WO2015111143A1 - Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same - Google Patents

Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same Download PDF

Info

Publication number
WO2015111143A1
WO2015111143A1 PCT/JP2014/051179 JP2014051179W WO2015111143A1 WO 2015111143 A1 WO2015111143 A1 WO 2015111143A1 JP 2014051179 W JP2014051179 W JP 2014051179W WO 2015111143 A1 WO2015111143 A1 WO 2015111143A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
display
echo
flaw detection
defect
Prior art date
Application number
PCT/JP2014/051179
Other languages
French (fr)
Japanese (ja)
Inventor
将裕 三木
聡 北澤
雅己 小方
紀朗 後藤
智行 相浦
小林 善宏
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/051179 priority Critical patent/WO2015111143A1/en
Publication of WO2015111143A1 publication Critical patent/WO2015111143A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds

Definitions

  • the present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for flaws, cracks, and weld defects that occur in welds that join plate materials.
  • Welding is indispensable for manufacturing large structures, but welding defects rarely occur at the weld due to welding. Therefore, the quality of a welded part is guaranteed by performing an appropriate nondestructive inspection on the welded part.
  • a general nondestructive inspection method for a welded portion an ultrasonic flaw detection method or a radiation inspection method can be cited.
  • the ultrasonic flaw detection method is widely used because of the simplicity of the apparatus and the absence of operations such as shielding necessary for radiation inspection.
  • Patent Document 1 discloses an ultrasonic flaw detection method for a welded portion in which plate materials are joined to each other.
  • two oblique probes are arranged on one surface of a welded portion so as not to be on the same straight line, and the ultrasonic probe is scanned back and forth in the direction orthogonal to the welded portion. Then, the defect generated in the thickness direction is detected by adjusting the incident angle of the ultrasonic wave to the weld line and the distance to the weld line.
  • Patent Document 2 discloses an aperture synthesis processing technique using a phased array. According to the invention disclosed in Patent Literature 2, the amplitude is corrected by multiplying the waveform signal obtained by the receiving element of the phased array by the inverse of the influence function, aperture synthesis processing is performed on the corrected signal, and an inspection image is obtained. By constructing, the defect can be detected with the same sensitivity regardless of the position in the thickness direction.
  • the ultrasonic probe has been manually moved in a zigzag manner in the longitudinal direction of the welded part, the direction parallel to the weld line, and in the direction intersecting the welded line, to detect the welded part. . Since a convex weld surplus is usually generated on the surface of the welded portion, the weld surplus is cut with a grinder or the like, and the surface of the welded portion is finished to make a flaw detection. In this method, since it is necessary to remove the welding surplus before the inspection, a technique for performing the welding inspection at a high speed without performing this processing is desired.
  • the railway vehicle structure has a total length of 20 to 25 m, and its weld line length is very long.
  • the railway vehicle structure is composed of an aluminum alloy panel, and the thickness of the panel member is as thin as about 3 mm. Therefore, in order to inspect with the welding surplus remaining at the weld, it is necessary to increase the refraction angle of the ultrasonic wave for irradiation.
  • a signal from a reflection source such as a flaw (hereinafter referred to as an echo) is displayed on the high refraction angle side, that is, at a shallow position near the surface, and the actual flaw depth position. Cannot be evaluated correctly, affecting the removal and repair work of weld defects.
  • Patent Document 2 can perform signal evaluation with the same sensitivity in the depth direction, it does not take into consideration correction means for distortion in the depth position of an image that occurs in the case of an inspection target with a thin member plate thickness. Therefore, there is a risk that accurate instructions for defect removal and repair cannot be given.
  • the present invention provides an ultrasonic that can inspect the presence or absence of a defect in the welded portion only by parallel movement along the longitudinal direction of the welded portion without performing forward or backward scanning of the ultrasonic probe in the orthogonal direction of the welded portion.
  • an object is to correct and display an echo of a reflection source such as a flaw at a correct position.
  • an ultrasonic array sensor that transmits and receives ultrasonic waves to the welded part, and the ultrasonic array sensor
  • An ultrasonic array sensor holder that moves the ultrasonic wave along the longitudinal direction of the weld
  • an ultrasonic flaw detector that converts ultrasonic waves received by the ultrasonic array sensor into echoes, and the weld using the echoes
  • a flaw detection controller for detecting defects and a display for displaying a measurement result, wherein the flaw detection controller converts the display position based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection controller.
  • a display position correction unit that corrects the display position of the measurement image according to the equation, a reference echo intensity table based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection controller, and the ecology of the extracted defect echo Characterized in that it comprises a defect determination unit which compares the intensity and determines defective.
  • an ultrasonic wave capable of inspecting the presence or absence of a defect in a welded part only by parallel movement along the longitudinal direction of the welded part without moving the ultrasonic probe forward or backward in the welded part orthogonal direction.
  • the flaw detection apparatus or the flaw detection method it is possible to correct and display the echo of the reflection source such as a flaw at a correct position.
  • 1 is a system configuration diagram of an ultrasonic flaw detector according to an embodiment. It is a mimetic diagram of a railroad car structure which is an application object of an ultrasonic flaw detector of an example. It is a schematic diagram of the panel junction part of a railway vehicle structure. It is a schematic diagram which shows arrangement
  • the longitudinal direction of the weld line which is the center line of the welded portion, is the Z direction
  • the direction orthogonal to the longitudinal direction of the weld line is the X direction
  • the thickness of the plate to be inspected Let the direction be the Y direction.
  • FIG. 1 is a system configuration diagram of the ultrasonic flaw detector according to the present embodiment.
  • the ultrasonic flaw detection apparatus according to the present embodiment includes an ultrasonic sensor unit 10 including an ultrasonic array sensor that transmits and receives ultrasonic waves in contact with an object to be inspected, and transmits or receives analog echoes.
  • An ultrasonic flaw detector 11 that controls the array sensor, a sensor unit movement controller 12 that performs movement control and movement amount measurement of the ultrasonic sensor unit 10, and an ultrasonic flaw detector 11 and a sensor that collectively control the entire ultrasonic inspection.
  • a flaw detection controller 13 that processes data in the unit movement controller 12 to create an inspection image, a display 14 that displays an inspection image as an inspection result, and an input device 15 that receives input of various information.
  • the ultrasonic flaw detector 11, the sensor unit movement controller 12, and the flaw detector controller 13 are an analog / digital conversion board that digitizes analog signals, an amplifier that amplifies AD-converted digital signals, and digitalized echoes.
  • it includes a processor that executes various processes, a memory that stores software executed by the processor, a secondary storage device, and the like.
  • FIG. 2 shows a schematic diagram of the railway vehicle structure.
  • a railway vehicle structure is produced by installing a roof structure 51, a side structure 52, and a wife structure 53 on a frame 54 and welding the structures together. Many of these weld lines exist as shown by the alternate long and short dash line in FIG.
  • the panel length is 20 m to 25 m, and the weld line reaches a maximum length of 25 m. Therefore, the inspection of the railway vehicle structure must be a measurement method corresponding to the long length, and the movement of the ultrasonic array sensor Indispensable.
  • the panel constituting the structure shown in FIG. 3 has a structure in which the mold members 5a and 5b are fitted together, and is produced by welding the fitting part 6a (inside the broken line in FIG. 3).
  • the material of the mold is generally an aluminum alloy material, and the plate thickness is about 3 mm, which is very thin.
  • the structure as shown in FIG. 3 is called a double skin structure, which contributes to weight reduction of the railway vehicle.
  • FIG. 4 shows a configuration of the ultrasonic sensor unit 10 arranged on the structure in which the mold materials 5 a and 5 b are joined by the welded portion 6.
  • the ultrasonic sensor unit 10 includes an ultrasonic array sensor, a motor, casings 10a and 10b that store movement amount measuring instruments, an ultrasonic array sensor holder 10c that holds the ultrasonic array sensor, and the ultrasonic sensor unit 10 at the welded portion.
  • a pair of ultrasonic array sensors 1a and 1b are stored in the casings 10a and 10b, and are installed so as to straddle the welded portion 6 on the upper surface of the mold material 5a or 5b. To do.
  • a contact medium such as water, oil or glycerin paste is applied to the ultrasonic array sensor installation surface.
  • the ultrasonic array sensor holder 10c measures the pair of ultrasonic array sensors 1a and 1b while maintaining a certain distance by fixing the casings 10a and 10b with screws or the like.
  • the ultrasonic sensor unit 10 is self-propelled and is provided with a probe moving mechanism for moving along the longitudinal direction of the welded part of the inspection object.
  • a tire 10d and a motor 10e for driving the tire are installed and can be moved in parallel with respect to the longitudinal direction of the welded portion 6 (Z direction in FIG. 4). If the motor 10e is installed for at least one of the four tires 10d, the ultrasonic array sensor holder 10c can be moved.
  • a movement amount measuring device 10f is connected to at least one of the four tires 10d, and the distance traveled by the ultrasonic sensor unit 10 is measured from the rotation amount of the tire.
  • the ultrasonic flaw detector 11 is connected to the ultrasonic array sensors 1a and 1b and controls transmission of ultrasonic waves and reception of reflected echoes from defects.
  • the received echo is converted into an electric signal, digitized and recorded, further converted into image information, and sent to the flaw detection controller 13.
  • the transmitter 11a and the receiver 11b of the ultrasonic flaw detector 11 give a delay time to the transmission and reception of the ultrasonic array transducers of the ultrasonic array sensors 1a and 1b, and determine the ultrasonic transmission direction and focal position. adjust.
  • the sensor unit movement controller 12 controls the position of the ultrasonic array sensors 1a and 1b by controlling the movement of the ultrasonic sensor unit 10 by calculating the movement distance of the movement amount measuring device 10f and driving control of the motor 10e.
  • the calculation result of the moving distance is transmitted to the flaw detection controller 13, and is used for the flaw detection result display and the defect occurrence range recording in the flaw detection controller 13.
  • the ultrasonic sensor unit 10 can be self-propelled by a command from the sensor unit movement controller 12.
  • the flaw detection controller 13 controls the ultrasonic flaw detector 11 and the sensor unit movement controller 12.
  • a sensor position evaluation unit 13a As components, a sensor position evaluation unit 13a, an ultrasonic signal evaluation unit 13b, a display position correction unit 13c, a defect determination unit 13d, a drawing unit 13e, a display position conversion table 13f, an echo intensity table 13g, and a shape figure table 13h are required. is there.
  • the sensor position evaluation unit 13a issues a movement instruction in the sensor unit movement controller 12, receives movement distance information, and records position information of the ultrasonic array sensors 1a and 1b.
  • the ultrasonic signal evaluator 13b sends an ultrasonic wave transmission instruction from the ultrasonic flaw detector 11 and records information such as a received wave and measurement conditions at that time.
  • the display position correction unit 13c When there is distortion in the echo display position of the inspection image based on the ultrasonic signal and the measurement conditions in the ultrasonic signal evaluation unit 13b, the display position correction unit 13c performs image correction by correcting the coordinates of the echo position to the actual position. Perform reconfiguration.
  • the defect determination unit 13d extracts a defect signal from the reconstructed image information whose position is corrected by the display position correction unit 13c, and performs defect determination based on the actual defect position and echo intensity of the detection signal.
  • the drawing unit 13e creates an inspection result image based on the sensor position evaluation unit 13a, the display position correction unit 13c, and the defect determination unit 13d, and sends the inspection result image to the display unit 14.
  • the display position conversion table 13f stores reference data when performing the image position correction processing performed by the display position correction unit 13c.
  • the echo intensity table 13g stores reference data when performing the defect determination process performed by the defect determination unit 13d.
  • the shape figure table 13h has CAD information, which is shape information of the inspection target.
  • the shape information is not limited to CAD, but may be information in an arbitrary format. The shape information is displayed together with the flaw detection result on the display 14 and used as reference data when setting the inspection evaluation area.
  • the display 14 displays the positions of the ultrasonic array sensors 1a and 1b, the flaw detection results, and the like based on the inspection result output information from the flaw detection controller 13.
  • FIG. 5 shows the configuration of the ultrasonic array sensor of this example.
  • the ultrasonic array sensor used in the ultrasonic inspection a single transducer type ultrasonic array sensor is used, and is arranged on the surface of the plate material so as to face each other with the welded portion 6 interposed therebetween as shown in FIG.
  • FIG. 5A is a top view arrangement of the ultrasonic array sensors 1a and 1b with respect to the direction intersecting the weld line
  • FIG. 5B is a cross-sectional view of the ultrasonic array sensor with respect to the direction intersecting the weld line (FIG. 5).
  • 5 (a) shows a BB ′ cross section).
