WO2015110851A1 - Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's) - Google Patents

Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's) Download PDF

Info

Publication number
WO2015110851A1
WO2015110851A1 PCT/IB2014/000057 IB2014000057W WO2015110851A1 WO 2015110851 A1 WO2015110851 A1 WO 2015110851A1 IB 2014000057 W IB2014000057 W IB 2014000057W WO 2015110851 A1 WO2015110851 A1 WO 2015110851A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
metal
composition
electrolytic bath
antibacterial
Prior art date
Application number
PCT/IB2014/000057
Other languages
English (en)
French (fr)
Inventor
Gabriel TREJO-CÓRDOVA
Celina Elizabeth DÁVALOS-BENÍTEZ
Yunny MEAS-VONG
Raúl Martín ORTEGA-BORGES
Claudia RÍOS-ÁLVAREZ
Original Assignee
Centro De Investigación Y Desarrollo Tecnológico En Electroquímica, S.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigación Y Desarrollo Tecnológico En Electroquímica, S.C. filed Critical Centro De Investigación Y Desarrollo Tecnológico En Electroquímica, S.C.
Priority to US15/100,089 priority Critical patent/US20170002473A1/en
Priority to PCT/IB2014/000057 priority patent/WO2015110851A1/es
Priority to MX2014004215A priority patent/MX2014004215A/es
Priority to EP14880167.3A priority patent/EP3098333A4/en
Publication of WO2015110851A1 publication Critical patent/WO2015110851A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to Nickel (Ni) coatings containing occluded and homogeneously dispersed antibacterial metal agents throughout the coating, more specifically, to the composition of an electrolytic bath to obtain a Nickel-Phosphorus antibacterial metal coating ⁇ metal nanoparticles antibacterial (Ni-P-MANP ' s).
  • Metal coatings include decorative electrodeposited coatings for bathrooms, kitchen accessories, handrails, grocery carts, coins, doorknobs and other highly glossy products where antibacterial protection is necessary.
  • the main objective of the present invention is to provide an electrolytic bath that allows to obtain by electrodeposition coatings of Ni-P-MANP ' s metal composites whose antibacterial metal nanoparticles are occluded and homogeneously dispersed throughout the coating.
  • the second objective of the present invention is to provide antibacterial metal coatings (Ni-P-MANP ' s) that prevent and inhibit growth and / or eliminate bacteria of both types: Gram negative like Escherichia coli and Gram positive like Staphylococcus aureus, at least 99% on its surface.
  • antimicrobial agents can be found in various consumer products, for example: soaps, dental cleaning products, deodorants, first aid products, kitchenware, clothing, paints, washing machines, vacuum cleaners, etc.
  • antimicrobial agents are easily incorporated into the product, since they are mixed in the formulations to manufacture the product.
  • the metallic product can be: the handle of a door, the handle of the toilet, waste container, trolleys, handrails in public transport, kitchen utensils, coins, doorknobs and other products that come into contact with humans .
  • the trend has been the development of metallic and polymeric coatings with antibacterial properties.
  • antibacterial agents can be added to the surface of different metals such as: stainless steel sheets, Chrome coatings or Zinc coatings, using the thermal spray technique, as described in WO 2010069104A1 , US 2012 / 0225312A1 and WO 2012122666A1.
  • the thermal spray process has the main disadvantage of its high cost, additionally that some characteristics of the metal, such as gloss and adhesion, are altered by the antimicrobial film formed.
  • Thermosetting resin compositions containing antimicrobial agents have also been developed, to be used as coating materials for various metals, such as: iron, aluminum, copper and stainless steel, as described in patent documents WO 2013052683A2, WO 2012158702A2 , WO 2003043745A1 and WO 2013033802A1.
  • these resin compositions include particulate materials, such as zeolites and oxides that may be unwanted materials on the surface of the articles, for example, decorative or functional articles, which have high aesthetic requirements.
  • Electrodeposition In WO 2009120784A2, they use electrodeposition to make antibacterial coatings formed by organic antibacterial agents dispersed on the surface of the coating. Also, in EP 2438216A1 and EP 2522377A1, they use electrodeposition as a process to form amorphous Cobalt (Co) coatings with antibacterial properties. In patent document WO 2012135107A2, they electrodepose a film of Silver (Ag) on stainless steel to form materials that can be used as implants. In this sense metals such as silver and copper or their oxides, are considered as antimicrobial agents and are known as antibacterial metals. Antibacterial metals are those whose metal ions have an antibacterial effect and that are preferably biocompatible. Preferred biocompatible antibacterial metals include: Silver (Ag), Gold (Au), Copper (Cu), Platinum (Au), Palladium (Pd) and Iridium (Ir) (noble metals).
  • patent document WO 2004101014A2 chemically deposit oxidized species of silver on a surface, to form antibacterial coatings with application to the development of medical material.
  • silver oxides such as: AgO and Ag20, on polymeric surfaces, using the technique of plasma ion deposition (IPD) for their acronym “Ion Plasma Deposition”).
  • the electrodeposition process was used to form metallic composite coatings that contain an antibacterial metal occluded, such as silver or copper, homogeneously dispersed throughout the coating.
  • an antibacterial metal occluded such as silver or copper
  • the antibacterial agent in this case an antibacterial metal such as those referred to above, is homogeneously occluded in the metallic matrix, forming part of the metallic coating.
  • the metallic composite coating obtained by the electrodeposition process satisfies the high aesthetic standards required for decorative finishes including, but not limited to; gloss, high corrosion resistance, high hardness.
  • the ability to prevent and inhibit growth, and / or eliminate bacteria of both types Gram negative like Escherichia coli and Gram positive like Staphylococcus aureus, at least 99% on its surface.
  • the occluded antibacterial agents are nanoparticles of an antibacterial metal, preferably Silver or Copper, and which are dispersed uniformly throughout the thickness of the metal composite coating.
  • thermal spraying or resin incorporation change the properties of surfaces such as: gloss, wear resistance, adhesion. These processes do not incorporate metal nanoparticles with antibacterial effects homogeneously in the coating composition, but only form an antibacterial film on the surface.
  • the present invention consists of an electrolytic bath for electrodepositing a Nickel-Phosphorus-nanoparticles metal antibacterial (Ni-P-MANP ' s) metal composition, comprising salts such as sulfamates of the Ni2 + ion to be deposited, a pH buffering agent, an acid It contains Phosphorus and allows the formation of the Nickel-Phosphorus alloy (Ni-P) and increases the concentration of Phosphorus in the metal composition, it also contains nanoparticles of an antibacterial metal (MANP ' s), with an average size between 10 and 100 nanometers (nm) and can be nanoparticles Silver (Ag) or copper (Cu), occlusion MANP 's in the metal matrix of the coating provides antibacterial properties to metallic composite coating, and further contains a surfactant that allows keep the MANP ' s stable in the suspension and facilitates its occlusion in the metal matrix of the composite during electrodeposition of the metal ion.
  • the present invention consisting of an electrolytic bath that allows Ni-P-MANP ' s metal composite coatings to be obtained by electrodeposition, was developed on the basis of the following considerations: the salts of the metallic ion to be deposited that can be sulfamates, have the function of providing the ions of N ⁇ 2 +. Likewise, a phosphorus-based acid (P3 +) has the main function of forming the Ni-P alloy and increasing the phosphorus concentration in the composition of the Ni-P metal composite coating. Also, occlusion of the nanoparticles of the antibacterial metal in the metal matrix of the coating provides antibacterial characteristics.
  • a surfactant of the cationic can be hydrogen cetyl trimethyl ammonium, decyl trimethyl ammonium bromide or sodium dodecyl sulfate, which stabilizes the MANP 's in the suspension and gives them a positive charge is used , which favors the occlusion of the nanoparticles in the matrix metal during the electrodeposition process, producing homogeneous metallic composite coatings in composition.
