WO2015111351A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
WO2015111351A1
WO2015111351A1 PCT/JP2014/084171 JP2014084171W WO2015111351A1 WO 2015111351 A1 WO2015111351 A1 WO 2015111351A1 JP 2014084171 W JP2014084171 W JP 2014084171W WO 2015111351 A1 WO2015111351 A1 WO 2015111351A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic
light scattering
colored
Prior art date
Application number
PCT/JP2014/084171
Other languages
French (fr)
Japanese (ja)
Inventor
小林 康伸
黒木 孝彰
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015558765A priority Critical patent/JPWO2015111351A1/en
Publication of WO2015111351A1 publication Critical patent/WO2015111351A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device capable of distinguishing a luminescent color when no light is emitted while improving luminous efficiency.
  • An organic electroluminescence element (hereinafter referred to as an organic EL element) is a light-weight, thin-film, all-solid-state element in which a light-emitting functional layer composed of an organic material is sandwiched between two electrodes.
  • an organic EL element electrons injected from one electrode and holes injected from the other electrode are recombined in the light emitting functional layer to generate excitons.
  • the organic EL element is a light emitting element that utilizes the emission of light from the exciton, and is excellent in low power, high luminance, low power consumption, and the like, and thus is considered to be applied to various fields.
  • the organic EL element is a self-luminous light source, it has been spotlighted as next-generation lighting and has been developed in various places as organic EL lighting. In recent years, application to not only lighting but also lamps for automobiles and various display lamps has been attempted. Here, a specific color is specified for lamps of an automobile or the like according to the application and function used.
  • the organic EL element is generally characterized by being colorless when turned off, but it is not necessarily an advantage depending on the intended use and function.
  • lamps such as automobiles, road signs, and the like are required to be able to identify specific colors according to usage and functions even when the lights are turned off.
  • the organic EL element when the organic EL element is provided with a color filter that can identify the emission color, the emission color can be identified when no light is emitted, but the light loss is caused by light absorption by the color filter during emission. Will greatly reduce the light emission efficiency.
  • an object of the present invention is to provide an organic EL element capable of distinguishing a luminescent color when not emitting light while improving luminous efficiency.
  • the organic EL device of the present invention includes a light-emitting functional layer configured using an organic material, a transparent electrode provided on the extraction side of emitted light generated in the light-emitting functional layer, A counter electrode provided in a state in which the light emitting functional layer is sandwiched between the transparent electrode and the light scattering layer at a position closer to the emission light extraction side than the transparent electrode, and is colored in a desired color A colored layer is provided.
  • the organic EL element having such a structure has a light scattering layer to improve luminous efficiency at the time of light emission, but has a colored layer colored in a desired color to emit light at the time of non-light emission. The color can be identified.
  • an organic EL element capable of identifying a luminescent color at the time of non-light emission while improving luminous efficiency.
  • First Embodiment Organic EL element in which light scattering layer is arranged on the inside extraction side 1-1. Modification: Organic EL element using a light scattering layer containing colored scattering particles having a light scattering effect 2. Second embodiment: an organic EL element in which a light scattering layer is disposed on the outside extraction side 3. Third embodiment: organic EL device further provided with a smoothing layer Fourth Embodiment: Organic EL device further provided with a non-colored light scattering layer
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element according to the first embodiment of the present invention.
  • the organic EL element 1 shown in this figure has a laminated structure in which a light scattering layer a, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side (internal extraction side) of a substrate 11.
  • the other main surface side of the substrate 11 is the light extraction surface S, and the emitted light h generated in the light emitting functional layer 15 is extracted from the substrate 11 side.
  • a light scattering layer having a light scattering function and a colored layer colored in a desired color at a position closer to the emission light h extraction side than the transparent electrode 13. Is formed of the same layer (hereinafter referred to as a light scattering layer a).
  • the light scattering layer a only needs to be provided at a position where the emission light h is extracted from the transparent electrode 13, and another layer may be provided between the transparent electrode 13 and the substrate 11.
  • the organic EL element 1 has a configuration including a sealing structure 19 that seals the light emitting functional layer 15 on one main surface side of the substrate 11, and further includes a protective member that is not shown here. May be.
  • the light scattering layer a is a layer provided at a position closer to the extraction side of the emitted light h than the transparent electrode 13 and also serves as a colored layer colored in a desired color.
  • the light scattering layer a is provided between the substrate 11 and the transparent electrode 13.
  • the light scattering layer a is composed of a binder (layer medium) made of a resin material, light scattering particles 1a contained in the binder, and a coloring material 2a that is colored in a desired color.
  • the light scattering layer a is a layer for enabling the discrimination of the emission color at the time of non-light emission while improving the light emission efficiency by improving the extraction efficiency of the emitted light h at the time of light emission. Therefore, the light scattering layer a preferably has a visible light transmittance of 50% or more, more preferably 55% or more, and particularly preferably 60% or more.
  • the light scattering layer a is preferably a high refractive index layer having a refractive index at a wavelength of 550 nm in the range of 1.7 or more and less than 2.5 over the entire layer in which the light scattering particles 1a are dispersed.
  • the refractive index of the light scattering layer a may be less than 2.5.
  • the entire layer may satisfy 1.7 or more and less than 2.5.
  • the refractive index of may be less than 1.7 or 2.5 or more.
  • the refractive index of the entire layer of the light scattering layer a can be substituted with a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the mixing ratio.
  • the refractive index can be measured with a multiwavelength Abbe refractometer, a prism coupler, a Mickelson interferometer, a spectroscopic ellipsometer, or the like.
  • the content of the light scattering particles 1a in the light scattering layer a is preferably in the range of 30% to 70% in terms of volume filling rate. Thereby, the density distribution of the refractive index distribution can be made at the interface between the light scattering layer a and the transparent electrode 13, and the light extraction efficiency can be improved by increasing the light scattering amount.
  • the total film thickness of the light scattering layer a is preferably in the range of 100 to 1000 nm from the viewpoint of making it possible to identify the homogeneity of the formed film and the desired color, although it depends on the constituent materials.
  • the binder layer medium
  • the light scattering particles 1a the light scattering particles 1a
  • the coloring material 2a the coloring material
  • Binder layer medium
  • a known resin can be used without particular limitation.
  • an oloalkyl group-containing silane compound for example, (heptadecafluoro-1,1,2,2-tetradecy
  • hydrophilic resins can be used as the binder.
  • hydrophilic resins include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof.
  • hydrophilic resin include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, and the like.
  • Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
  • the polymer used as the binder may be used alone or as a mixture of two or more if necessary.
  • a resin curable mainly by ultraviolet rays or an electron beam that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin
  • a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as a main chain, and more preferably a polymer having a saturated hydrocarbon as a main chain.
  • the binder is preferably crosslinked.
  • the polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer.
  • the light scattering particles 1a constituting the light scattering layer a are for diffusing light due to the difference in refractive index from the above-described binder, and have a higher refractive index than the binder, and the refractive index difference is 0.03. Or more, preferably 0.1 or more, more preferably 0.2 or more, particularly preferably 0.3 or more. If the refractive index difference between the binder and the light scattering particles 1a is 0.03 or more, a light scattering effect is generated at the interface between the binder and the particles. A larger refractive index difference is preferable because refraction at the interface increases and the light scattering effect improves.
  • the light scattering particles 1a are preferably transparent particles having a particle size equal to or larger than a region that causes visible light Mie scattering in order to diffuse light with a difference in refractive index as described above.
  • the diameter is preferably 0.2 ⁇ m or more.
  • the upper limit of the average particle diameter of the light scattering particles 1a when the particle diameter is larger, it is necessary to flatten the roughness of the light scattering layer a containing the particles. Since there is a disadvantage from the viewpoint, it is preferably less than 10 ⁇ m, more preferably less than 5 ⁇ m, particularly preferably less than 3 ⁇ m, and most preferably less than 1 ⁇ m.
  • the average particle diameter of the light scattering particles 1a can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
  • a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
  • Such light scattering particles 1a are not particularly limited and may be appropriately selected depending on the purpose.
  • the light scattering particles 1a may be organic fine particles or inorganic fine particles, and among them, inorganic fine particles having a high refractive index. It is preferable that
  • organic fine particles having a high refractive index examples include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
  • the inorganic fine particles having a high refractive index examples include inorganic oxide particles composed of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony, and the like.
  • Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite.
  • TiO 2 and ZrO 2 are preferable.
  • the rutile type is more preferable than the anatase type because the catalyst activity is low, so that the weather resistance of the high refractive index layer and the adjacent layer is high and the refractive index is high.
  • these particles may be subjected to surface treatment or It is possible to select whether to use an untreated one.
  • the surface treatment a treatment using a surface treatment agent is exemplified.
  • the surface treatment agent include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treating agents may be used alone or in combination of two or more.
  • the surface treatment agent is preferably a different inorganic oxide and / or metal hydroxide, and more preferably a metal hydroxide.
  • the coating amount of the particle surface with the surface treatment agent is preferably 0.01 to 99% by mass. This coating amount is indicated by the mass ratio of the surface treatment agent used on the surface of the particle with respect to the mass of the particle.
  • the coating amount of the surface treatment agent 0.01% by mass or more, an effect of improving dispersibility and stability by the surface treatment is obtained.
  • the refractive index of a mixed scattering layer is ensured by setting it as 99 mass% or less.
  • the light scattering particle 1a has a refractive index of 1.7 or more, preferably 1.85 or more, particularly preferably 2.0 or more.
  • the refractive index By setting the refractive index to 1.7 or more, the difference in refractive index from the binder is increased, the amount of light scattering is ensured, and the light extraction efficiency is improved.
  • the upper limit of the refractive index of the particles is less than 3.0.
  • the particles in the light scattering layer a are arranged with the thickness of one particle layer so that the particles are in contact with or close to the light extraction side or the interface opposite to the light extraction side.
  • evanescent light that oozes out toward the light scattering layer a when total reflection occurs in the substrate 11 or the transparent electrode 13 exists in the vicinity of the interface with the substrate 11 or the transparent electrode 13 in the light scattering layer a.
  • the thickness of the light scattering particles 1a when the thickness of the light scattering particles 1a is increased, the uniformity and interfacial smoothness when the light scattering layer a is formed by coating may be reduced, and there may be a problem that the performance is deteriorated due to an increase in reflected scattered light. There is.
  • these light scattering particles 1a are actually polydisperse particles and difficult to arrange regularly, the light scattering particles 1a have a diffraction effect locally, but the effect is small. Change the direction to improve the light extraction efficiency.
  • a dye or a pigment can be used without particular limitation, or both of them may be used.
  • a pigment from the viewpoint of the colorant 2a having good dispersion stability with respect to the resin component and excellent weather resistance.
  • the organic or inorganic pigment and mineral of the following number described in a color index can be used for this invention.
  • ⁇ Blue or cyan pigment> pigment blue 1, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17-1, 22, 27, 28, 29, 36, 60, blue sapphire (iron, titanium) Containing corundum) can be used according to the purpose.
  • Green pigment> Pigment Green 7, 26, 36, 50, etc. can be used according to the purpose.
  • Specific product names include, for example, chromo fine yellow 2080, 5900, 5930, AF-1300, 2700L, chromo fine orange 3700L, 6730, chromo fine scarlet 675, chromo fine magenta 6880, 6886, 6891N, 6790, 6887.
  • Chromofine Violet RE Chromofine Red 6820, 6830, Chromofine Blue HS-3, 5187, 5108, 5197, 5085N, SR-5020, 5026, 5050, 4920, 4927, 4937, 4824, 4933GN-EP, 4940, 4973, 5205, 5208, 5214, 5221, 5000P, Chromofine Green 2GN, 2GO, 2G-550D, 5310, 5370, 6830, Se Fast Yellow 10GH, A-3, 2035, 2054, 2200, 2270, 2300, 2400 (B), 2500, 2600, ZAY-260, 2700 (B), 2770, Seika Fast Red 8040, C405 (F), CA120, LR-116, 1531B, 8060R, 1547, ZAW-262, 1537B, GY, 4R-4016, 3820, 3891, ZA-215, Seika Fast Carmine 6B1476T-7, 1483LT, 3840, 3870, Seika Fast Bordeaux
  • a ball mill, sand mill, attritor, roll mill, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, paint shaker, or the like can be used. It is also possible to add a dispersant when dispersing the pigment.
  • the average dispersed particle size of the pigment obtained by the above method is preferably 100 nm or more and 500 nm or less. If the average dispersed particle size of the pigment is within the range specified above, the stability in the dispersion can be improved.
  • those having a material particle size and refractive index in the same range as those of the above-described light scattering particles 1a also function as light scattering particles (colored scattering particles) as described later.
  • the dye include conventionally known dyes, preferably oil-soluble dyes, but the present invention is not limited to these examples, and may be used for the solvent used in the binder liquid.
  • a soluble material is selected and used.
  • Blue GL-5200 Light Blue BGL-5200 (manufactured by Nippon Kayaku Co., Ltd.), DAIWA Blue 7000, Oleosol Fast Blue GL (manufactured by Daiwa Kasei Co., Ltd.), DIARESIN Blue P (manufactured by Mitsubishi Kasei Co., Ltd.), SUDAN Blue 670, NEOPEN Blue 808, ZAPON Blue 806 (manufactured by BASF Japan Ltd.) can be used depending on the purpose.
  • Yellow 10GN (above, manufactured by Bayer Japan), KAYASET Yellow SF-G, KAYASET Yellow 2G, KAYASET Yellow AG, KAYASET Yellow EG (manufactured by Nippon Kayaku Co., Ltd.), DAIWA Yellow 330HB (manufactured by Daiwa Kasei Co., Ltd.), HSY-68 (manufactured by Mitsubishi Kasei Co., Ltd.), SUDAN Yellow 146, NEOPEN Yellow 075 (manufactured by BASF Japan), etc. Can be used according to the purpose.
  • the colorant 2a may color the light scattering layer a using a single material, or may be colored by mixing two or more kinds of materials.
  • the ratio between the light scattering particles 1a and the colorant 2a is within the range of 90/10 to 0/100 by weight when the colorant 2a is made of a pigment from the viewpoint of color strength. preferable.
  • the weight ratio is preferably in the range of 99/1 to 70/30.
  • the colorant 2a a material having no light absorption band in the same region as the wavelength region of the emitted light h generated in the light emitting functional layer described later is preferably used. That is, it is preferable that the wavelength region of the emitted light h is overlapped in the wavelength region of the light (transmitted light) extracted from the light scattering layer a (colored layer), and includes the peak wavelength of the emitted light h. It is more preferable to design.
  • a coating film forming method As a method for forming the light scattering layer a as described above, for example, a coating film forming method is applied.
  • a solution of a resin material (polymer) serving as a binder is prepared using a solvent that does not dissolve particles, and when the colorant 2a is a pigment, the light scattering particles 1a and the colorant 2a are added to the resin solution serving as a binder. Disperse to prepare a coating solution.
  • the colorant 2a is a dye
  • the light scattering particles 1a are mixed in a colored solution in which the dye is dissolved in advance in an organic solvent, and the colored solution is mixed in the resin solution to prepare a coating solution.
  • the coating solution may be prepared by directly dissolving in a resin solution and dispersing light scattering particles. Thereafter, the coating solution is applied and formed on the substrate 11.
  • Substrate 11 examples of the substrate 11 that can be used in the organic EL element 1 of the present invention include glass and plastic, but there is no particular limitation. Examples of the substrate 11 that is preferably used include glass, quartz, and a resin film. A particularly preferable substrate 11 is a resin film that can give flexibility to the organic EL element 1.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name
  • a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed on the surface of the resin film.
  • Such coatings and hybrid coatings have a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2%) RH) of 0.01 g / (measured by a method according to JIS K 7129-1992. m 2 ⁇ 24h) or less of a barrier film (barrier film) is preferable.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and the water vapor permeability is 10 ⁇ 5 g / (m 2 ⁇ 24 h).
  • the following high barrier films are preferred.
  • the material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the transparent electrode 13 is an electrode provided on the side from which the emitted light h generated in the light emitting functional layer 15 is extracted.
  • a transparent electrode 13 is made of a material that transmits visible light, and preferably has a transmittance of, for example, greater than 10% for a wavelength of 550 nm.
  • the transparent electrode 13 is used as an anode or a cathode with respect to the light emitting functional layer 15 of the organic EL element 1, and at least an interface layer in contact with the light emitting functional layer 15 is made of a material suitable as an anode or a cathode.
  • the counter electrode 17 is an electrode provided with the light emitting functional layer 15 sandwiched between the transparent electrode 13.
  • the counter electrode 17 is used as a cathode with respect to the light emitting functional layer 15 of the organic EL element 1 when the transparent electrode 13 is an anode and as an anode when the transparent electrode 13 is a cathode. For this reason, it is assumed that at least the interface layer in contact with the light emitting functional layer 15 is made of a material suitable as a cathode or an anode.
  • Such a counter electrode 17 is configured as a reflective electrode that reflects, for example, emitted light h generated in the light emitting functional layer 15 to the light extraction surface S side of the substrate 11.
  • the counter electrode 17 may be transmissive to visible light. In this case, the emitted light h can be extracted from the counter electrode 17 side.
  • anode and cathode constituting the transparent electrode 13 or the counter electrode 17 described above are as follows.
  • the anode is composed of an electrode material having a large work function (4 eV or more, preferably 4.5 V or more), and a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used.
  • electrode materials include metals such as Au and Ag, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • the anode when a material that can be applied, such as an organic conductive compound, is used as the anode, a wet film forming method such as a printing method or a coating method can also be used.
  • the sheet resistance as the anode is preferably several hundred ⁇ / sq.
  • the thickness of the anode depends on whether it is used as the transparent electrode 13 or the counter electrode 17, it is usually set in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm in consideration of transparency or reflectivity.
  • a metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof are used as an electrode material.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, Ag, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / sq.
  • the thickness of the cathode depends on whether it is used as the transparent electrode 13 or the counter electrode 17, it is usually set in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm in consideration of transparency or reflectivity.
  • the light emitting functional layer 15 is made of an organic material, has a light emitting layer made of at least an organic material, and is sandwiched between the transparent electrode 13 constituting the anode or the cathode and the counter electrode 17. Examples of the typical configuration of the light emitting functional layer 15 include the following stacked configurations, but are not limited thereto.
  • the configuration (7) is preferably used, but is not limited thereto.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • an electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the layer excluding the anode and the cathode is the light emitting functional layer 15, and most of the layers constituting the light emitting functional layer 15 are made of an organic material, and are also referred to as “organic layers”.
  • the light emitting functional layer 15 including at least one light emitting layer is used as one light emitting unit, and a plurality of the light emitting functional layers 15 are stacked between the transparent electrode 13 and the counter electrode 17.
  • an element having a so-called tandem structure may be used.
  • the first light emitting functional layer, the second light emitting functional layer, and the third light emitting functional layer may all be the same or different. Two of these light emitting functional layers may be the same, and the remaining one may be different.
  • the plurality of light emitting functional layers may be laminated directly or via an intermediate layer.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side.
  • a known material structure can be used as long as the layer has a function of supplying.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al, etc., conductive inorganic compound layers, Li / Ag, Au / Bi 2 O 3 etc.
  • Multilayer films such as ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C60, and conductivity such as oligothiophene
  • Conductive organic compound layers such as conductive organic layers, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. Is, the present invention is not limited thereto.
  • an external power source that applies a voltage for controlling the light emitting function layer may be connected to the intermediate electrode (intermediate layer 21).
  • a voltage is applied with one of the two electrodes arranged in contact with each light emitting functional layer as a cathode and the other as an anode.
  • Examples of a preferable configuration in the light emitting functional layer include those obtained by removing the anode and the cathode from the configurations (1) to (7) mentioned in the above representative device configurations. It is not limited.
  • tandem EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872, No. 472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393.
  • ⁇ Sealing structure 19> As the sealing structure 19 applied to the sealing of the organic EL element of the present invention, for example, a configuration in which a sealing member is bonded to the substrate 11 with an adhesive can be exemplified.
  • the sealing member only needs to be disposed so as to cover the display region constituted by the laminated body of the light scattering layer a to the counter electrode 17, and may be concave or flat. Further, the transparency and electrical insulation of the sealing member are not particularly limited.
  • the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the organic EL element 1 can be thinned, a polymer film or a metal film can be preferably used as the sealing member.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 / 24h) or less, and is measured by a method according to JIS K 7129-1992. and water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably that of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • sealing member When the sealing member is processed into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive may be any adhesive that can bond the above-described sealing member to the extraction electrode portions such as the substrate 11, the transparent electrode 13, and the counter electrode 17.
  • specific examples of such adhesives include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates.
  • An agent can be mentioned.
  • fever and chemical curing types (two liquid mixing), such as an epoxy type, can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an adhesive that can be adhesively cured from room temperature to 80 ° C.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gap between the sealing member and the substrate 11 in the gas phase and the liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides for example, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.
  • perchloric acids for example, perchloric acid
  • anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
  • a sealing film formed on the substrate 11 in a state of covering the laminated body of the light scattering layer a to the counter electrode 17 may be used.
  • the material for forming such a sealing film may be a material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • an inorganic film such as silicon oxide, silicon dioxide, or silicon nitride Can be used.
  • a sealing film having a laminated structure of these inorganic films and an organic film made of an organic material may be used.
  • the method of forming these inorganic films and organic films constituting the sealing film there are no particular limitations on the method of forming these inorganic films and organic films constituting the sealing film.
  • a coating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • a protective film or a protective plate is provided at a position where the laminate of the light scattering layer a to the counter electrode 17 and the sealing structure 19 are sandwiched between the substrate 11 and the substrate 11. May be provided.
  • a sealing film is used as the sealing structure 19, the mechanical strength of the organic EL element 1 is not necessarily high. For this reason, it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for sealing can be used. It is preferable to use it.
  • the light scattering layer a is preferably provided at the total reflection interface, and is preferably provided at the interface between layers having different total refractive indexes and a high refractive index.
  • the total reflection interface refers to an interface having a refractive index difference of 0.05 or more, and the effect is more effective when the refractive index difference is 0.1 or more, and the effect is particularly great when the refractive index difference is 0.15 or more. . Therefore, by providing the light scattering layer a at a position closer to the extraction side of the emitted light h than the transparent electrode 13, the emitted light h radiated from the light emitting functional layer 15 to the substrate 11 side is entirely at the interface of the substrate 11. Reflection can be prevented and luminous efficiency can be improved.
  • the organic EL element 1 of this embodiment illustrated the structure which the transparent electrode 13 adjoins to the interface on the opposite side to the light extraction side in the light-scattering layer a, not only this but another layer is light-scattering layer a. This is the same even if it is adjacent to the interface opposite to the light extraction side.
  • a light scattering layer a may be provided at a plurality of locations, and a plurality of light scattering layers a may be laminated.
  • the light scattering layer a is preferably provided at a location closest to the substrate 11.
  • the light scattering layer a of the present embodiment has been described as a layer that also serves as a colored layer.
  • the light scattering layer having a light scattering function and a colored layer colored in a desired color are configured as separate layers. May be. That is, the light scattering layer in this case does not contain a coloring material.
  • the above-described colored layer composed of the colorant 2a and the binder and the light scattering layer composed of the light scattering particles 1a and the binder may be formed separately, or a plurality of these layers may be laminated. May be. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
  • the light scattering layer a of the present embodiment may be a layer formed by shape control such as an uneven structure that diffracts or diffuses light.
  • the uneven structure of the light scattering layer may be a structure that diffuses light by diffraction, refraction, or reflection of light, and a conventionally known structure is applied.
  • the light scattering layer 1a and the coloring material 2a are included in the light scattering layer.
  • the light scattering layer and the coloring layer are configured as separate layers, at least one layer is included in the light scattering layer. It has an uneven structure. According to the light scattering layer having such a concavo-convex structure, it is possible to improve the extraction efficiency of light having a wavelength corresponding to the pitch (period) of the concavo-convex structure.
  • the organic EL element 1 configured as described above has a light scattering layer and a colored layer colored in a desired color at a position closer to the extraction side of the emitted light h than the transparent electrode 13 is formed.
  • the light emission color can be identified during non-light emission while improving the light emission efficiency during light emission.
  • the light scattering layer and the colored layer are formed in the same layer, the light emission efficiency can be further increased by reducing the thickness of the organic EL element 1 and the cost can be reduced by reducing the number of members. It becomes possible.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of a modification of the organic EL element according to the first embodiment of the present invention.
  • the organic EL element 1 ′ shown in this figure is the organic EL element described with reference to FIG. 1 only in that the colorant contained in the light scattering layer is composed of colored scattering particles 2b having a light scattering function. Unlike 1, the other configurations are the same.
  • the organic EL element 1 ′ of the modified example has a light scattering layer (hereinafter referred to as “light scattering layer b”) that also serves as a colored layer, and uses the colored scattering particles 2 b as the coloring material.
  • light scattering layer b a light scattering layer that also serves as a colored layer
  • uses the colored scattering particles 2 b as the coloring material hereinafter, the same components as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted, and the characteristic part of the organic EL element 1 ′ according to the modification will be described.
  • the organic EL element 1 ′ has a configuration in which a light scattering layer b, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side of the substrate 11.
  • the organic EL element 1 'according to the modified example is characterized in that a light scattering layer b containing colored scattering particles 2b having a light scattering function is provided.
  • the light scattering layer b has the following configuration.
  • the light scattering layer b is a layer provided at a position closer to the emission light extraction side than the transparent electrode 13, and is provided between the substrate 11 and the transparent electrode 13.
  • the light scattering layer b includes a binder (layer medium) made of a resin material, light scattering particles 1a contained in the binder, and colored scattering particles 2b having a light scattering function.
  • the binder which comprises the light-scattering layer b, and the light-scattering particle 1a can use the same thing as the above-mentioned 1st Embodiment.
  • the light scattering layer b has a refractive index at a wavelength of 550 nm of 1.7 to less than 2.5 when the binder, the light scattering particles 1a, and the colored scattering particles 2b are mixed. It only has to satisfy.
  • the contents of the light scattering particles 1a and the colored scattering particles 2b in the light scattering layer b are preferably in the range of 30% to 70% in terms of the total volume filling rate.
  • the light-scattering layer b is good also as a structure which does not contain the light-scattering particle 1a.
  • the light scattering layer in this case is composed of the binder and the colored scattering particles 2b, and the refractive index of the entire layer and the content of the colored scattering particles 2b may be in the above ranges.
  • the colored scattering particles 2b have the following configuration.
  • the colored scattering particles 2b constituting the light scattering layer a have a light scattering function among the pigments of the colorant 2a described above.
  • those having a light scattering function are included, for example, ruby (chromium-containing corundum), garnet (meteorite), blue sapphire (iron, titanium-containing corundum), yellow sapphire (nickel-containing corundum). , Spinel and the like.
  • Ruby and sapphire represents corundum, i.e. the impurity ions to be incorporated into the crystal of aluminum oxide (Al 2 O 3), red, blue, the hue of each color such as yellow.
  • a typical example is ruby (chromium-containing corundum), and ruby has a structure in which a part of aluminum atoms (Al) constituting corundum is substituted with chromium atoms (Cr 3+ ).
  • the inner shell of chromium atoms (Cr 3+ ) is excited by the action of the ligand field, and the transmitted light looks red due to the ligand absorption bands in purple and yellow-green.
  • hue, saturation, and the like can be adjusted by the content of impurity ions incorporated in the crystal of aluminum oxide (Al 2 O 3 ).
  • the refractive index of aluminum oxide (Al 2 O 3 ) is 1.7 to 1.77, and it can be used as the light scattering particle 1a, so that it is preferably used.
  • Garnet is a silicate mineral (nesosilicate mineral) expressed as A 3 B 2 (SiO 4 ) 3 or A 3 B 2 C 3 O 12 .
  • A is calcium, magnesium, iron (divalent), manganese
  • B is iron (trivalent), aluminum, chromium, titanium, etc.
  • C is silicon, aluminum, iron (trivalent), and the like. Similar to the corundum described above, the hue and saturation can be adjusted by the content of the components in the crystal.
  • Garnet has a refractive index of 1.7 to 1.89 and is preferably used because it can be used as the light scattering particle 1a.
  • Spinel is a mineral of the spinel group represented by MgAl 2 O 4 .
  • Spinel has a refractive index of 1.72 and can also be used as the light scattering particle 1a.
  • red spinel is preferably used.
  • the colored scattering particles 2b may color the light scattering layer b using a single material, or may be colored by mixing two or more kinds of materials.
  • the weight ratio of the light scattering particles 1a and the colored scattering particles 2b is preferably in the range of 90/10 to 0/100 from the viewpoint of color intensity.
  • a flux method is preferably used.
  • the light-scattering layer b of the modification was demonstrated as a layer which served as the colored layer, the light-scattering layer having a light-scattering function and the colored layer colored in a desired color are configured as separate layers. Also good. That is, the light scattering layer in this case does not contain a coloring material.
  • the colored layer (colored scattering layer) composed of the above-described colored scattering particles 2b and the binder and the light scattering layer composed of the light scattering particles 1a and the binder may be separately formed, A plurality of these layers may be laminated. In this case, a configuration in which a colored layer (colored scattering layer) and a light scattering layer are laminated in this order from one main surface side of the substrate 11 is preferable.
  • the light scattering layer b may be provided with an uneven structure that diffracts or diffuses light.
  • the light scattering layer and the colored layer (colored scattering layer) are configured as separate layers, at least one layer has the uneven structure.
  • the organic EL element 1 ′ configured as described above has the same effects as those of the first embodiment because the light scattering layer b having the colored scattering particles 2b is formed.
  • the organic EL element 1 ′ of the modified example is more light-emitting than when it is formed of a light-scattering layer that does not have the colored scattering particles 2b as a coloring material. Further, the emission color can be further identified during non-light emission while improving the light emission efficiency.
  • the number of steps can be reduced and simplified in the manufacturing process by reducing the material used.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the organic EL element according to the second embodiment of the present invention.
  • the organic EL element 2 shown in this figure differs from the organic EL element 1 described with reference to FIG. 1 only in that the light scattering layer a is provided on the light extraction surface S of the substrate 11, and the other configurations are the same. It is.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and the characteristic part of the organic EL element 2 according to the second embodiment will be described.
  • the organic EL element 2 is provided with a light scattering layer a on the light extraction surface S of the substrate 11, that is, on the other main surface side (external extraction side), and on one main surface side, the transparent electrode 13 and the light emitting function.
  • the layer 15 and the counter electrode 17 are provided in this order.
  • the present embodiment is characterized in that the light scattering layer a is provided on the other main surface side of the substrate 11.
  • a barrier layer may be provided on the other main surface side of the substrate 11.
  • the light scattering layer a is provided on the external extraction side of the barrier layer.
  • an overcoat layer (flattening layer) or a barrier layer may be provided on the outside extraction side of the light scattering layer a.
  • the light scattering layer a of the present embodiment may be a light scattering layer a that also serves as a colored layer as in the first embodiment.
  • the colored layer and the light scattering layer are configured as separate layers.
  • a plurality of these layers may be laminated. In this case, it is preferable to laminate the light scattering layer and the colored layer in this order from the other main surface side of the substrate 11.
  • the light scattering layer a may be provided with an uneven structure that diffracts or diffuses light.
  • the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure. This is because the “light scattering layer a” in the second embodiment is the same “light scattering layer that also serves as a colored layer” in the first embodiment.
  • the colored scattering layer (modified “light scattering layer b”) is mentioned in paragraph [0137].
  • the organic EL element 2 configured as described above has a configuration in which the light scattering layer a is provided on the other main surface side of the substrate 11, so that a desired color is formed on the outermost surface of the organic EL element 2 on the light extraction side. It becomes the structure which has the colored layer which has colored. Thereby, as shown in the Example mentioned later, although the light emission efficiency at the time of light emission is inferior compared with the effect of 1st Embodiment, a light emission color can be identified similarly at the time of non-light emission.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of an organic EL element according to the third embodiment of the present invention.
  • the organic EL element 3 shown in this figure differs from the organic EL element 1 described with reference to FIG. 1 only in that a smoothing layer c is further provided between the light scattering layer a and the transparent electrode 13.
  • Other configurations are the same.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted, and the characteristic part of the organic EL element 3 according to the third embodiment will be described.
  • the organic EL element 3 has a configuration in which a light scattering layer a, a smoothing layer c, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side of the substrate 11. It is.
  • the present embodiment is characterized in that a smoothing layer c is provided between the light scattering layer a and the transparent electrode 13.
  • the smoothing layer c has the following configuration.
  • the smooth layer c is a layer for smoothing the surface of the scattering layer a, and a conventionally known one is applied.
  • the configuration of the smoothing layer c is not particularly limited and may be appropriately selected depending on the purpose.
  • the smoothing layer c may be composed of only the same binder (layer medium) as the light scattering layer a. You may be comprised from the microparticles
  • the fine particles contained in the resin material (binder) which is the layer medium are particles smaller than the particles contained in the light scattering layer a.
  • the light-scattering layer a is a layer which has an uneven
  • the smoothing layer c has a flatness that allows the transparent electrode 13 to be satisfactorily formed thereon, and the surface property is an average surface roughness Ra of less than 100 nm, preferably less than 30 nm, particularly preferably less than 10 nm. Most preferably, it is less than 5 nm.
  • the average surface roughness Ra refers to an average surface roughness Ra in a 10 ⁇ m square measured by atomic force microscopy (AFM).
  • the smoothing layer c may be a colored layer colored in a desired color.
  • the colorant used in the smoothing layer c (colored layer) in this case can be the same colorant as the colorant 2a described above.
  • the coloring material 2a a dye or a pigment having a sufficiently smaller particle diameter than the light scattering particles 1a is used.
  • the light scattering layer a of the present embodiment may be a light scattering layer that also serves as a colored layer as in the first embodiment.
  • the colored layer and the light scattering layer may be configured as separate layers.
  • a plurality of these layers may be laminated. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
  • the light scattering layer a may be provided with an uneven structure that diffracts or diffuses light.
  • the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure.
  • the organic EL element 3 configured as described above has a configuration in which the smoothing layer c is further provided between the light scattering layer a and the transparent electrode 13, so that the interface between the light scattering layer a and the transparent electrode 13 is reduced. It becomes flat and the electric field in the transparent electrode 13 becomes uniform. Thereby, in addition to the effects of the first embodiment, the light emission efficiency is further improved during light emission.
  • the smoothing layer c is colored in a desired color, it becomes possible to enhance the visibility of the light emission color of the light scattering layer a.
  • the color can be identified.
  • FIG. 5 is a schematic cross-sectional view showing a configuration of an organic EL element according to the fourth embodiment of the present invention.
  • the organic EL element 4 shown in this figure is the organic EL element described with reference to FIG. 1 only in that a light-scattering layer d as a non-colored layer is further provided between the light-scattering layer a and the transparent electrode 13. Unlike 1, the other configurations are the same.
  • the organic EL element 4 of this embodiment includes a light scattering layer a (also referred to as a first light scattering layer a below) that also serves as a colored layer, and a light scattering layer d that is a non-colored layer (hereinafter referred to as a second light scattering layer d). And 2) light scattering layers.
  • a light scattering layer a also referred to as a first light scattering layer a below
  • a light scattering layer d that is a non-colored layer
  • the organic EL element 4 includes a first light scattering layer a, a second light scattering layer d, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 on one main surface side of the substrate 11. It is the structure provided in order.
  • the second light scattering layer d is different from the first light scattering layer a in that the second light scattering layer d is a non-colored layer that does not have the coloring material 2a.
  • the present embodiment is characterized in that the second light scattering layer d is provided on the light emitting functional layer 15 side of the first light scattering layer a.
  • the second light scattering layer d has the following configuration.
  • the second light scattering layer d is a layer for improving the visibility of the color of the first light scattering layer a colored when no light is emitted, and is provided on the light emitting functional layer 15 side of the first light scattering layer a.
  • the second light scattering layer d is composed of a binder (layer medium) made of a resin material and light scattering particles 1a contained in the binder.
  • the binder which comprises the 2nd light-scattering layer d and the light-scattering particle 1a can use the same thing as the above-mentioned 1st Embodiment.
  • the second light scattering layer d may have a refractive index of 1.7 to less than 2.5 at a wavelength of 550 nm as a whole.
  • the content of the light scattering particles 1a in the second light scattering layer d is preferably in the range of 30% to 70% in terms of volume filling rate, and the total film thickness is the color of the first light scattering layer a.
  • the thickness is preferably in the range of 100 to 1000 nm, more preferably in the range of 100 to 600 nm, from the standpoint of enhancing the visibility of the light source and not affecting the light emission efficiency.
  • the total thickness of the first light scattering layer and the second light scattering layer is preferably in the range of 200 to 1600 nm from the viewpoint of not affecting the light emission efficiency.
  • the first light scattering layer a may be a light scattering layer that also serves as a colored layer as in the first embodiment.
  • the colored layer and the light scattering layer are configured as separate layers.
  • a plurality of these layers may be laminated. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
  • an uneven structure that diffracts or diffuses light may be provided in the first light scattering layer a.
  • the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure.
  • the organic EL element 4 configured as described above has a configuration in which the second light scattering layer d is further provided between the first light scattering layer a and the transparent electrode 13, so that the colored first light scattering is performed. It becomes possible to improve the visibility of the color of the layer a. Thereby, in addition to the effects of the first embodiment, the emission color can be further identified when no light is emitted.
  • the light-scattering layer a of the organic EL element 1 of 1st Embodiment is the light-scattering layer of organic EL element 1 'of a modification. It may be replaced with b. Thereby, it is possible to further identify the emission color at the time of non-light emission while further improving the light emission efficiency at the time of light emission.
  • this embodiment demonstrated the structure which provides the 2nd light-scattering layer d in the organic EL element 1 of 1st Embodiment, you may combine with 3rd Embodiment.
  • the organic EL element has a structure in which the smoothing layer c is further combined between the second light scattering layer d and the transparent electrode 13, in addition to the above effects, the luminous efficiency can be further improved during light emission. It will be what was planned.
  • the organic EL element of the present invention described in the first to fourth embodiments has an intermediate refractive index between the substrate 11 and the light emitting functional layer 15 as a structure for further improving the light extraction efficiency.
  • an antireflection film is formed by introducing a flat layer having a refractive index (for example, Japanese Patent Laid-Open No. 62-172691), and a flat layer having a lower refractive index than the substrate 11 between the substrate 11 and the light emitting functional layer 15
  • a configuration for example, Japanese Patent Application Laid-Open No. 2001-202827
  • the organic EL device of the present invention is preferably used when it is necessary to identify a specific color according to the intended use or function, not only during light emission but also during light extinction. That is, the organic EL element of the present invention is preferably used for, for example, automobile lamps, road signs and the like.
  • the light emission source to which the organic EL element is applied is not limited to these.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include a light source of a sensor.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • a metal mask such as the transparent electrode and the counter electrode
  • the light emitting functional layer between these electrodes and the electrodes may be patterned, or the entire element layer may be patterned.
  • a conventionally known method can be used.
  • Table 1 shows the configuration of red emission bottom emission organic EL elements of the organic EL elements 101 to 122 produced in the examples.
  • each of the vapor deposition crucibles is filled with the constituent materials of each layer constituting the light emitting functional layer of the organic EL element 101 in an optimum amount for element production, and these are deposited in a vacuum vapor deposition apparatus in which the substrate is accommodated.
  • the crucible for vapor deposition was stored.
  • these evaporation crucibles those made of molybdenum or tungsten resistance heating material were used.
  • this vacuum vapor deposition apparatus was depressurized to a vacuum of 1 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a vapor deposition crucible containing the following compound M-1 on the transparent electrode at a vapor deposition rate of 0.1 nm / Compound M-1 was deposited in seconds to form a 15 nm thick layer.
  • the compound H-2 was deposited at a deposition rate of 0.1 nm / second to form a 5 nm thick layer.
  • lithium was deposited to a thickness of 1 nm and aluminum to a thickness of 120 nm to form a counter electrode.
  • This counter electrode was formed as a cathode.
  • the laminate of each layer sequentially formed as described above is covered with a glass cover from the opposite electrode side, and the laminate is sealed between the substrate and the glass cover by bonding the glass cover to the substrate using an adhesive. Stopped. A water catching agent was provided in the glass cover and sealed together with the laminate. This sealing operation was performed in a lobe box maintained in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and the glass cover was filled with nitrogen gas.
  • the organic EL element 102 was produced in the same procedure as the organic EL element 101 except that one light scattering layer (first light scattering layer) was formed before forming the transparent electrode.
  • the light scattering layer (first light scattering layer) was formed as follows using the following materials.
  • the ratio of the light scattering particles to the solid content in the resin solution is 50 vol% / 50 vol%, n-propyl acetate and cyclohexanone.
  • a formulation having a solvent ratio of 10 wt% / 90 wt% and a solid content concentration of 15 wt% was formulated and designed at a ratio of 10 ml.
  • TiO 2 particles JR600A manufactured by Teika
  • np refractive index
  • the ratio (wt% / wt%) between the light scattering particles (uncolored) and the coloring material is preliminarily designed at the ratio described in the following table.
  • the light scattering layer preparation in the case of forming a light scattering layer has a ratio of the light scattering particles including colored / non-colored and the solid content of the resin solution of 50 vol% / The film strength was fixed at 50 vol%.
  • the above-mentioned light scattering particles and a solvent are mixed and cooled at room temperature, and then the microchip step [MS-3 (3 mm ⁇ ) manufactured by SMT Co., Ltd.] is used with an ultrasonic disperser (UH-50 manufactured by SMT Co.). Dispersion treatment was performed for 10 minutes under standard conditions using TiO 2 to obtain a TiO 2 dispersion. Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm, and the mixture was further mixed for 10 minutes. Subsequently, the mixed liquid was filtered through a hydrophobic PVDF 0.45 ⁇ m filter (manufactured by Whatman) to obtain a target light scattering layer preparation.
  • UH-50 manufactured by SMT Co. ultrasonic disperser
  • the obtained light-scattering layer preparation was spin-coated (500 rpm, 30 seconds) on the substrate, the obtained coating film was simply dried (80 ° C., 2 minutes), and further heat-treated (120 ° C., 60 minutes) to form a light scattering layer having a thickness of 500 nm.
  • the non-colored light scattering layer (first light scattering layer) obtained as described above has a refractive index nb of the binder (resin) of 1.5, a particle refractive index np of 2.4, and an average refractive index ns of 1.77.
  • the organic EL element 103 was produced in the same procedure as the organic EL element 101 except that a conventionally known color filter (colored layer) was formed on the other main surface side (external extraction side) of the substrate.
  • the color filter was formed as follows.
  • a red transparent coloring resist manufactured by Fuji Hunt Electronics Technology Co., Ltd., CR-2000 using a pigment as a coloring material was used.
  • Spin coating 2000 rpm, 10 seconds
  • spin-coating 70 ° C., 2 minutes
  • pre-baking 70 ° C., 2 minutes
  • using a high-pressure mercury lamp applying an energy of 120 mJ / cm 2 of accumulated light quantity
  • post-baking 230 ° C, 60 minutes
  • a color filter (colored layer) having a thickness of 600 nm was produced.
  • the ratio between the light scattering particles and the colorant is designed by the ratio (wt% / wt%) shown in the following table.
  • Organic EL elements 104 to 105 were fabricated in the same procedure as the organic EL element 102 except that the light scattering layer (first light scattering layer) was formed by containing a coloring material. However, the colorant was colored scattering particles, and red corundum substituted with chromium oxide (Cr 2 O 3 ) was used.
  • the red corundum was manufactured using the flux method described in JP-A-2011-63510.
  • Aluminum oxide was used as the aluminum compound (Al 2 O 3 source), and chromium oxide was used as the chromium compound (Cr source).
  • the addition amount of chromium oxide was mixed so as to be 0.5 wt% with respect to the weight of aluminum oxide, and a red corundum crystal having an average particle diameter of 0.5 ⁇ m was obtained according to a production method of a known example.
  • the ratio of the light scattering particles (no coloring) and the colored scattering particles (coloring material) is designed by the ratio (wt% / wt%) shown in the following table.
  • a light scattering layer (first light scattering layer) colored with colored scattering particles was formed to a thickness of 500 nm.
  • the organic EL element 106 was produced in the same procedure as the organic EL element 102 except that a dye was used as a colorant for the light scattering layer (first light scattering layer). However, the coloring material was a dye, and AIZENSOT Red-1 (Hodogaya Chemical Co., Ltd.) was used.
  • the dye was dissolved in the solvent, and after preparing a red colored solution, the light scattering particles were mixed to obtain a colored TiO 2 dispersion.
  • the light scattering particles (non-colored) and the dye (coloring material) are preliminarily designed at a ratio (wt% / wt%) described in the following table.
  • a light scattering layer (first light scattering layer) colored with a dye was formed to a thickness of 500 nm.
  • the organic EL element 107 was produced in the same procedure as the organic EL element 105 except that the light scattering layer was formed on the other main surface side (external extraction side) of the substrate.
  • the colored layer of the organic EL element 107 contains colored scattering particles having a light scattering function, and was formed in the same procedure as the colored light scattering layer (first light scattering layer) of the organic EL element 105.
  • Organic EL elements 108 to 110 were fabricated in the same procedure as the organic EL elements 104 to 106 except that the smoothing layer was formed before forming the transparent electrode.
  • the smoothing layer was formed as follows.
  • a nanosol-containing UV curable resin (Rioduras TYT90-01) manufactured by Toyo Ink Co., Ltd. is diluted with 1-methoxy-2-propanol to obtain a solid content. 10 wt%, spin-coated by spin coating (500 rpm, 30 seconds), pre-baked (80 ° C., 2 minutes), further baked (200 ° C., 5 minutes), and integrated light quantity 1000 mJ using a high-pressure mercury lamp / Cm 2 energy is applied to perform the curing process, and the film thickness is 5 A smoothing layer of 00 nm was formed.
  • Organic EL elements 111 to 113 were produced in the same procedure as the organic EL elements 108 to 110 except that the smoothing layer was formed by containing a dye.
  • the coloring material was a dye, and AIZENSOT Red-1 (Hodogaya Chemical Co., Ltd.) was used.
  • the dye was mixed with a solvent (1-methoxy-2-propanol) to prepare a red colored solution, and then mixed with the resin solution.
  • the solid content of the resin solution and the dye (coloring material) are formulated and designed at a ratio (wt% / wt%) described in the following table.
  • Organic EL elements 114 to 116 were produced in the same procedure as the organic EL elements 104 to 106 except that the second light scattering layer was formed before forming the transparent electrode.
  • the second light scattering layers of the organic EL elements 114 to 116 were formed in the same procedure as the uncolored first light scattering layer of the organic EL element 102.
  • the film thickness of the second light scattering layer was 300 nm.
  • Organic EL elements 117 and 118 were produced in the same procedure as the organic EL elements 115 and 116 except that the second light scattering layer was formed by containing a colorant.
  • the second light scattering layers of the organic EL elements 117 and 118 were formed in the same procedure as the first light scattering layer colored with the dye of the organic EL element 106.
  • the film thickness of the second light scattering layer was 300 nm.
  • Organic EL elements 119 to 121 were produced in the same manner as the organic EL elements 114 to 116 except that the smoothing layer was formed before forming the transparent electrode.
  • the smoothing layers of the organic EL elements 119 to 121 were formed in the same procedure as the non-colored smoothing layers of the organic EL elements 108 to 110.
  • An organic EL element of the organic EL element 122 was produced in the same procedure as the organic EL element 117 except that the smoothing layer was formed by containing a dye.
  • the smooth layer of the organic EL element 122 was formed in the same procedure as the colored smooth layer of the organic EL elements 111 to 113.
  • the luminous efficiency of each produced organic EL The element was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (within a range of about 23 to 25 ° C.), and a spectral radiance meter CS-2000 (manufactured by Konica Minolta) was used. The light emission luminance of each element was measured, and the light emission efficiency (power efficiency) at the current value was determined. The evaluation of the luminous efficiency is shown by a relative value where the luminous efficiency of the organic EL element 101 is 100, and the relative value of the luminous efficiency is 120 or more.
  • the organic EL elements 104 to 122 having the light scattering layer that also serves as the colored layer have a visibility of 3 or more when not emitting light compared to the organic EL elements 101 to 103 not having the light scattering layer.
  • the luminous efficiency was a good value of 120 or more.
  • the organic EL elements 104 to 106 when the organic EL elements 104 and 105 whose coloring material is colored scattering particles and the organic EL element 106 whose coloring material is dye are compared, the organic EL elements whose coloring material is colored scattering particles are compared. 104 and 105 had better luminous efficiency as well as visibility when no light was emitted.
  • the luminous efficiency is further improved when emitting light compared to the organic EL element composed of the coloring material that does not have a light scattering function, and the emission color can be distinguished when not emitting light. It was confirmed that it was even better.
  • the element 105 containing a large amount of colored scattering particles was slightly inferior in luminous efficiency, but the visibility when not emitting light was a good value. .
  • the organic EL element 107 having the light scattering layer formed on the internal extraction side and the organic EL element 107 having the light scattering layer formed on the external extraction side are compared, the organic EL element 107 formed on the external extraction side is compared. Although the luminous efficiency was slightly inferior, the visibility when not emitting light was as good as that of the element 105 formed on the internal extraction side. Further, when comparing the organic EL element 103 in which a conventional color filter having no light scattering function is formed on the outside extraction side of the substrate with the organic EL element 107 in which the light scattering layer of the present invention is formed, Although the organic EL element 107 has the same visibility when not emitting light, it has a good luminous efficiency.
  • the organic EL elements 108 to 110 having a non-colored smoothing layer are better. A good value was shown in luminous efficiency. Further, in the organic EL elements 108 to 113 having the smoothing layer, the organic EL elements 111 to 113 having the colored smoothing layer are compared with the organic EL elements 108 to 110 having the non-colored smoothing layer. The value was better in visibility when no light was emitted.
  • the organic EL elements 114 to 116 having the non-colored second light scattering layer are compared. 116 had a better visibility when no light was emitted. Further, the organic EL elements 114 to 118 having the second light scattering layer have a non-colored second light scattering layer as compared with the organic EL elements 117 and 118 having the colored second light scattering layer. The organic EL elements 114 to 116 had better values of luminous efficiency as well as visibility when not emitting light.
  • the organic EL elements 119 to 121 having an uncolored smoothing layer are more preferable.
  • the value of luminous efficiency was the best value together with the visibility when not emitting light.
  • the organic EL element 122 having a colored smoothing layer is compared with the organic EL element 117 having no colored smoothing layer, the organic EL element 122 having a colored smoothing layer has a better light emission efficiency value. It was a good value.
  • the organic EL element using the configuration of the present invention can identify the emission color when not emitting light while improving the light emission efficiency of the organic EL element.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescent element which is provided with: a light emitting function layer that is configured using an organic material; a transparent electrode that is provided on the extraction side of light emitted in the light emitting function layer; and a counter electrode that is provided so as to sandwich the light emitting function layer between itself and the transparent electrode. This organic electroluminescent element is also provided with a light scattering layer and a colored layer that is colored in a desired color at a position that is closer to the extraction side of emitted light (h) than the transparent electrode.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は有機エレクトロルミネッセンス素子に関し、特には発光効率の向上を図りつつも非発光時において発光色の識別が可能な有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence device, and more particularly to an organic electroluminescence device capable of distinguishing a luminescent color when no light is emitted while improving luminous efficiency.
 有機エレクトロルミネッセンス素子(以下、有機EL素子と記す)は、2つの電極間に有機材料を用いて構成された発光機能層を挟持した構成であり、軽量で薄膜型の全固体素子である。この様な有機EL素子においては、一方の電極から注入された電子と他方の電極から注入された正孔とが、発光機能層内において再結合して励起子が生じる。有機EL素子は、この励起子からの光の放出を利用した発光素子であり、低電力、高輝度、低消費電力等で優れていることから様々な分野への応用が考えられている。 An organic electroluminescence element (hereinafter referred to as an organic EL element) is a light-weight, thin-film, all-solid-state element in which a light-emitting functional layer composed of an organic material is sandwiched between two electrodes. In such an organic EL element, electrons injected from one electrode and holes injected from the other electrode are recombined in the light emitting functional layer to generate excitons. The organic EL element is a light emitting element that utilizes the emission of light from the exciton, and is excellent in low power, high luminance, low power consumption, and the like, and thus is considered to be applied to various fields.
 有機EL素子は自己発光型光源であるため、次世代照明として脚光をあびており、有機EL照明として各所で開発がなされている。また近年では、照明だけでなく自動車等のランプや各種表示灯への応用も試みられている。ここで自動車等のランプ類は、使われる用途や機能に応じて特定の色が指定されている。 Since the organic EL element is a self-luminous light source, it has been spotlighted as next-generation lighting and has been developed in various places as organic EL lighting. In recent years, application to not only lighting but also lamps for automobiles and various display lamps has been attempted. Here, a specific color is specified for lamps of an automobile or the like according to the application and function used.
 ところで有機EL表示素子においては、色純度の向上を図るために、各色有機EL層上にそれぞれ対応する色の着色樹脂領域が配置されたカラーフィルタを用いた構成が提案されている(例えば下記特許文献1参照)。 By the way, in an organic EL display element, in order to improve color purity, the structure using the color filter by which the colored resin area | region of the color corresponding to each color organic EL layer is arrange | positioned is proposed (for example, the following patent) Reference 1).
特開2013-225132号公報JP 2013-225132 A
 しかしながら、一般的に有機EL素子は消灯時に無色であることが特徴であるが、使用用途や機能によっては必ずしも長所とならない。例えば自動車等のランプ類、道路標識等は、消灯時においても使用用途や機能に応じて、特定の色を識別できることが求められている。 However, the organic EL element is generally characterized by being colorless when turned off, but it is not necessarily an advantage depending on the intended use and function. For example, lamps such as automobiles, road signs, and the like are required to be able to identify specific colors according to usage and functions even when the lights are turned off.
 またディスプレイ等の表示素子においては、上記カラーフィルタを設けた有機EL表示素子のように、発光時において色純度の向上等が課題となるが、非発光時において色を識別できるようにする必要はなかった。逆にコントラスト比や画質を向上させるために、非発光時において表示部は黒色であることが求められる。 In addition, in display elements such as displays, improvement of color purity is a problem when light is emitted, as in the case of the organic EL display element provided with the color filter. However, it is necessary to be able to identify colors when light is not emitted. There wasn't. Conversely, in order to improve the contrast ratio and image quality, the display unit is required to be black when no light is emitted.
 ここで例えば、有機EL素子に発光色を識別できる程度のカラーフィルタを設けた場合には、非発光時において発光色を識別できるが、発光時においては、カラーフィルタでの光吸収により光量のロスが大きく発光効率が低下してしまう。 Here, for example, when the organic EL element is provided with a color filter that can identify the emission color, the emission color can be identified when no light is emitted, but the light loss is caused by light absorption by the color filter during emission. Will greatly reduce the light emission efficiency.
 そこで本発明は、発光効率の向上を図りつつも非発光時において発光色の識別が可能な有機EL素子を提供することを目的とする。 Accordingly, an object of the present invention is to provide an organic EL element capable of distinguishing a luminescent color when not emitting light while improving luminous efficiency.
 このような目的を達成するための本発明の有機EL素子は、有機材料を用いて構成された発光機能層と、発光機能層において発生させた発光光の取り出し側に設けられた透明電極と、透明電極との間に発光機能層を挟持する状態で設けられた対向電極とを有し、透明電極よりも発光光の取り出し側となる位置に光散乱層と、所望の色に着色している着色層とが設けられていることを特徴としている。 In order to achieve such an object, the organic EL device of the present invention includes a light-emitting functional layer configured using an organic material, a transparent electrode provided on the extraction side of emitted light generated in the light-emitting functional layer, A counter electrode provided in a state in which the light emitting functional layer is sandwiched between the transparent electrode and the light scattering layer at a position closer to the emission light extraction side than the transparent electrode, and is colored in a desired color A colored layer is provided.
 このような構成の有機EL素子は、光散乱層を有することにより、発光時において発光効率の向上を図りつつも、所望の色に着色している着色層を有することにより、非発光時において発光色を識別することができる。 The organic EL element having such a structure has a light scattering layer to improve luminous efficiency at the time of light emission, but has a colored layer colored in a desired color to emit light at the time of non-light emission. The color can be identified.
 以上説明したように、本発明によれば、発光効率の向上を図りつつも非発光時において発光色の識別が可能な有機EL素子を提供することができる。 As described above, according to the present invention, it is possible to provide an organic EL element capable of identifying a luminescent color at the time of non-light emission while improving luminous efficiency.
本発明の第1実施形態に係る有機EL素子の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the organic EL element which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る有機EL素子の変形例の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the modification of the organic EL element which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る有機EL素子の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the organic EL element which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る有機EL素子の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the organic EL element which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る有機EL素子の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the organic EL element which concerns on 4th Embodiment of this invention.
 以下、本発明の実施の形態を、図面に基づいて次に示す順に説明する。
1.第1実施形態:光散乱層を内部取り出し側に配置した有機EL素子
1-1.変形例:光散乱効果を有する着色散乱粒子を含有した光散乱層を用いた有機EL素子
2.第2実施形態:光散乱層を外部取り出し側に配置した有機EL素子
3.第3実施形態:平滑化層をさらに設けた有機EL素子
4.第4実施形態:無着色の光散乱層をさらに設けた有機EL素子
Hereinafter, embodiments of the present invention will be described in the following order based on the drawings.
1. First Embodiment: Organic EL element in which light scattering layer is arranged on the inside extraction side 1-1. Modification: Organic EL element using a light scattering layer containing colored scattering particles having a light scattering effect 2. Second embodiment: an organic EL element in which a light scattering layer is disposed on the outside extraction side 3. Third embodiment: organic EL device further provided with a smoothing layer Fourth Embodiment: Organic EL device further provided with a non-colored light scattering layer
≪1.第1実施形態:有機EL素子≫
(光散乱層を内部取り出し側に配置した構成)
 図1は、本発明の第1実施形態に係る有機EL素子の構成を示す断面模式図である。この図に示す有機EL素子1は、基板11の一主面側(内部取り出し側)に、光散乱層a、透明電極13、発光機能層15、および対向電極17をこの順に設けた積層構造を有し、基板11の他主面側を光取り出し面Sとして、発光機能層15内で生じた発光光hを基板11側から取り出す構成である。このような第1実施形態の有機EL素子1においては、透明電極13よりも発光光hの取り出し側となる位置に、光散乱機能を有する光散乱層と所望の色に着色されている着色層が同一層(以下光散乱層aと示す)で形成されているところが特徴的である。
<< 1. First Embodiment: Organic EL Device >>
(Configuration in which the light scattering layer is arranged on the internal extraction side)
FIG. 1 is a schematic cross-sectional view showing the configuration of the organic EL element according to the first embodiment of the present invention. The organic EL element 1 shown in this figure has a laminated structure in which a light scattering layer a, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side (internal extraction side) of a substrate 11. The other main surface side of the substrate 11 is the light extraction surface S, and the emitted light h generated in the light emitting functional layer 15 is extracted from the substrate 11 side. In such an organic EL element 1 of the first embodiment, a light scattering layer having a light scattering function and a colored layer colored in a desired color at a position closer to the emission light h extraction side than the transparent electrode 13. Is formed of the same layer (hereinafter referred to as a light scattering layer a).
 尚、光散乱層aは、透明電極13よりも発光光hの取り出し方向となる位置に設けられていれば良く、透明電極13と基板11と間に他の層が設けられていても良い。 The light scattering layer a only needs to be provided at a position where the emission light h is extracted from the transparent electrode 13, and another layer may be provided between the transparent electrode 13 and the substrate 11.
 また有機EL素子1は、基板11の一主面側に、発光機能層15を封止する封止構造19を備えた構成であり、さらにはここでの図示を省略した保護部材が設けられていても良い。 The organic EL element 1 has a configuration including a sealing structure 19 that seals the light emitting functional layer 15 on one main surface side of the substrate 11, and further includes a protective member that is not shown here. May be.
 以下に有機EL素子1を構成する各部の詳細について、光散乱層a、基板11、透明電極13、対向電極17、発光機能層15、封止構造19、および保護部材の順に説明を行う。 Hereinafter, the details of each part constituting the organic EL element 1 will be described in the order of the light scattering layer a, the substrate 11, the transparent electrode 13, the counter electrode 17, the light emitting functional layer 15, the sealing structure 19, and the protective member.
<光散乱層a>
 光散乱層aは、透明電極13よりも発光光hの取り出し側となる位置に設けられた層であって、所望の色に着色されている着色層を兼ねた層である。本実施形態においては、光散乱層aは、基板11と透明電極13との間に設けられていることとする。また光散乱層aは、樹脂材料からなるバインダー(層媒体)と、該バインダーに含有される光散乱粒子1aと、所望の色に着色する着色材2aとで構成されている。
<Light scattering layer a>
The light scattering layer a is a layer provided at a position closer to the extraction side of the emitted light h than the transparent electrode 13 and also serves as a colored layer colored in a desired color. In the present embodiment, the light scattering layer a is provided between the substrate 11 and the transparent electrode 13. The light scattering layer a is composed of a binder (layer medium) made of a resin material, light scattering particles 1a contained in the binder, and a coloring material 2a that is colored in a desired color.
 この光散乱層aは、発光時において発光光hの取り出し効率を向上させることによって発光効率の向上を図りつつも、非発光時における発光色の識別を可能にするための層である。したがって、光散乱層aは、可視光に対する透過率が50%以上であることが好ましく、55%以上であることがより好ましく、60%以上であることが特に好ましい。 The light scattering layer a is a layer for enabling the discrimination of the emission color at the time of non-light emission while improving the light emission efficiency by improving the extraction efficiency of the emitted light h at the time of light emission. Therefore, the light scattering layer a preferably has a visible light transmittance of 50% or more, more preferably 55% or more, and particularly preferably 60% or more.
 また光散乱層aは、光散乱粒子1aを分散させた層全体で波長550nmにおける屈折率が1.7以上2.5未満の範囲内である高屈折率層であることが好ましい。屈折率1.7以上とすることにより、発光層内に閉じ込められる導波モード光や、対向電極17において反射されるプラズモンモード光等の、特異な光学モードの光を取り出すことができる。一方、プラズモンモードの最も高次側のモードであっても、屈折率2.5以上の領域の光はほとんど存在せず、これ以上の屈折率としても取り出せる光の量が増えることはないため、光散乱層aの屈折率は2.5未満であればよい。 The light scattering layer a is preferably a high refractive index layer having a refractive index at a wavelength of 550 nm in the range of 1.7 or more and less than 2.5 over the entire layer in which the light scattering particles 1a are dispersed. By setting the refractive index to 1.7 or more, light of a specific optical mode such as waveguide mode light confined in the light emitting layer and plasmon mode light reflected by the counter electrode 17 can be extracted. On the other hand, even in the higher-order mode of the plasmon mode, there is almost no light in a region with a refractive index of 2.5 or higher, and the amount of light that can be extracted even with a refractive index higher than this does not increase. The refractive index of the light scattering layer a may be less than 2.5.
 尚、本実施形態において光散乱層aは、バインダーと、光散乱粒子1aと、着色材2aとを混合した場合に、層全体で1.7以上2.5未満を満たせばよく、各々の素材の屈折率は、1.7未満もしくは2.5以上であってもよい。このような混合系の場合、光散乱層aの層全体の屈折率は、各々の素材固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率で代用可能である。 In the present embodiment, when the light scattering layer a is mixed with the binder, the light scattering particles 1a, and the colorant 2a, the entire layer may satisfy 1.7 or more and less than 2.5. The refractive index of may be less than 1.7 or 2.5 or more. In the case of such a mixed system, the refractive index of the entire layer of the light scattering layer a can be substituted with a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the mixing ratio.
 本発明において、屈折率は、多波長アッベ屈折計、プリズムカプラ、ミケルソン干渉計、分光エリプソメーター等で測定することができる。 In the present invention, the refractive index can be measured with a multiwavelength Abbe refractometer, a prism coupler, a Mickelson interferometer, a spectroscopic ellipsometer, or the like.
 また、光散乱層aにおける光散乱粒子1aの含有量は、体積充填率で30%~70%の範囲内であることが好ましい。これにより、光散乱層aと透明電極13との界面に屈折率分布の粗密を作ることができ、光散乱量を増加させて光取り出し効率を向上させることができる。 The content of the light scattering particles 1a in the light scattering layer a is preferably in the range of 30% to 70% in terms of volume filling rate. Thereby, the density distribution of the refractive index distribution can be made at the interface between the light scattering layer a and the transparent electrode 13, and the light extraction efficiency can be improved by increasing the light scattering amount.
 光散乱層aの膜厚の総和は、構成する素材にもよるが形成する膜の均質性や所望の色を識別可能にする観点から、100~1000nmの範囲であることが好ましい。 The total film thickness of the light scattering layer a is preferably in the range of 100 to 1000 nm from the viewpoint of making it possible to identify the homogeneity of the formed film and the desired color, although it depends on the constituent materials.
 以下、バインダー(層媒体)と、光散乱粒子1aと、着色材2aについて説明する。 Hereinafter, the binder (layer medium), the light scattering particles 1a, and the coloring material 2a will be described.
[バインダー(層媒体)]
 光散乱層aを構成するバインダーとしては、公知の樹脂(バインダー)が特に制限なく使用可能であり、たとえば、アクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、パーフルオロアルキル基含有シラン化合物(たとえば、(ヘプタデカフルオロ-1,1,2,2-テトラデシル)トリエトキシシラン)の他、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体等が挙げられる。これら樹脂は、二種以上混合して使用することができる。これらの中でも、有機無機ハイブリッド構造を有するものが好ましい。
[Binder (layer medium)]
As the binder constituting the light scattering layer a, a known resin (binder) can be used without particular limitation. For example, acrylic ester, methacrylic ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate ( PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, poly Resin film such as ether sulfone, polyimide, polyetherimide, heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation) with silsesquioxane having organic / inorganic hybrid structure, Perf In addition to an oloalkyl group-containing silane compound (for example, (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane), a fluorine-containing copolymer comprising a fluorine-containing monomer and a monomer for imparting a crosslinkable group as structural units. A polymer etc. are mentioned. These resins can be used in combination of two or more. Among these, those having an organic-inorganic hybrid structure are preferable.
 また、バインダーとしては、以下の親水性樹脂を使うことも可能である。親水性樹脂としては水溶性の樹脂、水分散性の樹脂、コロイド分散樹脂またはそれらの混合物が挙げられる。親水性樹脂としては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、たとえば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、澱粉、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマーを挙げることができるが、これらの中でも、ポリビニルアルコールが好ましい。 Also, the following hydrophilic resins can be used as the binder. Examples of hydrophilic resins include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof. Examples of the hydrophilic resin include acrylic resins, polyester resins, polyamide resins, polyurethane resins, fluorine resins, and the like. For example, polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, polyacrylic resin. Polymers such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral can be mentioned, but these Among these, polyvinyl alcohol is preferable.
 バインダーとして用いられるポリマーは、1種類を単独で用いてもよいし、必要に応じて2種類以上を混合して使用してもよい。 The polymer used as the binder may be used alone or as a mixture of two or more if necessary.
 また、同様に、従来公知の樹脂粒子(エマルジョン)等も好適に使用可能である。 Similarly, conventionally known resin particles (emulsion) and the like can also be suitably used.
 また、バインダーとしては、主として紫外線・電子線によって硬化する樹脂、すなわち、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤とを混合したものや熱硬化型樹脂も好適に使用できる。このようなバインダー樹脂としては、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがより好ましい。 Also, as the binder, a resin curable mainly by ultraviolet rays or an electron beam, that is, a mixture of a thermoplastic resin and a solvent in an ionizing radiation curable resin or a thermosetting resin can be suitably used. Such a binder resin is preferably a polymer having a saturated hydrocarbon or polyether as a main chain, and more preferably a polymer having a saturated hydrocarbon as a main chain.
 また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、2つ以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。 Also, the binder is preferably crosslinked. The polymer having a saturated hydrocarbon as the main chain is preferably obtained by a polymerization reaction of an ethylenically unsaturated monomer. In order to obtain a crosslinked binder, it is preferable to use a monomer having two or more ethylenically unsaturated groups.
[光散乱粒子1a]
 光散乱層aを構成する光散乱粒子1aは、上述したバインダーとの屈折率の違いにより光を拡散させるためのものであって、バインダーよりも屈折率が高く、その屈折率差は0.03以上であり、好ましくは0.1以上であり、より好ましくは0.2以上であり、特に好ましくは0.3以上の粒子である。バインダーと光散乱粒子1aとの屈折率差が0.03以上であれば、バインダーと粒子との界面で光散乱効果が発生する。屈折率差が大きいほど、界面での屈折が大きくなり、光散乱効果が向上するため好ましい。
[Light scattering particles 1a]
The light scattering particles 1a constituting the light scattering layer a are for diffusing light due to the difference in refractive index from the above-described binder, and have a higher refractive index than the binder, and the refractive index difference is 0.03. Or more, preferably 0.1 or more, more preferably 0.2 or more, particularly preferably 0.3 or more. If the refractive index difference between the binder and the light scattering particles 1a is 0.03 or more, a light scattering effect is generated at the interface between the binder and the particles. A larger refractive index difference is preferable because refraction at the interface increases and the light scattering effect improves.
 また、光散乱粒子1aは、上記のように屈折率の違いで光を拡散させるため、可視光のミー散乱を生じさせる領域以上の粒径を有する透明な粒子であることが好ましく、その平均粒径は0.2μm以上であることが好ましい。 Further, the light scattering particles 1a are preferably transparent particles having a particle size equal to or larger than a region that causes visible light Mie scattering in order to diffuse light with a difference in refractive index as described above. The diameter is preferably 0.2 μm or more.
 一方、光散乱粒子1aの平均粒径の上限としては、粒径がより大きい場合、その粒子を含有した光散乱層aの粗さを平坦化する必要があり、工程の負荷、膜の吸収の観点で不利な点があることから、好ましくは10μm未満、より好ましくは5μm未満、特に好ましくは3μm未満、最も好ましくは1μm未満である。 On the other hand, as the upper limit of the average particle diameter of the light scattering particles 1a, when the particle diameter is larger, it is necessary to flatten the roughness of the light scattering layer a containing the particles. Since there is a disadvantage from the viewpoint, it is preferably less than 10 μm, more preferably less than 5 μm, particularly preferably less than 3 μm, and most preferably less than 1 μm.
 ここで、光散乱粒子1aの平均粒径は、たとえば、日機装社製ナノトラックUPA-EX150といった動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。 Here, the average particle diameter of the light scattering particles 1a can be measured, for example, by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.
 このような光散乱粒子1aとしては、特に制限はなく、目的に応じて適宜選択することができ、有機微粒子であっても、無機微粒子であってもよいが、中でも高屈折率を有する無機微粒子であることが好ましい。 Such light scattering particles 1a are not particularly limited and may be appropriately selected depending on the purpose. The light scattering particles 1a may be organic fine particles or inorganic fine particles, and among them, inorganic fine particles having a high refractive index. It is preferable that
 高屈折率を有する有機微粒子としては、たとえば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。 Examples of organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
 高屈折率を有する無機微粒子としては、たとえば、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモン等の中から選ばれる少なくとも1つの酸化物からなる無機酸化物粒子が挙げられる。無機酸化物粒子としては、具体的には、ZrO、TiO、BaTiO、Al、In、ZnO、SnO、Sb、ITO、SiO、ZrSiO、ゼオライト等が挙げられ、中でも、TiO、ZrOが好ましい。また、TiOの中でも、アナターゼ型よりルチル型の方が、触媒活性が低いため高屈折率層や隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。 Examples of the inorganic fine particles having a high refractive index include inorganic oxide particles composed of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony, and the like. Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite. Among them, TiO 2 and ZrO 2 are preferable. Of TiO 2, the rutile type is more preferable than the anatase type because the catalyst activity is low, so that the weather resistance of the high refractive index layer and the adjacent layer is high and the refractive index is high.
 また、光散乱層aの塗布形成に用いられる塗布液(分散液)における分散性や、塗布液の安定性向上の観点から、これらの粒子は、表面処理を施したものを用いるか、あるいは表面処理を施さないものを用いるかを選択することができる。 From the viewpoint of dispersibility in the coating liquid (dispersion liquid) used for coating formation of the light scattering layer a and improvement of the stability of the coating liquid, these particles may be subjected to surface treatment or It is possible to select whether to use an untreated one.
 表面処理としては、表面処理剤を用いた処理が例示される。表面処理剤の具体例としては、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理剤は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、上述した塗布液の安定性の観点から、表面処理剤としては、異種無機酸化物および/または金属水酸化物が好ましく、金属水酸化物がより好ましい。 As the surface treatment, a treatment using a surface treatment agent is exemplified. Specific examples of the surface treatment agent include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treating agents may be used alone or in combination of two or more. Among these, from the viewpoint of the stability of the coating solution described above, the surface treatment agent is preferably a different inorganic oxide and / or metal hydroxide, and more preferably a metal hydroxide.
 無機微粒子が、表面処理剤で表面処理されている場合、表面処理剤による粒子表面の被覆量は、0.01~99質量%であることが好ましい。この被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理剤の質量割合で示されることとする。表面処理剤の被覆量を0.01質量%以上とすることにより、表面処理による分散性や安定性の向上効果を得る。また、99質量%以下とすることにより、混合散乱層の屈折率を確保する。 When the inorganic fine particles are surface-treated with the surface treatment agent, the coating amount of the particle surface with the surface treatment agent is preferably 0.01 to 99% by mass. This coating amount is indicated by the mass ratio of the surface treatment agent used on the surface of the particle with respect to the mass of the particle. By making the coating amount of the surface treatment agent 0.01% by mass or more, an effect of improving dispersibility and stability by the surface treatment is obtained. Moreover, the refractive index of a mixed scattering layer is ensured by setting it as 99 mass% or less.
 上記光散乱粒子1aは、その屈折率が1.7以上であり、1.85以上が好ましく、2.0以上が特に好ましい。屈折率が1.7以上とすることにより、バインダーとの屈折率差を大きくして、光散乱量を確保し、光取り出し効率の向上を図る。一方で、粒子の屈折率の上限は3.0未満である。 The light scattering particle 1a has a refractive index of 1.7 or more, preferably 1.85 or more, particularly preferably 2.0 or more. By setting the refractive index to 1.7 or more, the difference in refractive index from the binder is increased, the amount of light scattering is ensured, and the light extraction efficiency is improved. On the other hand, the upper limit of the refractive index of the particles is less than 3.0.
 また、光散乱層a内における粒子の配置は、光取り出し側、又は光取り出し側と逆の界面に粒子が接触または近接するように、粒子1層の厚みで配置されるのが好ましい。これにより、基板11または透明電極13内で全反射が起きたときに光散乱層a側に染み出してくるエバネッセント光を、光散乱層a内における基板11または透明電極13との界面付近に存在する光散乱粒子1aによって散乱させることができ、光取り出し効率が向上する。 Further, it is preferable that the particles in the light scattering layer a are arranged with the thickness of one particle layer so that the particles are in contact with or close to the light extraction side or the interface opposite to the light extraction side. As a result, evanescent light that oozes out toward the light scattering layer a when total reflection occurs in the substrate 11 or the transparent electrode 13 exists in the vicinity of the interface with the substrate 11 or the transparent electrode 13 in the light scattering layer a. Can be scattered by the light scattering particles 1a to improve the light extraction efficiency.
 一方、光散乱粒子1aの分布する厚みが増えると、光散乱層aを塗布成膜する際の均一性や界面平滑性が低下し、さらに反射散乱光の増加による性能低下といった問題が生じる可能性がある。 On the other hand, when the thickness of the light scattering particles 1a is increased, the uniformity and interfacial smoothness when the light scattering layer a is formed by coating may be reduced, and there may be a problem that the performance is deteriorated due to an increase in reflected scattered light. There is.
 これらの光散乱粒子1aは、実際には、多分散粒子であることや規則的に配置することが難しいことから、局部的には回折効果を有するもののその効果は小さく、多くは拡散により光の方向を変化させ光取り出し効率を向上させる。 Since these light scattering particles 1a are actually polydisperse particles and difficult to arrange regularly, the light scattering particles 1a have a diffraction effect locally, but the effect is small. Change the direction to improve the light extraction efficiency.
[着色材2a]
 光散乱層aに含有される着色材2aは、染料あるいは顔料を特に制限なく用いることができ、その両方を用いてもよい。ここで、着色材2aは、樹脂成分に対し良好な分散安定性を有し、かつ耐候性に優れる等の観点から、顔料を用いることが好ましい。顔料としては、特に限定されるわけではないが、本発明には例えばカラーインデックスに記載される下記の番号の有機又は無機顔料や鉱物が使用できる。
[Colorant 2a]
As the coloring material 2a contained in the light scattering layer a, a dye or a pigment can be used without particular limitation, or both of them may be used. Here, it is preferable to use a pigment from the viewpoint of the colorant 2a having good dispersion stability with respect to the resin component and excellent weather resistance. Although it does not necessarily limit as a pigment, For example, the organic or inorganic pigment and mineral of the following number described in a color index can be used for this invention.
〈赤又はマゼンタ顔料〉
 Pigment Red 3、5、19、22、31、38、43、48:1、48:
2、48:3、48:4、48:5、49:1、53:1、57:1、57:2、58:4、63:1、81、81:1、81:2、81:3、81:4、88、104、108、112、122、123、144、146、149、166、168、169、170、177、178、179、184、185、208、216、226、257、Pigment Violet 3、19、23、29、30、37、50、88、Pigment Orange 13、16、20、36、ルビー(クロム含有コランダム)、ガーネット(柘榴石)、スピネル(尖晶石)などが目的に応じて使用できる。
<Red or magenta pigment>
Pigment Red 3, 5, 19, 22, 31, 38, 43, 48: 1, 48:
2, 48: 3, 48: 4, 48: 5, 49: 1, 53: 1, 57: 1, 57: 2, 58: 4, 63: 1, 81, 81: 1, 81: 2, 81: 3, 81: 4, 88, 104, 108, 112, 122, 123, 144, 146, 149, 166, 168, 169, 170, 177, 178, 179, 184, 185, 208, 216, 226, 257, Pigment Violet 3, 19, 23, 29, 30, 37, 50, 88, Pigment Orange 13, 16, 20, 36, Ruby (chromium-containing corundum), garnet, spinel Can be used according to.
〈青又はシアン顔料〉
 pigment Blue 1、15、15:1、15:2、15:3、15:4、15:6、16、17-1、22、27、28、29、36、60、ブルーサファイア(鉄、チタン含有コランダム)などが目的に応じて使用できる。
<Blue or cyan pigment>
pigment blue 1, 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 17-1, 22, 27, 28, 29, 36, 60, blue sapphire (iron, titanium) Containing corundum) can be used according to the purpose.
〈緑顔料〉
 Pigment Green 7、26、36、50などが目的に応じて使用できる。
<Green pigment>
Pigment Green 7, 26, 36, 50, etc. can be used according to the purpose.
〈黄顔料〉
 Pigment Yellow 1、3、12、13、14、17、34、35、37、55、74、81、83、93、94、95、97、108、109、110、137、138、139、153、154、155、157、166、167、168、180、185、193、イエローサファイア(ニッケル含有コランダム)などが目的に応じて使用できる。
<Yellow pigment>
Pigment Yellow 1, 3, 12, 13, 14, 17, 34, 35, 37, 55, 74, 81, 83, 93, 94, 95, 97, 108, 109, 110, 137, 138, 139, 153, 154, 155, 157, 166, 167, 168, 180, 185, 193, yellow sapphire (nickel-containing corundum) and the like can be used according to the purpose.
 具体的に商品名を示すと、例えば、クロモファインイエロー2080、5900、5930、AF-1300、2700L、クロモファインオレンジ3700L、6730、クロモファインスカーレット675、クロモファインマゼンタ6880、6886、6891N、6790、6887、クロモファインバイオレットRE、クロモファインレッド6820、6830、クロモファインブルーHS-3、5187、5108、5197、5085N、SR-5020、5026、5050、4920、4927、4937、4824、4933GN-EP、4940、4973、5205、5208、5214、5221、5000P、クロモファイングリーン2GN、2GO、2G-550D、5310、5370、6830、セイカファストエロー10GH、A-3、2035、2054、2200、2270、2300、2400(B)、2500、2600、ZAY-260、2700(B)、2770、セイカファストレッド8040、C405(F)、CA120、LR-116、1531B、8060R、1547、ZAW-262、1537B、GY、4R-4016、3820、3891、ZA-215、セイカファストカーミン6B1476T-7、1483LT、3840、3870、セイカファストボルドー10B-430、セイカライトローズR40、セイカライトバイオレットB800、7805、セイカファストマルーン460N、セイカファストオレンジ900、2900、セイカライトブルーC718、A612、シアニンブルー4933M、4933GN-EP、4940、4973(大日精化工業製)、KET Yellow 401、402、403、404、405、406、416、424、KET Orange 501、KET Red 301、302、303、304、305、306、307、308、309、310、336、337、338、346、KET Blue 101、102、103、104、105、106、111、118、124、KET Green 201(大日本インキ化学製)、Colortex  Yellow 301、314、315、316、P-624、314、U10GN、U3GN、UNN、UA-414、U263、Finecol Yellow T-13、T-05、Pigment Yellow 1705、Colortex Orange 202、Colortex Red 101、103、115、116、D3B、P-625、102、H-1024、105C、UFN、UCN、UBN、U3BN、URN、UGN、UG276、U456、U457、105C、USN、Colortex Maroon 601、Colortex Brown B610N、Colortex Violet 600、Pigment Red 122、Colortex Blue 516、517、518、519、A818、P-908、510、Colortex Green 402、403(山陽色素製)、Lionol Yellow 1405G、Lionol Blue FG7330、FG7350、FG7400G、FG7405G、ES、ESP-S(東洋インキ製)、Toner Magenta E02、Permanent Rubin F6B、Toner Yellow HG、Permanent Yellow GG-02、Hostapeam Blue B2G(ヘキストインダストリ製)などが挙げられる。 Specific product names include, for example, chromo fine yellow 2080, 5900, 5930, AF-1300, 2700L, chromo fine orange 3700L, 6730, chromo fine scarlet 675, chromo fine magenta 6880, 6886, 6891N, 6790, 6887. , Chromofine Violet RE, Chromofine Red 6820, 6830, Chromofine Blue HS-3, 5187, 5108, 5197, 5085N, SR-5020, 5026, 5050, 4920, 4927, 4937, 4824, 4933GN-EP, 4940, 4973, 5205, 5208, 5214, 5221, 5000P, Chromofine Green 2GN, 2GO, 2G-550D, 5310, 5370, 6830, Se Fast Yellow 10GH, A-3, 2035, 2054, 2200, 2270, 2300, 2400 (B), 2500, 2600, ZAY-260, 2700 (B), 2770, Seika Fast Red 8040, C405 (F), CA120, LR-116, 1531B, 8060R, 1547, ZAW-262, 1537B, GY, 4R-4016, 3820, 3891, ZA-215, Seika Fast Carmine 6B1476T-7, 1483LT, 3840, 3870, Seika Fast Bordeaux 10B-430, Seikalite Rose R40, Seikalite Violet B800, 7805, Seika Fast Maroon 460N, Seika Fast Orange 900, 2900, Seika Light Blue C718, A612, Cyanine Blue 493 M, 4933GN-EP, 4940, 4973 (manufactured by Dainichi Seika Kogyo), KET Yellow 401, 402, 403, 404, 405, 406, 416, 424, KET Orange 501, KET Red 301, 302, 303, 304, 305 306, 307, 308, 309, 310, 336, 337, 338, 346, KET Blue 101, 102, 103, 104, 105, 106, 111, 118, 124, KET Green 201 (manufactured by Dainippon Ink and Chemicals), Colortex Yellow 301, 314, 315, 316, P-624, 314, U10GN, U3GN, UNN, UA-414, U263, Finecol Yellow T-13, T-05, Pigment Yellow 1705, Colortex Orange 202, Colortex Red 101, 103, 115, 116, D3B, P-625, 102, H-1024, 105C, UFN, UCN, UBN, U3BN, URN, UGN, UG276, U456, U457, 105C, USN, Colortex Maroon 601, Colortex Brown B610N, Colortex violet 600, Pigment Red 122, Colortex Blue 516, 517, 518, 519, A818, P-908, Green 140 (Color 405) , Lionol Blue FG7330, FG7350, FG740 G, FG7405G, ES, ESP-S (manufactured by Toyo Ink), Toner Magenta E02, Permanent Rubin F6B, Toner Yellow HG, Permanent Yellow GG-02, Hostapeam Blue B2G (Hoechst Industries Ltd. bird), and the like.
 また、顔料を予め溶剤等に高濃度分散した分散液を使用することもできる。 It is also possible to use a dispersion in which the pigment is dispersed in a high concentration in a solvent or the like in advance.
 顔料の分散には、ボールミル、サンドミル、アトライター、ロールミル、アジテータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル、ペイントシェーカー等を用いることができる。又、顔料の分散を行う際に分散剤を添加することも可能である。 For dispersing the pigment, a ball mill, sand mill, attritor, roll mill, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, paint shaker, or the like can be used. It is also possible to add a dispersant when dispersing the pigment.
 上記方法で得られる顔料の平均分散粒子径は、100nm以上、500nm以下であることが好ましい。顔料の平均分散粒子径が上記で規定する範囲であれば、分散液中の安定性を向上させることができる。 The average dispersed particle size of the pigment obtained by the above method is preferably 100 nm or more and 500 nm or less. If the average dispersed particle size of the pigment is within the range specified above, the stability in the dispersion can be improved.
 尚、上述した顔料のうち、材料の粒子経や屈折率が上述した光散乱粒子1aと同様の範囲で有るものは、後述するように光散乱粒子(着色散乱粒子)としても機能する。 Of the above-mentioned pigments, those having a material particle size and refractive index in the same range as those of the above-described light scattering particles 1a also function as light scattering particles (colored scattering particles) as described later.
 また染料としては、従来公知の染料、好ましくは油溶性染料として、以下にその具体例を挙げるが、本発明はこれらに限定されるものではなく、バインダー液に使用している溶媒に対して可溶なものを選択して用いることとする。 Specific examples of the dye include conventionally known dyes, preferably oil-soluble dyes, but the present invention is not limited to these examples, and may be used for the solvent used in the binder liquid. A soluble material is selected and used.
〈マゼンタ染料〉
 MS Magenta VP、MS Magenta HM-1450、MS Magenta HSo-147(以上、三井東圧社製)、AIZENSOT Red-1、AIZENSOT Red-2、AIZENSOT Red-3、AIZENSOT Pink-1、SPIRON Red GEH SPECIAL(以上、保土谷化学社製)、RESOLIN Red FB 200%、MACROLEX Red Violet R、MACROLEX ROT5B(以上、バイエルジャパン社製)、KAYASET Red B、KAYASET Red 130、KAYASET Red 802(以上、日本化薬社製)、PHLOXIN、ROSE BENGAL、ACID Red(以上、ダイワ化成社製)、HSR-31、DIARESIN Red K(以上、三菱化成社製)、OilRed(BASFジャパン社製)などが目的に応じて使用できる。
<Magenta dye>
MS Magenta VP, MS Magenta HM-1450, MS Magenta HSo-147 (manufactured by Mitsui Toatsu Co., Ltd.), AIZENSOT Red-1, AIZENSOT Red-2, AIZENSOT Red-3, AIZENSOT Pink-1, SPIRON Red GEGH As described above, manufactured by Hodogaya Chemical Co., Ltd.), RESOLIN Red FB 200%, MACROLEX Red Violet R, MACROLEX ROT5B (manufactured by Bayer Japan), KAYASET Red B, KAYASET Red 130, KAYASET Red 802 (manufactured by Nippon Kayaku Co., Ltd.) ), PHLOXIN, ROSE BENGAL, ACID Red (above, manufactured by Daiwa Kasei), HSR-31, DIARESIN Red K (above Mitsubishi Kasei Co., Ltd.), such as OilRed (manufactured by BASF Japan Co.) may be used depending on the purpose.
〈シアン染料〉
 MS Cyan HM-1238、MS Cyan HSo-16、Cyan HSo-144、MS Cyan VPG(以上、三井東圧社製)、AIZENSOT Blue-4(保土谷化学社製)、RESOLIN BR.Blue BGLN 200%、MACROLEX Blue RR、CERES Blue GN、SIRIUS SUPRATURQ.Blue Z-BGL、SIRIUS SUPRATURQ.Blue FB-LL330%(以上、バイエルジャパン社製)、KAYASET Blue FR、KAYASET Blue N、KAYASET Blue 814、Turq.Blue GL-5200、Light Blue BGL-5200(以上、日本化薬社製)、DAIWA Blue 7000、Oleosol Fast Blue GL(以上、ダイワ化成社製)、DIARESIN Blue P(三菱化成社製)、SUDAN
 Blue 670、NEOPEN Blue 808、ZAPON Blue 806(以上、BASFジャパン社製)などが目的に応じて使用できる。
<Cyan dye>
MS Cyan HM-1238, MS Cyan HSo-16, Cyan HSo-144, MS Cyan VPG (manufactured by Mitsui Toatsu Co., Ltd.), AIZENSOT Blue-4 (manufactured by Hodogaya Chemical Co., Ltd.), RESOLIN BR. Blue BGLN 200%, MACROLEX Blue RR, CERES Blue GN, SIRIUS SUPRATURQ. Blue Z-BGL, SIRIUS SUPRATURQ. Blue FB-LL 330% (above, Bayer Japan), KAYASET Blue FR, KAYASET Blue N, KAYASET Blue 814, Turq. Blue GL-5200, Light Blue BGL-5200 (manufactured by Nippon Kayaku Co., Ltd.), DAIWA Blue 7000, Oleosol Fast Blue GL (manufactured by Daiwa Kasei Co., Ltd.), DIARESIN Blue P (manufactured by Mitsubishi Kasei Co., Ltd.), SUDAN
Blue 670, NEOPEN Blue 808, ZAPON Blue 806 (manufactured by BASF Japan Ltd.) can be used depending on the purpose.
〈イエロー染料〉
 MS Yellow HSm-41、Yellow KX-7、Yellow EX-27(三井東圧)、AIZENSOT Yellow-1、AIZENSOT YelloW-3、AIZENSOT Yellow-6(以上、保土谷化学社製)、MACROLEX Yellow 6G、MACROLEX FLUOR.Yellow 10GN(以上、バイエルジャパン社製)、KAYASET Yellow SF-G、KAYASET Yellow 2G、KAYASET Yellow A-G、KAYASET
 Yellow E-G(以上、日本化薬社製)、DAIWA Yellow 330HB(ダイワ化成社製)、HSY-68(三菱化成社製)、SUDAN Yellow 146、NEOPEN Yellow 075(以上、BASFジャパン社製)などが目的に応じて使用できる。
<Yellow dye>
MS Yellow HSm-41, Yellow KX-7, Yellow EX-27 (Mitsui Toatsu), AIZENSOT Yellow-1, AIZENSOT YellowW-3, AIZENSOT Yellow-6 (above, manufactured by Hodogaya Chemical Co., Ltd.), MACROLEX YellowL 6X FLUOR. Yellow 10GN (above, manufactured by Bayer Japan), KAYASET Yellow SF-G, KAYASET Yellow 2G, KAYASET Yellow AG, KAYASET
Yellow EG (manufactured by Nippon Kayaku Co., Ltd.), DAIWA Yellow 330HB (manufactured by Daiwa Kasei Co., Ltd.), HSY-68 (manufactured by Mitsubishi Kasei Co., Ltd.), SUDAN Yellow 146, NEOPEN Yellow 075 (manufactured by BASF Japan), etc. Can be used according to the purpose.
 上記着色材2aは、単独の材料を用いて光散乱層aを着色してもよいし、2種類以上の材料を混合して着色してもよい。 The colorant 2a may color the light scattering layer a using a single material, or may be colored by mixing two or more kinds of materials.
 尚、光散乱粒子1aと着色材2aとの比率は、色強度の観点から、着色材2aが顔料で構成されている場合には重量比90/10~0/100の範囲内であることが好ましい。また、着色材2aが染料で構成されている場合には、重量比99/1~70/30の範囲内であることが好ましい。 The ratio between the light scattering particles 1a and the colorant 2a is within the range of 90/10 to 0/100 by weight when the colorant 2a is made of a pigment from the viewpoint of color strength. preferable. When the colorant 2a is composed of a dye, the weight ratio is preferably in the range of 99/1 to 70/30.
 また、上記着色材2aは、後述する発光機能層において発生させる発光光hの波長領域と同一領域に光の吸収帯を持たないものが好ましく用いられる。すなわち、光散乱層a(着色層)から取り出される光(透過光)の波長領域において、発光光hの波長領域が重複するように設計することが好ましく、発光光hのピーク波長を含むように設計することがさらに好ましい。 Further, as the colorant 2a, a material having no light absorption band in the same region as the wavelength region of the emitted light h generated in the light emitting functional layer described later is preferably used. That is, it is preferable that the wavelength region of the emitted light h is overlapped in the wavelength region of the light (transmitted light) extracted from the light scattering layer a (colored layer), and includes the peak wavelength of the emitted light h. It is more preferable to design.
[光散乱層aの形成方法]
 以上のような光散乱層aの形成方法としては、例えば、塗布成膜法が適用される。この場合、粒子を溶解しない溶媒を用いてバインダーとなる樹脂材料(ポリマー)の溶液を作製し、着色材2aが顔料の場合には、バインダーとなる樹脂溶液に光散乱粒子1a及び着色材2aを分散させて塗布液を作製する。また、着色材2aが染料の場合には、予め有機溶媒に染料を溶解させた着色溶液に光散乱粒子1aを混合し、上記樹脂溶液に着色溶液を混合することで塗布液を作製する。尚、染料を用いた場合には、直接樹脂溶液に溶解し、光散乱粒子を分散させて塗布液を作製してもよい。その後、この塗布液を基板11上に塗布成膜する。
[Method of forming light scattering layer a]
As a method for forming the light scattering layer a as described above, for example, a coating film forming method is applied. In this case, a solution of a resin material (polymer) serving as a binder is prepared using a solvent that does not dissolve particles, and when the colorant 2a is a pigment, the light scattering particles 1a and the colorant 2a are added to the resin solution serving as a binder. Disperse to prepare a coating solution. When the colorant 2a is a dye, the light scattering particles 1a are mixed in a colored solution in which the dye is dissolved in advance in an organic solvent, and the colored solution is mixed in the resin solution to prepare a coating solution. When a dye is used, the coating solution may be prepared by directly dissolving in a resin solution and dispersing light scattering particles. Thereafter, the coating solution is applied and formed on the substrate 11.
<基板11>
 本発明の有機EL素子1に用いることのできる基板11としては、ガラス、プラスチック等が挙げられるが、特に限定はない。好ましく用いられる基板11としては、ガラス、石英、樹脂フィルムを挙げることができる。特に好ましい基板11は、有機EL素子1にフレキシブル性を与えることが可能な樹脂フィルムである。
<Substrate 11>
Examples of the substrate 11 that can be used in the organic EL element 1 of the present invention include glass and plastic, but there is no particular limitation. Examples of the substrate 11 that is preferably used include glass, quartz, and a resin film. A particularly preferable substrate 11 is a resin film that can give flexibility to the organic EL element 1.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
 樹脂フィルムの表面には、無機物または有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜が形成されていてもよい。このような被膜およびハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2%)RH)が0.01g/(m・24h)以下のバリア性フィルム(バリア膜)であることが好ましい。またさらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m・24h・atm)以下、水蒸気透過度が10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, a film made of an inorganic material or an organic material or a hybrid film combining these films may be formed. Such coatings and hybrid coatings have a water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2%) RH) of 0.01 g / (measured by a method according to JIS K 7129-1992. m 2 · 24h) or less of a barrier film (barrier film) is preferable. Furthermore, the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 −3 ml / (m 2 · 24 h · atm) or less, and the water vapor permeability is 10 −5 g / (m 2 · 24 h). ) The following high barrier films are preferred.
 以上のようなバリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらにこれらの材料からなる無機膜の脆弱性を改良するために、これらの材料からなる無機層と、有機層との積層構造とすることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film as described above may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do. Furthermore, in order to improve the fragility of the inorganic film made of these materials, it is more preferable to have a laminated structure of an inorganic layer made of these materials and an organic layer. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
<透明電極13>
 透明電極13は、発光機能層15で生じた発光光hの取り出す側に設けられた電極である。このような透明電極13は、可視光を透過する材料で構成され、例えば波長550nmに対する透過率が10%より大きいことが好ましい。また透明電極13は、有機EL素子1の発光機能層15に対して陽極または陰極として用いられ、少なくとも発光機能層15に接する側の界面層が、陽極または陰極として適する材料で構成されていることとする。
<Transparent electrode 13>
The transparent electrode 13 is an electrode provided on the side from which the emitted light h generated in the light emitting functional layer 15 is extracted. Such a transparent electrode 13 is made of a material that transmits visible light, and preferably has a transmittance of, for example, greater than 10% for a wavelength of 550 nm. The transparent electrode 13 is used as an anode or a cathode with respect to the light emitting functional layer 15 of the organic EL element 1, and at least an interface layer in contact with the light emitting functional layer 15 is made of a material suitable as an anode or a cathode. And
<対向電極17>
 対向電極17は、透明電極13との間に発光機能層15を挟持する状態で設けられた電極である。この対向電極17は、有機EL素子1の発光機能層15に対して、透明電極13が陽極であれば陰極として用いられ、透明電極13が陰極であれば陽極として用いられる。このため、少なくとも発光機能層15に接する側の界面層が、陰極または陽極として適する材料で構成されていることとする。
<Counter electrode 17>
The counter electrode 17 is an electrode provided with the light emitting functional layer 15 sandwiched between the transparent electrode 13. The counter electrode 17 is used as a cathode with respect to the light emitting functional layer 15 of the organic EL element 1 when the transparent electrode 13 is an anode and as an anode when the transparent electrode 13 is a cathode. For this reason, it is assumed that at least the interface layer in contact with the light emitting functional layer 15 is made of a material suitable as a cathode or an anode.
 このような対向電極17は、例えば発光機能層15で生じた発光光hを、基板11の光取り出し面S側に反射させる反射電極として構成されている。また対向電極17は、可視光に対して透過性を有していても良く、この場合は、対向電極17側からも発光光hを取り出すことが可能になる。 Such a counter electrode 17 is configured as a reflective electrode that reflects, for example, emitted light h generated in the light emitting functional layer 15 to the light extraction surface S side of the substrate 11. The counter electrode 17 may be transmissive to visible light. In this case, the emitted light h can be extracted from the counter electrode 17 side.
 ここで上述した透明電極13または対向電極17を構成する陽極および陰極は、以下のようであることとする。 Here, the anode and cathode constituting the transparent electrode 13 or the counter electrode 17 described above are as follows.
[陽極]
 陽極は、仕事関数の大きい(4eV以上、好ましくは4.5V以上)電極物質で構成され、金属、合金、電気伝導性化合物、及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au、Ag等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
[anode]
The anode is composed of an electrode material having a large work function (4 eV or more, preferably 4.5 V or more), and a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au and Ag, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 また陽極として有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。 Further, when a material that can be applied, such as an organic conductive compound, is used as the anode, a wet film forming method such as a printing method or a coating method can also be used. The sheet resistance as the anode is preferably several hundred Ω / sq.
 陽極の厚さは、透明電極13として用いられるか対向電極17として用いられるかにもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で、透過性または反射性を考慮して設定される。 Although the thickness of the anode depends on whether it is used as the transparent electrode 13 or the counter electrode 17, it is usually set in the range of 10 nm to 1 μm, preferably 10 nm to 200 nm in consideration of transparency or reflectivity. The
[陰極]
 陰極は、金属(電子注入性金属と称する)、合金、電気伝導性化合物、及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、Ag、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
[cathode]
As the cathode, a metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, Ag, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好
ましい。
The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / sq.
 陰極の厚さは、透明電極13として用いられるか対向電極17として用いられるかにもよるが、通常10nm~5μm、好ましくは50nm~200nmの範囲で、透過性または反射性を考慮して設定される。 Although the thickness of the cathode depends on whether it is used as the transparent electrode 13 or the counter electrode 17, it is usually set in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm in consideration of transparency or reflectivity. The
<発光機能層15>
 発光機能層15は、有機材料を用いて構成され、少なくとも有機材料からなる発光層を有し、陽極または陰極を構成する透明電極13と対向電極17との間に挟持されている。このような発光機能層15の代表的な構成としては、以下のような積層構成を例示することができるが、これらに限定されるものではない。
<Light emitting functional layer 15>
The light emitting functional layer 15 is made of an organic material, has a light emitting layer made of at least an organic material, and is sandwiched between the transparent electrode 13 constituting the anode or the cathode and the counter electrode 17. Examples of the typical configuration of the light emitting functional layer 15 include the following stacked configurations, but are not limited thereto.
(1)陽極/[発光層]/陰極
(2)陽極/[発光層/電子輸送層]/陰極
(3)陽極/[正孔輸送層/発光層]/陰極
(4)陽極/[正孔輸送層/発光層/電子輸送層]/陰極
(5)陽極/[正孔輸送層/発光層/電子輸送層/電子注入層]/陰極
(6)陽極/[正孔注入層/正孔輸送層/発光層/電子輸送層]/陰極
(7)陽極/[正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層]/陰極
(1) Anode / [light emitting layer] / cathode (2) Anode / [light emitting layer / electron transport layer] / cathode (3) Anode / [hole transport layer / light emitting layer] / cathode (4) Anode / [hole Transport layer / light emitting layer / electron transport layer] / cathode (5) anode / [hole transport layer / light emitting layer / electron transport layer / electron injection layer] / cathode (6) anode / [hole injection layer / hole transport] Layer / light emitting layer / electron transport layer] / cathode (7) anode / [hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer) ]/cathode
 上記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。 Among the above, the configuration (7) is preferably used, but is not limited thereto.
 本発明に係る発光層は、単層または複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。 The light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよい。また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。 If necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. Further, an electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided between the light emitting layer and the anode.
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。 The electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。 The hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
 上記の代表的な素子構成において、陽極と陰極を除いた層が発光機能層15であり、発光機能層15を構成するほとんどの層が有機材料で構成されるため「有機層」ともいう。 In the above-described typical element configuration, the layer excluding the anode and the cathode is the light emitting functional layer 15, and most of the layers constituting the light emitting functional layer 15 are made of an organic material, and are also referred to as “organic layers”.
[タンデム構造]
 また、本発明に係る有機EL素子1は、少なくとも1層の発光層を含む発光機能層15を1つの発光ユニットとし、透明電極13と対向電極17との間にこの発光機能層15を複数積層した、いわゆるタンデム構造の素子であってもよい。
[Tandem structure]
In the organic EL device 1 according to the present invention, the light emitting functional layer 15 including at least one light emitting layer is used as one light emitting unit, and a plurality of the light emitting functional layers 15 are stacked between the transparent electrode 13 and the counter electrode 17. Alternatively, an element having a so-called tandem structure may be used.
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 (1.1)陽極/第1発光機能層/中間層/第2発光機能層/陰極
 (2.2)陽極/第1発光機能層/中間層/第2発光機能層/中間層/第3発光機能層/陰極
As typical element configurations of the tandem structure, for example, the following configurations can be given.
(1.1) Anode / first light emitting functional layer / intermediate layer / second light emitting functional layer / cathode (2.2) Anode / first light emitting functional layer / intermediate layer / second light emitting functional layer / intermediate layer / third Light emitting functional layer / cathode
 ここで、第1発光機能層、第2発光機能層、および第3発光機能層は全て同じであっても、異なっていてもよい。またこれらのうちの2つの発光機能層が同じであり、残る1つが異なっていてもよい。 Here, the first light emitting functional layer, the second light emitting functional layer, and the third light emitting functional layer may all be the same or different. Two of these light emitting functional layers may be the same, and the remaining one may be different.
 複数の発光機能層は直接積層されていても、中間層を介して積層されていてもよい。中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。 The plurality of light emitting functional layers may be laminated directly or via an intermediate layer. The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. It has electrons in the adjacent layer on the anode side and holes in the adjacent layer on the cathode side. A known material structure can be used as long as the layer has a function of supplying.
 中間層に用いられる材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Li/Ag、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。 Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2. , CuGaO 2 , SrCu 2 O 2 , LaB 6 , RuO 2 , Al, etc., conductive inorganic compound layers, Li / Ag, Au / Bi 2 O 3 etc. two-layer films, SnO 2 / Ag / SnO 2 , Multilayer films such as ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C60, and conductivity such as oligothiophene Conductive organic compound layers such as conductive organic layers, metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. Is, the present invention is not limited thereto.
 また、中間層として中間電極を用いた場合、この中間電極(中間層21)に発光機能層制御用の電圧を印加する外部電源を接続させても良い。この場合、透明電極13、対向電極17、および中間電極(中間層)のうち、各発光機能層に接して配置された2つの電極の何れか一方を陰極、他方を陽極として電圧を印加することで、積層された各発光機能層に対して個別に正孔および電子を注入し、これらの各発光機能層の発光を独立に、かつ任意に制御する構成とすることができる。 In addition, when an intermediate electrode is used as the intermediate layer, an external power source that applies a voltage for controlling the light emitting function layer may be connected to the intermediate electrode (intermediate layer 21). In this case, among the transparent electrode 13, the counter electrode 17, and the intermediate electrode (intermediate layer), a voltage is applied with one of the two electrodes arranged in contact with each light emitting functional layer as a cathode and the other as an anode. Thus, holes and electrons are individually injected into each of the stacked light emitting functional layers, and the light emission of each of the light emitting functional layers can be controlled independently and arbitrarily.
 発光機能層内の好ましい構成としては、例えば上記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。 Examples of a preferable configuration in the light emitting functional layer include those obtained by removing the anode and the cathode from the configurations (1) to (7) mentioned in the above representative device configurations. It is not limited.
 タンデム型有EL素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006-228712号、特開2006-24791号、特開2006-49393号、特開2006-49394号、特開2006-49396号、特開2011-96679号、特開2005-340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号、特開2009-076929号、特開2008-078414号、特開2007-059848号、特開2003-272860号、特開2003-045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。 Specific examples of the tandem EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872, No. 472, US Pat. No. 6,107,734, US Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-49393. No., JP-A-2006-49394, JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-B-4714424, JP-A-34968681, JP-A-3884564, JP-A-4421169, JP 2010-192719, JP 2009-076929, JP 2008-078414, JP No. 007-059848, JP 2003-272860, JP 2003-045676, although elements configuration and construction materials described in WO 2005/094130, and the like, the present invention is not limited thereto.
<封止構造19>
 本発明の有機EL素子の封止に適用される封止構造19としては、例えば、封止部材を接着剤によって基板11に貼り合わせた構成を挙げることができる。封止部材は、光散乱層a~対向電極17の積層体で構成された表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また封止部材の透明性、電気絶縁性は特に限定されない。
<Sealing structure 19>
As the sealing structure 19 applied to the sealing of the organic EL element of the present invention, for example, a configuration in which a sealing member is bonded to the substrate 11 with an adhesive can be exemplified. The sealing member only needs to be disposed so as to cover the display region constituted by the laminated body of the light scattering layer a to the counter electrode 17, and may be concave or flat. Further, the transparency and electrical insulation of the sealing member are not particularly limited.
 封止部材の具体例としては、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウムおよびタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples of the sealing member include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、有機EL素子1を薄膜化できるということから、封止部材としては、ポリマーフィルム、金属フィルムを好ましく使用することができる。さらには、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m/24h)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m/24h)以下のものであることが好ましい。 In the present invention, since the organic EL element 1 can be thinned, a polymer film or a metal film can be preferably used as the sealing member. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 / 24h) or less, and is measured by a method according to JIS K 7129-1992. and water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably that of 1 × 10 -3 g / (m 2 / 24h) or less.
 封止部材を凹状に加工する場合であれば、サンドブラスト加工、化学エッチング加工等が使われる。 When the sealing member is processed into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤は、上述した封止部材を、基板11、透明電極13および対向電極17等の引き出し電極部分に対して接着可能なものであればよい。このような接着剤の具体例としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化および熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱および化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 The adhesive may be any adhesive that can bond the above-described sealing member to the extraction electrode portions such as the substrate 11, the transparent electrode 13, and the counter electrode 17. Specific examples of such adhesives include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. An agent can be mentioned. Moreover, heat | fever and chemical curing types (two liquid mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 このうち、発光機能層15の熱処理による劣化を防止するためには、室温から80℃までに接着硬化できる接着剤を用いることが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 Among these, in order to prevent the light emitting functional layer 15 from being deteriorated by heat treatment, it is preferable to use an adhesive that can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また封止部材と基板11との間隙には、気相および液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 Also, it is preferable to inject an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil in the gap between the sealing member and the substrate 11 in the gas phase and the liquid phase. A vacuum can also be used. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、たとえば、金属酸化物(たとえば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(たとえば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(たとえば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(たとえば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物および過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (for example, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (for example, perchloric acid) Barium, magnesium perchlorate, etc.), and anhydrous salts are preferably used in sulfates, metal halides and perchloric acids.
 また封止構造19としては、光散乱層a~対向電極17の積層体を覆う状態で基板11の上方に成膜された封止膜を用いても良い。このような封止膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、たとえば、酸化珪素、二酸化珪素、窒化珪素等の無機膜を用いることができる。さらに封止膜の脆弱性を改良するために、これら無機膜と有機材料からなる有機膜との積層構造の封止膜としても良い。 Further, as the sealing structure 19, a sealing film formed on the substrate 11 in a state of covering the laminated body of the light scattering layer a to the counter electrode 17 may be used. The material for forming such a sealing film may be a material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, an inorganic film such as silicon oxide, silicon dioxide, or silicon nitride Can be used. Further, in order to improve the brittleness of the sealing film, a sealing film having a laminated structure of these inorganic films and an organic film made of an organic material may be used.
 封止膜を構成するこれらの無機膜および有機膜の形成方法については特に限定はなく、たとえば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 There are no particular limitations on the method of forming these inorganic films and organic films constituting the sealing film. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster-ion beam method, ion plate A coating method, a plasma polymerization method, an atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
<保護部材>
 基板11との間に、光散乱層a~対向電極17の積層体、および封止構造19を挟持する位置には、有機EL素子1の機械的強度を高めるために、さらに保護膜あるいは保護板を設けてもよい。特に、封止構造19として封止膜が用いられている場合には、有機EL素子1の機械的強度は必ずしも高くない。このため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
<Protective member>
In order to increase the mechanical strength of the organic EL element 1, a protective film or a protective plate is provided at a position where the laminate of the light scattering layer a to the counter electrode 17 and the sealing structure 19 are sandwiched between the substrate 11 and the substrate 11. May be provided. In particular, when a sealing film is used as the sealing structure 19, the mechanical strength of the organic EL element 1 is not necessarily high. For this reason, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for sealing can be used. It is preferable to use it.
 尚、本実施形態において、光散乱層aは、全反射界面に設けられることが好ましく、全反射の強度の大きな屈折率の異なる層の界面に設けられることが好ましい。全反射界面とは、屈折率差が0.05以上の界面を言い、より効果が大きいのは屈折率差0.1以上、特に効果が大きいのは屈折率差0.15以上の界面である。したがって、透明電極13よりも発光光hの取り出し側となる位置に、光散乱層aを設けることにより、発光機能層15から基板11側に放射された発光光hが、基板11の界面で全反射することを防止でき、発光効率を向上させることができる。 In the present embodiment, the light scattering layer a is preferably provided at the total reflection interface, and is preferably provided at the interface between layers having different total refractive indexes and a high refractive index. The total reflection interface refers to an interface having a refractive index difference of 0.05 or more, and the effect is more effective when the refractive index difference is 0.1 or more, and the effect is particularly great when the refractive index difference is 0.15 or more. . Therefore, by providing the light scattering layer a at a position closer to the extraction side of the emitted light h than the transparent electrode 13, the emitted light h radiated from the light emitting functional layer 15 to the substrate 11 side is entirely at the interface of the substrate 11. Reflection can be prevented and luminous efficiency can be improved.
 また、本実施形態の有機EL素子1は、光散乱層aにおける光取り出し側と逆の界面には透明電極13が隣接する構成を例示したが、これに限らず他の層が光散乱層aにおける光取り出し側と逆の界面に隣接しても同様である。 Moreover, although the organic EL element 1 of this embodiment illustrated the structure which the transparent electrode 13 adjoins to the interface on the opposite side to the light extraction side in the light-scattering layer a, not only this but another layer is light-scattering layer a. This is the same even if it is adjacent to the interface opposite to the light extraction side.
 有機EL素子1内に、例えば全反射界面が複数ある場合には、その複数個所に光散乱層aを設けていてもよく、光散乱層aは複数層積層していてもよい。また、光散乱層aは、最も基板11に近い場所に設けることが好ましい態様である。 For example, when there are a plurality of total reflection interfaces in the organic EL element 1, a light scattering layer a may be provided at a plurality of locations, and a plurality of light scattering layers a may be laminated. The light scattering layer a is preferably provided at a location closest to the substrate 11.
 また、本実施形態の光散乱層aは、着色層を兼ねた層として説明したが、光散乱機能を有する光散乱層と所望の色に着色されている着色層とを別々の層で構成してもよい。すなわち、この場合の光散乱層は着色材を含有しないものとする。そして例えば、上述した着色材2aとバインダーとで構成された着色層と、光散乱粒子1aとバインダーとで構成された光散乱層とを別々に形成してもよいし、これらを複数層積層させてもよい。この場合には、基板11の一主面側から、着色層、光散乱層をこの順に積層することが好ましい。 The light scattering layer a of the present embodiment has been described as a layer that also serves as a colored layer. However, the light scattering layer having a light scattering function and a colored layer colored in a desired color are configured as separate layers. May be. That is, the light scattering layer in this case does not contain a coloring material. For example, the above-described colored layer composed of the colorant 2a and the binder and the light scattering layer composed of the light scattering particles 1a and the binder may be formed separately, or a plurality of these layers may be laminated. May be. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
 また、本実施形態の光散乱層aは、光を回折もしくは拡散させる凹凸構造等の形状制御により形成された層であってもよい。この場合、光散乱層の凹凸構造は、光の回折や屈折、反射により光を拡散させる構造であれば良く、従来公知のものが適用される。尚、光散乱層には、上述した光散乱粒子1a及び着色材2aが含まれていることが好ましく、光散乱層と着色層とを別々の層で構成した場合には、少なくとも1層がこの凹凸構造を有することとする。このような凹凸構造を有する光散乱層によれば、凹凸構造のピッチ(周期)に対応した波長の光の取り出し効率を向上させることができる。 Further, the light scattering layer a of the present embodiment may be a layer formed by shape control such as an uneven structure that diffracts or diffuses light. In this case, the uneven structure of the light scattering layer may be a structure that diffuses light by diffraction, refraction, or reflection of light, and a conventionally known structure is applied. In addition, it is preferable that the light scattering layer 1a and the coloring material 2a are included in the light scattering layer. When the light scattering layer and the coloring layer are configured as separate layers, at least one layer is included in the light scattering layer. It has an uneven structure. According to the light scattering layer having such a concavo-convex structure, it is possible to improve the extraction efficiency of light having a wavelength corresponding to the pitch (period) of the concavo-convex structure.
<効果>
 以上のように構成された有機EL素子1は、透明電極13よりも発光光hの取り出し側となる位置に光散乱層と所望の色に着色されている着色層とが形成されていることにより、発光時において発光効率の向上を図りつつも非発光時において発光色を識別することができる。
<Effect>
The organic EL element 1 configured as described above has a light scattering layer and a colored layer colored in a desired color at a position closer to the extraction side of the emitted light h than the transparent electrode 13 is formed. The light emission color can be identified during non-light emission while improving the light emission efficiency during light emission.
 さらに、本実施形態は、光散乱層と着色層とが同一層で形成されていることにより、有機EL素子1の薄膜化により更に発光効率を高め、部材の削減により低コストで作製することが可能となる。 Furthermore, in this embodiment, since the light scattering layer and the colored layer are formed in the same layer, the light emission efficiency can be further increased by reducing the thickness of the organic EL element 1 and the cost can be reduced by reducing the number of members. It becomes possible.
≪1-1.有機EL素子の変形例≫
(光散乱効果を有する着色散乱粒子を含有した光散乱層を用いた構成)
 図2は、本発明の第1実施形態に係る有機EL素子の変形例の構成を示す断面模式図である。この図に示す有機EL素子1’は、光散乱層に含有される着色材を、光散乱機能を有する着色散乱粒子2bで構成したことのみが、先の図1を用いて説明した有機EL素子1と異なり、他の構成は同一である。すなわち、変形例の有機EL素子1’は、着色層を兼ねた光散乱層(下記光散乱層bと示す)を有し、その着色材として着色散乱粒子2bを用いた構成である。以下、第1実施形態と同一の構成要素には同一の符号を付し、重複する説明を省略して変形例の有機EL素子1’の特徴部を説明する。
<< 1-1. Modified example of organic EL element >>
(Configuration using a light scattering layer containing colored scattering particles having a light scattering effect)
FIG. 2 is a schematic cross-sectional view showing the configuration of a modification of the organic EL element according to the first embodiment of the present invention. The organic EL element 1 ′ shown in this figure is the organic EL element described with reference to FIG. 1 only in that the colorant contained in the light scattering layer is composed of colored scattering particles 2b having a light scattering function. Unlike 1, the other configurations are the same. In other words, the organic EL element 1 ′ of the modified example has a light scattering layer (hereinafter referred to as “light scattering layer b”) that also serves as a colored layer, and uses the colored scattering particles 2 b as the coloring material. Hereinafter, the same components as those in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted, and the characteristic part of the organic EL element 1 ′ according to the modification will be described.
 図2に示すように有機EL素子1’は、基板11の一主面側に、光散乱層b、透明電極13、発光機能層15、および対向電極17をこの順に設けた構成である。そして特に変形例の有機EL素子1’においては、光散乱機能を有する着色散乱粒子2bを含有する光散乱層bが設けられているところが特徴的である。ここで光散乱層bは次のような構成である。 As shown in FIG. 2, the organic EL element 1 ′ has a configuration in which a light scattering layer b, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side of the substrate 11. In particular, the organic EL element 1 'according to the modified example is characterized in that a light scattering layer b containing colored scattering particles 2b having a light scattering function is provided. Here, the light scattering layer b has the following configuration.
<光散乱層b>
 光散乱層bは、透明電極13よりも発光光の取り出し側となる位置に設けられた層であって、基板11と透明電極13との間に設けられている。また、光散乱層bは、樹脂材料からなるバインダー(層媒体)と、該バインダーに含有される光散乱粒子1aと、光散乱機能を有する着色散乱粒子2bとで構成されている。ここで、光散乱層bを構成するバインダーと、光散乱粒子1aは、上述の第1実施形態と同様のものを用いることができる。
<Light scattering layer b>
The light scattering layer b is a layer provided at a position closer to the emission light extraction side than the transparent electrode 13, and is provided between the substrate 11 and the transparent electrode 13. The light scattering layer b includes a binder (layer medium) made of a resin material, light scattering particles 1a contained in the binder, and colored scattering particles 2b having a light scattering function. Here, the binder which comprises the light-scattering layer b, and the light-scattering particle 1a can use the same thing as the above-mentioned 1st Embodiment.
 尚、本実施形態において光散乱層bは、バインダーと、光散乱粒子1aと、着色散乱粒子2bとを混合した場合に、層全体で波長550nmにおける屈折率が1.7以上2.5未満を満たしていればよい。また、光散乱層bにおける光散乱粒子1a及び着色散乱粒子2bの含有量は、合計した体積充填率で30%~70%の範囲内であることが好ましい。また、光散乱層bは、光散乱粒子1aを含有しない構成としてもよい。すなわち、この場合の光散乱層は、バインダーと、着色散乱粒子2bとで構成され、層全体の屈折率、及び、着色散乱粒子2bの含有量は上記範囲内であればよい。ここで着色散乱粒子2bは次のような構成である。 In this embodiment, the light scattering layer b has a refractive index at a wavelength of 550 nm of 1.7 to less than 2.5 when the binder, the light scattering particles 1a, and the colored scattering particles 2b are mixed. It only has to satisfy. The contents of the light scattering particles 1a and the colored scattering particles 2b in the light scattering layer b are preferably in the range of 30% to 70% in terms of the total volume filling rate. Moreover, the light-scattering layer b is good also as a structure which does not contain the light-scattering particle 1a. That is, the light scattering layer in this case is composed of the binder and the colored scattering particles 2b, and the refractive index of the entire layer and the content of the colored scattering particles 2b may be in the above ranges. Here, the colored scattering particles 2b have the following configuration.
[着色散乱粒子2b]
 光散乱層aを構成する着色散乱粒子2bは、上述した着色材2aの顔料のうち、光散乱機能を有するものである。
[Colored scattering particles 2b]
The colored scattering particles 2b constituting the light scattering layer a have a light scattering function among the pigments of the colorant 2a described above.
 上述した顔料の中には、光散乱機能を有するものが含まれ、例えば、ルビー(クロム含有コランダム)、ガーネット(柘榴石)、ブルーサファイア(鉄、チタン含有コランダム)、イエローサファイア(ニッケル含有コランダム)、スピネル(尖晶石)等が挙げられる。 Among the above-mentioned pigments, those having a light scattering function are included, for example, ruby (chromium-containing corundum), garnet (meteorite), blue sapphire (iron, titanium-containing corundum), yellow sapphire (nickel-containing corundum). , Spinel and the like.
 ルビーやサファイアは、コランダム、すなわち酸化アルミニウム(Al)の結晶内に組み込まれる不純物イオンにより、赤色、青色、黄色等の各色の色相を表す。代表的な例では、ルビー(クロム含有コランダム)が挙げられ、ルビーはコランダムを構成しているアルミニウム原子(Al)の一部がクロム原子(Cr3+)に置換した構造を持つ。ここで、ルビーは、配位子場の作用によりクロム原子(Cr3+)の内殻の励起が起こり、紫と黄緑に配位子吸収帯を持つことで透過光が赤色に見える。また、酸化アルミニウム(Al)の結晶内に組み込む不純物イオンの含有量によって、色相、彩度等を調整できる。ここで、酸化アルミニウム(Al)の屈折率は1.7~1.77であり、光散乱粒子1aとして用いることもできることから、好ましく用いられる。 Ruby and sapphire represents corundum, i.e. the impurity ions to be incorporated into the crystal of aluminum oxide (Al 2 O 3), red, blue, the hue of each color such as yellow. A typical example is ruby (chromium-containing corundum), and ruby has a structure in which a part of aluminum atoms (Al) constituting corundum is substituted with chromium atoms (Cr 3+ ). Here, in the ruby, the inner shell of chromium atoms (Cr 3+ ) is excited by the action of the ligand field, and the transmitted light looks red due to the ligand absorption bands in purple and yellow-green. In addition, hue, saturation, and the like can be adjusted by the content of impurity ions incorporated in the crystal of aluminum oxide (Al 2 O 3 ). Here, the refractive index of aluminum oxide (Al 2 O 3 ) is 1.7 to 1.77, and it can be used as the light scattering particle 1a, so that it is preferably used.
 ガーネット(柘榴石)はA32(SiO43または、A32312と表されるケイ酸
塩鉱物(ネソ珪酸塩鉱物)である。主成分として、Aはカルシウム、マグネシウム、鉄(二価)、マンガンなど、Bは鉄(三価)、アルミニウム、クロム、チタンなど、Cはケイ素、アルミニウム、鉄(三価)などである。上述したコランダムと同様に結晶内成分の含有量によって、色相、彩度を調整できる。ガーネットの屈折率は1.7~1.89であり、光散乱粒子1aとして用いることもできることから、好ましく用いられる。
Garnet (meteorite) is a silicate mineral (nesosilicate mineral) expressed as A 3 B 2 (SiO 4 ) 3 or A 3 B 2 C 3 O 12 . As main components, A is calcium, magnesium, iron (divalent), manganese, B is iron (trivalent), aluminum, chromium, titanium, etc., C is silicon, aluminum, iron (trivalent), and the like. Similar to the corundum described above, the hue and saturation can be adjusted by the content of the components in the crystal. Garnet has a refractive index of 1.7 to 1.89 and is preferably used because it can be used as the light scattering particle 1a.
 スピネル(尖晶石)はMgAl24で表されるスピネルグループの鉱物である。スピネルの屈折率は1.72であり、光散乱粒子1aとして用いることもできる。特にレッドスピネルが好ましく用いられる。 Spinel is a mineral of the spinel group represented by MgAl 2 O 4 . Spinel has a refractive index of 1.72 and can also be used as the light scattering particle 1a. In particular, red spinel is preferably used.
 上記着色散乱粒子2bは、単独の材料を用いて光散乱層bを着色してもよいし、2種類以上の材料を混合して着色してもよい。 The colored scattering particles 2b may color the light scattering layer b using a single material, or may be colored by mixing two or more kinds of materials.
 また、光散乱粒子1aと着色散乱粒子2bとの重量比は、色強度の観点から、90/10~0/100の範囲内であることが好ましい。 The weight ratio of the light scattering particles 1a and the colored scattering particles 2b is preferably in the range of 90/10 to 0/100 from the viewpoint of color intensity.
 以上のような着色散乱粒子2bの形成方法としては、例えば、フラックス法が好ましく用いられる。 As a method for forming the colored scattering particles 2b as described above, for example, a flux method is preferably used.
 尚、変形例の光散乱層bは、着色層を兼ねた層として説明したが、光散乱機能を有する光散乱層と所望の色に着色されている着色層とを別々の層で構成してもよい。すなわち、この場合の光散乱層は着色材を含有しないものとする。そして例えば、上述した着色散乱粒子2bとバインダーとで構成された着色層(着色散乱層)と、光散乱粒子1aとバインダーとで構成された光散乱層とを別々に形成してもよいし、これらを複数層積層させてもよい。この場合には、基板11の一主面側から、着色層(着色散乱層)、光散乱層をこの順に積層する構成が好ましい。 In addition, although the light-scattering layer b of the modification was demonstrated as a layer which served as the colored layer, the light-scattering layer having a light-scattering function and the colored layer colored in a desired color are configured as separate layers. Also good. That is, the light scattering layer in this case does not contain a coloring material. And, for example, the colored layer (colored scattering layer) composed of the above-described colored scattering particles 2b and the binder and the light scattering layer composed of the light scattering particles 1a and the binder may be separately formed, A plurality of these layers may be laminated. In this case, a configuration in which a colored layer (colored scattering layer) and a light scattering layer are laminated in this order from one main surface side of the substrate 11 is preferable.
 尚、変形例においても、光散乱層bに光を回折もしくは拡散させる凹凸構造を設けてもよい。ここで、上述したように光散乱層と着色層(着色散乱層)とを別々の層で構成した場合には、少なくとも1層がこの凹凸構造を有することとする。 In the modification, the light scattering layer b may be provided with an uneven structure that diffracts or diffuses light. Here, as described above, when the light scattering layer and the colored layer (colored scattering layer) are configured as separate layers, at least one layer has the uneven structure.
<効果>
 以上のように構成された有機EL素子1’は、着色散乱粒子2bを有する光散乱層bが形成されていることにより、第1実施形態と同様の効果が得られる。また特に、後述する実施例に示されるように、変形例の有機EL素子1’は、着色材として着色散乱粒子2bを有しない光散乱層で形成されている場合と比較して、発光時においてさらに発光効率の向上を図りつつも非発光時においてさらに発光色を識別することができる。
<Effect>
The organic EL element 1 ′ configured as described above has the same effects as those of the first embodiment because the light scattering layer b having the colored scattering particles 2b is formed. In particular, as shown in Examples described later, the organic EL element 1 ′ of the modified example is more light-emitting than when it is formed of a light-scattering layer that does not have the colored scattering particles 2b as a coloring material. Further, the emission color can be further identified during non-light emission while improving the light emission efficiency.
 また、光散乱層が、バインダーと、着色散乱粒子2bとで構成される場合には、用いる材料の削減により、製造工程において工程数の削減及び簡略化が可能となる。 Further, when the light scattering layer is composed of the binder and the colored scattering particles 2b, the number of steps can be reduced and simplified in the manufacturing process by reducing the material used.
≪2.第2実施形態:有機EL素子≫
(光散乱層を外部取り出し側に配置した構成)
 図3は、本発明の第2実施形態に係る有機EL素子の構成を示す断面模式図である。この図に示す有機EL素子2は、光散乱層aを基板11の光取り出し面Sに設けたことのみが、先の図1を用いて説明した有機EL素子1と異なり、他の構成は同一である。以下、第1実施形態と同一の構成要素には同一の符号を付し、重複する説明を省略して第2実施形態に係る有機EL素子2の特徴部を説明する。
≪2. Second Embodiment: Organic EL Device >>
(Configuration in which the light scattering layer is arranged on the outside extraction side)
FIG. 3 is a schematic cross-sectional view showing the configuration of the organic EL element according to the second embodiment of the present invention. The organic EL element 2 shown in this figure differs from the organic EL element 1 described with reference to FIG. 1 only in that the light scattering layer a is provided on the light extraction surface S of the substrate 11, and the other configurations are the same. It is. Hereinafter, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and the characteristic part of the organic EL element 2 according to the second embodiment will be described.
 図3に示すように有機EL素子2は、基板11の光取り出し面S、すなわち他主面側(外部取り出し側)に光散乱層aを設け、一主面側に、透明電極13、発光機能層15、および対向電極17をこの順に設けた構成である。そして特に本実施形態では、基板11の他主面側に光散乱層aが設けられているところが特徴的である。 As shown in FIG. 3, the organic EL element 2 is provided with a light scattering layer a on the light extraction surface S of the substrate 11, that is, on the other main surface side (external extraction side), and on one main surface side, the transparent electrode 13 and the light emitting function. The layer 15 and the counter electrode 17 are provided in this order. In particular, the present embodiment is characterized in that the light scattering layer a is provided on the other main surface side of the substrate 11.
 尚、基板11の他主面側に、例えばバリア層等の他の層が設けられていてもよく、この場合には、バリア層における外部取り出し側に光散乱層aが設けられた構成となる。また、光散乱層aの外部取り出し側に、例えばオーバーコート層(平坦化層)やバリア層が設けられていてもよい Note that another layer such as a barrier layer may be provided on the other main surface side of the substrate 11. In this case, the light scattering layer a is provided on the external extraction side of the barrier layer. . Further, for example, an overcoat layer (flattening layer) or a barrier layer may be provided on the outside extraction side of the light scattering layer a.
 また、本実施形態の光散乱層aは、第1実施形態と同様に着色層を兼ねた光散乱層aであってもよいし、例えば着色層と光散乱層とを別々の層で構成してもよいし、これらを複数層積層させてもよい。この場合には、基板11の他主面側から、光散乱層、着色層をこの順に積層することが好ましい。 Further, the light scattering layer a of the present embodiment may be a light scattering layer a that also serves as a colored layer as in the first embodiment. For example, the colored layer and the light scattering layer are configured as separate layers. Alternatively, a plurality of these layers may be laminated. In this case, it is preferable to laminate the light scattering layer and the colored layer in this order from the other main surface side of the substrate 11.
 尚、本実施形態においても、光散乱層aに光を回折もしくは拡散させる凹凸構造を設けてもよい。ここで、上述したように光散乱層と着色層とを別々の層で構成した場合には、少なくとも1層がこの凹凸構造を有することとする。
 第2実施形態における「光散乱層a」は、第1実施形態と同様の「着色層を兼ねた光散乱層」であるため。
 なお、着色散乱層(変形例の「光散乱層b」)については、段落[0137]で言及しています。
Also in this embodiment, the light scattering layer a may be provided with an uneven structure that diffracts or diffuses light. Here, as described above, when the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure.
This is because the “light scattering layer a” in the second embodiment is the same “light scattering layer that also serves as a colored layer” in the first embodiment.
The colored scattering layer (modified “light scattering layer b”) is mentioned in paragraph [0137].
<効果>
 以上のように構成された有機EL素子2は、基板11の他主面側に光散乱層aを設けた構成であることにより、有機EL素子2の光取り出し側の最表面に所望の色に着色している着色層を有する構成となる。これにより、後述する実施例に示すように第1実施形態の効果と比較して、発光時における発光効率は劣るものの、非発光時において同様に発光色を識別することができる。
<Effect>
The organic EL element 2 configured as described above has a configuration in which the light scattering layer a is provided on the other main surface side of the substrate 11, so that a desired color is formed on the outermost surface of the organic EL element 2 on the light extraction side. It becomes the structure which has the colored layer which has colored. Thereby, as shown in the Example mentioned later, although the light emission efficiency at the time of light emission is inferior compared with the effect of 1st Embodiment, a light emission color can be identified similarly at the time of non-light emission.
 また、本実施形態は、第1実施形態の有機EL素子1の光散乱層aを用いて説明したが、光散乱層aを変形例の有機EL素子1’の光散乱層bに置き換えてもよい。これにより、発光時においてさらに発光効率の向上を図りつつも非発光時においてさらに発光色を識別することができる。 Moreover, although this embodiment demonstrated using the light-scattering layer a of the organic EL element 1 of 1st Embodiment, even if it replaces the light-scattering layer a with the light-scattering layer b of organic electroluminescent element 1 'of a modification. Good. Thereby, it is possible to further identify the emission color at the time of non-light emission while further improving the light emission efficiency at the time of light emission.
≪3.第3実施形態:有機EL素子≫
(平滑化層をさらに設けた構成)
 図4は、本発明の第3実施形態に係る有機EL素子の構成を示す断面模式図である。この図に示す有機EL素子3は、光散乱層aと透明電極13との間にさらに平滑化層cを設けたことのみが、先の図1を用いて説明した有機EL素子1と異なり、他の構成は同一である。以下、第1実施形態と同一の構成要素には同一の符号を付し、重複する説明を省略して第3実施形態に係る有機EL素子3の特徴部を説明する。
≪3. Third Embodiment: Organic EL Device >>
(Configuration in which a smoothing layer is further provided)
FIG. 4 is a schematic cross-sectional view showing a configuration of an organic EL element according to the third embodiment of the present invention. The organic EL element 3 shown in this figure differs from the organic EL element 1 described with reference to FIG. 1 only in that a smoothing layer c is further provided between the light scattering layer a and the transparent electrode 13. Other configurations are the same. Hereinafter, the same components as those in the first embodiment will be denoted by the same reference numerals, and the description thereof will be omitted, and the characteristic part of the organic EL element 3 according to the third embodiment will be described.
 図4に示すように有機EL素子3は、基板11の一主面側に、光散乱層a、平滑化層c、透明電極13、発光機能層15、および対向電極17をこの順に設けた構成である。そして特に本実施形態では、光散乱層aと透明電極13との間に平滑化層cが設けられているところが特徴的である。ここで平滑化層cは次のような構成である。 As shown in FIG. 4, the organic EL element 3 has a configuration in which a light scattering layer a, a smoothing layer c, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 are provided in this order on one main surface side of the substrate 11. It is. In particular, the present embodiment is characterized in that a smoothing layer c is provided between the light scattering layer a and the transparent electrode 13. Here, the smoothing layer c has the following configuration.
<平滑層c>
 平滑層cは、散乱層aの表面を平滑にするための層であって、従来公知のものが適用される。また、平滑化層cの構成は、特に制限はなく、目的に応じて適宜選択することができ、光散乱層aと同様のバインダー(層媒体)のみで構成されていてもよく、層媒体と該層媒体に含有される微粒子とから構成されていてもよい。ここで、層媒体である樹脂材料(バインダー)に含有される微粒子は、光散乱層aに含有される粒子よりも小さい粒子とする。また、光散乱層aが、凹凸構造を有する層である場合には、凹凸形状の凹部の幅及び高さよりも小さい粒子とする。
<Smooth layer c>
The smooth layer c is a layer for smoothing the surface of the scattering layer a, and a conventionally known one is applied. The configuration of the smoothing layer c is not particularly limited and may be appropriately selected depending on the purpose. The smoothing layer c may be composed of only the same binder (layer medium) as the light scattering layer a. You may be comprised from the microparticles | fine-particles contained in this layer medium. Here, the fine particles contained in the resin material (binder) which is the layer medium are particles smaller than the particles contained in the light scattering layer a. Moreover, when the light-scattering layer a is a layer which has an uneven | corrugated structure, it is set as the particle | grains smaller than the width | variety and height of an uneven | corrugated shaped recessed part.
 平滑化層cは、この上に透明電極13を良好に形成させる平坦性を有することが重要であり、その表面性は平均面粗さRaが100nm未満、好ましくは30nm未満、特に好ましくは10nm未満、最も好ましくは5nm未満である。なお、本発明において、平均面粗さRaとは、原子間力顕微鏡法(Atomic Force Microscopy;AFM)にて測定された、10μm四方における平均面粗さRaを言う。 It is important that the smoothing layer c has a flatness that allows the transparent electrode 13 to be satisfactorily formed thereon, and the surface property is an average surface roughness Ra of less than 100 nm, preferably less than 30 nm, particularly preferably less than 10 nm. Most preferably, it is less than 5 nm. In the present invention, the average surface roughness Ra refers to an average surface roughness Ra in a 10 μm square measured by atomic force microscopy (AFM).
 尚、平滑化層cは、所望の色に着色された着色層であってもよい。この場合の平滑化層c(着色層)に用いられる着色材は、上述した着色材2aと同様の着色材を適用できる。但し、着色材2aとしては、染料、又は光散乱粒子1aよりも粒子径が十分小さい顔料が用いられる。 Note that the smoothing layer c may be a colored layer colored in a desired color. The colorant used in the smoothing layer c (colored layer) in this case can be the same colorant as the colorant 2a described above. However, as the coloring material 2a, a dye or a pigment having a sufficiently smaller particle diameter than the light scattering particles 1a is used.
 また、本実施形態の光散乱層aは、第1実施形態と同様に着色層を兼ねた光散乱層であってもよいし、例えば着色層と光散乱層とを別々の層で構成してもよいし、これらを複数層積層させてもよい。この場合には、基板11の一主面側から、着色層、光散乱層をこの順に積層することが好ましい。 Further, the light scattering layer a of the present embodiment may be a light scattering layer that also serves as a colored layer as in the first embodiment. For example, the colored layer and the light scattering layer may be configured as separate layers. Alternatively, a plurality of these layers may be laminated. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
 尚、本実施形態においても、光散乱層aに光を回折もしくは拡散させる凹凸構造を設けてもよい。ここで、上述したように光散乱層と着色層とを別々の層で構成した場合には、少なくとも1層がこの凹凸構造を有することとする。 In the present embodiment, the light scattering layer a may be provided with an uneven structure that diffracts or diffuses light. Here, as described above, when the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure.
<効果>
 以上のように構成された有機EL素子3は、光散乱層aと透明電極13との間に平滑化層cをさらに設けた構成であることにより、光散乱層aと透明電極13の界面が平坦となり、透明電極13における電界が均一となる。これにより、第1実施形態の効果に加えて、発光時においてさらに発光効率の向上が図られたものとなる。
<Effect>
The organic EL element 3 configured as described above has a configuration in which the smoothing layer c is further provided between the light scattering layer a and the transparent electrode 13, so that the interface between the light scattering layer a and the transparent electrode 13 is reduced. It becomes flat and the electric field in the transparent electrode 13 becomes uniform. Thereby, in addition to the effects of the first embodiment, the light emission efficiency is further improved during light emission.
 また、平滑化層cが所望の色に着色されている場合には、光散乱層aの発光色の視認性を高めることが可能となるため、上記効果に加えて、非発光時においてさらに発光色を識別することができる。 Further, when the smoothing layer c is colored in a desired color, it becomes possible to enhance the visibility of the light emission color of the light scattering layer a. The color can be identified.
 また、本実施形態は、第1実施形態の有機EL素子1の光散乱層aを用いて説明したが、光散乱層aを変形例の有機EL素子1’の光散乱層bに置き換えてもよい。これにより、発光時においてさらに発光効率の向上を図りつつも非発光時においてさらに発光色を識別することができる。 Moreover, although this embodiment demonstrated using the light-scattering layer a of the organic EL element 1 of 1st Embodiment, even if it replaces the light-scattering layer a with the light-scattering layer b of organic electroluminescent element 1 'of a modification. Good. Thereby, it is possible to further identify the emission color at the time of non-light emission while further improving the light emission efficiency at the time of light emission.
≪4.第4実施形態:有機EL素子≫
(無着色の光散乱層をさらに設けた構成)
 図5は、本発明の第4実施形態に係る有機EL素子の構成を示す断面模式図である。この図に示す有機EL素子4は、光散乱層aと透明電極13との間にさらに無着色層の光散乱層dを設けたことのみが、先の図1を用いて説明した有機EL素子1と異なり、他の構成は同一である。すなわち、本実施形態の有機EL素子4は、着色層を兼ねた光散乱層a(下記第1光散乱層aと示す)と、無着色層の光散乱層d(以下第2光散乱層dと示す)の2層の光散乱層を用いた構成である。以下、第1実施形態と同一の構成要素には同一の符号を付し、重複する説明を省略して第4実施形態に係る有機EL素子4の特徴部を説明する。
<< 4. Fourth Embodiment: Organic EL Device >>
(Configuration in which an uncolored light scattering layer is further provided)
FIG. 5 is a schematic cross-sectional view showing a configuration of an organic EL element according to the fourth embodiment of the present invention. The organic EL element 4 shown in this figure is the organic EL element described with reference to FIG. 1 only in that a light-scattering layer d as a non-colored layer is further provided between the light-scattering layer a and the transparent electrode 13. Unlike 1, the other configurations are the same. That is, the organic EL element 4 of this embodiment includes a light scattering layer a (also referred to as a first light scattering layer a below) that also serves as a colored layer, and a light scattering layer d that is a non-colored layer (hereinafter referred to as a second light scattering layer d). And 2) light scattering layers. Hereinafter, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted, and the characteristic part of the organic EL element 4 according to the fourth embodiment will be described.
 図5に示すように有機EL素子4は、基板11の一主面側に、第1光散乱層a、第2光散乱層d、透明電極13、発光機能層15、および対向電極17をこの順に設けた構成である。ここで、第2光散乱層dは、着色材2aを有しない無着色層である点が第1光散乱層aとは異なる。そして特に本実施形態では、第1光散乱層aの発光機能層15側に第2光散乱層dが設けられているところが特徴的である。ここで第2光散乱層dは次のような構成である。 As shown in FIG. 5, the organic EL element 4 includes a first light scattering layer a, a second light scattering layer d, a transparent electrode 13, a light emitting functional layer 15, and a counter electrode 17 on one main surface side of the substrate 11. It is the structure provided in order. Here, the second light scattering layer d is different from the first light scattering layer a in that the second light scattering layer d is a non-colored layer that does not have the coloring material 2a. In particular, the present embodiment is characterized in that the second light scattering layer d is provided on the light emitting functional layer 15 side of the first light scattering layer a. Here, the second light scattering layer d has the following configuration.
<第2光散乱層d>
 第2光散乱層dは、非発光時において着色された第1光散乱層aの色の視認性を高めるための層であって、第1光散乱層aの発光機能層15側に設けられた層である。すなわち、本実施形態において、第2光散乱層dは、第1光散乱層aと透明電極13との間に設けられた層である。また、第2光散乱層dは、樹脂材料からなるバインダー(層媒体)と、該バインダーに含有される光散乱粒子1aとで構成されている。ここで、第2光散乱層dを構成するバインダーと、光散乱粒子1aは、上述の第1実施形態と同様のものを用いることができる。
<Second light scattering layer d>
The second light scattering layer d is a layer for improving the visibility of the color of the first light scattering layer a colored when no light is emitted, and is provided on the light emitting functional layer 15 side of the first light scattering layer a. Layer. That is, in the present embodiment, the second light scattering layer d is a layer provided between the first light scattering layer a and the transparent electrode 13. The second light scattering layer d is composed of a binder (layer medium) made of a resin material and light scattering particles 1a contained in the binder. Here, the binder which comprises the 2nd light-scattering layer d and the light-scattering particle 1a can use the same thing as the above-mentioned 1st Embodiment.
 第2光散乱層dは、層全体で波長550nmにおける屈折率が1.7以上2.5未満を満たしていればよい。また、第2光散乱層dにおける光散乱粒子1aの含有量は、体積充填率で30%~70%の範囲内であることが好ましく、膜厚の総和は、第1光散乱層aの色の視認性を高め、かつ発光効率に影響を与えない等の観点から100~1000nmの範囲であることが好ましく、より好ましくは100~600nmの範囲である。また、第1光散乱層と第2光散乱層の膜厚の総和は、発光効率に影響を与えない等の観点から合わせて200~1600nmの範囲であることが好ましい。 The second light scattering layer d may have a refractive index of 1.7 to less than 2.5 at a wavelength of 550 nm as a whole. The content of the light scattering particles 1a in the second light scattering layer d is preferably in the range of 30% to 70% in terms of volume filling rate, and the total film thickness is the color of the first light scattering layer a. The thickness is preferably in the range of 100 to 1000 nm, more preferably in the range of 100 to 600 nm, from the standpoint of enhancing the visibility of the light source and not affecting the light emission efficiency. The total thickness of the first light scattering layer and the second light scattering layer is preferably in the range of 200 to 1600 nm from the viewpoint of not affecting the light emission efficiency.
 また、本実施形態において第1光散乱層aは、第1実施形態と同様に着色層を兼ねた光散乱層であってもよいし、例えば着色層と光散乱層とを別々の層で構成してもよいし、これらを複数層積層させてもよい。この場合には、基板11の一主面側から、着色層、光散乱層をこの順に積層することが好ましい。 Further, in the present embodiment, the first light scattering layer a may be a light scattering layer that also serves as a colored layer as in the first embodiment. For example, the colored layer and the light scattering layer are configured as separate layers. Alternatively, a plurality of these layers may be laminated. In this case, it is preferable to laminate the colored layer and the light scattering layer in this order from one main surface side of the substrate 11.
 尚、本実施形態においても、第1光散乱層aに光を回折もしくは拡散させる凹凸構造を設けてもよい。ここで、上述したように光散乱層と着色層とを別々の層で構成した場合には、少なくとも1層がこの凹凸構造を有することとする。 In this embodiment as well, an uneven structure that diffracts or diffuses light may be provided in the first light scattering layer a. Here, as described above, when the light scattering layer and the colored layer are formed of separate layers, at least one layer has the uneven structure.
<効果>
 以上のように構成された有機EL素子4は、第1光散乱層aと透明電極13との間にさらに第2光散乱層dを設けた構成であることにより、着色された第1光散乱層aの色の視認性を高めることが可能となる。これにより、第1実施形態の効果に加えて、非発光時においてさらに発光色を識別することができる。
<Effect>
The organic EL element 4 configured as described above has a configuration in which the second light scattering layer d is further provided between the first light scattering layer a and the transparent electrode 13, so that the colored first light scattering is performed. It becomes possible to improve the visibility of the color of the layer a. Thereby, in addition to the effects of the first embodiment, the emission color can be further identified when no light is emitted.
 また、本実施形態は、第1実施形態の有機EL素子1の光散乱層aを第1光散乱層aとして説明したが、光散乱層aを変形例の有機EL素子1’の光散乱層bに置き換えてもよい。これにより、発光時においてさらに発光効率の向上を図りつつも非発光時においてさらに発光色を識別することができる。 Moreover, although this embodiment demonstrated the light-scattering layer a of the organic EL element 1 of 1st Embodiment as the 1st light-scattering layer a, the light-scattering layer a is the light-scattering layer of organic EL element 1 'of a modification. It may be replaced with b. Thereby, it is possible to further identify the emission color at the time of non-light emission while further improving the light emission efficiency at the time of light emission.
 さらに、本実施形態は、第1実施形態の有機EL素子1にさらに第2光散乱層dを設ける構成を説明したが、第3実施形態と組み合わせてもよい。この場合の有機EL素子は、第2光散乱層dと透明電極13との間にさらに平滑化層cを組み合わせた構成であるため、上記効果に加えて、発光時においてさらに発光効率の向上が図られたものとなる。 Furthermore, although this embodiment demonstrated the structure which provides the 2nd light-scattering layer d in the organic EL element 1 of 1st Embodiment, you may combine with 3rd Embodiment. In this case, since the organic EL element has a structure in which the smoothing layer c is further combined between the second light scattering layer d and the transparent electrode 13, in addition to the above effects, the luminous efficiency can be further improved during light emission. It will be what was planned.
 尚、以上第1実施形態~第4実施形態で説明した本発明の有機EL素子は、さらに光取り出し効率を向上させるための構成として、基板11と発光機能層15との間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する構成(例えば、特開昭62-172691号公報)、基板11と発光機能層15との間に基板11よりも低屈折率を持つ平坦層を導入する構成(例えば、特開2001-202827号公報)が採用される。 Note that the organic EL element of the present invention described in the first to fourth embodiments has an intermediate refractive index between the substrate 11 and the light emitting functional layer 15 as a structure for further improving the light extraction efficiency. In which an antireflection film is formed by introducing a flat layer having a refractive index (for example, Japanese Patent Laid-Open No. 62-172691), and a flat layer having a lower refractive index than the substrate 11 between the substrate 11 and the light emitting functional layer 15 A configuration (for example, Japanese Patent Application Laid-Open No. 2001-202827) is adopted.
≪有機EL素子の用途≫
 本発明の有機EL素子は、発光時だけでなく消灯時においても、使用用途や機能に応じて特定の色を識別することを要するような場合に好ましく用いられる。すなわち、本発明の有機EL素子は、例えば、自動車のランプ類、道路標識等に好ましく用いられる。
≪Use of organic EL elements≫
The organic EL device of the present invention is preferably used when it is necessary to identify a specific color according to the intended use or function, not only during light emission but also during light extinction. That is, the organic EL element of the present invention is preferably used for, for example, automobile lamps, road signs and the like.
 なお、有機EL素子が適用される発光光源は、これらに限定されるものではない。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。 In addition, the light emission source to which the organic EL element is applied is not limited to these. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include a light source of a sensor.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、透明電極や対向電極などの電極のみをパターニングしてもよいし、これらの電極および電極間の発光機能層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. When patterning, only the electrodes such as the transparent electrode and the counter electrode may be patterned, the light emitting functional layer between these electrodes and the electrodes may be patterned, or the entire element layer may be patterned, In manufacturing the element, a conventionally known method can be used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。下記表1には、実施例で作製した有機EL素子101~122の赤色発光のボトムエミッション型の有機EL素子の構成を示す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Table 1 below shows the configuration of red emission bottom emission organic EL elements of the organic EL elements 101 to 122 produced in the examples.
≪有機EL素子101の作製≫
 洗浄処理を施したガラス性の基板の一主面上(内部取り出し側)に、真空蒸着装置内において下記化合物N-1を20nmの厚さで成膜後、マスクを使用して銀(Ag)からなる透明電極を9nmの厚さでパターン形成した。この透明電極は、陽極として形成した。
<< Production of Organic EL Element 101 >>
On one main surface (inside extraction side) of the glass substrate subjected to the cleaning treatment, after depositing the following compound N-1 with a thickness of 20 nm in a vacuum deposition apparatus, silver (Ag) is used using a mask. A transparent electrode made of was patterned with a thickness of 9 nm. This transparent electrode was formed as an anode.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 次に、蒸着用るつぼの各々に、有機EL素子101の発光機能層を構成する各層の構成材料を各々素子作製に最適の量で充填し、上記基板が収納された真空蒸着装置内にこれらの蒸着用るつぼを収納した。これらの蒸着用るつぼには、モリブデン製またはタングステン製の抵抗加熱用材料で作製されたものを用いた。 Next, each of the vapor deposition crucibles is filled with the constituent materials of each layer constituting the light emitting functional layer of the organic EL element 101 in an optimum amount for element production, and these are deposited in a vacuum vapor deposition apparatus in which the substrate is accommodated. The crucible for vapor deposition was stored. As these evaporation crucibles, those made of molybdenum or tungsten resistance heating material were used.
 次いで、この真空蒸着装置の内部を真空度1×10-4Paまで減圧した後、下記化合物M-1の入った蒸着用るつぼに通電して加熱し、透明電極上に蒸着速度0.1nm/秒で化合物M-1を蒸着し、厚さ15nmの層を形成した。 Next, the inside of this vacuum vapor deposition apparatus was depressurized to a vacuum of 1 × 10 −4 Pa, and then heated by energizing a vapor deposition crucible containing the following compound M-1 on the transparent electrode at a vapor deposition rate of 0.1 nm / Compound M-1 was deposited in seconds to form a 15 nm thick layer.
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000002
 
 次いで、下記化合物M-2を同様にして蒸着し、厚さ70nmの層を形成した。 Next, the following compound M-2 was deposited in the same manner to form a layer having a thickness of 70 nm.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 次いで、下記化合物RD-1と共に、化合物GD-1、および化合物H-2を、RD-1が4%、化合物GD-1が15%の濃度になるように、蒸着速度0.1nm/秒で共蒸着し、厚さ30nmの赤色を呈するリン光発光層を形成した。 Then, together with the following compound RD-1, compound GD-1 and compound H-2 were deposited at a deposition rate of 0.1 nm / second so that the concentration of RD-1 was 4% and compound GD-1 was 15%. Co-evaporation was performed to form a phosphorescent light-emitting layer having a thickness of 30 nm and exhibiting a red color.
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000004
 
 次いで、上記化合物H-2を蒸着速度0.1nm/秒で蒸着し、厚さ5nmの層を形成した。 Next, the compound H-2 was deposited at a deposition rate of 0.1 nm / second to form a 5 nm thick layer.
 その後下記化合物E―1を蒸着速度0.1nm/秒で蒸着し、厚さ25nmの層を形成した。以上により赤色の発光機能層を形成した。 Thereafter, the following compound E-1 was deposited at a deposition rate of 0.1 nm / second to form a layer having a thickness of 25 nm. Thus, a red light emitting functional layer was formed.
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000005
 
 続いて、リチウムを1nm、アルミニウムを120nmの厚さに蒸着し、対向電極を形成した。この対向電極は陰極として形成した。 Subsequently, lithium was deposited to a thickness of 1 nm and aluminum to a thickness of 120 nm to form a counter electrode. This counter electrode was formed as a cathode.
 次いで、以上のように順次形成した各層の積層体を対向電極側からガラスカバーで覆い、接着剤を用いて基板にガラスカバーを貼り合わせることにより、基板とガラスカバーとの間に積層体を封止した。ガラスカバー内には捕水剤を設け、積層体と共に封止した。この封止作業は、純度99.999%以上の高純度窒素ガスの雰囲気に保たれたローブボックス内で行い、ガラスカバー内に窒素ガスが充填された状態とした。 Next, the laminate of each layer sequentially formed as described above is covered with a glass cover from the opposite electrode side, and the laminate is sealed between the substrate and the glass cover by bonding the glass cover to the substrate using an adhesive. Stopped. A water catching agent was provided in the glass cover and sealed together with the laminate. This sealing operation was performed in a lobe box maintained in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and the glass cover was filled with nitrogen gas.
 以上により、有機EL素子101を作製した。 Thus, the organic EL element 101 was produced.
≪有機EL素子102の作製≫
 透明電極を形成する前に1層の光散乱層(第1光散乱層)を形成したこと以外は、上記有機EL素子101と同様の手順で、有機EL素子102を作製した。
<< Production of Organic EL Element 102 >>
The organic EL element 102 was produced in the same procedure as the organic EL element 101 except that one light scattering layer (first light scattering layer) was formed before forming the transparent electrode.
 光散乱層(第1光散乱層)は、以下の材料を用いて次のようにして形成した。 The light scattering layer (first light scattering layer) was formed as follows using the following materials.
 光散乱層の形成用の光散乱層調液として、光散乱粒子と樹脂溶液(APM社製有機無機ハイブリッド樹脂 ED230AL)中の固形分との比率が50vol%/50vol%、n-プロピルアセテートとシクロヘキサノンとの溶媒比10wt%/90wt%、固形分濃度が15wt%のとなる調液を、10ml量の比率で処方設計した。上記光散乱粒子は、屈折率(np)2.4、平均粒子径0.25μmのTiO粒子(テイカ社製 JR600A)を用い、この粒子は無着色である。尚、光散乱粒子(無着色)と着色材との比率(wt%/wt%)は、下記表に記載の比率で処方設計する。
 また、以下の各有機EL素子の作製において、光散乱層を形成する場合の光散乱層調液は、着色・無着色を含めた光散乱粒子と樹脂溶液の固形分との比率を50vol%/50vol%として膜強度を一定とした。
As a light scattering layer preparation for forming a light scattering layer, the ratio of the light scattering particles to the solid content in the resin solution (organic inorganic hybrid resin ED230AL manufactured by APM) is 50 vol% / 50 vol%, n-propyl acetate and cyclohexanone. A formulation having a solvent ratio of 10 wt% / 90 wt% and a solid content concentration of 15 wt% was formulated and designed at a ratio of 10 ml. As the light scattering particles, TiO 2 particles (JR600A manufactured by Teika) having a refractive index (np) of 2.4 and an average particle diameter of 0.25 μm are used, and these particles are uncolored. In addition, the ratio (wt% / wt%) between the light scattering particles (uncolored) and the coloring material is preliminarily designed at the ratio described in the following table.
In the production of each organic EL element described below, the light scattering layer preparation in the case of forming a light scattering layer has a ratio of the light scattering particles including colored / non-colored and the solid content of the resin solution of 50 vol% / The film strength was fixed at 50 vol%.
 具体的には、上記光散乱粒子と溶剤とを混合し、常温で冷却しながら、超音波分散機(エスエムテー社製 UH-50)によって、マイクロチップステップ[エスエムテー社製
 MS-3(3mmφ)]を用いた標準条件で10分間の分散処理を行い、TiO分散液を得た。次いで、TiO分散液を100rpmで撹拌しながら、上記樹脂溶液を少量ずつ混合添加し、添加完了後500rpmまで撹拌速度を上げ、さらに10分間混合した。次いで、混合した液を、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過することにより、目的の光散乱層調液を得た。
Specifically, the above-mentioned light scattering particles and a solvent are mixed and cooled at room temperature, and then the microchip step [MS-3 (3 mmφ) manufactured by SMT Co., Ltd.] is used with an ultrasonic disperser (UH-50 manufactured by SMT Co.). Dispersion treatment was performed for 10 minutes under standard conditions using TiO 2 to obtain a TiO 2 dispersion. Next, while stirring the TiO 2 dispersion at 100 rpm, the resin solution was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm, and the mixture was further mixed for 10 minutes. Subsequently, the mixed liquid was filtered through a hydrophobic PVDF 0.45 μm filter (manufactured by Whatman) to obtain a target light scattering layer preparation.
 次に、得られた光散乱層調液を、基板上にスピン塗布(500rpm、30秒)し、得られた塗布膜を簡易乾燥(80℃、2分)し、さらに加熱処理(120℃、60分)して膜厚500nmの光散乱層を形成した。 Next, the obtained light-scattering layer preparation was spin-coated (500 rpm, 30 seconds) on the substrate, the obtained coating film was simply dried (80 ° C., 2 minutes), and further heat-treated (120 ° C., 60 minutes) to form a light scattering layer having a thickness of 500 nm.
 以上のようにして得られた無着色の光散乱層(第1光散乱層)は、バインダー(樹脂)の屈折率nbは1.5、粒子屈折率npは2.4、平均屈折率nsは1.77であった。 The non-colored light scattering layer (first light scattering layer) obtained as described above has a refractive index nb of the binder (resin) of 1.5, a particle refractive index np of 2.4, and an average refractive index ns of 1.77.
≪有機EL素子103の作製≫
 基板の他主面側(外部取り出し側)に、従来公知のカラーフィルタ(着色層)を形成したこと以外は、上記有機EL素子101と同様の手順で、有機EL素子103を作製した。
<< Production of Organic EL Element 103 >>
The organic EL element 103 was produced in the same procedure as the organic EL element 101 except that a conventionally known color filter (colored layer) was formed on the other main surface side (external extraction side) of the substrate.
 カラーフィルタは、次のようにして形成した。 The color filter was formed as follows.
 顔料を着色材とした赤色の透明着色レジスト(富士ハントエレクトロニクステクノロジー社製、CR-2000)を用いた。スピン塗布(2000rpm、10秒)にて回転塗布し、プレベーク(70℃、2分)し、高圧水銀ランプを使用して積算光量120mJ/cm2のエネルギーを加えて硬化処理を行い、さらにポストベーク(230℃、60分)
を行うことにより、膜厚600nmのカラーフィルタ(着色層)を作製した。尚、光散乱粒子と着色材との比率は、下記表に記載の比率(wt%/wt%)で処方設計する。
A red transparent coloring resist (manufactured by Fuji Hunt Electronics Technology Co., Ltd., CR-2000) using a pigment as a coloring material was used. Spin coating (2000 rpm, 10 seconds), spin-coating, pre-baking (70 ° C., 2 minutes), using a high-pressure mercury lamp, applying an energy of 120 mJ / cm 2 of accumulated light quantity, and then post-baking. (230 ° C, 60 minutes)
As a result, a color filter (colored layer) having a thickness of 600 nm was produced. The ratio between the light scattering particles and the colorant is designed by the ratio (wt% / wt%) shown in the following table.
≪有機EL素子104、105の作製≫
 光散乱層(第1光散乱層)に着色材を含有させて形成したこと以外は、上記有機EL素子102と同様の手順で、有機EL素子104~105を作製した。但し、着色材は着色散乱粒子とし、酸化クロム(Cr)で置換した赤色コランダムを用いた。
<< Production of organic EL elements 104 and 105 >>
Organic EL elements 104 to 105 were fabricated in the same procedure as the organic EL element 102 except that the light scattering layer (first light scattering layer) was formed by containing a coloring material. However, the colorant was colored scattering particles, and red corundum substituted with chromium oxide (Cr 2 O 3 ) was used.
 尚、有機EL素子102の作製手順において、上記赤色コランダムは、特開2011-63510に記載のフラックス法を用いて作製した。アルミニウム化合物(Al源)として酸化アルミニウムを使用し、クロム化合物(Cr源)として酸化クロムを使用した。酸化クロムの添加量は、酸化アルミニウムの重量に対して0.5wt%となるように混合し、公知例の作製方法に従い、平均粒径0.5μmの赤色コランダム結晶を得た。 In the procedure for manufacturing the organic EL element 102, the red corundum was manufactured using the flux method described in JP-A-2011-63510. Aluminum oxide was used as the aluminum compound (Al 2 O 3 source), and chromium oxide was used as the chromium compound (Cr source). The addition amount of chromium oxide was mixed so as to be 0.5 wt% with respect to the weight of aluminum oxide, and a red corundum crystal having an average particle diameter of 0.5 μm was obtained according to a production method of a known example.
 尚、光散乱粒子(無着色)と着色散乱粒子(着色材)との比率は、下記表に記載の比率(wt%/wt%)で処方設計する。 The ratio of the light scattering particles (no coloring) and the colored scattering particles (coloring material) is designed by the ratio (wt% / wt%) shown in the following table.
 以上により、着色散乱粒子により着色された光散乱層(第1光散乱層)を膜厚500nmで形成した。 As described above, a light scattering layer (first light scattering layer) colored with colored scattering particles was formed to a thickness of 500 nm.
≪有機EL素子106の作製≫
 光散乱層(第1光散乱層)の着色材として染料を用いて形成したこと以外は、上記有機EL素子102と同様の手順で、有機EL素子106を作製した。但し、着色材は染料とし、AIZENSOT Red-1(保土谷化学社製)を用いた。
<< Production of Organic EL Element 106 >>
The organic EL element 106 was produced in the same procedure as the organic EL element 102 except that a dye was used as a colorant for the light scattering layer (first light scattering layer). However, the coloring material was a dye, and AIZENSOT Red-1 (Hodogaya Chemical Co., Ltd.) was used.
 尚、有機EL素子102の作製手順において、染料は、上記溶剤に溶解し、赤色着色溶液を調整した後に上記光散乱粒子を混合し、着色されたTiO分散液とした。また、光散乱粒子(無着色)と染料(着色材)とは、下記表に記載の比率(wt%/wt%)で処方設計する。 In the preparation procedure of the organic EL element 102, the dye was dissolved in the solvent, and after preparing a red colored solution, the light scattering particles were mixed to obtain a colored TiO 2 dispersion. In addition, the light scattering particles (non-colored) and the dye (coloring material) are preliminarily designed at a ratio (wt% / wt%) described in the following table.
 以上により、染料により着色された光散乱層(第1光散乱層)を膜厚500nmで形成した。 Thus, a light scattering layer (first light scattering layer) colored with a dye was formed to a thickness of 500 nm.
≪有機EL素子107の作製≫
 光散乱層を基板の他主面側(外部取り出し側)に形成したこと以外は、上記有機EL素子105と同様の手順で、有機EL素子107を作製した。但し、有機EL素子107の着色層は、光散乱機能を有する着色散乱粒子を含有し、有機EL素子105の着色された光散乱層(第1光散乱層)と同様の手順で形成した。
<< Production of Organic EL Element 107 >>
The organic EL element 107 was produced in the same procedure as the organic EL element 105 except that the light scattering layer was formed on the other main surface side (external extraction side) of the substrate. However, the colored layer of the organic EL element 107 contains colored scattering particles having a light scattering function, and was formed in the same procedure as the colored light scattering layer (first light scattering layer) of the organic EL element 105.
≪有機EL素子108~110の作製≫
 透明電極を形成する前に平滑化層を形成したこと以外は、上記有機EL素子104~106と同様の手順で、有機EL素子108~110を作製した。
<< Production of organic EL elements 108-110 >>
Organic EL elements 108 to 110 were fabricated in the same procedure as the organic EL elements 104 to 106 except that the smoothing layer was formed before forming the transparent electrode.
 平滑化層は、次のようにして形成した。 The smoothing layer was formed as follows.
 光散乱層(第1光散乱層)まで形成された基板上に、東洋インキ社製、ナノゾル含有UV硬化型樹脂(リオデュラスTYT90-01)を1-メトキシ-2-プロパノールで希釈して固形分を10wt%とし、スピン塗布(500rpm、30秒)にて回転塗布し、プレベーク(80℃、2分)し、さらに、ベーク(200℃、5分)し、高圧水銀ランプを使用して積算光量1000mJ/cm2のエネルギーを加えて硬化処理を行い、膜厚5
00nmの平滑化層を形成した。
On the substrate formed up to the light scattering layer (first light scattering layer), a nanosol-containing UV curable resin (Rioduras TYT90-01) manufactured by Toyo Ink Co., Ltd. is diluted with 1-methoxy-2-propanol to obtain a solid content. 10 wt%, spin-coated by spin coating (500 rpm, 30 seconds), pre-baked (80 ° C., 2 minutes), further baked (200 ° C., 5 minutes), and integrated light quantity 1000 mJ using a high-pressure mercury lamp / Cm 2 energy is applied to perform the curing process, and the film thickness is 5
A smoothing layer of 00 nm was formed.
≪有機EL素子111~113の作製≫
 平滑化層に染料を含有させて形成したこと以外は、上記有機EL素子108~110と同様の手順で、有機EL素子111~113を作製した。但し、着色材は染料とし、AIZENSOT Red-1(保土谷化学社製)を用いて構成した。
<< Production of organic EL elements 111 to 113 >>
Organic EL elements 111 to 113 were produced in the same procedure as the organic EL elements 108 to 110 except that the smoothing layer was formed by containing a dye. However, the coloring material was a dye, and AIZENSOT Red-1 (Hodogaya Chemical Co., Ltd.) was used.
 尚、有機EL素子108~110の作製手順において、染料は、溶剤(1-メトキシ-2-プロパノール)と混合し、赤色着色溶液を調整した後に上記樹脂溶液と混合した。樹脂溶液の固形分と染料(着色材)とは、下記表に記載の比率(wt%/wt%)で処方設計する。 In the procedure for manufacturing the organic EL elements 108 to 110, the dye was mixed with a solvent (1-methoxy-2-propanol) to prepare a red colored solution, and then mixed with the resin solution. The solid content of the resin solution and the dye (coloring material) are formulated and designed at a ratio (wt% / wt%) described in the following table.
≪有機EL素子114~116の作製≫
 透明電極を形成する前に第2光散乱層を形成したこと以外は、上記有機EL素子104~106と同様の手順で、有機EL素子114~116を作製した。尚、有機EL素子114~116の第2光散乱層は、有機EL素子102の無着色の第1光散乱層と同様の手順で形成した。但し、第2光散乱層の膜厚は、300nmとした。
<< Production of organic EL elements 114-116 >>
Organic EL elements 114 to 116 were produced in the same procedure as the organic EL elements 104 to 106 except that the second light scattering layer was formed before forming the transparent electrode. The second light scattering layers of the organic EL elements 114 to 116 were formed in the same procedure as the uncolored first light scattering layer of the organic EL element 102. However, the film thickness of the second light scattering layer was 300 nm.
≪有機EL素子117、118の作製≫
 第2光散乱層に着色材を含有させて形成したこと以外は、上記有機EL素子115、116と同様の手順で、有機EL素子117、118を作製した。尚、有機EL素子117、118の第2光散乱層は、有機EL素子106の染料で着色された第1光散乱層と同様の手順で形成した。但し、第2光散乱層の膜厚は、300nmとした。
<< Production of organic EL elements 117 and 118 >>
Organic EL elements 117 and 118 were produced in the same procedure as the organic EL elements 115 and 116 except that the second light scattering layer was formed by containing a colorant. The second light scattering layers of the organic EL elements 117 and 118 were formed in the same procedure as the first light scattering layer colored with the dye of the organic EL element 106. However, the film thickness of the second light scattering layer was 300 nm.
≪有機EL素子119~121の作製≫
 透明電極を形成する前に平滑化層を形成したこと以外は、上記有機EL素子114~116と同様の手順で、有機EL素子119~121を作製した。尚、有機EL素子119~121の平滑化層は、有機EL素子108~110の無着色の平滑層と同様の手順で形成した。
<< Production of organic EL elements 119 to 121 >>
Organic EL elements 119 to 121 were produced in the same manner as the organic EL elements 114 to 116 except that the smoothing layer was formed before forming the transparent electrode. The smoothing layers of the organic EL elements 119 to 121 were formed in the same procedure as the non-colored smoothing layers of the organic EL elements 108 to 110.
≪有機EL素子122の作製≫
 平滑化層に染料を含有させて形成したこと以外は、上記有機EL素子117と同様の手順で、有機EL素子122の有機EL素子を作製した。尚、有機EL素子122の平滑層は、有機EL素子111~113の着色された平滑層と同様の手順で形成した。
<< Production of Organic EL Element 122 >>
An organic EL element of the organic EL element 122 was produced in the same procedure as the organic EL element 117 except that the smoothing layer was formed by containing a dye. The smooth layer of the organic EL element 122 was formed in the same procedure as the colored smooth layer of the organic EL elements 111 to 113.
≪実施例の各有機EL素子の評価≫
 上記で作製した有機EL素子101~122について、(1)非発光時の視認性(色評価)、(2)発光効率(電力効率)を測定した。
 (1)非発光時の視認性(色評価)は、作製した各有機EL素子について、無作為に選んだ10人の評価者により、下記の評価基準に従って色目を5段階で官能評価した。尚、10人の平均を四捨五入した値を結果とし、視認性が3以上のものを可とした。
5:確実に色を識別できる
4:色が多少薄いが問題なく識別できる
3:色が薄いが識別できる
2:わずかに色を感じる程度
1:無色
 (2)発光効率は、作製した各有機EL素子について、室温(約23~25℃の範囲内)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、各素子の発光輝度を測定し、当該電流値における発光効率(電力効率)を求めた。尚、発光効率の評価は、有機EL素子101の発光効率を100とする相対値で示し、発光効率の相対値が120以上のものを可とした。
≪Evaluation of each organic EL element in Examples≫
With respect to the organic EL elements 101 to 122 produced as described above, (1) visibility when not emitting light (color evaluation) and (2) luminous efficiency (power efficiency) were measured.
(1) Visibility during non-light emission (color evaluation) was sensory-evaluated in five stages according to the following evaluation criteria by 10 evaluators randomly selected for each of the produced organic EL elements. In addition, the value which rounded off the average of 10 persons was made into the result, and the thing whose visibility was 3 or more was permitted.
5: The color can be reliably identified 4: The color is slightly light but can be identified without any problem 3: The color is light but can be identified 2: The color is slightly perceived 1: Colorless (2) The luminous efficiency of each produced organic EL The element was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (within a range of about 23 to 25 ° C.), and a spectral radiance meter CS-2000 (manufactured by Konica Minolta) was used. The light emission luminance of each element was measured, and the light emission efficiency (power efficiency) at the current value was determined. The evaluation of the luminous efficiency is shown by a relative value where the luminous efficiency of the organic EL element 101 is 100, and the relative value of the luminous efficiency is 120 or more.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
≪評価結果≫
 表1から明らかなように、着色層を兼ねた光散乱層を有する有機EL素子104~122は、これを有しない有機EL素子101~103と比較して、非発光時の視認性が3以上でかつ発光効率の値が120以上と良好な値であった。
≪Evaluation results≫
As is clear from Table 1, the organic EL elements 104 to 122 having the light scattering layer that also serves as the colored layer have a visibility of 3 or more when not emitting light compared to the organic EL elements 101 to 103 not having the light scattering layer. In addition, the luminous efficiency was a good value of 120 or more.
 したがって、着色層を兼ねた光散乱層を有することにより、これを有しない有機EL素子と比べて、発光時において発光効率が向上し、非発光時において発光色の識別が良好になることが確認された。 Therefore, by having a light scattering layer that also functions as a colored layer, it has been confirmed that the emission efficiency is improved when emitting light and the discrimination of the emission color is improved when not emitting light, compared to organic EL elements that do not have a colored layer. It was done.
 また、有機EL素子104~106のうち、着色材が着色散乱粒子の有機EL素子104、105と、着色材が染料の有機EL素子106とを比べると、着色材が着色散乱粒子の有機EL素子104、105の方が非発光時の視認性とともに発光効率が良好な値であった。 Further, among the organic EL elements 104 to 106, when the organic EL elements 104 and 105 whose coloring material is colored scattering particles and the organic EL element 106 whose coloring material is dye are compared, the organic EL elements whose coloring material is colored scattering particles are compared. 104 and 105 had better luminous efficiency as well as visibility when no light was emitted.
 したがって、着色材として着色散乱粒子を用いることにより、光散乱機能を有しない着色材で構成された有機EL素子に比べ、発光時において発光効率がさらに向上し、非発光時において発光色の識別がさらに良好になることが確認された。 Therefore, by using colored scattering particles as the coloring material, the luminous efficiency is further improved when emitting light compared to the organic EL element composed of the coloring material that does not have a light scattering function, and the emission color can be distinguished when not emitting light. It was confirmed that it was even better.
 また、同じ素材の有機EL素子104、105を比較すると、着色散乱粒子が多く含有されている素子105の方は、発光効率において少し劣るものの、非発光時の視認性は良好な値であった。 In addition, when comparing the organic EL elements 104 and 105 made of the same material, the element 105 containing a large amount of colored scattering particles was slightly inferior in luminous efficiency, but the visibility when not emitting light was a good value. .
 また、内部取り出し側に光散乱層が形成された有機EL素子105と、外部取り出し側に光散乱層が形成された有機EL素子107とを比べると、外部取り出し側に形成された有機EL素子107は、発光効率において少し劣るものの、非発光時の視認性においては内部取り出し側に形成された素子105と同様に良好な値であった。また、基板の外部取り出し側において光散乱機能を持たない従来のカラーフィルタが形成された有機EL素子103と、本発明の光散乱層が形成された有機EL素子107とを比較すると、本発明の有機EL素子107は、非発光時の視認性は同等であるものの、発光効率が良好な値であった。 Further, when the organic EL element 105 having the light scattering layer formed on the internal extraction side and the organic EL element 107 having the light scattering layer formed on the external extraction side are compared, the organic EL element 107 formed on the external extraction side is compared. Although the luminous efficiency was slightly inferior, the visibility when not emitting light was as good as that of the element 105 formed on the internal extraction side. Further, when comparing the organic EL element 103 in which a conventional color filter having no light scattering function is formed on the outside extraction side of the substrate with the organic EL element 107 in which the light scattering layer of the present invention is formed, Although the organic EL element 107 has the same visibility when not emitting light, it has a good luminous efficiency.
 また、無着色の平滑化層を有する有機EL素子108~110と、これを有しない有機EL素子104~106とを比べると、無着色の平滑化層を有する有機EL素子108~110の方が発光効率において良好な値を示した。また、平滑化層を有する有機EL素子108~113においては、無着色の平滑化層を有する有機EL素子108~110と比較して、着色されている平滑化層を有する有機EL素子111~113の方が非発光時の視認性が良好な値であった。 Further, when comparing the organic EL elements 108 to 110 having a non-colored smoothing layer with the organic EL elements 104 to 106 not having the non-colored smoothing layer, the organic EL elements 108 to 110 having a non-colored smoothing layer are better. A good value was shown in luminous efficiency. Further, in the organic EL elements 108 to 113 having the smoothing layer, the organic EL elements 111 to 113 having the colored smoothing layer are compared with the organic EL elements 108 to 110 having the non-colored smoothing layer. The value was better in visibility when no light was emitted.
 また、無着色の第2光散乱層を有する有機EL素子114~116と、これを有しない有機EL素子104~106とを比べると、無着色の第2光散乱層を有する有機EL素子114~116の方が非発光時の視認性が良好な値であった。また、第2光散乱層を有する有機EL素子114~118においては、着色されている第2光散乱層を有する有機EL素子117、118と比較して、無着色の第2光散乱層を有する有機EL素子114~116の方が非発光時の視認性とともに発光効率の値が良好な値であった。 Further, when comparing the organic EL elements 114 to 116 having the non-colored second light scattering layer and the organic EL elements 104 to 106 not having the non-colored second light scattering layer, the organic EL elements 114 to 116 having the non-colored second light scattering layer are compared. 116 had a better visibility when no light was emitted. Further, the organic EL elements 114 to 118 having the second light scattering layer have a non-colored second light scattering layer as compared with the organic EL elements 117 and 118 having the colored second light scattering layer. The organic EL elements 114 to 116 had better values of luminous efficiency as well as visibility when not emitting light.
 さらに、無着色の平滑化層を有する有機EL素子119~121と、これを有しない有機EL素子114~116とを比べると、無着色の平滑化層を有する有機EL素子119~121の方が非発光時の視認性とともに発光効率の値が最良な値であった。また、着色された平滑化層を有する有機EL素子122と、これを有しない有機EL素子117とを比べると、着色された平滑化層を有する有機EL素子122の方が発光効率の値が良好な値であった。 Further, when comparing the organic EL elements 119 to 121 having an uncolored smoothing layer with the organic EL elements 114 to 116 having no uncolored smoothing layer, the organic EL elements 119 to 121 having an uncolored smoothing layer are more preferable. The value of luminous efficiency was the best value together with the visibility when not emitting light. Moreover, when the organic EL element 122 having a colored smoothing layer is compared with the organic EL element 117 having no colored smoothing layer, the organic EL element 122 having a colored smoothing layer has a better light emission efficiency value. It was a good value.
 以上の結果から、本発明の構成を用いた有機EL素子は、有機EL素子の発光効率の向上を図りつつも非発光時において発光色の識別をすることができる。 From the above results, the organic EL element using the configuration of the present invention can identify the emission color when not emitting light while improving the light emission efficiency of the organic EL element.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 1,1’,2,3,4…有機EL素子、11…基板、13…透明電極、15…発光機能層、17…対向電極、19…封止構造、a,b,d…光散乱層、c…平滑化層、h…発光光、1a…光散乱粒子、2a…着色材、2b…着色散乱粒子、S…光取り出し面 DESCRIPTION OF SYMBOLS 1,1 ', 2,3,4 ... Organic EL element, 11 ... Board | substrate, 13 ... Transparent electrode, 15 ... Light emission functional layer, 17 ... Counter electrode, 19 ... Sealing structure, a, b, d ... Light-scattering layer , C ... smoothing layer, h ... emitted light, 1a ... light scattering particles, 2a ... coloring material, 2b ... colored scattering particles, S ... light extraction surface

Claims (7)

  1.  有機材料を用いて構成された発光機能層と、
     前記発光機能層において発生させた発光光の取り出し側に設けられた透明電極と、
     前記透明電極との間に前記発光機能層を挟持する状態で設けられた対向電極とを有し、
     前記透明電極よりも前記発光光の取り出し側となる位置に、光散乱層と、所望の色に着色している着色層とが設けられている
     有機エレクトロルミネッセンス素子。
    A light emitting functional layer composed of an organic material;
    A transparent electrode provided on the extraction side of the emitted light generated in the light emitting functional layer;
    A counter electrode provided in a state of sandwiching the light emitting functional layer between the transparent electrode,
    The organic electroluminescent element in which the light-scattering layer and the colored layer colored in the desired color are provided in the position which becomes the extraction side of the said emitted light rather than the said transparent electrode.
  2.  前記光散乱層には光散乱粒子が含有されている
     請求項1に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to claim 1, wherein the light scattering layer contains light scattering particles.
  3.  前記光散乱層と前記着色層は、同一層で構成されている
     請求項1又は2に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescent element according to claim 1, wherein the light scattering layer and the colored layer are formed of the same layer.
  4.  前記着色層から取り出される光の波長領域は、前記発光光のピーク波長を含む
     請求項1~3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to any one of claims 1 to 3, wherein a wavelength region of light extracted from the colored layer includes a peak wavelength of the emitted light.
  5.  前記透明電極よりも前記発光光の取り出し側に基板が設けられ、
     前記光散乱層と前記着色層は、前記基板と前記透明電極との間に挟持されている
     請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    A substrate is provided on the emission light extraction side of the transparent electrode,
    The organic electroluminescence device according to any one of claims 1 to 4, wherein the light scattering layer and the colored layer are sandwiched between the substrate and the transparent electrode.
  6.  前記着色層を着色する着色材は、顔料又は染料である
     請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence device according to any one of claims 1 to 5, wherein the coloring material for coloring the colored layer is a pigment or a dye.
  7.  前記光散乱層には、光散乱機能を有する着色散乱粒子が分散されている
     請求項6に記載の有機エレクトロルミネッセンス素子。
    The organic electroluminescence element according to claim 6, wherein colored scattering particles having a light scattering function are dispersed in the light scattering layer.
PCT/JP2014/084171 2014-01-27 2014-12-24 Organic electroluminescent element WO2015111351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558765A JPWO2015111351A1 (en) 2014-01-27 2014-12-24 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014012647 2014-01-27
JP2014-012647 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111351A1 true WO2015111351A1 (en) 2015-07-30

Family

ID=53681168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084171 WO2015111351A1 (en) 2014-01-27 2014-12-24 Organic electroluminescent element

Country Status (2)

Country Link
JP (1) JPWO2015111351A1 (en)
WO (1) WO2015111351A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053855A1 (en) * 2015-09-23 2017-03-30 Corning Incorporated Oled light extraction using nanostructured coatings
EP3226061A3 (en) * 2016-03-09 2018-01-10 Samsung Display Co., Ltd. Head-mounted display device
CN111771177A (en) * 2019-01-30 2020-10-13 威刚科技股份有限公司 Dynamic random access memory device
CN113193014A (en) * 2021-04-16 2021-07-30 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304763A (en) * 1996-05-20 1997-11-28 Nec Corp Color liquid crystal display device
JPH11329742A (en) * 1998-05-18 1999-11-30 Idemitsu Kosan Co Ltd Organic electroluminescent(el) element and light emitting device
JP2003315777A (en) * 2002-04-22 2003-11-06 Sharp Corp Color liquid crystal display
JP2004191428A (en) * 2002-12-06 2004-07-08 Chi Mei Electronics Corp Picture display device
WO2010095514A1 (en) * 2009-02-20 2010-08-26 Fujifilm Corporation Optical member, and organic electroluminescence display device provided with the optical member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304763A (en) * 1996-05-20 1997-11-28 Nec Corp Color liquid crystal display device
JPH11329742A (en) * 1998-05-18 1999-11-30 Idemitsu Kosan Co Ltd Organic electroluminescent(el) element and light emitting device
JP2003315777A (en) * 2002-04-22 2003-11-06 Sharp Corp Color liquid crystal display
JP2004191428A (en) * 2002-12-06 2004-07-08 Chi Mei Electronics Corp Picture display device
WO2010095514A1 (en) * 2009-02-20 2010-08-26 Fujifilm Corporation Optical member, and organic electroluminescence display device provided with the optical member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053855A1 (en) * 2015-09-23 2017-03-30 Corning Incorporated Oled light extraction using nanostructured coatings
CN108474875A (en) * 2015-09-23 2018-08-31 康宁公司 Use the light extraction of the OLED of nanostructured coatings
US10109821B2 (en) 2015-09-23 2018-10-23 Corning Incorporated OLED light extraction using nanostructured coatings
US11005075B2 (en) 2015-09-23 2021-05-11 Corning Incorporated OLED light extraction using nanostructured coatings
CN108474875B (en) * 2015-09-23 2022-02-11 康宁公司 Light extraction of OLEDs using nanostructured coatings
EP3226061A3 (en) * 2016-03-09 2018-01-10 Samsung Display Co., Ltd. Head-mounted display device
CN111771177A (en) * 2019-01-30 2020-10-13 威刚科技股份有限公司 Dynamic random access memory device
US11935880B2 (en) 2019-01-30 2024-03-19 Adata Technology Co., Ltd. Dynamic random access memory device
CN113193014A (en) * 2021-04-16 2021-07-30 武汉华星光电半导体显示技术有限公司 Display panel and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015111351A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
TWI223969B (en) Display and method of manufacturing the same
TWI249968B (en) Organic light emitting device, manufacturing method thereof, and display unit
JP2020042249A (en) Color conversion element and display device having the same
WO2007114256A1 (en) Organic electroluminescence multicolor display panel
JP2005123089A (en) Color organic el display and its manufacturing method
US20090051271A1 (en) Top emitting, electroluminescent component with frequency conversion centres
US20140131669A1 (en) Substrate for organic light-emitting device with enhanced light extraction efficiency, method of manufacturing the same and organic light-emitting device having the same
WO2015111351A1 (en) Organic electroluminescent element
JP2008270061A (en) Display device
JP2010272515A (en) Organic electroluminescence display device
WO2022152062A1 (en) Display panel
US11018322B2 (en) Light emitting device using light emitting diode
KR101632614B1 (en) Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
KR101579457B1 (en) Method of fabricating light extraction substrate, light extraction substrate for oled and oled including the same
US20140054567A1 (en) Organic Electroluminescent Device
JP2003086358A (en) Display device
WO2020173159A1 (en) Display substrate and preparation method therefor, and display apparatus
JP4729754B2 (en) Display device using a plurality of organic EL light emitting elements
JP4600838B2 (en) Organic EL panel
JP2000284705A (en) Optical display device and production of optical display device
JP2009129586A (en) Organic el element
JP2008140621A (en) Organic el display and its manufacturing method
JP5516052B2 (en) Organic light emitting device
JP2007220431A (en) Multi-color luminescent device and its manufacturing method
TWI673898B (en) Light extraction substrate for organic light-emitting diode, method of fabricating the same, and organic light-emitting diode device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879769

Country of ref document: EP

Kind code of ref document: A1