  • the mold members 5a and 5b are joined by the welded portion 6, and the cross section of the welded portion 6 has a shape similar to a sector shape with the welding surplus on the upper side (the mounting surface side of the ultrasonic array sensor).
  • the purpose is to detect a defect generated in the welded portion.
  • the ultrasonic array sensor is arranged so that the ultrasonic wave is incident on the defect from an oblique direction.
  • ultrasonic array transducers 3a and 3b which are aggregates of elements that transmit and receive ultrasonic waves, are installed inside the ultrasonic array sensors 1a and 1b.
  • the ultrasonic array transducers 3a and 3b are composed of a plurality of arranged transducers, and the ultrasonic wave transmission direction and the focal position can be adjusted by electronic scanning for adjusting the voltage time applied to the transducers.
  • a resin wedge 4 is installed at the lower part of the vibrator, and the ultrasonic array vibrator is tilted.
  • the wedge 4 is built in the ultrasonic array sensor to reduce the size.
  • the ultrasonic array transducer receives the transmitted ultrasonic waves reflected by the above-mentioned defects or feature points such as the shape corners of the object to be inspected, the difference between the reception times of each transducer and the sound velocity in the test material The position of the reflection source can be specified.
  • Such an ultrasonic transmission and reception method is called a phased array method.
  • Ultrasonic waves can be scanned by programming and changing the applied voltage time described above. Thereby, the inspection range can be shortened because a wide range can be inspected by minimizing the moving range of the ultrasonic array sensor.
  • the electronic scanning conditions of the ultrasonic array sensor can be optimized and the optimum scanning conditions that can inspect the defects assumed in the welded portion can be determined, so that the inspection time can be shortened.
  • points O 1 and O 2 are intersections between a perpendicular drawn from the transducer that transmits the ultrasonic wave to the surface of the inspection object and the surface of the inspection object, and are sector-shaped obtained by the sector scan method. This is the reference position of the ultrasonic image.
  • the ultrasonic array sensors 1a and 1b perform measurement independently. For this reason, only the operation of the ultrasonic array sensor 1a is described, but the operation of the ultrasonic array sensor 1b is the same as described below.
  • transmitting an ultrasonic wave 2 from the ultrasonic array transducer 3a receiving reflected ultrasonic waves at defect D 1 (the echo) the ultrasonic array transducer 3a
  • the presence or absence of a defect is determined by analyzing and imaging the reflected echo obtained from the received and received ultrasonic waves.
  • the member plate thickness of the mold is assumed to be t. Because welding defects easily occur in the weld root, here was FIG assuming a case of generating a defect D 1 in the weld root.
  • the measurement image at this time is shown in FIG.
  • a sector scan image in the above testing method in the measurement using an ultrasonic array sensor 1a, and transmitting ultrasonic waves from the ultrasonic array transducer 3a, ultrasonic array transducer and reflected ultrasonic waves at defect D 1
  • the flaw detection result by the ultrasonic wave received by the child 3a is displayed.
  • the position of the ultrasonic array probe received by the top left corner O 1 is shown
  • the X direction represents the horizontal distance from the ultrasonic array sensor to the reflection source
  • the Y direction The vertical direction shown indicates the depth from the ultrasonic array sensor to the reflection source.
  • the sector scan image clearly shows the positional relationship between the ultrasonic array sensor and the reflection source.
  • E 1 is an ultrasonic echo caused by a defect
  • no E 1 echo appears in a portion where there is no defect.
  • a region B indicated by a dotted line is a defect evaluation range. In the setting of this region, the position in the X direction corresponds to the both toe positions of the welding surplus, and the position in the Y direction is set slightly larger than the member plate thickness t of the mold material from the surface.
  • the defect echo E 1 is displayed shallower than the original defect depth. That is, assuming that the defect position in the substance is t, the depth of the defect echo displayed in the sector scan image is t 1 (t 1 ⁇ t). This is because, when an image is formed by the ultrasonic flaw detector 11, the difference in ultrasonic arrival time when the ultrasonic array transducer generates a composite wavefront of the received signal is small at an angle where the refraction angle ⁇ is large. This is due to an increase in spatial resolution error in the refraction angle region. The result of measuring the characteristics is shown in FIG.
  • the vertical axis represents the display defect depth t 1
  • the horizontal axis represents the refraction angle ⁇ .
  • the four lines in the figure are measurement data of the display position of the reference defect having a depth of 2 mm to 5 mm. From the figure, it can be confirmed that the display defect depth t 1 decreases as the refraction angle ⁇ increases. For example, when a reference defect having a depth of 5 mm is measured at a refraction angle of 82 °, it is displayed at a depth of 2.5 mm.
  • a coordinate conversion correction table of refraction angles and depth positions is created in advance, and coordinate conversion is performed on the acquired echo or the entire image and displayed as a corrected image.
  • the substantial defect depth t is created as a coordinate conversion correction formula (formula (1)) between the refraction angle ⁇ and the defect display depth position t 1 .
  • a, b, c, and d are constants based on previously measured data
  • f and g are functions.
  • the coordinate conversion correction formula data of the refraction angle and the depth position is created in advance by measurement by experiment or prediction by numerical analysis, and is recorded in the display position conversion table 13f.
  • FIG. 8 is created based on the measurement data of FIG. 7 for data with an entity defect depth t of 2 mm to 5 mm, but for the data with an entity defect depth t of 1 mm, the measurement data and numerical analysis are performed. Is the predicted value.
  • the ultrasonic array sensor cannot sufficiently approach the defect, it is necessary to measure at a high refraction angle, for example, in the range of 65 ° to 80 °. In many cases, you will not get. Therefore, the distortion correction of the defect echo image having a high refraction angle and a shallow portion shown in the present embodiment is very useful.
  • the defect echo can be displayed at the echo position E in FIG. 6B, and the position of the defect can be correctly determined.
  • defect it is determined whether the defect develops during the service period and the vehicle is defective. When it is considered that a defect will occur in the vehicle, it is judged that repair is necessary, and repairs such as defect removal and welding re-construction are performed. Therefore, it is necessary to accurately grasp the position and size of the detected defect.
  • the defect position can be correctly evaluated by the depth position correction by the coordinate conversion described above. Therefore, a method for accurately grasping the size of the defect is necessary. Therefore, an allowable defect size is set based on the load stress and the importance of the member according to the load state of the inspection target part at the time of vehicle design.
  • an echo intensity table for a reference defect as shown in FIG. 9 is created as a criterion.
  • This table is stored in the echo intensity table 13g in the flaw detection controller 13.
  • FIG. 9 will be described.
  • the vertical axis represents the echo intensity A 0 of the reference defect measured by experiment, and the horizontal axis represents the refraction angle ⁇ of the display image.
  • the reference defect is measured for a plurality of reference defects having different depths so as to cover the depth range to be measured.
  • measurement data of a reference defect having a depth of 2 mm to 5 mm is shown. Describe how to use this table.
  • the defect depth t, the refraction angle ⁇ , and the echo intensity A of the substance are extracted from the defect echo of the image subjected to the depth position correction by the coordinate transformation described above.
  • the echo intensity A 0 of the reference defect with respect to the defect depth t and the refraction angle ⁇ is obtained from the echo intensity table.
  • the determination information is displayed together with the inspection image of the display.
  • FIG. 10 is a flowchart showing the contents of control processing in the ultrasonic flaw detector according to this embodiment. This control process is performed based on a program stored in advance in internal memories of the ultrasonic flaw detector 11, the sensor unit movement controller 12, and the flaw detector 13.
  • inspection is performed after the template panel temporary assembly in step 500 and the template panel welding in step 600 are performed.
  • appropriate inspection conditions considering the state of the inspection section (for example, plate material material, plate thickness, weld groove shape, etc.) are set as follows: ultrasonic flaw detector 11, sensor unit movement controller 12 and Set to the flaw detection controller 13.
  • the coordinate conversion correction formula data is set in the display position conversion table by the operation of the program stored in the memory of the flaw detection controller 13.
  • the defect determination level of the reference defect corresponding to the inspection target part is set in the echo intensity table.
  • the movement amount for each flaw detection step of the ultrasonic array sensor is set.
  • an inspection evaluation area in the flaw detection controller 13 is set.
  • the measurement region of the welded portion is set from the shape information of the mold members 5a and 5b and the dimensional information of the width (X direction distance) of the welded portion 6.
  • a defect evaluation range (S in FIG. 6B) based on the width of the weld surplus and the member plate thickness t of the mold material is set, and step 140 is performed for echoes that appear within this defect evaluation range.
  • the defect echo candidates are extracted by performing the above process.
  • step 120 the ultrasonic sensor unit 10 is moved to the inspection measurement position.
  • the ultrasonic sensor unit 10 is aligned with the start position of the inspection object.
  • the ultrasonic array sensors 1a and 1b are arranged to face each other so as to sandwich the welded portion.
  • the welding unit is translated in the longitudinal direction (Z direction) by the amount of movement for each flaw detection step set in step 100.
  • the position information in the sensor unit movement controller 12 is recorded by the sensor position evaluation unit 13 a of the flaw detection controller 13.
  • step 130 irradiation and reception of an ultrasonic beam using an ultrasonic array sensor are performed.
  • the flaw detection controller 13 transmits a measurement trigger signal to the ultrasonic flaw detector 11.
  • the transmitter 11a and the receiver 11b of the ultrasonic flaw detector 11 perform ultrasonic signal transmission and reception processing by the ultrasonic array sensor 1a.
  • the ultrasonic array sensor 1b performs transmission and reception processing.
  • the received signal is transmitted to the ultrasonic signal evaluation unit 13b of the flaw detection controller 13.
  • step 140 a defect signal detection process is performed. From the measurement result of step 130, the ultrasonic signal evaluation unit 13b determines whether there is an echo appearing in the evaluation region set in step 110 based on the inspection data. If there is an echo in the area, it is detected as a defect echo E and the process of step 150 is performed. If no echo exists in the area, it is determined that no repair is necessary because there is no defect, and the process of step 200 is performed.
  • the drawing unit 13e accumulates information indicating “no defect” as a defect determination result together with the inspection image, and displays the information on the display 14.
  • step 150 the position of the image is corrected.
  • the inspection measurement data processed by the ultrasonic signal evaluation unit 13b is sent to the display position correction unit 13c.
  • the coordinate transformation correction formula data is read from the display position conversion table 13f, the inspection measurement data is subjected to image position correction processing, and the defect echo E displayed distorted at a high refraction angle is drawn at the actual defect depth.
  • step 160 defect determination is performed based on the signal amplitude of the reflected wave.
  • the maximum value A of the received wave signal strength in the vicinity of the echo E extracted in step 150 is compared with the threshold value A 0 for determining the received signal strength. If the echo signal intensity exceeds the threshold value A 0 , it is determined that the defect is a harmful defect in structural strength, and the defect determination unit 13 d of the flaw detection controller 13 processes the defect as being present. Therefore, if the received wave amplitude is A ⁇ A 0 in this determination, it is determined that “no repair is necessary”, and the process of step 200 is performed. The process ends when the flaw detection end point is reached. If the received wave amplitude is A ⁇ A 0, it is determined as a defect and the process of step 170 is performed.
  • step 170 it is determined that repair is necessary. Based on the determination in step 160, the drawing unit 13e accumulates the information on “repair required” as the defect determination result together with the inspection image and displays it on the display unit 14. Thereafter, the process of step 180 is performed.
  • step 180 the ultrasonic array sensor position is determined. If the ultrasonic array sensor has reached the end of the member to be inspected by the processing of the flaw detection controller 13, the inspection is terminated, and the processing in step 190, that is, the inspection is terminated. However, if the ultrasonic array sensor has not reached the end of the member to be inspected, the process proceeds to step 120, and after moving by a specified amount, flaw detection at a new point is repeated. After a series of inspection work is completed and the inspection in step 200 is completed, the defective part is repaired. The repaired portion is inspected again, and after confirming that there is no defect, the structure panel is assembled in step 700 to form a railcar structure on a hexahedron.
  • the ultrasonic probe is moved in the direction perpendicular to the longitudinal direction of the weld line, and the ultrasonic array sensor is moved forward or backward along the weld line direction.
  • the ultrasonic flaw detection apparatus or flaw detection method that can inspect the presence or absence of defects generated in the welded part only by parallel movement, an apparatus and method that can quickly measure the weld defects even if there is a surplus weld is realized.
  • the image (echo) of the reflection source such as flaws is corrected and displayed at the correct position by the correction means for image distortion, and the removal or repair of flaws is instructed accurately.

