WO2015110034A1 - 石墨膜的制造方法 - Google Patents

石墨膜的制造方法 Download PDF

Info

Publication number
WO2015110034A1
WO2015110034A1 PCT/CN2015/071304 CN2015071304W WO2015110034A1 WO 2015110034 A1 WO2015110034 A1 WO 2015110034A1 CN 2015071304 W CN2015071304 W CN 2015071304W WO 2015110034 A1 WO2015110034 A1 WO 2015110034A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
graphite
winding
polymer film
wound
Prior art date
Application number
PCT/CN2015/071304
Other languages
English (en)
French (fr)
Inventor
李平
Original Assignee
嘉兴中易碳素科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410040011.2A external-priority patent/CN104802467A/zh
Priority claimed from CN201410271160.XA external-priority patent/CN104015468B/zh
Application filed by 嘉兴中易碳素科技有限公司 filed Critical 嘉兴中易碳素科技有限公司
Priority to CN201580001791.2A priority Critical patent/CN105531227B/zh
Priority to US15/111,206 priority patent/US9623585B2/en
Priority to KR1020167019796A priority patent/KR101878278B1/ko
Publication of WO2015110034A1 publication Critical patent/WO2015110034A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • B28B1/40Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon by wrapping, e.g. winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0017Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor characterised by the choice of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat

Definitions

  • the present invention relates to a method for producing a graphite film used as a heat dissipating film and a heat sink material for electronic equipment, precision equipment, and the like, and more particularly to a method for producing a smooth elongated graphite film.
  • heat-emitting components in mobile phones, computers, liquid crystal televisions, and various integrated circuit boards have higher requirements for heat dissipation, and thus graphite films are high in thermal conductivity and film-like.
  • the heat conductive material is widely used in the electronics industry, and can effectively transfer the heat generated by the electronic component to the heat radiator such as a heat sink, thereby rapidly diffusing the heat of the electronic component to lower the temperature of the heat generating electronic component.
  • the existing graphite film is produced by sandwiching a single polymer film in a flexible graphite paper for heat treatment, but the graphite film has a limited size, low production efficiency, and is limited in subsequent applications, so how to efficiently The production of continuous graphite film coils has become a hot topic.
  • a polymer film such as a PI film needs to be wound with an auxiliary flexible graphite paper.
  • the polymer film undergoes three dimensional changes, the first is the dimensional shrinkage during the carbonization process, the second is the dimensional shrinkage in the thickness direction during the carbonization process, and the third is the occurrence of the graphitization process.
  • the first and second dimensional changes must be carried out under pressure-constrained conditions. Otherwise, the polymer film will be freely warped after carbonization, resulting in surface quality not being reached after graphitization, and after rolling, etc.
  • the third dimensional change causes the excipient flexible graphite paper to be broken under great tension under the constraint of rigidity, so it cannot be reused, resulting in a significant reduction in production efficiency, and mass production of the graphite film coil cannot be achieved.
  • the technical problem to be solved by the present invention is to provide a novel method for manufacturing a graphite film, which adopts the technical solution: a method for manufacturing a graphite film, which comprises the following steps: A method for manufacturing a graphite film , including the following steps: 1), winding process; 2), low-temperature carbonization; 3), high-temperature graphitization; 4), winding and receiving, the artificial graphite film semi-finished products and flexible graphite paper are separately wound; 5), calendering Processing, pressing the artificial graphite film semi-finished product on the release film or the protective film; 6), winding package; wherein the winding process package
  • the following steps are included: a. winding the high temperature elastic material on the graphite core; b.
  • step b After the polymer film and the flexible graphite paper reach a predetermined thickness, they are fastened with a carbon rope.
  • a further feature of the invention is:
  • step b Before the polymer film and the flexible graphite paper are bonded in step b., the polymer film is subjected to a half-cut die-cutting to form a broken dotted line every 0.2-5 m using a dotted knife, and then the cutting is performed.
  • the dotted polymer film is bonded to the flexible graphite paper and then wound on the graphite core on the basis of the step a.
  • step c when the polymer film and the flexible graphite paper wound in the step b reach a predetermined thickness, they are wrapped with a graphite plate and then fastened with a carbon rope.
  • step c when the polymer film and the flexible graphite paper wound in the step b reach a predetermined thickness, the high-temperature elastic material of a predetermined thickness is wound, and then wrapped with a graphite plate, and then fastened with a carbon rope. .
  • step b in the process of winding the polymer film and the flexible graphite paper, the high-temperature elastic material of a predetermined thickness is wound, and then the polymer film and the flexible graphite paper are wound.
  • the high temperature resistant elastic material is a carbon felt or a graphite felt or a ceramic cloth felt.
  • the polymer film is a PI film or a PA film or a PBI film.
  • the beneficial effects of the present invention are: Since the carbon wire is fastened at the end of the winding process, a certain pressure can be applied to the polymer film and the flexible graphite paper in the carbonization process, so that the polymer film does not appear to be free after carbonization. Warp; Since the high temperature elastic material layer is added in the winding process, flexible restraint can be applied to the flexible graphite paper in the graphitization process, so that the graphite paper is not broken by the large tension, so the graphite paper can be repeatedly use. Moreover, this manufacturing method can not only produce high-quality continuous graphite film coils, but also has high production efficiency and can be mass-produced.
  • the polymer film is a PI film
  • the high temperature resistant elastic material is a carbon felt
  • a method for producing a graphite film comprising the following steps: 1), a winding process: a. winding a carbon felt on a graphite core; b. The film is bonded to flexible graphite paper. And on the basis of step a, then wound on the graphite core; c.
  • step b when the PI film and the flexible graphite paper wound in step b reach a predetermined thickness, and are fastened with carbon rope; 2), low temperature carbonization; 3), high temperature Graphitization; 4), ⁇ coil receiving, the artificial graphite film semi-finished product and flexible graphite paper are separately wound; 5), calendering treatment, the artificial graphite film semi-finished product is pressed on the protective material such as release film or protective film; ), winding packaging.
  • the protective material such as release film or protective film
  • the carbon rope tension is adjusted according to the diameter of the coil, the thickness of the carbon felt, the thickness of the flexible graphite paper, the thickness of the PI film, etc., to ensure that the PI film maintains a certain pressure during the carbonization sintering process, so that The PI film is continuous and smooth after carbonization, and has no warp.
  • the carbon felt can provide a certain expansion space in the graphitization process of the PI film, so that the flexible graphite paper does not break, can be reused, and greatly improves the production of the graphite film. effectiveness;