  • Composite coatings obtained from the electrolytic bath have a content between 1 and 4 mg / cm3 of MANP ' s in the metal matrix, a phosphorus content between 25 and 70% and a nickel content between 30 and 70%, depending of electrodeposition conditions.
  • Ni-P-MANP ' s coatings inhibit the growth of Escherichia coli bacteria between 98 and 100% and for Staphylococcus aureus bacteria, between 71 and 100% depending on the concentration of Silver nanoparticles (AgNP ' s) in the coating.
  • Figure 1 Composition analysis of the Ni-P-Ag coating, performed on a cross-sectional sample. The analysis was performed by dispersive X-ray energy coupled to scanning electron microscopy.
  • Figure 2 Scanning electron microscopy analysis on a cross-sectional sample.
  • an electrolytic bath which contains:
  • Ni2 + ions at a concentration between 300 and 500 g / L, 400 g / L being the preferred concentration.
  • Ni2 + ions are added to the electrolyte solution from a soluble salt of Nickel Sulfamate tetrahydrate (Ni (S03NH2) 2 " 4H20) which is commercially available.
  • An acid containing Phosphorus this acid has the function of providing Phosphorus ions (P3 +), so that during the reduction reaction the Phosphorus reacts with Ni2 + ions and is co-deposited forming the amorphous Nickel-Phosphorus alloy (Ni-P). Its concentration is of the order of 0.01 to 30.0 g / L, with 10.0 g / L being the preferred concentration.
  • Antibacterial agents contemplated for use in the formulation of the present invention include antibacterial metals such as: Silver or Copper nanoparticles, with size between 10 and 100 nanometers, at a concentration between 3.0 and 10 g / L, the most suitable concentration It depends on the current density applied to the coating formation. The occlusion in the metal matrix of the antibacterial agent nanoparticles gives the coating the antibacterial characteristic. Silver or Copper nano-particles are commercially available.
  • a buffering agent with the purpose of controlling the pH of the solution.
  • This buffering agent is Boric Acid (H3B03) and its concentration is of the order of 8.5 to 45.0 g / L, with 9.5 g / L being the preferred concentration.
  • a cationic surfactant whose main function is to form a stable suspension with the antibacterial metal nanoparticles. In addition to being a cationic surfactant, it confers a positive charge on the nanoparticles, which facilitates these nanoparticles to be electrostatically attracted to the cathode surface during the electrodeposition process, which favors the occlusion of the nanoparticles in the metal matrix, producing homogeneous coatings in composition (see figure 1).
  • the surfactant used does not affect the aesthetic finish of the electrodeposited metal composite coating.
  • the surfactant considered is of the cationic type and can be cetyl trimethyl ammonium hydrogen sulfate, decyl trimethyl ammonium bromide or sodium dodecyl sulfate. The concentration is between 0.09 and 3.81 g / L, 0.2 g / L being the preferred concentration.
  • HCI Hydrochloric Acid
  • NaOH Sodium Hydroxide
  • the electrolytic bath is controlled at a temperature between 30 and 50 ° C; Particularly satisfactory results are obtained at 40 ° C.
  • the electrolytic bath can be operated in a current density range of 0.01 to 0.05 A / cm2.
  • the optimum current density for bath operation depends on the concentration of MANP ' s used.
  • the duration of the electrodeposition may vary depending on the composition of the bath, the density of current used and the desired thickness of the coating.
  • the metallic substrate to be coated can be cathodically electrified using a power source and soluble nickel anodes.
  • the bath and method of the present invention is characterized by its versatility, simple control, stability and is particularly adaptable for obtaining antibacterial metal composite coatings (Ni-P-MANP ' s) on hanging regardless of the geometry of the pieces to be coated. .
  • composition of the electrolytic bath for electrodepositing Ni-P-MANP ' s metal composites the following examples are shown. The examples are proposed to illustrate the method and are not the limiting conditions of the invention.
  • An electrolytic suspension (solution A) containing 400 g / L of Nickel Sulfamate tetrahydrate (Ni (S03NH2) 2 " 4H20), 9.5 g / L of Boric Acid (H3B03), 10 g / L Phosphorous Acid (H3P03) was prepared, 0.2 g / L Cetyl trimethyl ammonium hydrogen sulfate, 3.5 g / L Silver nanoparticles (AgNP ' s) with an average size of 60 nanometers (nm).
  • the pH of the electrolyte is adjusted to 3.0 using a 5% volume solution of sodium hydroxide (NaOH).
  • the electrolytic suspension was controlled at a temperature of 40 ° C; As a cathode, an AISI 1018 steel plate was used and as an anode, a soluble nickel anode.
  • Ni-P-AgNP ' s coatings (coatings 1, 2 and 3) were formed applying three different values of current density (A cm2), using as a cathode, AISI 1018 steel plates, with a exposed area of 15 cm2, as indicated in Table 1.
  • the coatings were made in triplicate.
  • the microbiological analysis was carried out in accordance with the Official Mexican Standard NOM-109-SSA1 -1994, initially and for contact times of 30, 60 and 120 minutes (min) between the Ni-P-AgNP ' s coating and solutions contaminated with Escherichia coli and Staphylococcus aureus.
  • the board. 2 shows the results obtained in Colony Forming Units (UFC).
  • An electrolytic suspension (solution A) containing 400 g / L of Nickel Sulfamate tetrahydrate (Ni (S03NH2) 2 " 4H20), 9.5 g / L of Boric Acid (H3B03), 10 g / L Phosphorous Acid (H3P03) was prepared, 0.2 g / L Cetyl trimethyl ammonium hydrogen sulfate, 7.0 g / L Silver nanoparticles (AgNP ' s) with an average size of 60 nanometers (nm).
  • the pH of the electrolyte is adjusted to 3.0 using a 5% volume solution of sodium hydroxide (NaOH).
  • the electrolytic suspension is controlled at a temperature of 40 ° C; As a cathode, an AISI 1018 steel plate was used and as an anode, a soluble nickel anode.
  • Ni-P-AgNP ' s coatings (coatings 4 and 5) were formed from the above solution, applying two different values of current density (A cm2), using as a cathode, AISI 1018 steel plates, with an exposed area of 15 cm2, as indicated in Table 3.
  • the coatings were made in triplicate.
  • the coatings obtained were adherent and glossy.
  • concentration of silver in the coatings was determined using the analysis technique known as inductively coupled plasma spectroscopy "ICP" (Inductively Coupled Plasma) and the results obtained are shown in Table 4.
  • ICP inductively coupled plasma spectroscopy
  • microbiological analysis was carried out in accordance with the Official Mexican Standard NOM-109-SSA1-1994, initially and for contact times of 30, 60 and 120 minutes (min) between the coating ⁇ - ⁇ -AgNP ' s and solutions contaminated with Escherichia coli and Staphylococcus aureus.
  • Table 4 shows the results obtained in Colony Forming Units (CFU).
  • Staphylococcus aureus coli per coating time (mg / cm 3 )
  • the pH of the electrolyte is adjusted to 3.0 using a 5% volume solution of sodium hydroxide (NaOH).
  • the electrolytic suspension is controlled at a temperature of 40 ° C; As a cathode, an AISI 1018 steel plate was used and as an anode, a soluble nickel anode.
  • Ni-P-AgNP ' s coatings (coatings 6 and 7) were formed applying two different values of current density (A / cm2), using as a cathode, AISI 1018 steel plates, with an area exposed of 15 cm2, according to what is indicated in Table 5.
  • the coatings were made in triplicate.
  • the coatings obtained were adherent and glossy.
  • concentration of silver in the coatings was determined using the analysis technique known as inductively coupled plasma spectroscopy "ICP" (Inductively Coupled Plasma) and the results obtained are shown in Table 6.
  • microbiological analysis was carried out in accordance with the Official Mexican Standard NOM-109-SSA1 -1994, initially and for contact times of 30, 60 and 120 minutes (min) between the Ni-P-AgNP ' s coating and solutions contaminated with Escherichia coli and Staphylococcus aureus.
  • Table 6 shows the results obtained in Colony Forming Units (CFU).
  • the present invention proposes the composition of an electrolytic bath which, using the electrodeposition process, can be applied on electrified metal substrates to obtain a Ni-P-MANP ' s metallic composite coating of homogeneous composition throughout the thickness of the coating and with capacity to prevent or inhibit growth and / or eliminate bacteria of both types: Gram negative like Escherichia coli and Gram positive like Staphylococcus aureus, at least 99% on its surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Abstract