Abstract

This invention provides an inspection device whereby, when performing an ultrasonic inspection on an object that comprises thin plate members and makes it impossible to get close to flaws, reflection sources such as scratches can be displayed in correct positions. This ultrasonic flaw detection device, which is used to inspect welds between members, is provided with an ultrasonic sensor array that transmits and receives ultrasound to and from a weld, an ultrasonic-sensor-array holder that moves said ultrasonic sensor array in the lengthwise direction of the weld, an ultrasonic flaw detector that converts the ultrasound received by the ultrasonic sensor array to echoes, a flaw-detection controller that uses said echoes to detect flaws in the weld, and a display unit that displays measurement results. The flaw-detection controller has the following: a display-position correction unit that corrects distortion in measurement images in accordance with a display-position conversion formula based on ultrasound-echo display refraction angles and display depths recorded in the flaw-detection controller; a reference echo-intensity table obtained from the ultrasound-echo display refraction angles and display depths recorded in the flaw-detection controller; and a flaw identification unit that identifies flaws by comparing the intensities of extracted flaw echoes.

Description

溶接部を検査する超音波探傷装置および溶接部を検査する超音波探傷方法、それを用いた鉄道車両構体の製造方法Ultrasonic flaw detection apparatus for inspecting welded portion, ultrasonic flaw detection method for inspecting welded portion, and method of manufacturing railway vehicle structure using the same
 本発明は、板材を接合する溶接部に発生するきず、割れ、溶接欠陥に対する超音波探傷装置および超音波探傷方法に関する。 The present invention relates to an ultrasonic flaw detection apparatus and an ultrasonic flaw detection method for flaws, cracks, and weld defects that occur in welds that join plate materials.
 大型構造物を製作する上で溶接は不可欠であるが、溶接部では溶接施工に起因して溶接欠陥がまれに発生する。そのため、溶接部に対して、適切な非破壊検査を行うことで、溶接部の品質を保証している。溶接部に対する一般的な非破壊検査方法としては、超音波探傷法あるいは放射線検査法が挙げられる。超音波探傷法は、装置の簡便さと放射線検査で必要な遮蔽などの作業がないため、広く使われている。 Welding is indispensable for manufacturing large structures, but welding defects rarely occur at the weld due to welding. Therefore, the quality of a welded part is guaranteed by performing an appropriate nondestructive inspection on the welded part. As a general nondestructive inspection method for a welded portion, an ultrasonic flaw detection method or a radiation inspection method can be cited. The ultrasonic flaw detection method is widely used because of the simplicity of the apparatus and the absence of operations such as shielding necessary for radiation inspection.
 たとえば、特許文献1には、板材同士を接合した溶接部の超音波探傷法が開示されている。特許文献1に開示された発明によれば、溶接部の片側表面に2個の斜角探触子を同一直線とならないように配置し、超音波探触子を溶接部直交方向に前後走査して、溶接線に対する超音波の入射角度と溶接線までの距離を調整し肉厚方向に発生した欠陥を検出する。 For example, Patent Document 1 discloses an ultrasonic flaw detection method for a welded portion in which plate materials are joined to each other. According to the invention disclosed in Patent Document 1, two oblique probes are arranged on one surface of a welded portion so as not to be on the same straight line, and the ultrasonic probe is scanned back and forth in the direction orthogonal to the welded portion. Then, the defect generated in the thickness direction is detected by adjusting the incident angle of the ultrasonic wave to the weld line and the distance to the weld line.
 また、特許文献2には、フェーズドアレイによる開口合成処理手法が開示されている。特許文献2に開示された発明によれば、フェーズドアレイの受信素子で得られた波形信号に対して影響関数の逆数を乗じて振幅を補正し、補正後信号に開口合成処理を行い、検査画像を構築することで、欠陥が厚さ方向のどの位置にあっても同一感度で検出できるようにしている。 Further, Patent Document 2 discloses an aperture synthesis processing technique using a phased array. According to the invention disclosed in Patent Literature 2, the amplitude is corrected by multiplying the waveform signal obtained by the receiving element of the phased array by the inverse of the influence function, aperture synthesis processing is performed on the corrected signal, and an inspection image is obtained. By constructing, the defect can be detected with the same sensitivity regardless of the position in the thickness direction.
特開平5-288722号JP-A-5-288722 特開2010-266414号JP 2010-266414 A
 長尺部材の溶接部の検査に対しては、従来、超音波探触子を人手で溶接部長手方向いわゆる溶接線の平行方向と交差方向にジグザグに動かして、溶接部の探傷を行っていた。溶接部の表面には、通常、凸型の溶接余盛りが発生するため、グラインダーなどで溶接余盛りを切削し、溶接部表面を平滑に仕上げてから探傷を行っている。この手法では、検査前に溶接余盛りの除去加工が必要であるため、この処理を実施しないで溶接検査を高速に行う技術が望まれている。 Conventionally, for inspection of welded parts of long members, the ultrasonic probe has been manually moved in a zigzag manner in the longitudinal direction of the welded part, the direction parallel to the weld line, and in the direction intersecting the welded line, to detect the welded part. . Since a convex weld surplus is usually generated on the surface of the welded portion, the weld surplus is cut with a grinder or the like, and the surface of the welded portion is finished to make a flaw detection. In this method, since it is necessary to remove the welding surplus before the inspection, a technique for performing the welding inspection at a high speed without performing this processing is desired.
 特に、鉄道車両の荷客を搭載する構体の検査ではそのニーズが高い。鉄道車両構体は全長20mから25mでありその溶接線長は非常に長い。また鉄道車両構体はアルミ合金製のパネルで構成されているが、このパネルの部材板厚は約3mmと非常に薄い。そこで、当該溶接部で溶接余盛りを残存した状態で検査するためには、超音波の屈折角を大きくして照射する必要がある。フェーズドアレイ法では屈折角を大きくして探傷する場合、きずなどの反射源の信号(以下、エコーと称する)は高屈折角側つまり表面近傍の浅い位置に表示され、実際のきずの深さ位置を正しく評価できなくなり、溶接欠陥の除去や補修作業に影響を及ぼす。 Especially, there is a high need for inspection of structures equipped with passengers of railway vehicles. The railway vehicle structure has a total length of 20 to 25 m, and its weld line length is very long. The railway vehicle structure is composed of an aluminum alloy panel, and the thickness of the panel member is as thin as about 3 mm. Therefore, in order to inspect with the welding surplus remaining at the weld, it is necessary to increase the refraction angle of the ultrasonic wave for irradiation. In the phased array method, when flaw detection is performed with a large refraction angle, a signal from a reflection source such as a flaw (hereinafter referred to as an echo) is displayed on the high refraction angle side, that is, at a shallow position near the surface, and the actual flaw depth position. Cannot be evaluated correctly, affecting the removal and repair work of weld defects.
 特許文献1に開示された発明の場合、溶接部に対する超音波探触子の前進・後進走査が必要となる。板厚が十分大きいか溶接余盛りを切除した検査対象部には有効である。しかし、長尺の溶接線に対する検査を行う場合には、溶接部長手方向への平行移動に加えて、上記溶接部直交方向への前進・後進走査を行う必要がある。従って、特許文献1に記載の探傷方法は板材の特定箇所、すなわち狭い範囲に対しては有効であるが、長尺の溶接部材の探傷方法として有効であるとは言えない。また、探触子の移動には溶接余盛りの切削が必要となるため、多大な検査時間を要する。 In the case of the invention disclosed in Patent Document 1, forward / reverse scanning of the ultrasonic probe with respect to the welded portion is required. This is effective for the inspection target part where the plate thickness is sufficiently large or the weld surplus is excised. However, when inspecting a long weld line, in addition to parallel movement in the longitudinal direction of the welded portion, it is necessary to perform forward / reverse scanning in the welded portion orthogonal direction. Therefore, although the flaw detection method described in Patent Document 1 is effective for a specific portion of the plate material, that is, a narrow range, it cannot be said that it is effective as a flaw detection method for a long welded member. Further, since the movement of the probe requires cutting of the welding surplus, a great amount of inspection time is required.
 特許文献2に開示された発明は深さ方向に対して同感度で信号評価できるものの、部材板厚が薄い検査対象の場合に生じる画像の深さ位置の歪みに対する補正手段については考慮されておらず、欠陥の除去や補修に対する的確な指示ができない恐れがある。 Although the invention disclosed in Patent Document 2 can perform signal evaluation with the same sensitivity in the depth direction, it does not take into consideration correction means for distortion in the depth position of an image that occurs in the case of an inspection target with a thin member plate thickness. Therefore, there is a risk that accurate instructions for defect removal and repair cannot be given.
 よって、本発明は、超音波探触子を溶接部直交方向へ前進又は後進走査をすることなく、溶接部長手方向に沿った平行移動のみで溶接部に発生した欠陥の有無を検査できる超音波探傷装置または探傷方法において、きずなどの反射源のエコーを正しい位置に補正表示することを目的とする。 Therefore, the present invention provides an ultrasonic that can inspect the presence or absence of a defect in the welded portion only by parallel movement along the longitudinal direction of the welded portion without performing forward or backward scanning of the ultrasonic probe in the orthogonal direction of the welded portion. In a flaw detection apparatus or a flaw detection method, an object is to correct and display an echo of a reflection source such as a flaw at a correct position.
 上記目的を達成するため、本発明では、部材同士の溶接部を検査する超音波探傷装置において、前記溶接部に超音波を送波しかつ受波する超音波アレイセンサと、前記超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持器と、前記超音波アレイセンサで受波した超音波をエコーに変換する超音波探傷器と、当該エコーを用いて前記溶接部の欠陥を検出する探傷制御器と、測定結果を表示する表示器を備え、前記探傷制御器では、探傷制御器に記録された超音波エコーの表示屈折角と表示深さに基づいた表示位置変換式に従って測定画像の表示位置を補正する表示位置補正部と、探傷制御器に記録された超音波エコーの表示屈折角と表示深さによる基準エコー強度テーブルと、抽出した欠陥エコーのエコー強度を対比して欠陥の判定を行う欠陥判定部を備えることを特徴とする。 In order to achieve the above object, according to the present invention, in an ultrasonic flaw detector for inspecting a welded part between members, an ultrasonic array sensor that transmits and receives ultrasonic waves to the welded part, and the ultrasonic array sensor An ultrasonic array sensor holder that moves the ultrasonic wave along the longitudinal direction of the weld, an ultrasonic flaw detector that converts ultrasonic waves received by the ultrasonic array sensor into echoes, and the weld using the echoes A flaw detection controller for detecting defects and a display for displaying a measurement result, wherein the flaw detection controller converts the display position based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection controller. A display position correction unit that corrects the display position of the measurement image according to the equation, a reference echo intensity table based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection controller, and the ecology of the extracted defect echo Characterized in that it comprises a defect determination unit which compares the intensity and determines defective.
 本発明によれば、超音波探触子を溶接部直交方向へ前進又は後進走査をすることなく、溶接部長手方向に沿った平行移動のみで溶接部に発生した欠陥の有無を検査できる超音波探傷装置または探傷方法において、きずなどの反射源のエコーを正しい位置に補正表示することが可能となる。 According to the present invention, an ultrasonic wave capable of inspecting the presence or absence of a defect in a welded part only by parallel movement along the longitudinal direction of the welded part without moving the ultrasonic probe forward or backward in the welded part orthogonal direction. In the flaw detection apparatus or the flaw detection method, it is possible to correct and display the echo of the reflection source such as a flaw at a correct position.
実施例の超音波探傷装置のシステム構成図である。1 is a system configuration diagram of an ultrasonic flaw detector according to an embodiment. 実施例の超音波探傷装置の適用対象である鉄道車両構体の模式図である。It is a mimetic diagram of a railroad car structure which is an application object of an ultrasonic flaw detector of an example. 鉄道車両構体のパネル接合部の模式図である。It is a schematic diagram of the panel junction part of a railway vehicle structure. 実施例の超音波探傷装置における超音波センサユニットの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the ultrasonic sensor unit in the ultrasonic flaw detector of an Example. 実施例の超音波探傷装置における超音波アレイセンサの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the ultrasonic array sensor in the ultrasonic flaw detector of an Example. 実施例の超音波探傷装置における超音波アレイセンサでの超音波ビーム照射と取得できる探傷画像のイメージ図である。It is an image figure of the ultrasonic beam irradiation in the ultrasonic array sensor in the ultrasonic flaw detector of an Example, and the flaw-detection image which can be acquired. 校正試験体での基準欠陥を用いた超音波画像の位置歪みに関する測定結果の例である。It is an example of the measurement result regarding the positional distortion of the ultrasonic image using the reference | standard defect in a calibration test body. 超音波画像の位置歪みを補正するための表示位置変換テーブルデータの例である。It is an example of the display position conversion table data for correct | amending the positional distortion of an ultrasonic image. 校正試験体での基準欠陥に対してエコー強度テーブルデータの例である。It is an example of echo intensity table data with respect to the reference | standard defect in a calibration test body. 実施例の超音波探傷装置での処理および本装置を用いた鉄道車両構体の製造工程を説明するフローチャートである。It is a flowchart explaining the process in the ultrasonic flaw detector of an Example, and the manufacturing process of the railway vehicle structure using this apparatus.
 本発明の実施形態について、図面を参照しつつ説明する。なお、説明のため溶接検査の対象物に対して、溶接部の中心線である溶接線の長手方向をZ方向、溶接線の長手方向に直交した方向をX方向、検査対象の板厚深さ方向をY方向とする。 Embodiments of the present invention will be described with reference to the drawings. In addition, for the purpose of explanation, the longitudinal direction of the weld line, which is the center line of the welded portion, is the Z direction, the direction orthogonal to the longitudinal direction of the weld line is the X direction, and the thickness of the plate to be inspected. Let the direction be the Y direction.
 初めに、本実施例の超音波探傷装置のハード構成について説明する。図1は本実施例の超音波探傷装置のシステム構成図である。本実施例の超音波探傷装置は、被検査物に接触させて超音波を送信しかつ受信し、アナログのエコーとして送信又は受信する超音波アレイセンサを有する超音波センサユニット10と、当該超音波アレイセンサを制御する超音波探傷器11と、超音波センサユニット10の移動制御と移動量計測を行うセンサユニット移動制御器12と、超音波検査全体を統括制御しかつ超音波探傷器11およびセンサユニット移動制御器12でのデータを処理して検査画像を作成する探傷制御器13と、検査結果である検査画像を表示させる表示器14と各種情報の入力を受け付ける入力器15により構成される。なお、超音波探傷器11、センサユニット移動制御器12、探傷制御器13は、アナログ信号をデジタル化するアナログ/デジタル変換ボード、AD変換されたデジタル信号を増幅するアンプ、デジタル化されたエコーに対して各種の処理を実行するプロセッサ、当該プロセッサで実行されるソフトウェアが格納されるメモリ、二次記憶装置などにより構成される。 First, the hardware configuration of the ultrasonic flaw detector according to the present embodiment will be described. FIG. 1 is a system configuration diagram of the ultrasonic flaw detector according to the present embodiment. The ultrasonic flaw detection apparatus according to the present embodiment includes an ultrasonic sensor unit 10 including an ultrasonic array sensor that transmits and receives ultrasonic waves in contact with an object to be inspected, and transmits or receives analog echoes. An ultrasonic flaw detector 11 that controls the array sensor, a sensor unit movement controller 12 that performs movement control and movement amount measurement of the ultrasonic sensor unit 10, and an ultrasonic flaw detector 11 and a sensor that collectively control the entire ultrasonic inspection. A flaw detection controller 13 that processes data in the unit movement controller 12 to create an inspection image, a display 14 that displays an inspection image as an inspection result, and an input device 15 that receives input of various information. The ultrasonic flaw detector 11, the sensor unit movement controller 12, and the flaw detector controller 13 are an analog / digital conversion board that digitizes analog signals, an amplifier that amplifies AD-converted digital signals, and digitalized echoes. On the other hand, it includes a processor that executes various processes, a memory that stores software executed by the processor, a secondary storage device, and the like.
 図2に鉄道車両構体の模式図を示す。鉄道車両構体は、屋根構体51、側構体52、妻構体53を台枠54上に設置して、各構体間を溶接接合して制作される。これらの溶接線は図2中に一点鎖線で示す通りに多数存在する。鉄道車両構体の場合、パネル長さは20mから25mであり、溶接線も最長25mに達するため、鉄道車両構体検査では長尺に対応した測定方法でなければならず、超音波アレイセンサの移動が必要不可欠である。 Figure 2 shows a schematic diagram of the railway vehicle structure. A railway vehicle structure is produced by installing a roof structure 51, a side structure 52, and a wife structure 53 on a frame 54 and welding the structures together. Many of these weld lines exist as shown by the alternate long and short dash line in FIG. In the case of a railway vehicle structure, the panel length is 20 m to 25 m, and the weld line reaches a maximum length of 25 m. Therefore, the inspection of the railway vehicle structure must be a measurement method corresponding to the long length, and the movement of the ultrasonic array sensor Indispensable.
 図3に示す構体を構成するパネルは、型材5aおよび5bを勘合した構成であり、その勘合部6a(図3中の破線内)を溶接接合して制作する。型材の材質はアルミ合金材が一般的であり、その板厚は約3mmと非常に薄いことが特徴である。ここで、図3のような構造をダブルスキン構造といい、鉄道車両の軽量化に貢献している。 The panel constituting the structure shown in FIG. 3 has a structure in which the mold members 5a and 5b are fitted together, and is produced by welding the fitting part 6a (inside the broken line in FIG. 3). The material of the mold is generally an aluminum alloy material, and the plate thickness is about 3 mm, which is very thin. Here, the structure as shown in FIG. 3 is called a double skin structure, which contributes to weight reduction of the railway vehicle.
 本発明では、当該溶接部で溶接余盛りを残存した状態で検査することが目的である。そのため、超音波アレイセンサの溶接部での配置は図4のようにする。図4には、型材5aおよび5bが溶接部6により接合された構造物上に配置した超音波センサユニット10の構成である。超音波センサユニット10は、超音波アレイセンサ、モータ、移動量計測器を格納するケーシング10aおよび10b、超音波アレイセンサを保持する超音波アレイセンサ保持器10c、超音波センサユニット10が溶接部に沿って移動するためのタイヤ10d、タイヤを回転動作させるモータ10e、超音波センサユニットの移動量を計測する移動量計測器10fなどによって構成される。 In the present invention, it is an object to inspect with the welding surplus remaining in the weld. Therefore, the arrangement of the ultrasonic array sensor at the welded portion is as shown in FIG. FIG. 4 shows a configuration of the ultrasonic sensor unit 10 arranged on the structure in which the mold materials 5 a and 5 b are joined by the welded portion 6. The ultrasonic sensor unit 10 includes an ultrasonic array sensor, a motor, casings 10a and 10b that store movement amount measuring instruments, an ultrasonic array sensor holder 10c that holds the ultrasonic array sensor, and the ultrasonic sensor unit 10 at the welded portion. A tire 10d for moving along, a motor 10e for rotating the tire, a movement amount measuring device 10f for measuring the movement amount of the ultrasonic sensor unit, and the like.
 ケーシング10aおよび10bには、一対の超音波アレイセンサ1a、1bが格納され、型材5aあるいは5bの上面に溶接部6を跨ぐように設置され、超音波を型材から入射して溶接部6を検査する。超音波アレイセンサを型材に設置する際には、水、油、グリセリンペーストなどの接触媒質を超音波アレイセンサ設置面に塗布する。超音波アレイセンサ保持器10cは、ケーシング10aおよび10bをネジなどで固定し、一対の超音波アレイセンサ1aおよび1bを一定の距離を保持した状態で測定する。 A pair of ultrasonic array sensors 1a and 1b are stored in the casings 10a and 10b, and are installed so as to straddle the welded portion 6 on the upper surface of the mold material 5a or 5b. To do. When the ultrasonic array sensor is installed on the mold material, a contact medium such as water, oil or glycerin paste is applied to the ultrasonic array sensor installation surface. The ultrasonic array sensor holder 10c measures the pair of ultrasonic array sensors 1a and 1b while maintaining a certain distance by fixing the casings 10a and 10b with screws or the like.
 超音波センサユニット10は自走可能であり、被検査物の溶接部長手方向に沿って移動するための探触子移動機構が備えられている。本実施例の超音波センサユニット10においては、タイヤ10dとタイヤを駆動させるモータ10eとが設置され、溶接部6の長手方向(図4中のZ方向)に対して平行移動できる。モータ10eは、4つのタイヤ10dのうち少なくとも1つのタイヤについて設置すれば、超音波アレイセンサ保持器10cを移動できる。4つのタイヤ10dのうち少なくとも1つのタイヤには移動量計測器10fを接続し、タイヤの回転量から超音波センサユニット10が移動した距離を計測する。 The ultrasonic sensor unit 10 is self-propelled and is provided with a probe moving mechanism for moving along the longitudinal direction of the welded part of the inspection object. In the ultrasonic sensor unit 10 of the present embodiment, a tire 10d and a motor 10e for driving the tire are installed and can be moved in parallel with respect to the longitudinal direction of the welded portion 6 (Z direction in FIG. 4). If the motor 10e is installed for at least one of the four tires 10d, the ultrasonic array sensor holder 10c can be moved. A movement amount measuring device 10f is connected to at least one of the four tires 10d, and the distance traveled by the ultrasonic sensor unit 10 is measured from the rotation amount of the tire.
 超音波探傷器11は超音波アレイセンサ1a、1bに接続され、超音波の送波および欠陥などからの反射エコーの受波を制御する。また、受波したエコーを電気信号に変換し、デジタル化して記録し、さらに画像情報に変換して探傷制御器13に送る。また超音波探傷器11の送信部11a及び受信部11bでは超音波アレイセンサ1a、1bの各超音波アレイ振動子の送波及び受波に遅延時間を与え超音波の送波方向や焦点位置を調整する。 The ultrasonic flaw detector 11 is connected to the ultrasonic array sensors 1a and 1b and controls transmission of ultrasonic waves and reception of reflected echoes from defects. The received echo is converted into an electric signal, digitized and recorded, further converted into image information, and sent to the flaw detection controller 13. In addition, the transmitter 11a and the receiver 11b of the ultrasonic flaw detector 11 give a delay time to the transmission and reception of the ultrasonic array transducers of the ultrasonic array sensors 1a and 1b, and determine the ultrasonic transmission direction and focal position. adjust.
 センサユニット移動制御器12は、移動量計測器10fの移動距離計算とモータ10eの駆動制御により、超音波センサユニット10の移動を制御して、超音波アレイセンサ1a、1bの位置を制御する。移動距離の計算結果は探傷制御器13に伝達し、探傷制御器13における探傷結果表示や欠陥発生範囲の記録に用いられる。センサユニット移動制御器12からの指令によって超音波センサユニット10は自走可能となる。 The sensor unit movement controller 12 controls the position of the ultrasonic array sensors 1a and 1b by controlling the movement of the ultrasonic sensor unit 10 by calculating the movement distance of the movement amount measuring device 10f and driving control of the motor 10e. The calculation result of the moving distance is transmitted to the flaw detection controller 13, and is used for the flaw detection result display and the defect occurrence range recording in the flaw detection controller 13. The ultrasonic sensor unit 10 can be self-propelled by a command from the sensor unit movement controller 12.
 探傷制御器13は、超音波探傷器11およびセンサユニット移動制御器12を制御する。構成要素として、センサ位置評価部13a、超音波信号評価部13b、表示位置補正部13c、欠陥判定部13d、描画部13e、表示位置変換テーブル13f、エコー強度テーブル13g、形状図形テーブル13hが必要である。センサ位置評価部13aは、センサユニット移動制御器12での移動指示を行い、移動距離情報を受信し、超音波アレイセンサ1a、1bの位置情報の記録を行う。超音波信号評価部13bは、超音波探傷器11での超音波の送波指示を送り、受信波およびそのときの測定条件などの情報と記録を行う。表示位置補正部13cは、超音波信号評価部13bでの超音波信号および測定条件に基づいて検査画像のエコー表示位置の歪みがある場合、エコー位置を実体にあった位置に座標補正して画像の再構成を行う。欠陥判定部13dは、表示位置補正部13cでの位置補正した再構成画像情報から欠陥信号を抽出し、その検出信号の実体の欠陥位置とエコー強度に基づいて欠陥判定を行う。描画部13eでは、センサ位置評価部13a、表示位置補正部13cおよび欠陥判定部13dに基づいて検査結果画像を作成し、表示器14に送る。表示位置変換テーブル13fは表示位置補正部13cが行う画像の位置補正処理を行うときの参照データを記憶する。エコー強度テーブル13gは欠陥判定部13dが行う欠陥判定処理を行うときの参照データを記憶する。形状図形テーブル13hは、被検査対象の形状情報であるCAD情報等を持つ。形状情報はCAD等に限らず任意の形式の情報で構わない。また、形状情報は表示器14に探傷結果とともに表示し、検査評価領域を設定する際に参照データとして使用する。 The flaw detection controller 13 controls the ultrasonic flaw detector 11 and the sensor unit movement controller 12. As components, a sensor position evaluation unit 13a, an ultrasonic signal evaluation unit 13b, a display position correction unit 13c, a defect determination unit 13d, a drawing unit 13e, a display position conversion table 13f, an echo intensity table 13g, and a shape figure table 13h are required. is there. The sensor position evaluation unit 13a issues a movement instruction in the sensor unit movement controller 12, receives movement distance information, and records position information of the ultrasonic array sensors 1a and 1b. The ultrasonic signal evaluator 13b sends an ultrasonic wave transmission instruction from the ultrasonic flaw detector 11 and records information such as a received wave and measurement conditions at that time. When there is distortion in the echo display position of the inspection image based on the ultrasonic signal and the measurement conditions in the ultrasonic signal evaluation unit 13b, the display position correction unit 13c performs image correction by correcting the coordinates of the echo position to the actual position. Perform reconfiguration. The defect determination unit 13d extracts a defect signal from the reconstructed image information whose position is corrected by the display position correction unit 13c, and performs defect determination based on the actual defect position and echo intensity of the detection signal. The drawing unit 13e creates an inspection result image based on the sensor position evaluation unit 13a, the display position correction unit 13c, and the defect determination unit 13d, and sends the inspection result image to the display unit 14. The display position conversion table 13f stores reference data when performing the image position correction processing performed by the display position correction unit 13c. The echo intensity table 13g stores reference data when performing the defect determination process performed by the defect determination unit 13d. The shape figure table 13h has CAD information, which is shape information of the inspection target. The shape information is not limited to CAD, but may be information in an arbitrary format. The shape information is displayed together with the flaw detection result on the display 14 and used as reference data when setting the inspection evaluation area.
 表示器14は、探傷制御器13からの検査結果出力情報に基づき、超音波アレイセンサ1a、1bの位置や探傷結果等を表示する。 The display 14 displays the positions of the ultrasonic array sensors 1a and 1b, the flaw detection results, and the like based on the inspection result output information from the flaw detection controller 13.
 次に、超音波の送信および受信について説明する。本実施例では、超音波アレイセンサとして一振動子型の超音波アレイセンサを用い、型材同士の溶接部検査に対して適用した例について説明する。検査対象としては、型材同士が溶接により接合された構造物を想定し、溶接部内に欠陥が存在しているものとする。 Next, transmission and reception of ultrasonic waves will be described. In this embodiment, an example will be described in which a single-vibrator type ultrasonic array sensor is used as the ultrasonic array sensor and applied to a welded portion inspection between mold materials. As an inspection target, a structure in which mold materials are joined together by welding is assumed, and defects are present in the welded portion.
 図5に、本実施例の超音波アレイセンサの構成を示す。超音波検査で用いる超音波アレイセンサには、一振動子型の超音波アレイセンサを用い、図5に示すように溶接部6を挟んで対向するように板材表面に配置する。 FIG. 5 shows the configuration of the ultrasonic array sensor of this example. As the ultrasonic array sensor used in the ultrasonic inspection, a single transducer type ultrasonic array sensor is used, and is arranged on the surface of the plate material so as to face each other with the welded portion 6 interposed therebetween as shown in FIG.
 図5(a)には溶接線と交差する方向に対する超音波アレイセンサ1a、1bの上観配置図、図5(b)には溶接線との交差方向に対する超音波アレイセンサの断面図(図5(a)におけるB-B’断面)を示す。型材5a、5bが溶接部6で接合されており、溶接部6の断面は、溶接余盛りを上側(超音波アレイセンサの載置面側)にした扇形に類似する形状を有している。溶接部6の下側(開先と逆側)先端部の紙面左側には、溶接の未着部である欠陥7が存在する場合がある。本実施例の超音波検査では溶接部に発生する欠陥を検出することが目的であり、そのために欠陥に対して超音波が斜め方向から入射するように超音波アレイセンサを配置する。超音波アレイセンサ1a、1bの内部には超音波の送波および受波を行う素子の集合体である超音波アレイ振動子3a、3bが設置されている。超音波アレイ振動子3a、3bは、配列された複数の振動子から成り、振動子への印加電圧時間を調整する電子的走査により、超音波の送波方向や焦点位置を調整できる。従って、超音波アレイ振動子3a、3bを型材5a、5bの表面に対して平行に設置しても、溶接部6に対して斜めに超音波を入射することはできる。本実施例では、型材および溶接部への超音波2の入射強度を高めるために、振動子下部に樹脂製のくさび4を設置して超音波アレイ振動子を傾けている。本実施例では、くさび4を超音波アレイセンサに内蔵して小型化を図っている。 5A is a top view arrangement of the ultrasonic array sensors 1a and 1b with respect to the direction intersecting the weld line, and FIG. 5B is a cross-sectional view of the ultrasonic array sensor with respect to the direction intersecting the weld line (FIG. 5). 5 (a) shows a BB ′ cross section). The mold members 5a and 5b are joined by the welded portion 6, and the cross section of the welded portion 6 has a shape similar to a sector shape with the welding surplus on the upper side (the mounting surface side of the ultrasonic array sensor). There may be a defect 7 that is an unattached portion of the weld on the left side of the front end of the welded portion 6 (on the opposite side to the groove). In the ultrasonic inspection of the present embodiment, the purpose is to detect a defect generated in the welded portion. For this purpose, the ultrasonic array sensor is arranged so that the ultrasonic wave is incident on the defect from an oblique direction. Inside the ultrasonic array sensors 1a and 1b, ultrasonic array transducers 3a and 3b, which are aggregates of elements that transmit and receive ultrasonic waves, are installed. The ultrasonic array transducers 3a and 3b are composed of a plurality of arranged transducers, and the ultrasonic wave transmission direction and the focal position can be adjusted by electronic scanning for adjusting the voltage time applied to the transducers. Therefore, even if the ultrasonic array transducers 3a and 3b are installed parallel to the surfaces of the mold members 5a and 5b, ultrasonic waves can be incident on the welded portion 6 at an angle. In this embodiment, in order to increase the incident intensity of the ultrasonic wave 2 to the mold material and the welded portion, a resin wedge 4 is installed at the lower part of the vibrator, and the ultrasonic array vibrator is tilted. In this embodiment, the wedge 4 is built in the ultrasonic array sensor to reduce the size.
 本実施例によれば、これにより、探触子の走査範囲の一方向のみとして検査時間の短縮、機構構成と制御の簡素化が図れる。 According to the present embodiment, this shortens the inspection time and simplifies the mechanism configuration and control in only one direction of the scanning range of the probe.
 一方、上記の欠陥あるいは被検査対象の形状角部などの特徴点で反射された送波超音波を超音波アレイ振動子で受波すると、振動子毎の受信時間差と被検材内の音速から反射源の位置を特定することができる。このような超音波の送波および受波手法をフェーズドアレイ法という。 On the other hand, if the ultrasonic array transducer receives the transmitted ultrasonic waves reflected by the above-mentioned defects or feature points such as the shape corners of the object to be inspected, the difference between the reception times of each transducer and the sound velocity in the test material The position of the reflection source can be specified. Such an ultrasonic transmission and reception method is called a phased array method.
 前述の印加電圧時間をプログラム化して順次変えることで、超音波を走査することができる。これにより、超音波アレイセンサの移動範囲を最小限にして、広範囲を検査できるため、検査時間の短縮が可能である。本実施例の場合、超音波アレイセンサの電子的な走査条件を適正化して、溶接部で想定している欠陥を検査できる最適な走査条件を決定できるため、検査時間の短縮を図ることができる。また、超音波アレイセンサの前進及び後進(X方向)走査をせずに広範囲を検査するため、超音波アレイセンサの位置を中心として超音波ビームを扇状に走査するセクタスキャン法による評価が望ましい。 ∙ Ultrasonic waves can be scanned by programming and changing the applied voltage time described above. Thereby, the inspection range can be shortened because a wide range can be inspected by minimizing the moving range of the ultrasonic array sensor. In the case of this embodiment, the electronic scanning conditions of the ultrasonic array sensor can be optimized and the optimum scanning conditions that can inspect the defects assumed in the welded portion can be determined, so that the inspection time can be shortened. . In addition, in order to inspect a wide range without performing forward and backward (X direction) scanning of the ultrasonic array sensor, it is desirable to perform evaluation by the sector scan method in which the ultrasonic beam is scanned in a fan shape around the position of the ultrasonic array sensor.
 なお、図5において、点O1、O2は、超音波を送波した振動子から被検査物表面に下ろした垂線と被検査物表面との交点であり、セクタスキャン法により得られる扇形の超音波画像の基準位置である。 In FIG. 5, points O 1 and O 2 are intersections between a perpendicular drawn from the transducer that transmits the ultrasonic wave to the surface of the inspection object and the surface of the inspection object, and are sector-shaped obtained by the sector scan method. This is the reference position of the ultrasonic image.
 続いて、本実施例の特徴である測定画像と位置歪みの補正について、図6を用いて説明する。本実施例では、超音波アレイセンサ1aおよび1bは独立して測定を行う。このため、超音波アレイセンサ1aの動作のみを記すが、超音波アレイセンサ1bの動作も下記記述と同様である。図6(a)における超音波アレイセンサの配置において、超音波アレイ振動子3aから超音波2を送波し、欠陥D1での反射超音波(反射エコー)を超音波アレイ振動子3aで受波し、受波した超音波から得られる反射エコーを解析、映像化することにより欠陥の有無を判断する。ここで、型材の部材板厚をtとする。溶接欠陥は溶接部根元に発生しやすいため、ここでは欠陥D1を溶接部根元に発生した場合を想定した図とした。 Next, measurement image correction and positional distortion correction, which are features of the present embodiment, will be described with reference to FIG. In the present embodiment, the ultrasonic array sensors 1a and 1b perform measurement independently. For this reason, only the operation of the ultrasonic array sensor 1a is described, but the operation of the ultrasonic array sensor 1b is the same as described below. In the arrangement of the ultrasonic array sensor in FIG. 6 (a), transmitting an ultrasonic wave 2 from the ultrasonic array transducer 3a, receiving reflected ultrasonic waves at defect D 1 (the echo) the ultrasonic array transducer 3a The presence or absence of a defect is determined by analyzing and imaging the reflected echo obtained from the received and received ultrasonic waves. Here, the member plate thickness of the mold is assumed to be t. Because welding defects easily occur in the weld root, here was FIG assuming a case of generating a defect D 1 in the weld root.
 このときの測定画像を図6(b)に示す。上記の探傷方法でのセクタスキャン画像であり、超音波アレイセンサ1aを用いた測定において、超音波アレイ振動子3aから超音波を送波し、欠陥D1での反射超音波を超音波アレイ振動子3aで受波した超音波による探傷結果を表示する。ここで、セクタスキャン画像の見方を説明する。扇型で示す測定画像において、左上の頂点部O1が受波する超音波アレイ探触子の位置を示し、X方向は超音波アレイセンサからの反射源までの水平距離を表し、Y方向で示す鉛直方向は超音波アレイセンサからの反射源までの深さを示す。そのため、セクタスキャン画像では、超音波アレイセンサと反射源の位置関係が明確に分かる。Sの画像には図6(a)に示す体系で受波されるエコーを表示したが、E1は欠陥に起因した超音波エコーであり、欠陥がない部分ではE1のエコーは出現しない。また、点線で示す領域Bは欠陥評価範囲である。この領域の設定は、X方向位置は溶接余盛りの両止端位置に相当し、Y方向位置は表面から型材の部材板厚tより少し大きく設定する。 The measurement image at this time is shown in FIG. A sector scan image in the above testing method, in the measurement using an ultrasonic array sensor 1a, and transmitting ultrasonic waves from the ultrasonic array transducer 3a, ultrasonic array transducer and reflected ultrasonic waves at defect D 1 The flaw detection result by the ultrasonic wave received by the child 3a is displayed. Here, how to read the sector scan image will be described. In the measurement image shown in the fan shape, the position of the ultrasonic array probe received by the top left corner O 1 is shown, the X direction represents the horizontal distance from the ultrasonic array sensor to the reflection source, and the Y direction The vertical direction shown indicates the depth from the ultrasonic array sensor to the reflection source. Therefore, the sector scan image clearly shows the positional relationship between the ultrasonic array sensor and the reflection source. In the image of S, echoes received by the system shown in FIG. 6A are displayed, but E 1 is an ultrasonic echo caused by a defect, and no E 1 echo appears in a portion where there is no defect. A region B indicated by a dotted line is a defect evaluation range. In the setting of this region, the position in the X direction corresponds to the both toe positions of the welding surplus, and the position in the Y direction is set slightly larger than the member plate thickness t of the mold material from the surface.
 図6(b)では欠陥エコーE1が本来の欠陥深さより浅く表示される。つまり、実体での欠陥位置をtとした場合、セクタスキャン画像で表示される欠陥エコーの深さはt1(t1<t)となる。これは、超音波探傷器11で映像を形成する際に、屈折角θが大きい角度では超音波アレイ振動子が受波信号の合成波面を生成する際の超音波到達時間の差が小さくなるため、屈折角領域における空間分解能の誤差が大きくなることに起因する。その特性を測定した結果を図7に示す。これは直径0.5mmの横穴を基準欠陥として、センサ設置面からの等間隔の深さで設置した基準欠陥のエコー表示深さをまとめたものである。縦軸は表示欠陥深さt1、横軸は屈折角θである。図中の4本の線は深さ2mmから5mmまでの基準欠陥の表示位置の測定データである。図から屈折角θが大きくなるに従って、表示欠陥深さt1が小さくなることが確認できる。例えば、深さ5mmの基準欠陥を屈折角82°で計測すると、深さ2.5mmに表示される。つまり、測定データを基づいた無加工画像を実際の欠陥位置より浅く表示されるため、画像構成時に欠陥位置が実際の欠陥深さ位置に表示されるように、検査画像の歪みを補正する手段を設定することが重要になる。そこで、図7の測定データの逆変換テーブルを作成し、画像の歪み補正を行う。 In FIG. 6B, the defect echo E 1 is displayed shallower than the original defect depth. That is, assuming that the defect position in the substance is t, the depth of the defect echo displayed in the sector scan image is t 1 (t 1 <t). This is because, when an image is formed by the ultrasonic flaw detector 11, the difference in ultrasonic arrival time when the ultrasonic array transducer generates a composite wavefront of the received signal is small at an angle where the refraction angle θ is large. This is due to an increase in spatial resolution error in the refraction angle region. The result of measuring the characteristics is shown in FIG. This is a summary of echo display depths of reference defects installed at equal intervals from the sensor installation surface with a horizontal hole having a diameter of 0.5 mm as a reference defect. The vertical axis represents the display defect depth t 1 , and the horizontal axis represents the refraction angle θ. The four lines in the figure are measurement data of the display position of the reference defect having a depth of 2 mm to 5 mm. From the figure, it can be confirmed that the display defect depth t 1 decreases as the refraction angle θ increases. For example, when a reference defect having a depth of 5 mm is measured at a refraction angle of 82 °, it is displayed at a depth of 2.5 mm. In other words, since the unprocessed image based on the measurement data is displayed shallower than the actual defect position, means for correcting the distortion of the inspection image so that the defect position is displayed at the actual defect depth position at the time of image construction. Setting is important. Therefore, an inverse conversion table of the measurement data shown in FIG. 7 is created and image distortion correction is performed.
 そこで、上記の画像歪み補正には、屈折角と深さ位置の座標変換補正テーブルを事前に作成し、取得したエコーあるいは画像全体に対して座標変換を行い補正画像として表示する。例えば、図8に示すように実体欠陥深さtを屈折角θと欠陥表示深さ位置t1の座標変換補正式(数式(1))として作成する。ここで、a、b、c、dは事前に測定したデータに基づいた定数、fとgは関数である。 Therefore, in the above-described image distortion correction, a coordinate conversion correction table of refraction angles and depth positions is created in advance, and coordinate conversion is performed on the acquired echo or the entire image and displayed as a corrected image. For example, as shown in FIG. 8, the substantial defect depth t is created as a coordinate conversion correction formula (formula (1)) between the refraction angle θ and the defect display depth position t 1 . Here, a, b, c, and d are constants based on previously measured data, and f and g are functions.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
この屈折角と深さ位置の座標変換補正式データは、実験による測定や数値解析による予測などで事前作成し、表示位置変換テーブル13fに記録しておく。なお、図8は、実体欠陥深さtが2mmから5mmのデータに関しては図7の測定データに基づいて作成したが、実体欠陥深さtが1mmの場合のデータに関しては前記測定データと数値解析による予測値である。 The coordinate conversion correction formula data of the refraction angle and the depth position is created in advance by measurement by experiment or prediction by numerical analysis, and is recorded in the display position conversion table 13f. Note that FIG. 8 is created based on the measurement data of FIG. 7 for data with an entity defect depth t of 2 mm to 5 mm, but for the data with an entity defect depth t of 1 mm, the measurement data and numerical analysis are performed. Is the predicted value.
 今回測定する体系では、溶接余盛りを残存した状態で測定するため、超音波アレイセンサが欠陥に対して十分に接近できないために、高屈折角、例えば65°から80°の範囲で測定せざるを得ない場合が多い。そのため、本実施例に示す高屈折角かつ浅部の欠陥エコー画像の歪み補正が非常に有益である。この座標変換による深さ位置補正を行うことで、欠陥エコーは図6(b)のエコー位置Eに表示でき、欠陥の位置を正しく判定できるようになる。 In the system to be measured this time, since the measurement is performed with the weld surplus remaining, since the ultrasonic array sensor cannot sufficiently approach the defect, it is necessary to measure at a high refraction angle, for example, in the range of 65 ° to 80 °. In many cases, you will not get. Therefore, the distortion correction of the defect echo image having a high refraction angle and a shallow portion shown in the present embodiment is very useful. By performing the depth position correction by this coordinate conversion, the defect echo can be displayed at the echo position E in FIG. 6B, and the position of the defect can be correctly determined.
 続いて、欠陥判定方法について説明する。 Next, the defect determination method will be described.
 欠陥がある場合には、供用期間中に欠陥が進展し車両に不具合が発生するか否かを判定する。車両に不具合が発生すると考えられる場合に補修必要と判断し、欠陥除去と溶接再施工などの補修を行う。そのために、検出した欠陥の位置と大きさを的確に把握する必要がある。欠陥位置については、上記の座標変換による深さ位置補正により、正しく評価できる。そこで、欠陥の大きさを的確に把握する方法が必要である。そこで、車両設計時に検査対象部位の荷重状況に応じた負荷応力と部材の重要度に基づいた許容可能欠陥寸法を設定する。許容可能欠陥寸法より小さい欠陥でも十分に検出できることを標準試験体の基準欠陥で事前測定すると共に、基準欠陥の反射超音波の強度であるエコー強度を測定し、そのエコー強度との対比で欠陥判定、つまり補修要否の判定を行う。 If there is a defect, it is determined whether the defect develops during the service period and the vehicle is defective. When it is considered that a defect will occur in the vehicle, it is judged that repair is necessary, and repairs such as defect removal and welding re-construction are performed. Therefore, it is necessary to accurately grasp the position and size of the detected defect. The defect position can be correctly evaluated by the depth position correction by the coordinate conversion described above. Therefore, a method for accurately grasping the size of the defect is necessary. Therefore, an allowable defect size is set based on the load stress and the importance of the member according to the load state of the inspection target part at the time of vehicle design. Preliminarily measure that a defect smaller than the allowable defect size can be sufficiently detected with the standard defect of the standard specimen, and measure the echo intensity, which is the intensity of the reflected ultrasonic wave of the standard defect, and determine the defect by comparing with the echo intensity. That is, the necessity of repair is determined.
 そこで、図9に示すような基準欠陥に対するエコー強度テーブルを判定基準として作成する。このテーブルは、探傷制御器13内のエコー強度テーブル13gに格納する。図9について説明する。縦軸は実験により測定した基準欠陥のエコー強度A0であり、横軸は表示画像の屈折角θである。基準欠陥は測定する深さ範囲を包括するように深さの異なる複数個の基準欠陥に対して測定する。ここでは深さ2mmから5mmまでの基準欠陥の測定データを示している。このテーブルの活用法を記す。上述の座標変換による深さ位置補正を行った画像の欠陥エコーに対して、実体の欠陥深さt、屈折角θ、エコー強度Aを抽出する。この欠陥エコーの情報に対して、欠陥深さt、屈折角θに対する基準欠陥のエコー強度A0をエコー強度テーブルから求める。ここでA≧A0ならば、欠陥は有害であると判断でき、補修が必要と判定する。本実施例では、判定情報を表示器の検査画像と共に表示する。これにより、溶接余盛りを切削しなくても溶接欠陥を検出できる。また、欠陥位置と補修の必要性をその場で確認できるため、的確に補修施工ができ、高信頼製品を製造できる。 Therefore, an echo intensity table for a reference defect as shown in FIG. 9 is created as a criterion. This table is stored in the echo intensity table 13g in the flaw detection controller 13. FIG. 9 will be described. The vertical axis represents the echo intensity A 0 of the reference defect measured by experiment, and the horizontal axis represents the refraction angle θ of the display image. The reference defect is measured for a plurality of reference defects having different depths so as to cover the depth range to be measured. Here, measurement data of a reference defect having a depth of 2 mm to 5 mm is shown. Describe how to use this table. The defect depth t, the refraction angle θ, and the echo intensity A of the substance are extracted from the defect echo of the image subjected to the depth position correction by the coordinate transformation described above. Based on the defect echo information, the echo intensity A 0 of the reference defect with respect to the defect depth t and the refraction angle θ is obtained from the echo intensity table. Here, if A ≧ A 0 , it can be determined that the defect is harmful and repair is necessary. In this embodiment, the determination information is displayed together with the inspection image of the display. Thereby, a welding defect can be detected even if it does not cut a welding surplus. Moreover, since the defect location and the necessity of repair can be confirmed on the spot, repair work can be performed accurately and a highly reliable product can be manufactured.
 最後に、超音波探傷装置の駆動系と制御系の連携動作について説明する。上述した超音波探傷装置の動作と制御手順について図10を用いて説明する。図10は、本実施例における超音波探傷装置での制御処理内容を表すフローチャートである。なお、この制御処理は、超音波探傷器11、センサユニット移動制御器12および探傷制御器13の内部メモリに予め記憶されたプログラムに基づいて実施されるものである。 Finally, the cooperative operation of the drive system and control system of the ultrasonic flaw detector will be described. The operation and control procedure of the ultrasonic flaw detector described above will be described with reference to FIG. FIG. 10 is a flowchart showing the contents of control processing in the ultrasonic flaw detector according to this embodiment. This control process is performed based on a program stored in advance in internal memories of the ultrasonic flaw detector 11, the sensor unit movement controller 12, and the flaw detector 13.
 鉄道車両構体の製造に当たっては、ステップ500の型材パネル仮組み、ステップ600の型材パネルの溶接の後に検査を実施する。ステップ100の検査開始に当たっては、当該検査部の状況(例えば、板材材質、板厚、溶接開先形状など)を考慮した適切な検査条件を、超音波探傷器11、センサユニット移動制御器12および探傷制御器13に設定する。また、探傷制御器13のメモリ内に格納されたプログラムの動作により、座標変換補正式データを表示位置変換テーブルに設定する。また、検査対象部位に応じた基準欠陥の欠陥判定レベルをエコー強度テーブルに設定する。また、超音波アレイセンサの探傷ステップ毎の移動量を設定する。 In manufacturing the railway vehicle structure, inspection is performed after the template panel temporary assembly in step 500 and the template panel welding in step 600 are performed. At the start of the inspection in step 100, appropriate inspection conditions considering the state of the inspection section (for example, plate material material, plate thickness, weld groove shape, etc.) are set as follows: ultrasonic flaw detector 11, sensor unit movement controller 12 and Set to the flaw detection controller 13. Further, the coordinate conversion correction formula data is set in the display position conversion table by the operation of the program stored in the memory of the flaw detection controller 13. Further, the defect determination level of the reference defect corresponding to the inspection target part is set in the echo intensity table. Moreover, the movement amount for each flaw detection step of the ultrasonic array sensor is set.
 ステップ110では、探傷制御器13における検査評価領域を設定する。型材5a、5bの形状と溶接部6の幅(X方向距離)の寸法情報から溶接部の測定領域を設定する。具体的には、溶接余盛りの幅と型材の部材板厚tに基づいた欠陥評価範囲(図6(b)のS)を設定し、この欠陥評価範囲内に出現するエコーに対してステップ140の処理を行い欠陥エコーの候補を抽出する。 In step 110, an inspection evaluation area in the flaw detection controller 13 is set. The measurement region of the welded portion is set from the shape information of the mold members 5a and 5b and the dimensional information of the width (X direction distance) of the welded portion 6. Specifically, a defect evaluation range (S in FIG. 6B) based on the width of the weld surplus and the member plate thickness t of the mold material is set, and step 140 is performed for echoes that appear within this defect evaluation range. The defect echo candidates are extracted by performing the above process.
 ステップ120では、超音波センサユニット10を検査測定位置に移動する。検査開始時は超音波センサユニット10を検査対象の開始位置に合わせる。超音波アレイセンサ1aおよび1bは溶接部を挟むように対向して配置する。また、検査進行時はセンサユニット移動制御器12の指示に対して、ステップ100で設定した探傷ステップ毎の移動量だけ溶接線長手方向(Z方向)に平行移動させる。測定位置はセンサユニット移動制御器12での位置情報を探傷制御器13のセンサ位置評価部13aで記録する。 In step 120, the ultrasonic sensor unit 10 is moved to the inspection measurement position. At the start of the inspection, the ultrasonic sensor unit 10 is aligned with the start position of the inspection object. The ultrasonic array sensors 1a and 1b are arranged to face each other so as to sandwich the welded portion. Further, when the inspection proceeds, in response to the instruction of the sensor unit movement controller 12, the welding unit is translated in the longitudinal direction (Z direction) by the amount of movement for each flaw detection step set in step 100. For the measurement position, the position information in the sensor unit movement controller 12 is recorded by the sensor position evaluation unit 13 a of the flaw detection controller 13.
 ステップ130では、超音波アレイセンサを用いた超音波ビームの照射および受信を行う。探傷制御器13は超音波探傷器11に対して測定トリガ信号を送信する。それを受けて、超音波探傷器11の送信部11aおよび受信部11bにより超音波アレイセンサ1aで超音波信号の送信および受信処理を行う。同様に超音波アレイセンサ1bでも送信および受信処理を行う。受信信号は探傷制御器13の超音波信号評価部13bに伝達される。 In step 130, irradiation and reception of an ultrasonic beam using an ultrasonic array sensor are performed. The flaw detection controller 13 transmits a measurement trigger signal to the ultrasonic flaw detector 11. In response, the transmitter 11a and the receiver 11b of the ultrasonic flaw detector 11 perform ultrasonic signal transmission and reception processing by the ultrasonic array sensor 1a. Similarly, the ultrasonic array sensor 1b performs transmission and reception processing. The received signal is transmitted to the ultrasonic signal evaluation unit 13b of the flaw detection controller 13.
 ステップ140では、欠陥信号検出処理を行う。ステップ130の測定結果から超音波信号評価部13bでは、ステップ110で設定した評価領域内に出現するエコーがあるかないかを検査データに基づいて判別する。領域内にエコーが存在した場合、欠陥エコーEとして検知し、ステップ150の処理を行う。領域内にエコーが存在しない場合、欠陥なしのため補修不要と判定し、ステップ200の処理を行う。描画部13eで検査画像とともに欠陥判定結果である”欠陥なし”の情報を集積して、表示器14で表示する。 In step 140, a defect signal detection process is performed. From the measurement result of step 130, the ultrasonic signal evaluation unit 13b determines whether there is an echo appearing in the evaluation region set in step 110 based on the inspection data. If there is an echo in the area, it is detected as a defect echo E and the process of step 150 is performed. If no echo exists in the area, it is determined that no repair is necessary because there is no defect, and the process of step 200 is performed. The drawing unit 13e accumulates information indicating “no defect” as a defect determination result together with the inspection image, and displays the information on the display 14.
 ステップ150では、画像の位置補正を行う。超音波信号評価部13bで処理した検査測定データは表示位置補正部13cに送られる。表示位置変換テーブル13fから座標変換補正式データを読み込み、検査測定データは画像の位置補正処理が行われ、高屈折角で歪んで表示された欠陥エコーEは実体の欠陥深さに描画する。 In step 150, the position of the image is corrected. The inspection measurement data processed by the ultrasonic signal evaluation unit 13b is sent to the display position correction unit 13c. The coordinate transformation correction formula data is read from the display position conversion table 13f, the inspection measurement data is subjected to image position correction processing, and the defect echo E displayed distorted at a high refraction angle is drawn at the actual defect depth.
 ステップ160では、反射波の信号振幅に基づいた欠陥判定を行う。ここでは、ステップ150で抽出したエコーEの近傍での受信波信号強度の最大値Aと、受信信号強度判定のしきい値A0を比較する。エコーの信号強度がしきい値A0を超えた場合には、構造強度上で有害な欠陥であると判断し、探傷制御器13の欠陥判定部13dが欠陥有として処理する。従って、この判定で受信波振幅がA<A0ならば“補修必要なし”と判断し、ステップ200の処理を行う。なお、探傷終了点に到達した場合には終了する。また、受信波振幅がA≧A0ならば、欠陥と判断しステップ170の処理を行う。 In step 160, defect determination is performed based on the signal amplitude of the reflected wave. Here, the maximum value A of the received wave signal strength in the vicinity of the echo E extracted in step 150 is compared with the threshold value A 0 for determining the received signal strength. If the echo signal intensity exceeds the threshold value A 0 , it is determined that the defect is a harmful defect in structural strength, and the defect determination unit 13 d of the flaw detection controller 13 processes the defect as being present. Therefore, if the received wave amplitude is A <A 0 in this determination, it is determined that “no repair is necessary”, and the process of step 200 is performed. The process ends when the flaw detection end point is reached. If the received wave amplitude is A ≧ A 0, it is determined as a defect and the process of step 170 is performed.
 ステップ170では、補修必要の判定をする。ステップ160の判定に基づいて、描画部13eで検査画像とともに欠陥判定結果である”補修必要”の情報を集積して、表示器14で表示する。その後、ステップ180の処理を行う。 In step 170, it is determined that repair is necessary. Based on the determination in step 160, the drawing unit 13e accumulates the information on “repair required” as the defect determination result together with the inspection image and displays it on the display unit 14. Thereafter, the process of step 180 is performed.
 ステップ180では、超音波アレイセンサ位置の判定を行う。探傷制御器13の処理により、超音波アレイセンサが検査対象の部材端に到達していれば、検査は終了とし、ステップ190の処理、つまり検査終了になる。しかし、超音波アレイセンサが検査対象の部材端に到達していなければ、ステップ120の処理に移り規定量だけ移動した後、新規地点での探傷を繰り返す。一連の検査作業が完了しステップ200の検査終了後に、欠陥部の補修作業を行う。補修個所は再度検査を行い、欠陥がないことを確認した上でステップ700の構体パネルの組立を行い、6面体上の鉄道車両構体を成形する。 In step 180, the ultrasonic array sensor position is determined. If the ultrasonic array sensor has reached the end of the member to be inspected by the processing of the flaw detection controller 13, the inspection is terminated, and the processing in step 190, that is, the inspection is terminated. However, if the ultrasonic array sensor has not reached the end of the member to be inspected, the process proceeds to step 120, and after moving by a specified amount, flaw detection at a new point is repeated. After a series of inspection work is completed and the inspection in step 200 is completed, the defective part is repaired. The repaired portion is inspected again, and after confirming that there is no defect, the structure panel is assembled in step 700 to form a railcar structure on a hexahedron.
 以上、本実施例の超音波探傷装置あるいは探傷方法により、超音波探触子を溶接線の長手方向と直交する方向へ超音波アレイセンサを前進又は後進走査をすることなく、溶接線方向に沿った平行移動のみで溶接部に発生した欠陥の有無を検査できる超音波探傷装置または探傷方法において、溶接余盛りがあっても迅速に溶接欠陥を測定可能な装置・方法が実現される。特に、部材板厚が薄い検査対象に対する超音波検査においては、画像歪みに対する補正手段により、きずなどの反射源の映像(エコー)を正しい位置に補正表示し、きずの除去あるいは補修を的確に指示および施工することができ、検査・補修施工の高速化と製品の信頼性を向上できる。また、溶接部の余盛り除去という前処理が不要なため、長尺部材の溶接検査に要する作業時間を大幅に低減でき、鉄道車両構体の製造時間短縮と高信頼性を両立できる効果がある。 As described above, according to the ultrasonic flaw detector or the flaw detection method of the present embodiment, the ultrasonic probe is moved in the direction perpendicular to the longitudinal direction of the weld line, and the ultrasonic array sensor is moved forward or backward along the weld line direction. In the ultrasonic flaw detection apparatus or flaw detection method that can inspect the presence or absence of defects generated in the welded part only by parallel movement, an apparatus and method that can quickly measure the weld defects even if there is a surplus weld is realized. In particular, in ultrasonic inspection of inspection objects with thin member thickness, the image (echo) of the reflection source such as flaws is corrected and displayed at the correct position by the correction means for image distortion, and the removal or repair of flaws is instructed accurately. It is possible to improve the reliability of products and the speed of inspection and repair work. In addition, since no pre-treatment for removing the excess portion of the welded portion is required, the work time required for welding inspection of the long member can be greatly reduced, and there is an effect that both the shortening of the manufacturing time of the railway vehicle structure and high reliability can be achieved.
1a、1b   超音波アレイセンサ
2       超音波
3a、3b   超音波アレイ振動子
4       くさび
5a、5b   型材
6       溶接部
6a      勘合部
7       欠陥
10      超音波センサユニット
10a、10b ケーシング
10c     超音波アレイセンサ保持器
10d     タイヤ
10e     モータ
10f     移動量計測器
11      超音波探傷器
11a     送信部
11b     受信部
12      センサユニット移動制御器
13      探傷制御器
13a     センサ位置評価部
13b     超音波信号評価部
13c     表示位置補正部
13d     欠陥判定部
13e     描画部
13f     表示位置変換テーブル
13g     エコー強度テーブル
13h     形状図形テーブル
14      表示器
15      入力器
100~700 作業ステップ
51      屋根構体
52      側構体
53      妻構体
54      台枠
A       セクタ走査表示範囲
B       欠陥評価範囲
1      欠陥
E、E1    欠陥に起因した超音波エコー
S       欠陥評価範囲
t       型材の部材板厚
1       欠陥エコーの表示深さ
DESCRIPTION OF SYMBOLS 1a, 1b Ultrasonic array sensor 2 Ultrasonic 3a, 3b Ultrasonic array vibrator | oscillator 4 Wedge 5a, 5b Mold material 6 Welding part 6a Fitting part 7 Defect 10 Ultrasonic sensor unit 10a, 10b Casing 10c Ultrasonic array sensor holder 10d Tire 10e Motor 10f Movement amount measuring instrument 11 Ultrasonic flaw detector 11a Transmitter 11b Receiver 12 Sensor unit movement controller 13 Flaw detector 13a Sensor position evaluator 13b Ultrasonic signal evaluator 13c Display position corrector 13d Defect determiner 13e Drawing Part 13f Display position conversion table 13g Echo intensity table 13h Shape figure table 14 Display 15 Input device 100-700 Work step 51 Roof structure 52 Side structure 53 Wife structure 54 Frame A Sector scanning display range B Defect evaluation range D 1 Defects E, E 1 Ultrasonic echo due to E 1 defect S Defect evaluation range t Mold material thickness t 1 Display depth of defect echo

Claims (6)

  1.  部材同士の溶接部を検査する超音波探傷装置において、
     前記溶接部に超音波を送波しかつ受波する超音波アレイセンサと、
     前記超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持器と、
     前記超音波アレイ振動子で受波した超音波をエコーに変換する超音波探傷器と、
     当該エコーを用いて前記溶接部の欠陥を検出する探傷制御器と、
     測定結果を表示する表示器を備え、
     前記探傷制御器は、探傷制御器に記録された超音波エコーの表示屈折角と表示深さに基づいた表示位置変換式に従って測定画像の表示位置を補正する表示位置補正部を備えることを特徴とする超音波探傷装置。
    In the ultrasonic flaw detector for inspecting the welded part between members,
    An ultrasonic array sensor for transmitting and receiving ultrasonic waves to the weld, and
    An ultrasonic array sensor holder that moves the ultrasonic array sensor along the longitudinal direction of the weld;
    An ultrasonic flaw detector that converts ultrasonic waves received by the ultrasonic array transducer into echoes;
    A flaw detection controller that detects defects in the weld using the echo;
    It has a display that displays the measurement results,
    The flaw detection controller includes a display position correction unit that corrects a display position of a measurement image according to a display position conversion formula based on a display refraction angle and a display depth of an ultrasonic echo recorded in the flaw detection controller. Ultrasonic flaw detector.
  2.  請求項1に記載の超音波探傷装置において、
     前記探傷制御器は、探傷制御器に記録された超音波エコーの表示屈折角と表示深さによる基準エコー強度テーブルと、抽出した欠陥エコーのエコー強度を対比して欠陥の判定を行う欠陥判定部を備えることを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1,
    The flaw detection controller is configured to determine a defect by comparing the reference echo intensity table based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection controller and the echo intensity of the extracted defect echo. An ultrasonic flaw detector characterized by comprising:
  3.  請求項1あるいは2に記載の超音波探傷装置において、
     前記被検査溶接部に対して1対の超音波アレイセンサを対向して配置して測定することを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1 or 2,
    An ultrasonic flaw detection apparatus, wherein a pair of ultrasonic array sensors are arranged opposite to the welded part to be inspected and measured.
  4.  請求項1から請求項3に記載の超音波探傷装置において、
     前記表示器に検査対象部の形状図を重畳して表示することを特徴とする超音波探傷装置。
    The ultrasonic flaw detector according to claim 1, wherein:
    An ultrasonic flaw detection apparatus, wherein a shape diagram of an inspection target part is superimposed and displayed on the display.
  5.  部材同士の溶接部を検査する超音波探傷方法において、
     前記溶接部に超音波を送波しかつ受波する超音波アレイセンサと、超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持手段と、前記超音波アレイ振動子で受波した超音波をエコーに変換する超音波制御手段と、当該エコーを用いて前記溶接部の欠陥を検出する探傷制御手段を用い、
     探傷制御手段では、探傷制御手段に記録された超音波エコーの表示屈折角と表示深さ基づいた表示位置変換式に従って測定画像の表示位置の歪みを補正する表示位置補正手段と、探傷制御手段に記録された超音波エコーの表示屈折角と表示深さによる基準エコー強度テーブルと、抽出した欠陥エコーのエコー強度を対比して欠陥の判定を行う欠陥判定手段と、前記測定画像と欠陥判定結果を表示する表示手段を備えることを特徴とする超音波探傷方法。
    In the ultrasonic flaw detection method for inspecting the welded part between members,
    An ultrasonic array sensor for transmitting and receiving ultrasonic waves to and from the weld, ultrasonic array sensor holding means for moving the ultrasonic array sensor along the longitudinal direction of the weld, and the ultrasonic array transducer Using ultrasonic control means for converting the ultrasonic wave received at the echo into an echo, and flaw detection control means for detecting a defect of the weld using the echo,
    In the flaw detection control means, the display position correction means for correcting the distortion of the display position of the measurement image according to the display position conversion formula based on the display refraction angle and the display depth of the ultrasonic echo recorded in the flaw detection control means, and the flaw detection control means The reference echo intensity table based on the display refraction angle and display depth of the recorded ultrasonic echo, the defect determination means for determining the defect by comparing the echo intensity of the extracted defect echo, the measurement image and the defect determination result An ultrasonic flaw detection method comprising display means for displaying.
  6.  鉄道車両構体の製造方法において、
     構体を形成するパネル溶接部の健全性検査を実施する際に、前記検査において前記溶接部に超音波を送波しかつ受波する超音波アレイセンサと、超音波アレイセンサを前記溶接部の長手方向に沿って移動させる超音波アレイセンサ保持手段と、前記超音波アレイ振動子で受波した超音波をエコーに変換する超音波制御手段と、当該エコーを用いて前記溶接部の欠陥を検出する探傷制御手段を用い、
     前記探傷制御手段では、探傷制御手段に記録された超音波エコーの表示屈折角と表示深さ基づいた表示位置変換式に従って測定画像の表示位置の歪みを補正する表示位置補正手段と、探傷制御手段に記録された超音波エコーの表示屈折角と表示深さによる基準エコー強度テーブルと、抽出した欠陥エコーのエコー強度を対比して補修要否の判断を行う欠陥判定手段と、前記測定画像と欠陥判定結果を表示する表示手段を備えた超音波検査手段を用いることを特徴とする鉄道車両構体の製造方法。
    In the manufacturing method of the railway vehicle structure,
    When performing a soundness inspection of the panel welded portion forming the structure, an ultrasonic array sensor that transmits and receives an ultrasonic wave to the welded portion in the inspection, and an ultrasonic array sensor is disposed in the longitudinal direction of the welded portion. Ultrasonic array sensor holding means for moving along a direction, ultrasonic control means for converting ultrasonic waves received by the ultrasonic array transducer into echoes, and detecting defects in the weld using the echoes Using flaw detection control means,
    In the flaw detection control means, display position correction means for correcting the distortion of the display position of the measurement image according to the display position conversion formula based on the display refraction angle and display depth of the ultrasonic echo recorded in the flaw detection control means, and the flaw detection control means A reference echo intensity table based on the display refraction angle and display depth of the ultrasonic echo recorded in the image, defect determination means for determining whether or not repair is necessary by comparing the echo intensity of the extracted defect echo, the measurement image and the defect A method for manufacturing a railway vehicle structure, comprising using an ultrasonic inspection means including a display means for displaying a determination result.
PCT/JP2014/051179 2014-01-22 2014-01-22 Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same WO2015111143A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051179 WO2015111143A1 (en) 2014-01-22 2014-01-22 Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051179 WO2015111143A1 (en) 2014-01-22 2014-01-22 Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same

Publications (1)

Publication Number Publication Date
WO2015111143A1 true WO2015111143A1 (en) 2015-07-30

Family

ID=53680975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051179 WO2015111143A1 (en) 2014-01-22 2014-01-22 Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same

Country Status (1)

Country Link
WO (1) WO2015111143A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300999B1 (en) * 2017-10-30 2018-03-28 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processing apparatus, and object evaluation method
CN111103356A (en) * 2019-12-26 2020-05-05 常州超声电子有限公司 Solid shaft ultrasonic flaw detection system, flaw detection method and data processing method
CN111650281A (en) * 2020-05-29 2020-09-11 国网河南省电力公司电力科学研究院 Ultrasonic phased array detection method for tower welding seam
CN117268297A (en) * 2023-11-22 2023-12-22 国营川西机器厂 Method and device for detecting transverse size of welding spot of double-layer catheter based on ultrasonic longitudinal wave

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120045A1 (en) * 2008-05-16 2009-11-18 BAM Bundesanstalt für Materialforschung und -prüfung Device and method for creating an ultrasound image by means of a phased array
EP2249152A2 (en) * 2009-05-05 2010-11-10 Olympus NDT A method and system for distance gain sizing using phased array systems
JP2011141123A (en) * 2010-01-05 2011-07-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2013044582A (en) * 2011-08-23 2013-03-04 Hitachi Ltd Method and device for ultrasonic inspection of weld

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2120045A1 (en) * 2008-05-16 2009-11-18 BAM Bundesanstalt für Materialforschung und -prüfung Device and method for creating an ultrasound image by means of a phased array
EP2249152A2 (en) * 2009-05-05 2010-11-10 Olympus NDT A method and system for distance gain sizing using phased array systems
JP2011141123A (en) * 2010-01-05 2011-07-21 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2013044582A (en) * 2011-08-23 2013-03-04 Hitachi Ltd Method and device for ultrasonic inspection of weld

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300999B1 (en) * 2017-10-30 2018-03-28 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processing apparatus, and object evaluation method
JP2019082397A (en) * 2017-10-30 2019-05-30 三菱日立パワーシステムズ検査株式会社 Ultrasonic flaw detection data processing program, ultrasonic flaw detection data processor and analyte evaluation method
CN111103356A (en) * 2019-12-26 2020-05-05 常州超声电子有限公司 Solid shaft ultrasonic flaw detection system, flaw detection method and data processing method
CN111650281A (en) * 2020-05-29 2020-09-11 国网河南省电力公司电力科学研究院 Ultrasonic phased array detection method for tower welding seam
CN117268297A (en) * 2023-11-22 2023-12-22 国营川西机器厂 Method and device for detecting transverse size of welding spot of double-layer catheter based on ultrasonic longitudinal wave
CN117268297B (en) * 2023-11-22 2024-02-02 国营川西机器厂 Method and device for detecting transverse size of welding spot of double-layer catheter based on ultrasonic longitudinal wave

Similar Documents

Publication Publication Date Title
US10732149B2 (en) Laser ultrasound scanning for visualizing damage or irregularities
JP6441321B2 (en) Improved inspection method by ultrasonic transmission
EP2667187B1 (en) Ultrasonic non-destructive inspection system, in particular for composite material structures for aeronautical applications
CN105699492A (en) An ultrasonographic method used for weld seam detection
WO2012008144A1 (en) Ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP6069123B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JP5868198B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method for welds
WO2015111143A1 (en) Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same
CN109997039B (en) Ultrasonic flaw detection device and method for composite material
JP5475654B2 (en) Method and apparatus for manual nondestructive inspection of tubular axles with varying inner and outer diameter shapes
US20180231508A1 (en) Ultrasonic inspection configuration with beam overlap verification
US11467129B2 (en) NDT data referencing system
JP2010014554A (en) Method for evaluating welding penetration depth
WO2015001625A1 (en) Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure
WO2015001624A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and weld inspection method for panel structure
KR20070065934A (en) Apparatus and method for crack length evaluation by phased array ultrasonic
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
KR101919027B1 (en) A method for inspecting the welding part
JP6366676B2 (en) Ultrasonic inspection of parts whose surface shape is unknown
JP5959677B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2002214204A (en) Ultrasonic flaw detector and method using the same
JP4699242B2 (en) Ultrasonic probe coupling check method and computer program
JP2006138672A (en) Method of and device for ultrasonic inspection
JPH09325136A (en) Automatic defect evaluating method for centrifugal type impeller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP