mmol)와 tetrakis(triphenylphosphine)palladium (2.1g, 1.86mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(34.2g, 247.7mmol)올 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)으로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 I-52'(22g, 77%)를 얻었다.
Figure imgf000065_0001
Dissolve the compound 1-51 (26.8 g, 62 mmol) in 1 L of THF in a nitrogen environment, and then add l-bromo-3-iodobenzene (24.5 g, 86.6 mmol) and tetrakis (triphenylphosphine) palladium (2.1 g, 1.86 mmol). ) Was added and stirred. Saturated with water potassuim carbonate (34.2g, 247.7mmol) come into heated to reflux at 80 ° C for 12 hours. After completion of reaction, water was added to the reaction solution, followed by extraction with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound I-52 ' (22 g, 77%).
HRMS (70eV, EI+): m/z calcd for C30H21 Br: 460.0827, found 460 Elemental Analysis: C, 78 %; H, 5 % HRMS (70 eV, EI +): m / z calcd for C 30 H 21 Br: 460.0827, found 460 Elemental Analysis: C, 78%; H, 5%
합성예 53: 중간체 1-53의 합성 [반웅식 53] Synthesis Example 53 Synthesis of Intermediate 1-53 [Banungsik 53]
Figure imgf000066_0001
질소 환경에서 1-52 (20.4g, 44.25mmol)을 dimethylforamide(DMF) 1L에 녹인 후, 여기에 bis(pinacolato)diboron (16.9g, 66.4mrrio0와 (Ι , - bis(diphenylphosphine)ferrocene)dichloropalIadium(II)(2.2g, 2.66mmol) 그리고 potassium acetate(13g, 132.7mmol)을 넣고 150°C에서 5시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물올 넣고 흔합물을 필터한 후, 진공오본에서 건조하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1-53 (20g, 89%)을 얻었다.
Figure imgf000066_0001
In a nitrogen environment, 1-52 (20.4 g, 44.25 mmol) was dissolved in 1 L of dimethylforamide (DMF), followed by bis (pinacolato) diboron (16.9 g, 66.4 mrrio0 and (Ι,-bis (diphenylphosphine) ferrocene) dichloropalIadium (II). ) (2.2g, 2.66mmol) and potassium acetate (13g, 132.7mmol) were added and heated to reflux for 5 hours at 150 ° C. After completion of the reaction, water was added to the reaction solution and the mixture was filtered and dried in a vacuum oven. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-53 (20 g, 89%).
HRMS (70 eV, EI+): m/z calcd for C36H33B02: 508.2574, found: 508 Elemental Analysis: C, 85 %; H, 7 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 36 H 33 B 02: 508.2574, found: 508 Elemental Analysis: C, 85%; H, 7%
최종 화합물의 합성 Synthesis of Final Compound
합성예 54: 화합물 1의 합성  Synthesis Example 54 Synthesis of Compound 1
Figure imgf000066_0002
Figure imgf000066_0002
질소 환경에서 상기 화합물 1-5(20 g, 34 mmol)을 tetrahydrofijran(THF) 0.2 L에 녹인 후, 여기에 3-bromo-l , l'-biphenyl (9.5 g, 40 mmol)와  Compound 1-5 (20 g, 34 mmol) was dissolved in 0.2 L of tetrahydrofijran (THF) in a nitrogen environment, and 3-bromo-l and l'-biphenyl (9.5 g, 40 mmol) were added thereto.
tetrakis(triphenylphosphine)palladium(0.39 g, 0.34 tnmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12 g, 85 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichlorotnethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 1(24 g, 70 %)을 얻었다. 화합물 1의 분자량은 613.2518이다. tetrakis (triphenylphosphine) palladium (0.39 g, 0.34 tnmol) was added thereto and stirred. Potassium carbonate saturated in water (12 g, 85 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichlorotnethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1 (24 g, 70%). The molecular weight of compound 1 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613 Elemental Analysis: C, 88 %; H, 5 % 합성예 55: 화합물 2의 합성  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613 Elemental Analysis: C, 88%; H, 5% Synthesis Example 55 Synthesis of Compound 2
Figure imgf000067_0001
Figure imgf000067_0001
질소 환경에서 상기 화합물 1-16(20 g, 34 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후, 여기에 3-bromo-l,r-biphenyl(9.5g,40mmol)와  Compound 1-16 (20 g, 34 mmol) was dissolved in 0.2 L of tetrahydrofuran (THF) in a nitrogen environment, and 3-bromo-l, r-biphenyl (9.5 g, 40 mmol) was added thereto.
tetrakis(triphenylphosphine)palladium(0.39 g, 0.34 mmol)을 넣고 교반시켰다. 물에 포화된 potassuimcarbonate(12 g, 85 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 2(15 g, 72%)을 얻었다. 화합물 2의 분자량은 611.2613 이다. tetrakis (triphenylphosphine) palladium (0.39 g, 0.34 mmol) was added and stirred. Potassium carbonate saturated in water (12 g, 85 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 2 (15 g, 72%). The molecular weight of compound 2 is 611.2613.
HRMS (70 eV, EI+): m/z calcd for C47H33N: 611.2613, found: 611  HRMS (70 eV, EI +): m / z calcd for C 47 H 33 N: 611.2613, found: 611
Elemental Analysis: C, 92 %; H, 5 % 합성예 56: 화합물 3의 합성  Elemental Analysis: C, 92%; H, 5% Synthesis Example 56 Synthesis of Compound 3
Figure imgf000067_0002
Figure imgf000067_0002
질소 환경에서 상기 화합물 1-21(20 g, 34 mmol)을 tetrahydrofbran(THF) 0.2 L에 녹인 후, 여기에 3- 0010-1,1'-1^[ ^1(9.5^40171 101)와  Compound 1-21 (20 g, 34 mmol) was dissolved in 0.2 L of tetrahydrofbran (THF) in a nitrogen environment, followed by 3-0010-1,1'-1 ^ [^ 1 (9.5 ^ 40171 101).
tetrakis(triphenylphosphine)palladiuni(0.39 g, 0.34 tnmol)을 넣고 교반시켰다. 물에 포화된 potassuimcarbonate(12 g, 85 tnmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 3(16 g, 75 %)올 얻었다. 화합물 3의 분자량은 612.2565이다. tetrakis (triphenylphosphine) palladiuni (0.39 g, 0.34 tnmol) was added and stirred. Potassium carbonate saturated in water (12 g, 85 tnmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, add water to the reaction solution and extract with dichloromethane (DCM). Water was removed with MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 3 (16 g, 75%). The molecular weight of compound 3 is 612.2565.
HRMS (70 eV, EI+): m/z calcd for C46H32N2: 612.2565, found: 612  HRMS (70 eV, EI +): m / z calcd for C46H32N2: 612.2565, found: 612
Elemental Analysis: C, 90 %; H, 5 % 합성예 57: 화합물 10의 합성  Elemental Analysis: C, 90%; H, 5% Synthesis Example 57: Synthesis of Compound 10
Figure imgf000068_0001
Figure imgf000068_0001
질소 환경에서 상기 화합물 1-5(20 g, 34 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹.인 후, 여기에 1-9 (13 g, 41 mmol)와 tetrakis(triphenylphosphine)palladium(0.39 g, 0.34 mmol)을 넣고 교반시켰다. 물에 포화된 {5(^55 01 0 1?00 ^12 ^ 85 1^1)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다ᅳ 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 10 (19 g, 75 %)을 얻었다. 화합물 10의 분자량은 689.2831이다. After dissolving the compound 1-5 (20 g, 34 mmol) in 0.2 L of tetrahydrofuran (THF) in a nitrogen environment, there are 1-9 (13 g, 41 mmol) and tetrakis (triphenylphosphine) palladium (0.39 g). , 0.34 mmol) was added and stirred. {5 (^ 55 01 0 1? 00 ^ 12 ^ 85 1 ^ 1) saturated in water was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of the reaction, water was added to the reaction solution and extracted with dichloromethane (DCM), followed by removal of water with anhydrous MgS04, followed by filtration and concentration under reduced pressure. The residue thus obtained was separated and purified through flash column chromatography, to obtain Compound 10 (19 g, 75). %) Was obtained. The molecular weight of compound 10 is 689.2831.
H MS (70 eV, EI+): m/z calcd for C51H35N3: 689.2831, found: 689  H MS (70 eV, EI +): m / z calcd for C51H35N3: 689.2831, found: 689
Elemental Analysis: C, 89 %; H, 5 % 합성예 58: 화합물 13의 합성  Elemental Analysis: C, 89%; H, 5% Synthesis Example 58: Synthesis of Compound 13
Figure imgf000068_0002
Figure imgf000068_0002
질소 환경에서 상기 화합물 1-26 (20 g, 34 mmol)을 tetrahydrofliran(THF) 0.2 L에 녹인 후, 여기에 1-9 (13 g, 41 mmol)와 tetrakis(triphenylphosphine)palladium(0.39 g, 0.34 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12 g, 85 mmol)을 넣고 In a nitrogen environment, the above compound 1-26 (20 g, 34 mmol) was dissolved in 0.2 L of tetrahydrofliran (THF), followed by 1-9 (13 g, 41 mmol) and tetrakis (triphenylphosphine) palladium (0.39 g, 0.34 mmol). ) Was added and stirred. Put saturated potassuim carbonate (12 g, 85 mmol) in water
80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 13 (17 g, 72%)을 얻었다. 화합물 13의 분자량은 688.2878이다. It was heated to reflux at 80 ° C. for 20 hours. After the reaction was completed, add water to the reaction solution Extracted with dichloromethane (DCM) and then removed the moisture with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 13 (17 g, 72%). The molecular weight of compound 13 is 688.2878.
HRMS (70 eV, EI+): mix calcd for C51H35N3: 688.2878689.8437, found: 688  HRMS (70 eV, EI +): mix calcd for C51H35N3: 688.2878689.8437, found: 688
Elemental Analysis: C, 89 %; H, 5 % 합성예 59: 화합물 19의 합성  Elemental Analysis: C, 89%; H, 5% Synthesis Example 59: Synthesis of Compound 19
Figure imgf000069_0001
Figure imgf000069_0001
질소 환경에서 상기 화합물 1-3(20 g, 39.1 mmol)을 tetrahydrofiiran(THF) 0.2 L에 녹인 후, 여기에 5'-bromo- ':3',r-terphenyl(14.5 g, 47mmol)와  In a nitrogen environment, the above compound 1-3 (20 g, 39.1 mmol) was dissolved in 0.2 L of tetrahydrofiiran (THF), followed by 5'-bromo- ': 3', r-terphenyl (14.5 g, 47 mmol).
tetrakis(triphenylphosphine)palladium(0.45 g, 0.39mmol)을 넣고 교반시켰다ᅳ 물에 포화된 potassuimcarbonate(9.7 g, 99 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필 ^하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 19(20g, 83%)을 얻었다. 화합물 19의 분자량은 613.2518이다. Tetrakis (triphenylphosphine) palladium (0.45 g, 0.39mmol) was added thereto and stirred. Potassium carbonate saturated in water (9.7 g, 99 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C for 20 hours. After the reaction was completed, water was added to the reaction solution and extracted with dichloromethane (DCM), followed by removing water with anhydrous MgS04, followed by concentration under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 19 (20 g, 83%). The molecular weight of compound 19 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613  HRMS (70 eV, EI +): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613
Elemental Analysis: C, 88 %; H, 5 % 합성예 60: 화합물 28의 합성  Elemental Analysis: C, 88%; H, 5% Synthesis Example 60: Synthesis of Compound 28
Figure imgf000069_0002
Figure imgf000069_0002
질소 환경에서 상기 화합물 1-5 (20g, 34mmol)을 tetrahydroforan(THF) 0.2 L에 녹인 후, 여기에 5'-bromo-l,l':3',r-terphenyl(12.6g,40mmol)와  Dissolve compound 1-5 (20 g, 34 mmol) in 0.2 L of tetrahydroforan (THF) in a nitrogen environment, and then add 5'-bromo-l, l ': 3', r-terphenyl (12.6 g, 40 mmol).
tetrakis(triphenyᅵ phosphine)palladiutn(0.40 g, 0.34 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12 g, 85 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 28 (19 g, 80 %)을 얻었다. 화합물 28의 분자량은 689.2831이다. tetrakis (tripheny i phosphine) was stirred into the palladiutn (0. 4 0 g, 0.34 mmol). Saturated in water Potassuim carbonate (12 g, 85 mmol) was added thereto, and the mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous M g S04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 28 (19 g, 80%). The molecular weight of compound 28 is 689.2831.
HRMS (70 eV, EI+): m/z calcd for C51 H35N3: 689.2831 , found: 689.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C51 H35N3: 689.2831, found: 689.
Elemental Analysis: C, 89 %; H, 5 % 합성예 61: 화합물 37의 합성  Elemental Analysis: C, 89%; H, 5% Synthesis Example 61: Synthesis of Compound 37
Figure imgf000070_0001
Figure imgf000070_0001
질소 환경에서 상기 화합물 1 -1 1 (20 g, 34 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후, 여기에 ^- !!!에^! ^ ^!; ^^ 와  Dissolve the compound 1-1 1 (20 g, 34 mmol) in 0.2 L of tetrahydrofuran (THF) in a nitrogen environment, and then ^-!!! ^^! ^^ !; ^^
tetrakis(triphenylphosphine)palladiutn(0.40 g, 0.34 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12 g, 85 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 37 (20 g, 85 %)을 얻었다. 화합물 37의 분자량은 689.2831이다. tetrakis (triphenylphosphine) palladiutn (0.40 g, 0.34 mmol) was added and stirred. Potassium carbonate saturated in water (12 g, 85 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 37 (20 g, 85%). The molecular weight of compound 37 is 689.2831.
HRMS (70 eV, EI+): m/z calcd for C51H35N3: 689.2831, found: 689.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C51H35N3: 689.2831, found: 689.
Elemental Analysis: C, 89 %; H, 5 % 합성예 62: 화합물 56의 합성  Elemental Analysis: C, 89%; H, 5% Synthesis Example 62: Synthesis of Compound 56
[반응식 62]  Scheme 62
Figure imgf000070_0002
질소 환경에서 상기 화합물 1-3(20 g, 39 mmol)을 tetrahydrofiiran(THF) 0.2 L에 녹안후, 여기에 1-7 (14.5 g, 47 mmol)와 tetrakis(triphenylphosphine)palladium(0.45 g, 0.39 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(13.5 g, 97 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 56 (17 g, 70 %)을 얻었다. 화합물 56의 분자량은 613.2518 이다.
Figure imgf000070_0002
After compound 1-3 (20 g, 39 mmol) was dissolved in 0.2 L of tetrahydrofiiran (THF) in nitrogen, 1-7 (14.5 g, 47 mmol) and tetrakis (triphenylphosphine) palladium (0.45 g, 0.39 mmol) were added thereto. ) Was added and stirred. Potassium carbonate saturated in water (13.5 g, 97 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 56 (17 g, 70%). The molecular weight of compound 56 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613  HRMS (70 eV, EI +): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613
Elemental Analysis: C, 88 %; H, 5 % 합성예 63: 화합물 57의 합성  Elemental Analysis: C, 88%; H, 5% Synthesis Example 63: Synthesis of Compound 57
Figure imgf000071_0001
Figure imgf000071_0001
녹인 후, 여기에 4-^0^10-1, 1':4',1" 1161 1 (14.5 47 1^0101)와 After melting, here 4- ^ 0 ^ 10-1, 1 ': 4' , 1 "1161 1 (14.5 47 1 ^ 0101)
tetrakis(triphenylphosphine)palladium(0.45 g, 0.39 mtnol)올 넣고 교반시켰다. 물에 포화된 potassuim carbonate(l 3.5 g, 97 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 풀래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 57 (19 g, 79 %)을 얻었다. 화합물 57의 분자량은 613.2518 이다. tetrakis (triphenylphosphine) palladium (0.45 g, 0.39 mtnol) ol was added and stirred. Into the potassuim carbonate (l 3.5 g, 97 mmol) in saturated water was heated to reflux at 80 ° C for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain the compound 57 (19 g, 79%). The molecular weight of compound 57 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613  HRMS (70 eV, EI +): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613
Elemental Analysis: C, 88 %; H, 5 % 합성예 64: 화합물 74의 합성 [반응식 64] Elemental Analysis: C, 88%; H, 5% Synthesis Example 64 Synthesis of Compound 74 Scheme 64
Figure imgf000072_0001
Figure imgf000072_0001
질소 환경에서 상기 화합물 1-10 (20 g, 37 mmol)-i- tetrahydroforan(THF) 0.2 L에 녹인 후, 여기에 naphthalen-l-ylboronic acid (7.6 g, 44 tnmol)와  After dissolving in 0.2 L of the compound 1-10 (20 g, 37 mmol) -i-tetrahydroforan (THF) in a nitrogen environment, it was added with naphthalen-l-ylboronic acid (7.6 g, 44 tnmol).
' tetrakis(triphenylphosphine)palladium(0.43 g, 0.37 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(13 g, 92 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 74 (15 g, 72 %)을 얻었다. 화합물 74 의 분자량은 587.2361이다. tetrakis (triphenylphosphine) palladium (0.43 g, 0.37 mmol) was added and stirred. Potassium carbonate saturated in water (13 g, 92 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 74 (15 g, 72%). The molecular weight of compound 74 is 587.2361.
HRMS (70 eV, EI+): m/z calcd for C43H29N3 : 587.2361, found: 587  HRMS (70 eV, EI +): m / z calcd for C 43 H 29 N 3: 587.2361, found: 587
Elemental Analysis: C, 88 %; H, 5 % 합성예 65: 화합물 68의 합성  Elemental Analysis: C, 88%; H, 5% Synthesis Example 65 Synthesis of Compound 68
Figure imgf000072_0002
Figure imgf000072_0002
질소 환경에서 상기 화합물 1-3 (20 g, 39 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후, 여기에 화합물 1-36 (15 g, 44 mmol)와 tetrakis(triphenylphosphine)palladiurn(0.45 g, 0.39 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(13 g, 97 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물올 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 68 (18 g, 70 %)을 얻었다. 화합물 68 의 분자량은 After dissolving the compound 1-3 (20 g, 39 mmol) in 0.2 L of tetrahydrofuran (THF) in a nitrogen environment, the compound 1-36 (15 g, 44 mmol) and tetrakis (triphenylphosphine) palladiurn (0.45 g, 0.39) were added thereto. mmol) was added and stirred. Potassium carbonate saturated in water (13 g, 97 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, and extracted with dichloromethane (DCM). After removing water with anhydrous MgS04, the filter was concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 68 (18 g, 70%). The molecular weight of compound 68
663.2674 이다.  663.2674.
HRMS (70 eV, EI+): m/z calcd for C49H33N3: 663.2674, found: 663 Elemental Analysis: C, 89 %; H, 5 % 합성예 66: 화합물 105의 합성 HRMS (70 eV, EI +): m / z calcd for C49H33N3: 663.2674, found: 663 Elemental Analysis: C, 89%; H, 5% Synthesis Example 66: Synthesis of Compound 105
[반응식 66] Scheme 66
Figure imgf000073_0001
질소 환경에서 상기 화합물 1-44 (32 g, 76 mmol)을 THF 1 L에 녹인 후, 여기에 1-41 (33 g, 76 mmol)와 tetrakis(triphenylphosphine)paIladium (0.88 g, 0.76 mmo l)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(26 g, 190 mmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다ᅳ 반응 완료 후 반응액에 물을 넣고
Figure imgf000073_0001
Compound 1-44 (32 g, 76 mmol) was dissolved in 1 L of THF in a nitrogen environment, and then 1-41 (33 g, 76 mmol) and tetrakis (triphenylphosphine) paIladium (0.88 g, 0.76 mmol) were added thereto. Put and stirred. Potassium carbonate saturated in water (26 g, 190 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C for 12 hours. After completion of the reaction, water was added to the reaction solution.
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 105 (32 g, 80 %)를 얻었다. 화합물 105 의 분자량은 Extracted with dichloromethane (DCM) and then water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 105 (32 g, 80%). The molecular weight of compound 105 is
689.2831이다. 689.2831.
HRMS (70 eV, EI+): mlz calcd for C51H35N3: 689.2831 , found 689 Elemental Analysis: 89 %: H, 5 % HRMS (70 eV, EI +): mlz calcd for C51H35N3: 689.2831, found 689 Elemental Analysis: 89%: H, 5%
합성예 67: 화합물 135의 합성 Synthesis Example 67 Synthesis of Compound 135
[반웅식 67] [Bunungsik 67]
Figure imgf000073_0002
Figure imgf000073_0002
질소 환경에서 상기 화합물 1-1 (l l g, 23.8mmol)을 THF 1 L에 녹인 후, 여기에 I- Compound 1-1 (l l g, 23.8 mmol) was dissolved in 1 L of THF in a nitrogen environment, and then I-
49 (14.5g, 28.6tnmol)와 tetrakis(triphenylphosphine)palladium (0.265g, ().:23mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(8.2g, 59.5tnmol)을 넣고 80 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 49 (14.5g, 28. 6 tnmol) and tetrakis (triphenylphosphine) palladium (0.265g, () .: 23mmol) were added and stirred. Potassium carbonate saturated in water (8.2g, 59.5tnmol) was added and 12 hours at 80 ° C. Heated to reflux. After the reaction was completed, add water to the reaction solution
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 135(13g, 80%)를 얻었다. HRMS (70eV, EI+): m/z calcd for C51H35N3: 689.2831, found 689 Elemental Analysis:Extracted with dichloromethane (DCM) and then water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 135 (13 g, 80%). HRMS (70eV, EI +): m / z calcd for C51H35N3: 689.2831, found 689 Elemental Analysis:
C, 89 %; H, 5 % C, 89%; H, 5%
합성예 68: 화합물 112의 합성 Synthesis Example 68 Synthesis of Compound 112
[반응식 68] Scheme 68
Figure imgf000074_0001
질소 환경에서 상기 화합물 1-1 (12g, 31.6mmol)을 THF 500mL에 녹인 후, 여기에 1-53 (17.3g, 34.2mmol)와 tetrakis(triphenylphosphine)palladium (1.07g, 0.93mmol)올 넣고 교반시켰다. 물에 포화된 potassuimcarbonate(13g, 93.2mmol)을 넣고 80°C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고
Figure imgf000074_0001
Compound 1-1 (12 g, 31.6 mmol) was dissolved in THF 500 mL in a nitrogen environment, and 1-53 (17.3 g, 34.2 mmol) and tetrakis (triphenylphosphine) palladium (1.07 g, 0.93 mmol) were added thereto and stirred. . Potassium carbonate saturated in water (13 g, 93.2 mmol) was added thereto, and the mixture was heated and refluxed at 80 ° C. for 12 hours. After the reaction was completed, add water to the reaction solution
dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 112(16g, 75%)를 얻었다. Extracted with dichloromethane (DCM) and then water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 112 (16 g, 75%).
HRMS (70eV, EI+): mJz calcd for C51H35N3: 689.2831, found 689 Elemental Analysis: C, 89 %; H, 5 % HRMS (70 eV, EI +): mJz calcd for C 51 H 35 N 3: 689.2831, found 689 Elemental Analysis: C, 89%; H, 5%
비교합성예 69: HOST 1의 합성 Comparative Synthesis Example 69 Synthesis of HOST 1
[반웅식 69]  [Banungsik 69]
Figure imgf000074_0002
질소 환경에서 상기 화합물 1-3(20 g, 39 mmol)을 tetrahydroforan(THF) 0.2 L에 녹인 후, 여기에 3-bromo- U '-biphenyl (l l g, 47 mmol)와
Figure imgf000074_0002
Compound 1-3 (20 g, 39 mmol) was dissolved in 0.2 L of tetrahydroforan (THF) in a nitrogen environment, and 3-bromo-U'-biphenyl (llg, 47 mmol) was added thereto.
tetmkis(triphenylphosphine)palladium(0.45 g, 0.39 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(13.5 g, 97 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다ᅳ 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 HOST 1 ( 16 g, 78 %)을 얻었다. HOST 1의 분자량은 537.2205 이다. Tetmkis (triphenylphosphine) palladium (0.45 g, 0.39 mmol) was added and stirred. Potassium carbonate saturated in water (13.5 g, 97 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), and water was removed using anhydrous MgS04. , Filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST 1 (16 g, 78%). The molecular weight of HOST 1 is 537.2205.
HRMS (70 eV, EI+): m/z calcd for C39H27N3 : 537.2205, found: 537  HRMS (70 eV, EI +): m / z calcd for C39H27N3: 537.2205, found: 537
Elemental Analysis: C, 87 %; H, 5 % 비교합성예 70: HOST 2의 합성  Elemental Analysis: C, 87%; H, 5% Comparative Synthesis Example 70 Synthesis of HOST 2
Figure imgf000075_0001
Figure imgf000075_0001
질소 환경에서 상기 화합물 1-28 (20 g, 30 mmol)을 tetrahydrofuran(THF) 0.2 L에 녹인 후, 여기에 1-9 ( 1 1 g, 36 mmol)와 tetrakis(triphenylphosphine)palladium(0.35 g, 0.30 mmo l)을 넣고 교반시켰다. 물에 포화된 {)0{&5511^ 0&1"130(1£^(10 75 11111101)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 HOST 2 (14.5 g, 70 %)을 얻었다 . HOST 2의 분자량은 765.3144 이다.  In a nitrogen environment, the above compound 1-28 (20 g, 30 mmol) was dissolved in 0.2 L of tetrahydrofuran (THF), followed by 1-9 (1 1 g, 36 mmol) and tetrakis (triphenylphosphine) palladium (0.35 g, 0.30). mmo l) was added and stirred. Water was added to {) 0 {& 5511 ^ 0 & 1 "130 (1 £ ^ (10 75 11111101) saturated in water and heated to reflux at 80 ° C for 20 hours. After completion of the reaction, water was added to the reaction solution and dichloromethane (DCM) was added. Extraction was followed by removal of water with anhydrous MgS04, followed by filtration and concentration under reduced pressure The residue thus obtained was separated and purified through flash column chromatography to obtain HOST 2 (14.5 g, 70%), and the molecular weight of HOST 2 was 765.3144.
HRMS (70 eV, EI+): m/z calcd for C51H35N3 : 765.3144, found: 765  HRMS (70 eV, EI +): m / z calcd for C51H35N3: 765.3144, found: 765
Elemental Analysis: C, 89 %; H, 5 % 비교합성예 71: HOST 3의 합성 71] Elemental Analysis: C, 89%; H, 5% Comparative Synthesis Example 71 Synthesis of HOST 3 71]
Figure imgf000076_0001
Figure imgf000076_0001
질소 환경에서 상기 화합물 I-32 (20 g, 51 mmol)을 tetrahydrofiiran(THF) 0.2 L에 녹인 후, 여기에 1-31 (26.5 g, 61.2 mtnol)와 tetrakis(triphenylphosphine)palladium(0.6 g, 0.51 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(17.5 g, 127 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 HOST 3 (24 g, 76 %)을 얻었다ᅳ HOST 3의 분자량은 613.2518이다. In nitrogen, the compound I-32 (20 g, 51 mmol) was dissolved in 0.2 L of tetrahydrofiiran (THF), followed by 1-31 (26.5 g, 61.2 mtnol) and tetrakis (triphenylphosphine) palladium (0.6 g, 0.51 mmol). ) Was added and stirred. Potassium carbonate saturated in water (17.5 g, 127 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST 3 (24 g, 76%). The molecular weight of HOST 3 is 613.2518.
H MS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613.  H MS (70 eV, EI +): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613.
Elemental Analysis: C, 88 %; H, 5 % 비교합성예 72: HOST 4의 합성  Elemental Analysis: C, 88%; H, 5% Comparative Synthesis Example 72 Synthesis of HOST 4
Figure imgf000076_0002
Figure imgf000076_0002
질소 환경에서 상기 화합물 1-1 (20 g, 51 mmol)을 tetrahydroftiran(THF) 0.2 L에 녹인 후, 여기에 1-31 (26.5 g, 61.2 mmol)와 tetrakis(tripheny lphosph ine)pal lad ium(0.6 g, 0.51 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(l 7.5 g, 127 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 HOST 4 (23 g, 75 %)을 얻었다 . HOST 4의 분자량은 613.2518 이다. In nitrogen, the compound 1-1 (20 g, 51 mmol) was dissolved in 0.2 L of tetrahydroftiran (THF), followed by 1-31 (26.5 g, 61.2 mmol) and tetrakis (tripheny lphosph ine) pal lad ium (0.6 g, 0.51 mmol) and stirred. Potassium carbonate saturated in water (l 7.5 g, 127 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST 4 (23 g, 75%). The molecular weight of HOST 4 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613.
Elemental Analysis: C, 88 %; H, 5 % 비교합성예 73: HOST 5의 합성 Elemental Analysis: C, 88%; H, 5% Comparative Synthesis Example 73: Synthesis of HOST 5
73]  73]
Figure imgf000077_0001
Figure imgf000077_0001
질소 환경에서 상기 화합물 I-32 (20 g, 51 mmol)을 tetrahydrofUran(THF) 0.2 L에 녹인 후, 여기에 1-34 (26.5 g, 61.2 mmol)와 tetrakis(triphenylphosphine)palladium(0.6 g, 0.51 mmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(17.5 g, 127 mmol)을 넣고 80 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 상기 HOST5 (22.5 g, 75 %)을 얻었다 . HOST 5의 분자량은 613.2518 이다. In nitrogen, the compound I-32 (20 g, 51 mmol) was dissolved in 0.2 L of tetrahydrofUran (THF), followed by 1-34 (26.5 g, 61.2 mmol) and tetrakis (triphenylphosphine) palladium (0.6 g, 0.51 mmol). ) Was added and stirred. Potassium carbonate saturated in water (17.5 g, 127 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 20 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining HOST5 (22.5 g, 75%). The molecular weight of HOST 5 is 613.2518.
HRMS (70 eV, EI+): m/z calcd for C45H31N3: 613.2518, found: 613.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 45 H 31 N 3: 613.2518, found: 613.
Elemental Analysis: C, 88 %; H, 5 % 유기 발광소자의 제작  Elemental Analysis: C, 88%; H, fabrication of 5% organic light emitting device
실시예 1  Example 1
합성예 54에서 얻은 화합물 1을 호스트로 사용하고, Ir(PPy)3를 도펀트로 사용하여 유기발광소자를 제작하였다. An organic light emitting device was manufactured using Compound 1 obtained in Synthesis Example 54 as a host and Ir (PPy) 3 as a dopant.
양극으로는 ITO를 1000 A의 두께로 사용하였고, 음극으로는 알루미늄 (A1)을 1000 A의 두께로 사용하였다. 구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15 Ω/αιί의 면저항값을 가진 ΠΌ 유리 기판을 50mm χ 50 mm χ 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안 . 초음파세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다. ITO was used as the anode at a thickness of 1000 A, and aluminum (A1) was used as the cathode at a thickness of 1000 A. Specifically, the manufacturing method of the organic light emitting device, the anode is cut into πΌ glass substrate having a sheet resistance value of 15 Ω / αιί to the size of 50mm × 50 mm × 0.7 mm in each of acetone, isopropyl alcohol and pure water For 15 minutes. After ultrasonic cleaning, UV ozone cleaning was used for 30 minutes.
상기 기판 상부에 진공도 650x KT7Pa, 증착속도 으 1 내지 0.3 nm/s의 조건으로 N4,N4,-di(naphthalen-l -yl)-N4,N4'-diphenylbiphenyl-4,4'-diamine (NPB) (80 nm)를 증착하여 800 A의 정공수송층을 형성하였다. 이어서, 동일한 진공 증착조건에서 합성예 54에서 얻은 화합물 1을 이용하여 막 두께 300 A의 발광층을 형성하였고, 이 때, 인광 도펀트인 [r(PPy)3을 동시에 증착하였다. 이 때, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량올 100 증량 %로 하였을 때, 인광 도펀트의 배합량이 7 중량%가 되도록 증착하였다. N4, N4 , -di (naphthalen-l -yl) -N4, N4'-diphenylbiphenyl-4,4'-diamine (with a vacuum degree of 650x KT 7 Pa, deposition rate of 1 to 0.3 nm / s on the substrate) NPB) (80 nm) was deposited to form a 800 A hole transport layer. Subsequently, a light emitting layer having a thickness of 300 A was formed using compound 1 obtained in Synthesis Example 54 under the same vacuum deposition conditions. At this time, phosphorescent dopant [r (PPy) 3 was simultaneously deposited. At this time, the deposition rate of the phosphorescent dopant When the amount was adjusted to 100% by weight of the total amount of the light emitting layer, the compounding amount of the phosphorescent dopant was deposited to be 7% by weight.
상기 발광층 상부에 동일한 진공 증착조건을 이용하여 Bis(2-methyl-8- quinolinolate)-4-(phenylphenolato)alurninium (BAlq)를 증착하여 막 두께 50 A의 정공저지층을 형성하였다ᅳ 이어서, 동일한 진공 증착조건에서 Alq3를 증착하여, 막 두께 200 A의 전자수송층을 형성하였다. 상기 전자수송층 상부에 음극으로서 LiF와 A1을 순차적으로 증착하여 유기광전소자를 제작하였다.  Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) alurninium (BAlq) was deposited on the light emitting layer using the same vacuum deposition conditions to form a hole blocking layer having a thickness of 50 A. Alq 3 was deposited under deposition conditions to form an electron transport layer having a thickness of 200 A. An organic photoelectric device was manufactured by sequentially depositing LiF and A1 as a cathode on the electron transport layer.
상기 유기광전소자의 구조는 ITO/ NPB (80 nm)/ EML (화합물 1 (93 중량0 /0) + Ir(PPy)3(7 중량0 /。), 30 nm)/ Balq (5 nm)/ Alq3 (20 nm)/ LiF (1 nm) / Al (100 nm) 의 구조로 제작하였다. The structure of the organic photoelectric device is ITO / NPB (80 nm) / EML ( Compound 1 (93 parts by weight 0/0) + Ir (PPy ) 3 (7 parts by weight 0 /.), 30 nm) / Balq (5 nm) / It was produced in the structure of Alq3 (20 nm) / LiF (1 nm) / Al (100 nm).
실시예 2  Example 2
합성예 54의 화합물 1 대신 합성예 55의 화합물 2를사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 2 of Synthesis Example 55 instead of Compound 1 of Synthesis Example 54.
실시예 3  Example 3
합성예 54의 화합물 1 대신 합성예 56의 화합물 3을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 3 of Synthesis Example 56 instead of Compound 1 of Synthesis Example 54.
실시예 4  Example 4
합성예 54의 화합물 1 대신 합성예 57의 화합물 10을 사용한 것을  Using Compound 10 of Synthesis Example 57 in place of Compound 1 of Synthesis Example 54
제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Except for the organic light emitting device was manufactured in the same manner as in Example 1.
실시예 5  Example 5
합성예 54의 화합물 1 대신 합성예 58의 화합물 13을사용한 것을  Using Compound 13 of Synthesis Example 58 in place of Compound 1 of Synthesis Example 54
제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Except for the organic light emitting device was manufactured in the same manner as in Example 1.
실시예 6  Example 6
합성예 54의 화합물 1 대신 합성예 59의 화합물 19를 사용한 것을  Compound 19 of Synthesis Example 59 was used instead of Compound 1 of Synthesis Example 54
제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Except for the organic light emitting device was manufactured in the same manner as in Example 1.
실시예 7  Example 7
합성예 54의 화합물 1 대신 합성예 60의 화합물 28을사용한 것을  Using Compound 28 of Synthesis Example 60 in place of Compound 1 of Synthesis Example 54
제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Except for the organic light emitting device was manufactured in the same manner as in Example 1.
실시예 8  Example 8
합성예 54의 화합물 1 대신 합성예 61의 화합물 37을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Using Compound 37 of Synthesis Example 61 in place of Compound 1 of Synthesis Example 54 Except for the organic light emitting device was manufactured in the same manner as in Example 1.
실시예 9  Example 9
합성예 54의 화합물 1 대신 합성예 62의 화합물 56을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 56 of Synthesis Example 62 instead of Compound 1 of Synthesis Example 54.
실시예 10  Example 10
합성예 54의 화합물 1 대신 합성예 63의 화합물 57올 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 57 of Synthesis Example 63 instead of Compound 1 of Synthesis Example 54.
실시예 11  Example 11
합성예 54의 화합물 1 대신 합성예 64의 화합물 74를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 74 of Synthesis Example 64 instead of Compound 1 of Synthesis Example 54.
실시예 12  Example 12
합성예 54의 화합물 1 대신 합성예 65의 화합물 68을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting device was manufactured in the same manner as in Example 1, except that Compound 68 of Synthesis Example 65 was used instead of Compound 1 of Synthesis Example 54.
실시예 13  Example 13
합성예 54의 화합물 1 대신 합성예 66의 화합물 105를 사용한 것을 제외하고는 실시예 I과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting device was manufactured in the same manner as in Example I, except that Compound 105 of Synthesis Example 66 was used instead of Compound 1 of Synthesis Example 54.
실시예 14  Example 14
합성예 54의 화합물 1 대신 합성예 67의 화합물 135를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 135 of Synthesis Example 67 instead of Compound 1 of Synthesis Example 54.
비교예 1  Comparative Example 1
합성예 54의 화합물 1 대신 하기 구조의 CBP를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using CBP of the following structure instead of compound 1 of Synthesis Example 54.
참고예 1  Reference Example 1
합성예 54의 화합물 1 대신 비교합성예 69의 화합물 HOST1을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST1 of Comparative Synthesis Example 69 instead of Compound 1 of Synthesis Example 54.
참고예 2  Reference Example 2
합성예 54의 화합물 1 대신 비교합성예 70의 화합물 HOST2를 사용한 것올 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST2 of Comparative Synthesis 70 instead of Compound 1 of Synthesis Example 54.
참고예 3  Reference Example 3
합성예 54의 화합물 1 대신 비교합성예 기의 화합물 HOST3를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다. Compound HOST3 of Comparative Synthesis Example was used instead of Compound 1 of Synthesis Example 54 Except for the organic light emitting device was manufactured in the same manner as in Example 1.
참고예 4  Reference Example 4
합성예 54의 화합물 1 대신 비교합성예 72의 화합물 HOST4를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST4 of Comparative Synthesis Example 72 instead of Compound 1 of Synthesis Example 54.
참고예 5  Reference Example 5
합성예 54의 화합물 1 대신 비교합성예 73의 화합물 HOST5를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 1 except for using the compound HOST5 of Comparative Synthesis Example 73 instead of Compound 1 of Synthesis Example 54.
상기 유기발광소자 제작에 사용된 NPB, BAlq, CBP 및 Ir(PPy)3의 구조는 하기와 같다.  The structure of NPB, BAlq, CBP and Ir (PPy) 3 used in the organic light emitting device is as follows.
Figure imgf000080_0001
평가
Figure imgf000080_0001
evaluation
실시예 1 내지 14, 비교예 1 및 참고예 1 내지 5에 따른 유기발광소자의 전압에 따른 전류밀도 변화, 휘도 변화 및 발광효율을 측정하였다.  Current density change, luminance change, and luminous efficiency of the organic light emitting diode according to Examples 1 to 14, Comparative Example 1, and Reference Examples 1 to 5 were measured.
구체적인 측정방법은 하기와 같고, 그 결과는 표 1과 같다.  Specific measurement methods are as follows, and the results are shown in Table 1.
(1) 전압변화에 따른 전류밀도의 변화 측정  (1) Measurement of change in current density according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.  For the manufactured organic light emitting diode, the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
(2) 전압변화에 따른 휘도변화 측정  (2) Measurement of luminance change according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상숭시키면서 휘도계 (Minolta Cs- 1000 A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.  For the organic light emitting device, the luminance was measured by using a luminance meter (Minolta Cs-1000 A) while increasing the voltage from 0V to 10V to obtain a result.
(3) 발광효율 측정 상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10 mA/ctn2)의 전류 효율 (cd/A) 을 계산하였다. (3) Measurement of luminous efficiency The current efficiency (cd / A) of the same current density (10 mA / ctn2) was calculated using the luminance, current density, and voltage measured from (1) and (2).
(4) 수명 측정  (4) life measurement
휘도 (cd/m2)를 5000 cd/m2로 유지하고 전류 효율 (cd/A)이 90%로 감소하는 시간을 측정하여 결과를 얻었다ᅳ The results were obtained by measuring the time at which the luminance (cd / m2) was maintained at 5000 cd / m 2 and the current efficiency (cd / A) was reduced to 90%.
【표 1 ]  Table 1
구동전압  Driving voltage
No. 화합물 색 (EL color) 효율 (cd/A) 90%수명 (h)(@5000cd/tn2)  No. Compound color (EL color) Efficiency (cd / A) 90% life (h) (@ 5000cd / tn2)
(V)  (V)
실시예 1 화합물 1 4.6 Green 81.7 2,460 실시예 2 화합물 2 4.8 Green 95.1 1 ,300 실시예 3 화합물 3 4.7 Green 88.9 1,930 실시예 4 화합물 10 4.3 Green 78.0 2,770 실시예 5 화합물 13 4.2 Green 73.3 900 실시예 6 화합물 19 4.5 Green 72.6 930 실시예 7 화합물 28 4.5 Green 80.9 2,320 실시예 8 화합물 37 4.3 Green 88.2 2,120 실시예 9 화합물 56 4.4 Green 91.1 2,000 실시예 10 화합물 57 4.2 Green 94.4 1,990 실시예 U 화합물 74 4.3 Green 75.7 950 실시예 12 화합물 68 4.5 Green 77.3 1,000  Example 1 Compound 1 4.6 Green 81.7 2,460 Example 2 Compound 2 4.8 Green 95.1 1,300 Example 3 Compound 3 4.7 Green 88.9 1,930 Example 4 Compound 10 4.3 Green 78.0 2,770 Example 5 Compound 13 4.2 Green 73.3 900 Example 6 Compound 19 4.5 Green 72.6 930 Example 7 Compound 28 4.5 Green 80.9 2,320 Example 8 Compound 37 4.3 Green 88.2 2,120 Example 9 Compound 56 4.4 Green 91.1 2,000 Example 10 Compound 57 4.2 Green 94.4 1,990 Example U Compound 74 4.3 Green 75.7 950 Example 12 Compound 68 4.5 Green 77.3 1,000
화합물  compound
실시예 13 4.5 Green 82.1 2,150  Example 13 4.5 Green 82.1 2,150
105  105
화합물  compound
실시예 14 4.6 Green 80.5 2,500  Example 14 4.6 Green 80.5 2,500
135  135
비교예 1 CBP 4.8 Green 31.4 40  Comparative Example 1 CBP 4.8 Green 31.4 40
참고예 1 HOST1 4.5 Green 96.3 250 참고예 2 HOST2 5.1 Green 69.5 80  Reference Example 1 HOST1 4.5 Green 96.3 250 Reference Example 2 HOST2 5.1 Green 69.5 80
참고예 3 HOST3 3.9 Green 99.7 210 참고예 4 HOST4 4.1 Green 97.1 420 참고예 5 HOST5 4.1 Green 96.5 390 분석 Reference Example 3 HOST3 3.9 Green 99.7 210 Reference Example 4 HOST4 4.1 Green 97.1 420 Reference Example 5 HOST5 4.1 Green 96.5 390 Analysis
합성예 54에서 얻은 화합물 1 및 합성예 64에서 얻은 화합물 74 와 비교합성예 69, 70에서 얻은 HOSTl , HOST2의 증착공정 온도, 유리전이 온도 (Tg) 및 고온순도를 측정하였다.  The deposition process temperature, glass transition temperature (Tg) and high temperature purity of HOSTl and HOST2 obtained in Compounds 74 and Synthesis Examples 64 and 70 obtained in Synthesis Example 64 and Synthesis Example 64 were measured.
구체적인 측정방법은 하기와 같고, 그 결과는 표 2와 같다.  Specific measurement methods are as follows, and the results are shown in Table 2.
(1) 증착공정 온도 (°C) (1) Deposition Process Temperature ( ° C)
실시예 1의 유기발광소자를 제작 중 발광층의 호스트를 증착할 때 온도를 측정한 것으로 1초 (sec)당 1 A의 두께가 적층될 수 있는 은도를 의미한다 (A/sec) (2) 유리전이 은도 (Tg)  The temperature was measured when the host of the light emitting layer was deposited during fabrication of the organic light emitting diode of Example 1, which means a silver having a thickness of 1 A per second (A / sec) (2) Glass Transitional Silver (Tg)
Metter teledo 사의 DSC1 장비를 이용하여 sample과 reference의 온도를 변화시키면서 energy 입력차를 온도의 함수로서 측정하였다.  The energy input difference was measured as a function of temperature while changing the temperature of the sample and reference using a DSC1 instrument from Metter Teledo.
(3) 상온순도 (%)  (3) Room temperature purity (%)
Waters사의 HPLC (모델명 : Alliance e2695 - 4gradient pump) 및 waters사의 PDA (모델명 : 2994)를 이용하여 측정하였다. 컬럼관은 Symmetry C18 (3.9 x 150 mm, 5^m )을 이용하였다.  Measured using Waters HPLC (Model: Alliance e2695-4gradient pump) and Waters PDA (Model: 2994). As the column tube, Symmetry C18 (3.9 x 150 mm, 5 ^ m) was used.
(4) 고온순도 (%)  (4) High temperature purity (%)
화합물의 샘플을 l g 채취하여 유리용기쎄 질소로 층진 후 밀폐하였다. 상기 유리용기를 200 시간 200 오븐에 보관 후 상기 상온순도를 측정,하는 방법과 동일한 방법으로 순도를 측정하였다. Samples of the compound were taken lg, layered with nitrogen in a glass vessel and sealed. After the glass container was stored in an oven for 200 hours for 200 hours, the purity was measured in the same manner as the method for measuring the room temperature purity.
【표 2】  Table 2
Figure imgf000082_0001
Figure imgf000082_0001
표 1을 참고하면, 실시예 1 내지 14에 따른 유기발광소자는 비교예 1과 참고예 1 내지 5에 유기발광소자와 비교하여 동등하거나 그보다 우수한 수준의 구동 전압 및 효율을 가지면서 수명 특성이 현저히 개선된 것을 확인할 수 있다. 구체적으로, 선형의 메타 (meta) 결합이 연속적으로 들어가 있는 화합물을 사용한 실시예 1 , 4 및 7의 소자결과가 가장 수명이 좋다. 이는 정공 특성 역할을 하는 말단의 페닐기와 전자 특성 역할을 하는 트리아진 구조가 양호하게 Referring to Table 1, the organic light emitting device according to Examples 1 to 14 is the same or better than the organic light emitting device in Comparative Example 1 and Reference Examples 1 to 5 It can be seen that the life characteristics are significantly improved while having the driving voltage and efficiency. Specifically, the device results of Examples 1, 4, and 7 using compounds containing linear meta bonds continuously have the best lifetime. This is because the terminal phenyl group, which plays a role of hole characteristics, and the triazine structure, which plays an electronic characteristic role, are satisfactory.
구역화 (localization)되어 서로의 간섭효과를 최소화 한 것에 기인했으리라 예상된다. 이 예로 화합물에 파라 (para) 및 /또는 을쏘 (ortho)결합을 추가할 경우 구동전압은 낮아지나 수명 또한 감소하는 것을 확인 할 수 있다. It is expected that this is due to localization, which minimizes the interference effects of each other. In this example, when the para and / or ortho bonds are added to the compound, the driving voltage is lowered but the lifetime is also reduced.
여기서 증요한 점은 전자 특성을 가지는 모이어티에 메타 (meta) 결합으로 연결되어 있는 두 개의 페닐기가 소자수명에 크게 작용한다는 점이다. 참고예 3, 4 및 5에 따른 유기발광소자는 실시예 1 내지 14에 따른 유기발광소자와 달리, 전자 특성을 가지는 모이어티에 메타 (meta)결합으로 연결된 두 개의 페닐기가 없는 화합물을 이용한 경우로, 실시예 1 내지 14에 따른 유기발광소자와 비교하여 수명 특성이 현저하게 감소하는 것을 확인 할 수 있다.  What is important here is that two phenyl groups connected by meta bonds to the moiety having electronic properties greatly affect the device life. In the organic light emitting device according to Reference Examples 3, 4 and 5, unlike the organic light emitting device according to Examples 1 to 14, when using a compound without two phenyl groups connected by a meta bond to the moiety having electronic properties, It can be seen that the life characteristics are significantly reduced compared to the organic light emitting device according to Examples 1 to 14.
참고예 l (HOST l)에 따른 유기발광소자의 경우 전자 특성을 가지는 모이어티에 메타 결합으로 연결된 두 개의 페닐기를 포함하는 화합물을  Reference Example l In the case of an organic light emitting device according to (HOST l), a compound comprising two phenyl groups linked by a meta bond to a moiety having electronic properties
사용하였지만, 말단의 페닐기가 약한 정공 특성 역할을 하면서 전자 특성을 가지는 모이어티와 간섭효과를 보이는 것으로 추정된다. 이 때문에 소자수명이 감소한 것으로 추정된다. 또한 참고예 1에 따른 유기발광소자에서 사용한 화합물은 표 2와 같이 유리전이온도 (Tg)가 낮으므로 소자 증착공정에서 막 형성이 잘되지 않을 뿐만 아니라 예컨대 봉지 (encapsulation) 공정과 같은 후속 공정의 공정 온도에 의해 영향을 받아 수명이 크게 저하된 것을 예상할 수 있다. Although used, it is assumed that the terminal phenyl group acts as a weak hole property and shows an interference effect with a moiety having electronic properties. For this reason, it is estimated that element life is reduced. In addition, since the compound used in the organic light emitting device according to Reference Example 1 has a low glass transition temperature (Tg) as shown in Table 2, not only the film formation is poor in the device deposition process, but also a subsequent process such as an encapsulation process. It can be expected that the service life is greatly reduced due to the influence of temperature.
화합물 74의 경우 HOST1과 비교했을 때 말단의 페닐기가 나프틸기로 치환되어 있다. 나프틸기는 강한 전자당김 기 (electron withdrawing group)이므로 약한 정공 특성기를 나프틸기로 잘 집중해주어 효과적으로 구역화 (localization)를 이롤 수 있고, 이에 따라 HOST1보다 수명이 현저히 개선될 수 있다. 또한 나프틸기의 유리전이온도 (Tg)의 개선 효과로 인해 HOST1에 비해 유리전이은도 (Tg)가 40 V 이상 높아서 후속 공정인 봉지 공정에서도 안정한 것을 확인할 수 있다.  In the case of compound 74, the terminal phenyl group is substituted with the naphthyl group compared with HOST1. The naphthyl group is a strong electron withdrawing group, so the weak hole properties can be concentrated well with the naphthyl group, which effectively leads to localization, which can significantly improve lifespan than HOST1. In addition, the glass transition temperature (Tg) of the naphthyl group due to the improvement effect of the glass transition temperature (Tg) is higher than 40 volts compared to HOST1, it can be seen that it is stable in the encapsulation process, which is a subsequent process.
참고예 2 (HOST 2)의 경우 분자량이 760 이상인 화합물을 사용하였고, 이에 따라 고온 순도가 떨어지는 것을 확인하였고, 이에 따라 화합물의 증착 공정에서 화합물이 깨져 수명 특성이 불량한 것을 확인할 수 있다. 제 2호스트화합물의 합성예 1: 화합물 B-1의 합성 In the case of Reference Example 2 (HOST 2), a compound having a molecular weight of 760 or more was used, and thus, it was confirmed that the high temperature purity was deteriorated. As a result, the compound was broken in the deposition process of the compound, and thus it was confirmed that the life characteristics were poor. Synthesis of Second Host Compound Example 1 Synthesis of Compound B-1
[반웅식 74  [Bungungsik 74
Figure imgf000084_0001
질소 환경에서 상기 화합물 phenylcarbazolyl boronic acid (10 g, 34.83 mmol)을
Figure imgf000084_0001
The compound phenylcarbazolyl boronic acid (10 g, 34.83 mmol) in a nitrogen environment.
Toluene 0.2 L에 녹인 후, 여기에 2-bromotriphenylene (1 1.77 g, 38.31 mmol)와 After dissolving in 0.2 L of toluene, here with 2-bromotriphenylene (1 1.77 g, 38.31 mmol)
tetrakis(triphenylphosphine)palladium(0.80 g, 0.7 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(l 4.44 g, 104.49 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichlorotnethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 싱-기 화합물 B- 1 (14.4 g, 88 %)을 얻었다. tetrakis (triphenylphosphine) palladium (0.80 g, 0.7 mmmol) was added thereto and stirred. Potassium carbonate saturated in water (l 4.44 g, 104.49 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichlorotnethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a single-group Compound B-1 (14.4 g, 88%).
HRMS (70 eV, EI+): m/z calcd for C36H23N: 469.18, found: 469  HRMS (70 eV, EI +): m / z calcd for C36H23N: 469.18, found: 469
Elemental Analysis: C, 92 %; H, 5 % 제 2호스트화합물의 합성예 2: 화합물 B-10의 합성 Elemental Analysis: C, 92%; H, 5% Synthesis of Second Host Compound Example 2: Synthesis of Compound B-10
반웅식 75] Banungsik 75]
Figure imgf000085_0001
Figure imgf000085_0001
제 1 단계: 화합물 J의 합성  First Step: Synthesis of Compound J
질소 환경에서 상기 화합물 9-phenyl-3-(4,4,5,5-tetramethyl- l ,3,2-dioxaborolan-2- yl)-9H-carbazole (26.96 g, 81.4 mmol)을 Toluene/THF 0.2 L에 녹인 후, 여기에 3-bromo- 9H-carbazole (23.96 g, 97.36 mmol)와 tetrakis(triphenylphosphine)palladium(0.90 g, 0.8 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(28 g, 203.49 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 J (22.6 g, 68%)을 얻었다. Toluene / THF 0.2 with 9-phenyl-3- (4,4,5,5-tetramethyl-l, 3,2-dioxaborolan-2-yl) -9H-carbazole (26.96 g, 81.4 mmol) in a nitrogen environment After dissolving in L, 3-bromo-9H-carbazole (23.96 g, 97.36 mmol) and tetrakis (triphenylphosphine) palladium (0.90 g, 0.8 mmmol) were added thereto and stirred. Potassium carbonate saturated in water (28 g, 203.49 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours. After completion of the reaction, water was added to the reaction solution, and extracted with dichloromethane (DCM), followed by removing water with anhydrous MgS04, filtering and concentrating under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound J (22.6 g, 68%).
HRMS (70 eV, EI+): m/z calcd for C30H20N2: 408.16, found: 408  HRMS (70 eV, EI +): m / z calcd for C 30 H 20 N 2: 408.16, found: 408
Elemental Analysis: C, 88 %; H, 5 % 제 2단계: 화합물 B-10 의 합성  Elemental Analysis: C, 88%; H, 5% Step 2: Synthesis of Compound B-10
질소 환경에서 상기 화합물 J (22.42 g, 54.88 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 2-bromo-4,6-diphenylpyridine (20.43 g, 65.85 mmol)와 NaOtBu (7.92 g, 82.32 mmol) Tris(dibenzylideneacetone)dipalladium(0)(l .65 g, 1.65 mmol), Tri-tert-butylphosphine (1.78 g, 4.39 mmol) 을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 B- 10 (28.10 g, 80%)을 얻었다. Compound J (22.42 g, 54.88 mmol) was dissolved in 0.2 L of toluene in a nitrogen environment, and then 2-bromo-4,6-diphenylpyridine (20.43 g, 65.85 mmol) and NaOtBu (7.92 g, 82.32 mmol) Tris ( Dibenzylideneacetone) dipalladium (0) (l.65 g, 1.65 mmol) and Tri-tert-butylphosphine (1.78 g, 4.39 mmol) were added and refluxed at 120 ° C. for 12 hours. After completion of the reaction, water was added to the reaction solution, and extracted with dichloromethane (DCM). After removing water with anhydrous MgS04, the filter was concentrated under reduced pressure. The residue thus obtained is flash column Chromatographic separation and purification afforded Compound B-10 (28.10 g, 80%).
HRMS (70 eV, EI+): m/z calcd for C47H31N3: 637.25, found: 637  HRMS (70 eV, EI +): m / z calcd for C47H31N3: 637.25, found: 637
Elemental Analysis: C, 89 %; H, 5 % 제 2호스트 화합물의 합성예 3: 화합물 B-31의 합성  Elemental Analysis: C, 89%; Synthesis of H, 5% Second Host Compound Example 3: Synthesis of Compound B-31
[반웅식 76]  [Bungungsik 76]
Figure imgf000086_0001
Figure imgf000086_0001
질소 환경에서 상기 화합물 phenylcarbazolyl bromide (9.97 g, 30.95 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) 와 tetrakis(triphenylp osphine)palladium(1.07 g, 0.93 mmmol)-i: 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 mmol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 B-31 (13.8 g, 92 %)을 얻었다. In a nitrogen environment, the compound phenylcarbazolyl bromide (9.97 g, 30.95 mmol) was dissolved in 0.2 L of toluene, followed by phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) and tetrakis (triphenylp osphine) palladium (1.07 g, 0.93 mmmol) -i: Put and stirred. Potassium carbonate saturated in water (12.83 g, 92.86 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound B-31 (13.8 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C36H24N2: 484.19, found: 484  HRMS (70 eV, EI +): m / z calcd for C36H24N2: 484.19, found: 484
Elemental Analysis: C, 89 %; H, 5 % 제 2호스트화합물의 합성예 4: 화합물 B-34의 합성  Elemental Analysis: C, 89%; H, Synthesis of 5% Second Host Compound Example 4: Synthesis of Compound B-34
Figure imgf000086_0002
Figure imgf000086_0002
질소 환경에서 상기 화합물 triphenylcarbazolyl bromide (14.62 g, 30.95 mmol)을 Toluene 0.2 1/^1 녹인 후, 여기에 phenylcarbazolylboronic acid (9.78 g, 34.05 mmol) 와 tetrakis(triphenylphosphine)palladium(1.07 g, 0.93 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 tntnol)을 넣고 120 °C에서 12시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 크로마토그래피로 분리 정제하여 상기 화합물 Β-34 (16·7 g, 85 %)을 얻었다. In a nitrogen environment, the compound triphenylcarbazolyl bromide (14.62 g, 30.95 mmol) was dissolved in Toluene 0.2 1 / ^ 1, followed by phenylcarbazolylboronic acid (9.78 g, 34.05 mmol). tetrakis (triphenylphosphine) palladium (1.07 g, 0.93 mmmol) was added and stirred. Potassium carbonate saturated in water (12.83 g, 92.86 tntnol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours. After completion of the reaction, water was added to the reaction solution, and extracted with dichloromethane (DCM). After removing water with anhydrous MgS04, the filter was concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining the compound β-34 (16 · 7 g, 85%).
HRMS (70 eV, EI+): nVz calcd for C47H29N2: 621.23, found: 621  HRMS (70 eV, EI +): nVz calcd for C47H29N2: 621.23, found: 621
Elemental Analysis: C, 91 %; H, 5 % 제 2호스트화합물의 합성예 5: 화합물 B-43의 합성  Elemental Analysis: C, 91%; H, 5% Synthesis of Second Host Compound Example 5: Synthesis of Compound B-43
Figure imgf000087_0001
Figure imgf000087_0001
질소 환경에서 상기 화합물 Biphenylcarbazolyl bromide (12.33 g, 30.95 mmol)을 Toluene 0.2 L에 녹인 후, 여기에 biphenylcarbazolylboronic acid (12.37 g, 34.05 mmol) 와 tetrakis(triphenylphosphine)palladium(1.07 g, 0.93 mmmol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(12.83 g, 92.86 mmol)을 넣고 120 °(:에서 12시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 폴래시 컬럼 크로마토그래피로 분리 정제하여 화합물 B-43 (18.7 g, 92 %)을 얻었다. In a nitrogen environment, the compound Biphenylcarbazolyl bromide (12.33 g, 30.95 mmol) was dissolved in 0.2 L of Toluene, and then biphenylcarbazolylboronic acid (12.37 g, 34.05 mmol) and tetrakis (triphenylphosphine) palladium (1.07 g, 0.93 mmmol) were added thereto and stirred. . Potassium carbonate saturated in water (12.83 g, 92.86 mmol) was added thereto, and the resulting mixture was heated and refluxed at 120 ° C. for 12 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), and dried over anhydrous M g S04. After the removal, the residue was filtered and concentrated under reduced pressure, and the obtained residue was separated and purified through flash column chromatography, obtaining a compound B-43 (18.7 g, 92%).
HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.26, found: 636  HRMS (70 eV, EI +): m / z calcd for C48H32N2: 636.26, found: 636
Elemental Analysis: C, 91 %; H, 5 % 제 2호스트 화합물의 합성예 6: 화합물 B-114의 합성 [반웅식 79] Elemental Analysis: C, 91%; H, Synthesis of 5% Second Host Compound Example 6: Synthesis of Compound B-114 [Bunungsik 79]
Figure imgf000088_0001
Figure imgf000088_0001
질소 환경에서 4-bromo-l,r:4',r-terphenyl (15g, 48.5mmol)을 Toluene 0.2 L에 녹인 후, 여기에 화합물 J (20g, 48.5mmol)와 NaOtBu (6g, 58.2mmol),  In nitrogen, 4-bromo-l, r: 4 ', r-terphenyl (15 g, 48.5 mmol) was dissolved in 0.2 L of toluene, followed by compounds J (20 g, 48.5 mmol) and NaOtBu (6 g, 58.2 mmol),
Tris(dibenzylideneacetone)dipalladium(0)(0.439g, 0.48mmol), Tr i-tert-buty Ip ho sphine (0.388g: 1.92mmol) 올 넣고 120 °C에서 12시간동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 Tris (dibenzylideneacetone) dipalladium (0) (0.439g, 0.48mmol) and Tr-tert-buty Ip ho sphine (0.388g : 1.92mmol) were added and refluxed at 120 ° C for 12 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS04, filtered and concentrated under reduced pressure. The residue thus obtained is flash column
크로마토그래피로 분리 정제하여 상기 화합물 B-1 14 (25g, 80%)를 얻었다. Separation and purification by chromatography gave the compound B-1 14 (25 g, 80%).
HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.2565, found: 636 Elemental Analysis: C, 95 %; H, 5 % HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 48 H 32 N 2: 636.2565, found: 636 Elemental Analysis: C, 95%; H, 5%
저12 호스트화합물의 합성예 7: 화합물 E-1의 합성 Synthesis of Low 12 Host Compound Example 7 Synthesis of Compound E-1
[  [
Figure imgf000088_0002
Figure imgf000088_0002
제 1 단계: 화합물 K의 합성  First Step: Synthesis of Compound K
phenylhydrazine hydrochloride를 증류수에 녹인 후 2M NaOH수용액을 넣는다. 생성된 고체를 필터하여 phenylhydrazine 를 얻는다. 질소 환경에서 상기 화합물 cyclohexane- 1 ,3-dione (30 g, 267.5 mmo 1)을 ethanol 1000ml에 녹인 phenylhydrazine 을 천천히 넣은 후 20분 간 반응시켰다. 반응 완료 후 얼음물은 넣는다. 생성된 고체를 에탄올로 씻어주며 필터한다. 감압 건조하여 화합물 K(46.2 g, 38 %)을 얻었다. Dissolve phenylhydrazine hydrochloride in distilled water and add 2M aqueous NaOH solution. The resulting solid is filtered to give phenylhydrazine. Phenylhydrazine dissolved in 1000 ml of ethanol in the compound cyclohexane-1,3-dione (30 g, 267.5 mmo 1) After slow addition, the reaction was carried out for 20 minutes. After completion of the reaction, add ice water. The resulting solid is washed with ethanol and filtered. Drying under reduced pressure yielded Compound K (46.2 g, 38%).
HRMS (70 eV, EI+): m/z calcd for C18H20N4: 292.3782, found: 292  HRMS (70 eV, EI +): m / z calcd for C18H20N4: 292.3782, found: 292
Elemental Analysis: C, 74 %; H, 7% 제 2단계: 화합물 L 의 합성  Elemental Analysis: C, 74%; H, 7% Step 2: Synthesis of Compound L
질소 환경 0°C 에서 상기 화합물 K (46.2 g, 102.6 mmol)을 아세트산과 황산 혼합용액 (1 :4) 140ml에 천천히 넣는다 . 5분 교반 후 빨리 50 °C로 을린 후 1 10 °C까지 천천히 을린다 . 20분 후 상온으로 냉각하고 12시간 교반한다. 에탄을을 넣고 한시간 후 고체가 생기고 생성된 고체를 감압 필터하고 증성으로 만든다. 감압 건조하면 상기 화합물 L (21.7 g, 51 %)을 얻었다. Compound K (46.2 g, 102.6 mmol) was slowly added to 140 ml of a mixture of acetic acid and sulfuric acid (1: 4) at 0 ° C in a nitrogen environment. After stirring for 5 minutes, quickly lower to 50 ° C and then slowly to 1 10 ° C. After 20 minutes, cooled to room temperature and stirred for 12 hours. One hour after adding ethane, a solid is formed and the resulting solid is filtered under reduced pressure and made thick. Drying under reduced pressure gave the compound L (21.7 g, 51%).
HRMS (70 eV, EI+): m/z calcd for C18H12N2: 256.3013, found: 256  HRMS (70 eV, EI +): m / z calcd for C18H12N2: 256.3013 , found: 256
Elemental Analysis: C, 84 %; H, 5 % 제 3단계: 화합물 E-l 의 합성  Elemental Analysis: C, 84%; H, 5% Step 3: Synthesis of Compound E-l
질소 환경에서 상기 화합물 L (10 g, 39.0 mmol), iodobenzene (10.4 ml, 93.6 mmol)와 18-crown-6 (4.2 g, 15.6 mmol), copper (3 g, 46.8 mmol), potassuim carbonate (48.6 g, 351 mmol) 을 넣고 180 °C에서 20시간 동안 가열하여 환류 시켰다. 반응 완료 후 반웅액에 물을 넣고 ethyl acetate(e.a)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 플래시 컬럼 Compound L (10 g, 39.0 mmol), iodobenzene (10.4 ml, 93.6 mmol) and 18-crown-6 (4.2 g, 15.6 mmol), copper (3 g, 46.8 mmol), potassuim carbonate (48.6 g) in a nitrogen environment , 351 mmol) was added thereto and heated to reflux for 20 hours at 180 ° C. After the reaction was completed, water was added to the reaction solution, extracted with ethyl acetate (ea), water was removed with anhydrous MgS04, filtered, and concentrated under reduced pressure. The residue thus obtained is flash column
크로마토그래피로 분리 정제하여 상기 화합물 E-l (6.7 g, 17.3 %)을 얻었다. Separation and purification by chromatography gave the compound E-1 (6.7 g, 17.3%).
HRMS (70 eV, EI+): m/z calcd for C30H20N2: 408.4932, found: 408  HRMS (70 eV, EI +): m / z calcd for C30H20N2: 408.4932, found: 408
Elemental Analysis: C, 88 %; H, 5 % - 제 2호스트화합물의 합성예 8: 화합물 B-116의 합성 [반웅식 81] Elemental Analysis: C, 88%; H, 5%-Synthesis of Second Host Compound Example 8: Synthesis of Compound B-116 [Bungungsik 81]
Figure imgf000090_0001
Figure imgf000090_0001
제 1 단계: 화합물 A의 합성  First Step: Synthesis of Compound A
3-bromo-N-phenyl carbazole 43.2g(134.2mmol)과 phenylboronic acid 43.2 g (134.2 mmol) of 3-bromo-N-phenyl carbazole and phenylboronic acid
18g(147.6mmol)을 사용하여 상기 저ᅵ2 호스트 화합물의 합성예 3과 동일한 방법으로 화합물 A 32g(75%)을 합성하였다ᅳ 제 2 단계: 화합물 B의 합성 화합물 1 34.4g (107.6mmol) 을 500 mL의 Dichloro methane에 녹인 다음 N- Bromosuccinimide 19.2g(107.6 mmol)을 넣은 다음 상은에서 8시간 동안 교반시켜 화합물 B 35g(82%)를 얻었다. 제 3 단계: 화합물 C의 합성 32 g (75%) of Compound A was synthesized in the same manner as in Synthesis Example 3 of Compound 2, using 18 g (147.6 mmol). Step 2: Synthesis of Compound B 34.4 g (107.6 mmol) of Compound 1 were prepared. After dissolving in 500 mL of dichloro methane, N. Bromosuccinimide was added 19.2 g (107.6 mmol) and stirred for 8 hours in phase silver to obtain Compound B 35g (82%). Third Step: Synthesis of Compound C
3-Bromocarbazole 17.65g(71.74 mmol) 과 4-Iock)biphenyl 22g(78.91 mmol)을 사용하여 상기 제 2 호스트 화합물의 합성예 6과 동일한 방법으로 화합물 C 15g(53%)를 얻었다. 제 4 단계: 화합물 D의 합성 화합물 C 20.1g(50.5 mmol)과 Bis(pinacolato)diboron 19.2g(75.8 mmol)을 사용하여 합성예 5와 동일한 방법으로 화합물 D 20g(89%)을 얻었다. 제 5 단계: 화합물 B-1 16의 합성 화합물 B 13g(33.1 mmol)과 화합물 D 16.2g(36.4 mmol)을 사용하여 상기 제 2 호스트 화합물의 합성예 3과 동일한 방법으로 화합물 B-116 18g(84%)를 얻었다. Compound C 15g (53%) was obtained by the same method as the synthesis example 6 of the second host compound using 17.65 g (71.74 mmol) of 3-Bromocarbazole and 22 g (78.91 mmol) of 4-Iock) biphenyl. Step 4: Synthesis of Compound D Compound D 20g (89%) was obtained by the same method as Synthesis Example 5, using 20.1 g (50.5 mmol) of Compound C and 19.2 g (75.8 mmol) of Bis (pinacolato) diboron. Step 5: Synthesis of Compound B-1 16 18 g (84) of Compound B-116 was obtained in the same manner as in Synthesis Example 3 of the second host compound using 13 g (33.1 mmol) of Compound B and 16.2 g (36.4 mmol) of Compound D. %) Was obtained.
HRMS (70 eV, EI+): m/z calcd for C48H32N2: 636.2565, found: 636 HRMS (70 eV, EI +): m / z calcd for C48H32N2: 636.2565, found: 636
Elemental Analysis: C, 90 %; H, 5 %  Elemental Analysis: C, 90%; H, 5%
제 2호스트화합물의 합성예 9: 화합물 B-118의 합성Synthesis of Second Host Compound Example 9 Synthesis of Compound B-118
반응식 82]  Scheme 82
Figure imgf000091_0001
Figure imgf000091_0001
제 1 단계: 화합물 E의 합성 화합물 C 43.2g(108.4 mmol) 과 Phenylboronic acid 14.5g(l 19 mmol)을사용하여 상기 제 2 호스트 화합물의 합성예 3과 동일한 방법으로 화합물 E 33g(77%)을 얻었다. 제 2 단계: 화합물 F의 합성 화합물 E 29.8g(75.28mmol) 과 N-Bromosuccinimide 14g(75.28 mmol)을사용하여 제 2 호스트 화합물의 합성예 8의 제 2 단계와 동일한 방법으로 화합물 F 29g(81%)을 얻었다. 제 3 단계: 화합물 B -】 18의 합성 N-Phenylcarbazoe-3-yl-boronic acid 9.7g(33.65 mmol)^f 화합물 F 16g(33.65 mmol)을 사용하여 상기 제 2 호스트 화합물의 합성예 3과 동일한 방법으로 화합물 B-1 18 17g(79%)를 얻었다. Step 1: Synthesis of Compound E 33 g (77%) of Compound E was prepared in the same manner as in Synthesis Example 3 of Compound 2 using 43.2 g (108.4 mmol) of Compound C and 14.5 g (l 19 mmol) of Phenylboronic acid. Got it. Second Step: Synthesis of Compound F Using Compound E 29.8 g (75.28 mmol) and N-Bromosuccinimide 14 g (75.28 mmol), Compound F 29g (81%) was obtained by the same method as the second step of Synthesis Example 8 of the second host compound. Third Step: Synthesis of Compound B-] 18 The same as in Synthesis Example 3 of the second host compound using 9.7 g (33.65 mmol) ^ f compound F 16 g (33.65 mmol) of N-Phenylcarbazoe-3-yl-boronic acid 17 g (79%) of Compound B-1 18 was obtained by the method.
H MS (70 eV, E1+): m/z calcd for C48H32N2: 636.2565, found: 636 Elemental Analysis: C, 90 %; H, 5 % H MS (70 eV, E1 +): m / z calcd for C 48 H 32 N 2: 636.2565, found: 636 Elemental Analysis: C, 90%; H, 5%
유기 발광소자의 제작 I Fabrication of Organic Light-Emitting Device I
실시예 15  Example 15
ITO (Indium tin oxide)가 1500 A 두께로 박막 코팅된 유리 기판올 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 10분간 세정 한 후 진공 증착기로 기판올 이송하였다. 이렇게 준비된 ΠΌ 투명 전극을 양극으로 사용하여 ΠΌ 기판 상부에 화합물 A을 진공 증착하여 700A 두께의 정공 주입층을 형성하고 상기 주입층 상부에 화합물 B를 50A의 두께로 증착한 후, 화합물 C를 1020 A의 두께로 증착하여 정공수송층을 형성하였다. 정공수송층 상부에 합성예 54에서 얻은 화합물 1과 제 2 호스트 화합물의 합성예 2에서 얻은 화합물 B-10을 동시에 호스트로 사용하고 도판트로 트리스 (2-페닐피리딘)이리듐 (III) [Ir(ppy)3]를 lOwt0/。로 도핑하여 진공 증착으로 400 A 두께의 발광층을 형성하였다. 여기서 화합물 1과 화합물 B- 10은 4: 1 비율로 사용되었다. ITO (Indium tin oxide) was washed with distilled water ultrasonic waves in a glass substrate coated with a thin film 1500 A. After washing the distilled water, ultrasonic cleaning with a solvent such as isopropyl alcohol, acetone, methanol and the like was dried and transferred to a plasma cleaner, and then the substrate was cleaned for 10 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator. Compound A was vacuum deposited on the Π 상부 substrate using the prepared ΠΌ transparent electrode as an anode to form a hole injection layer having a thickness of 700 A, and then Compound B was deposited to a thickness of 50 A on the injection layer, and then Compound C was 1020 A. It was deposited to a thickness of to form a hole transport layer. Compound B-10 obtained in Synthesis Example 2 of Synthesis Example 54 and Synthesis Example 2 on the hole transport layer was simultaneously used as a host, and doptro tris (2-phenylpyridine) iridium (III) [Ir (ppy) 3 ] was doped with lOwt 0 /. To form a light emitting layer having a thickness of 400 A by vacuum deposition. Here compound 1 and compound B-10 were used in a 4: 1 ratio.
이어서 상기 발광층 상부에 화합물 D와 Liq를 동시에 1 : 1 비율로 진공 증착하여 300 A 두께의 전자수송층을 형성하고 상기 전자수송층 상부에 Liq 15 A과 ΑΠ200Α을 순차적으로 진공 증착 하여 음극을 형성함으로써 유기발광소자를 제작하였다. 상기 유기발광소자는 5층의 유기 박막층을가지는 구조로 되어 있으며, 구체적으로 다음과 같다. Subsequently, the compound D and Liq are simultaneously deposited in a 1: 1 ratio on the light emitting layer to form an electron transport layer having a thickness of 300 A, and Liq 15 A and AΠ200Α are sequentially vacuum deposited on the electron transport layer to form a cathode. The device was produced. The organic light emitting device has a structure having five organic thin film layers, specifically as follows.
ITO/화합물 A(700A)/화합물 B(50A)/화합물 C(1020A)/EML [화합물 l :B-10:Ir(ppy)3 = X:X: 10%](400A)/화합물 D:Liq(300A)/Liq(15 A)/Al(1200A)의 구조로 제작하였다. (X- 중량비) ITO / Compound A (700A) / Compound B (50A) / Compound C (1020A) / EML [Compound l: B-10: Ir (ppy) 3 = X: X: 10%] (400A) / Compound D: Liq It was produced in the structure of (300A) / Liq (15A) / Al (1200A). (X- weight ratio)
화합물 A: N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazol-3-yl)^  Compound A: N4, N4'-diphenyl-N4, N4'-bis (9-phenyl-9H-carbazol-3-yl) ^
diamine diamine
화합물 B: 1 ,4,5,8,9, 1 1 -hexaazatriphenylene-hexacarbonitrile (HAT-CN),  Compound B: 1,4,5,8,9,1 1 -hexaazatriphenylene-hexacarbonitrile (HAT-CN),
화합물 C:N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-phenyl- 9H-fluoren-2-amine Compound C: N- (biphenyl-4-yl) -9,9-dimethyl-N- ( 4- (9-phenyl-9H-fluoren-2-amine
화합물 D: 8-(4-(4,6-di(naphthalen-2-yl)-l ,3,5-triazin-2-yl)phenyl)quinoline 실시예 16  Compound D: 8- (4- (4,6-di (naphthalen-2-yl) -l, 3,5-triazin-2-yl) phenyl) quinoline Example 16
화합물 1과 화합물 B-10을 1 :1 로 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound 1 and Compound B-10 as 1: 1.
실시예 17  Example 17
화합물 1과 화합물 B- 10을 1 :4 로사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting device was manufactured in the same manner as in Example 15, except that Compound 1 and Compound B-10 were used as 1: 4.
실시예 18  Example 18
화합물 B-10 대신 제 2 호스트 화합물의 합성예 3에서 얻은 화합물 B-31을 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 19  An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-31 obtained in Synthesis Example 3 of the second host compound instead of the compound B-10. Example 19
화합물 1과 화합물 B-31을 1 :1 로사용한 것을 제외하고는 실시예 18과 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 18 except for using Compound 1 and Compound B-31 as 1: 1.
실시예 20  Example 20
화합물 B-10 대신 제 2 호스트 화합물의 합성예 1에서 얻은 화합물 B-1을 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 21  An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-1 obtained in Synthesis Example 1 of the second host compound instead of the compound B-10. Example 21
화합물 1과 화합물 B-1을 1 : 1 로 사용한 것을 제외하고는 실시예 20과 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 20 except for using Compound 1 and Compound B-1 as 1: 1.
실시예 22 화합물 1과 화합물 B-1을 1:4 로 사용한 것을 제외하고는 실시예 20과 동일한 방법으로 유기발광소자를 제작하였다. Example 22 An organic light emitting diode was manufactured according to the same method as Example 20 except for using Compound 1 and Compound B-1 in 1: 4.
실시예 23  Example 23
화합물 B-10 대신 제 2 호스트 화합물의 합성예 4에서 얻은 화합물 B-34를 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 24  An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-34 obtained in Synthesis Example 4 of the second host compound instead of the compound B-10. Example 24
화합물 1과 화합물 B-34를 1:1 로 사용한 것을 제외하고는 실시예 23과 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 23 except for using Compound 1 and Compound B-34 at 1: 1.
실시예 25  Example 25
화합물 1과 제 2 호스트 화합물의 합성예 5에서 얻은 화합물 B-43를 1:1 로 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 26  An organic light emitting diode was manufactured according to the same method as Example 15 except for using the compound B-43 obtained in Synthesis Example 5 of the compound 1 and the second host compound in a 1: 1 manner. Example 26
화합물 1 대신 합성예 63에서 얻은 화합물 135를 사용하고 화합물 B-10 대신 제 2 호스트 화합물의 합성예 6에서 얻은 화합물 B-114를 7:3으로 사용한 것올 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다.  The compound was obtained in the same manner as in Example 15, except that Compound 135, which was obtained in Synthesis Example 63 instead of Compound 1, and Compound B-114 obtained in Synthesis Example 6 of the second host compound instead of Compound B-10 were used as 7: 3. A light emitting device was manufactured.
실시예 27  Example 27
화합물 135와 화합물 B-114를 1:1 로 사용한 것을 제외하고는 실시예 26과 동일한방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 26 except for using Compound 135 and Compound B-114 at 1: 1.
실시예 28  Example 28
화합물 135와 화합물 B-114를 3:7 로 사용한 것을 제외하고는 실시예 26과 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 26 except for using Compound 135 and Compound B-114 at 3: 7.
참고예 6  Reference Example 6
화합물 1과 화합물 B-10의 2종 호스트 대신 화합물 1을 단독 호스트를 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 2  An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound 1 as a single host instead of two hosts of Compound 1 and Compound B-10. Comparative Example 2
화합물 1과 화합물 B-10의 2종 호스트 대신 CBP 단독 호스트를사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 15 except for using a CBP-only host instead of two hosts of Compound 1 and Compound B-10.
비교예 3  Comparative Example 3
화합물 1과 화합물 B-10의 2종 호스트 대신 화합물 B-10 단독 호스트를 사용한 것을 제외하고는 실시예 15와 동일한 방법으로 유기발광소자를 제작하였다. 비교예 4 An organic light emitting diode was manufactured according to the same method as Example 15 except for using Compound B-10 as a host instead of two hosts of Compound 1 and Compound B-10. Comparative Example 4
화합물 1과 화합물 B-31의 2종 호스트 대신 화합물 B-31 단독 호스트를 사용한 것을 제외하고는 실시예 19와 동일한 방법으로 유기발광소자 '를 제작하였다. 비교예 5 Compound 1 and Compound B-31 2 jong host instead of the organic light-emitting device "in the same manner as in Example 19, except that the compound B-31 was produced in the host alone. Comparative Example 5
화합물 1과 화합물 B- 1의 2종 호스트 대신 화합물 B- 1 단독 호스트를 사용한 것을 제외하고는 실시예 20과 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 20 except for using the compound B-1 single host instead of the two hosts of the compound 1 and the compound B-1.
비교예 6  Comparative Example 6
화합물 1과 화합물 B-34의 2종 호스트 대신 화합물 B-34 단독 호스트를 사용한 것을 제외하고는 실시예 23과 동일한 방법으로 유기발광소자를 제작하였다. 비교예 7  An organic light emitting diode was manufactured according to the same method as Example 23 except for using Compound B-34 alone as a host instead of two hosts of Compound 1 and Compound B-34. Comparative Example 7
화합물 1과 화합물 B-43의 2종 호스트 대신 화합물 B-43 단독 호스트를 사용한 것을 제외하고는 실시예 25와 동일한 방법으로 유기발광소자를 제작하였다. 평가 1  An organic light emitting diode was manufactured according to the same method as Example 25 except for using Compound B-43 alone as a host instead of two hosts of Compound 1 and Compound B-43. Rating 1
살시예 15 내지 28, 참고예 6 및 비교예 2 내지 7에 따른 유기발광소자의 발광효율 및 수명특성을 평가하였다.  The luminous efficiency and lifespan characteristics of the organic light emitting diodes according to the case 15 to 28, Reference Example 6 and Comparative Examples 2 to 7 were evaluated.
구체적인 측정방법은 하기와 같고, 그 결과는 표 3과 같다.  Specific measurement methods are as follows, and the results are shown in Table 3.
(1) 전압변화에 따른 전류밀도의 변화 측정  (1) Measurement of change in current density according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.  For the organic light emitting device manufactured, the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
(2) 전압변화에 따른 휘도변화 측정  (2) Measurement of luminance change according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 휘도계 (Minolta Cs- I OOOA)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.  For the manufactured organic light emitting device, the luminance was measured by using a luminance meter (Minolta Cs-I OOOA) while increasing the voltage from 0V to 10V to obtain a result.
(3) 발광효율 측정  (3) Measurement of luminous efficiency
상기 (0 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 ( 10 mA/cm2)의 전류 효율 (cd/A) 을 계산하였다.  The current efficiency (cd / A) of the same current density (10 mA / cm 2) was calculated using the luminance, current density and voltage measured from (0 and (2) above.
(4) 수명 측정  (4) life measurement
휘도 (cd/m2)를 6000 cd/m2로 유지하고 전류 효율 (cd/A)이 97%로 감소하는 시간을 측정하여 결과를 얻었다, 【표 3】 The result was obtained by measuring the time of keeping the luminance (cd / m 2 ) at 6000 cd / m 2 and decreasing the current efficiency (cd / A) to 97%. Table 3
Figure imgf000096_0001
Figure imgf000096_0001
표 3을 참고하면, 실시예 15 내지 28에 따른 유기발광소자는 참고예 6과 비교예 2 내지 7에 따른 유기발광소자와 비교하여 발광효율 및 수명특성이 현저하게 개선된 것을 확인할 수 있다. 유기 발광 소자의 제작 II 실시예 29 Referring to Table 3, the organic light emitting device according to Examples 15 to 28 it can be seen that the luminous efficiency and life characteristics are significantly improved compared to the organic light emitting device according to Reference Example 6 and Comparative Examples 2 to 7. Fabrication of Organic Light-Emitting Device II Example 29
ITO (Indium tin oxide)가 1500 A의 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송시킨 다음 산소 플라즈마를 이용하여 상기 기판을 10분간 세정 한 후 진공 층착기로 기판을 이송하였다. 이렇게 준비된 ΠΌ 투명 전극을 양극으로사용하여 ΠΌ 기판 상부에 화합물 P를 진공 증착하여 700 A 두께의 정공 주입층을 형성하고 상기 주입층 상부에 화합물 Q를 50A의 두께로 증착한후, 화합물 R을 1020A의 두께로 증착하여 정공수송층을 형성하였다ᅳ 그 위에 청색형광 발광 호스트 및 도판트로 BH113 및 BD370 (구입처: SFC社)올 도판트 농도 5wt0/。로 도핑하여 진공증착으로 200 A 두께의 발광층을 형성하였다. 후 상기 발광층 상부에 화합물 28 및 화합물 B- 116을 50:50(wt/wt)로 진공증착하여 50A 두께의 전자수송보조층을 형성하였다. 상기 전자수송보조층 상부에 화합물 S와 Liq를 동시에 1:1 비율로 진공 중착하여 300 A 두께의 전자수송층을 형성하고 상기 전자수송층 상부에 Liq l5A과 A11200A을 순차적으로 진공 증착 하여 음극을 형성함으로써 유기발광소자를 제작하였다. 상기 유기발광소자는 5층의 유기 박막층을 가지는 구조로 되어 있으며, 구체적으로 ΠΌ/화합물 P(700A)/화합물 Q(50A)/화합물 R(1020 A)/EML[BH113:BD370 = Glass substrates coated with ITO (Indium tin oxide) to a thickness of 1500 A were washed by distilled water ultrasonically. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried, transferred to a plasma cleaner, and then the substrate was cleaned for 10 minutes using oxygen plasma, and then the substrate was transferred to a vacuum depositor. Compound P was vacuum-deposited on the Π substrate using the prepared ΠΌ transparent electrode as an anode to form a hole injection layer having a thickness of 700 A, and then deposited Compound Q on the injection layer to a thickness of 50 A, and then Compound R 1020A. A hole transport layer was formed by evaporation at a thickness of ᅳ. On top of it, a blue fluorescent light emitting host and a dopant were doped with BH113 and BD370 (purchased by SFC Co., Ltd.) at a concentration of 5wt 0 /. It was. Thereafter, Compound 28 and Compound B-116 were vacuum-deposited at 50:50 (wt / wt) on the emission layer to form an electron transport auxiliary layer having a thickness of 50A. By vacuum depositing compound S and Liq on the electron transport auxiliary layer at the same time at 1: 1 ratio to form an electron transport layer having a thickness of 300 A, and forming a cathode by vacuum depositing Liq l5A and A11200A on the electron transport layer sequentially. A light emitting device was manufactured. The organic light emitting device has a structure having five organic thin film layers, specifically, ΠΌ / Compound P (700A) / Compound Q (50A) / Compound R (1020 A) / EML [BH113: BD370 =
95:5wt%](200A)/화합물 28: 화합물 B-U6= 1:1(50 A)/ 화합물 S: 95: 5 wt%] (200 A) / Compound 28: Compound B-U6 = 1: 1 (50 A) / Compound S:
Liq(300A)/Liq(15A)/AI(1200A)의 구조로 제작하였다. 화합물 P: N4,N4'-diphenyl-N4,N4'-bis(9-phenyl-9H-carbazol-3-yl)biphenyl-4,4'- diamine It was produced in the structure of Liq (300A) / Liq (15A) / AI (1200A). Compound P: N4, N4'-diphenyl-N4, N4'-bis (9-phenyl-9H-carbazol-3-yl) biphenyl-4,4'-diamine
화합물 Q: 1 ,4,5,8,9, 11 -hexaazatriphenylene-hexacarbonitrile (HAT-CN),  Compound Q: 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile (HAT-CN),
화합물 R:N-(biphenyl-4-yl)-9,9-dimethyl-N-(4-(9-pheny^  Compound R: N- (biphenyl-4-yl) -9,9-dimethyl-N- (4- (9-pheny ^
9H-fluoren-2-amine 9H-fluoren-2-amine
화합물 S: 8-(4-(4,6-di(naphthalen-2-yl)-l,3,5-triazin-2-yl)phenyl)quinoIine 실시예 30  Compound S: 8- (4- (4,6-di (naphthalen-2-yl) -1,3,5-triazin-2-yl) phenyl) quinoIine Example 30
화합물 28과 화합물 B-118을 30:70으로 사용한 것을 제외하고는 실시예 29와 동일한 방법으로 유기발광소자를 제작하였다. 실시예 31 An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 28 and Compound B-118 at 30:70. Example 31
화합물 1 12와 화합물 B- 1 18을 50:50으로사용한 것을 제외하고는 실시예 29와 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 1 12 and Compound B-1 18 at 50:50.
실시예 32  Example 32
화합물 135와 화합물 B-U4를 50:50으로 사용한 것을 제외하고는 실시예 29와 동일한 방법으로 유기발광소자를 제작하였다.  An organic light emitting diode was manufactured according to the same method as Example 29 except for using Compound 135 and Compound B-U4 at 50:50.
비교예 8 전자수송보조충을 사용하지 않은 것을 제외하고는 실시예 29와 동일한 방법으로 유기발광 소자를 제조하였다.  Comparative Example 8 An organic light emitting diode was manufactured according to the same method as Example 29 except for not using an electron transport aid.
평가 2 실시예 29 내지 32와 비교예 8에서 제조된 유기발광소자에 대하여 전압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다. 구체적인 측정방법은 하기와 같고, 그 결과는 표 4와 같다. (1) 전압변화에 따른 전류밀도의 변화 측정 제조된 유기발광소자에 대해, 전압을 0V 부터 10V까지 상승시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다. Evaluation 2 For the organic light emitting diodes manufactured in Examples 29 to 32 and Comparative Example 8, current density change, luminance change, and luminous efficiency according to voltage were measured. Specific measurement methods are as follows, and the results are shown in Table 4. (1) Measurement of change in current density according to voltage change For the manufactured organic light emitting diode, the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V. The result was obtained by dividing the current value by the area.
(2) 전압변화에 따른 휘도변화 측정 제조된 유기발광소자에 대해, 전압을 0V부터 10V까지 상승시키면서 휘도계 (Minolta Cs-IOOOA)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다. (2) Measurement of luminance change according to voltage change For the manufactured organic light emitting diode, the luminance was measured by using a luminance meter (Minolta Cs-IOOOA) while increasing the voltage from 0V to 10V to obtain a result.
(3) 발광효율 측정 상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전류밀도 (10 mA/ctn2)의 전류 효율 (cd/A) 을 계산하였다. (5) 수명 측정 제조된 유기발광소자에 대해 폴라로닉스 수명측정 시스템을 사용하여 실시예 1 및 비교예 1의 소자를 초기휘도 (cd/m2)를 750 cd/m2 로 발광시키고 시간경과에 따른 휘도의 감소를 측정하여 초기 휘도 대비 97%로 휘도가 감소된 시점올 T97 수명으로 측정하였다. (3) Measurement of Luminous Efficiency The current efficiency (cd / A) of the same current density (10 mA / ctn2) was calculated using the brightness, current density, and voltage measured from the above (1) and (2). (5) life measurement Using the Polaronics Lifetime Measurement System, the devices of Example 1 and Comparative Example 1 emit light at an initial luminance (cd / m2) of 750 cd / m2 and measure a decrease in luminance over time. When the brightness was reduced to 97% of the initial luminance, the T97 lifetime was measured.
【표 4】  Table 4
Figure imgf000099_0001
Figure imgf000099_0001
표 4를 참고하면, 실시예 29 내지 32에 따른 유기발광소자는 비교예 8에 따른 유기발광소자와 비교하여 발광효율 및 수명특성이 현저하게 개선된 것을 확인할 수 있다. 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있올 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.  Referring to Table 4, it can be seen that the organic light emitting diodes according to Examples 29 to 32 have significantly improved luminous efficiency and lifespan characteristics compared to the organic light emitting diode according to Comparative Example 8. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person skilled in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims

【특허청구범위】 【청구항 11 하기 화학식 1로 표현되고 분자량이 538 이상 750 미만인 유기 화합물: 【Patent Claims】 【Claim 11: An organic compound represented by the following formula (1) and having a molecular weight of 538 or more and less than 750:
[화학식 1] [Formula 1]
Figure imgf000100_0001
Figure imgf000100_0001
상기 화학식 1에서, In Formula 1,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 중 적어도 하나는 N 이고, At least one of Z is N,
R1 내지 R1 1 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 해테로아릴기. 또는 이돌의 조합이고, R 1 to R 1 1 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a substituted or unsubstituted C3 to C12 heteroaryl group. . Or it is a combination of two stones,
R' 및 R 2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R' and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, nl은 1 내지 5의 정수이고, R 9 and R 10 exist independently or are connected to each other to form a ring, nl is an integer from 1 to 5,
n2는 0 내지 2의 정수이고, n2 is an integer from 0 to 2,
n3 및 n4는 각각 독립적으로 0 또는 1이다. n3 and n4 are each independently 0 or 1.
【청구항 2] [Claim 2]
제 1항에 있어서, In clause 1,
하기 화학식 1-A로 표현되는 유기화합물: 99 Organic compound represented by the following formula 1-A: 99
[화학식 1-A] [Formula 1-A]
Figure imgf000101_0001
Figure imgf000101_0001
상기 화학삭 1 -A에서, In the chemical link 1-A,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 증 적어도 하나는 N 이고, At least one Z proof is N,
R1 내지 R'0 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로아릴기 또는 이들의 조합이고, R 1 to R' 0 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a substituted or unsubstituted C3 to C12 heteroaryl group. or a combination thereof,
R1 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 1 and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 ¾재하거나 서로 연결되어 고리를 형성하고, nl은 1 내지 5의 정수이고, R 9 and R 10 exist independently or are connected to each other to form a ring, nl is an integer of 1 to 5,
n2는 0 내지 2의 정수이고, n2 is an integer from 0 to 2,
n3 및 n4는 각각 독립적으로 0 또는 1이다. n3 and n4 are each independently 0 or 1.
【청구항 3】 【Claim 3】
제 1항에서, In paragraph 1:
하기 화학식 2 내지 4 중 어느 하나로 표현되는 유기 화합물: Organic compounds represented by any of the following formulas 2 to 4:
[화학식 2] [화학식 3 [Formula 2] [Formula 3
Figure imgf000102_0001
Figure imgf000102_0001
상기 화학식 2 내지 4에서, In Formulas 2 to 4,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 중 적어도 하나는 N 이고, At least one of Z is N,
R1 내지 R1 1 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 해테로아릴기 또는 이들의 조합이고, R 1 to R 1 1 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a substituted or unsubstituted C3 to C12 heteroaryl group. Or a combination thereof,
R1 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 1 and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, 화학식 2의 경우 , nl은 1 내지 3의 정수이고 n2는 0 내지 2의 정수이고 l≤nl+n2≤3이며, R 9 and R 10 exist independently or are connected to each other to form a ring, and in the case of Formula 2, nl is an integer from 1 to 3, n2 is an integer from 0 to 2, and l≤nl+n2≤3,
화학식 3 또는 화학식 4의 경우, nl은 1 내지 4의 정수이고 n2는 0 내지 2의 정수이고 1<η1+η2<4 이다. In the case of Formula 3 or Formula 4, nl is an integer from 1 to 4, n2 is an integer from 0 to 2, and 1<η1+η2<4.
【청구항 4】 【Claim 4】
제 1항에서, In paragraph 1:
하기 화학식 5 또는 6으로 표현되는 유기 화합물: 101 화학식 5] Organic compounds represented by the following formula 5 or 6: 101 Formula 5]
Figure imgf000103_0001
Figure imgf000103_0001
[화학식 6] [Formula 6]
Figure imgf000103_0002
Figure imgf000103_0002
상기 화학식 5 또는 6에서, In Formula 5 or 6 above,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 증 적어도 하나는 N 이고, At least one Z proof is N,
R', R2, R3, R4, R3a, R4a, R3 , R b, R5 내지 R1 1 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 .내지 C 12 해테로아릴기 또는 이들의 조합이고, 1 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R', R 2 , R 3 , R 4 , R 3a , R 4a , R 3 , R b , R 5 to R 1 1 and R a are each independently hydrogen, deuterium, substituted or unsubstituted C1 to C10 alkyl group , substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 . to C 12 heteroaryl group or a combination thereof, and 1 and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, n3 및 n4는 각각 독립적으로 0 또는 1이다. R 9 and R 10 exist independently or are connected to each other to form a ring, and n3 and n4 are each independently 0 or 1.
【청구항 5】 【Claim 5】
제 4항에서, In paragraph 4:
상기 화학식 5로 표현되는 화합물은 하기 화학식 5a 내지 5g 중 어느 하나로 표현되는 유기 화합물: [화학식 5a]
Figure imgf000104_0001
Figure imgf000104_0002
Figure imgf000104_0003
The compound represented by Formula 5 is an organic compound represented by any one of the following Formulas 5a to 5g: [Formula 5a]
Figure imgf000104_0001
Figure imgf000104_0002
Figure imgf000104_0003
Figure imgf000104_0004
화학식 5e]
Figure imgf000104_0004
Formula 5e]
Figure imgf000105_0001
Figure imgf000105_0001
Figure imgf000105_0002
Figure imgf000105_0002
Figure imgf000105_0003
Figure imgf000105_0003
상기 화학식 5a 내지 5g에서, In Formulas 5a to 5g,
Z는 각각 독립적으로 N,C 또는 CRa이고, Z is each independently N, C or CR a ,
. Z 중 적어도 하나는 N 이고, . At least one of Z is N,
R',R2,R3a,R4a, 3b,R4b, R7 내지 R11 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기 치환 또는 비치환된 C3 내지 C12 헤테로아릴기 또는 이들의 조합이고; R', R 2 , R 3a , R 4a , 3b , R 4b , R 7 to R 11 and R a are each independently hydrogen, deuterium, substituted or unsubstituted C1 to C10 alkyl group, substituted or unsubstituted C6 to C12 aryl group, substituted or unsubstituted C3 to C12 heteroaryl group, or a combination thereof;
R' 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R' and R 2 exist independently or are connected to each other to form a ring, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, n3 및 n4는 각각 독립적으로 0 또는 1이다. R 9 and R 10 exist independently or are connected to each other to form a ring, and n3 and n4 are each independently 0 or 1.
【청구항 6】 【Claim 6】
제 5항에서, In paragraph 5,
상기 화학식 5a 내지 5g의 R^ R^ R^ R^ R^ R415및 R1 1 중 적어도 하나는 치환 또는 비치환된 C6 내지 C 12 아릴기인 유기 화합물. An organic compound in which at least one of R^R^R^R^R^ R415 and R11 of Formulas 5a to 5g is a substituted or unsubstituted C6 to C12 aryl group.
【청구항 7】 【Claim 7】
제 4항에서, In paragraph 4:
상기 화학식 6으로 표현되는 화합물은 하기 화학식 6a로 표현되는 유기 화합물: The compound represented by Formula 6 is an organic compound represented by Formula 6a:
6a] 6a]
Figure imgf000106_0001
Figure imgf000106_0001
상기 화학식 6a에서, In Formula 6a,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 중 적어도 하나는 N 이고, At least one of Z is N,
R' 내지 R' 1 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C 12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로아릴기 또는 이들의 조합이고, R' to R' 1 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a substituted or unsubstituted C3 to C12 heteroaryl group. or a combination thereof,
R1 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 1 and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 및 R8은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 7 and R 8 exist independently or are connected to each other to form a ring,
R9 및 R10은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, n3 및 n4는 각각 독립적으로 0 또는 1이다. R 9 and R 10 exist independently or are connected to each other to form a ring, and n3 and n4 are each independently 0 or 1.
【청구항 8】 제 7항에서, 【Claim 8】 In paragraph 7:
상기 화학식 6a의 R1 내지 R6및 R1 1 중 적어도 하나는 치환 또는 비치환된 C6 내지 C12 아릴기인 유기 화합물. An organic compound in which at least one of R 1 to R 6 and R 1 1 of Formula 6a is a substituted or unsubstituted C6 to C12 aryl group.
【청구항 9】 【Claim 9】
제 1항에서, In paragraph 1,
하기 화학식 7로 표현되는 유기 화합물: Organic compound represented by the following formula (7):
Figure imgf000107_0001
Figure imgf000107_0001
상기 화학식 7에서, In Formula 7 above,
Z는 각각 독립적으로 N, C 또는 CRa이고, Z is each independently N, C or CR a ,
Z 중 적어도 하나는 N 이고, At least one of Z is N,
R1 내지 R6 및 Ra는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C 10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C 12 헤테로아릴기 또는 이들의 조합이고, R 1 to R 6 and R a are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C 10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, or a substituted or unsubstituted C3 to C 12 heteroaryl group. or a combination thereof,
R' 및 R2는 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R' and R 2 exist independently or are connected to each other to form a ring,
R5 및 R6은 독립적으로 존재하거나 서로 연결되어 고리를 형성하고, R 5 and R 6 exist independently or are connected to each other to form a ring,
R7 내지 R10은 각각 독립적으로 수소 또는 치환 또는 비치환된 C6 내지 C12 아릴기이고, R 7 to R 10 are each independently hydrogen or a substituted or unsubstituted C6 to C12 aryl group,
nl은 1 내지 5의 정수이고, nl is an integer from 1 to 5,
n2는 0 내지 2의 정수이고, n2 is an integer from 0 to 2,
n3 및 n4는 각각 독립적으로 0 또는 1이다. n3 and n4 are each independently 0 or 1.
【청구항 10】 【Claim 10】
제 1항에서, In paragraph 1:
하기 그룹 1에 나열된 유기 화합물: [그룹 1] Organic compounds listed in Group 1 below: [Group 1]
Figure imgf000108_0001
107
Figure imgf000108_0001
107
Figure imgf000109_0001
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000110_0001
80 L 80L
8l78lll SlOZ OAV 8l78lll SlOZ OAV
Figure imgf000111_0001
Figure imgf000111_0001
60 L f7.ZlO/t7lOZa¾/X3d
Figure imgf000112_0001
60 L f7.ZlO/t7lOZa¾/X3d
Figure imgf000112_0001
Figure imgf000112_0002
Figure imgf000112_0002
OLL OLL
Figure imgf000113_0001
Figure imgf000113_0001
ILL ILL
8l78lll/SlOZ OAV
Figure imgf000114_0001
8l78lll/SlOZ OAV
Figure imgf000114_0001
【청구항 1 1】 【Claim 1 1】
저 항 내지 제 10항 중 어느 한 항에 따른 제 1 유기 화합물, 그리고 카바졸 모이어티를 가지는 적어도 하나의 제 2 유기 화합물 A first organic compound according to any one of claims 1 to 10, and at least one second organic compound having a carbazole moiety.
을 포함하는 유기광전자소자용 조성물. A composition for an organic optoelectronic device containing a.
【청구항 12】 【Claim 12】
제 1 1항에서, In paragraph 11,
상기 제 2 유기 화합물은 The second organic compound is
하기 화학식 8로 표현되는 화합물, 및 하기 화학식 9로 표현되는 모이어티와 하기 화학식 10으로 표현되는 모이어티의 조합으로 이루어진 화합물 중 적어도 하나를 포함하는 유기광전자소자용 조성물: A composition for an organic optoelectronic device comprising at least one of a compound represented by the following Chemical Formula 8, and a compound consisting of a combination of a moiety represented by the following Chemical Formula 9 and a moiety represented by the following Chemical Formula 10:
[화학식 8] [Formula 8]
Figure imgf000114_0002
상기 화학식 8에서,
Figure imgf000114_0002
In Formula 8 above,
γΐ은 단일 결합, 치환 또는 비치환된 C 1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환또는 비치환된 C6 내지 C30 아릴렌기 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, Ar1은 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기 또는 이들의 조합이고, γΐ is a single bond, a substituted or unsubstituted C 1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted or unsubstituted C2 to C30 heteroarylene group. or a combination thereof, Ar 1 is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof,
R12 내지 R15는 각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이고, R 12 to R 15 are each independently hydrogen, hydrogen, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof. ego,
R12 내지 R15 및 Ar1 중 적어도 하나는 치환 또는 비치환된 트리페닐렌기 또는 치환 또는 비치환된 카바졸기를 포함하고, At least one of R 12 to R 15 and Ar 1 includes a substituted or unsubstituted triphenylene group or a substituted or unsubstituted carbazole group,
9] 화학식 10]
Figure imgf000115_0001
상기 화학식 9 및 10에서,
9] Formula 10]
Figure imgf000115_0001
In Formulas 9 and 10,
Y2 및 Y3는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기,. 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, Y 2 and Y 3 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, or a substituted or unsubstituted C6 to C30 arylene group. A substituted or unsubstituted C2 to C30 heteroarylene group or a combination thereof,
Ar2 및 Ar3는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아ᅳ릴기, 치환 또는 비치환된 C2 내지 C30 해테로아릴기 또는 이들의 조합이고, Ar 2 and Ar 3 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof,
16 내지 R19는 각각 독립적으로 수소, 중수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이고, 1 6 to R 19 are each independently hydrogen, deuterium, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C50 aryl group, a substituted or unsubstituted C2 to C50 heteroaryl group, or a combination thereof. ,
상기 화학식 9의 인접한 두 개의 *는 상기 화학식 10의 두 개의 *와 결합하여 융합고리를 형성하고 상기 화학식 9에서 융합고리를 형성하지 않은 *는 각각 독립적으로 CRb이고, The two adjacent * of Formula 9 combine with the two * of Formula 10 to form a fused ring, and the * that does not form a fused ring in Formula 9 are each independently CR b ,
1^는 수소, 증수소, 치환 또는 비치환된 C1 내지 C10 알킬기, 치환 또는 비치환된 C6 내지 C12 아릴기, 치환 또는 비치환된 C3 내지 C12 헤테로아릴기 또는 이들의 조합이다. 1^ is hydrogen, increased hydrogen, a substituted or unsubstituted C1 to C10 alkyl group, a substituted or unsubstituted C6 to C12 aryl group, a substituted or unsubstituted C3 to C12 heteroaryl group, or a combination thereof.
【청구항 13】 【Claim 13】
제 12항에서 상기 화학식 8로 표현되는 제 2 유기 화합물은 하기 화학식 8-1 내지 8-ΙΠ 중 적어도 하나로 표현되는 유기광전자소자용 조성물: In paragraph 12 The second organic compound represented by Formula 8 is a composition for an organic optoelectronic device represented by at least one of the following Formulas 8-1 to 8-ΙΠ:
[ -1] [ -One]
Figure imgf000116_0001
Figure imgf000116_0001
-Π] -Π]
Figure imgf000116_0002
Figure imgf000116_0002
[화학식 8-m] [Formula 8-m]
Figure imgf000116_0003
Figure imgf000116_0003
상기 화학식 8-1 내지 8-ΙΠ에서, In the above formulas 8-1 to 8-ΙΠ,
Y1, Y4 및 Y5는 각각 독립적으로 단일 결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, Y 1 , Y 4 and Y 5 are each independently a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C6 to C30 arylene group, or a substituted Or an unsubstituted C2 to C30 heteroarylene group or a combination thereof,
Ar1 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기 또는 이들의 조합이고, Ar 1 and Ar 4 are each independently a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof,
R12 내지 R15및 는 R20 내지 R31은각각 독립적으로 수소, 증수소, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C50 아릴기, 치환 또는 비치환된 C2 내지 C50 헤테로아릴기 또는 이들의 조합이다. R 12 to R 15 and R 20 to R 31 are each independently hydrogen, hydrogen hydrogen, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C50 aryl group, substituted or unsubstituted C2 to C50 It is a heteroaryl group or a combination thereof.
【청구항 14] [Claim 14]
제 항에서, In clause 1:
상기 화학식 8로 표현되는 제 2 유기 화합물은 그룹 2에 나열된 화합물에서 선택되는 유기광전자소자용 조성물: The second organic compound represented by Formula 8 is a composition for an organic optoelectronic device selected from the compounds listed in Group 2:
그룹 2] Group 2]
B-10 B-10
E-12 E-12
Figure imgf000117_0001
Figure imgf000117_0001
B-17 B-1S B-17B-1S
Figure imgf000117_0002
Figure imgf000117_0002
3—20 -2." 3—20 -2. "
Figure imgf000117_0003
Figure imgf000118_0001
Figure imgf000117_0003
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000119_0001
LLL LLL
8l78lll/SlOZ OAV 8l78lll/SlOZ OAV
Figure imgf000120_0001
Figure imgf000120_0001
Figure imgf000120_0002
Figure imgf000120_0002
8LL 8LL
8^8ΪΪΪ/5Ϊ0∑; OAV 8^8ΪΪΪ/5Ϊ0∑; OAV
Figure imgf000121_0001
Figure imgf000121_0001
6LL 6LL
8l78lll/SlOZ OAV 8l78lll/SlOZ OAV
Figure imgf000122_0001
Figure imgf000122_0001
OZL OZL
8l78lll/SlOZ OAV
Figure imgf000123_0001
8l78lll/SlOZ OAV
Figure imgf000123_0001
Figure imgf000124_0001
Figure imgf000124_0001
D-11
Figure imgf000125_0001
D-11
Figure imgf000125_0001
D-15 D-15
D-16 D-17 D-16 D-17
Figure imgf000125_0002
Figure imgf000125_0002
D-27 D-28 D-29 D-27 D-28 D-29
【청구항 15】 【Claim 15】
제 11항에서, In paragraph 11:
상기 화학식 9로 표현되는 모이어티와 상기 화학식 10으로 표현되는 모이어티의 조합으로 이루어진 제 2 유기 화합물은 하기 그룹 3에 나열된 화합물에서 선택되는 유기광전자소자용 조성물: The moiety represented by Formula 9 and the moiety represented by Formula 10 The second organic compound consisting of a combination of moieties is a composition for an organic optoelectronic device selected from the compounds listed in Group 3 below:
[그룹 3] [Group 3]
Figure imgf000126_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000127_0001
【청구항 16】 【Claim 16】
제 U항에서 , In Article U:
상기 제 1 유기 화합물과 상기 제 2 유기 화합물은 1:10 내지 10:1의 중량비로 포함되어 있는 유기광전자소자용 조성물. A composition for an organic optoelectronic device, wherein the first organic compound and the second organic compound are contained in a weight ratio of 1:10 to 10:1.
【청구항 17] [Claim 17]
제 11항에서, 인광 도편트를 더 포함하는 유기광전자소자용 조성물. In paragraph 11: A composition for an organic optoelectronic device further comprising a phosphorescent dopant.
【청구항 18】 【Claim 18】
서로 마주하는 양극과 음극, 그리고 Anode and cathode facing each other, and
상기 양극과 상기 음극사이에 위치하는 적어도 1층의 유기층 At least one organic layer located between the anode and the cathode
을 포함하고, Including,
상기 유기층은 제 1항 내지 제 10항 중 어느 한 항에 따른 유기 화합물 또는 제 1 1항 내지 제 17항 중 어느 한 항에 따른 '유기광전자소자용 조성물을 포함하는 유기 광전자 소자. The organic layer is an organic optoelectronic device comprising the organic compound according to any one of claims 1 to 10 or the composition for an organic optoelectronic device according to any one of claims 11 to 17.
【청구항 19】 【Claim 19】
제 18항에서, In paragraph 18:
상기 유기층은 발광충을 포함하고, The organic layer contains luminescent insects,
상기 발광층은 상기 유기 화합물 또는 상기 유기광전자소자용 조성물을 포함하는 유기 광전자 소자. The light-emitting layer is an organic optoelectronic device comprising the organic compound or the composition for an organic optoelectronic device.
【청구항 20】 【Claim 20】
제 19항에서, In paragraph 19:
상기 유기 화합물 또는 상기 유기광전자소자용 조성물은 상기 발광층의 호스트로서 포함되는 유기 광전자 소자. An organic optoelectronic device wherein the organic compound or the composition for an organic optoelectronic device is included as a host of the light emitting layer.
【청구항 21】 【Claim 21】
제 18항에 따른 유기 광전자 소자를 포함하는 표시 장치. A display device comprising the organic optoelectronic device according to claim 18.
PCT/KR2014/012749 2014-01-24 2014-12-23 Organic compound, composition, organic optoelectronic device, and display device WO2015111848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/037,419 US11177441B2 (en) 2014-01-24 2014-12-23 Organic compound, composition, organic optoelectronic device, and display device
CN201480073378.2A CN105916847B (en) 2014-01-24 2014-12-23 Organic compound, constituent, organic photovoltaic component and display element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0009230 2014-01-24
KR20140009230 2014-01-24
KR1020140184653A KR101829745B1 (en) 2014-01-24 2014-12-19 Organic compound and composition and organic optoelectric device and display device
KR10-2014-0184653 2014-12-19

Publications (1)

Publication Number Publication Date
WO2015111848A1 true WO2015111848A1 (en) 2015-07-30

Family

ID=53681615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012749 WO2015111848A1 (en) 2014-01-24 2014-12-23 Organic compound, composition, organic optoelectronic device, and display device

Country Status (1)

Country Link
WO (1) WO2015111848A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016024745A3 (en) * 2014-08-12 2016-09-01 삼성에스디아이 주식회사 Compound, organic optoelectronic diode containing same, and display device
JP2017128561A (en) * 2015-09-10 2017-07-27 東ソー株式会社 Cyclic azine compound, and production method, production intermediate, and use thereof
CN107337650A (en) * 2016-05-02 2017-11-10 三星Sdi株式会社 Compound for organic optoelectronic device and organic optoelectronic device and display device
CN107580594A (en) * 2015-06-17 2018-01-12 三星Sdi株式会社 For the compound of organic photoelectric device, organic photoelectric device and display device
JP2018534768A (en) * 2015-09-28 2018-11-22 ノヴァレッド ゲーエムベーハー Organic EL device
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
US10516114B2 (en) * 2016-09-28 2019-12-24 Samsung Sdi Co., Ltd. Compound for organic optoelectric device, composition for organic optoelectric device and organic optoelectric device and display device
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US11588116B2 (en) 2020-03-11 2023-02-21 Lg Chem, Ltd. Organic light emitting device
KR20230083321A (en) 2020-10-05 2023-06-09 토소가부시키가이샤 Triazine compounds, materials for organic electroluminescent devices, electron transport materials for organic electroluminescent devices, and organic electroluminescent devices
US11680059B2 (en) 2017-12-21 2023-06-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture and application thereof in organic electronic devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302657A (en) * 2004-04-15 2005-10-27 Sharp Corp Organic light emitting device
EP2091095A2 (en) * 2008-02-14 2009-08-19 Yamagata Promotional Organization for Industrial Technology Organic electroluminescence element
WO2010080471A1 (en) * 2009-01-08 2010-07-15 General Electric Company 2,4,6-tri-(heteroarylphenyl)-pyridines and electron-transporting materials comprising them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302657A (en) * 2004-04-15 2005-10-27 Sharp Corp Organic light emitting device
EP2091095A2 (en) * 2008-02-14 2009-08-19 Yamagata Promotional Organization for Industrial Technology Organic electroluminescence element
WO2010080471A1 (en) * 2009-01-08 2010-07-15 General Electric Company 2,4,6-tri-(heteroarylphenyl)-pyridines and electron-transporting materials comprising them

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHI-JIAN SU ET AL.: "Pyridine-Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs", ADVANCED MATERIALS, vol. 20, no. 11, 2008, pages 2125 - 2130, XP055214966 *
SHI-JIAN SU ET AL.: "Structure-Property Relationship of Pyridine-Containing Triphenyl Benzene Electron-Transport Materials for Highly Efficient Blue Phosphorescent OLEDs", ADVANCED FUNCTIONAL MATERIALS, vol. 19, no. 9, 2009, pages 1260 - 1267, XP055214962 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
US11024811B2 (en) 2014-07-09 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11456423B2 (en) 2014-07-09 2022-09-27 Universal Display Corporation Organic electroluminescent materials and devices
US11957047B2 (en) 2014-07-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
WO2016024745A3 (en) * 2014-08-12 2016-09-01 삼성에스디아이 주식회사 Compound, organic optoelectronic diode containing same, and display device
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US11641774B2 (en) 2014-09-29 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US11342510B2 (en) 2014-10-06 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
CN107580594B (en) * 2015-06-17 2024-03-05 三星Sdi株式会社 Compound for organic photoelectric device, organic photoelectric device and display device
CN107580594A (en) * 2015-06-17 2018-01-12 三星Sdi株式会社 For the compound of organic photoelectric device, organic photoelectric device and display device
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2017128561A (en) * 2015-09-10 2017-07-27 東ソー株式会社 Cyclic azine compound, and production method, production intermediate, and use thereof
JP2018534768A (en) * 2015-09-28 2018-11-22 ノヴァレッド ゲーエムベーハー Organic EL device
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
CN107337650A (en) * 2016-05-02 2017-11-10 三星Sdi株式会社 Compound for organic optoelectronic device and organic optoelectronic device and display device
US10516114B2 (en) * 2016-09-28 2019-12-24 Samsung Sdi Co., Ltd. Compound for organic optoelectric device, composition for organic optoelectric device and organic optoelectric device and display device
US11680059B2 (en) 2017-12-21 2023-06-20 Guangzhou Chinaray Optoelectronic Materials Ltd. Organic mixture and application thereof in organic electronic devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11588116B2 (en) 2020-03-11 2023-02-21 Lg Chem, Ltd. Organic light emitting device
KR20230083321A (en) 2020-10-05 2023-06-09 토소가부시키가이샤 Triazine compounds, materials for organic electroluminescent devices, electron transport materials for organic electroluminescent devices, and organic electroluminescent devices

Similar Documents

Publication Publication Date Title
KR101829745B1 (en) Organic compound and composition and organic optoelectric device and display device
WO2015111848A1 (en) Organic compound, composition, organic optoelectronic device, and display device
KR101773363B1 (en) Organic compound and composition and organic optoelectric device and display device
JP6402192B2 (en) Composition for organic optoelectronic device, organic optoelectronic device, and display device
WO2016013732A1 (en) Composition for organic optoelectric diode, organic optoelectric diode, and display device
KR101972802B1 (en) Organic compound and composition and organic optoelectric device
WO2017043757A1 (en) Organic compound, organic optoelectronic diode, and display device
KR101782881B1 (en) Organic compound and organic optoelectric device and display device
JP2015534258A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
KR102524650B1 (en) Compound, composition and organic optoelectronic device and display device
CN110872511A (en) Composition for organic photoelectric device, organic photoelectric device and display device
KR101897039B1 (en) Organic compound and composition and organic optoelectric device and display device
KR20190118403A (en) Composition and organic optoelectronic device and display device
WO2017104946A1 (en) Organic compound, composition, organic optoelectronic element, and display device
KR20200035769A (en) Composition for optoelectronic device and organic optoelectronic device and display device
JP6478672B2 (en) Organic compound, composition, organic optoelectronic device and display device
KR20190123138A (en) Composition and organic optoelectronic device and display device
CN107868035B (en) Compound for organic photoelectric device, composition for organic photoelectric device, and display device
US10270042B2 (en) Compound for organic optoelectric device and organic optoelectric device and display device
KR102008896B1 (en) Organic compound and organic optoelectronic device and display device
KR102008894B1 (en) Organic compound for optoelectronic device and organic optoelectronic device and display device
KR102162401B1 (en) Composition for organic optoelectronic device and organic optoelectronic device and display device
KR102146791B1 (en) Compound for organic optoelectronic device, and organic optoelectronic device and display device
KR102044946B1 (en) Organic compound and organic optoelectronic device and display device
KR102005866B1 (en) Composition and organic optoelectric device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15037419

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880038

Country of ref document: EP

Kind code of ref document: A1