La presente invención propone el uso de un baño electrolítico para electrodepositar recubrimientos compositos metálicos Níquel-Fósforo-nanopartículas de metales con capacidad antibacterial, que inhibe el crecimiento de bacterias como Escherichia coli y Staphylococcus aureus, al menos en 99% sobre su superficie. El método para formular un baño electrolítico que permita obtener recubrimientos antibacteriales contempla los siguientes pasos: a) Adicionar iones P3+ a un baño electrolítico que contenga sales de Ni disueltas, b) adicionar al baño electrolítico nanopartículas de metales con capacidad antibacterial suspendidas en un surfactante catiónico, c) Electrodeposición del recubrimiento composito metálico Ni-P-metal antibacterial aplicando densidad de corriente directa. La oclusión de nanopartículas de metales con capacidad antibacterial en la matriz del recubrimiento le confiere características antibacteriales.

Description

"BAÑO ELECTROLÍTICO PARA OBTENER RECUBRIMIENTOS METÁLICOS ANTIBACTERIALES NÍQUEL-FÓSFORO-NANOPARTÍCULAS DE METAL
ANTIBACTERIAL (Ni-P-MANP's)"
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se relaciona con recubrimientos de Níquel (Ni) que contienen agentes metálicos antibacteriales ocluidos y dispersos homogéneamente en todo el recubrimiento, más específicamente, con la composición de un baño electrolítico para obtener un recubrimiento metálico antibacterial de Níquel-Fósforo^nanopartículas de metal antibacterial (Ni-P-MANP's). Los recubrimientos metálicos incluyen recubrimientos electrodepositados decorativos para cuartos de baños, accesorios de cocina, pasamanos, carros de mandado, monedas, picaportes y otros productos altamente lustrosos donde la protección antibacterial sea necesaria.
OBJETIVOS DE LA INVENCION
El principal objetivo de la presente invención es el de proporcionar un baño electrolítico que permita obtener por electrodeposición recubrimientos compositos metálicos de Ni-P-MANP's cuyas nanopartículas de metales antibacterial están ocluidas y dispersas homogéneamente en todo el recubrimiento.
El segundo objetivo de la presente invención es el de proporcionar recubrimientos metálicos antibacteriales (Ni-P-MANP's) que prevengan e inhiban el crecimiento y/o eliminen bacterias de ambos tipos: Gram negativas como Escherichia coli y Gram positivas como Staphylococcus aureus, al menos en 99% sobre su superficie.
ANTECEDENTES DE LA INVENCIÓN
Como una contribución a la solución de los graves problemas de salud ocasionados por la transmisión de bacterias entre la población, actualmente muchos productos terminados incluyen en su composición agentes antimicrobianos. En la actualidad agentes antimicrobianos pueden ser encontrados en diversos productos de consumo, por ejemplo: jabones, productos de limpieza dental, desodorantes, productos de primeros auxilios, artículos de cocina, ropa, pinturas, lavadoras, aspiradoras, etc. En los ejemplos anteriores, los agentes antimicrobianos son incorporados fácilmente al producto, ya que son mezclados en las formulaciones para fabricar el producto.
En este mismo sentido, actualmente la industria exige ahora recubrimientos antimicrobianos en muchos productos con acabado metálico, ya que muchas enfermedades se pueden transmitir de una persona a otra persona simplemente porque ambas personas tienen contacto con el mismo producto metálico. El producto metálico puede ser: la manija de una puerta, el mango del inodoro, contenedor de residuos, carritos de mandado, los pasamanos en el transporte público, utensilios de cocina, monedas, picaportes y otros productos que entran en contacto con los seres humanos. En los últimos años, en lo que se refiere a recubrimientos, la tendencia ha sido el desarrollo de recubrimientos metálicos y poliméricos con propiedades antibacteriales. Al respecto es conocido que agentes antibacteriales pueden ser adicionados a la superficie de diferentes metales como por ejemplo: láminas de acero inoxidable, recubrimientos de Cromo o recubrimientos de Zinc, utilizando la técnica de rociado térmico, como se describe en los documentos de patente WO 2010069104A1 , US 2012/0225312A1 y WO 2012122666A1. Sin embargo el proceso de rociado térmico tiene la principal desventaja de su alto costo, adicionalmente de que algunas características del metal, tales como brillo y adherencia, son alteradas por la película antimicrobiana formada.
También se han desarrollado composiciones de resinas termoestables que contienen agentes antimicrobianos, para ser utilizados como materiales de recubrimientos para diversos metales, tales como: el hierro, aluminio, cobre y acero inoxidable, como se describe en los documentos de patente WO 2013052683A2, WO 2012158702A2, WO 2003043745A1 y WO 2013033802A1. Sin embargo, estas composiciones de resina incluyen materiales en partículas, tales como zeolitas y óxidos que pueden ser materiales no deseados en la superficie de los artículos, por ejemplo, artículos decorativos o funcionales, que tienen alta exigencia estética.
En el documento de patente WO 1999025898A1 utilizan un proceso simple para la formación de películas antimicrobianas. En este proceso, a partir de una solución con los componentes antimicrobianos, que pueden ser orgánicos o inorgánicos, se aplica una película delgada a la superficie del metal y se presuriza, sin calentamiento, para formar el recubrimiento antibacterial.
Otro proceso para formar recubrimientos antibacteriales es la electrodeposición: En el documento de patente WO 2009120784A2 utilizan la electrodeposición para fabricar recubrimientos antibacteriales formados por agentes orgánicos antibacteriales dispersos en la superficie del recubrimiento. Asimismo, en los documentos de patente EP 2438216A1 y EP 2522377A1 , utilizan la electrodeposición como proceso para formar recubrimientos amorfos de Cobalto (Co) con propiedades antibacteriales. En el documento de patente WO 2012135107A2, electrodepositan una película de Plata (Ag) sobre acero inoxidable para formar materiales que pueden ser utilizados como implantes. En este sentido metales como plata y cobre o sus óxidos, son considerados como agentes antimicrobianos y son conocidos como metales antibacteriales. Metales antibacteriales son aquellos cuyos iones metálicos tienen un efecto antibacterial y que preferencialmente son biocompatibles. Los metales antibacteriales biocompatibles preferidos incluyen: Plata (Ag), Oro (Au), Cobre (Cu), Platino (Au), Paladio (Pd) e Iridio (Ir) (metales nobles).