  • the present invention calculates the initial compressive amount of the high temperature resistant elastic material according to the number of turns of the PI film, the original thickness of the single layer PI film, and the thickness of the single layer PI film after carbonization, and adjusts the carbon rope tension accordingly.
  • the thickness of the high-temperature resistant elastic material is the number of turns of the initial compression film* (single-layer PI film thickness - the thickness of the single-layer PI film after carbonization), calculation example, the number of windings is 2000 cycles, the thickness of the single-layer PI film is 50 ⁇ m, after carbonization When the thickness is 35 ⁇ m, the initial thickness of the thickness is 30 mm.
  • the present invention calculates the maximum thickness compression amount of the high temperature resistant elastic material based on the number of turns of the PI film, the thickness of the single layer PI after graphitization, and the thickness of the single layer PI after carbonization.
  • Maximum thickness compression of high temperature resistant elastic material number of PI film windings * (thickness after graphitization of single layer PI film - thickness of single layer PI after carbonization), calculation example, number of windings 2000 times, single layer PI after graphitization With a thickness of 65 ⁇ m and a thickness of 35 ⁇ m after carbonization, the maximum thickness of the high-temperature resistant elastic material is 60 mm.
  • the present invention calculates the number of windings of the carbon-resistant felt based on the maximum thickness compression of the high-temperature resistant elastic material and the maximum compressible amount of the single-layer carbon felt thickness.
  • the diameter of the crucible is 500 mm
  • carbon felt is used as the high temperature resistant elastic material
  • the thickness of the single layer carbon felt is 8 mm
  • the maximum compressible amount is 7 mm
  • the diameter of the graphite core is 70 mm
  • the initial thickness of the PI film is 50 ⁇ m, carbonization.
  • the thickness is 38 microns
  • the thickness after graphitization is 65 microns
  • the thickness of flexible graphite paper is 0.1mm
  • the number of turns of PI film is 1250 circles
  • the initial compression of carbon felt (0.05-0.038) *1250 15mm
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • step b The other steps are the same as those in the first embodiment except that the polymer film and the flexible graphite paper are bonded together in step b., the polymer film is first cut into a broken line by a half-cut die cutting every 2 meters. Then, the polymer film with the broken dotted line and the flexible graphite paper are bonded together, and then wound on the graphite core on the basis of the step a.
  • the initial compression amount of the carbon felt and the number of turns of the carbon felt are the same as those in the first embodiment.
  • the cutting dashed line is evenly distributed, so that the stress on the graphite film is released at the cutting dashed line during the subsequent carbonization and graphitization process. The break is completely broken, the fracture is smooth and tidy, and the 2 meter long graphite film product is directly produced.
  • the half-cut die-cutting is performed every 2 meters.
  • the distance of the cutting dashed line can be flexibly adjusted according to requirements, and the cutting dashed line can be evenly distributed, and can also be unevenly distributed, thereby flexibly controlling the product size. For example, half-cut die cutting can be performed every 0.2 m, 1 m, 3 m or 5 m or any combination.
  • step c when the PI film and the flexible graphite paper wound in the step b reach a predetermined thickness, they are wrapped with a graphite plate and then fastened with a carbon rope. Since the graphite sheet is wrapped and then fastened with a carbon rope, the fastening force of the carbon rope can be more uniformly applied to the inner coil.
  • the initial compression amount of the carbon felt and the number of turns of the carbon felt are the same as those in the first embodiment.
  • step c when the PI film and the flexible graphite paper wound in the step b reach a predetermined thickness, the carbon felt of a predetermined thickness is wound and then wrapped with a graphite plate. Then fasten with a carbon rope. Since the carbon felt is wound around both inside and outside, and finally wrapped with a graphite plate and then fastened with a carbon rope, the fastening force of the carbon rope can be more uniformly applied to the inner coil. Carbon felt initial compression and carbon felt winding The algorithm of the number is the same as that of the first embodiment.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5
  • step b during the winding of the PI film and the flexible graphite paper, the carbon felt of a predetermined thickness is wound, and then the PI film and the flexible graphite paper are wound.
  • the initial compression amount of the carbon felt and the number of turns of the carbon felt are the same as those in the first embodiment.
  • the low-temperature carbonization is a step of preheating the polymer film to a temperature of at least about 800 ° C, and is a step of thermally decomposing the polymer film to obtain a carbonized film.
  • the high-temperature graphitization is a step of heating a carbonized film or a polymer film produced in the carbonization step at a temperature of 1800 ° C or higher to form a raw material graphite film.
  • the selected polymer film is a PI film, that is, a polyimide film.
  • a PA film that is, a polyamide film, a PBI film, that is, a polybenzobenzene
  • the winding of the high temperature resistant elastic material is not limited to the above winding method, and may be first wound on the graphite core, followed by winding the polymer film and the flexible graphite paper, and then winding a piece of high temperature resistant elastic material, and then Winding the polymer film and flexible graphite paper, and finally winding a piece of high temperature resistant elastic material, and finally fastening with carbon rope or graphite plate and carbon wire for the purpose of uniform pressure on the polymer film, thereby improving production.
  • the quality of the graphite film is not limited to the embodiments described above, but the invention is intended to cover all of the embodiments of the invention. The scope of protection of the invention is defined by the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨膜的制造方法,它包括如下步骤:1)、卷绕工序;2)、低温碳化;3)、高温石墨化;4)、开卷收料,将人工石墨膜半成品和柔性石墨纸分别收卷;5)、压延处理,将人工石墨膜半成品压附在离型膜或保护膜上;6)、收卷包装。其中所述卷绕工序包括如下步骤:a.在石墨筒芯缠绕耐耐高温弹性材料;b. 将高分子膜和柔性石墨纸贴合,并在步骤a的基础上接着缠绕在石墨筒芯上;c.当步骤b缠绕的高分子膜和柔性石墨纸达到既定的厚度后,用碳绳紧固。

Description

说明书 发明名称:石墨膜的制造方法 技术领域
[0001] 本发明涉及用作电子设备、 精密设备等的散热膜及散热器材料的石墨膜的制造 方法, 特别涉及平滑的长条状石墨膜的制造方法。
背景技术
[0002] 随着电子工业的不断发展, 手机、 电脑、 液晶电视、 以及各种集成电路板中的 发热部件对散热的要求越来越高, 因此石墨膜作为一种导热率高且呈薄膜状的 导热材料在电子工业中得到广泛的应用, 它可以有效地将电子部件所产生的热 量向散热器等放热体传递, 从而将电子部件的热量迅速扩散以降低发热的电子 部件的温度。 : 现有石墨膜的制造方法是将单张的高分子膜夹于柔性石墨纸中 进行热处理而得到, 但这样石墨膜大小有限, 生产效率低, 而且在后续应用中 受到限制, 因此如何高效地生产出连续的石墨膜卷材成了当下热门的课题。 要 想得到连续的石墨膜卷材, 高分子膜如 PI膜需与辅料柔性石墨纸进行卷绕操作。 这种卷材在烧结过程中, 高分子膜会发生三种尺寸变化, 第一为碳化过程中的 平面尺寸收缩, 第二为碳化过程中厚度方向的尺寸收缩, 第三为石墨化过程中 发生厚度方向的膨胀;第一种和第二种尺寸变化必须在有压力约束的状态下进行 , 否则高分子膜碳化后会出现自由翘曲, 导致石墨化后表面质量不达标, 无法 进行压延等后道工序处理; 第三种尺寸变化会导致辅料柔性石墨纸在刚性约束 下受到巨大张力而断裂, 因此无法重复利用, 导致生产效率大幅降低, 无法实 现石墨膜卷材的规模量产。
[0003] 发明内容:
[0004] 本发明所要解决的技术问题是提供一种全新的石墨膜的制造方法, 它所采用的 技术方案是: 一种石墨膜的制造方法,它包括如下步骤: 一种石墨膜的制造方法, 包括如下步骤: 1) 、 卷绕工序; 2) 、 低温碳化; 3) 、 高温石墨化; 4) 、 幵 卷收料, 将人工石墨膜半成品和柔性石墨纸分别收卷; 5) 、 压延处理, 将人工 石墨膜半成品压附在离型膜或保护膜上; 6) 、 收卷包装; 其中所述卷绕工序包 括如下步骤: a.在石墨筒芯缠绕耐高温弹性材料; b.将高分子膜和柔性石墨纸贴 合, 并在步骤 a的基础上接着缠绕在石墨筒芯上; c.当步骤 b缠绕的高分子膜和柔 性石墨纸达到既定的厚度后, 用碳绳紧固。
[0005] 本发明更进一步的特征是:
[0006] 在步骤 b.中将高分子膜和柔性石墨纸贴合之前,先将高分子膜每隔 0.2 - 5米采用 虚线刀进行半断式模切形成切割虚线,然后再将带有切割虚线的高分子膜和柔性 石墨纸贴合,并在步骤 a的基础上接着缠绕在石墨筒芯上。
[0007] 所述步骤 c中, 当步骤 b缠绕的高分子膜和柔性石墨纸达到既定的厚度后, 用石 墨板裹住, 再用碳绳紧固。
[0008] 所述步骤 c中, 当步骤 b缠绕的高分子膜和柔性石墨纸达到既定的厚度后, 再缠 绕既定厚度的耐高温弹性材料, 然后用石墨板裹住, 再用碳绳紧固。
[0009] 所述步骤 b中, 在缠绕的高分子膜和柔性石墨纸的过程中中断, 缠绕既定厚度 的耐高温弹性材料, 再接着缠绕高分子膜和柔性石墨纸。
[0010] 所述耐高温弹性材料为碳毡或石墨毡或陶瓷布毡。
[0011] 所述高分子膜为 PI膜或 PA膜或 PBI膜。
[0012] 本发明的有益效果是: 由于在卷绕工序最后用碳绳紧固, 因此在碳化工序中可 以对高分子膜和柔性石墨纸施加一定压力, 使高分子膜碳化后不会出现自由翘 曲; 同吋由于在卷绕工序中加入耐高温弹性材料层, 因此在石墨化工序中可以 为柔性石墨纸施加柔性约束, 使石墨纸不会受到巨大张力而断裂, 因此石墨纸 可以得到重复利用。 而且这种制造方法不仅可以生产出高质量的连续的石墨膜 卷材, 而且生产效率高, 可以实现规模量产。
[0013]
[0014] 具体实施方式:
[0015] 下面具体实施例对本发明做更进一步地说明。
[0016] 实施例一
[0017] 本实施例中, 高分子膜采用 PI膜, 耐高温弹性材料采用碳毡。
[0018] 一种石墨膜的制造方法,它包括如下步骤: 一种石墨膜的制造方法,包括如下步 骤: 1) 、 卷绕工序: a.在石墨筒芯上缠绕碳毡; b.将 PI膜和柔性石墨纸贴合, 并在步骤 a的基础上接着缠绕在石墨筒芯上; c.当步骤 b缠绕的 PI膜和柔性石墨纸 达到既定的厚度后, 用碳绳紧固; 2) 、 低温碳化; 3) 、 高温石墨化; 4) 、 幵 卷收料, 将人工石墨膜半成品和柔性石墨纸分别收卷; 5) 、 压延处理, 将人工 石墨膜半成品压附在离型膜或保护膜等保护材料上; 6) 、 收卷包装。
[0019] 在本实施例中, 碳绳张力根据卷材直径, 碳毡的厚度, 柔性石墨纸厚度, PI膜 厚度等参数进行调节, 保证 PI膜在碳化烧结过程中始终保持一定的压力, 使得 PI 膜碳化后连续平滑, 无翘曲等不良, 另外, 碳毡在 PI膜石墨化过程中可以提供一 定的膨胀空间, 使得柔性石墨纸不会发生断裂, 可以重复利用, 大幅提高石墨 膜的生产效率;
[0020] 本发明根据 PI膜绕制圈数、 单层 PI膜原始厚度、 单层 PI膜碳化后厚度来计算耐 高温弹性材料的厚度初始压缩量, 并依此来调节碳绳张力。 耐高温弹性材料的 厚度初始压缩 膜绕制圈数 * (单层 PI膜厚度 -单层 PI膜碳化后厚度) , 计算 实例, 绕制圈数 2000圈, 单层 PI膜厚度 50微米, 碳化后厚度为 35微米, 则厚度初 始压缩量为 30mm。
[0021] 本发明根据 PI膜绕制圈数、 单层 PI石墨化后厚度、 单层 PI碳化后厚度来计算耐 高温弹性材料的最大厚度压缩量。 耐高温弹性材料最大厚度压缩量 =PI膜绕制圈 数 * (单层 PI膜石墨化后厚度 -单层 PI碳化后厚度) , 计算实例, 绕制圈数 2000圈 , 单层 PI石墨化后厚度 65微米, 碳化后厚度为 35微米, 则耐高温弹性材料最大厚 度压缩量为 60mm。
[0022] 本发明根据耐高温弹性材料最大厚度压缩量、 单层碳毡厚度最大可压缩量来计 算耐碳毡的绕制圈数。 碳毡绕制圈数 =最大厚度压缩量 /单层碳毡厚度最大可压缩 量, 计算实例, 最大厚度压缩量为 60mm, 单层耐高温弹性材料厚度最大可压缩 量为 6mm, 则绕制圈数为 60mm/6mm=10, 应绕圈数为 10圈。
[0023] 假设坩埚直径为 500mm, 使用碳毡作为耐高温弹性材料, 单层碳毡厚度为 8mm , 厚度最大可压缩量为 7mm, 石墨筒芯直径为 70mm, PI膜初始厚度为 50微米, 碳化后厚度 38微米, 石墨化后厚度为 65微米, 柔性石墨纸厚度为 0.1mm, PI膜绕 制圈数为 1250圈, 最大厚度压缩量为 (65-38) 微米 *1250/1000=33.75mm, 绕制 圈数为 33.75/7=5圈, 碳毡初始压缩 (0.05-0.038) *1250=15mm,即每圈碳毡压缩 3 mm,则整个卷材最大外径为 1250*(0.1+0.05) mm *2+70mm+5*(8-3)mm*2=495mm
[0024] 由于在卷绕工序最后用碳绳紧固, 因此在碳化工序中可以对 PI膜和柔性石墨纸 施加一定压力, 使 PI膜碳化后不会出现自由翘曲; 同吋由于在卷绕工序中加入碳 毡层, 因此在石墨化工序中可以为柔性石墨纸施加柔性约束, 使石墨纸不会受 到巨大张力而断裂, 因此石墨纸可以得到重复利用。 而且这种制造方法不仅可 以生产出高质量的连续的石墨膜卷材, 而且生产效率高, 可以实现规模量产。
[0025] 实施例二:
[0026] 其他步骤同实施例 1, 只是在步骤 b.中将高分子膜和柔性石墨纸贴合之前,先将 高分子膜每隔 2米采用虚线刀进行半断式模切形成切割虚线,然后再将带有切割虚 线的高分子膜和柔性石墨纸贴合,并在步骤 a的基础上接着缠绕在石墨筒芯上。 碳 毡初始压缩量以及碳毡绕制圈数的算法同实施例一一致。 由于先将高分子膜每 隔 2米采用虚线刀进行半断式模切形成切割虚线,切割虚线均匀分布, 这样在后 续碳化和石墨化工艺过程中石墨膜上受到的应力会在切割虚线处释放, 半断处 完全断幵, 断口光洁整齐, 直接生产出 2米长的石墨膜产品。 本实施例采用每隔 2米进行半断式模切, 在实际生产中, 还可以根据需要灵活调整切割虚线的距离 , 而且切割虚线可以均匀分布, 还可以不均匀分布, 从而灵活控制产品尺寸, 例如可以采用每隔 0.2米、 1米、 3米或 5米或任意组合进行半断式模切。
[0027] 实施例三:
[0028] 其他步骤同实施例 1, 只是在所述步骤 c中, 当步骤 b缠绕的 PI膜和柔性石墨纸 达到既定的厚度后, 用石墨板裹住, 再用碳绳紧固。 由于采用石墨板裹住后再 用碳绳紧固, 因此碳绳的紧固力可以更均匀地作用在内部卷材上。 碳毡初始压 缩量以及碳毡绕制圈数的算法同实施例一一致。
[0029] 实施例四:
[0030] 其他步骤同实施例 1, 只是在所述步骤 c中, 当步骤 b缠绕的 PI膜和柔性石墨纸 达到既定的厚度后, 再缠绕既定厚度的碳毡, 然后用石墨板裹住, 再用碳绳紧 固。 由于内外均卷绕有碳毡, 并在最后用石墨板裹住后再用碳绳紧固, 因此碳 绳的紧固力可以更均匀地作用在内部卷材上。 碳毡初始压缩量以及碳毡绕制圈 数的算法同实施例一一致。
[0031] 实施例五:
[0032] 其他步骤同实施例 1, 只是在所述步骤 b中, 在缠绕的 PI膜和柔性石墨纸的过程 中中断, 缠绕既定厚度的碳毡, 再接着缠绕 PI膜和柔性石墨纸。 碳毡初始压缩量 以及碳毡绕制圈数的算法同实施例一一致。
[0033] 本发明中低温碳化是将高分子膜预加热至至少 800°C左右的温度的工序, 是将 高分子膜加热分解而得到碳化膜的工序。 高温石墨化是以 1800°C以上的温度对碳 化工序中制成的碳化膜或高分子膜加热, 制成原料石墨膜的工序。
[0034] 以上仅是对本发明的示例性介绍, 例如所选高分子膜为 PI膜即聚酰亚胺膜,在 实际应用中, 还可以选用 PA膜即聚酰胺膜、 PBI膜即聚苯并咪唑膜、 PBBI膜即 聚苯并双咪唑膜、 PPV膜即聚对亚苯基亚乙烯膜等; 同样上述实施例中耐高温弹 性材料采用碳毡, 还可以选用石墨毡、 陶瓷布毡等。 而且耐高温弹性材料的卷 绕并不拘泥于上述卷绕方式, 还可以先在石墨筒芯上卷绕一段, 接着卷绕高分 子膜和柔性石墨纸, 再卷绕一段耐高温弹性材料, 接着卷绕高分子膜和柔性石 墨纸, 最后再卷绕一段耐高温弹性材料, 最后再用碳绳紧固或石墨板加碳绳紧 固, 目的是为了高分子膜受压均匀, 从而提高生产出的石墨膜的质量。 因此本 发明的覆盖范围不限于上述实施例, 相反, 本发明涵盖所有在字面上或在等效 形式的教导下实质上落在权利要求的范围内的所有技术方案。 本发明的保护范 围以权利要求书为准。

Claims

权利要求书
一种石墨膜的制造方法,包括如下步骤: 1) 、 卷绕工序; 2) 、 低 温碳化; 3) 、 高温石墨化; 4) 、 幵卷收料, 将人工石墨膜半成 品和柔性石墨纸分别收卷; 5) 、 压延处理, 将人工石墨膜半成品 压附在离型膜或保护膜上; 6) 、 收卷包装; 其特征在于所述卷绕 工序包括如下步骤: a.在石墨筒芯缠绕耐高温弹性材料; b.将高分 子膜和柔性石墨纸贴合, 并在步骤 a的基础上接着缠绕在石墨筒芯 上; c.当步骤 b缠绕的高分子膜和柔性石墨纸达到既定的厚度后, 用碳绳紧固。
如权利要求 1所述的石墨膜的制造方法,其特征在于: 在步骤 b.中将 高分子膜和柔性石墨纸贴合之前,先将高分子膜每隔 0.2 - 5米采用 虚线刀进行半断式模切形成切割虚线,然后再将带有切割虚线的高 分子膜和柔性石墨纸贴合,并在步骤 a的基础上接着缠绕在石墨筒 芯上。
如权利要求 1所述的石墨膜的制造方法,其特征在于: 所述步骤 c中 , 当步骤 b缠绕的高分子膜和柔性石墨纸达到既定的厚度后, 用石 墨板裹住, 再用碳绳紧固。
如权利要求 1所述的石墨膜的制造方法,其特征在于: 所述步骤 c中 , 当步骤 b缠绕的高分子膜和柔性石墨纸达到既定的厚度后, 再缠 绕既定厚度的耐高温弹性材料, 然后用石墨板裹住, 再用碳绳紧 固。
如权利要求 1所述的石墨膜的制造方法,其特征在于: 所述步骤 b中
, 在缠绕的高分子膜和柔性石墨纸的过程中中断, 缠绕既定厚度 的耐高温弹性材料, 再接着缠绕高分子膜和柔性石墨纸。
如权利要求 1 - 5中任一权利要求所述的石墨膜的制造方法,其特征 在于: 所述耐高温弹性材料为碳毡或石墨毡或陶瓷布毡。
如权利要求 1 - 5中任一权利要求所述的石墨膜的制造方法,其特征 在于: 所述高分子膜为 PI膜或 PA膜或 PBI膜。
PCT/CN2015/071304 2014-01-27 2015-01-22 石墨膜的制造方法 WO2015110034A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580001791.2A CN105531227B (zh) 2014-01-27 2015-01-22 石墨膜的制造方法
US15/111,206 US9623585B2 (en) 2014-01-27 2015-01-22 Method for preparing graphite film
KR1020167019796A KR101878278B1 (ko) 2014-01-27 2015-01-22 그라파이트 필름의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410040011.2A CN104802467A (zh) 2014-01-27 2014-01-27 石墨膜的制造方法
CN201410040011.2 2014-01-27
CN201410271160.XA CN104015468B (zh) 2014-06-17 2014-06-17 石墨膜的生产方法
CN201410271160.X 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015110034A1 true WO2015110034A1 (zh) 2015-07-30

Family

ID=53680822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071304 WO2015110034A1 (zh) 2014-01-27 2015-01-22 石墨膜的制造方法

Country Status (4)

Country Link
US (1) US9623585B2 (zh)
KR (1) KR101878278B1 (zh)
CN (1) CN105531227B (zh)
WO (1) WO2015110034A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802467A (zh) * 2014-01-27 2015-07-29 嘉兴中易碳素科技有限公司 石墨膜的制造方法
CN109071232B (zh) * 2016-04-12 2022-09-23 株式会社钟化 卷状石墨片
US10676362B2 (en) * 2017-02-27 2020-06-09 Shenzhen Danbond Technology Co., Ltd Roll-shaped and continuous graphene film and manufacturing method therefor
CN108658069B (zh) * 2018-06-26 2019-11-29 江西德思恩科技有限公司 一种用石墨筒支撑解决石墨膜卷状成型问题的工艺
CN109703164A (zh) * 2018-12-29 2019-05-03 嘉兴中易碳素科技有限公司 石墨膜的制造方法
CN109436883A (zh) * 2018-12-29 2019-03-08 嘉兴中易碳素科技有限公司 松卷装置
CN110518260A (zh) * 2019-08-29 2019-11-29 辽宁金谷炭材料股份有限公司 一种改性钒电池多孔电极石墨毡的生产方法
CN112695486B (zh) * 2020-12-22 2023-03-14 包头晶澳太阳能科技有限公司 一种高纯石墨毡的制备方法及晶硅炉
CN114348754A (zh) * 2021-12-02 2022-04-15 开封时代新能源科技有限公司 一种石墨烯导热膜收卷方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149633A (zh) * 2008-09-11 2011-08-10 株式会社钟化 碳质膜的制造方法及由其制得的石墨膜
CN102745674A (zh) * 2012-06-25 2012-10-24 孙伟峰 片状石墨膜的制造模具及制造方法
JP2013056797A (ja) * 2011-09-08 2013-03-28 Kaneka Corp 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
CN103011141A (zh) * 2012-12-20 2013-04-03 宁波今山新材料有限公司 高导热石墨膜的制造方法
CN104015468A (zh) * 2014-06-17 2014-09-03 嘉兴中易碳素科技有限公司 石墨膜的生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935699A1 (fr) 2008-09-10 2010-03-12 Solvay Procede de fabrication d'un produit chimique
CN102803137B (zh) * 2009-06-22 2016-02-03 株式会社钟化 石墨膜及石墨膜的制造方法
KR101930697B1 (ko) * 2010-02-22 2018-12-19 가부시키가이샤 가네카 그래파이트 복합 필름의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149633A (zh) * 2008-09-11 2011-08-10 株式会社钟化 碳质膜的制造方法及由其制得的石墨膜
JP2013056797A (ja) * 2011-09-08 2013-03-28 Kaneka Corp 炭素質フィルムの製造方法、及びグラファイトフィルムの製造方法
CN102745674A (zh) * 2012-06-25 2012-10-24 孙伟峰 片状石墨膜的制造模具及制造方法
CN103011141A (zh) * 2012-12-20 2013-04-03 宁波今山新材料有限公司 高导热石墨膜的制造方法
CN104015468A (zh) * 2014-06-17 2014-09-03 嘉兴中易碳素科技有限公司 石墨膜的生产方法

Also Published As

Publication number Publication date
US20160332327A1 (en) 2016-11-17
KR101878278B1 (ko) 2018-07-13
CN105531227A (zh) 2016-04-27
US9623585B2 (en) 2017-04-18
CN105531227B (zh) 2017-07-18
KR20160099713A (ko) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2015110034A1 (zh) 石墨膜的制造方法
TWI645981B (zh) 石墨片材、其製造方法、配線用積層板、石墨配線材料及配線板之製造方法
CN104495795B (zh) 一种石墨片及其制备方法
KR101068416B1 (ko) 전열시트, 방열구조체 및 전열시트의 사용방법
JP5329135B2 (ja) グラファイト複合フィルム
JPWO2018143189A1 (ja) 層間熱接合部材、層間熱接合方法、層間熱接合部材の製造方法
JP5830082B2 (ja) グラファイトフィルムおよびグラファイト複合フィルムの製造方法
JP5586210B2 (ja) グラファイトフィルムおよびグラファイト複合フィルム
CN104495798A (zh) 一种石墨导热膜的制造方法
JP6236631B2 (ja) 熱伝導シートの製造方法
CN105752959A (zh) 热塑性聚酰亚胺薄膜碳化复合膜及其制备方法
CN104015468B (zh) 石墨膜的生产方法
US20160381833A1 (en) Heat sink, method for making the same, and electronic device having the same
JP6720717B2 (ja) 放熱シートの製造方法
JP2005272164A (ja) 高熱伝導性部材及びその製造方法、並びにそれを用いた放熱システム
JP6634601B2 (ja) グラファイトプレートとその製造方法
CN105860868A (zh) 用于散热贴膜的制备工艺
KR102075360B1 (ko) 열확산 시트 및 그 제조방법
CN106118516B (zh) 用于高致密性散热贴膜的制造工艺
CN104802467A (zh) 石墨膜的制造方法
KR102068493B1 (ko) 열확산 시트 및 그 제조방법
WO2014134791A1 (zh) 导热垫片及其应用
KR102068492B1 (ko) 열확산 시트 및 그 제조방법
JP6800034B2 (ja) 層間接合部、層間熱接合部材、層間熱接合方法、及び層間熱接合部材の製造方法
JP2016141608A (ja) グラファイトフィルムの製造方法及びグラファイトフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001791.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15111206

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167019796

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15739951

Country of ref document: EP

Kind code of ref document: A1