En el documento de patente WO 2004101014A2 depositan químicamente especies oxidadas de plata sobre una superficie, para formar recubrimientos antibacteriales con aplicación al desarrollo de material médico. Además, en el documento de patente WO 2007097790A1 depositan óxidos de plata como: AgO y Ag20, sobre superficies poliméricas, utilizando la técnica de deposición por ion plasma (IPD, por sus siglas en ingles "Ion Plasma Deposition").
Actualmente el mayor mercado sin explotar para la protección antimicrobiana está en el mercado altamente decorativo y en el acabado galvanizado, incluyendo, pero no limitado a accesorios de cuarto de baño, herrajes para puertas, carros de compra, pasamanos en el transporte público, accesorios de cocina tales como: parrillas de estufa, parrillas de refrigerador, parrillas de hornos, ollas, etc. Estos artículos son generalmente recubiertos con níquel, una aleación de zinc-níquel o bien con cromo.
En la presente invención se utilizó el proceso de electrodeposición para formar recubrimientos compositos metálicos que contengan ocluido a un metal antibacterial, tales como plata o cobre, disperso homogéneamente en todo el recubrimiento. A diferencia de los otros procesos, descritos en las patentes referidas, que solamente forman una película del agente antibacterial sobre la superficie del recubrimiento, en esta invención el agente antibacterial, en este caso un metal antibacterial como los referidos anteriormente, está ocluido homogéneamente en la matriz metálica, formando parte del recubrimiento metálico. El recubrimiento composito metálico obtenido por el proceso de electrodeposición satisface los altos estándares estéticos requeridos para acabados decorativos incluyendo, pero no limitado a; brillo, alta resistencia a la corrosión, alta dureza. Así como la capacidad para prevenir e inhibir el crecimiento, y/o eliminar bacterias de ambos tipos: Gram negativas como Escherichia coli y Gram positivas como Staphylococcus aureus, ai menos en 99% sobre su superficie.
En una realización preferida, los agentes antibacteriales ocluidos son nanopartículas de un metal antibacterial, preferentemente Plata o Cobre, y que se dispersan uniformemente en todo el espesor del recubrimiento composito metálico. PROBLEMA TÉCNICO A RESOLVER
Los procesos actualmente conocidos como rociado térmico o incorporación de resinas, cambian las propiedades de las superficies como por ejemplo: brillo, resistencia al desgaste, adherencia. Estos procesos no incorporan las nanopartículas metálicas con efectos antibacteriales de forma homogénea en la composición del recubrimiento, sino que únicamente forman una película antibacterial sobre la superficie.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención consiste en un baño electrolítico para electrodepositar un composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), comprendiendo sales tales como sulfamatos del ion Ni2+ a depositar, un agente amortiguador de pH, un ácido que contiene Fósforo y que permite la formación de la aleación Níquel-Fósforo (Ni-P) e incrementa la concentración de Fósforo en el composito metálico, además contiene nanopartículas de un metal antibacterial (MANP's), con tamaño promedio entre 10 y 100 nanómetros (nm) y que pueden ser nanopartículas de Plata (Ag) o de Cobre (Cu), la oclusión de las MANP's en la matriz metálica del recubrimiento le proporciona propiedades antibacteriales al recubrimiento composito metálico, y contiene además un surfactante que permite mantener estables a las MANP's en la suspensión y facilita su oclusión en la matriz metálica del composito durante la electrodeposición del ion metálico. Los recubrimientos compositos obtenidos a partir del baño electrolítico tienen la capacidad para prevenir, inhibir y/o eliminar bacterias de ambos tipos: Gram negativas como Escherichia coli y Gram positivas como Staphylococcus aureus, al menos en 99% sobre su superficie.
La presente invención consistente en un baño electrolítico que permite obtener por electrodeposición recubrimientos compositos metálicos de Ni-P-MANP's, fue desarrollada sobre la base de las siguientes consideraciones: las sales del ion metálico a depositar que pueden ser sulfamatos, tienen la función de proporcionar los iones de N¡2+. Asimismo, un ácido a base de Fósforo (P3+) tiene la función principal de formar la aleación Ni-P e incrementar la concentración de Fósforo en la composición del recubrimiento composito metálico Ni-P. Asimismo, la oclusión de las nanopartículas del metal antibacterial en la matriz metálica del recubrimiento le proporciona características antibacteriales. Un punto importante es que se utiliza un agente surfactante de tipo catiónico, que puede ser Hidrogenosulfato de cetil trimetil amonio, decil trimetil bromuro de amonio o dodecil sulfato de sodio, que estabiliza a las MANP's en la suspensión y les confiere una carga positiva, lo que favorece la oclusión de la nanopartículas en la matriz metálica durante el proceso de electrodeposición, produciendo recubrimientos compositos metálicos homogéneos en composición.
Los recubrimientos compositos obtenidos a partir del baño electrolítico, tienen un contenido entre 1 y 4 mg/cm3 de MANP's en la matriz metálica, un contenido de Fósforo entre 25 y 70% y un contenido de Níquel entre 30 y 70%, dependiendo de las condiciones de electrodeposición.
Al realizar la evaluación de la capacidad antibacterial de los recubrimientos respecto a las bacterias Staphylococcus aureus y Escherichia coli, se procedió de acuerdo a la Norma Oficial Mexicana NOM-109-SSA1-1994. Los resultados mostraron que los recubrimientos Ni-P-MANP's inhiben el crecimiento de la bacteria Escherichia coli entre el 98 y el 100% y para la bacteria Staphylococcus aureus, entre 71 y 100 % dependiendo de la concentración de nanopartículas de Plata (AgNP's) en el recubrimiento.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Las figuras que se anexan se explican de la siguiente manera:
Figura 1. Análisis de composición del recubrimiento de Ni-P-Ag, realizado sobre una muestra con corte transversal. El análisis fue realizado por energía dispersiva de rayos X acoplada a microscopía electrónica de barrido.
Figura 2.Análisis por microscopía electrónica de barrido sobre una muestra con corte transversa.
DESCRIPCION DETALLADA DE LA INVENCION
En la presente invención se utiliza un baño electrolítico que contiene:
• Iones Ni2+ a una concentración entre 300 y 500 g/L, siendo 400 g/L la concentración preferente. Los iones Ni2+ son adicionados a la solución electrolítica a partir de una sal soluble de Sulfamato de Níquel tetrahidratado (Ni(S03NH2)2«4H20) que es comercialmente disponible.
• Un ácido que contenga Fósforo, este ácido tiene como función proveer de iones Fósforo (P3+), para que durante la reacción de reducción el Fósforo reaccione con iones Ni2+ y se codepositen formando la aleación amorfa Níquel- Fósforo (Ni-P). Su concentración es del orden de 0.01 a 30.0 g/L, siendo 10.0 g/L la concentración preferente.
• Un agente antibacterial inorgánico, no toxico y biocompatible con el medio ambiente durante todo el tiempo de uso. El agente antibacterial utilizado no afecta el acabado estético del recubrimiento metálico electrodepositado. Los agentes antibacteriales contemplados para su uso en la formulación de la presente invención incluyen a los metales antibacteriales como: nanopartículas de Plata o Cobre, con tamaño entre 10 y 100 nanómetros, a una concentración entre 3.0 y 10 g/L, la concentración más adecuada depende de la densidad de corriente aplicada para la formación del recubrimiento. La oclusión en la matriz metálica de las nanopartículas de agente antibacterial, le da la característica de antibacterial al recubrimiento. Las nano-partículas de Plata o Cobre son comercialmente disponibles.
• Un agente amortiguador, con el propósito de controlar el pH de la solución. Este agente amortiguador es el Ácido Bórico (H3B03) y su concentración es del orden de 8.5 a 45.0 g/L, siendo 9.5 g/L la concentración preferente.
• Un agente surfactante catiónico que tiene como función principal formar una suspensión estable con las nanopartículas del metal antibacterial. Además al ser un surfactante catiónico, le confiere una carga positiva a las nanopartículas, lo que facilita que estas nanopartículas sean atraídas electrostáticamente a la superficie del cátodo durante el proceso de electrodeposición, lo que favorece la oclusión de las nanopartículas en la matriz metálica, produciendo recubrimientos homogéneos en composición (ver figura 1 ). El agente surfactante utilizado no afecta el acabado estético del recubrimiento composito metálico electrodepositado. El agente surfactante considerado es de tipo catiónico y puede ser Hidrogenosulfato de cetíl trimetil amonio, decil trimetil bromuro de amonio o dodecil sulfato de sodio. La concentración se encuentra entre 0.09 y 3.81 g/L, siendo 0.2 g/L la concentración preferente.
• Soluciones acuosas de Ácido Clorhídrico (HCI) al 5% en volumen o Hidróxido de Sodio (NaOH) al 5% en volumen, según sea el caso, a fin de ajusfar el pH final a entre 2 y 5, preferentemente con un pH final de 3.0.
El baño electrolítico es controlado a una temperatura entre 30 y 50°C; resultados particularmente satisfactorios son obtenidos a 40°C.
El baño electrolítico puede ser operado en un intervalo de densidades de corriente de 0.01 a 0.05 A/cm2. La densidad de corriente óptima para la operación del baño depende de la concentración empleada de MANP's.
La duración de la electrodeposición puede variar dependiendo de la composición del baño, de la densidad de corriente empleada y del espesor deseado del recubrimiento. El sustrato metálico a ser recubierto puede ser electrificado catódicamente empleando una fuente de poder y ánodos solubles de Níquel.
El baño y método de la presente invención se caracteriza por su versatilidad, control simple, estabilidad y es particularmente adaptable para la obtención de recubrimientos compositos metálicos antibacteriales (Ni-P-MANP 's) en colgado sin importar la geometría de las piezas a recubrir.
MEJOR MANERA DE REALIZAR LA INVENCIÓN
Con el propósito de ilustrar en la presenta invención la composición del baño electrolítico para electrodepositar compositos metálicos Ni-P-MANP's, se muestran los siguientes ejemplos. Los ejemplos son propuestos para ilustrar el método y no son las condiciones límite de la invención.
Ejemplo 1.
Se preparó una suspensión electrolítica (solución A) conteniendo 400 g/L de Sulfamato de Níquel tetrahidratado (Ni(S03NH2)2«4H20), 9.5 g/L de Ácido Bórico (H3B03), 10 g/L Ácido Fosforoso (H3P03), 0.2 g/L Hidrogenosulfato de cetil trimetil amonio, 3.5 g/L de nanopartículas de Plata (AgNP's) con tamaño promedio de 60 nanómetros (nm). El pH del electrolito es ajustado a 3.0 utilizando una solución de Hidróxido de sodio (NaOH) al 5% en volumen. La suspensión electrolítica se controló a una temperatura de 40°C; como cátodo se utilizó una placa de acero AISI 1018 y como ánodo, un ánodo soluble de Níquel.
A partir de la solución anterior se formaron tres recubrimientos Ni-P-AgNP's (recubrimientos 1, 2 y 3) aplicando tres diferentes valores de densidad de corriente (A cm2), utilizando como cátodo, placas de acero AISI 1018, con un área expuesta de 15 cm2, de acuerdo a lo señalado en la Tabla 1. Los recubrimientos fueron hechos por triplicado.
Tabla 1
Condiciones de operación del baño electrolítico
Densidad de Espesor
No. de
Temperatura pH del corriente promedio del recubrimiento
(°C) electrolito aplicada recubrimiento Ni-P-AgNP's
(A/cm2) obtenido (μιη)
1 40 3.0 0.010 15
2 40 3.0 0.016 15
3 40 3.0 0.021 15 Los recubrimientos obtenidos fueron adherentes y con brillo. La concentración de plata en los recubrimientos se determinó utilizando la técnica de análisis conocida como espectroscopia de plasma de acoplamiento inductivo "ICP" (por sus siglas en inglés, Inductively Coupled Plasma) y los resultados obtenidos se muestran en la Tabla 2.
El análisis microbiológico se realizó conforme a la Norma Oficial Mexicana NOM- 109-SSA1 -1994, de manera inicial y para tiempos de contacto de 30, 60 y 120 minutos (min) entre el recubrimiento Ni-P-AgNP's y soluciones contaminadas con Escherichia coli y Staphylococcus aureus. La Tabla. 2 muestra los resultados obtenidos en Unidades Formadoras de Colonias (UFC).
Tabla 2
Resultados de Concentración de AgNP's y del efecto antibacterial en los recubrimientos finales
Figure imgf000010_0001
Ejemplo 2.
Se preparó una suspensión electrolítica (solución A) conteniendo 400 g/L de Sulfamato de Níquel tetrahidratado (Ni(S03NH2)2«4H20), 9.5 g/L de Ácido Bórico (H3B03), 10 g/L Ácido Fosforoso (H3P03), 0.2 g/L Hidrogenosulfato de cetil trimetil amonio, 7.0 g/L de nanopartículas de Plata (AgNP's) con tamaño promedio de 60 nanómetros (nm). El pH del electrolito es ajustado a 3.0 utilizando una solución de Hidróxido de sodio (NaOH) al 5% en volumen. La suspensión electrolítica es controlada a una temperatura de 40°C; como cátodo se utilizó una placa de acero AISI 1018 y como ánodo, un ánodo soluble de Níquel.
A partir de la solución anterior se formaron dos recubrimientos Ni-P-AgNP's (recubrimientos 4 y 5), aplicando dos diferentes valores de densidad de corriente (A cm2), utilizando como cátodo, placas de acero AISI 1018, con un área expuesta de 15 cm2, de acuerdo a lo señalado en la Tabla 3. Los recubrimientos fueron hechos por triplicado.
Tabla 3
Condiciones de operación del baño electrolítico
Figure imgf000011_0001
Los recubrimientos obtenidos fueron adherentes y con brillo. La concentración de plata en los recubrimientos se determinó utilizando la técnica de análisis conocida como espectroscopia de plasma de acoplamiento inductivo "ICP" (por sus siglas en inglés, Inductively Coupled Plasma) y los resultados obtenidos se muestran en la Tabla 4.
El análisis microbiológico se realizó conforme a la Norma Oficial Mexicana NOM- 109-SSA1-1994, de manera inicial y para tiempos de contacto de 30, 60 y 120 minutos (min) entre el recubrimiento Νί-Ρ-AgNP's y soluciones contaminadas con Escherichia coli y Staphylococcus aureus. La Tabla 4 muestra los resultados obtenidos en Unidades Formadoras de Colonias (UFC).
Tabla 4
Resultados de Concentración de AgNP's y del efecto antibacterial en los recubrimientos finales
Cantidad de Cantidad de bacterias
Concentración
bacteriasCL/FQ de (UFC) de Escherichia
No. de AgNP's
Staphylococcus aureus coli por tiempo de recubrimiento (mg/cm3)
por tiempo de contacto contacto
Ni-P-AgNP's en el
Inicial 30 60 120 Inicial 30 60 120 recubrimiento
0 min min min min 0 min min min min
4 2.43 64 13 3 3 159 7 1 0
5 2.89 64 7 4 2 159 12 1 1 Ejemplo 3.
Se preparó una suspensión electrolítica (solución A) conteniendo 400 g/L de Sulfamato de Níquel tetrahidratado (Ni(S03NH2)2«4H20), 9.5 g/L de Ácido Bórico (H3B03), 10 g/L Ácido Fosforoso (H3P03), 0.2 g/L Hidrogenosulfato de cetil trimetil amonio, 10 g/L de nanopartículas de Plata (AgNP's) con tamaño promedio de 60 nanómetros (nm). El pH del electrolito es ajustado a 3.0 utilizando una solución de Hidróxido de sodio (NaOH) al 5% en volumen. La suspensión electrolítica es controlada a una temperatura de 40°C; como cátodo se utilizó una placa de acero AISI 1018 y como ánodo, un ánodo soluble de Níquel.
A partir de la solución anterior se formaron dos recubrimientos Ni-P-AgNP's (recubrimientos 6 y 7) aplicando dos diferentes valores de densidad de corriente (A/cm2), utilizando como cátodo, placas de acero AISI 1018, con un área expuesta de 15 cm2, de acuerdo a lo señalado en la Tabla 5. Los recubrimientos fueron hechos por triplicado.
Tabla 5
Condiciones de operación del baño electrolítico
Figure imgf000012_0001
Los recubrimientos obtenidos fueron adherentes y con brillo. La concentración de plata en los recubrimientos fue determinada utilizando la técnica de análisis conocida como espectroscopia de plasma de acoplamiento inductivo "ICP" (por sus siglas en inglés, Inductively Coupled Plasma) y los resultados obtenidos se muestran en la Tabla 6.
El análisis microbiológico se realizó conforme a la Norma Oficial Mexicana NOM- 109-SSA1 -1994, de manera inicial y para tiempos de contacto de 30, 60 y 120 minutos (min) entre el recubrimiento Ni-P-AgNP's y soluciones contaminadas con Escherichia coli y Staphylococcus aureus. La Tabla 6 muestra los resultados obtenidos en Unidades Formadoras de Colonias (UFC). Tabla 6
Resultados de Concentración de AgNP's y del efecto antibacterial en los recubrimientos finales
Figure imgf000013_0001
Por lo anterior expuesto, la presente invención propone la composición de un baño electrolítico que utilizando el proceso de electrodeposición pueda aplicarse sobre sustratos metálicos electrificados para obtener un recubrimiento composito metálico Ni-P- MANP's de composición homogénea en todo el espesor del recubrimiento y con capacidad para prevenir o inhibir el crecimiento y/o eliminar bacterias de ambos tipos: Gram negativas como Escherichia coli y Gram positivas como Staphylococcus aureus, al menos en 99% sobre su superficie.
La presente invención ha sido descrita suficientemente como para que una persona con conocimientos medios en la materia pueda reproducirlo y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, no obstante, si para la aplicación de estas modificaciones en composición, se requiere la materia reclamada en las siguientes reivindicaciones, dichas composiciones deberán ser comprendidas dentro del alcance de la presente invención.

Claims

NOVEDAD DE LA INVENCIÓN REIVINDICACIONES Habiendo descrito el invento se considera como una novedad y se reclama por tanto como propiedad, lo contenido en las siguientes cláusulas.
1. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), del tipo que comúnmente comprende la fuente de iones a depositar y sales para hacer conductor el baño electrolítico, caracterizada porque dicha fuente de iones a depositar son sales de Sulfamato de Níquel tetrahidratado (Ni(S03NH2)2«4H20), Ácido Fosforoso (H3P03) y nanopartículas de metal antibacterial, siendo sus aditivos un agente amortiguador de pH y un agente surfactante, teniendo el baño electrolítico un pH entre 2 y 5.
2. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en la reivindicación anterior, caracterizada porque la fuente de iones Ni2+ es el sulfamato de níquel tetrahidratado (Ni(S03NH2)2*4H20) en una concentración de 300 a 500 g/L, siendo la concentración preferente de 400 g/L.
3. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicaciones 1 y 2, caracterizada porque el Ácido Fosforoso (H3P03) se encuentra en una concentración de entre 0.01 a 30.0 g/L, siendo la concentración preferente de 10.0 g/L.
4. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicación 1 a 3, caracterizada porque el metal antibacterial pueden ser nanopartículas de Plata o de Cobre en una concentración entre 3.0 y 10 g/L.
5. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en la reivindicaciones 1 a 4, caracterizada porque el tamaño de las nanopartículas de metal antibacterial se encuentra entre 10 a 100 nanómetros, siendo el tamaño preferente de 60 nanómetros.
6. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicaciones 1 a 5, caracterizada porque el agente amortiguador de pH es el Ácido Bórico (H3B03).
7. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicaciones 1 a 6, caracterizada porque el Ácido Bórico (H3B03) se encuentra en una concentración de entre 8.5 a 45.0 g/L, siendo la concentración preferente de 9.5 g/L.
8. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicaciones 1 a 7, caracterizada porque el agente surfactante considerado es de tipo catiónico y puede ser Hidrogenosulfato de cetil trimetil amonio, decil trimetil bromuro de amonio o dodecil sulfato de sodio.
9. La composición del baño electrolítico para electrodepositar el composito metálico Níquel-Fósforo-nanopartículas de metal antibacterial (Ni-P-MANP's), tal y como se reclama en las reivindicaciones 1 a 8, caracterizada porque el agente surfactante se encuentra en una concentración de entre 0.09 y 3.81 g/L, siendo la concentración preferente de 0.2 g/L.
PCT/IB2014/000057 2014-01-21 2014-01-21 Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's) WO2015110851A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/100,089 US20170002473A1 (en) 2014-01-21 2014-01-21 Electrolytic bath for producing antibacterial metal coatings containing nickel, phosphorus and nanoparticles of an antibacterial metal (ni-p-manp's)
PCT/IB2014/000057 WO2015110851A1 (es) 2014-01-21 2014-01-21 Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's)
MX2014004215A MX2014004215A (es) 2014-01-21 2014-01-21 Baño electrolítico para obtener metálicos actibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp´s).
EP14880167.3A EP3098333A4 (en) 2014-01-21 2014-01-21 Electrolytic bath for producing antibacterial metal coatings containing nickel, phosphorus and nanoparticles of an antibacterial metal (ni-p-manp's)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2014/000057 WO2015110851A1 (es) 2014-01-21 2014-01-21 Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's)

Publications (1)

Publication Number Publication Date
WO2015110851A1 true WO2015110851A1 (es) 2015-07-30

Family

ID=53680882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/000057 WO2015110851A1 (es) 2014-01-21 2014-01-21 Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's)

Country Status (4)

Country Link
US (1) US20170002473A1 (es)
EP (1) EP3098333A4 (es)
MX (1) MX2014004215A (es)
WO (1) WO2015110851A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170408A1 (es) * 2015-04-23 2016-10-27 Centro De Investigación Y Desarrollo Tecnológico En Electroquímica, S.C. Baño electrolítico para obtener recubrimientos compositos metálicos antibacteriales zinc-partículas metálicas antibacteriales (zn/pma)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102425835B1 (ko) * 2015-09-02 2022-07-29 삼성디스플레이 주식회사 스마트 워치 및 스마트 워치의 부품 교체 방법
KR102293664B1 (ko) * 2019-11-12 2021-08-26 주식회사엘콤 니켈인 합금 도금을 위한 조성물
CN114525553B (zh) * 2022-03-01 2023-05-30 九牧厨卫股份有限公司 一种蓝白色复合镀层及其制备方法和蓝白色杀菌产品
CN115300482B (zh) * 2022-08-17 2023-11-28 山东大学 一种牛血清蛋白包覆的氯己定负载磷化镍纳米胶囊及其制备方法与抗菌应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025898A1 (fr) 1997-11-14 1999-05-27 Sumitomo Osaka Cement Co., Ltd. Procede de production d'articles metalliques antimicrobiens et articles metalliques antimicrobiens produits selon ledit procede
WO2003043745A1 (en) 2001-11-20 2003-05-30 Sargent Manufacturing Company Antimicrobial metal coating process and product
WO2004101014A2 (en) 2003-05-16 2004-11-25 Exciton Technologies Inc. Deposition products, composite materials and processes for the production thereof
WO2007097790A1 (en) 2006-02-25 2007-08-30 Chameleon Scientific Corporation Ultraviolet activated antimicrobial surfaces
WO2009120784A2 (en) 2008-03-25 2009-10-01 Pavco Inc. Electrodeposited metallic finishes including antimicrobial agents
WO2010069104A1 (zh) 2008-12-17 2010-06-24 Chin Raymond 抗菌涂层,其制备方法以及包含该涂层的金属制品
EP2438216A1 (en) 2009-06-02 2012-04-11 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
WO2012122666A1 (zh) 2011-03-11 2012-09-20 Chin Yuen Keung Raymond 一种带有装饰保护层的金属抗菌物质
WO2012135107A2 (en) 2011-04-01 2012-10-04 Washington State University Research Foundation Materials with modified surfaces and methods of manufacturing
WO2012158702A2 (en) 2011-05-16 2012-11-22 Basf Se An antimicrobial metal composite
WO2013033802A1 (en) 2011-09-08 2013-03-14 Nanox Tecnologia S/A Antimicrobial compositions and uses thereof
WO2013052683A2 (en) 2011-10-05 2013-04-11 Hunt Emily M Antibacterial metallic nanofoam and related methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0573918A1 (en) * 1992-06-05 1993-12-15 Matsushita Electric Industrial Co., Ltd. Composite plating coatings
JPH07228999A (ja) * 1994-02-16 1995-08-29 Sumitomo Osaka Cement Co Ltd 抗菌防カビ性を有するメッキ処理方法
JP2967116B2 (ja) * 1995-10-04 1999-10-25 杉浦 美知子 抗菌性めっき層
JP3513581B2 (ja) * 1996-06-19 2004-03-31 株式会社Inax 抗菌性を有するニッケル−クロムめっき被膜及びめっき方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025898A1 (fr) 1997-11-14 1999-05-27 Sumitomo Osaka Cement Co., Ltd. Procede de production d'articles metalliques antimicrobiens et articles metalliques antimicrobiens produits selon ledit procede
WO2003043745A1 (en) 2001-11-20 2003-05-30 Sargent Manufacturing Company Antimicrobial metal coating process and product
WO2004101014A2 (en) 2003-05-16 2004-11-25 Exciton Technologies Inc. Deposition products, composite materials and processes for the production thereof
WO2007097790A1 (en) 2006-02-25 2007-08-30 Chameleon Scientific Corporation Ultraviolet activated antimicrobial surfaces
WO2009120784A2 (en) 2008-03-25 2009-10-01 Pavco Inc. Electrodeposited metallic finishes including antimicrobial agents
US20120225312A1 (en) 2008-12-17 2012-09-06 Master Technologic Company Limited Antimicrobial coatings and metal products containing the same
WO2010069104A1 (zh) 2008-12-17 2010-06-24 Chin Raymond 抗菌涂层,其制备方法以及包含该涂层的金属制品
EP2438216A1 (en) 2009-06-02 2012-04-11 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
EP2522377A1 (en) 2009-06-02 2012-11-14 Integran Technologies Inc. Antibacterial electrodeposited metallic materials comprising cobalt
WO2012122666A1 (zh) 2011-03-11 2012-09-20 Chin Yuen Keung Raymond 一种带有装饰保护层的金属抗菌物质
WO2012135107A2 (en) 2011-04-01 2012-10-04 Washington State University Research Foundation Materials with modified surfaces and methods of manufacturing
WO2012158702A2 (en) 2011-05-16 2012-11-22 Basf Se An antimicrobial metal composite
WO2013033802A1 (en) 2011-09-08 2013-03-14 Nanox Tecnologia S/A Antimicrobial compositions and uses thereof
WO2013052683A2 (en) 2011-10-05 2013-04-11 Hunt Emily M Antibacterial metallic nanofoam and related methods

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALIREZAEI, S. ET AL.: "Novel investigation on nanostructure Ni-P-Ag composite coatings.", APPLIED SURFACE SCIENCE, vol. 261, 2012, pages 155 - 158, XP028951252 *
LIN, C. S. ET AL.: "Electrodeposition of nickel-phosphorus alloy from sulfamate baths with improved current efficiency.", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 153, no. 6, 2006, pages C387 - C392, XP055215832 *
See also references of EP3098333A4
WANG HONG-YANG ET AL.: "Composition and properties of Ni-P(Ag-ZrP) antibacterial composite coating", CORROSION SCIENCE AND PROTECTION TECHNOLOGY, vol. 18, no. 2, March 2006 (2006-03-01), XP008183904 *
ZHAO, QI ET AL.: "Antibacterial characteristics of electroless plating Ni-P-TiO2 coatings.", APPLIED SURFACE SCIENCE, vol. 274, 2013, pages 101 - 104, XP028589449 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170408A1 (es) * 2015-04-23 2016-10-27 Centro De Investigación Y Desarrollo Tecnológico En Electroquímica, S.C. Baño electrolítico para obtener recubrimientos compositos metálicos antibacteriales zinc-partículas metálicas antibacteriales (zn/pma)

Also Published As

Publication number Publication date
EP3098333A1 (en) 2016-11-30
EP3098333A4 (en) 2017-08-09
US20170002473A1 (en) 2017-01-05
MX2014004215A (es) 2017-02-10

Similar Documents

Publication Publication Date Title
WO2015110851A1 (es) Baño electrolítico para obtener recubrimientos metálicos antibacteriales níquel-fósforo-nanopartículas de metal antibacterial (ni-p-manp's)
Rizwan et al. Surface modification of valve metals using plasma electrolytic oxidation for antibacterial applications: A review
Wang et al. Electrodeposited dopamine/strontium-doped hydroxyapatite composite coating on pure zinc for anti-corrosion, antimicrobial and osteogenesis
JP5806698B2 (ja) 新規抗微生物性基体およびその使用
Wang et al. Preparation and in vitro antibacterial properties of anodic coatings co-doped with Cu, Zn, and P on a Ti–6Al–4V alloy
Furko et al. Electrochemical and morphological investigation of silver and zinc modified calcium phosphate bioceramic coatings on metallic implant materials
Zhang et al. Silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment
US10793960B2 (en) Electrolytic bath for producing antibacterial metal composite coatings of antibacterial zinc metal particles (Zn/PMA)
EP3575263A1 (en) Bacteriostatic and fungistatic additive in masterbatch for application in plastics, and method for producing same
Kusiak-Nejman et al. E. coli inactivation by high-power impulse magnetron sputtered (HIPIMS) Cu surfaces
Méndez-Albores et al. Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: characterization and antibacterial activity
KR20130059421A (ko) 항균 특성을 지닌 실버 아이오데이트 화합물
Wong et al. Low-temperature fabrication of Ag-doped HA coating on NiTi
Jana et al. Nanomaterials based superhydrophobic and antimicrobial coatings
Liu et al. Reduction of bacterial adhesion on Ag-TiO2 coatings
JP3902329B2 (ja) 耐久性、抗菌性、防藻性および抗黴性を有する表面処理金属材料
US20230051591A1 (en) Articles coated with metal nanoparticle agglomerates
CN102851666A (zh) 一种镀有铜层基材上的复合抗菌镀层的表面处理方法
WO2019111071A1 (es) Baño electrolítico para obtener recubrimientos compositos metálicos antibacteriales de latón-partículas metálicas antibacteriales (zn-cu/pma's)
CN210151218U (zh) 一种防菌pvd薄膜
KR200415937Y1 (ko) 귀금속이 함유된 식사 도구
CN114540895B (zh) 一种杀菌灰色复合镀层及其制备方法和灰色杀菌产品
WO2012122666A1 (zh) 一种带有装饰保护层的金属抗菌物质
KR20060021928A (ko) 나노 은이 함유된 식사 도구
KR200421444Y1 (ko) 나노 은이 함유된 식사 도구

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004215

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880167

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014880167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15100089

Country of ref document: US

Ref document number: 2014880167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE